index
int64
0
100k
blob_id
stringlengths
40
40
code
stringlengths
7
7.27M
steps
listlengths
1
1.25k
error
bool
2 classes
99,500
16e0b88617a0ff0d15b3089e059665c38e6379da
# !/usr/bin/python # -*- coding: utf-8 -*- # 编写程序询问长方形房间的尺寸(单位是米),然后计算覆盖整个房间总共需要多少地毯,并显示出来 length = float(raw_input("请输入房间的长度:")) width = float(raw_input("请输入房间的宽度:")) area = length * width print("总共需要" + str(area) + "平方米地毯。") # 询问每平方尺地毯的价格,并显示一下内容 # 总共需要多少地毯,单位是平方米 # 总共需要多少地毯,单位是平方尺 # 地毯的总价格 print("总共需要" + str(area * 9) + "平方尺地毯。") priceOfCarpet = float(raw_input("请问每平方尺地毯的价格:")) print("地毯的总价是:" + str(priceOfCarpet * area * 9)) # 统计客户的零钱 countOfFiveCents = int(raw_input("有多少个五分币?")) countOfTwoCents = int(raw_input("有多少个二分币?")) countOfOneCents = int(raw_input("有多少个一分币?")) total = 5 * countOfFiveCents + 2 * countOfTwoCents + countOfOneCents print("总面值:" + str(total) + "分")
[ "# !/usr/bin/python\n# -*- coding: utf-8 -*-\n\n# 编写程序询问长方形房间的尺寸(单位是米),然后计算覆盖整个房间总共需要多少地毯,并显示出来\nlength = float(raw_input(\"请输入房间的长度:\"))\nwidth = float(raw_input(\"请输入房间的宽度:\"))\narea = length * width\nprint(\"总共需要\" + str(area) + \"平方米地毯。\")\n\n# 询问每平方尺地毯的价格,并显示一下内容\n# 总共需要多少地毯,单位是平方米\n# 总共需要多少地毯,单位是平方尺\n# 地毯的总价格\n\nprint(\"总共需要\" + str(area * 9) + \"平方尺地毯。\")\npriceOfCarpet = float(raw_input(\"请问每平方尺地毯的价格:\"))\nprint(\"地毯的总价是:\" + str(priceOfCarpet * area * 9))\n\n# 统计客户的零钱\ncountOfFiveCents = int(raw_input(\"有多少个五分币?\"))\ncountOfTwoCents = int(raw_input(\"有多少个二分币?\"))\ncountOfOneCents = int(raw_input(\"有多少个一分币?\"))\ntotal = 5 * countOfFiveCents + 2 * countOfTwoCents + countOfOneCents\nprint(\"总面值:\" + str(total) + \"分\")\n", "length = float(raw_input('请输入房间的长度:'))\nwidth = float(raw_input('请输入房间的宽度:'))\narea = length * width\nprint('总共需要' + str(area) + '平方米地毯。')\nprint('总共需要' + str(area * 9) + '平方尺地毯。')\npriceOfCarpet = float(raw_input('请问每平方尺地毯的价格:'))\nprint('地毯的总价是:' + str(priceOfCarpet * area * 9))\ncountOfFiveCents = int(raw_input('有多少个五分币?'))\ncountOfTwoCents = int(raw_input('有多少个二分币?'))\ncountOfOneCents = int(raw_input('有多少个一分币?'))\ntotal = 5 * countOfFiveCents + 2 * countOfTwoCents + countOfOneCents\nprint('总面值:' + str(total) + '分')\n", "<assignment token>\nprint('总共需要' + str(area) + '平方米地毯。')\nprint('总共需要' + str(area * 9) + '平方尺地毯。')\n<assignment token>\nprint('地毯的总价是:' + str(priceOfCarpet * area * 9))\n<assignment token>\nprint('总面值:' + str(total) + '分')\n", "<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,501
96913d5b6acb0dfb76d2fc51e9225dd7601fe864
import torch from models.model import Model input = torch.randn(32, 1, 48, 600) model = Model(num_classes = 1000) output = model(input) print('output: ', output.size())
[ "import torch \nfrom models.model import Model\ninput = torch.randn(32, 1, 48, 600)\n\nmodel = Model(num_classes = 1000)\noutput = model(input)\n\nprint('output: ', output.size())\n", "import torch\nfrom models.model import Model\ninput = torch.randn(32, 1, 48, 600)\nmodel = Model(num_classes=1000)\noutput = model(input)\nprint('output: ', output.size())\n", "<import token>\ninput = torch.randn(32, 1, 48, 600)\nmodel = Model(num_classes=1000)\noutput = model(input)\nprint('output: ', output.size())\n", "<import token>\n<assignment token>\nprint('output: ', output.size())\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,502
5572d2a50b38f24acf737481534b16d47c5979c3
# -*- coding: utf-8 -*- """ Created on Sat May 19 18:39:04 2018 Description: Functions to describe the basic info of a DataFrame. The actual functions are the following: - describe_features_one_by_one - full_description - names @author: LauradaSilva """ import pandas as pd import numpy as np def describe_features_one_by_one(myDF): ''' Description of each feature of a dataframe one by one. ''' print("Dimension of this data frame", myDF.shape) print("----------------------------------------") var = "go" for feature in myDF: if var != "exit": print("----------------------------------------") print(myDF[feature].describe()) print("----------------------------------------") var = input("Press any button to continue or write exit to finish \n") else: break def full_description(myDF): ''' Full description of a DataFrame. Includying: basic statistics + number of missing values + data types ''' dfDescription = myDF.describe(include = "all").transpose() dfDescription["missingValues"] = myDF.isnull().sum() dfDescription["dataType"] = myDF.dtypes return dfDescription def names(myDF): ''' Get the names and indices of the features in the Data Frame ''' index = list(range(0,len(myDF.columns),1)) name = list(myDF.columns.values) nameDF = np.column_stack([index,name])#pd.DataFrame({index,name}) return nameDF
[ "# -*- coding: utf-8 -*-\r\n\"\"\"\r\nCreated on Sat May 19 18:39:04 2018\r\nDescription: Functions to describe the basic info of a DataFrame.\r\nThe actual functions are the following:\r\n - describe_features_one_by_one\r\n - full_description\r\n - names\r\n@author: LauradaSilva\r\n\"\"\"\r\nimport pandas as pd\r\nimport numpy as np\r\n\r\ndef describe_features_one_by_one(myDF):\r\n '''\r\n Description of each feature of a dataframe one by one.\r\n '''\r\n \r\n print(\"Dimension of this data frame\", myDF.shape)\r\n print(\"----------------------------------------\")\r\n var = \"go\"\r\n for feature in myDF:\r\n if var != \"exit\":\r\n print(\"----------------------------------------\")\r\n print(myDF[feature].describe())\r\n print(\"----------------------------------------\")\r\n var = input(\"Press any button to continue or write exit to finish \\n\")\r\n else:\r\n break\r\n\r\n\r\ndef full_description(myDF):\r\n '''\r\n Full description of a DataFrame.\r\n Includying: basic statistics + number of missing values + data types\r\n '''\r\n \r\n dfDescription = myDF.describe(include = \"all\").transpose()\r\n dfDescription[\"missingValues\"] = myDF.isnull().sum()\r\n dfDescription[\"dataType\"] = myDF.dtypes\r\n return dfDescription\r\n\r\n\r\ndef names(myDF):\r\n '''\r\n Get the names and indices of the features in the Data Frame\r\n '''\r\n \r\n index = list(range(0,len(myDF.columns),1))\r\n name = list(myDF.columns.values)\r\n nameDF = np.column_stack([index,name])#pd.DataFrame({index,name})\r\n return nameDF", "<docstring token>\nimport pandas as pd\nimport numpy as np\n\n\ndef describe_features_one_by_one(myDF):\n \"\"\"\n Description of each feature of a dataframe one by one.\n \"\"\"\n print('Dimension of this data frame', myDF.shape)\n print('----------------------------------------')\n var = 'go'\n for feature in myDF:\n if var != 'exit':\n print('----------------------------------------')\n print(myDF[feature].describe())\n print('----------------------------------------')\n var = input(\n 'Press any button to continue or write exit to finish \\n')\n else:\n break\n\n\ndef full_description(myDF):\n \"\"\"\n Full description of a DataFrame.\n Includying: basic statistics + number of missing values + data types\n \"\"\"\n dfDescription = myDF.describe(include='all').transpose()\n dfDescription['missingValues'] = myDF.isnull().sum()\n dfDescription['dataType'] = myDF.dtypes\n return dfDescription\n\n\ndef names(myDF):\n \"\"\"\n Get the names and indices of the features in the Data Frame\n \"\"\"\n index = list(range(0, len(myDF.columns), 1))\n name = list(myDF.columns.values)\n nameDF = np.column_stack([index, name])\n return nameDF\n", "<docstring token>\n<import token>\n\n\ndef describe_features_one_by_one(myDF):\n \"\"\"\n Description of each feature of a dataframe one by one.\n \"\"\"\n print('Dimension of this data frame', myDF.shape)\n print('----------------------------------------')\n var = 'go'\n for feature in myDF:\n if var != 'exit':\n print('----------------------------------------')\n print(myDF[feature].describe())\n print('----------------------------------------')\n var = input(\n 'Press any button to continue or write exit to finish \\n')\n else:\n break\n\n\ndef full_description(myDF):\n \"\"\"\n Full description of a DataFrame.\n Includying: basic statistics + number of missing values + data types\n \"\"\"\n dfDescription = myDF.describe(include='all').transpose()\n dfDescription['missingValues'] = myDF.isnull().sum()\n dfDescription['dataType'] = myDF.dtypes\n return dfDescription\n\n\ndef names(myDF):\n \"\"\"\n Get the names and indices of the features in the Data Frame\n \"\"\"\n index = list(range(0, len(myDF.columns), 1))\n name = list(myDF.columns.values)\n nameDF = np.column_stack([index, name])\n return nameDF\n", "<docstring token>\n<import token>\n<function token>\n\n\ndef full_description(myDF):\n \"\"\"\n Full description of a DataFrame.\n Includying: basic statistics + number of missing values + data types\n \"\"\"\n dfDescription = myDF.describe(include='all').transpose()\n dfDescription['missingValues'] = myDF.isnull().sum()\n dfDescription['dataType'] = myDF.dtypes\n return dfDescription\n\n\ndef names(myDF):\n \"\"\"\n Get the names and indices of the features in the Data Frame\n \"\"\"\n index = list(range(0, len(myDF.columns), 1))\n name = list(myDF.columns.values)\n nameDF = np.column_stack([index, name])\n return nameDF\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n\n\ndef names(myDF):\n \"\"\"\n Get the names and indices of the features in the Data Frame\n \"\"\"\n index = list(range(0, len(myDF.columns), 1))\n name = list(myDF.columns.values)\n nameDF = np.column_stack([index, name])\n return nameDF\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,503
65496cd26d23bb9fa975eb0b87096daaf5685bc3
import numpy as np import sys sys.path.append('/usr/local/lib/python2.7/site-packages') import cv2 import matplotlib.pyplot as plt import time def convertToRGB(img): return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) haar_face_cascade = cv2.CascadeClassifier('/Users/Vicky/Dropbox/Projects/WebCamVideoFaceDetector/classifiers/haarcascade_frontalface_alt.xml') img = cv2.imread('/Users/Vicky/Dropbox/Projects/WebCamVideoFaceDetector/baby.png') cap = cv2.VideoCapture(0) while(True): ret, frame = cap.read() gray_img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #Detect faces faces = haar_face_cascade.detectMultiScale(gray_img, scaleFactor=1.1, minNeighbors=5); for (x,y,w,h) in faces: cv2.rectangle(frame, (x,y), (x+w,y+h), (255,0,0), 2) cv2.imshow('frame', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() cv2.destroyAllWindows() #print((faces)) for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x+w, y+h), (255, 255, 255), 3) plt.imshow(img)
[ "import numpy as np\nimport sys\nsys.path.append('/usr/local/lib/python2.7/site-packages')\nimport cv2\nimport matplotlib.pyplot as plt\nimport time\n\n\ndef convertToRGB(img):\n return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n\n\nhaar_face_cascade = cv2.CascadeClassifier('/Users/Vicky/Dropbox/Projects/WebCamVideoFaceDetector/classifiers/haarcascade_frontalface_alt.xml')\nimg = cv2.imread('/Users/Vicky/Dropbox/Projects/WebCamVideoFaceDetector/baby.png')\n\ncap = cv2.VideoCapture(0)\n\nwhile(True):\n ret, frame = cap.read()\n gray_img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)\n \n #Detect faces\n faces = haar_face_cascade.detectMultiScale(gray_img, scaleFactor=1.1, minNeighbors=5);\n \n for (x,y,w,h) in faces:\n cv2.rectangle(frame, (x,y), (x+w,y+h), (255,0,0), 2)\n \n cv2.imshow('frame', frame)\n if cv2.waitKey(1) & 0xFF == ord('q'):\n break\n\n# When everything done, release the capture\ncap.release()\ncv2.destroyAllWindows()\n\n \n\n\n\n \n#print((faces))\n\nfor (x, y, w, h) in faces:\n cv2.rectangle(img, (x, y), (x+w, y+h), (255, 255, 255), 3)\n\nplt.imshow(img)", "import numpy as np\nimport sys\nsys.path.append('/usr/local/lib/python2.7/site-packages')\nimport cv2\nimport matplotlib.pyplot as plt\nimport time\n\n\ndef convertToRGB(img):\n return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n\n\nhaar_face_cascade = cv2.CascadeClassifier(\n '/Users/Vicky/Dropbox/Projects/WebCamVideoFaceDetector/classifiers/haarcascade_frontalface_alt.xml'\n )\nimg = cv2.imread(\n '/Users/Vicky/Dropbox/Projects/WebCamVideoFaceDetector/baby.png')\ncap = cv2.VideoCapture(0)\nwhile True:\n ret, frame = cap.read()\n gray_img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)\n faces = haar_face_cascade.detectMultiScale(gray_img, scaleFactor=1.1,\n minNeighbors=5)\n for x, y, w, h in faces:\n cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)\n cv2.imshow('frame', frame)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\ncap.release()\ncv2.destroyAllWindows()\nfor x, y, w, h in faces:\n cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 255), 3)\nplt.imshow(img)\n", "<import token>\nsys.path.append('/usr/local/lib/python2.7/site-packages')\n<import token>\n\n\ndef convertToRGB(img):\n return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n\n\nhaar_face_cascade = cv2.CascadeClassifier(\n '/Users/Vicky/Dropbox/Projects/WebCamVideoFaceDetector/classifiers/haarcascade_frontalface_alt.xml'\n )\nimg = cv2.imread(\n '/Users/Vicky/Dropbox/Projects/WebCamVideoFaceDetector/baby.png')\ncap = cv2.VideoCapture(0)\nwhile True:\n ret, frame = cap.read()\n gray_img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)\n faces = haar_face_cascade.detectMultiScale(gray_img, scaleFactor=1.1,\n minNeighbors=5)\n for x, y, w, h in faces:\n cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)\n cv2.imshow('frame', frame)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\ncap.release()\ncv2.destroyAllWindows()\nfor x, y, w, h in faces:\n cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 255), 3)\nplt.imshow(img)\n", "<import token>\nsys.path.append('/usr/local/lib/python2.7/site-packages')\n<import token>\n\n\ndef convertToRGB(img):\n return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n\n\n<assignment token>\nwhile True:\n ret, frame = cap.read()\n gray_img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)\n faces = haar_face_cascade.detectMultiScale(gray_img, scaleFactor=1.1,\n minNeighbors=5)\n for x, y, w, h in faces:\n cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)\n cv2.imshow('frame', frame)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\ncap.release()\ncv2.destroyAllWindows()\nfor x, y, w, h in faces:\n cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 255), 3)\nplt.imshow(img)\n", "<import token>\n<code token>\n<import token>\n\n\ndef convertToRGB(img):\n return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)\n\n\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n<import token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
99,504
d3915d2fbe4eeea11588759053773396c8ccb77c
# -*- coding: utf-8 -*- """ Created on Thu Jun 6 15:43:21 2019 @author: Tang """ ''' 题目描述 有一棵无穷大的满二叉树,其结点按根结点一层一层地从左往右依次编号,根结点编号为1。现在有两个结点a,b。 请设计一个算法,求出a和b点的最近公共祖先的编号。 给定两个int a,b。为给定结点的编号。请返回a和b的最近公共祖先的编号。注意这里结点本身也可认为是其祖先。 测试样例: 2,3 返回:1 ''' def solution(a,b): while a!=b: if a>b: a/=2 elif a<b: b/=2 else: break return a
[ "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu Jun 6 15:43:21 2019\n\n@author: Tang\n\"\"\"\n\n'''\n题目描述\n\n\n\n有一棵无穷大的满二叉树,其结点按根结点一层一层地从左往右依次编号,根结点编号为1。现在有两个结点a,b。\n请设计一个算法,求出a和b点的最近公共祖先的编号。\n\n给定两个int a,b。为给定结点的编号。请返回a和b的最近公共祖先的编号。注意这里结点本身也可认为是其祖先。\n\n测试样例:\n2,3\n返回:1\n'''\ndef solution(a,b):\n while a!=b:\n if a>b:\n a/=2\n elif a<b:\n b/=2\n else:\n break\n return a", "<docstring token>\n\n\ndef solution(a, b):\n while a != b:\n if a > b:\n a /= 2\n elif a < b:\n b /= 2\n else:\n break\n return a\n", "<docstring token>\n<function token>\n" ]
false
99,505
093d0199dc708d67583a277020b4184ec22f4eb2
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Dec 11 17:26:41 2019 @author: murraymorrison """ from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from train import fetch_team_stats import pandas as pd import numpy as np #data = data values of game info #num_components = number of principle components #returns new data frame with principle components of the team data extracted def run_pca(data, num_components): data_vals = data target_index = len(data_vals[0])-2 team_1 = fetch_team_stats(data_vals[:,1]) team_2 = fetch_team_stats(data_vals[:,2]) x_data = np.concatenate((team_1, team_2), axis=1) y_data = data_vals[:,target_index].astype("int") y_df = pd.DataFrame(data = y_data) y_df.rename(columns = {0:'target'},inplace = True) x_data = StandardScaler().fit_transform(x_data) lol_pca = PCA(n_components=num_components) principal_components = lol_pca.fit_transform(x_data) principal_df = pd.DataFrame(data = principal_components) finalDf = pd.concat([principal_df, y_df], axis = 1) ex_var = sum(lol_pca.explained_variance_ratio_) for i in range(1,1+ num_components): print('Principle Component ' + str(i) + ' explains ' + str(lol_pca.explained_variance_ratio_[i-1])+' of the total variance') print() print('Total Explained Variance: ' + str(ex_var)+' for '+str(num_components)+' principle components') return ex_var,finalDf def pca_plot(): args = manual_args() train, test = prep_data(args) complete_data = np.concatenate((train,test),axis =0) ex_var_list = [] number_components = range(11) for i in number_components: ex_var, reduced_df = run_pca(complete_data,i) ex_var_list.append(ex_var) plt.pyplot.xlabel('Number of Components') plt.pyplot.ylabel('Explained Variance') plt.pyplot.title('Principal Component Variance Explained') plt.pyplot.plot(number_components,ex_var_list) plt.pyplot.savefig('pca.png')
[ "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Wed Dec 11 17:26:41 2019\n\n@author: murraymorrison\n\"\"\"\n\nfrom sklearn.decomposition import PCA\nfrom sklearn.preprocessing import StandardScaler \nfrom train import fetch_team_stats\n\nimport pandas as pd\nimport numpy as np\n\n#data = data values of game info\n#num_components = number of principle components\n#returns new data frame with principle components of the team data extracted\ndef run_pca(data, num_components):\n \n data_vals = data\n \n target_index = len(data_vals[0])-2\n \n \n \n team_1 = fetch_team_stats(data_vals[:,1])\n team_2 = fetch_team_stats(data_vals[:,2])\n \n x_data = np.concatenate((team_1, team_2), axis=1) \n y_data = data_vals[:,target_index].astype(\"int\")\n \n \n y_df = pd.DataFrame(data = y_data)\n \n \n y_df.rename(columns = {0:'target'},inplace = True)\n \n x_data = StandardScaler().fit_transform(x_data)\n \n lol_pca = PCA(n_components=num_components)\n \n principal_components = lol_pca.fit_transform(x_data)\n \n \n \n principal_df = pd.DataFrame(data = principal_components)\n \n finalDf = pd.concat([principal_df, y_df], axis = 1)\n \n ex_var = sum(lol_pca.explained_variance_ratio_)\n for i in range(1,1+ num_components):\n print('Principle Component ' + str(i) + ' explains ' + str(lol_pca.explained_variance_ratio_[i-1])+' of the total variance')\n \n print() \n print('Total Explained Variance: ' + str(ex_var)+' for '+str(num_components)+' principle components')\n \n return ex_var,finalDf\n\n\n\n\ndef pca_plot():\n \n args = manual_args()\n \n train, test = prep_data(args)\n complete_data = np.concatenate((train,test),axis =0)\n \n ex_var_list = []\n \n number_components = range(11)\n \n for i in number_components:\n ex_var, reduced_df = run_pca(complete_data,i)\n ex_var_list.append(ex_var)\n \n plt.pyplot.xlabel('Number of Components')\n plt.pyplot.ylabel('Explained Variance')\n plt.pyplot.title('Principal Component Variance Explained')\n \n plt.pyplot.plot(number_components,ex_var_list)\n plt.pyplot.savefig('pca.png')\n \n", "<docstring token>\nfrom sklearn.decomposition import PCA\nfrom sklearn.preprocessing import StandardScaler\nfrom train import fetch_team_stats\nimport pandas as pd\nimport numpy as np\n\n\ndef run_pca(data, num_components):\n data_vals = data\n target_index = len(data_vals[0]) - 2\n team_1 = fetch_team_stats(data_vals[:, 1])\n team_2 = fetch_team_stats(data_vals[:, 2])\n x_data = np.concatenate((team_1, team_2), axis=1)\n y_data = data_vals[:, target_index].astype('int')\n y_df = pd.DataFrame(data=y_data)\n y_df.rename(columns={(0): 'target'}, inplace=True)\n x_data = StandardScaler().fit_transform(x_data)\n lol_pca = PCA(n_components=num_components)\n principal_components = lol_pca.fit_transform(x_data)\n principal_df = pd.DataFrame(data=principal_components)\n finalDf = pd.concat([principal_df, y_df], axis=1)\n ex_var = sum(lol_pca.explained_variance_ratio_)\n for i in range(1, 1 + num_components):\n print('Principle Component ' + str(i) + ' explains ' + str(lol_pca.\n explained_variance_ratio_[i - 1]) + ' of the total variance')\n print()\n print('Total Explained Variance: ' + str(ex_var) + ' for ' + str(\n num_components) + ' principle components')\n return ex_var, finalDf\n\n\ndef pca_plot():\n args = manual_args()\n train, test = prep_data(args)\n complete_data = np.concatenate((train, test), axis=0)\n ex_var_list = []\n number_components = range(11)\n for i in number_components:\n ex_var, reduced_df = run_pca(complete_data, i)\n ex_var_list.append(ex_var)\n plt.pyplot.xlabel('Number of Components')\n plt.pyplot.ylabel('Explained Variance')\n plt.pyplot.title('Principal Component Variance Explained')\n plt.pyplot.plot(number_components, ex_var_list)\n plt.pyplot.savefig('pca.png')\n", "<docstring token>\n<import token>\n\n\ndef run_pca(data, num_components):\n data_vals = data\n target_index = len(data_vals[0]) - 2\n team_1 = fetch_team_stats(data_vals[:, 1])\n team_2 = fetch_team_stats(data_vals[:, 2])\n x_data = np.concatenate((team_1, team_2), axis=1)\n y_data = data_vals[:, target_index].astype('int')\n y_df = pd.DataFrame(data=y_data)\n y_df.rename(columns={(0): 'target'}, inplace=True)\n x_data = StandardScaler().fit_transform(x_data)\n lol_pca = PCA(n_components=num_components)\n principal_components = lol_pca.fit_transform(x_data)\n principal_df = pd.DataFrame(data=principal_components)\n finalDf = pd.concat([principal_df, y_df], axis=1)\n ex_var = sum(lol_pca.explained_variance_ratio_)\n for i in range(1, 1 + num_components):\n print('Principle Component ' + str(i) + ' explains ' + str(lol_pca.\n explained_variance_ratio_[i - 1]) + ' of the total variance')\n print()\n print('Total Explained Variance: ' + str(ex_var) + ' for ' + str(\n num_components) + ' principle components')\n return ex_var, finalDf\n\n\ndef pca_plot():\n args = manual_args()\n train, test = prep_data(args)\n complete_data = np.concatenate((train, test), axis=0)\n ex_var_list = []\n number_components = range(11)\n for i in number_components:\n ex_var, reduced_df = run_pca(complete_data, i)\n ex_var_list.append(ex_var)\n plt.pyplot.xlabel('Number of Components')\n plt.pyplot.ylabel('Explained Variance')\n plt.pyplot.title('Principal Component Variance Explained')\n plt.pyplot.plot(number_components, ex_var_list)\n plt.pyplot.savefig('pca.png')\n", "<docstring token>\n<import token>\n<function token>\n\n\ndef pca_plot():\n args = manual_args()\n train, test = prep_data(args)\n complete_data = np.concatenate((train, test), axis=0)\n ex_var_list = []\n number_components = range(11)\n for i in number_components:\n ex_var, reduced_df = run_pca(complete_data, i)\n ex_var_list.append(ex_var)\n plt.pyplot.xlabel('Number of Components')\n plt.pyplot.ylabel('Explained Variance')\n plt.pyplot.title('Principal Component Variance Explained')\n plt.pyplot.plot(number_components, ex_var_list)\n plt.pyplot.savefig('pca.png')\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n" ]
false
99,506
08a9efbeb925efc210e2cb9f2a0a9a1ff42339c1
for _ in range(int(input())): n=int(input()) a=[] for i in range(n): a.append(input()) for i in range(1,n): a[i]=set(a[i]).intersection(set(a[i-1])) print(len(a[-1]))
[ "for _ in range(int(input())):\n n=int(input())\n a=[]\n for i in range(n):\n a.append(input())\n for i in range(1,n):\n a[i]=set(a[i]).intersection(set(a[i-1]))\n print(len(a[-1]))\n", "for _ in range(int(input())):\n n = int(input())\n a = []\n for i in range(n):\n a.append(input())\n for i in range(1, n):\n a[i] = set(a[i]).intersection(set(a[i - 1]))\n print(len(a[-1]))\n", "<code token>\n" ]
false
99,507
395c0b7fab581f7ea0cae7901f6689e19f48145d
def maximum(iterable): """Returns the maximum of a string if no error else returns -999""" max_item = 0 if type(iterable) == list or type(iterable) == tuple: for i in iterable: if type(i)==int: if max_item<i: max_item = i else: max_item = -999 break else: max_item=-999 return max_item a = [12,3,4,5,56] if maximum(a) != -999: print("There is no error") else: print("Error")
[ "def maximum(iterable):\n \"\"\"Returns the maximum of a string if no error else returns -999\"\"\"\n max_item = 0\n if type(iterable) == list or type(iterable) == tuple:\n for i in iterable:\n if type(i)==int:\n if max_item<i:\n max_item = i\n else:\n max_item = -999\n break\n else:\n\n max_item=-999\n return max_item\n\n\na = [12,3,4,5,56]\nif maximum(a) != -999:\n print(\"There is no error\")\nelse:\n print(\"Error\")\n\n\n\n", "def maximum(iterable):\n \"\"\"Returns the maximum of a string if no error else returns -999\"\"\"\n max_item = 0\n if type(iterable) == list or type(iterable) == tuple:\n for i in iterable:\n if type(i) == int:\n if max_item < i:\n max_item = i\n else:\n max_item = -999\n break\n else:\n max_item = -999\n return max_item\n\n\na = [12, 3, 4, 5, 56]\nif maximum(a) != -999:\n print('There is no error')\nelse:\n print('Error')\n", "def maximum(iterable):\n \"\"\"Returns the maximum of a string if no error else returns -999\"\"\"\n max_item = 0\n if type(iterable) == list or type(iterable) == tuple:\n for i in iterable:\n if type(i) == int:\n if max_item < i:\n max_item = i\n else:\n max_item = -999\n break\n else:\n max_item = -999\n return max_item\n\n\n<assignment token>\nif maximum(a) != -999:\n print('There is no error')\nelse:\n print('Error')\n", "def maximum(iterable):\n \"\"\"Returns the maximum of a string if no error else returns -999\"\"\"\n max_item = 0\n if type(iterable) == list or type(iterable) == tuple:\n for i in iterable:\n if type(i) == int:\n if max_item < i:\n max_item = i\n else:\n max_item = -999\n break\n else:\n max_item = -999\n return max_item\n\n\n<assignment token>\n<code token>\n", "<function token>\n<assignment token>\n<code token>\n" ]
false
99,508
13d0c64d0779f823551deb5a570e5cfb88525e58
ITEM: TIMESTEP 6500 ITEM: NUMBER OF ATOMS 2048 ITEM: BOX BOUNDS pp pp pp 4.9685525364850847e-01 4.6703144746345622e+01 4.9685525364850847e-01 4.6703144746345622e+01 4.9685525364850847e-01 4.6703144746345622e+01 ITEM: ATOMS id type xs ys zs 8 1 0.124027 0.0605757 0.062418 35 1 0.0614849 0.121145 0.0650287 130 1 0.0645043 0.0582864 0.120941 165 1 0.130173 0.122103 0.127058 161 1 1.00136 0.115003 0.128503 4 1 0.996325 0.0662328 0.0571884 1565 1 0.870323 0.495485 0.49821 1413 1 0.127806 0.499275 0.375213 12 1 0.252837 0.0578218 0.0634762 39 1 0.190508 0.118691 0.0639576 43 1 0.310843 0.121484 0.0561942 134 1 0.18167 0.0589925 0.128465 138 1 0.319261 0.062565 0.131304 169 1 0.250336 0.117968 0.128686 277 1 0.618997 0.00398747 0.252927 1157 1 0.122789 0.499935 0.116823 133 1 0.125913 -0.00272777 0.12472 58 1 0.814673 0.192289 0.00254142 275 1 0.557807 0.00325537 0.313229 1183 1 0.943285 0.493774 0.183806 16 1 0.375018 0.0582813 0.0577936 47 1 0.434503 0.123485 0.0638688 142 1 0.427413 0.0615475 0.123744 173 1 0.372169 0.125608 0.111977 20 1 0.492284 0.0593561 0.0608375 177 1 0.496252 0.119442 0.123938 93 1 0.874942 0.250757 0.0010056 411 1 0.811879 0.00332744 0.439538 117 1 0.625717 0.374268 0.000258183 24 1 0.625516 0.0656289 0.0564604 51 1 0.564969 0.125251 0.0668679 146 1 0.5733 0.0606442 0.125472 181 1 0.627221 0.12984 0.128317 405 1 0.620858 0.003977 0.383241 15 1 0.435702 0.00215418 0.0630545 387 1 0.0638477 -0.00175607 0.441134 28 1 0.751636 0.0633116 0.0595221 55 1 0.684992 0.125645 0.0641966 59 1 0.814003 0.124356 0.0628433 150 1 0.686925 0.0699205 0.11995 154 1 0.805352 0.0633346 0.13076 185 1 0.746029 0.125353 0.135949 484 1 0.00171759 0.442589 0.438175 74 1 0.31012 0.307245 0.00299423 509 1 0.878912 0.376288 0.376782 32 1 0.874877 0.0620149 0.059696 63 1 0.932534 0.124042 0.0588462 158 1 0.939869 0.0608514 0.12221 189 1 0.875234 0.1174 0.121355 143 1 0.430621 0.00466889 0.189029 1177 1 0.75204 0.501446 0.133197 529 1 0.495458 -0.00226026 0.50253 1557 1 0.629923 0.500215 0.499978 40 1 0.136528 0.180503 0.0644352 67 1 0.0658326 0.248693 0.0655847 72 1 0.131755 0.308875 0.060752 162 1 0.0675224 0.189568 0.117399 194 1 0.064514 0.304757 0.129507 197 1 0.133687 0.246392 0.124427 193 1 0.996525 0.245634 0.119422 36 1 0.995317 0.181659 0.0661975 1291 1 0.318706 0.498354 0.323872 44 1 0.250883 0.176513 0.0711533 71 1 0.191047 0.242423 0.0633227 75 1 0.31185 0.248532 0.0631177 76 1 0.244812 0.306949 0.0711252 166 1 0.190707 0.179176 0.129502 170 1 0.307854 0.178417 0.135041 198 1 0.18714 0.31414 0.131208 201 1 0.247739 0.241865 0.12682 202 1 0.302465 0.309016 0.134541 1295 1 0.445437 0.500532 0.317285 48 1 0.368525 0.18207 0.0619188 79 1 0.422121 0.243006 0.0638909 80 1 0.37014 0.31818 0.0674595 174 1 0.430015 0.181384 0.124454 205 1 0.370911 0.248145 0.127913 206 1 0.432924 0.312347 0.133316 1427 1 0.565654 0.499866 0.442012 613 1 0.11537 0.371701 0.498388 84 1 0.493524 0.307556 0.0687192 52 1 0.492688 0.192069 0.0693322 209 1 0.486029 0.246221 0.12885 56 1 0.620968 0.192495 0.0616076 83 1 0.553884 0.248284 0.0659291 88 1 0.61996 0.306062 0.0615521 178 1 0.558423 0.177515 0.131433 210 1 0.564663 0.312841 0.126163 213 1 0.624975 0.245988 0.128908 157 1 0.878391 -0.00589931 0.121414 60 1 0.750646 0.187359 0.0575136 87 1 0.687928 0.250715 0.0637152 91 1 0.815725 0.252044 0.066574 92 1 0.74598 0.316699 0.0557074 182 1 0.68818 0.191972 0.127295 186 1 0.812809 0.183343 0.127641 214 1 0.682622 0.316223 0.123406 217 1 0.749495 0.247396 0.12145 218 1 0.815788 0.31112 0.122137 81 1 0.491892 0.248407 0.00882873 90 1 0.810774 0.311417 0.000868988 50 1 0.555727 0.188245 -0.00247212 68 1 1.00389 0.311877 0.065874 64 1 0.870664 0.183789 0.0624047 95 1 0.939224 0.25651 0.064857 96 1 0.874704 0.313049 0.0687962 190 1 0.932282 0.181748 0.123478 221 1 0.87772 0.247722 0.126263 222 1 0.935708 0.318695 0.131287 99 1 0.0696689 0.372862 0.0664065 104 1 0.131305 0.435554 0.0588486 226 1 0.0664863 0.430828 0.125965 229 1 0.124798 0.371951 0.130198 100 1 0.997314 0.431954 0.0680139 225 1 -0.00190256 0.37467 0.130167 510 1 0.944098 0.442331 0.378386 1041 1 0.505275 0.50067 0.00114927 97 1 0.00172254 0.37153 0.00742765 578 1 0.0544702 0.319196 0.495246 511 1 0.942042 0.377171 0.432706 103 1 0.195137 0.37578 0.0567009 107 1 0.310282 0.377196 0.0686541 108 1 0.250182 0.439657 0.0675703 230 1 0.180525 0.435806 0.127331 233 1 0.246205 0.375471 0.126651 234 1 0.309776 0.436098 0.129058 554 1 0.309855 0.178932 0.493457 585 1 0.249927 0.24732 0.49875 7 1 0.189044 0.000690827 0.0631238 512 1 0.870766 0.438943 0.43906 111 1 0.440811 0.372327 0.0648447 112 1 0.371813 0.444238 0.0624082 237 1 0.375517 0.371081 0.134109 238 1 0.430934 0.438851 0.121749 241 1 0.498573 0.367865 0.126547 409 1 0.747653 0.00888879 0.369429 598 1 0.692484 0.311376 0.498251 1431 1 0.687969 0.49723 0.438761 502 1 0.684855 0.436524 0.378128 633 1 0.753741 0.374694 0.497921 116 1 0.501033 0.431408 0.0652212 115 1 0.559635 0.370211 0.0665195 120 1 0.619962 0.441394 0.0653725 242 1 0.559135 0.438765 0.123515 245 1 0.618984 0.377004 0.118307 271 1 0.442346 0.00527261 0.310839 505 1 0.749432 0.372475 0.37712 508 1 0.75271 0.436338 0.432385 119 1 0.685608 0.375044 0.0621977 123 1 0.815916 0.376048 0.0683995 124 1 0.747576 0.446185 0.065936 246 1 0.686674 0.436805 0.122022 249 1 0.748657 0.379764 0.124147 250 1 0.814418 0.441908 0.127937 1043 1 0.560306 0.499064 0.0593482 557 1 0.365569 0.113592 0.495461 127 1 0.937828 0.376257 0.0711333 128 1 0.877317 0.440769 0.0624117 253 1 0.878352 0.369804 0.125212 254 1 0.934559 0.442893 0.121074 1025 1 0.999194 0.496348 0.00106045 614 1 0.179656 0.43412 0.501727 137 1 0.249616 0.00550752 0.129811 136 1 0.123268 0.0607639 0.190718 163 1 0.0628846 0.113558 0.186653 258 1 0.0658255 0.0624736 0.256695 264 1 0.12364 0.0606682 0.315599 291 1 0.0599016 0.121471 0.31657 293 1 0.121781 0.130973 0.24671 289 1 1.00159 0.120993 0.245513 260 1 -0.000472387 0.0639423 0.314381 132 1 0.000682919 0.0575405 0.192423 126 1 0.938948 0.428128 0.00857947 279 1 0.678366 0.00491174 0.319319 506 1 0.817322 0.436679 0.37126 27 1 0.817235 0.000450522 0.0683754 140 1 0.250379 0.0597291 0.187952 167 1 0.183992 0.117129 0.194752 171 1 0.311073 0.120223 0.190118 262 1 0.18475 0.0551277 0.252322 266 1 0.307051 0.0590576 0.251856 268 1 0.242403 0.0593037 0.312658 295 1 0.182415 0.121115 0.315735 297 1 0.25083 0.122748 0.254938 299 1 0.313755 0.115702 0.308522 1425 1 0.501417 0.499325 0.378082 144 1 0.374098 0.064756 0.196403 175 1 0.435512 0.122684 0.187457 270 1 0.435135 0.0668614 0.249018 272 1 0.374187 0.0548594 0.306823 301 1 0.376711 0.129133 0.255169 303 1 0.434387 0.131941 0.314953 276 1 0.498955 0.0665224 0.314225 148 1 0.499916 0.0595792 0.18794 503 1 0.686997 0.369418 0.443897 17 1 0.497508 0.00448316 -0.00558166 507 1 0.812275 0.380391 0.438211 113 1 0.497254 0.375713 0.00556926 305 1 0.499531 0.126634 0.252858 152 1 0.624497 0.0673638 0.189018 179 1 0.557925 0.120938 0.188599 274 1 0.558138 0.0658253 0.251003 280 1 0.620122 0.0682037 0.315529 307 1 0.56155 0.124764 0.308768 309 1 0.624358 0.128795 0.250428 23 1 0.684706 0.00636802 0.0594369 500 1 0.509937 0.433271 0.433719 156 1 0.743596 0.0629906 0.19936 183 1 0.688608 0.129086 0.195791 187 1 0.812634 0.123141 0.197569 278 1 0.678089 0.0631939 0.255429 282 1 0.811867 0.0592246 0.251986 284 1 0.745023 0.0677282 0.314747 311 1 0.683314 0.125062 0.318181 313 1 0.749327 0.130111 0.254661 315 1 0.809611 0.122172 0.31124 122 1 0.810712 0.441372 0.000493079 73 1 0.249941 0.242503 0.000514448 1433 1 0.752771 0.495223 0.369611 160 1 0.875401 0.0504209 0.188455 191 1 0.937905 0.120875 0.186442 286 1 0.94472 0.0567765 0.24683 288 1 0.875883 0.0617148 0.311749 317 1 0.883134 0.112723 0.252505 319 1 0.942168 0.121884 0.312002 168 1 0.115476 0.182756 0.184413 195 1 0.0649902 0.246654 0.191526 200 1 0.126594 0.308746 0.193061 290 1 0.058512 0.17972 0.244089 296 1 0.124301 0.178861 0.316615 322 1 0.0655303 0.309343 0.254661 323 1 0.0709781 0.241779 0.309312 325 1 0.12692 0.237948 0.251868 328 1 0.118211 0.311533 0.320929 292 1 0.996531 0.186329 0.302648 164 1 0.998181 0.180362 0.183193 172 1 0.244621 0.176577 0.193373 199 1 0.187637 0.245455 0.194802 203 1 0.304195 0.249678 0.187391 204 1 0.248967 0.317646 0.197785 294 1 0.187941 0.18056 0.253768 298 1 0.308857 0.186429 0.249586 300 1 0.247682 0.181296 0.316466 326 1 0.184492 0.311418 0.257699 327 1 0.184542 0.245521 0.316425 329 1 0.242035 0.24233 0.259707 330 1 0.306619 0.311528 0.251924 331 1 0.311807 0.252624 0.319602 332 1 0.248341 0.312579 0.316844 176 1 0.373497 0.184047 0.186061 207 1 0.42723 0.251668 0.190508 208 1 0.368531 0.308078 0.18682 302 1 0.428914 0.190226 0.248706 304 1 0.376583 0.194425 0.308203 333 1 0.36769 0.250006 0.253011 334 1 0.439226 0.312841 0.249097 335 1 0.441382 0.250684 0.320989 336 1 0.37543 0.309711 0.307327 308 1 0.501513 0.184651 0.312744 340 1 0.501616 0.30865 0.314456 212 1 0.500756 0.309201 0.190172 337 1 0.502262 0.241899 0.248972 180 1 0.493451 0.185159 0.188629 184 1 0.624368 0.193636 0.19182 211 1 0.563423 0.249957 0.184113 216 1 0.625519 0.310562 0.187969 306 1 0.560878 0.184517 0.254767 312 1 0.631143 0.18093 0.318663 338 1 0.559874 0.303418 0.249749 339 1 0.559683 0.241977 0.314251 341 1 0.623177 0.252116 0.253985 344 1 0.629875 0.308359 0.317041 188 1 0.752821 0.191241 0.186901 215 1 0.69559 0.252309 0.185479 219 1 0.819435 0.250797 0.191451 220 1 0.74763 0.313327 0.178131 310 1 0.686896 0.195398 0.251782 314 1 0.812754 0.192917 0.258555 316 1 0.752698 0.188965 0.315656 342 1 0.686564 0.313496 0.252078 343 1 0.689237 0.247685 0.309423 345 1 0.74892 0.249878 0.249197 346 1 0.811406 0.308188 0.25187 347 1 0.81875 0.250946 0.321581 348 1 0.755438 0.315777 0.316008 321 1 0.999606 0.248135 0.249935 324 1 0.993876 0.307738 0.312355 196 1 0.999007 0.307381 0.18941 192 1 0.87089 0.178101 0.189719 223 1 0.939118 0.248259 0.185047 224 1 0.883168 0.317696 0.190648 318 1 0.933993 0.189033 0.244628 320 1 0.87202 0.185341 0.307387 349 1 0.877421 0.251499 0.252975 350 1 0.940137 0.311507 0.252816 351 1 0.939859 0.24799 0.318805 352 1 0.874368 0.316834 0.317728 499 1 0.555184 0.365599 0.439897 227 1 0.0647456 0.371273 0.190329 232 1 0.124583 0.434478 0.189705 354 1 0.0669612 0.431787 0.254179 355 1 0.064788 0.377342 0.31271 357 1 0.131148 0.371076 0.257144 360 1 0.130613 0.439204 0.300775 228 1 0.00728271 0.44024 0.185099 19 1 0.566652 -0.00163079 0.058782 110 1 0.435717 0.438942 -0.000257669 525 1 0.360794 0.00575281 0.494624 231 1 0.187012 0.372214 0.196066 235 1 0.311317 0.37529 0.192315 236 1 0.251967 0.43683 0.193885 358 1 0.191557 0.44789 0.242394 359 1 0.18701 0.374869 0.319764 361 1 0.24928 0.373258 0.258267 362 1 0.313415 0.445651 0.262509 363 1 0.315602 0.37598 0.309315 364 1 0.245996 0.44047 0.310606 1429 1 0.624708 0.499103 0.371317 153 1 0.747639 -0.000631503 0.120315 239 1 0.44124 0.375757 0.187203 240 1 0.376954 0.443707 0.192774 365 1 0.374527 0.378328 0.248048 366 1 0.436453 0.43589 0.248598 367 1 0.439627 0.367749 0.314111 368 1 0.385527 0.433549 0.316943 497 1 0.499839 0.369221 0.375874 372 1 0.499826 0.436886 0.310235 244 1 0.503429 0.434361 0.186006 369 1 0.501923 0.370369 0.253136 243 1 0.558488 0.374983 0.189406 248 1 0.624827 0.430709 0.187476 370 1 0.56689 0.442478 0.250112 371 1 0.561149 0.374134 0.310788 373 1 0.625072 0.373715 0.251778 376 1 0.628733 0.432278 0.312873 247 1 0.683686 0.366734 0.188671 251 1 0.814362 0.366025 0.184953 252 1 0.74701 0.440539 0.185893 374 1 0.686176 0.43166 0.252046 375 1 0.687918 0.371188 0.316454 377 1 0.749434 0.370136 0.24922 378 1 0.816705 0.439087 0.256631 379 1 0.809076 0.375965 0.316562 380 1 0.745565 0.436077 0.309598 589 1 0.371753 0.250045 0.496157 353 1 0.00788098 0.367565 0.250467 356 1 0.99718 0.438745 0.315084 255 1 0.941326 0.382527 0.192346 256 1 0.873201 0.435747 0.195414 381 1 0.875707 0.376381 0.255791 382 1 0.940351 0.441406 0.252682 383 1 0.935774 0.379252 0.308786 384 1 0.879702 0.444468 0.318488 1421 1 0.387341 0.498342 0.381125 386 1 0.0609837 0.0565484 0.381766 392 1 0.128668 0.0669427 0.4367 419 1 0.0638796 0.128805 0.43778 421 1 0.120949 0.121984 0.379628 31 1 0.937082 0.00591135 0.0545817 610 1 0.0530512 0.43093 0.504601 131 1 0.0621833 0.00159992 0.183919 498 1 0.562614 0.435481 0.374076 390 1 0.187162 0.056546 0.375046 394 1 0.306984 0.0571942 0.370316 396 1 0.245012 0.0535329 0.437898 423 1 0.190406 0.124384 0.439035 425 1 0.243418 0.115585 0.376094 427 1 0.30392 0.112358 0.438195 1179 1 0.816692 0.497155 0.192362 389 1 0.124457 0.00111881 0.38541 609 1 0.997493 0.373117 0.50312 398 1 0.43167 0.0628864 0.364112 400 1 0.366753 0.057034 0.42991 429 1 0.372302 0.128624 0.374237 431 1 0.439989 0.127175 0.43792 433 1 0.501738 0.123174 0.376603 66 1 0.0650898 0.308205 0.00150124 1173 1 0.623262 0.498178 0.121873 569 1 0.748734 0.121966 0.491584 404 1 0.499252 0.0653222 0.445695 402 1 0.56683 0.0652 0.372242 408 1 0.62293 0.0617481 0.445155 435 1 0.560045 0.120778 0.437169 437 1 0.622114 0.122679 0.375228 407 1 0.681257 0.00286107 0.438156 1283 1 0.0658446 0.493303 0.312967 406 1 0.682015 0.0592976 0.380177 410 1 0.810901 0.0613096 0.374595 412 1 0.748909 0.0580794 0.433987 439 1 0.679618 0.126531 0.43126 441 1 0.746213 0.126221 0.374985 443 1 0.817721 0.130413 0.437919 125 1 0.869662 0.37589 0.000552369 501 1 0.624687 0.363253 0.377092 388 1 0.998338 0.0683009 0.439124 417 1 -0.00135206 0.13365 0.37019 414 1 0.936732 0.057311 0.375475 416 1 0.87422 0.0616343 0.434946 445 1 0.874607 0.126393 0.372443 447 1 0.93364 0.123683 0.440269 3 1 0.0657494 0.00227119 0.0580267 86 1 0.683824 0.308084 7.60568e-05 602 1 0.808504 0.314023 0.498755 418 1 0.064053 0.188313 0.380322 424 1 0.128178 0.181541 0.444005 450 1 0.0625978 0.31681 0.378572 451 1 0.0577866 0.250003 0.448774 453 1 0.119992 0.244312 0.383466 456 1 0.119953 0.311814 0.437327 415 1 0.940147 0.00475326 0.441377 399 1 0.432256 0.00593643 0.437519 1293 1 0.374643 0.501536 0.258921 1435 1 0.810988 0.495766 0.433425 422 1 0.185894 0.183326 0.37601 426 1 0.312306 0.190203 0.368122 428 1 0.24908 0.182075 0.426937 454 1 0.183928 0.310287 0.37589 455 1 0.182994 0.251669 0.440213 457 1 0.249526 0.25254 0.369494 458 1 0.311206 0.310221 0.368863 459 1 0.304608 0.245284 0.431679 460 1 0.246923 0.315473 0.430955 430 1 0.43626 0.183994 0.372971 432 1 0.368742 0.185317 0.439554 461 1 0.372236 0.247213 0.375983 462 1 0.428484 0.311182 0.375432 463 1 0.431572 0.248338 0.440379 464 1 0.369794 0.308766 0.434793 287 1 0.938772 0.00776434 0.311414 465 1 0.492889 0.251471 0.381942 468 1 0.499232 0.313551 0.445064 436 1 0.497359 0.188272 0.439065 434 1 0.562793 0.187729 0.373549 469 1 0.625915 0.245429 0.379721 472 1 0.62359 0.314789 0.442278 466 1 0.562194 0.310657 0.377684 440 1 0.621087 0.184626 0.435541 467 1 0.563074 0.244683 0.437228 1301 1 0.626887 0.503727 0.25245 473 1 0.752826 0.24702 0.374159 474 1 0.813076 0.316064 0.378058 444 1 0.748683 0.185082 0.435461 470 1 0.691333 0.305509 0.378587 475 1 0.813033 0.243049 0.436951 471 1 0.688243 0.248044 0.43095 442 1 0.812451 0.18549 0.370249 476 1 0.750596 0.307279 0.43913 438 1 0.686827 0.18495 0.376162 401 1 0.497018 0.00842888 0.377021 478 1 0.929586 0.312109 0.3773 480 1 0.872356 0.309202 0.437645 452 1 0.994892 0.310977 0.439209 477 1 0.876743 0.250502 0.375201 449 1 0.00282274 0.248486 0.371144 420 1 0.995044 0.192891 0.435616 479 1 0.931663 0.252385 0.441295 446 1 0.937824 0.18827 0.375533 448 1 0.88237 0.191146 0.434684 582 1 0.192244 0.311619 0.494016 488 1 0.122908 0.444159 0.444666 481 1 0.993727 0.366406 0.372701 485 1 0.12117 0.380009 0.377254 482 1 0.0507113 0.436993 0.371791 483 1 0.0602252 0.382038 0.433053 542 1 0.935626 0.0598473 0.500464 281 1 0.747592 0.00235886 0.255016 534 1 0.693851 0.0602757 0.502332 489 1 0.250237 0.377889 0.370053 490 1 0.311443 0.436374 0.378032 492 1 0.255675 0.440887 0.443732 486 1 0.191797 0.431766 0.380066 487 1 0.179041 0.376409 0.439087 491 1 0.304823 0.377773 0.436222 494 1 0.44491 0.43084 0.381673 495 1 0.434639 0.37199 0.441584 493 1 0.377579 0.381815 0.377202 496 1 0.371574 0.437599 0.439107 46 1 0.431633 0.182811 0.00216911 1163 1 0.309669 0.495882 0.187366 1169 1 0.497154 0.491335 0.123158 504 1 0.624316 0.437527 0.441794 558 1 0.430481 0.188045 0.501441 1309 1 0.87859 0.498554 0.250651 617 1 0.246097 0.372995 0.497134 1029 1 0.124414 0.50288 -0.00358049 1 1 -0.00208964 0.00314588 5.55231e-05 565 1 0.620448 0.125003 0.49347 621 1 0.367045 0.374817 0.502418 622 1 0.437126 0.436892 0.496016 109 1 0.371237 0.377199 0.0119068 586 1 0.30469 0.315295 0.495106 18 1 0.56148 0.062934 0.00186725 601 1 0.750852 0.242206 0.499288 118 1 0.68983 0.433984 0.000145475 537 1 0.747263 -0.00193983 0.497173 82 1 0.553537 0.3077 0.00519466 49 1 0.492124 0.124732 0.00823674 514 1 0.0673188 0.0635847 0.501523 57 1 0.754102 0.125314 -0.00173848 590 1 0.437072 0.309926 0.496419 94 1 0.939383 0.321701 0.0082238 65 1 0.000239016 0.247812 0.00379049 638 1 0.943796 0.44032 0.495812 62 1 0.940211 0.191425 0.00189741 1553 1 0.500397 0.495068 0.499819 54 1 0.689505 0.186635 0.0027856 520 1 0.127603 0.0622117 0.565183 547 1 0.0631131 0.122656 0.567881 642 1 0.0612492 0.0585906 0.625194 677 1 0.121076 0.121381 0.629607 785 1 0.496362 0.00841942 0.753455 516 1 -0.00154086 0.0592635 0.563651 593 1 0.504343 0.248209 0.501225 524 1 0.244303 0.05953 0.564971 551 1 0.186865 0.125324 0.574765 555 1 0.320306 0.12252 0.556392 646 1 0.183474 0.0656005 0.622654 650 1 0.310706 0.0562472 0.622457 681 1 0.259631 0.121921 0.62528 996 1 0.00167628 0.439425 0.931046 553 1 0.24621 0.120386 0.51071 915 1 0.557974 0.00493583 0.938331 528 1 0.37464 0.0496381 0.56262 559 1 0.436853 0.124361 0.561481 654 1 0.434082 0.0583116 0.62292 685 1 0.36903 0.116295 0.623792 532 1 0.492344 0.0651676 0.559476 1563 1 0.811827 0.500203 0.570691 526 1 0.427598 0.0548452 0.501905 993 1 0.998342 0.371902 0.87563 689 1 0.500413 0.126235 0.621008 536 1 0.621731 0.0619033 0.563691 563 1 0.565215 0.133656 0.56212 658 1 0.557306 0.066005 0.624396 693 1 0.628033 0.127984 0.620134 1695 1 0.937551 0.494861 0.681911 1951 1 0.938166 0.494317 0.944389 519 1 0.187692 -0.00378461 0.562053 921 1 0.750724 -0.00241393 0.871053 1543 1 0.192208 0.498408 0.565881 540 1 0.747358 0.0628483 0.56718 567 1 0.68912 0.126539 0.550381 571 1 0.803782 0.128605 0.566076 662 1 0.68198 0.0648257 0.62191 666 1 0.81684 0.05902 0.626529 697 1 0.749708 0.1227 0.631331 1945 1 0.754548 0.500444 0.87813 673 1 0.999209 0.12144 0.631371 544 1 0.870506 0.0624727 0.560337 575 1 0.938582 0.12108 0.562576 670 1 0.935185 0.0632801 0.626948 701 1 0.878793 0.119152 0.62505 626 1 0.560622 0.438164 0.504211 899 1 0.0632838 0.00400554 0.935061 1925 1 0.123052 0.494398 0.870594 561 1 0.499508 0.122711 0.501306 552 1 0.126782 0.183619 0.56491 579 1 0.0709448 0.24925 0.562507 584 1 0.125158 0.307272 0.56567 674 1 0.0582969 0.190661 0.634613 706 1 0.0600732 0.31309 0.624821 709 1 0.124207 0.251809 0.624289 580 1 0.00720022 0.316454 0.562972 556 1 0.249799 0.183595 0.562724 583 1 0.190532 0.247386 0.561695 587 1 0.31711 0.245321 0.560865 588 1 0.248698 0.303362 0.562334 678 1 0.190978 0.185961 0.624944 682 1 0.317604 0.189321 0.626988 710 1 0.188729 0.308784 0.62192 713 1 0.25373 0.243353 0.625458 714 1 0.314344 0.315304 0.615486 791 1 0.685033 0.00504165 0.814471 560 1 0.375206 0.194185 0.563436 591 1 0.44191 0.248749 0.561016 592 1 0.373701 0.310411 0.558331 686 1 0.442007 0.192721 0.622581 717 1 0.382213 0.252724 0.621751 718 1 0.431126 0.317189 0.619437 538 1 0.813723 0.0672602 0.500704 1935 1 0.448503 0.500175 0.946174 721 1 0.491651 0.258201 0.627727 564 1 0.503656 0.191373 0.560527 596 1 0.500402 0.311641 0.559814 568 1 0.629315 0.184952 0.564979 595 1 0.561062 0.253082 0.565631 600 1 0.625505 0.307957 0.560769 690 1 0.560744 0.190575 0.626375 722 1 0.561456 0.315625 0.618198 725 1 0.625799 0.24946 0.625492 789 1 0.61885 0.00734062 0.748956 570 1 0.814184 0.182703 0.501935 78 1 0.438216 0.312411 1.00304 665 1 0.752874 0.00261037 0.627112 572 1 0.741139 0.183178 0.567767 599 1 0.689218 0.248537 0.554228 603 1 0.810186 0.252611 0.567158 604 1 0.749551 0.311507 0.557736 694 1 0.687824 0.190824 0.626847 698 1 0.812493 0.183955 0.629791 726 1 0.68196 0.313941 0.617797 729 1 0.746262 0.24858 0.632379 730 1 0.808807 0.307248 0.629718 1941 1 0.62173 0.498254 0.873111 21 1 0.6269 0.00794969 0.99765 1691 1 0.820512 0.497396 0.690198 548 1 0.00283809 0.186438 0.565267 705 1 0.00166182 0.247193 0.61972 576 1 0.878626 0.178479 0.561095 607 1 0.93334 0.246663 0.563285 608 1 0.8735 0.309236 0.559815 702 1 0.942306 0.182017 0.625142 733 1 0.870793 0.248315 0.62683 734 1 0.933269 0.309199 0.617454 795 1 0.81502 -0.00372538 0.805631 550 1 0.193983 0.186786 0.497704 535 1 0.69046 -0.0013933 0.569231 797 1 0.876152 -0.0016839 0.747492 611 1 0.0658587 0.37678 0.56619 616 1 0.123608 0.438428 0.560012 738 1 0.0605858 0.442109 0.622499 741 1 0.125665 0.380708 0.628728 612 1 -0.00201522 0.45139 0.564285 659 1 0.563169 0.00488482 0.689962 615 1 0.187631 0.369107 0.557187 619 1 0.30964 0.37787 0.558239 620 1 0.248638 0.436224 0.555471 742 1 0.184851 0.437791 0.622634 745 1 0.252107 0.368738 0.620866 746 1 0.311497 0.441633 0.615892 5 1 0.123701 0.00128225 0.998166 515 1 0.0667217 -0.00113446 0.558097 1947 1 0.816705 0.497605 0.939352 1021 1 0.878178 0.376506 0.876378 574 1 0.939006 0.188574 0.501764 623 1 0.427269 0.372723 0.556906 624 1 0.377236 0.434798 0.555956 749 1 0.372709 0.382905 0.623983 750 1 0.438802 0.434067 0.619962 753 1 0.501703 0.374663 0.625742 1022 1 0.936269 0.44094 0.879778 628 1 0.500253 0.438758 0.563265 627 1 0.557913 0.373972 0.564758 632 1 0.623876 0.439315 0.562862 754 1 0.557261 0.437538 0.626436 757 1 0.624945 0.377232 0.613343 549 1 0.122665 0.121475 0.503447 1023 1 0.942046 0.3785 0.936659 773 1 0.117786 0.00280949 0.752645 518 1 0.19374 0.0597192 0.502231 543 1 0.937128 0.00433244 0.562993 1024 1 0.876867 0.4395 0.939638 631 1 0.693466 0.374216 0.552058 635 1 0.81103 0.377469 0.55938 636 1 0.752031 0.447252 0.569267 758 1 0.69138 0.436043 0.626076 761 1 0.753522 0.370389 0.615986 762 1 0.808161 0.427916 0.628068 783 1 0.437024 0.00631813 0.819447 1017 1 0.75582 0.377893 0.871675 77 1 0.368442 0.248179 0.992583 1673 1 0.255193 0.497036 0.634586 737 1 -0.000683403 0.371161 0.620184 639 1 0.94051 0.365966 0.559034 640 1 0.867998 0.438678 0.573516 765 1 0.86904 0.371939 0.621601 766 1 0.936201 0.442571 0.620366 629 1 0.623037 0.37395 0.50533 1020 1 0.752067 0.436598 0.93124 630 1 0.700135 0.440941 0.497401 648 1 0.120155 0.0577926 0.682725 675 1 0.0637022 0.11848 0.68308 770 1 0.0536175 0.0641295 0.750439 776 1 0.124563 0.0568845 0.816823 803 1 0.0652748 0.122108 0.809574 805 1 0.124519 0.118259 0.751227 644 1 0.000316782 0.0616673 0.687876 772 1 0.998933 0.0636057 0.816206 801 1 0.994468 0.120993 0.748596 566 1 0.68414 0.188227 0.493367 652 1 0.24534 0.0596629 0.681073 679 1 0.189654 0.12519 0.687626 683 1 0.320302 0.119718 0.685306 774 1 0.184292 0.054557 0.747083 778 1 0.318523 0.0639586 0.742903 780 1 0.249647 0.0622429 0.819955 807 1 0.19076 0.121932 0.807155 809 1 0.251315 0.111688 0.743087 811 1 0.305229 0.12876 0.802989 787 1 0.56948 0.00643767 0.816156 1018 1 0.820485 0.43397 0.877546 1019 1 0.814646 0.373112 0.940378 656 1 0.380375 0.0605101 0.694189 687 1 0.436873 0.119241 0.684645 782 1 0.438456 0.0685298 0.759778 784 1 0.369181 0.0643868 0.812417 813 1 0.382364 0.129549 0.747659 815 1 0.440441 0.124569 0.81517 660 1 0.502529 0.0627663 0.690641 817 1 0.498548 0.128215 0.750635 788 1 0.497884 0.0547505 0.81621 664 1 0.622049 0.0623682 0.686687 691 1 0.558903 0.129406 0.684176 786 1 0.567352 0.0720226 0.751426 792 1 0.623084 0.073201 0.814285 819 1 0.556047 0.127852 0.812775 821 1 0.624416 0.134034 0.746849 668 1 0.751951 0.0620383 0.687903 695 1 0.688146 0.126759 0.6915 699 1 0.809175 0.12223 0.688492 790 1 0.683264 0.0644907 0.749757 794 1 0.811762 0.0681347 0.744773 796 1 0.751536 0.0629866 0.814876 823 1 0.688292 0.125351 0.823006 825 1 0.753349 0.121559 0.755322 827 1 0.814152 0.130214 0.814513 1014 1 0.684854 0.445098 0.883555 925 1 0.876962 0.00532832 0.870794 672 1 0.87751 0.0642637 0.687256 703 1 0.939097 0.118981 0.690119 798 1 0.937548 0.0552422 0.749545 800 1 0.874579 0.0693019 0.81012 829 1 0.877353 0.127491 0.749418 831 1 0.93267 0.128688 0.810139 1015 1 0.69476 0.377185 0.935387 680 1 0.121815 0.181253 0.684949 707 1 0.0615525 0.254649 0.685667 712 1 0.127633 0.315216 0.67927 802 1 0.0637555 0.179529 0.741488 808 1 0.132177 0.180926 0.810246 834 1 0.0588117 0.312762 0.747991 835 1 0.0642956 0.247726 0.800214 837 1 0.119784 0.251042 0.740871 840 1 0.123244 0.30747 0.809097 836 1 0.00442914 0.308977 0.818143 833 1 -0.0019944 0.252427 0.744112 684 1 0.256917 0.181314 0.688716 711 1 0.188754 0.249324 0.682009 715 1 0.320504 0.251833 0.686852 716 1 0.24687 0.302731 0.678813 806 1 0.185231 0.188905 0.745401 810 1 0.31254 0.188351 0.74401 812 1 0.245631 0.181641 0.803816 838 1 0.185244 0.305934 0.747573 839 1 0.185921 0.2459 0.810034 841 1 0.250819 0.249768 0.743768 842 1 0.313684 0.315456 0.745562 843 1 0.310117 0.250342 0.80633 844 1 0.249355 0.30682 0.804394 688 1 0.382992 0.184084 0.686315 719 1 0.43226 0.259923 0.693419 720 1 0.370254 0.320976 0.675495 814 1 0.445222 0.193684 0.752124 816 1 0.385068 0.194863 0.810754 845 1 0.373339 0.249977 0.751897 846 1 0.436413 0.309889 0.757601 847 1 0.448823 0.251189 0.818405 848 1 0.370962 0.317178 0.813636 852 1 0.502829 0.316081 0.812388 692 1 0.497096 0.188589 0.683217 849 1 0.504237 0.251314 0.744328 820 1 0.501318 0.190049 0.80933 724 1 0.498796 0.316493 0.68729 696 1 0.624161 0.186618 0.683073 723 1 0.563865 0.258612 0.680991 728 1 0.627756 0.313735 0.681433 818 1 0.561833 0.191836 0.745889 824 1 0.622068 0.189323 0.811481 850 1 0.558511 0.318203 0.745292 851 1 0.55864 0.253735 0.81231 853 1 0.617945 0.256691 0.74442 856 1 0.623676 0.311111 0.816235 700 1 0.754792 0.189905 0.69397 727 1 0.687263 0.245744 0.689056 731 1 0.815438 0.251748 0.691801 732 1 0.746003 0.313519 0.685588 822 1 0.687412 0.18853 0.749446 826 1 0.809723 0.18277 0.752518 828 1 0.741971 0.189252 0.809104 854 1 0.686329 0.312948 0.758585 855 1 0.684697 0.249568 0.809436 857 1 0.749161 0.251547 0.747383 858 1 0.80714 0.309747 0.757056 859 1 0.80599 0.245727 0.809318 860 1 0.742447 0.311817 0.815294 804 1 0.00021206 0.181671 0.808946 676 1 0.994306 0.182305 0.690029 708 1 0.99355 0.316802 0.686558 704 1 0.87495 0.182712 0.684992 735 1 0.933608 0.249122 0.681879 736 1 0.873525 0.31552 0.68667 830 1 0.933099 0.187179 0.74404 832 1 0.872452 0.189503 0.810939 861 1 0.874332 0.25286 0.751128 862 1 0.939084 0.317276 0.745844 863 1 0.941088 0.248462 0.803749 864 1 0.881163 0.315105 0.808624 1939 1 0.56784 0.494767 0.939309 661 1 0.629206 0.000284212 0.626015 739 1 0.0634958 0.373409 0.686728 744 1 0.118183 0.434804 0.687567 866 1 0.0565719 0.437117 0.753045 867 1 0.0631191 0.369466 0.814366 869 1 0.121943 0.369332 0.750676 872 1 0.117711 0.432671 0.806187 1012 1 0.497315 0.432858 0.936369 865 1 0.996343 0.372809 0.753843 740 1 0.00206624 0.432783 0.687238 743 1 0.193447 0.377514 0.684961 747 1 0.303342 0.372295 0.689241 748 1 0.254758 0.440236 0.695296 870 1 0.182118 0.433342 0.752338 871 1 0.18387 0.366664 0.80627 873 1 0.244379 0.368324 0.746812 874 1 0.318804 0.43813 0.751178 875 1 0.308044 0.370531 0.809962 876 1 0.254074 0.430763 0.807345 606 1 0.936968 0.309196 0.502157 655 1 0.437383 0.00665679 0.695609 751 1 0.43894 0.373324 0.684855 752 1 0.376649 0.434519 0.688119 877 1 0.374286 0.371474 0.752206 878 1 0.428588 0.437854 0.758498 879 1 0.437104 0.36717 0.81118 880 1 0.373184 0.434557 0.815367 756 1 0.495611 0.434432 0.694552 1009 1 0.509159 0.372244 0.872123 573 1 0.881129 0.124429 0.500221 1013 1 0.622952 0.379424 0.879079 881 1 0.495857 0.380925 0.752306 884 1 0.498466 0.44055 0.809974 755 1 0.55765 0.379183 0.689368 760 1 0.62762 0.438597 0.683076 882 1 0.563633 0.438727 0.749855 883 1 0.572369 0.376996 0.813484 885 1 0.626881 0.375285 0.747941 888 1 0.6312 0.443931 0.812813 1927 1 0.187905 0.498911 0.927404 759 1 0.689386 0.377416 0.686492 763 1 0.811495 0.369625 0.69107 764 1 0.751898 0.4387 0.690858 886 1 0.684949 0.433539 0.75321 887 1 0.684322 0.380175 0.823718 889 1 0.744435 0.37152 0.747372 890 1 0.808618 0.434282 0.751355 891 1 0.814936 0.372732 0.810319 892 1 0.75317 0.434758 0.809734 771 1 0.0579342 0.00158037 0.818693 1011 1 0.556807 0.374401 0.939545 6 1 0.194211 0.0585361 0.997102 868 1 -0.00175922 0.433561 0.811232 767 1 0.936813 0.381496 0.677128 768 1 0.873536 0.432965 0.684153 893 1 0.876724 0.371224 0.751717 894 1 0.936704 0.434311 0.743943 895 1 0.937469 0.378394 0.810826 896 1 0.873664 0.430258 0.810701 1559 1 0.685294 0.49437 0.566317 898 1 0.0634425 0.0608777 0.877846 904 1 0.134129 0.0687454 0.936198 931 1 0.0696912 0.131068 0.935722 933 1 0.127151 0.120767 0.878297 929 1 0.00113905 0.118701 0.874649 1815 1 0.693335 0.501989 0.804249 1817 1 0.757993 0.496004 0.746983 1821 1 0.879389 0.496596 0.758526 902 1 0.188094 0.0545845 0.876739 906 1 0.311474 0.060729 0.875751 908 1 0.253096 0.0592502 0.929787 935 1 0.192319 0.124408 0.935313 937 1 0.247917 0.124758 0.873504 939 1 0.310631 0.127854 0.93115 2 1 0.0693448 0.0657866 0.997722 1921 1 0.994884 0.4981 0.870296 1010 1 0.567835 0.435131 0.877331 919 1 0.688454 0.00200528 0.937589 910 1 0.438939 0.0616252 0.879397 912 1 0.367163 0.0580942 0.936758 941 1 0.37601 0.127899 0.866906 943 1 0.437075 0.125188 0.941024 945 1 0.499472 0.123747 0.878396 1937 1 0.510718 0.499177 0.875981 1551 1 0.439707 0.500644 0.567488 916 1 0.495988 0.0677352 0.940959 914 1 0.555319 0.0726918 0.881527 920 1 0.623167 0.0646293 0.933647 947 1 0.55483 0.132204 0.944391 949 1 0.614257 0.128257 0.875176 1823 1 0.938662 0.493998 0.808685 33 1 0.00534034 0.127826 0.99607 1675 1 0.314862 0.497351 0.693751 918 1 0.681055 0.0651056 0.87743 922 1 0.816697 0.058888 0.873222 924 1 0.744662 0.0590855 0.927553 951 1 0.686697 0.136973 0.935063 953 1 0.753411 0.128174 0.875349 955 1 0.811083 0.127352 0.942198 900 1 0.0021816 0.0621387 0.935322 926 1 0.933342 0.0624533 0.863589 928 1 0.877257 0.067596 0.932922 957 1 0.869383 0.126124 0.873544 959 1 0.941158 0.129203 0.935072 930 1 0.0647401 0.177885 0.867333 936 1 0.130544 0.184269 0.937499 962 1 0.0663068 0.305328 0.881813 963 1 0.0658943 0.244489 0.935669 965 1 0.126717 0.242035 0.873621 968 1 0.129481 0.308276 0.937862 964 1 -0.000583541 0.311037 0.94027 961 1 0.99434 0.250937 0.874332 932 1 0.997776 0.197939 0.937543 1016 1 0.628307 0.43362 0.95018 1687 1 0.693417 0.501492 0.691245 663 1 0.686161 0.00401678 0.690738 114 1 0.570504 0.437335 1.001 934 1 0.186298 0.186776 0.875543 938 1 0.311071 0.193072 0.863087 940 1 0.250332 0.186375 0.937818 966 1 0.181575 0.306553 0.871559 967 1 0.192721 0.252249 0.936902 969 1 0.252372 0.250601 0.875163 970 1 0.304265 0.310673 0.872437 971 1 0.311699 0.244831 0.929684 972 1 0.25371 0.307015 0.93652 1005 1 0.374329 0.373933 0.87166 777 1 0.255451 0.0029715 0.751217 973 1 0.379542 0.247051 0.865402 944 1 0.372039 0.188123 0.933311 942 1 0.438157 0.188316 0.878309 976 1 0.369805 0.306215 0.927206 975 1 0.435896 0.247932 0.934522 974 1 0.430306 0.313231 0.872697 977 1 0.500552 0.258261 0.875202 948 1 0.495686 0.18583 0.936325 1677 1 0.376964 0.501822 0.622352 1006 1 0.442277 0.430169 0.876585 541 1 0.87402 0.00320159 0.500925 980 1 0.498085 0.312131 0.935926 979 1 0.549874 0.251815 0.943889 952 1 0.623141 0.192658 0.932456 946 1 0.556898 0.193284 0.876866 984 1 0.622682 0.310873 0.938788 978 1 0.568527 0.312663 0.878395 981 1 0.629824 0.255298 0.876312 983 1 0.685726 0.251108 0.93135 956 1 0.749833 0.187422 0.935983 987 1 0.814286 0.253739 0.939638 986 1 0.81579 0.306843 0.869604 954 1 0.815489 0.190044 0.872448 982 1 0.687368 0.313409 0.880013 988 1 0.749744 0.316299 0.940774 985 1 0.747924 0.244245 0.875264 950 1 0.684333 0.19149 0.870922 1008 1 0.378461 0.442398 0.935341 1007 1 0.434752 0.377068 0.941514 657 1 0.498525 0.000420111 0.628454 102 1 0.186605 0.437039 0.998272 913 1 0.502438 0.00988831 0.878256 1671 1 0.180283 0.502194 0.681583 991 1 0.937575 0.259094 0.94277 989 1 0.875646 0.253558 0.869825 990 1 0.936424 0.313724 0.874137 992 1 0.877289 0.313951 0.945716 960 1 0.877933 0.186837 0.931309 958 1 0.932094 0.186279 0.866889 1693 1 0.870376 0.503636 0.625545 1003 1 0.318752 0.374887 0.935746 997 1 0.126992 0.372036 0.873004 1000 1 0.13163 0.43291 0.931887 995 1 0.0602818 0.379171 0.939456 994 1 0.0604543 0.436445 0.870683 597 1 0.626775 0.250646 0.498487 999 1 0.189994 0.368892 0.932821 105 1 0.257063 0.38057 0.997947 998 1 0.190432 0.432998 0.860866 1002 1 0.313888 0.433193 0.87213 1004 1 0.250446 0.437341 0.925369 1001 1 0.250745 0.375602 0.875508 70 1 0.197665 0.315843 0.99896 45 1 0.372374 0.122636 0.99893 101 1 0.125578 0.368893 1.00315 1683 1 0.567658 0.498748 0.687614 1795 1 0.0584064 0.494218 0.814735 1819 1 0.81048 0.493369 0.818873 1793 1 -0.00389568 0.500841 0.743618 927 1 0.940035 0.00788331 0.937208 1801 1 0.248108 0.503756 0.747329 594 1 0.56603 0.31016 0.501341 98 1 0.0612153 0.437482 1.00026 637 1 0.868929 0.374861 0.503704 645 1 0.12729 0.000745204 0.625947 42 1 0.310454 0.181541 0.997198 30 1 0.938765 0.0644042 0.995463 10 1 0.308879 0.0636343 0.992345 61 1 0.872898 0.117212 0.997277 1685 1 0.626208 0.503147 0.622283 26 1 0.810788 0.0596717 0.996296 1539 1 0.0700014 0.499702 0.557503 29 1 0.876066 0.00520873 0.994696 53 1 0.625244 0.126886 1.00059 22 1 0.689645 0.0671419 0.99421 106 1 0.315371 0.435447 0.996622 513 1 -0.000512956 0.00225347 0.502535 41 1 0.245371 0.126869 0.995411 69 1 0.127357 0.246462 1.00088 121 1 0.749297 0.37597 0.999665 38 1 0.190142 0.190749 0.991935 85 1 0.624245 0.250029 0.998823 34 1 0.0660205 0.18824 1.00133 1033 1 0.250709 0.494997 0.995286 9 1 0.250829 -0.00163604 0.994306 577 1 -0.00142726 0.250224 0.505039 545 1 0.999627 0.121259 0.504943 1545 1 0.249257 0.502978 0.506041 89 1 0.751881 0.253761 0.996194 533 1 0.626406 0.00314178 0.509533 37 1 0.1308 0.126732 0.992478 625 1 0.494409 0.378811 0.506289 546 1 0.0612494 0.185066 0.502846 618 1 0.312808 0.438408 0.505624 562 1 0.571258 0.191485 0.505441 634 1 0.806109 0.442629 0.504429 14 1 0.436246 0.0602222 0.991378 1549 1 0.382344 0.49643 0.502916 581 1 0.128455 0.24241 0.503576 522 1 0.299464 0.0621367 0.504889 605 1 0.866638 0.244765 0.508318 530 1 0.562344 0.0606799 0.505396 1049 1 0.748165 0.498881 0.994296 1032 1 0.120951 0.563378 0.0476376 1059 1 0.0649706 0.632268 0.0579308 1154 1 0.0674369 0.57036 0.123988 1189 1 0.128013 0.624838 0.119689 1028 1 0.00150504 0.568431 0.0636123 1055 1 0.933403 0.497455 0.0639099 1051 1 0.808592 0.507409 0.0609862 1036 1 0.245922 0.559319 0.051009 1063 1 0.185781 0.625815 0.0572345 1067 1 0.313211 0.620671 0.0634203 1158 1 0.190277 0.560036 0.11324 1162 1 0.310574 0.560039 0.126669 1193 1 0.245098 0.62998 0.114077 159 1 0.944292 0.999365 0.177577 1040 1 0.371536 0.559543 0.0697809 1071 1 0.437492 0.630411 0.0681242 1166 1 0.43464 0.563705 0.130209 1197 1 0.372658 0.628263 0.123897 1201 1 0.503392 0.619142 0.126901 259 1 0.067672 0.999619 0.322275 1439 1 0.934198 0.501883 0.441714 1044 1 0.498543 0.561886 0.0650171 1048 1 0.627558 0.568135 0.0633922 1075 1 0.566541 0.632657 0.0658062 1170 1 0.564842 0.561244 0.125835 1205 1 0.628852 0.627835 0.132509 129 1 0.999277 1.0004 0.114102 1073 1 0.503013 0.631566 0.00776866 1159 1 0.180923 0.500501 0.175666 1126 1 0.190155 0.940581 -0.00366215 413 1 0.874531 1.00268 0.375328 1052 1 0.746329 0.560225 0.0686458 1079 1 0.693813 0.628381 0.0640824 1083 1 0.813803 0.628039 0.0652456 1174 1 0.690189 0.561045 0.133593 1178 1 0.815694 0.560777 0.126324 1209 1 0.756079 0.624059 0.128454 1042 1 0.562645 0.562689 0.00306958 1287 1 0.1855 0.502047 0.309908 1185 1 0.00321305 0.625299 0.123337 1056 1 0.879918 0.567759 0.0696988 1087 1 0.938851 0.625237 0.0635129 1182 1 0.938991 0.562971 0.127566 1213 1 0.880435 0.632991 0.124443 285 1 0.875486 1.00104 0.253839 155 1 0.810326 0.999827 0.180428 1064 1 0.121047 0.689289 0.0607107 1091 1 0.0587718 0.751887 0.0606368 1096 1 0.13015 0.812555 0.0589272 1186 1 0.0633033 0.688458 0.128003 1218 1 0.0717863 0.815132 0.123539 1221 1 0.128387 0.753226 0.117782 1217 1 0.999495 0.750574 0.120412 1092 1 1.00191 0.818884 0.0651167 1153 1 -0.000748919 0.500346 0.114576 1068 1 0.249317 0.691319 0.0540212 1095 1 0.194624 0.75329 0.0584079 1099 1 0.314018 0.751532 0.0598816 1100 1 0.254145 0.809978 0.0618181 1190 1 0.190097 0.688593 0.117176 1194 1 0.310078 0.685039 0.121151 1222 1 0.197031 0.811917 0.126293 1225 1 0.259602 0.749718 0.124344 1226 1 0.313036 0.811573 0.117187 1181 1 0.880045 0.505502 0.131665 1077 1 0.617681 0.623583 -0.000352205 1072 1 0.370755 0.686866 0.0592649 1103 1 0.442261 0.745091 0.0741411 1104 1 0.376346 0.808399 0.0615335 1198 1 0.442379 0.681275 0.132874 1229 1 0.377797 0.740804 0.128843 1230 1 0.436243 0.809649 0.123348 1233 1 0.506598 0.752892 0.127169 1076 1 0.501202 0.68796 0.0652276 1108 1 0.503099 0.810472 0.0525396 283 1 0.808365 0.997298 0.310623 1080 1 0.634323 0.692113 0.0697499 1107 1 0.563142 0.750133 0.0704957 1112 1 0.622853 0.818168 0.060014 1202 1 0.561965 0.690933 0.131084 1234 1 0.560311 0.817996 0.120578 1237 1 0.627646 0.755317 0.125892 1554 1 0.564339 0.56047 0.494915 1303 1 0.688856 0.495812 0.315732 1084 1 0.7469 0.694193 0.0618114 1111 1 0.68764 0.758559 0.0703406 1115 1 0.813603 0.75689 0.0534356 1116 1 0.754 0.810972 0.0573806 1206 1 0.689402 0.688525 0.135356 1210 1 0.807761 0.697075 0.127079 1238 1 0.688913 0.806849 0.139051 1241 1 0.753569 0.757866 0.120592 1242 1 0.819084 0.815024 0.131764 1542 1 0.191942 0.563203 0.503361 1594 1 0.809938 0.691282 0.501703 1069 1 0.384857 0.625251 0.00123714 1060 1 -0.00285304 0.684599 0.0701945 1088 1 0.871596 0.689675 0.0636234 1119 1 0.938154 0.746741 0.0611025 1120 1 0.874931 0.814246 0.0609959 1214 1 0.939131 0.687919 0.133265 1245 1 0.873427 0.753012 0.132636 1246 1 0.937462 0.804851 0.131027 151 1 0.686024 0.995688 0.185978 1123 1 0.0717475 0.875474 0.0611777 1128 1 0.130738 0.937837 0.0663098 1250 1 0.0667363 0.939358 0.111785 1253 1 0.13292 0.873541 0.123348 1124 1 1.0001 0.935884 0.0465052 1249 1 0.00144773 0.877397 0.126733 1161 1 0.246811 0.498082 0.125085 1066 1 0.315983 0.68402 -0.000247993 1621 1 0.621476 0.75923 0.503779 1307 1 0.821938 0.504375 0.314169 1127 1 0.192561 0.875625 0.0586666 1131 1 0.319814 0.872777 0.0581123 1132 1 0.246905 0.93963 0.0628625 1254 1 0.189022 0.945884 0.128335 1257 1 0.251967 0.873842 0.119193 1258 1 0.317688 0.93996 0.12084 135 1 0.19177 0.996696 0.197442 1558 1 0.690866 0.559231 0.498098 1135 1 0.438401 0.870077 0.0572912 1136 1 0.378434 0.929363 0.0519431 1261 1 0.380052 0.882642 0.124031 1262 1 0.438223 0.936777 0.122588 1265 1 0.496594 0.871629 0.11939 393 1 0.246062 0.996652 0.371812 1508 1 0.995738 0.935461 0.436791 1047 1 0.68307 0.50604 0.0633846 1140 1 0.504648 0.93554 0.0535453 1139 1 0.566049 0.877432 0.0603634 1144 1 0.627908 0.938326 0.0610961 1266 1 0.56164 0.937121 0.117416 1269 1 0.631099 0.878974 0.119472 1536 1 0.872702 0.936907 0.437824 397 1 0.377339 0.998701 0.364159 139 1 0.312868 0.991333 0.188096 1150 1 0.929019 0.94304 -0.00316297 1143 1 0.689685 0.874802 0.0534556 1147 1 0.804918 0.873128 0.0657278 1148 1 0.747246 0.933258 0.0645014 1270 1 0.687309 0.938174 0.122302 1273 1 0.75391 0.868848 0.129799 1274 1 0.817907 0.931058 0.126689 1411 1 0.0701582 0.506655 0.43174 1617 1 0.503419 0.752268 0.498226 1285 1 0.1242 0.504971 0.251402 1167 1 0.443179 0.505192 0.192925 1151 1 0.938172 0.866138 0.0579902 1152 1 0.878895 0.939946 0.0626196 1277 1 0.877403 0.874772 0.122368 1278 1 0.941239 0.93341 0.113395 1417 1 0.249026 0.496321 0.379278 1165 1 0.375413 0.502616 0.132037 1160 1 0.1275 0.567375 0.187563 1187 1 0.0687259 0.627716 0.184853 1282 1 0.0589703 0.564314 0.25399 1288 1 0.125474 0.569128 0.305833 1315 1 0.0628705 0.62279 0.315608 1317 1 0.132232 0.621749 0.246225 1156 1 0.99706 0.561652 0.190445 1535 1 0.938381 0.873185 0.444698 1534 1 0.93628 0.940031 0.376403 1164 1 0.250158 0.561893 0.188668 1191 1 0.195032 0.627863 0.179181 1195 1 0.310686 0.620169 0.192085 1286 1 0.188477 0.563858 0.253459 1290 1 0.30587 0.566102 0.252711 1292 1 0.253332 0.561577 0.317617 1319 1 0.19016 0.63281 0.314665 1321 1 0.244438 0.632114 0.253335 1323 1 0.31568 0.631113 0.315094 1533 1 0.878367 0.874554 0.376356 1537 1 0.997358 0.504555 0.500234 1653 1 0.632223 0.878928 0.496383 1168 1 0.367849 0.560019 0.185335 1199 1 0.429622 0.625623 0.189882 1294 1 0.439096 0.570883 0.246194 1296 1 0.383462 0.562224 0.311321 1325 1 0.375585 0.625265 0.256546 1327 1 0.441645 0.619537 0.310821 1172 1 0.4996 0.564053 0.197188 1297 1 0.503501 0.499674 0.252103 147 1 0.554611 0.989228 0.182022 1329 1 0.503767 0.62942 0.254541 1300 1 0.509869 0.56236 0.315039 1176 1 0.629217 0.56137 0.186713 1203 1 0.569197 0.620738 0.183396 1298 1 0.574169 0.569995 0.249656 1304 1 0.625318 0.561055 0.315126 1331 1 0.570185 0.624957 0.318629 1333 1 0.629751 0.63087 0.252616 1646 1 0.43284 0.943869 0.497465 1180 1 0.750827 0.563217 0.188314 1207 1 0.690983 0.625107 0.195845 1211 1 0.814932 0.629597 0.190719 1302 1 0.684747 0.565796 0.251957 1306 1 0.820071 0.566955 0.250865 1308 1 0.756069 0.565757 0.308239 1335 1 0.694235 0.622515 0.313827 1337 1 0.758579 0.629669 0.255927 1339 1 0.81828 0.626572 0.315915 1419 1 0.322425 0.504436 0.435945 265 1 0.253236 0.994182 0.252349 1038 1 0.442567 0.557861 0.00415695 1175 1 0.691056 0.500021 0.188705 1284 1 0.00411891 0.56361 0.317737 1313 1 0.00168739 0.629318 0.256824 1184 1 0.885366 0.558945 0.195994 1215 1 0.940145 0.624128 0.186944 1310 1 0.944171 0.562509 0.256608 1312 1 0.877081 0.570274 0.311367 1341 1 0.876439 0.626847 0.252194 1343 1 0.938291 0.626053 0.319299 257 1 0.0139147 0.99767 0.256608 1070 1 0.437556 0.690557 0.000289134 1529 1 0.749941 0.879352 0.374555 1192 1 0.135795 0.685409 0.175094 1219 1 0.0707542 0.751504 0.183599 1224 1 0.122884 0.815898 0.187725 1314 1 0.0747162 0.68588 0.246186 1320 1 0.125939 0.69198 0.313433 1346 1 0.0622943 0.812246 0.251545 1347 1 0.0591858 0.747257 0.317531 1349 1 0.129156 0.758604 0.25271 1352 1 0.11726 0.811345 0.31325 1220 1 -0.00360691 0.813083 0.190301 1345 1 0.00413475 0.745628 0.251484 1196 1 0.257184 0.691127 0.184345 1223 1 0.192376 0.749793 0.184873 1227 1 0.313821 0.749672 0.192115 1228 1 0.25456 0.806063 0.184569 1318 1 0.187627 0.696581 0.250726 1322 1 0.308079 0.680789 0.253358 1324 1 0.251201 0.687737 0.318052 1350 1 0.187795 0.81771 0.243995 1351 1 0.191765 0.755664 0.310296 1353 1 0.252414 0.763999 0.253536 1354 1 0.318019 0.813455 0.247413 1355 1 0.309432 0.750677 0.314693 1356 1 0.248713 0.815787 0.322379 1200 1 0.365417 0.686605 0.191036 1231 1 0.442603 0.749614 0.193254 1232 1 0.378574 0.808475 0.18773 1326 1 0.438502 0.687182 0.256356 1328 1 0.375806 0.685884 0.311514 1357 1 0.374174 0.752818 0.248519 1358 1 0.442585 0.810253 0.248772 1359 1 0.441227 0.749492 0.3179 1360 1 0.379178 0.811233 0.308717 1332 1 0.502166 0.687711 0.311741 1204 1 0.504983 0.688143 0.194379 1236 1 0.501205 0.814941 0.187258 1361 1 0.496163 0.747596 0.257443 1364 1 0.499323 0.812043 0.317463 1208 1 0.625149 0.695145 0.193208 1235 1 0.560206 0.753072 0.194128 1240 1 0.618241 0.81553 0.192687 1330 1 0.569051 0.687044 0.250712 1336 1 0.630386 0.686899 0.313843 1362 1 0.561997 0.81178 0.252624 1363 1 0.563841 0.750733 0.315171 1365 1 0.629988 0.756207 0.256854 1368 1 0.622025 0.819865 0.312294 1212 1 0.747233 0.67992 0.193801 1239 1 0.694221 0.743108 0.194724 1243 1 0.81131 0.750096 0.197968 1244 1 0.748857 0.812572 0.197131 1334 1 0.688334 0.69252 0.251789 1338 1 0.815447 0.693327 0.25336 1340 1 0.760245 0.690717 0.312719 1366 1 0.690381 0.81736 0.250409 1367 1 0.688024 0.750722 0.312699 1369 1 0.753891 0.75274 0.259722 1370 1 0.815409 0.819853 0.25463 1371 1 0.814585 0.753478 0.313112 1372 1 0.754696 0.815751 0.321196 1348 1 -0.00187593 0.809388 0.316969 1188 1 0.00304103 0.680817 0.190592 1316 1 -0.00401317 0.688408 0.321162 1216 1 0.878052 0.693121 0.196493 1247 1 0.948052 0.748889 0.190299 1248 1 0.873521 0.812722 0.194594 1342 1 0.938681 0.690997 0.253933 1344 1 0.87924 0.689707 0.313986 1373 1 0.875367 0.752365 0.25658 1374 1 0.935913 0.810952 0.25287 1375 1 0.936627 0.749273 0.310812 1376 1 0.877327 0.809826 0.316846 263 1 0.181527 0.992418 0.308819 1251 1 0.0659151 0.872536 0.181405 1256 1 0.129024 0.937732 0.181225 1378 1 0.0665252 0.937938 0.256343 1379 1 0.0576258 0.869558 0.312482 1381 1 0.123829 0.872597 0.254216 1384 1 0.122643 0.931996 0.3154 1252 1 0.0132071 0.936776 0.196659 1380 1 0.994004 0.93627 0.310249 1526 1 0.688827 0.944373 0.372741 1528 1 0.627509 0.940424 0.434097 1255 1 0.195263 0.873489 0.188617 1259 1 0.313213 0.872354 0.176517 1260 1 0.254369 0.931478 0.188735 1382 1 0.189705 0.930467 0.247489 1383 1 0.181108 0.870127 0.31392 1385 1 0.250557 0.868915 0.252607 1386 1 0.31196 0.92903 0.245733 1387 1 0.30792 0.873024 0.312227 1388 1 0.243368 0.932259 0.312251 1527 1 0.694734 0.878759 0.436542 1263 1 0.437308 0.874484 0.188305 1264 1 0.375385 0.931413 0.18884 1389 1 0.374425 0.871243 0.250464 1390 1 0.431816 0.941921 0.249126 1391 1 0.438312 0.884649 0.306296 1392 1 0.364012 0.929719 0.309492 1396 1 0.49773 0.943202 0.31365 1268 1 0.493264 0.93776 0.189627 1393 1 0.495225 0.877576 0.25145 1530 1 0.81903 0.942696 0.375403 395 1 0.312237 0.99916 0.430631 1267 1 0.550532 0.87927 0.185485 1272 1 0.623526 0.934422 0.1833 1394 1 0.559267 0.940517 0.253453 1395 1 0.556867 0.879406 0.314791 1397 1 0.62402 0.881183 0.254043 1400 1 0.620239 0.943083 0.316776 1271 1 0.681415 0.875865 0.185078 1275 1 0.813615 0.879306 0.191794 1276 1 0.751754 0.939537 0.185884 1398 1 0.683849 0.941334 0.257109 1399 1 0.691194 0.877948 0.313595 1401 1 0.747521 0.880196 0.244893 1402 1 0.817527 0.940384 0.247599 1403 1 0.816581 0.877395 0.317682 1404 1 0.752298 0.936899 0.30952 1081 1 0.750141 0.625008 -0.0020045 273 1 0.49864 0.999816 0.249177 1630 1 0.943108 0.806809 0.501802 1377 1 -0.000212799 0.870546 0.250299 1279 1 0.939547 0.880375 0.186956 1280 1 0.883769 0.935654 0.184174 1405 1 0.878475 0.878253 0.253945 1406 1 0.932784 0.939308 0.251788 1407 1 0.940527 0.869288 0.31259 1408 1 0.880135 0.942973 0.312055 1570 1 0.0655682 0.686868 0.502515 1031 1 0.186604 0.500796 0.0593323 1410 1 0.0666023 0.570297 0.37613 1416 1 0.128336 0.574051 0.436969 1443 1 0.064811 0.62713 0.444077 1445 1 0.12814 0.625373 0.371603 1441 1 0.00586849 0.624699 0.374749 1531 1 0.80276 0.877193 0.438729 1039 1 0.440049 0.496826 0.0636544 1449 1 0.248229 0.627271 0.375734 1451 1 0.313138 0.626251 0.437217 1420 1 0.250122 0.561713 0.429225 1447 1 0.195701 0.634096 0.44169 1414 1 0.183999 0.559503 0.373874 1418 1 0.315313 0.566006 0.372478 403 1 0.562993 0.998672 0.443727 1589 1 0.626404 0.631893 0.49826 1637 1 0.123258 0.866531 0.500566 1422 1 0.443835 0.56123 0.376266 1455 1 0.442365 0.623031 0.439019 1424 1 0.377282 0.570003 0.435442 1453 1 0.37571 0.637276 0.374686 1457 1 0.501903 0.615712 0.372048 1645 1 0.377429 0.880575 0.499704 1281 1 0.00410744 0.500158 0.255738 1428 1 0.505825 0.56462 0.438463 1461 1 0.631412 0.622601 0.37188 1426 1 0.567223 0.561816 0.376071 1432 1 0.634227 0.562468 0.431881 1459 1 0.571378 0.62505 0.431001 1522 1 0.558259 0.944066 0.374345 1430 1 0.694686 0.562899 0.372753 1463 1 0.690431 0.626941 0.44138 1436 1 0.756028 0.559697 0.436273 1434 1 0.81649 0.559064 0.373203 1465 1 0.748809 0.635151 0.377623 1467 1 0.811878 0.624091 0.441311 1155 1 0.0649185 0.505063 0.185119 269 1 0.372214 1.00004 0.249596 1109 1 0.626412 0.75327 -0.00495624 1532 1 0.745848 0.947938 0.43151 1412 1 1.00361 0.568432 0.435125 1525 1 0.630626 0.869476 0.374771 1440 1 0.870749 0.563578 0.441938 1469 1 0.87951 0.631073 0.382142 1471 1 0.933671 0.628268 0.44004 1438 1 0.935742 0.567388 0.378718 1585 1 0.505458 0.623564 0.500925 1474 1 0.0587188 0.812776 0.375533 1480 1 0.12268 0.810831 0.435992 1475 1 0.06246 0.746416 0.428824 1442 1 0.0674876 0.686695 0.37443 1477 1 0.128798 0.75185 0.373045 1448 1 0.126222 0.69192 0.434565 1473 1 1.00068 0.747321 0.380946 1027 1 0.0626289 0.502404 0.0616754 1452 1 0.262136 0.695176 0.442076 1450 1 0.313917 0.686365 0.375168 1446 1 0.184253 0.690693 0.37922 1482 1 0.308543 0.814495 0.37512 1484 1 0.254699 0.80882 0.433152 1478 1 0.190794 0.817645 0.381959 1481 1 0.244024 0.748352 0.375265 1483 1 0.31701 0.752967 0.439245 1479 1 0.188589 0.747701 0.437028 1606 1 0.18586 0.809318 0.500378 1035 1 0.305738 0.497018 0.0531051 1524 1 0.495432 0.943945 0.438352 1456 1 0.373293 0.695012 0.438384 1487 1 0.443028 0.754948 0.440473 1485 1 0.376495 0.754294 0.372254 1488 1 0.375488 0.81575 0.437207 1454 1 0.439537 0.692015 0.376467 1486 1 0.438001 0.817297 0.370469 1492 1 0.496222 0.816338 0.435462 1489 1 0.506059 0.751786 0.374993 1460 1 0.50267 0.680603 0.441802 1171 1 0.558987 0.500212 0.191491 1517 1 0.37649 0.874554 0.376986 1490 1 0.558673 0.818654 0.378926 1458 1 0.562169 0.687744 0.373772 1493 1 0.625841 0.755441 0.372739 1491 1 0.561935 0.756621 0.432142 1496 1 0.619776 0.817777 0.438573 1464 1 0.630405 0.683958 0.435521 385 1 -0.000757979 1.00231 0.377733 267 1 0.308805 0.988867 0.311152 1494 1 0.687295 0.80905 0.377004 1466 1 0.811621 0.691123 0.381939 1499 1 0.815185 0.759312 0.43761 1495 1 0.685979 0.754148 0.450911 1500 1 0.749407 0.816524 0.440885 1497 1 0.749539 0.753108 0.373831 1498 1 0.811587 0.818546 0.381234 1468 1 0.747387 0.697264 0.441653 1462 1 0.688181 0.701491 0.376077 1519 1 0.437258 0.874965 0.437003 1444 1 0.0061251 0.681494 0.434119 1501 1 0.873891 0.747815 0.377141 1504 1 0.877823 0.818183 0.441335 1470 1 0.937973 0.68733 0.382205 1476 1 1.00141 0.813672 0.435854 1472 1 0.873804 0.686974 0.444058 1503 1 0.933943 0.746406 0.433463 1502 1 0.932971 0.809419 0.378517 1569 1 0.999499 0.620748 0.499103 149 1 0.624597 0.993946 0.126296 391 1 0.187217 0.989922 0.441098 1505 1 0.996243 0.877183 0.375199 1037 1 0.377584 0.502054 0.00118493 1597 1 0.874767 0.628517 0.503292 1506 1 0.0644835 0.93414 0.376167 1512 1 0.116208 0.934404 0.442187 1507 1 0.0556118 0.873906 0.440177 1509 1 0.12101 0.87639 0.379567 261 1 0.118588 0.996375 0.247348 1518 1 0.441769 0.945245 0.377124 1523 1 0.563175 0.880455 0.437112 1516 1 0.250503 0.930988 0.439049 1514 1 0.308542 0.934406 0.378935 1511 1 0.187633 0.874684 0.438174 1510 1 0.177966 0.9363 0.369348 1515 1 0.313849 0.874471 0.443383 1513 1 0.24532 0.877689 0.377385 1622 1 0.691633 0.818324 0.499075 1521 1 0.501063 0.881324 0.377963 1520 1 0.377975 0.942735 0.432954 11 1 0.312364 1.00166 0.0573019 1299 1 0.562937 0.50052 0.312702 145 1 0.501808 1.00228 0.120474 1423 1 0.446115 0.504827 0.436958 141 1 0.372799 0.992427 0.12047 1437 1 0.876366 0.503565 0.381944 1311 1 0.939121 0.508832 0.321394 1409 1 0.00539436 0.507406 0.374121 1415 1 0.186307 0.501315 0.434684 1289 1 0.248229 0.508182 0.252656 1305 1 0.75789 0.504452 0.25652 1034 1 0.311093 0.56871 0.000530442 1090 1 0.0562786 0.808634 0.00225965 1082 1 0.804844 0.687052 0.00375585 1605 1 0.125207 0.748447 0.498006 1618 1 0.5549 0.820072 0.48874 1045 1 0.62205 0.505723 0.00898247 1650 1 0.557009 0.933055 0.496391 1601 1 0.00188178 0.750837 0.492189 1566 1 0.934614 0.568411 0.495765 1586 1 0.568691 0.688587 0.488545 517 1 0.124543 1.0007 0.496191 1654 1 0.688091 0.946444 0.501055 1602 1 0.0547597 0.806975 0.495539 1054 1 0.926686 0.568441 0.00103299 25 1 0.752195 0.997639 0.00365253 1130 1 0.308435 0.935058 -0.0016875 1546 1 0.322215 0.563422 0.498041 1046 1 0.695447 0.567179 0.00902163 1590 1 0.686494 0.687051 0.499568 1053 1 0.872416 0.498456 0.00589092 1121 1 0.00469413 0.869822 -0.000139557 1544 1 0.134595 0.569238 0.561782 1571 1 0.0653558 0.627812 0.556138 1666 1 0.0654595 0.568531 0.617954 1701 1 0.121365 0.632087 0.627946 1541 1 0.126504 0.506927 0.496693 1573 1 0.133637 0.62927 0.498697 1933 1 0.387288 0.504604 0.880463 1548 1 0.247103 0.559259 0.569617 1575 1 0.187405 0.626837 0.566238 1579 1 0.308504 0.615493 0.564551 1670 1 0.189609 0.559653 0.622636 1674 1 0.311727 0.559272 0.623704 1705 1 0.251025 0.628325 0.630118 647 1 0.18325 0.996435 0.686861 1626 1 0.810957 0.816351 0.502222 1665 1 0.00926728 0.507999 0.625911 901 1 0.126276 0.999541 0.879954 1552 1 0.375176 0.570315 0.572492 1583 1 0.44226 0.631587 0.564427 1678 1 0.440246 0.559668 0.6247 1709 1 0.377756 0.62904 0.624051 1713 1 0.496077 0.631386 0.627217 903 1 0.189046 0.999235 0.939043 1805 1 0.381373 0.50082 0.754621 799 1 0.936661 0.998777 0.808618 669 1 0.880671 0.996098 0.619248 1556 1 0.497956 0.561635 0.566814 1633 1 0.00165729 0.872699 0.498484 1560 1 0.628434 0.562965 0.56125 1587 1 0.562199 0.626175 0.556135 1682 1 0.568669 0.563052 0.62143 1717 1 0.627933 0.624096 0.630038 1578 1 0.314677 0.687016 0.506842 1561 1 0.75546 0.506742 0.501708 1613 1 0.377715 0.752198 0.501866 1661 1 0.883321 0.871055 0.504331 1564 1 0.747707 0.560811 0.565063 1591 1 0.68113 0.624825 0.56103 1595 1 0.815909 0.620581 0.563376 1686 1 0.688811 0.563548 0.622994 1690 1 0.81913 0.567129 0.622369 1721 1 0.745632 0.626151 0.620235 1098 1 0.308244 0.808769 0.994975 539 1 0.798006 1.00013 0.561349 923 1 0.805489 1.00085 0.939869 1697 1 0.000480246 0.630067 0.621093 1540 1 1.00323 0.565004 0.563328 1568 1 0.87166 0.557682 0.564693 1599 1 0.939982 0.62307 0.568798 1694 1 0.935362 0.55889 0.620879 1725 1 0.875764 0.628476 0.626821 1813 1 0.627186 0.501715 0.74905 1550 1 0.440727 0.559215 0.50017 905 1 0.258062 0.997516 0.870785 1576 1 0.129092 0.686342 0.560445 1603 1 0.0569363 0.75106 0.560693 1608 1 0.122482 0.808733 0.56659 1698 1 0.0590183 0.691363 0.619752 1730 1 0.0662467 0.816211 0.627377 1733 1 0.121237 0.749015 0.625736 1799 1 0.184743 0.494931 0.810931 1572 1 0.000537899 0.688463 0.560035 1803 1 0.310359 0.50295 0.809145 653 1 0.381498 0.994077 0.627298 1580 1 0.252479 0.688537 0.558361 1607 1 0.188651 0.752299 0.566073 1611 1 0.313059 0.751936 0.566636 1612 1 0.248621 0.806624 0.563656 1702 1 0.188585 0.695216 0.62535 1706 1 0.316207 0.6878 0.618356 1734 1 0.194188 0.810965 0.627334 1737 1 0.254169 0.745282 0.633979 1738 1 0.310999 0.809992 0.624547 1582 1 0.445817 0.688036 0.499002 781 1 0.378956 1.00252 0.75415 911 1 0.441905 0.999575 0.935772 1584 1 0.377276 0.689114 0.56222 1615 1 0.446529 0.748372 0.563817 1616 1 0.375356 0.814913 0.567521 1710 1 0.439215 0.691046 0.624695 1741 1 0.371678 0.749805 0.629344 1742 1 0.440015 0.816034 0.624038 1745 1 0.502273 0.746472 0.623879 1588 1 0.504066 0.688278 0.565089 1620 1 0.494772 0.819099 0.562432 1638 1 0.182254 0.933713 0.503459 1592 1 0.620989 0.689056 0.555935 1619 1 0.554248 0.758376 0.56151 1624 1 0.61754 0.819977 0.551087 1714 1 0.568869 0.686118 0.622198 1746 1 0.561815 0.816106 0.625856 1749 1 0.622243 0.749609 0.626297 649 1 0.245991 0.993707 0.624048 1931 1 0.313058 0.500055 0.934414 1596 1 0.744547 0.680224 0.558071 1623 1 0.684372 0.755681 0.561584 1627 1 0.809821 0.739061 0.566815 1628 1 0.7543 0.814753 0.561122 1718 1 0.686372 0.681585 0.620565 1722 1 0.805478 0.686438 0.630644 1750 1 0.680369 0.809829 0.627638 1753 1 0.744436 0.748813 0.628867 1754 1 0.815246 0.804648 0.618057 1577 1 0.252976 0.623366 0.4986 643 1 0.0648344 0.996401 0.693271 1137 1 0.506856 0.876371 0.992337 1729 1 0.993279 0.757839 0.622545 1604 1 1.00331 0.816322 0.559266 1600 1 0.874464 0.686879 0.566361 1631 1 0.945265 0.748485 0.557755 1632 1 0.871746 0.808613 0.557041 1726 1 0.93882 0.689985 0.617674 1757 1 0.878394 0.747418 0.619889 1758 1 0.929603 0.816342 0.626463 651 1 0.309216 0.993704 0.688839 1949 1 0.876246 0.50346 0.871982 1679 1 0.431753 0.49985 0.687012 1635 1 0.0613523 0.878241 0.557866 1640 1 0.127694 0.942677 0.563853 1762 1 0.0691958 0.943321 0.623722 1765 1 0.123615 0.874102 0.625554 523 1 0.308149 0.99379 0.568618 1636 1 1.00024 0.946139 0.560909 897 1 1.00047 0.99903 0.877353 2048 1 0.874113 0.94715 0.935122 1639 1 0.186607 0.86371 0.559335 1643 1 0.315074 0.880613 0.567987 1644 1 0.243553 0.939421 0.566305 1766 1 0.190878 0.935226 0.628425 1769 1 0.25338 0.873827 0.630201 1770 1 0.318433 0.935985 0.627313 1078 1 0.677368 0.685297 1.00265 1093 1 0.11568 0.753331 0.996745 779 1 0.315983 1.00122 0.812088 1647 1 0.436906 0.880906 0.565909 1648 1 0.374608 0.945807 0.55477 1773 1 0.375289 0.876489 0.629204 1774 1 0.444596 0.940148 0.625842 1777 1 0.499445 0.88258 0.623808 1652 1 0.497564 0.942892 0.560466 2047 1 0.937289 0.880324 0.940669 1141 1 0.63021 0.874495 0.996767 1117 1 0.867715 0.746845 0.996943 1651 1 0.559837 0.88034 0.555194 1656 1 0.624532 0.940501 0.564853 1778 1 0.5555 0.942595 0.622088 1781 1 0.620625 0.879597 0.634399 2046 1 0.934526 0.935138 0.874807 1655 1 0.680939 0.877366 0.56367 1659 1 0.815459 0.878501 0.564159 1660 1 0.750678 0.932999 0.563771 1782 1 0.689167 0.941046 0.628097 1785 1 0.755416 0.879153 0.625721 1786 1 0.815941 0.943609 0.622307 2045 1 0.872501 0.87916 0.866844 1567 1 0.935994 0.502379 0.553247 769 1 0.00064214 0.997427 0.752502 1657 1 0.753019 0.877445 0.503322 1142 1 0.691185 0.940949 0.994408 1761 1 0.00148161 0.873909 0.617933 1663 1 0.937373 0.869684 0.565135 1664 1 0.87636 0.932497 0.56191 1789 1 0.873148 0.872322 0.62183 1790 1 0.938627 0.939844 0.618641 1672 1 0.129412 0.564426 0.681472 1699 1 0.0583857 0.630949 0.68279 1794 1 0.0655101 0.563605 0.74357 1800 1 0.12131 0.567384 0.801471 1827 1 0.0586849 0.628708 0.805245 1829 1 0.121744 0.631882 0.747005 1825 1 1.00044 0.626629 0.74745 1796 1 1.00356 0.55788 0.801698 1609 1 0.255656 0.75981 0.499263 917 1 0.627281 1.00463 0.877448 1547 1 0.319156 0.507935 0.556566 2039 1 0.687361 0.874235 0.928593 1676 1 0.253742 0.562665 0.695629 1703 1 0.18598 0.635005 0.678842 1707 1 0.315925 0.620421 0.685645 1798 1 0.187726 0.571155 0.746218 1802 1 0.316876 0.557871 0.747436 1804 1 0.253621 0.563982 0.808222 1831 1 0.184694 0.626829 0.810506 1833 1 0.25109 0.62011 0.750592 1835 1 0.312365 0.624343 0.813096 2038 1 0.68578 0.937491 0.874621 2044 1 0.748407 0.942282 0.936725 1680 1 0.371824 0.562253 0.67853 1711 1 0.435516 0.617409 0.686349 1806 1 0.434445 0.564144 0.75727 1808 1 0.374971 0.565293 0.816768 1837 1 0.378434 0.627001 0.750492 1839 1 0.438677 0.630823 0.813397 1684 1 0.495188 0.562706 0.686756 1841 1 0.492888 0.628396 0.748862 1812 1 0.496025 0.563138 0.809108 2042 1 0.810936 0.940281 0.871543 1688 1 0.633375 0.557063 0.688188 1715 1 0.563032 0.626115 0.683883 1810 1 0.557162 0.563374 0.740774 1816 1 0.621782 0.558007 0.810863 1843 1 0.56621 0.611837 0.808336 1845 1 0.626788 0.620298 0.74666 2043 1 0.817903 0.881651 0.929149 1692 1 0.758054 0.561343 0.684612 1719 1 0.69089 0.617705 0.69034 1723 1 0.813386 0.624336 0.687665 1814 1 0.696141 0.561502 0.749991 1818 1 0.814839 0.561489 0.74824 1820 1 0.756312 0.557813 0.814648 1847 1 0.687099 0.617859 0.808668 1849 1 0.752704 0.617423 0.749264 1851 1 0.812958 0.621644 0.812031 2041 1 0.749042 0.875481 0.86944 1681 1 0.504179 0.501048 0.632517 1146 1 0.811498 0.933513 0.999237 1668 1 0.999262 0.564372 0.685922 1696 1 0.871884 0.559029 0.687866 1727 1 0.937579 0.618379 0.686094 1822 1 0.931731 0.556757 0.746397 1824 1 0.873486 0.562471 0.81119 1853 1 0.870482 0.628017 0.748362 1855 1 0.934744 0.623793 0.806472 1689 1 0.746919 0.497827 0.630395 1704 1 0.119418 0.696716 0.688245 1731 1 0.0568617 0.75246 0.688149 1736 1 0.131401 0.812745 0.684024 1826 1 0.0558298 0.694915 0.742189 1832 1 0.130914 0.686142 0.811432 1858 1 0.052344 0.811487 0.746053 1859 1 0.0576264 0.748587 0.815192 1861 1 0.118697 0.756607 0.745298 1864 1 0.12337 0.811862 0.814629 1828 1 0.99261 0.68678 0.809322 1732 1 0.988392 0.820025 0.679782 1708 1 0.257648 0.685049 0.693454 1735 1 0.182701 0.748585 0.684595 1739 1 0.312846 0.752334 0.688961 1740 1 0.25211 0.808388 0.692787 1830 1 0.184828 0.691558 0.743008 1834 1 0.314999 0.689019 0.754194 1836 1 0.245994 0.685496 0.804279 1862 1 0.183929 0.813728 0.748288 1863 1 0.190508 0.752724 0.81294 1865 1 0.25003 0.751789 0.74943 1866 1 0.316892 0.815146 0.756527 1867 1 0.311636 0.749389 0.806466 1868 1 0.245457 0.815687 0.813534 1712 1 0.383081 0.687386 0.681568 1743 1 0.437854 0.749668 0.685523 1744 1 0.382377 0.814357 0.685583 1838 1 0.434368 0.685247 0.749891 1840 1 0.37459 0.685533 0.814932 1869 1 0.372075 0.750049 0.741441 1870 1 0.438686 0.811466 0.746235 1871 1 0.436232 0.742897 0.813529 1872 1 0.376594 0.801017 0.813769 1873 1 0.499425 0.752072 0.755127 1748 1 0.496463 0.804747 0.688338 1876 1 0.500672 0.813664 0.81345 1716 1 0.507547 0.693799 0.691867 1844 1 0.49871 0.691047 0.817627 1720 1 0.621726 0.687452 0.695913 1747 1 0.564095 0.75921 0.692417 1752 1 0.616316 0.819644 0.690759 1842 1 0.557103 0.680396 0.758476 1848 1 0.62819 0.688847 0.812968 1874 1 0.568067 0.816846 0.756587 1875 1 0.565397 0.752244 0.812997 1877 1 0.62985 0.751454 0.752682 1880 1 0.625102 0.811408 0.81376 1724 1 0.745072 0.683725 0.688449 1751 1 0.684143 0.742292 0.687761 1755 1 0.811839 0.75369 0.682312 1756 1 0.747555 0.813375 0.684349 1846 1 0.684725 0.68511 0.750883 1850 1 0.811153 0.689568 0.752303 1852 1 0.752961 0.686788 0.81341 1878 1 0.682465 0.815805 0.745719 1879 1 0.691231 0.747327 0.810531 1881 1 0.748606 0.742871 0.748111 1882 1 0.806237 0.817215 0.742852 1883 1 0.815464 0.750134 0.81085 1884 1 0.749976 0.808512 0.803583 1860 1 0.994163 0.819791 0.812464 1857 1 0.993006 0.755407 0.752128 1700 1 0.994231 0.685956 0.693134 1728 1 0.869069 0.689254 0.685107 1759 1 0.936158 0.747463 0.690786 1760 1 0.866139 0.81751 0.68304 1854 1 0.932916 0.685628 0.750689 1856 1 0.87686 0.69163 0.813633 1885 1 0.875083 0.7612 0.750198 1886 1 0.936952 0.818359 0.743556 1887 1 0.936241 0.756159 0.810992 1888 1 0.867092 0.816742 0.807666 1929 1 0.250979 0.504651 0.869361 1763 1 0.055176 0.874759 0.687691 1768 1 0.123841 0.940374 0.689319 1890 1 0.0571391 0.935873 0.748182 1891 1 0.0593564 0.871684 0.810103 1893 1 0.123273 0.878038 0.753097 1896 1 0.119174 0.945956 0.806688 1892 1 0.994878 0.93612 0.815163 1764 1 0.996307 0.936857 0.687122 1889 1 0.994145 0.875141 0.751926 1133 1 0.379043 0.871081 0.997867 1669 1 0.119422 0.503251 0.617285 1030 1 0.187436 0.554807 0.994522 1106 1 0.568677 0.819846 0.993445 1767 1 0.189537 0.872611 0.687092 1771 1 0.318669 0.870282 0.689856 1772 1 0.25147 0.935473 0.695051 1894 1 0.18209 0.939818 0.750219 1895 1 0.186558 0.878414 0.805333 1897 1 0.24949 0.868537 0.754193 1898 1 0.319845 0.934604 0.749548 1899 1 0.307372 0.876692 0.814482 1900 1 0.248482 0.937432 0.803743 1026 1 0.0498763 0.560868 0.989944 1775 1 0.445673 0.882464 0.686736 1776 1 0.383011 0.937578 0.693698 1901 1 0.377959 0.867432 0.755212 1902 1 0.444128 0.937075 0.75775 1903 1 0.436134 0.863543 0.812572 1904 1 0.37606 0.93781 0.813522 1780 1 0.501805 0.942462 0.69404 1908 1 0.504599 0.953919 0.811764 1905 1 0.495901 0.875342 0.752625 2013 1 0.871575 0.750996 0.869243 2015 1 0.938295 0.750569 0.930005 2036 1 0.500873 0.941637 0.936822 1779 1 0.560746 0.883199 0.684418 1784 1 0.619919 0.943817 0.691852 1906 1 0.562492 0.940205 0.757501 1907 1 0.556995 0.879183 0.809979 1909 1 0.620985 0.881011 0.748226 1912 1 0.626736 0.937581 0.80983 2012 1 0.755414 0.810129 0.932544 2027 1 0.31677 0.874288 0.94321 1574 1 0.190861 0.698689 0.505638 1980 1 0.756715 0.683542 0.935936 521 1 0.251412 0.991386 0.498102 2014 1 0.937455 0.814282 0.870698 1783 1 0.687522 0.876578 0.685128 1787 1 0.812129 0.88051 0.684211 1788 1 0.757001 0.937092 0.679107 1910 1 0.687824 0.941319 0.747009 1911 1 0.691283 0.877312 0.813852 1913 1 0.751787 0.877152 0.743678 1914 1 0.812314 0.938929 0.741541 1915 1 0.808454 0.881021 0.808867 1916 1 0.743313 0.93862 0.812318 2016 1 0.872644 0.812189 0.934236 1791 1 0.939027 0.881666 0.678496 1792 1 0.880028 0.933814 0.681202 1917 1 0.873803 0.880719 0.749202 1918 1 0.937068 0.937998 0.744971 1919 1 0.93156 0.87882 0.815387 1920 1 0.874084 0.938237 0.810412 2040 1 0.628864 0.936304 0.932222 1984 1 0.872812 0.680981 0.936847 2011 1 0.813746 0.746798 0.940182 1922 1 0.0596914 0.567052 0.863176 1928 1 0.12345 0.558921 0.936939 1955 1 0.0543501 0.620615 0.92521 1957 1 0.120232 0.626082 0.868301 1924 1 0.991624 0.563645 0.933558 1058 1 0.0531478 0.696823 0.999081 2006 1 0.693256 0.806072 0.870316 2021 1 0.125754 0.876682 0.87861 1930 1 0.315599 0.564898 0.876059 1926 1 0.178129 0.560378 0.870224 1963 1 0.31093 0.625389 0.934339 1961 1 0.252212 0.62314 0.877507 1932 1 0.24973 0.566317 0.937639 1959 1 0.189568 0.628697 0.935868 1667 1 0.0658348 0.501423 0.686048 2034 1 0.567865 0.94188 0.869721 2018 1 0.054933 0.939984 0.873809 1061 1 0.114945 0.62805 0.991198 2035 1 0.560531 0.8851 0.930813 1965 1 0.375025 0.62284 0.878758 1934 1 0.448352 0.561512 0.881063 1936 1 0.378419 0.561888 0.942599 1967 1 0.437428 0.620888 0.942056 2019 1 0.0623548 0.876037 0.938692 1809 1 0.493483 0.503569 0.748572 2024 1 0.11878 0.93914 0.932123 641 1 0.00205385 0.997031 0.629643 1940 1 0.504143 0.560464 0.944607 1969 1 0.49757 0.618526 0.875018 1938 1 0.564034 0.566866 0.879803 1944 1 0.62119 0.563956 0.940969 1971 1 0.561101 0.619081 0.944221 1973 1 0.625883 0.627473 0.873558 1145 1 0.746894 0.882261 0.993058 1634 1 0.0595531 0.937503 0.498997 1065 1 0.243766 0.634011 0.997355 1942 1 0.687802 0.564146 0.87447 1946 1 0.813531 0.562692 0.876643 1977 1 0.747678 0.619313 0.872274 1979 1 0.813909 0.618713 0.936599 1948 1 0.75067 0.564326 0.936889 1975 1 0.681626 0.623804 0.940907 2028 1 0.253318 0.932225 0.937943 2023 1 0.18633 0.876244 0.943373 1125 1 0.123 0.86594 0.991615 1953 1 0.993451 0.620999 0.864374 1950 1 0.939383 0.558738 0.869746 1981 1 0.872477 0.621842 0.873212 1983 1 0.931023 0.621471 0.935096 1952 1 0.870641 0.563297 0.934851 2037 1 0.621855 0.875133 0.873139 2030 1 0.437579 0.942046 0.870052 2026 1 0.31863 0.929724 0.880056 2020 1 0.00163609 0.938695 0.942029 1988 1 1.00533 0.811992 0.931842 1986 1 0.0560025 0.808891 0.872239 1987 1 0.0550637 0.74821 0.934576 1954 1 0.0622545 0.681499 0.866087 1992 1 0.119199 0.808877 0.930461 1989 1 0.124824 0.746583 0.869264 1960 1 0.12189 0.683943 0.93183 1985 1 0.993652 0.745145 0.868813 1956 1 1.00209 0.682623 0.925889 2025 1 0.249024 0.873286 0.876219 1995 1 0.314969 0.747686 0.936454 1996 1 0.250518 0.810218 0.930884 1991 1 0.180648 0.748642 0.931033 1958 1 0.190119 0.681381 0.874984 1964 1 0.249652 0.685443 0.935843 1993 1 0.257369 0.749553 0.865466 1962 1 0.314812 0.690228 0.877041 1990 1 0.186638 0.817722 0.870756 1994 1 0.309792 0.814576 0.87294 2032 1 0.383818 0.937826 0.936434 1982 1 0.935144 0.680511 0.871909 2029 1 0.371466 0.869577 0.864497 1999 1 0.437377 0.749241 0.942543 1998 1 0.436173 0.801838 0.873971 1966 1 0.436665 0.687257 0.879155 1968 1 0.377098 0.682305 0.939302 1997 1 0.374944 0.749726 0.877028 2000 1 0.368775 0.810003 0.931387 1972 1 0.499853 0.682281 0.937261 2031 1 0.440037 0.870022 0.9305 1113 1 0.745355 0.749676 0.998809 2004 1 0.504905 0.81664 0.929621 2001 1 0.502078 0.749337 0.87424 2005 1 0.627006 0.748564 0.873325 2002 1 0.562102 0.812034 0.879427 1970 1 0.561494 0.686876 0.868087 1976 1 0.625573 0.68187 0.934247 2003 1 0.566551 0.743973 0.932396 2008 1 0.633488 0.814242 0.936699 2033 1 0.493058 0.880755 0.868123 2017 1 0.996191 0.878787 0.875634 1074 1 0.566316 0.694526 1.00157 2022 1 0.191428 0.938228 0.871475 2010 1 0.804611 0.807074 0.86528 2007 1 0.680102 0.74731 0.935135 2009 1 0.753912 0.74509 0.874446 1978 1 0.816786 0.681976 0.869183 1974 1 0.690609 0.685261 0.868542 1129 1 0.251497 0.873221 0.994404 909 1 0.377137 1.00006 0.879002 1094 1 0.191946 0.80251 0.990798 1555 1 0.565859 0.500925 0.561863 1057 1 -0.00309626 0.629372 0.997874 1642 1 0.314314 0.942804 0.495962 1062 1 0.178184 0.689267 0.995083 1658 1 0.815447 0.940968 0.502516 793 1 0.743105 1.00288 0.748977 671 1 0.941433 0.995691 0.686931 1089 1 0.990399 0.746802 0.995184 1923 1 0.05581 0.498101 0.930794 1097 1 0.250951 0.744118 0.991543 1797 1 0.123376 0.501534 0.752231 1085 1 0.873127 0.629855 1.00244 1101 1 0.371896 0.750454 1.00422 667 1 0.813528 1.00075 0.685281 527 1 0.437471 1.00358 0.564627 531 1 0.56325 0.9973 0.564851 1105 1 0.49917 0.749498 0.995392 1114 1 0.81342 0.822531 0.996507 1102 1 0.439032 0.814091 0.994953 1110 1 0.699646 0.815527 0.990578 1581 1 0.381701 0.627057 0.504204 13 1 0.372918 0.998796 0.999534 1050 1 0.816684 0.565566 1.00689 1807 1 0.439654 0.499143 0.821484 907 1 0.317687 0.99607 0.93502 1943 1 0.682512 0.504109 0.937564 1811 1 0.557465 0.505707 0.809291 1641 1 0.253317 0.869057 0.501578 775 1 0.184156 0.999021 0.810872 1538 1 0.06898 0.560485 0.501483 1134 1 0.439629 0.930118 0.989881 1662 1 0.937476 0.934607 0.502692 1138 1 0.568217 0.93067 0.995241 1086 1 0.933867 0.68585 0.999331 1122 1 0.067583 0.939773 0.99392 1562 1 0.81253 0.563951 0.509341 1625 1 0.75164 0.75589 0.505127 1598 1 0.940507 0.685858 0.500397 1629 1 0.873073 0.749917 0.501831 1118 1 0.930604 0.806269 0.992672 1593 1 0.7484 0.618693 0.501168 1149 1 0.87778 0.878256 0.996482 1649 1 0.492737 0.880062 0.504117 1610 1 0.315196 0.822664 0.510869 1614 1 0.432621 0.813445 0.50591
[ "ITEM: TIMESTEP\n6500\nITEM: NUMBER OF ATOMS\n2048\nITEM: BOX BOUNDS pp pp pp\n4.9685525364850847e-01 4.6703144746345622e+01\n4.9685525364850847e-01 4.6703144746345622e+01\n4.9685525364850847e-01 4.6703144746345622e+01\nITEM: ATOMS id type xs ys zs\n8 1 0.124027 0.0605757 0.062418\n35 1 0.0614849 0.121145 0.0650287\n130 1 0.0645043 0.0582864 0.120941\n165 1 0.130173 0.122103 0.127058\n161 1 1.00136 0.115003 0.128503\n4 1 0.996325 0.0662328 0.0571884\n1565 1 0.870323 0.495485 0.49821\n1413 1 0.127806 0.499275 0.375213\n12 1 0.252837 0.0578218 0.0634762\n39 1 0.190508 0.118691 0.0639576\n43 1 0.310843 0.121484 0.0561942\n134 1 0.18167 0.0589925 0.128465\n138 1 0.319261 0.062565 0.131304\n169 1 0.250336 0.117968 0.128686\n277 1 0.618997 0.00398747 0.252927\n1157 1 0.122789 0.499935 0.116823\n133 1 0.125913 -0.00272777 0.12472\n58 1 0.814673 0.192289 0.00254142\n275 1 0.557807 0.00325537 0.313229\n1183 1 0.943285 0.493774 0.183806\n16 1 0.375018 0.0582813 0.0577936\n47 1 0.434503 0.123485 0.0638688\n142 1 0.427413 0.0615475 0.123744\n173 1 0.372169 0.125608 0.111977\n20 1 0.492284 0.0593561 0.0608375\n177 1 0.496252 0.119442 0.123938\n93 1 0.874942 0.250757 0.0010056\n411 1 0.811879 0.00332744 0.439538\n117 1 0.625717 0.374268 0.000258183\n24 1 0.625516 0.0656289 0.0564604\n51 1 0.564969 0.125251 0.0668679\n146 1 0.5733 0.0606442 0.125472\n181 1 0.627221 0.12984 0.128317\n405 1 0.620858 0.003977 0.383241\n15 1 0.435702 0.00215418 0.0630545\n387 1 0.0638477 -0.00175607 0.441134\n28 1 0.751636 0.0633116 0.0595221\n55 1 0.684992 0.125645 0.0641966\n59 1 0.814003 0.124356 0.0628433\n150 1 0.686925 0.0699205 0.11995\n154 1 0.805352 0.0633346 0.13076\n185 1 0.746029 0.125353 0.135949\n484 1 0.00171759 0.442589 0.438175\n74 1 0.31012 0.307245 0.00299423\n509 1 0.878912 0.376288 0.376782\n32 1 0.874877 0.0620149 0.059696\n63 1 0.932534 0.124042 0.0588462\n158 1 0.939869 0.0608514 0.12221\n189 1 0.875234 0.1174 0.121355\n143 1 0.430621 0.00466889 0.189029\n1177 1 0.75204 0.501446 0.133197\n529 1 0.495458 -0.00226026 0.50253\n1557 1 0.629923 0.500215 0.499978\n40 1 0.136528 0.180503 0.0644352\n67 1 0.0658326 0.248693 0.0655847\n72 1 0.131755 0.308875 0.060752\n162 1 0.0675224 0.189568 0.117399\n194 1 0.064514 0.304757 0.129507\n197 1 0.133687 0.246392 0.124427\n193 1 0.996525 0.245634 0.119422\n36 1 0.995317 0.181659 0.0661975\n1291 1 0.318706 0.498354 0.323872\n44 1 0.250883 0.176513 0.0711533\n71 1 0.191047 0.242423 0.0633227\n75 1 0.31185 0.248532 0.0631177\n76 1 0.244812 0.306949 0.0711252\n166 1 0.190707 0.179176 0.129502\n170 1 0.307854 0.178417 0.135041\n198 1 0.18714 0.31414 0.131208\n201 1 0.247739 0.241865 0.12682\n202 1 0.302465 0.309016 0.134541\n1295 1 0.445437 0.500532 0.317285\n48 1 0.368525 0.18207 0.0619188\n79 1 0.422121 0.243006 0.0638909\n80 1 0.37014 0.31818 0.0674595\n174 1 0.430015 0.181384 0.124454\n205 1 0.370911 0.248145 0.127913\n206 1 0.432924 0.312347 0.133316\n1427 1 0.565654 0.499866 0.442012\n613 1 0.11537 0.371701 0.498388\n84 1 0.493524 0.307556 0.0687192\n52 1 0.492688 0.192069 0.0693322\n209 1 0.486029 0.246221 0.12885\n56 1 0.620968 0.192495 0.0616076\n83 1 0.553884 0.248284 0.0659291\n88 1 0.61996 0.306062 0.0615521\n178 1 0.558423 0.177515 0.131433\n210 1 0.564663 0.312841 0.126163\n213 1 0.624975 0.245988 0.128908\n157 1 0.878391 -0.00589931 0.121414\n60 1 0.750646 0.187359 0.0575136\n87 1 0.687928 0.250715 0.0637152\n91 1 0.815725 0.252044 0.066574\n92 1 0.74598 0.316699 0.0557074\n182 1 0.68818 0.191972 0.127295\n186 1 0.812809 0.183343 0.127641\n214 1 0.682622 0.316223 0.123406\n217 1 0.749495 0.247396 0.12145\n218 1 0.815788 0.31112 0.122137\n81 1 0.491892 0.248407 0.00882873\n90 1 0.810774 0.311417 0.000868988\n50 1 0.555727 0.188245 -0.00247212\n68 1 1.00389 0.311877 0.065874\n64 1 0.870664 0.183789 0.0624047\n95 1 0.939224 0.25651 0.064857\n96 1 0.874704 0.313049 0.0687962\n190 1 0.932282 0.181748 0.123478\n221 1 0.87772 0.247722 0.126263\n222 1 0.935708 0.318695 0.131287\n99 1 0.0696689 0.372862 0.0664065\n104 1 0.131305 0.435554 0.0588486\n226 1 0.0664863 0.430828 0.125965\n229 1 0.124798 0.371951 0.130198\n100 1 0.997314 0.431954 0.0680139\n225 1 -0.00190256 0.37467 0.130167\n510 1 0.944098 0.442331 0.378386\n1041 1 0.505275 0.50067 0.00114927\n97 1 0.00172254 0.37153 0.00742765\n578 1 0.0544702 0.319196 0.495246\n511 1 0.942042 0.377171 0.432706\n103 1 0.195137 0.37578 0.0567009\n107 1 0.310282 0.377196 0.0686541\n108 1 0.250182 0.439657 0.0675703\n230 1 0.180525 0.435806 0.127331\n233 1 0.246205 0.375471 0.126651\n234 1 0.309776 0.436098 0.129058\n554 1 0.309855 0.178932 0.493457\n585 1 0.249927 0.24732 0.49875\n7 1 0.189044 0.000690827 0.0631238\n512 1 0.870766 0.438943 0.43906\n111 1 0.440811 0.372327 0.0648447\n112 1 0.371813 0.444238 0.0624082\n237 1 0.375517 0.371081 0.134109\n238 1 0.430934 0.438851 0.121749\n241 1 0.498573 0.367865 0.126547\n409 1 0.747653 0.00888879 0.369429\n598 1 0.692484 0.311376 0.498251\n1431 1 0.687969 0.49723 0.438761\n502 1 0.684855 0.436524 0.378128\n633 1 0.753741 0.374694 0.497921\n116 1 0.501033 0.431408 0.0652212\n115 1 0.559635 0.370211 0.0665195\n120 1 0.619962 0.441394 0.0653725\n242 1 0.559135 0.438765 0.123515\n245 1 0.618984 0.377004 0.118307\n271 1 0.442346 0.00527261 0.310839\n505 1 0.749432 0.372475 0.37712\n508 1 0.75271 0.436338 0.432385\n119 1 0.685608 0.375044 0.0621977\n123 1 0.815916 0.376048 0.0683995\n124 1 0.747576 0.446185 0.065936\n246 1 0.686674 0.436805 0.122022\n249 1 0.748657 0.379764 0.124147\n250 1 0.814418 0.441908 0.127937\n1043 1 0.560306 0.499064 0.0593482\n557 1 0.365569 0.113592 0.495461\n127 1 0.937828 0.376257 0.0711333\n128 1 0.877317 0.440769 0.0624117\n253 1 0.878352 0.369804 0.125212\n254 1 0.934559 0.442893 0.121074\n1025 1 0.999194 0.496348 0.00106045\n614 1 0.179656 0.43412 0.501727\n137 1 0.249616 0.00550752 0.129811\n136 1 0.123268 0.0607639 0.190718\n163 1 0.0628846 0.113558 0.186653\n258 1 0.0658255 0.0624736 0.256695\n264 1 0.12364 0.0606682 0.315599\n291 1 0.0599016 0.121471 0.31657\n293 1 0.121781 0.130973 0.24671\n289 1 1.00159 0.120993 0.245513\n260 1 -0.000472387 0.0639423 0.314381\n132 1 0.000682919 0.0575405 0.192423\n126 1 0.938948 0.428128 0.00857947\n279 1 0.678366 0.00491174 0.319319\n506 1 0.817322 0.436679 0.37126\n27 1 0.817235 0.000450522 0.0683754\n140 1 0.250379 0.0597291 0.187952\n167 1 0.183992 0.117129 0.194752\n171 1 0.311073 0.120223 0.190118\n262 1 0.18475 0.0551277 0.252322\n266 1 0.307051 0.0590576 0.251856\n268 1 0.242403 0.0593037 0.312658\n295 1 0.182415 0.121115 0.315735\n297 1 0.25083 0.122748 0.254938\n299 1 0.313755 0.115702 0.308522\n1425 1 0.501417 0.499325 0.378082\n144 1 0.374098 0.064756 0.196403\n175 1 0.435512 0.122684 0.187457\n270 1 0.435135 0.0668614 0.249018\n272 1 0.374187 0.0548594 0.306823\n301 1 0.376711 0.129133 0.255169\n303 1 0.434387 0.131941 0.314953\n276 1 0.498955 0.0665224 0.314225\n148 1 0.499916 0.0595792 0.18794\n503 1 0.686997 0.369418 0.443897\n17 1 0.497508 0.00448316 -0.00558166\n507 1 0.812275 0.380391 0.438211\n113 1 0.497254 0.375713 0.00556926\n305 1 0.499531 0.126634 0.252858\n152 1 0.624497 0.0673638 0.189018\n179 1 0.557925 0.120938 0.188599\n274 1 0.558138 0.0658253 0.251003\n280 1 0.620122 0.0682037 0.315529\n307 1 0.56155 0.124764 0.308768\n309 1 0.624358 0.128795 0.250428\n23 1 0.684706 0.00636802 0.0594369\n500 1 0.509937 0.433271 0.433719\n156 1 0.743596 0.0629906 0.19936\n183 1 0.688608 0.129086 0.195791\n187 1 0.812634 0.123141 0.197569\n278 1 0.678089 0.0631939 0.255429\n282 1 0.811867 0.0592246 0.251986\n284 1 0.745023 0.0677282 0.314747\n311 1 0.683314 0.125062 0.318181\n313 1 0.749327 0.130111 0.254661\n315 1 0.809611 0.122172 0.31124\n122 1 0.810712 0.441372 0.000493079\n73 1 0.249941 0.242503 0.000514448\n1433 1 0.752771 0.495223 0.369611\n160 1 0.875401 0.0504209 0.188455\n191 1 0.937905 0.120875 0.186442\n286 1 0.94472 0.0567765 0.24683\n288 1 0.875883 0.0617148 0.311749\n317 1 0.883134 0.112723 0.252505\n319 1 0.942168 0.121884 0.312002\n168 1 0.115476 0.182756 0.184413\n195 1 0.0649902 0.246654 0.191526\n200 1 0.126594 0.308746 0.193061\n290 1 0.058512 0.17972 0.244089\n296 1 0.124301 0.178861 0.316615\n322 1 0.0655303 0.309343 0.254661\n323 1 0.0709781 0.241779 0.309312\n325 1 0.12692 0.237948 0.251868\n328 1 0.118211 0.311533 0.320929\n292 1 0.996531 0.186329 0.302648\n164 1 0.998181 0.180362 0.183193\n172 1 0.244621 0.176577 0.193373\n199 1 0.187637 0.245455 0.194802\n203 1 0.304195 0.249678 0.187391\n204 1 0.248967 0.317646 0.197785\n294 1 0.187941 0.18056 0.253768\n298 1 0.308857 0.186429 0.249586\n300 1 0.247682 0.181296 0.316466\n326 1 0.184492 0.311418 0.257699\n327 1 0.184542 0.245521 0.316425\n329 1 0.242035 0.24233 0.259707\n330 1 0.306619 0.311528 0.251924\n331 1 0.311807 0.252624 0.319602\n332 1 0.248341 0.312579 0.316844\n176 1 0.373497 0.184047 0.186061\n207 1 0.42723 0.251668 0.190508\n208 1 0.368531 0.308078 0.18682\n302 1 0.428914 0.190226 0.248706\n304 1 0.376583 0.194425 0.308203\n333 1 0.36769 0.250006 0.253011\n334 1 0.439226 0.312841 0.249097\n335 1 0.441382 0.250684 0.320989\n336 1 0.37543 0.309711 0.307327\n308 1 0.501513 0.184651 0.312744\n340 1 0.501616 0.30865 0.314456\n212 1 0.500756 0.309201 0.190172\n337 1 0.502262 0.241899 0.248972\n180 1 0.493451 0.185159 0.188629\n184 1 0.624368 0.193636 0.19182\n211 1 0.563423 0.249957 0.184113\n216 1 0.625519 0.310562 0.187969\n306 1 0.560878 0.184517 0.254767\n312 1 0.631143 0.18093 0.318663\n338 1 0.559874 0.303418 0.249749\n339 1 0.559683 0.241977 0.314251\n341 1 0.623177 0.252116 0.253985\n344 1 0.629875 0.308359 0.317041\n188 1 0.752821 0.191241 0.186901\n215 1 0.69559 0.252309 0.185479\n219 1 0.819435 0.250797 0.191451\n220 1 0.74763 0.313327 0.178131\n310 1 0.686896 0.195398 0.251782\n314 1 0.812754 0.192917 0.258555\n316 1 0.752698 0.188965 0.315656\n342 1 0.686564 0.313496 0.252078\n343 1 0.689237 0.247685 0.309423\n345 1 0.74892 0.249878 0.249197\n346 1 0.811406 0.308188 0.25187\n347 1 0.81875 0.250946 0.321581\n348 1 0.755438 0.315777 0.316008\n321 1 0.999606 0.248135 0.249935\n324 1 0.993876 0.307738 0.312355\n196 1 0.999007 0.307381 0.18941\n192 1 0.87089 0.178101 0.189719\n223 1 0.939118 0.248259 0.185047\n224 1 0.883168 0.317696 0.190648\n318 1 0.933993 0.189033 0.244628\n320 1 0.87202 0.185341 0.307387\n349 1 0.877421 0.251499 0.252975\n350 1 0.940137 0.311507 0.252816\n351 1 0.939859 0.24799 0.318805\n352 1 0.874368 0.316834 0.317728\n499 1 0.555184 0.365599 0.439897\n227 1 0.0647456 0.371273 0.190329\n232 1 0.124583 0.434478 0.189705\n354 1 0.0669612 0.431787 0.254179\n355 1 0.064788 0.377342 0.31271\n357 1 0.131148 0.371076 0.257144\n360 1 0.130613 0.439204 0.300775\n228 1 0.00728271 0.44024 0.185099\n19 1 0.566652 -0.00163079 0.058782\n110 1 0.435717 0.438942 -0.000257669\n525 1 0.360794 0.00575281 0.494624\n231 1 0.187012 0.372214 0.196066\n235 1 0.311317 0.37529 0.192315\n236 1 0.251967 0.43683 0.193885\n358 1 0.191557 0.44789 0.242394\n359 1 0.18701 0.374869 0.319764\n361 1 0.24928 0.373258 0.258267\n362 1 0.313415 0.445651 0.262509\n363 1 0.315602 0.37598 0.309315\n364 1 0.245996 0.44047 0.310606\n1429 1 0.624708 0.499103 0.371317\n153 1 0.747639 -0.000631503 0.120315\n239 1 0.44124 0.375757 0.187203\n240 1 0.376954 0.443707 0.192774\n365 1 0.374527 0.378328 0.248048\n366 1 0.436453 0.43589 0.248598\n367 1 0.439627 0.367749 0.314111\n368 1 0.385527 0.433549 0.316943\n497 1 0.499839 0.369221 0.375874\n372 1 0.499826 0.436886 0.310235\n244 1 0.503429 0.434361 0.186006\n369 1 0.501923 0.370369 0.253136\n243 1 0.558488 0.374983 0.189406\n248 1 0.624827 0.430709 0.187476\n370 1 0.56689 0.442478 0.250112\n371 1 0.561149 0.374134 0.310788\n373 1 0.625072 0.373715 0.251778\n376 1 0.628733 0.432278 0.312873\n247 1 0.683686 0.366734 0.188671\n251 1 0.814362 0.366025 0.184953\n252 1 0.74701 0.440539 0.185893\n374 1 0.686176 0.43166 0.252046\n375 1 0.687918 0.371188 0.316454\n377 1 0.749434 0.370136 0.24922\n378 1 0.816705 0.439087 0.256631\n379 1 0.809076 0.375965 0.316562\n380 1 0.745565 0.436077 0.309598\n589 1 0.371753 0.250045 0.496157\n353 1 0.00788098 0.367565 0.250467\n356 1 0.99718 0.438745 0.315084\n255 1 0.941326 0.382527 0.192346\n256 1 0.873201 0.435747 0.195414\n381 1 0.875707 0.376381 0.255791\n382 1 0.940351 0.441406 0.252682\n383 1 0.935774 0.379252 0.308786\n384 1 0.879702 0.444468 0.318488\n1421 1 0.387341 0.498342 0.381125\n386 1 0.0609837 0.0565484 0.381766\n392 1 0.128668 0.0669427 0.4367\n419 1 0.0638796 0.128805 0.43778\n421 1 0.120949 0.121984 0.379628\n31 1 0.937082 0.00591135 0.0545817\n610 1 0.0530512 0.43093 0.504601\n131 1 0.0621833 0.00159992 0.183919\n498 1 0.562614 0.435481 0.374076\n390 1 0.187162 0.056546 0.375046\n394 1 0.306984 0.0571942 0.370316\n396 1 0.245012 0.0535329 0.437898\n423 1 0.190406 0.124384 0.439035\n425 1 0.243418 0.115585 0.376094\n427 1 0.30392 0.112358 0.438195\n1179 1 0.816692 0.497155 0.192362\n389 1 0.124457 0.00111881 0.38541\n609 1 0.997493 0.373117 0.50312\n398 1 0.43167 0.0628864 0.364112\n400 1 0.366753 0.057034 0.42991\n429 1 0.372302 0.128624 0.374237\n431 1 0.439989 0.127175 0.43792\n433 1 0.501738 0.123174 0.376603\n66 1 0.0650898 0.308205 0.00150124\n1173 1 0.623262 0.498178 0.121873\n569 1 0.748734 0.121966 0.491584\n404 1 0.499252 0.0653222 0.445695\n402 1 0.56683 0.0652 0.372242\n408 1 0.62293 0.0617481 0.445155\n435 1 0.560045 0.120778 0.437169\n437 1 0.622114 0.122679 0.375228\n407 1 0.681257 0.00286107 0.438156\n1283 1 0.0658446 0.493303 0.312967\n406 1 0.682015 0.0592976 0.380177\n410 1 0.810901 0.0613096 0.374595\n412 1 0.748909 0.0580794 0.433987\n439 1 0.679618 0.126531 0.43126\n441 1 0.746213 0.126221 0.374985\n443 1 0.817721 0.130413 0.437919\n125 1 0.869662 0.37589 0.000552369\n501 1 0.624687 0.363253 0.377092\n388 1 0.998338 0.0683009 0.439124\n417 1 -0.00135206 0.13365 0.37019\n414 1 0.936732 0.057311 0.375475\n416 1 0.87422 0.0616343 0.434946\n445 1 0.874607 0.126393 0.372443\n447 1 0.93364 0.123683 0.440269\n3 1 0.0657494 0.00227119 0.0580267\n86 1 0.683824 0.308084 7.60568e-05\n602 1 0.808504 0.314023 0.498755\n418 1 0.064053 0.188313 0.380322\n424 1 0.128178 0.181541 0.444005\n450 1 0.0625978 0.31681 0.378572\n451 1 0.0577866 0.250003 0.448774\n453 1 0.119992 0.244312 0.383466\n456 1 0.119953 0.311814 0.437327\n415 1 0.940147 0.00475326 0.441377\n399 1 0.432256 0.00593643 0.437519\n1293 1 0.374643 0.501536 0.258921\n1435 1 0.810988 0.495766 0.433425\n422 1 0.185894 0.183326 0.37601\n426 1 0.312306 0.190203 0.368122\n428 1 0.24908 0.182075 0.426937\n454 1 0.183928 0.310287 0.37589\n455 1 0.182994 0.251669 0.440213\n457 1 0.249526 0.25254 0.369494\n458 1 0.311206 0.310221 0.368863\n459 1 0.304608 0.245284 0.431679\n460 1 0.246923 0.315473 0.430955\n430 1 0.43626 0.183994 0.372971\n432 1 0.368742 0.185317 0.439554\n461 1 0.372236 0.247213 0.375983\n462 1 0.428484 0.311182 0.375432\n463 1 0.431572 0.248338 0.440379\n464 1 0.369794 0.308766 0.434793\n287 1 0.938772 0.00776434 0.311414\n465 1 0.492889 0.251471 0.381942\n468 1 0.499232 0.313551 0.445064\n436 1 0.497359 0.188272 0.439065\n434 1 0.562793 0.187729 0.373549\n469 1 0.625915 0.245429 0.379721\n472 1 0.62359 0.314789 0.442278\n466 1 0.562194 0.310657 0.377684\n440 1 0.621087 0.184626 0.435541\n467 1 0.563074 0.244683 0.437228\n1301 1 0.626887 0.503727 0.25245\n473 1 0.752826 0.24702 0.374159\n474 1 0.813076 0.316064 0.378058\n444 1 0.748683 0.185082 0.435461\n470 1 0.691333 0.305509 0.378587\n475 1 0.813033 0.243049 0.436951\n471 1 0.688243 0.248044 0.43095\n442 1 0.812451 0.18549 0.370249\n476 1 0.750596 0.307279 0.43913\n438 1 0.686827 0.18495 0.376162\n401 1 0.497018 0.00842888 0.377021\n478 1 0.929586 0.312109 0.3773\n480 1 0.872356 0.309202 0.437645\n452 1 0.994892 0.310977 0.439209\n477 1 0.876743 0.250502 0.375201\n449 1 0.00282274 0.248486 0.371144\n420 1 0.995044 0.192891 0.435616\n479 1 0.931663 0.252385 0.441295\n446 1 0.937824 0.18827 0.375533\n448 1 0.88237 0.191146 0.434684\n582 1 0.192244 0.311619 0.494016\n488 1 0.122908 0.444159 0.444666\n481 1 0.993727 0.366406 0.372701\n485 1 0.12117 0.380009 0.377254\n482 1 0.0507113 0.436993 0.371791\n483 1 0.0602252 0.382038 0.433053\n542 1 0.935626 0.0598473 0.500464\n281 1 0.747592 0.00235886 0.255016\n534 1 0.693851 0.0602757 0.502332\n489 1 0.250237 0.377889 0.370053\n490 1 0.311443 0.436374 0.378032\n492 1 0.255675 0.440887 0.443732\n486 1 0.191797 0.431766 0.380066\n487 1 0.179041 0.376409 0.439087\n491 1 0.304823 0.377773 0.436222\n494 1 0.44491 0.43084 0.381673\n495 1 0.434639 0.37199 0.441584\n493 1 0.377579 0.381815 0.377202\n496 1 0.371574 0.437599 0.439107\n46 1 0.431633 0.182811 0.00216911\n1163 1 0.309669 0.495882 0.187366\n1169 1 0.497154 0.491335 0.123158\n504 1 0.624316 0.437527 0.441794\n558 1 0.430481 0.188045 0.501441\n1309 1 0.87859 0.498554 0.250651\n617 1 0.246097 0.372995 0.497134\n1029 1 0.124414 0.50288 -0.00358049\n1 1 -0.00208964 0.00314588 5.55231e-05\n565 1 0.620448 0.125003 0.49347\n621 1 0.367045 0.374817 0.502418\n622 1 0.437126 0.436892 0.496016\n109 1 0.371237 0.377199 0.0119068\n586 1 0.30469 0.315295 0.495106\n18 1 0.56148 0.062934 0.00186725\n601 1 0.750852 0.242206 0.499288\n118 1 0.68983 0.433984 0.000145475\n537 1 0.747263 -0.00193983 0.497173\n82 1 0.553537 0.3077 0.00519466\n49 1 0.492124 0.124732 0.00823674\n514 1 0.0673188 0.0635847 0.501523\n57 1 0.754102 0.125314 -0.00173848\n590 1 0.437072 0.309926 0.496419\n94 1 0.939383 0.321701 0.0082238\n65 1 0.000239016 0.247812 0.00379049\n638 1 0.943796 0.44032 0.495812\n62 1 0.940211 0.191425 0.00189741\n1553 1 0.500397 0.495068 0.499819\n54 1 0.689505 0.186635 0.0027856\n520 1 0.127603 0.0622117 0.565183\n547 1 0.0631131 0.122656 0.567881\n642 1 0.0612492 0.0585906 0.625194\n677 1 0.121076 0.121381 0.629607\n785 1 0.496362 0.00841942 0.753455\n516 1 -0.00154086 0.0592635 0.563651\n593 1 0.504343 0.248209 0.501225\n524 1 0.244303 0.05953 0.564971\n551 1 0.186865 0.125324 0.574765\n555 1 0.320306 0.12252 0.556392\n646 1 0.183474 0.0656005 0.622654\n650 1 0.310706 0.0562472 0.622457\n681 1 0.259631 0.121921 0.62528\n996 1 0.00167628 0.439425 0.931046\n553 1 0.24621 0.120386 0.51071\n915 1 0.557974 0.00493583 0.938331\n528 1 0.37464 0.0496381 0.56262\n559 1 0.436853 0.124361 0.561481\n654 1 0.434082 0.0583116 0.62292\n685 1 0.36903 0.116295 0.623792\n532 1 0.492344 0.0651676 0.559476\n1563 1 0.811827 0.500203 0.570691\n526 1 0.427598 0.0548452 0.501905\n993 1 0.998342 0.371902 0.87563\n689 1 0.500413 0.126235 0.621008\n536 1 0.621731 0.0619033 0.563691\n563 1 0.565215 0.133656 0.56212\n658 1 0.557306 0.066005 0.624396\n693 1 0.628033 0.127984 0.620134\n1695 1 0.937551 0.494861 0.681911\n1951 1 0.938166 0.494317 0.944389\n519 1 0.187692 -0.00378461 0.562053\n921 1 0.750724 -0.00241393 0.871053\n1543 1 0.192208 0.498408 0.565881\n540 1 0.747358 0.0628483 0.56718\n567 1 0.68912 0.126539 0.550381\n571 1 0.803782 0.128605 0.566076\n662 1 0.68198 0.0648257 0.62191\n666 1 0.81684 0.05902 0.626529\n697 1 0.749708 0.1227 0.631331\n1945 1 0.754548 0.500444 0.87813\n673 1 0.999209 0.12144 0.631371\n544 1 0.870506 0.0624727 0.560337\n575 1 0.938582 0.12108 0.562576\n670 1 0.935185 0.0632801 0.626948\n701 1 0.878793 0.119152 0.62505\n626 1 0.560622 0.438164 0.504211\n899 1 0.0632838 0.00400554 0.935061\n1925 1 0.123052 0.494398 0.870594\n561 1 0.499508 0.122711 0.501306\n552 1 0.126782 0.183619 0.56491\n579 1 0.0709448 0.24925 0.562507\n584 1 0.125158 0.307272 0.56567\n674 1 0.0582969 0.190661 0.634613\n706 1 0.0600732 0.31309 0.624821\n709 1 0.124207 0.251809 0.624289\n580 1 0.00720022 0.316454 0.562972\n556 1 0.249799 0.183595 0.562724\n583 1 0.190532 0.247386 0.561695\n587 1 0.31711 0.245321 0.560865\n588 1 0.248698 0.303362 0.562334\n678 1 0.190978 0.185961 0.624944\n682 1 0.317604 0.189321 0.626988\n710 1 0.188729 0.308784 0.62192\n713 1 0.25373 0.243353 0.625458\n714 1 0.314344 0.315304 0.615486\n791 1 0.685033 0.00504165 0.814471\n560 1 0.375206 0.194185 0.563436\n591 1 0.44191 0.248749 0.561016\n592 1 0.373701 0.310411 0.558331\n686 1 0.442007 0.192721 0.622581\n717 1 0.382213 0.252724 0.621751\n718 1 0.431126 0.317189 0.619437\n538 1 0.813723 0.0672602 0.500704\n1935 1 0.448503 0.500175 0.946174\n721 1 0.491651 0.258201 0.627727\n564 1 0.503656 0.191373 0.560527\n596 1 0.500402 0.311641 0.559814\n568 1 0.629315 0.184952 0.564979\n595 1 0.561062 0.253082 0.565631\n600 1 0.625505 0.307957 0.560769\n690 1 0.560744 0.190575 0.626375\n722 1 0.561456 0.315625 0.618198\n725 1 0.625799 0.24946 0.625492\n789 1 0.61885 0.00734062 0.748956\n570 1 0.814184 0.182703 0.501935\n78 1 0.438216 0.312411 1.00304\n665 1 0.752874 0.00261037 0.627112\n572 1 0.741139 0.183178 0.567767\n599 1 0.689218 0.248537 0.554228\n603 1 0.810186 0.252611 0.567158\n604 1 0.749551 0.311507 0.557736\n694 1 0.687824 0.190824 0.626847\n698 1 0.812493 0.183955 0.629791\n726 1 0.68196 0.313941 0.617797\n729 1 0.746262 0.24858 0.632379\n730 1 0.808807 0.307248 0.629718\n1941 1 0.62173 0.498254 0.873111\n21 1 0.6269 0.00794969 0.99765\n1691 1 0.820512 0.497396 0.690198\n548 1 0.00283809 0.186438 0.565267\n705 1 0.00166182 0.247193 0.61972\n576 1 0.878626 0.178479 0.561095\n607 1 0.93334 0.246663 0.563285\n608 1 0.8735 0.309236 0.559815\n702 1 0.942306 0.182017 0.625142\n733 1 0.870793 0.248315 0.62683\n734 1 0.933269 0.309199 0.617454\n795 1 0.81502 -0.00372538 0.805631\n550 1 0.193983 0.186786 0.497704\n535 1 0.69046 -0.0013933 0.569231\n797 1 0.876152 -0.0016839 0.747492\n611 1 0.0658587 0.37678 0.56619\n616 1 0.123608 0.438428 0.560012\n738 1 0.0605858 0.442109 0.622499\n741 1 0.125665 0.380708 0.628728\n612 1 -0.00201522 0.45139 0.564285\n659 1 0.563169 0.00488482 0.689962\n615 1 0.187631 0.369107 0.557187\n619 1 0.30964 0.37787 0.558239\n620 1 0.248638 0.436224 0.555471\n742 1 0.184851 0.437791 0.622634\n745 1 0.252107 0.368738 0.620866\n746 1 0.311497 0.441633 0.615892\n5 1 0.123701 0.00128225 0.998166\n515 1 0.0667217 -0.00113446 0.558097\n1947 1 0.816705 0.497605 0.939352\n1021 1 0.878178 0.376506 0.876378\n574 1 0.939006 0.188574 0.501764\n623 1 0.427269 0.372723 0.556906\n624 1 0.377236 0.434798 0.555956\n749 1 0.372709 0.382905 0.623983\n750 1 0.438802 0.434067 0.619962\n753 1 0.501703 0.374663 0.625742\n1022 1 0.936269 0.44094 0.879778\n628 1 0.500253 0.438758 0.563265\n627 1 0.557913 0.373972 0.564758\n632 1 0.623876 0.439315 0.562862\n754 1 0.557261 0.437538 0.626436\n757 1 0.624945 0.377232 0.613343\n549 1 0.122665 0.121475 0.503447\n1023 1 0.942046 0.3785 0.936659\n773 1 0.117786 0.00280949 0.752645\n518 1 0.19374 0.0597192 0.502231\n543 1 0.937128 0.00433244 0.562993\n1024 1 0.876867 0.4395 0.939638\n631 1 0.693466 0.374216 0.552058\n635 1 0.81103 0.377469 0.55938\n636 1 0.752031 0.447252 0.569267\n758 1 0.69138 0.436043 0.626076\n761 1 0.753522 0.370389 0.615986\n762 1 0.808161 0.427916 0.628068\n783 1 0.437024 0.00631813 0.819447\n1017 1 0.75582 0.377893 0.871675\n77 1 0.368442 0.248179 0.992583\n1673 1 0.255193 0.497036 0.634586\n737 1 -0.000683403 0.371161 0.620184\n639 1 0.94051 0.365966 0.559034\n640 1 0.867998 0.438678 0.573516\n765 1 0.86904 0.371939 0.621601\n766 1 0.936201 0.442571 0.620366\n629 1 0.623037 0.37395 0.50533\n1020 1 0.752067 0.436598 0.93124\n630 1 0.700135 0.440941 0.497401\n648 1 0.120155 0.0577926 0.682725\n675 1 0.0637022 0.11848 0.68308\n770 1 0.0536175 0.0641295 0.750439\n776 1 0.124563 0.0568845 0.816823\n803 1 0.0652748 0.122108 0.809574\n805 1 0.124519 0.118259 0.751227\n644 1 0.000316782 0.0616673 0.687876\n772 1 0.998933 0.0636057 0.816206\n801 1 0.994468 0.120993 0.748596\n566 1 0.68414 0.188227 0.493367\n652 1 0.24534 0.0596629 0.681073\n679 1 0.189654 0.12519 0.687626\n683 1 0.320302 0.119718 0.685306\n774 1 0.184292 0.054557 0.747083\n778 1 0.318523 0.0639586 0.742903\n780 1 0.249647 0.0622429 0.819955\n807 1 0.19076 0.121932 0.807155\n809 1 0.251315 0.111688 0.743087\n811 1 0.305229 0.12876 0.802989\n787 1 0.56948 0.00643767 0.816156\n1018 1 0.820485 0.43397 0.877546\n1019 1 0.814646 0.373112 0.940378\n656 1 0.380375 0.0605101 0.694189\n687 1 0.436873 0.119241 0.684645\n782 1 0.438456 0.0685298 0.759778\n784 1 0.369181 0.0643868 0.812417\n813 1 0.382364 0.129549 0.747659\n815 1 0.440441 0.124569 0.81517\n660 1 0.502529 0.0627663 0.690641\n817 1 0.498548 0.128215 0.750635\n788 1 0.497884 0.0547505 0.81621\n664 1 0.622049 0.0623682 0.686687\n691 1 0.558903 0.129406 0.684176\n786 1 0.567352 0.0720226 0.751426\n792 1 0.623084 0.073201 0.814285\n819 1 0.556047 0.127852 0.812775\n821 1 0.624416 0.134034 0.746849\n668 1 0.751951 0.0620383 0.687903\n695 1 0.688146 0.126759 0.6915\n699 1 0.809175 0.12223 0.688492\n790 1 0.683264 0.0644907 0.749757\n794 1 0.811762 0.0681347 0.744773\n796 1 0.751536 0.0629866 0.814876\n823 1 0.688292 0.125351 0.823006\n825 1 0.753349 0.121559 0.755322\n827 1 0.814152 0.130214 0.814513\n1014 1 0.684854 0.445098 0.883555\n925 1 0.876962 0.00532832 0.870794\n672 1 0.87751 0.0642637 0.687256\n703 1 0.939097 0.118981 0.690119\n798 1 0.937548 0.0552422 0.749545\n800 1 0.874579 0.0693019 0.81012\n829 1 0.877353 0.127491 0.749418\n831 1 0.93267 0.128688 0.810139\n1015 1 0.69476 0.377185 0.935387\n680 1 0.121815 0.181253 0.684949\n707 1 0.0615525 0.254649 0.685667\n712 1 0.127633 0.315216 0.67927\n802 1 0.0637555 0.179529 0.741488\n808 1 0.132177 0.180926 0.810246\n834 1 0.0588117 0.312762 0.747991\n835 1 0.0642956 0.247726 0.800214\n837 1 0.119784 0.251042 0.740871\n840 1 0.123244 0.30747 0.809097\n836 1 0.00442914 0.308977 0.818143\n833 1 -0.0019944 0.252427 0.744112\n684 1 0.256917 0.181314 0.688716\n711 1 0.188754 0.249324 0.682009\n715 1 0.320504 0.251833 0.686852\n716 1 0.24687 0.302731 0.678813\n806 1 0.185231 0.188905 0.745401\n810 1 0.31254 0.188351 0.74401\n812 1 0.245631 0.181641 0.803816\n838 1 0.185244 0.305934 0.747573\n839 1 0.185921 0.2459 0.810034\n841 1 0.250819 0.249768 0.743768\n842 1 0.313684 0.315456 0.745562\n843 1 0.310117 0.250342 0.80633\n844 1 0.249355 0.30682 0.804394\n688 1 0.382992 0.184084 0.686315\n719 1 0.43226 0.259923 0.693419\n720 1 0.370254 0.320976 0.675495\n814 1 0.445222 0.193684 0.752124\n816 1 0.385068 0.194863 0.810754\n845 1 0.373339 0.249977 0.751897\n846 1 0.436413 0.309889 0.757601\n847 1 0.448823 0.251189 0.818405\n848 1 0.370962 0.317178 0.813636\n852 1 0.502829 0.316081 0.812388\n692 1 0.497096 0.188589 0.683217\n849 1 0.504237 0.251314 0.744328\n820 1 0.501318 0.190049 0.80933\n724 1 0.498796 0.316493 0.68729\n696 1 0.624161 0.186618 0.683073\n723 1 0.563865 0.258612 0.680991\n728 1 0.627756 0.313735 0.681433\n818 1 0.561833 0.191836 0.745889\n824 1 0.622068 0.189323 0.811481\n850 1 0.558511 0.318203 0.745292\n851 1 0.55864 0.253735 0.81231\n853 1 0.617945 0.256691 0.74442\n856 1 0.623676 0.311111 0.816235\n700 1 0.754792 0.189905 0.69397\n727 1 0.687263 0.245744 0.689056\n731 1 0.815438 0.251748 0.691801\n732 1 0.746003 0.313519 0.685588\n822 1 0.687412 0.18853 0.749446\n826 1 0.809723 0.18277 0.752518\n828 1 0.741971 0.189252 0.809104\n854 1 0.686329 0.312948 0.758585\n855 1 0.684697 0.249568 0.809436\n857 1 0.749161 0.251547 0.747383\n858 1 0.80714 0.309747 0.757056\n859 1 0.80599 0.245727 0.809318\n860 1 0.742447 0.311817 0.815294\n804 1 0.00021206 0.181671 0.808946\n676 1 0.994306 0.182305 0.690029\n708 1 0.99355 0.316802 0.686558\n704 1 0.87495 0.182712 0.684992\n735 1 0.933608 0.249122 0.681879\n736 1 0.873525 0.31552 0.68667\n830 1 0.933099 0.187179 0.74404\n832 1 0.872452 0.189503 0.810939\n861 1 0.874332 0.25286 0.751128\n862 1 0.939084 0.317276 0.745844\n863 1 0.941088 0.248462 0.803749\n864 1 0.881163 0.315105 0.808624\n1939 1 0.56784 0.494767 0.939309\n661 1 0.629206 0.000284212 0.626015\n739 1 0.0634958 0.373409 0.686728\n744 1 0.118183 0.434804 0.687567\n866 1 0.0565719 0.437117 0.753045\n867 1 0.0631191 0.369466 0.814366\n869 1 0.121943 0.369332 0.750676\n872 1 0.117711 0.432671 0.806187\n1012 1 0.497315 0.432858 0.936369\n865 1 0.996343 0.372809 0.753843\n740 1 0.00206624 0.432783 0.687238\n743 1 0.193447 0.377514 0.684961\n747 1 0.303342 0.372295 0.689241\n748 1 0.254758 0.440236 0.695296\n870 1 0.182118 0.433342 0.752338\n871 1 0.18387 0.366664 0.80627\n873 1 0.244379 0.368324 0.746812\n874 1 0.318804 0.43813 0.751178\n875 1 0.308044 0.370531 0.809962\n876 1 0.254074 0.430763 0.807345\n606 1 0.936968 0.309196 0.502157\n655 1 0.437383 0.00665679 0.695609\n751 1 0.43894 0.373324 0.684855\n752 1 0.376649 0.434519 0.688119\n877 1 0.374286 0.371474 0.752206\n878 1 0.428588 0.437854 0.758498\n879 1 0.437104 0.36717 0.81118\n880 1 0.373184 0.434557 0.815367\n756 1 0.495611 0.434432 0.694552\n1009 1 0.509159 0.372244 0.872123\n573 1 0.881129 0.124429 0.500221\n1013 1 0.622952 0.379424 0.879079\n881 1 0.495857 0.380925 0.752306\n884 1 0.498466 0.44055 0.809974\n755 1 0.55765 0.379183 0.689368\n760 1 0.62762 0.438597 0.683076\n882 1 0.563633 0.438727 0.749855\n883 1 0.572369 0.376996 0.813484\n885 1 0.626881 0.375285 0.747941\n888 1 0.6312 0.443931 0.812813\n1927 1 0.187905 0.498911 0.927404\n759 1 0.689386 0.377416 0.686492\n763 1 0.811495 0.369625 0.69107\n764 1 0.751898 0.4387 0.690858\n886 1 0.684949 0.433539 0.75321\n887 1 0.684322 0.380175 0.823718\n889 1 0.744435 0.37152 0.747372\n890 1 0.808618 0.434282 0.751355\n891 1 0.814936 0.372732 0.810319\n892 1 0.75317 0.434758 0.809734\n771 1 0.0579342 0.00158037 0.818693\n1011 1 0.556807 0.374401 0.939545\n6 1 0.194211 0.0585361 0.997102\n868 1 -0.00175922 0.433561 0.811232\n767 1 0.936813 0.381496 0.677128\n768 1 0.873536 0.432965 0.684153\n893 1 0.876724 0.371224 0.751717\n894 1 0.936704 0.434311 0.743943\n895 1 0.937469 0.378394 0.810826\n896 1 0.873664 0.430258 0.810701\n1559 1 0.685294 0.49437 0.566317\n898 1 0.0634425 0.0608777 0.877846\n904 1 0.134129 0.0687454 0.936198\n931 1 0.0696912 0.131068 0.935722\n933 1 0.127151 0.120767 0.878297\n929 1 0.00113905 0.118701 0.874649\n1815 1 0.693335 0.501989 0.804249\n1817 1 0.757993 0.496004 0.746983\n1821 1 0.879389 0.496596 0.758526\n902 1 0.188094 0.0545845 0.876739\n906 1 0.311474 0.060729 0.875751\n908 1 0.253096 0.0592502 0.929787\n935 1 0.192319 0.124408 0.935313\n937 1 0.247917 0.124758 0.873504\n939 1 0.310631 0.127854 0.93115\n2 1 0.0693448 0.0657866 0.997722\n1921 1 0.994884 0.4981 0.870296\n1010 1 0.567835 0.435131 0.877331\n919 1 0.688454 0.00200528 0.937589\n910 1 0.438939 0.0616252 0.879397\n912 1 0.367163 0.0580942 0.936758\n941 1 0.37601 0.127899 0.866906\n943 1 0.437075 0.125188 0.941024\n945 1 0.499472 0.123747 0.878396\n1937 1 0.510718 0.499177 0.875981\n1551 1 0.439707 0.500644 0.567488\n916 1 0.495988 0.0677352 0.940959\n914 1 0.555319 0.0726918 0.881527\n920 1 0.623167 0.0646293 0.933647\n947 1 0.55483 0.132204 0.944391\n949 1 0.614257 0.128257 0.875176\n1823 1 0.938662 0.493998 0.808685\n33 1 0.00534034 0.127826 0.99607\n1675 1 0.314862 0.497351 0.693751\n918 1 0.681055 0.0651056 0.87743\n922 1 0.816697 0.058888 0.873222\n924 1 0.744662 0.0590855 0.927553\n951 1 0.686697 0.136973 0.935063\n953 1 0.753411 0.128174 0.875349\n955 1 0.811083 0.127352 0.942198\n900 1 0.0021816 0.0621387 0.935322\n926 1 0.933342 0.0624533 0.863589\n928 1 0.877257 0.067596 0.932922\n957 1 0.869383 0.126124 0.873544\n959 1 0.941158 0.129203 0.935072\n930 1 0.0647401 0.177885 0.867333\n936 1 0.130544 0.184269 0.937499\n962 1 0.0663068 0.305328 0.881813\n963 1 0.0658943 0.244489 0.935669\n965 1 0.126717 0.242035 0.873621\n968 1 0.129481 0.308276 0.937862\n964 1 -0.000583541 0.311037 0.94027\n961 1 0.99434 0.250937 0.874332\n932 1 0.997776 0.197939 0.937543\n1016 1 0.628307 0.43362 0.95018\n1687 1 0.693417 0.501492 0.691245\n663 1 0.686161 0.00401678 0.690738\n114 1 0.570504 0.437335 1.001\n934 1 0.186298 0.186776 0.875543\n938 1 0.311071 0.193072 0.863087\n940 1 0.250332 0.186375 0.937818\n966 1 0.181575 0.306553 0.871559\n967 1 0.192721 0.252249 0.936902\n969 1 0.252372 0.250601 0.875163\n970 1 0.304265 0.310673 0.872437\n971 1 0.311699 0.244831 0.929684\n972 1 0.25371 0.307015 0.93652\n1005 1 0.374329 0.373933 0.87166\n777 1 0.255451 0.0029715 0.751217\n973 1 0.379542 0.247051 0.865402\n944 1 0.372039 0.188123 0.933311\n942 1 0.438157 0.188316 0.878309\n976 1 0.369805 0.306215 0.927206\n975 1 0.435896 0.247932 0.934522\n974 1 0.430306 0.313231 0.872697\n977 1 0.500552 0.258261 0.875202\n948 1 0.495686 0.18583 0.936325\n1677 1 0.376964 0.501822 0.622352\n1006 1 0.442277 0.430169 0.876585\n541 1 0.87402 0.00320159 0.500925\n980 1 0.498085 0.312131 0.935926\n979 1 0.549874 0.251815 0.943889\n952 1 0.623141 0.192658 0.932456\n946 1 0.556898 0.193284 0.876866\n984 1 0.622682 0.310873 0.938788\n978 1 0.568527 0.312663 0.878395\n981 1 0.629824 0.255298 0.876312\n983 1 0.685726 0.251108 0.93135\n956 1 0.749833 0.187422 0.935983\n987 1 0.814286 0.253739 0.939638\n986 1 0.81579 0.306843 0.869604\n954 1 0.815489 0.190044 0.872448\n982 1 0.687368 0.313409 0.880013\n988 1 0.749744 0.316299 0.940774\n985 1 0.747924 0.244245 0.875264\n950 1 0.684333 0.19149 0.870922\n1008 1 0.378461 0.442398 0.935341\n1007 1 0.434752 0.377068 0.941514\n657 1 0.498525 0.000420111 0.628454\n102 1 0.186605 0.437039 0.998272\n913 1 0.502438 0.00988831 0.878256\n1671 1 0.180283 0.502194 0.681583\n991 1 0.937575 0.259094 0.94277\n989 1 0.875646 0.253558 0.869825\n990 1 0.936424 0.313724 0.874137\n992 1 0.877289 0.313951 0.945716\n960 1 0.877933 0.186837 0.931309\n958 1 0.932094 0.186279 0.866889\n1693 1 0.870376 0.503636 0.625545\n1003 1 0.318752 0.374887 0.935746\n997 1 0.126992 0.372036 0.873004\n1000 1 0.13163 0.43291 0.931887\n995 1 0.0602818 0.379171 0.939456\n994 1 0.0604543 0.436445 0.870683\n597 1 0.626775 0.250646 0.498487\n999 1 0.189994 0.368892 0.932821\n105 1 0.257063 0.38057 0.997947\n998 1 0.190432 0.432998 0.860866\n1002 1 0.313888 0.433193 0.87213\n1004 1 0.250446 0.437341 0.925369\n1001 1 0.250745 0.375602 0.875508\n70 1 0.197665 0.315843 0.99896\n45 1 0.372374 0.122636 0.99893\n101 1 0.125578 0.368893 1.00315\n1683 1 0.567658 0.498748 0.687614\n1795 1 0.0584064 0.494218 0.814735\n1819 1 0.81048 0.493369 0.818873\n1793 1 -0.00389568 0.500841 0.743618\n927 1 0.940035 0.00788331 0.937208\n1801 1 0.248108 0.503756 0.747329\n594 1 0.56603 0.31016 0.501341\n98 1 0.0612153 0.437482 1.00026\n637 1 0.868929 0.374861 0.503704\n645 1 0.12729 0.000745204 0.625947\n42 1 0.310454 0.181541 0.997198\n30 1 0.938765 0.0644042 0.995463\n10 1 0.308879 0.0636343 0.992345\n61 1 0.872898 0.117212 0.997277\n1685 1 0.626208 0.503147 0.622283\n26 1 0.810788 0.0596717 0.996296\n1539 1 0.0700014 0.499702 0.557503\n29 1 0.876066 0.00520873 0.994696\n53 1 0.625244 0.126886 1.00059\n22 1 0.689645 0.0671419 0.99421\n106 1 0.315371 0.435447 0.996622\n513 1 -0.000512956 0.00225347 0.502535\n41 1 0.245371 0.126869 0.995411\n69 1 0.127357 0.246462 1.00088\n121 1 0.749297 0.37597 0.999665\n38 1 0.190142 0.190749 0.991935\n85 1 0.624245 0.250029 0.998823\n34 1 0.0660205 0.18824 1.00133\n1033 1 0.250709 0.494997 0.995286\n9 1 0.250829 -0.00163604 0.994306\n577 1 -0.00142726 0.250224 0.505039\n545 1 0.999627 0.121259 0.504943\n1545 1 0.249257 0.502978 0.506041\n89 1 0.751881 0.253761 0.996194\n533 1 0.626406 0.00314178 0.509533\n37 1 0.1308 0.126732 0.992478\n625 1 0.494409 0.378811 0.506289\n546 1 0.0612494 0.185066 0.502846\n618 1 0.312808 0.438408 0.505624\n562 1 0.571258 0.191485 0.505441\n634 1 0.806109 0.442629 0.504429\n14 1 0.436246 0.0602222 0.991378\n1549 1 0.382344 0.49643 0.502916\n581 1 0.128455 0.24241 0.503576\n522 1 0.299464 0.0621367 0.504889\n605 1 0.866638 0.244765 0.508318\n530 1 0.562344 0.0606799 0.505396\n1049 1 0.748165 0.498881 0.994296\n1032 1 0.120951 0.563378 0.0476376\n1059 1 0.0649706 0.632268 0.0579308\n1154 1 0.0674369 0.57036 0.123988\n1189 1 0.128013 0.624838 0.119689\n1028 1 0.00150504 0.568431 0.0636123\n1055 1 0.933403 0.497455 0.0639099\n1051 1 0.808592 0.507409 0.0609862\n1036 1 0.245922 0.559319 0.051009\n1063 1 0.185781 0.625815 0.0572345\n1067 1 0.313211 0.620671 0.0634203\n1158 1 0.190277 0.560036 0.11324\n1162 1 0.310574 0.560039 0.126669\n1193 1 0.245098 0.62998 0.114077\n159 1 0.944292 0.999365 0.177577\n1040 1 0.371536 0.559543 0.0697809\n1071 1 0.437492 0.630411 0.0681242\n1166 1 0.43464 0.563705 0.130209\n1197 1 0.372658 0.628263 0.123897\n1201 1 0.503392 0.619142 0.126901\n259 1 0.067672 0.999619 0.322275\n1439 1 0.934198 0.501883 0.441714\n1044 1 0.498543 0.561886 0.0650171\n1048 1 0.627558 0.568135 0.0633922\n1075 1 0.566541 0.632657 0.0658062\n1170 1 0.564842 0.561244 0.125835\n1205 1 0.628852 0.627835 0.132509\n129 1 0.999277 1.0004 0.114102\n1073 1 0.503013 0.631566 0.00776866\n1159 1 0.180923 0.500501 0.175666\n1126 1 0.190155 0.940581 -0.00366215\n413 1 0.874531 1.00268 0.375328\n1052 1 0.746329 0.560225 0.0686458\n1079 1 0.693813 0.628381 0.0640824\n1083 1 0.813803 0.628039 0.0652456\n1174 1 0.690189 0.561045 0.133593\n1178 1 0.815694 0.560777 0.126324\n1209 1 0.756079 0.624059 0.128454\n1042 1 0.562645 0.562689 0.00306958\n1287 1 0.1855 0.502047 0.309908\n1185 1 0.00321305 0.625299 0.123337\n1056 1 0.879918 0.567759 0.0696988\n1087 1 0.938851 0.625237 0.0635129\n1182 1 0.938991 0.562971 0.127566\n1213 1 0.880435 0.632991 0.124443\n285 1 0.875486 1.00104 0.253839\n155 1 0.810326 0.999827 0.180428\n1064 1 0.121047 0.689289 0.0607107\n1091 1 0.0587718 0.751887 0.0606368\n1096 1 0.13015 0.812555 0.0589272\n1186 1 0.0633033 0.688458 0.128003\n1218 1 0.0717863 0.815132 0.123539\n1221 1 0.128387 0.753226 0.117782\n1217 1 0.999495 0.750574 0.120412\n1092 1 1.00191 0.818884 0.0651167\n1153 1 -0.000748919 0.500346 0.114576\n1068 1 0.249317 0.691319 0.0540212\n1095 1 0.194624 0.75329 0.0584079\n1099 1 0.314018 0.751532 0.0598816\n1100 1 0.254145 0.809978 0.0618181\n1190 1 0.190097 0.688593 0.117176\n1194 1 0.310078 0.685039 0.121151\n1222 1 0.197031 0.811917 0.126293\n1225 1 0.259602 0.749718 0.124344\n1226 1 0.313036 0.811573 0.117187\n1181 1 0.880045 0.505502 0.131665\n1077 1 0.617681 0.623583 -0.000352205\n1072 1 0.370755 0.686866 0.0592649\n1103 1 0.442261 0.745091 0.0741411\n1104 1 0.376346 0.808399 0.0615335\n1198 1 0.442379 0.681275 0.132874\n1229 1 0.377797 0.740804 0.128843\n1230 1 0.436243 0.809649 0.123348\n1233 1 0.506598 0.752892 0.127169\n1076 1 0.501202 0.68796 0.0652276\n1108 1 0.503099 0.810472 0.0525396\n283 1 0.808365 0.997298 0.310623\n1080 1 0.634323 0.692113 0.0697499\n1107 1 0.563142 0.750133 0.0704957\n1112 1 0.622853 0.818168 0.060014\n1202 1 0.561965 0.690933 0.131084\n1234 1 0.560311 0.817996 0.120578\n1237 1 0.627646 0.755317 0.125892\n1554 1 0.564339 0.56047 0.494915\n1303 1 0.688856 0.495812 0.315732\n1084 1 0.7469 0.694193 0.0618114\n1111 1 0.68764 0.758559 0.0703406\n1115 1 0.813603 0.75689 0.0534356\n1116 1 0.754 0.810972 0.0573806\n1206 1 0.689402 0.688525 0.135356\n1210 1 0.807761 0.697075 0.127079\n1238 1 0.688913 0.806849 0.139051\n1241 1 0.753569 0.757866 0.120592\n1242 1 0.819084 0.815024 0.131764\n1542 1 0.191942 0.563203 0.503361\n1594 1 0.809938 0.691282 0.501703\n1069 1 0.384857 0.625251 0.00123714\n1060 1 -0.00285304 0.684599 0.0701945\n1088 1 0.871596 0.689675 0.0636234\n1119 1 0.938154 0.746741 0.0611025\n1120 1 0.874931 0.814246 0.0609959\n1214 1 0.939131 0.687919 0.133265\n1245 1 0.873427 0.753012 0.132636\n1246 1 0.937462 0.804851 0.131027\n151 1 0.686024 0.995688 0.185978\n1123 1 0.0717475 0.875474 0.0611777\n1128 1 0.130738 0.937837 0.0663098\n1250 1 0.0667363 0.939358 0.111785\n1253 1 0.13292 0.873541 0.123348\n1124 1 1.0001 0.935884 0.0465052\n1249 1 0.00144773 0.877397 0.126733\n1161 1 0.246811 0.498082 0.125085\n1066 1 0.315983 0.68402 -0.000247993\n1621 1 0.621476 0.75923 0.503779\n1307 1 0.821938 0.504375 0.314169\n1127 1 0.192561 0.875625 0.0586666\n1131 1 0.319814 0.872777 0.0581123\n1132 1 0.246905 0.93963 0.0628625\n1254 1 0.189022 0.945884 0.128335\n1257 1 0.251967 0.873842 0.119193\n1258 1 0.317688 0.93996 0.12084\n135 1 0.19177 0.996696 0.197442\n1558 1 0.690866 0.559231 0.498098\n1135 1 0.438401 0.870077 0.0572912\n1136 1 0.378434 0.929363 0.0519431\n1261 1 0.380052 0.882642 0.124031\n1262 1 0.438223 0.936777 0.122588\n1265 1 0.496594 0.871629 0.11939\n393 1 0.246062 0.996652 0.371812\n1508 1 0.995738 0.935461 0.436791\n1047 1 0.68307 0.50604 0.0633846\n1140 1 0.504648 0.93554 0.0535453\n1139 1 0.566049 0.877432 0.0603634\n1144 1 0.627908 0.938326 0.0610961\n1266 1 0.56164 0.937121 0.117416\n1269 1 0.631099 0.878974 0.119472\n1536 1 0.872702 0.936907 0.437824\n397 1 0.377339 0.998701 0.364159\n139 1 0.312868 0.991333 0.188096\n1150 1 0.929019 0.94304 -0.00316297\n1143 1 0.689685 0.874802 0.0534556\n1147 1 0.804918 0.873128 0.0657278\n1148 1 0.747246 0.933258 0.0645014\n1270 1 0.687309 0.938174 0.122302\n1273 1 0.75391 0.868848 0.129799\n1274 1 0.817907 0.931058 0.126689\n1411 1 0.0701582 0.506655 0.43174\n1617 1 0.503419 0.752268 0.498226\n1285 1 0.1242 0.504971 0.251402\n1167 1 0.443179 0.505192 0.192925\n1151 1 0.938172 0.866138 0.0579902\n1152 1 0.878895 0.939946 0.0626196\n1277 1 0.877403 0.874772 0.122368\n1278 1 0.941239 0.93341 0.113395\n1417 1 0.249026 0.496321 0.379278\n1165 1 0.375413 0.502616 0.132037\n1160 1 0.1275 0.567375 0.187563\n1187 1 0.0687259 0.627716 0.184853\n1282 1 0.0589703 0.564314 0.25399\n1288 1 0.125474 0.569128 0.305833\n1315 1 0.0628705 0.62279 0.315608\n1317 1 0.132232 0.621749 0.246225\n1156 1 0.99706 0.561652 0.190445\n1535 1 0.938381 0.873185 0.444698\n1534 1 0.93628 0.940031 0.376403\n1164 1 0.250158 0.561893 0.188668\n1191 1 0.195032 0.627863 0.179181\n1195 1 0.310686 0.620169 0.192085\n1286 1 0.188477 0.563858 0.253459\n1290 1 0.30587 0.566102 0.252711\n1292 1 0.253332 0.561577 0.317617\n1319 1 0.19016 0.63281 0.314665\n1321 1 0.244438 0.632114 0.253335\n1323 1 0.31568 0.631113 0.315094\n1533 1 0.878367 0.874554 0.376356\n1537 1 0.997358 0.504555 0.500234\n1653 1 0.632223 0.878928 0.496383\n1168 1 0.367849 0.560019 0.185335\n1199 1 0.429622 0.625623 0.189882\n1294 1 0.439096 0.570883 0.246194\n1296 1 0.383462 0.562224 0.311321\n1325 1 0.375585 0.625265 0.256546\n1327 1 0.441645 0.619537 0.310821\n1172 1 0.4996 0.564053 0.197188\n1297 1 0.503501 0.499674 0.252103\n147 1 0.554611 0.989228 0.182022\n1329 1 0.503767 0.62942 0.254541\n1300 1 0.509869 0.56236 0.315039\n1176 1 0.629217 0.56137 0.186713\n1203 1 0.569197 0.620738 0.183396\n1298 1 0.574169 0.569995 0.249656\n1304 1 0.625318 0.561055 0.315126\n1331 1 0.570185 0.624957 0.318629\n1333 1 0.629751 0.63087 0.252616\n1646 1 0.43284 0.943869 0.497465\n1180 1 0.750827 0.563217 0.188314\n1207 1 0.690983 0.625107 0.195845\n1211 1 0.814932 0.629597 0.190719\n1302 1 0.684747 0.565796 0.251957\n1306 1 0.820071 0.566955 0.250865\n1308 1 0.756069 0.565757 0.308239\n1335 1 0.694235 0.622515 0.313827\n1337 1 0.758579 0.629669 0.255927\n1339 1 0.81828 0.626572 0.315915\n1419 1 0.322425 0.504436 0.435945\n265 1 0.253236 0.994182 0.252349\n1038 1 0.442567 0.557861 0.00415695\n1175 1 0.691056 0.500021 0.188705\n1284 1 0.00411891 0.56361 0.317737\n1313 1 0.00168739 0.629318 0.256824\n1184 1 0.885366 0.558945 0.195994\n1215 1 0.940145 0.624128 0.186944\n1310 1 0.944171 0.562509 0.256608\n1312 1 0.877081 0.570274 0.311367\n1341 1 0.876439 0.626847 0.252194\n1343 1 0.938291 0.626053 0.319299\n257 1 0.0139147 0.99767 0.256608\n1070 1 0.437556 0.690557 0.000289134\n1529 1 0.749941 0.879352 0.374555\n1192 1 0.135795 0.685409 0.175094\n1219 1 0.0707542 0.751504 0.183599\n1224 1 0.122884 0.815898 0.187725\n1314 1 0.0747162 0.68588 0.246186\n1320 1 0.125939 0.69198 0.313433\n1346 1 0.0622943 0.812246 0.251545\n1347 1 0.0591858 0.747257 0.317531\n1349 1 0.129156 0.758604 0.25271\n1352 1 0.11726 0.811345 0.31325\n1220 1 -0.00360691 0.813083 0.190301\n1345 1 0.00413475 0.745628 0.251484\n1196 1 0.257184 0.691127 0.184345\n1223 1 0.192376 0.749793 0.184873\n1227 1 0.313821 0.749672 0.192115\n1228 1 0.25456 0.806063 0.184569\n1318 1 0.187627 0.696581 0.250726\n1322 1 0.308079 0.680789 0.253358\n1324 1 0.251201 0.687737 0.318052\n1350 1 0.187795 0.81771 0.243995\n1351 1 0.191765 0.755664 0.310296\n1353 1 0.252414 0.763999 0.253536\n1354 1 0.318019 0.813455 0.247413\n1355 1 0.309432 0.750677 0.314693\n1356 1 0.248713 0.815787 0.322379\n1200 1 0.365417 0.686605 0.191036\n1231 1 0.442603 0.749614 0.193254\n1232 1 0.378574 0.808475 0.18773\n1326 1 0.438502 0.687182 0.256356\n1328 1 0.375806 0.685884 0.311514\n1357 1 0.374174 0.752818 0.248519\n1358 1 0.442585 0.810253 0.248772\n1359 1 0.441227 0.749492 0.3179\n1360 1 0.379178 0.811233 0.308717\n1332 1 0.502166 0.687711 0.311741\n1204 1 0.504983 0.688143 0.194379\n1236 1 0.501205 0.814941 0.187258\n1361 1 0.496163 0.747596 0.257443\n1364 1 0.499323 0.812043 0.317463\n1208 1 0.625149 0.695145 0.193208\n1235 1 0.560206 0.753072 0.194128\n1240 1 0.618241 0.81553 0.192687\n1330 1 0.569051 0.687044 0.250712\n1336 1 0.630386 0.686899 0.313843\n1362 1 0.561997 0.81178 0.252624\n1363 1 0.563841 0.750733 0.315171\n1365 1 0.629988 0.756207 0.256854\n1368 1 0.622025 0.819865 0.312294\n1212 1 0.747233 0.67992 0.193801\n1239 1 0.694221 0.743108 0.194724\n1243 1 0.81131 0.750096 0.197968\n1244 1 0.748857 0.812572 0.197131\n1334 1 0.688334 0.69252 0.251789\n1338 1 0.815447 0.693327 0.25336\n1340 1 0.760245 0.690717 0.312719\n1366 1 0.690381 0.81736 0.250409\n1367 1 0.688024 0.750722 0.312699\n1369 1 0.753891 0.75274 0.259722\n1370 1 0.815409 0.819853 0.25463\n1371 1 0.814585 0.753478 0.313112\n1372 1 0.754696 0.815751 0.321196\n1348 1 -0.00187593 0.809388 0.316969\n1188 1 0.00304103 0.680817 0.190592\n1316 1 -0.00401317 0.688408 0.321162\n1216 1 0.878052 0.693121 0.196493\n1247 1 0.948052 0.748889 0.190299\n1248 1 0.873521 0.812722 0.194594\n1342 1 0.938681 0.690997 0.253933\n1344 1 0.87924 0.689707 0.313986\n1373 1 0.875367 0.752365 0.25658\n1374 1 0.935913 0.810952 0.25287\n1375 1 0.936627 0.749273 0.310812\n1376 1 0.877327 0.809826 0.316846\n263 1 0.181527 0.992418 0.308819\n1251 1 0.0659151 0.872536 0.181405\n1256 1 0.129024 0.937732 0.181225\n1378 1 0.0665252 0.937938 0.256343\n1379 1 0.0576258 0.869558 0.312482\n1381 1 0.123829 0.872597 0.254216\n1384 1 0.122643 0.931996 0.3154\n1252 1 0.0132071 0.936776 0.196659\n1380 1 0.994004 0.93627 0.310249\n1526 1 0.688827 0.944373 0.372741\n1528 1 0.627509 0.940424 0.434097\n1255 1 0.195263 0.873489 0.188617\n1259 1 0.313213 0.872354 0.176517\n1260 1 0.254369 0.931478 0.188735\n1382 1 0.189705 0.930467 0.247489\n1383 1 0.181108 0.870127 0.31392\n1385 1 0.250557 0.868915 0.252607\n1386 1 0.31196 0.92903 0.245733\n1387 1 0.30792 0.873024 0.312227\n1388 1 0.243368 0.932259 0.312251\n1527 1 0.694734 0.878759 0.436542\n1263 1 0.437308 0.874484 0.188305\n1264 1 0.375385 0.931413 0.18884\n1389 1 0.374425 0.871243 0.250464\n1390 1 0.431816 0.941921 0.249126\n1391 1 0.438312 0.884649 0.306296\n1392 1 0.364012 0.929719 0.309492\n1396 1 0.49773 0.943202 0.31365\n1268 1 0.493264 0.93776 0.189627\n1393 1 0.495225 0.877576 0.25145\n1530 1 0.81903 0.942696 0.375403\n395 1 0.312237 0.99916 0.430631\n1267 1 0.550532 0.87927 0.185485\n1272 1 0.623526 0.934422 0.1833\n1394 1 0.559267 0.940517 0.253453\n1395 1 0.556867 0.879406 0.314791\n1397 1 0.62402 0.881183 0.254043\n1400 1 0.620239 0.943083 0.316776\n1271 1 0.681415 0.875865 0.185078\n1275 1 0.813615 0.879306 0.191794\n1276 1 0.751754 0.939537 0.185884\n1398 1 0.683849 0.941334 0.257109\n1399 1 0.691194 0.877948 0.313595\n1401 1 0.747521 0.880196 0.244893\n1402 1 0.817527 0.940384 0.247599\n1403 1 0.816581 0.877395 0.317682\n1404 1 0.752298 0.936899 0.30952\n1081 1 0.750141 0.625008 -0.0020045\n273 1 0.49864 0.999816 0.249177\n1630 1 0.943108 0.806809 0.501802\n1377 1 -0.000212799 0.870546 0.250299\n1279 1 0.939547 0.880375 0.186956\n1280 1 0.883769 0.935654 0.184174\n1405 1 0.878475 0.878253 0.253945\n1406 1 0.932784 0.939308 0.251788\n1407 1 0.940527 0.869288 0.31259\n1408 1 0.880135 0.942973 0.312055\n1570 1 0.0655682 0.686868 0.502515\n1031 1 0.186604 0.500796 0.0593323\n1410 1 0.0666023 0.570297 0.37613\n1416 1 0.128336 0.574051 0.436969\n1443 1 0.064811 0.62713 0.444077\n1445 1 0.12814 0.625373 0.371603\n1441 1 0.00586849 0.624699 0.374749\n1531 1 0.80276 0.877193 0.438729\n1039 1 0.440049 0.496826 0.0636544\n1449 1 0.248229 0.627271 0.375734\n1451 1 0.313138 0.626251 0.437217\n1420 1 0.250122 0.561713 0.429225\n1447 1 0.195701 0.634096 0.44169\n1414 1 0.183999 0.559503 0.373874\n1418 1 0.315313 0.566006 0.372478\n403 1 0.562993 0.998672 0.443727\n1589 1 0.626404 0.631893 0.49826\n1637 1 0.123258 0.866531 0.500566\n1422 1 0.443835 0.56123 0.376266\n1455 1 0.442365 0.623031 0.439019\n1424 1 0.377282 0.570003 0.435442\n1453 1 0.37571 0.637276 0.374686\n1457 1 0.501903 0.615712 0.372048\n1645 1 0.377429 0.880575 0.499704\n1281 1 0.00410744 0.500158 0.255738\n1428 1 0.505825 0.56462 0.438463\n1461 1 0.631412 0.622601 0.37188\n1426 1 0.567223 0.561816 0.376071\n1432 1 0.634227 0.562468 0.431881\n1459 1 0.571378 0.62505 0.431001\n1522 1 0.558259 0.944066 0.374345\n1430 1 0.694686 0.562899 0.372753\n1463 1 0.690431 0.626941 0.44138\n1436 1 0.756028 0.559697 0.436273\n1434 1 0.81649 0.559064 0.373203\n1465 1 0.748809 0.635151 0.377623\n1467 1 0.811878 0.624091 0.441311\n1155 1 0.0649185 0.505063 0.185119\n269 1 0.372214 1.00004 0.249596\n1109 1 0.626412 0.75327 -0.00495624\n1532 1 0.745848 0.947938 0.43151\n1412 1 1.00361 0.568432 0.435125\n1525 1 0.630626 0.869476 0.374771\n1440 1 0.870749 0.563578 0.441938\n1469 1 0.87951 0.631073 0.382142\n1471 1 0.933671 0.628268 0.44004\n1438 1 0.935742 0.567388 0.378718\n1585 1 0.505458 0.623564 0.500925\n1474 1 0.0587188 0.812776 0.375533\n1480 1 0.12268 0.810831 0.435992\n1475 1 0.06246 0.746416 0.428824\n1442 1 0.0674876 0.686695 0.37443\n1477 1 0.128798 0.75185 0.373045\n1448 1 0.126222 0.69192 0.434565\n1473 1 1.00068 0.747321 0.380946\n1027 1 0.0626289 0.502404 0.0616754\n1452 1 0.262136 0.695176 0.442076\n1450 1 0.313917 0.686365 0.375168\n1446 1 0.184253 0.690693 0.37922\n1482 1 0.308543 0.814495 0.37512\n1484 1 0.254699 0.80882 0.433152\n1478 1 0.190794 0.817645 0.381959\n1481 1 0.244024 0.748352 0.375265\n1483 1 0.31701 0.752967 0.439245\n1479 1 0.188589 0.747701 0.437028\n1606 1 0.18586 0.809318 0.500378\n1035 1 0.305738 0.497018 0.0531051\n1524 1 0.495432 0.943945 0.438352\n1456 1 0.373293 0.695012 0.438384\n1487 1 0.443028 0.754948 0.440473\n1485 1 0.376495 0.754294 0.372254\n1488 1 0.375488 0.81575 0.437207\n1454 1 0.439537 0.692015 0.376467\n1486 1 0.438001 0.817297 0.370469\n1492 1 0.496222 0.816338 0.435462\n1489 1 0.506059 0.751786 0.374993\n1460 1 0.50267 0.680603 0.441802\n1171 1 0.558987 0.500212 0.191491\n1517 1 0.37649 0.874554 0.376986\n1490 1 0.558673 0.818654 0.378926\n1458 1 0.562169 0.687744 0.373772\n1493 1 0.625841 0.755441 0.372739\n1491 1 0.561935 0.756621 0.432142\n1496 1 0.619776 0.817777 0.438573\n1464 1 0.630405 0.683958 0.435521\n385 1 -0.000757979 1.00231 0.377733\n267 1 0.308805 0.988867 0.311152\n1494 1 0.687295 0.80905 0.377004\n1466 1 0.811621 0.691123 0.381939\n1499 1 0.815185 0.759312 0.43761\n1495 1 0.685979 0.754148 0.450911\n1500 1 0.749407 0.816524 0.440885\n1497 1 0.749539 0.753108 0.373831\n1498 1 0.811587 0.818546 0.381234\n1468 1 0.747387 0.697264 0.441653\n1462 1 0.688181 0.701491 0.376077\n1519 1 0.437258 0.874965 0.437003\n1444 1 0.0061251 0.681494 0.434119\n1501 1 0.873891 0.747815 0.377141\n1504 1 0.877823 0.818183 0.441335\n1470 1 0.937973 0.68733 0.382205\n1476 1 1.00141 0.813672 0.435854\n1472 1 0.873804 0.686974 0.444058\n1503 1 0.933943 0.746406 0.433463\n1502 1 0.932971 0.809419 0.378517\n1569 1 0.999499 0.620748 0.499103\n149 1 0.624597 0.993946 0.126296\n391 1 0.187217 0.989922 0.441098\n1505 1 0.996243 0.877183 0.375199\n1037 1 0.377584 0.502054 0.00118493\n1597 1 0.874767 0.628517 0.503292\n1506 1 0.0644835 0.93414 0.376167\n1512 1 0.116208 0.934404 0.442187\n1507 1 0.0556118 0.873906 0.440177\n1509 1 0.12101 0.87639 0.379567\n261 1 0.118588 0.996375 0.247348\n1518 1 0.441769 0.945245 0.377124\n1523 1 0.563175 0.880455 0.437112\n1516 1 0.250503 0.930988 0.439049\n1514 1 0.308542 0.934406 0.378935\n1511 1 0.187633 0.874684 0.438174\n1510 1 0.177966 0.9363 0.369348\n1515 1 0.313849 0.874471 0.443383\n1513 1 0.24532 0.877689 0.377385\n1622 1 0.691633 0.818324 0.499075\n1521 1 0.501063 0.881324 0.377963\n1520 1 0.377975 0.942735 0.432954\n11 1 0.312364 1.00166 0.0573019\n1299 1 0.562937 0.50052 0.312702\n145 1 0.501808 1.00228 0.120474\n1423 1 0.446115 0.504827 0.436958\n141 1 0.372799 0.992427 0.12047\n1437 1 0.876366 0.503565 0.381944\n1311 1 0.939121 0.508832 0.321394\n1409 1 0.00539436 0.507406 0.374121\n1415 1 0.186307 0.501315 0.434684\n1289 1 0.248229 0.508182 0.252656\n1305 1 0.75789 0.504452 0.25652\n1034 1 0.311093 0.56871 0.000530442\n1090 1 0.0562786 0.808634 0.00225965\n1082 1 0.804844 0.687052 0.00375585\n1605 1 0.125207 0.748447 0.498006\n1618 1 0.5549 0.820072 0.48874\n1045 1 0.62205 0.505723 0.00898247\n1650 1 0.557009 0.933055 0.496391\n1601 1 0.00188178 0.750837 0.492189\n1566 1 0.934614 0.568411 0.495765\n1586 1 0.568691 0.688587 0.488545\n517 1 0.124543 1.0007 0.496191\n1654 1 0.688091 0.946444 0.501055\n1602 1 0.0547597 0.806975 0.495539\n1054 1 0.926686 0.568441 0.00103299\n25 1 0.752195 0.997639 0.00365253\n1130 1 0.308435 0.935058 -0.0016875\n1546 1 0.322215 0.563422 0.498041\n1046 1 0.695447 0.567179 0.00902163\n1590 1 0.686494 0.687051 0.499568\n1053 1 0.872416 0.498456 0.00589092\n1121 1 0.00469413 0.869822 -0.000139557\n1544 1 0.134595 0.569238 0.561782\n1571 1 0.0653558 0.627812 0.556138\n1666 1 0.0654595 0.568531 0.617954\n1701 1 0.121365 0.632087 0.627946\n1541 1 0.126504 0.506927 0.496693\n1573 1 0.133637 0.62927 0.498697\n1933 1 0.387288 0.504604 0.880463\n1548 1 0.247103 0.559259 0.569617\n1575 1 0.187405 0.626837 0.566238\n1579 1 0.308504 0.615493 0.564551\n1670 1 0.189609 0.559653 0.622636\n1674 1 0.311727 0.559272 0.623704\n1705 1 0.251025 0.628325 0.630118\n647 1 0.18325 0.996435 0.686861\n1626 1 0.810957 0.816351 0.502222\n1665 1 0.00926728 0.507999 0.625911\n901 1 0.126276 0.999541 0.879954\n1552 1 0.375176 0.570315 0.572492\n1583 1 0.44226 0.631587 0.564427\n1678 1 0.440246 0.559668 0.6247\n1709 1 0.377756 0.62904 0.624051\n1713 1 0.496077 0.631386 0.627217\n903 1 0.189046 0.999235 0.939043\n1805 1 0.381373 0.50082 0.754621\n799 1 0.936661 0.998777 0.808618\n669 1 0.880671 0.996098 0.619248\n1556 1 0.497956 0.561635 0.566814\n1633 1 0.00165729 0.872699 0.498484\n1560 1 0.628434 0.562965 0.56125\n1587 1 0.562199 0.626175 0.556135\n1682 1 0.568669 0.563052 0.62143\n1717 1 0.627933 0.624096 0.630038\n1578 1 0.314677 0.687016 0.506842\n1561 1 0.75546 0.506742 0.501708\n1613 1 0.377715 0.752198 0.501866\n1661 1 0.883321 0.871055 0.504331\n1564 1 0.747707 0.560811 0.565063\n1591 1 0.68113 0.624825 0.56103\n1595 1 0.815909 0.620581 0.563376\n1686 1 0.688811 0.563548 0.622994\n1690 1 0.81913 0.567129 0.622369\n1721 1 0.745632 0.626151 0.620235\n1098 1 0.308244 0.808769 0.994975\n539 1 0.798006 1.00013 0.561349\n923 1 0.805489 1.00085 0.939869\n1697 1 0.000480246 0.630067 0.621093\n1540 1 1.00323 0.565004 0.563328\n1568 1 0.87166 0.557682 0.564693\n1599 1 0.939982 0.62307 0.568798\n1694 1 0.935362 0.55889 0.620879\n1725 1 0.875764 0.628476 0.626821\n1813 1 0.627186 0.501715 0.74905\n1550 1 0.440727 0.559215 0.50017\n905 1 0.258062 0.997516 0.870785\n1576 1 0.129092 0.686342 0.560445\n1603 1 0.0569363 0.75106 0.560693\n1608 1 0.122482 0.808733 0.56659\n1698 1 0.0590183 0.691363 0.619752\n1730 1 0.0662467 0.816211 0.627377\n1733 1 0.121237 0.749015 0.625736\n1799 1 0.184743 0.494931 0.810931\n1572 1 0.000537899 0.688463 0.560035\n1803 1 0.310359 0.50295 0.809145\n653 1 0.381498 0.994077 0.627298\n1580 1 0.252479 0.688537 0.558361\n1607 1 0.188651 0.752299 0.566073\n1611 1 0.313059 0.751936 0.566636\n1612 1 0.248621 0.806624 0.563656\n1702 1 0.188585 0.695216 0.62535\n1706 1 0.316207 0.6878 0.618356\n1734 1 0.194188 0.810965 0.627334\n1737 1 0.254169 0.745282 0.633979\n1738 1 0.310999 0.809992 0.624547\n1582 1 0.445817 0.688036 0.499002\n781 1 0.378956 1.00252 0.75415\n911 1 0.441905 0.999575 0.935772\n1584 1 0.377276 0.689114 0.56222\n1615 1 0.446529 0.748372 0.563817\n1616 1 0.375356 0.814913 0.567521\n1710 1 0.439215 0.691046 0.624695\n1741 1 0.371678 0.749805 0.629344\n1742 1 0.440015 0.816034 0.624038\n1745 1 0.502273 0.746472 0.623879\n1588 1 0.504066 0.688278 0.565089\n1620 1 0.494772 0.819099 0.562432\n1638 1 0.182254 0.933713 0.503459\n1592 1 0.620989 0.689056 0.555935\n1619 1 0.554248 0.758376 0.56151\n1624 1 0.61754 0.819977 0.551087\n1714 1 0.568869 0.686118 0.622198\n1746 1 0.561815 0.816106 0.625856\n1749 1 0.622243 0.749609 0.626297\n649 1 0.245991 0.993707 0.624048\n1931 1 0.313058 0.500055 0.934414\n1596 1 0.744547 0.680224 0.558071\n1623 1 0.684372 0.755681 0.561584\n1627 1 0.809821 0.739061 0.566815\n1628 1 0.7543 0.814753 0.561122\n1718 1 0.686372 0.681585 0.620565\n1722 1 0.805478 0.686438 0.630644\n1750 1 0.680369 0.809829 0.627638\n1753 1 0.744436 0.748813 0.628867\n1754 1 0.815246 0.804648 0.618057\n1577 1 0.252976 0.623366 0.4986\n643 1 0.0648344 0.996401 0.693271\n1137 1 0.506856 0.876371 0.992337\n1729 1 0.993279 0.757839 0.622545\n1604 1 1.00331 0.816322 0.559266\n1600 1 0.874464 0.686879 0.566361\n1631 1 0.945265 0.748485 0.557755\n1632 1 0.871746 0.808613 0.557041\n1726 1 0.93882 0.689985 0.617674\n1757 1 0.878394 0.747418 0.619889\n1758 1 0.929603 0.816342 0.626463\n651 1 0.309216 0.993704 0.688839\n1949 1 0.876246 0.50346 0.871982\n1679 1 0.431753 0.49985 0.687012\n1635 1 0.0613523 0.878241 0.557866\n1640 1 0.127694 0.942677 0.563853\n1762 1 0.0691958 0.943321 0.623722\n1765 1 0.123615 0.874102 0.625554\n523 1 0.308149 0.99379 0.568618\n1636 1 1.00024 0.946139 0.560909\n897 1 1.00047 0.99903 0.877353\n2048 1 0.874113 0.94715 0.935122\n1639 1 0.186607 0.86371 0.559335\n1643 1 0.315074 0.880613 0.567987\n1644 1 0.243553 0.939421 0.566305\n1766 1 0.190878 0.935226 0.628425\n1769 1 0.25338 0.873827 0.630201\n1770 1 0.318433 0.935985 0.627313\n1078 1 0.677368 0.685297 1.00265\n1093 1 0.11568 0.753331 0.996745\n779 1 0.315983 1.00122 0.812088\n1647 1 0.436906 0.880906 0.565909\n1648 1 0.374608 0.945807 0.55477\n1773 1 0.375289 0.876489 0.629204\n1774 1 0.444596 0.940148 0.625842\n1777 1 0.499445 0.88258 0.623808\n1652 1 0.497564 0.942892 0.560466\n2047 1 0.937289 0.880324 0.940669\n1141 1 0.63021 0.874495 0.996767\n1117 1 0.867715 0.746845 0.996943\n1651 1 0.559837 0.88034 0.555194\n1656 1 0.624532 0.940501 0.564853\n1778 1 0.5555 0.942595 0.622088\n1781 1 0.620625 0.879597 0.634399\n2046 1 0.934526 0.935138 0.874807\n1655 1 0.680939 0.877366 0.56367\n1659 1 0.815459 0.878501 0.564159\n1660 1 0.750678 0.932999 0.563771\n1782 1 0.689167 0.941046 0.628097\n1785 1 0.755416 0.879153 0.625721\n1786 1 0.815941 0.943609 0.622307\n2045 1 0.872501 0.87916 0.866844\n1567 1 0.935994 0.502379 0.553247\n769 1 0.00064214 0.997427 0.752502\n1657 1 0.753019 0.877445 0.503322\n1142 1 0.691185 0.940949 0.994408\n1761 1 0.00148161 0.873909 0.617933\n1663 1 0.937373 0.869684 0.565135\n1664 1 0.87636 0.932497 0.56191\n1789 1 0.873148 0.872322 0.62183\n1790 1 0.938627 0.939844 0.618641\n1672 1 0.129412 0.564426 0.681472\n1699 1 0.0583857 0.630949 0.68279\n1794 1 0.0655101 0.563605 0.74357\n1800 1 0.12131 0.567384 0.801471\n1827 1 0.0586849 0.628708 0.805245\n1829 1 0.121744 0.631882 0.747005\n1825 1 1.00044 0.626629 0.74745\n1796 1 1.00356 0.55788 0.801698\n1609 1 0.255656 0.75981 0.499263\n917 1 0.627281 1.00463 0.877448\n1547 1 0.319156 0.507935 0.556566\n2039 1 0.687361 0.874235 0.928593\n1676 1 0.253742 0.562665 0.695629\n1703 1 0.18598 0.635005 0.678842\n1707 1 0.315925 0.620421 0.685645\n1798 1 0.187726 0.571155 0.746218\n1802 1 0.316876 0.557871 0.747436\n1804 1 0.253621 0.563982 0.808222\n1831 1 0.184694 0.626829 0.810506\n1833 1 0.25109 0.62011 0.750592\n1835 1 0.312365 0.624343 0.813096\n2038 1 0.68578 0.937491 0.874621\n2044 1 0.748407 0.942282 0.936725\n1680 1 0.371824 0.562253 0.67853\n1711 1 0.435516 0.617409 0.686349\n1806 1 0.434445 0.564144 0.75727\n1808 1 0.374971 0.565293 0.816768\n1837 1 0.378434 0.627001 0.750492\n1839 1 0.438677 0.630823 0.813397\n1684 1 0.495188 0.562706 0.686756\n1841 1 0.492888 0.628396 0.748862\n1812 1 0.496025 0.563138 0.809108\n2042 1 0.810936 0.940281 0.871543\n1688 1 0.633375 0.557063 0.688188\n1715 1 0.563032 0.626115 0.683883\n1810 1 0.557162 0.563374 0.740774\n1816 1 0.621782 0.558007 0.810863\n1843 1 0.56621 0.611837 0.808336\n1845 1 0.626788 0.620298 0.74666\n2043 1 0.817903 0.881651 0.929149\n1692 1 0.758054 0.561343 0.684612\n1719 1 0.69089 0.617705 0.69034\n1723 1 0.813386 0.624336 0.687665\n1814 1 0.696141 0.561502 0.749991\n1818 1 0.814839 0.561489 0.74824\n1820 1 0.756312 0.557813 0.814648\n1847 1 0.687099 0.617859 0.808668\n1849 1 0.752704 0.617423 0.749264\n1851 1 0.812958 0.621644 0.812031\n2041 1 0.749042 0.875481 0.86944\n1681 1 0.504179 0.501048 0.632517\n1146 1 0.811498 0.933513 0.999237\n1668 1 0.999262 0.564372 0.685922\n1696 1 0.871884 0.559029 0.687866\n1727 1 0.937579 0.618379 0.686094\n1822 1 0.931731 0.556757 0.746397\n1824 1 0.873486 0.562471 0.81119\n1853 1 0.870482 0.628017 0.748362\n1855 1 0.934744 0.623793 0.806472\n1689 1 0.746919 0.497827 0.630395\n1704 1 0.119418 0.696716 0.688245\n1731 1 0.0568617 0.75246 0.688149\n1736 1 0.131401 0.812745 0.684024\n1826 1 0.0558298 0.694915 0.742189\n1832 1 0.130914 0.686142 0.811432\n1858 1 0.052344 0.811487 0.746053\n1859 1 0.0576264 0.748587 0.815192\n1861 1 0.118697 0.756607 0.745298\n1864 1 0.12337 0.811862 0.814629\n1828 1 0.99261 0.68678 0.809322\n1732 1 0.988392 0.820025 0.679782\n1708 1 0.257648 0.685049 0.693454\n1735 1 0.182701 0.748585 0.684595\n1739 1 0.312846 0.752334 0.688961\n1740 1 0.25211 0.808388 0.692787\n1830 1 0.184828 0.691558 0.743008\n1834 1 0.314999 0.689019 0.754194\n1836 1 0.245994 0.685496 0.804279\n1862 1 0.183929 0.813728 0.748288\n1863 1 0.190508 0.752724 0.81294\n1865 1 0.25003 0.751789 0.74943\n1866 1 0.316892 0.815146 0.756527\n1867 1 0.311636 0.749389 0.806466\n1868 1 0.245457 0.815687 0.813534\n1712 1 0.383081 0.687386 0.681568\n1743 1 0.437854 0.749668 0.685523\n1744 1 0.382377 0.814357 0.685583\n1838 1 0.434368 0.685247 0.749891\n1840 1 0.37459 0.685533 0.814932\n1869 1 0.372075 0.750049 0.741441\n1870 1 0.438686 0.811466 0.746235\n1871 1 0.436232 0.742897 0.813529\n1872 1 0.376594 0.801017 0.813769\n1873 1 0.499425 0.752072 0.755127\n1748 1 0.496463 0.804747 0.688338\n1876 1 0.500672 0.813664 0.81345\n1716 1 0.507547 0.693799 0.691867\n1844 1 0.49871 0.691047 0.817627\n1720 1 0.621726 0.687452 0.695913\n1747 1 0.564095 0.75921 0.692417\n1752 1 0.616316 0.819644 0.690759\n1842 1 0.557103 0.680396 0.758476\n1848 1 0.62819 0.688847 0.812968\n1874 1 0.568067 0.816846 0.756587\n1875 1 0.565397 0.752244 0.812997\n1877 1 0.62985 0.751454 0.752682\n1880 1 0.625102 0.811408 0.81376\n1724 1 0.745072 0.683725 0.688449\n1751 1 0.684143 0.742292 0.687761\n1755 1 0.811839 0.75369 0.682312\n1756 1 0.747555 0.813375 0.684349\n1846 1 0.684725 0.68511 0.750883\n1850 1 0.811153 0.689568 0.752303\n1852 1 0.752961 0.686788 0.81341\n1878 1 0.682465 0.815805 0.745719\n1879 1 0.691231 0.747327 0.810531\n1881 1 0.748606 0.742871 0.748111\n1882 1 0.806237 0.817215 0.742852\n1883 1 0.815464 0.750134 0.81085\n1884 1 0.749976 0.808512 0.803583\n1860 1 0.994163 0.819791 0.812464\n1857 1 0.993006 0.755407 0.752128\n1700 1 0.994231 0.685956 0.693134\n1728 1 0.869069 0.689254 0.685107\n1759 1 0.936158 0.747463 0.690786\n1760 1 0.866139 0.81751 0.68304\n1854 1 0.932916 0.685628 0.750689\n1856 1 0.87686 0.69163 0.813633\n1885 1 0.875083 0.7612 0.750198\n1886 1 0.936952 0.818359 0.743556\n1887 1 0.936241 0.756159 0.810992\n1888 1 0.867092 0.816742 0.807666\n1929 1 0.250979 0.504651 0.869361\n1763 1 0.055176 0.874759 0.687691\n1768 1 0.123841 0.940374 0.689319\n1890 1 0.0571391 0.935873 0.748182\n1891 1 0.0593564 0.871684 0.810103\n1893 1 0.123273 0.878038 0.753097\n1896 1 0.119174 0.945956 0.806688\n1892 1 0.994878 0.93612 0.815163\n1764 1 0.996307 0.936857 0.687122\n1889 1 0.994145 0.875141 0.751926\n1133 1 0.379043 0.871081 0.997867\n1669 1 0.119422 0.503251 0.617285\n1030 1 0.187436 0.554807 0.994522\n1106 1 0.568677 0.819846 0.993445\n1767 1 0.189537 0.872611 0.687092\n1771 1 0.318669 0.870282 0.689856\n1772 1 0.25147 0.935473 0.695051\n1894 1 0.18209 0.939818 0.750219\n1895 1 0.186558 0.878414 0.805333\n1897 1 0.24949 0.868537 0.754193\n1898 1 0.319845 0.934604 0.749548\n1899 1 0.307372 0.876692 0.814482\n1900 1 0.248482 0.937432 0.803743\n1026 1 0.0498763 0.560868 0.989944\n1775 1 0.445673 0.882464 0.686736\n1776 1 0.383011 0.937578 0.693698\n1901 1 0.377959 0.867432 0.755212\n1902 1 0.444128 0.937075 0.75775\n1903 1 0.436134 0.863543 0.812572\n1904 1 0.37606 0.93781 0.813522\n1780 1 0.501805 0.942462 0.69404\n1908 1 0.504599 0.953919 0.811764\n1905 1 0.495901 0.875342 0.752625\n2013 1 0.871575 0.750996 0.869243\n2015 1 0.938295 0.750569 0.930005\n2036 1 0.500873 0.941637 0.936822\n1779 1 0.560746 0.883199 0.684418\n1784 1 0.619919 0.943817 0.691852\n1906 1 0.562492 0.940205 0.757501\n1907 1 0.556995 0.879183 0.809979\n1909 1 0.620985 0.881011 0.748226\n1912 1 0.626736 0.937581 0.80983\n2012 1 0.755414 0.810129 0.932544\n2027 1 0.31677 0.874288 0.94321\n1574 1 0.190861 0.698689 0.505638\n1980 1 0.756715 0.683542 0.935936\n521 1 0.251412 0.991386 0.498102\n2014 1 0.937455 0.814282 0.870698\n1783 1 0.687522 0.876578 0.685128\n1787 1 0.812129 0.88051 0.684211\n1788 1 0.757001 0.937092 0.679107\n1910 1 0.687824 0.941319 0.747009\n1911 1 0.691283 0.877312 0.813852\n1913 1 0.751787 0.877152 0.743678\n1914 1 0.812314 0.938929 0.741541\n1915 1 0.808454 0.881021 0.808867\n1916 1 0.743313 0.93862 0.812318\n2016 1 0.872644 0.812189 0.934236\n1791 1 0.939027 0.881666 0.678496\n1792 1 0.880028 0.933814 0.681202\n1917 1 0.873803 0.880719 0.749202\n1918 1 0.937068 0.937998 0.744971\n1919 1 0.93156 0.87882 0.815387\n1920 1 0.874084 0.938237 0.810412\n2040 1 0.628864 0.936304 0.932222\n1984 1 0.872812 0.680981 0.936847\n2011 1 0.813746 0.746798 0.940182\n1922 1 0.0596914 0.567052 0.863176\n1928 1 0.12345 0.558921 0.936939\n1955 1 0.0543501 0.620615 0.92521\n1957 1 0.120232 0.626082 0.868301\n1924 1 0.991624 0.563645 0.933558\n1058 1 0.0531478 0.696823 0.999081\n2006 1 0.693256 0.806072 0.870316\n2021 1 0.125754 0.876682 0.87861\n1930 1 0.315599 0.564898 0.876059\n1926 1 0.178129 0.560378 0.870224\n1963 1 0.31093 0.625389 0.934339\n1961 1 0.252212 0.62314 0.877507\n1932 1 0.24973 0.566317 0.937639\n1959 1 0.189568 0.628697 0.935868\n1667 1 0.0658348 0.501423 0.686048\n2034 1 0.567865 0.94188 0.869721\n2018 1 0.054933 0.939984 0.873809\n1061 1 0.114945 0.62805 0.991198\n2035 1 0.560531 0.8851 0.930813\n1965 1 0.375025 0.62284 0.878758\n1934 1 0.448352 0.561512 0.881063\n1936 1 0.378419 0.561888 0.942599\n1967 1 0.437428 0.620888 0.942056\n2019 1 0.0623548 0.876037 0.938692\n1809 1 0.493483 0.503569 0.748572\n2024 1 0.11878 0.93914 0.932123\n641 1 0.00205385 0.997031 0.629643\n1940 1 0.504143 0.560464 0.944607\n1969 1 0.49757 0.618526 0.875018\n1938 1 0.564034 0.566866 0.879803\n1944 1 0.62119 0.563956 0.940969\n1971 1 0.561101 0.619081 0.944221\n1973 1 0.625883 0.627473 0.873558\n1145 1 0.746894 0.882261 0.993058\n1634 1 0.0595531 0.937503 0.498997\n1065 1 0.243766 0.634011 0.997355\n1942 1 0.687802 0.564146 0.87447\n1946 1 0.813531 0.562692 0.876643\n1977 1 0.747678 0.619313 0.872274\n1979 1 0.813909 0.618713 0.936599\n1948 1 0.75067 0.564326 0.936889\n1975 1 0.681626 0.623804 0.940907\n2028 1 0.253318 0.932225 0.937943\n2023 1 0.18633 0.876244 0.943373\n1125 1 0.123 0.86594 0.991615\n1953 1 0.993451 0.620999 0.864374\n1950 1 0.939383 0.558738 0.869746\n1981 1 0.872477 0.621842 0.873212\n1983 1 0.931023 0.621471 0.935096\n1952 1 0.870641 0.563297 0.934851\n2037 1 0.621855 0.875133 0.873139\n2030 1 0.437579 0.942046 0.870052\n2026 1 0.31863 0.929724 0.880056\n2020 1 0.00163609 0.938695 0.942029\n1988 1 1.00533 0.811992 0.931842\n1986 1 0.0560025 0.808891 0.872239\n1987 1 0.0550637 0.74821 0.934576\n1954 1 0.0622545 0.681499 0.866087\n1992 1 0.119199 0.808877 0.930461\n1989 1 0.124824 0.746583 0.869264\n1960 1 0.12189 0.683943 0.93183\n1985 1 0.993652 0.745145 0.868813\n1956 1 1.00209 0.682623 0.925889\n2025 1 0.249024 0.873286 0.876219\n1995 1 0.314969 0.747686 0.936454\n1996 1 0.250518 0.810218 0.930884\n1991 1 0.180648 0.748642 0.931033\n1958 1 0.190119 0.681381 0.874984\n1964 1 0.249652 0.685443 0.935843\n1993 1 0.257369 0.749553 0.865466\n1962 1 0.314812 0.690228 0.877041\n1990 1 0.186638 0.817722 0.870756\n1994 1 0.309792 0.814576 0.87294\n2032 1 0.383818 0.937826 0.936434\n1982 1 0.935144 0.680511 0.871909\n2029 1 0.371466 0.869577 0.864497\n1999 1 0.437377 0.749241 0.942543\n1998 1 0.436173 0.801838 0.873971\n1966 1 0.436665 0.687257 0.879155\n1968 1 0.377098 0.682305 0.939302\n1997 1 0.374944 0.749726 0.877028\n2000 1 0.368775 0.810003 0.931387\n1972 1 0.499853 0.682281 0.937261\n2031 1 0.440037 0.870022 0.9305\n1113 1 0.745355 0.749676 0.998809\n2004 1 0.504905 0.81664 0.929621\n2001 1 0.502078 0.749337 0.87424\n2005 1 0.627006 0.748564 0.873325\n2002 1 0.562102 0.812034 0.879427\n1970 1 0.561494 0.686876 0.868087\n1976 1 0.625573 0.68187 0.934247\n2003 1 0.566551 0.743973 0.932396\n2008 1 0.633488 0.814242 0.936699\n2033 1 0.493058 0.880755 0.868123\n2017 1 0.996191 0.878787 0.875634\n1074 1 0.566316 0.694526 1.00157\n2022 1 0.191428 0.938228 0.871475\n2010 1 0.804611 0.807074 0.86528\n2007 1 0.680102 0.74731 0.935135\n2009 1 0.753912 0.74509 0.874446\n1978 1 0.816786 0.681976 0.869183\n1974 1 0.690609 0.685261 0.868542\n1129 1 0.251497 0.873221 0.994404\n909 1 0.377137 1.00006 0.879002\n1094 1 0.191946 0.80251 0.990798\n1555 1 0.565859 0.500925 0.561863\n1057 1 -0.00309626 0.629372 0.997874\n1642 1 0.314314 0.942804 0.495962\n1062 1 0.178184 0.689267 0.995083\n1658 1 0.815447 0.940968 0.502516\n793 1 0.743105 1.00288 0.748977\n671 1 0.941433 0.995691 0.686931\n1089 1 0.990399 0.746802 0.995184\n1923 1 0.05581 0.498101 0.930794\n1097 1 0.250951 0.744118 0.991543\n1797 1 0.123376 0.501534 0.752231\n1085 1 0.873127 0.629855 1.00244\n1101 1 0.371896 0.750454 1.00422\n667 1 0.813528 1.00075 0.685281\n527 1 0.437471 1.00358 0.564627\n531 1 0.56325 0.9973 0.564851\n1105 1 0.49917 0.749498 0.995392\n1114 1 0.81342 0.822531 0.996507\n1102 1 0.439032 0.814091 0.994953\n1110 1 0.699646 0.815527 0.990578\n1581 1 0.381701 0.627057 0.504204\n13 1 0.372918 0.998796 0.999534\n1050 1 0.816684 0.565566 1.00689\n1807 1 0.439654 0.499143 0.821484\n907 1 0.317687 0.99607 0.93502\n1943 1 0.682512 0.504109 0.937564\n1811 1 0.557465 0.505707 0.809291\n1641 1 0.253317 0.869057 0.501578\n775 1 0.184156 0.999021 0.810872\n1538 1 0.06898 0.560485 0.501483\n1134 1 0.439629 0.930118 0.989881\n1662 1 0.937476 0.934607 0.502692\n1138 1 0.568217 0.93067 0.995241\n1086 1 0.933867 0.68585 0.999331\n1122 1 0.067583 0.939773 0.99392\n1562 1 0.81253 0.563951 0.509341\n1625 1 0.75164 0.75589 0.505127\n1598 1 0.940507 0.685858 0.500397\n1629 1 0.873073 0.749917 0.501831\n1118 1 0.930604 0.806269 0.992672\n1593 1 0.7484 0.618693 0.501168\n1149 1 0.87778 0.878256 0.996482\n1649 1 0.492737 0.880062 0.504117\n1610 1 0.315196 0.822664 0.510869\n1614 1 0.432621 0.813445 0.50591\n" ]
true
99,509
9d8287ae3d75a6864077828ab68167a66ea343fd
"""A class for stashing data (and possibly filtering it, in an online way).""" from vessel import Vessel from datetime import datetime import numpy as np from collections import deque class Stash(object): """Store data and filter it.""" def __init__( self, nb_taps: int = 5, demand_uniqueness: bool = True, do_filter=True, save_data=False, ): self.do_filter = do_filter self.save_data = save_data self.demand_uniqueness = demand_uniqueness self.M = M = nb_taps self.p = p = int((M - 1) / 2) self.q = p + 1 # These vectors hold the time/values being added to the stash. self.x = deque([], maxlen=1000) self.t = deque([], maxlen=1000) # These variables are the filtered version of t/x; cannot sample from these vectors... self.t_ = deque([], maxlen=1000) self.x_ = deque([], maxlen=1000) self.x_prev = 0 # These variables are the filtered version from which we sample. We # have two versions because, depending on how quickly we're sampling # from the the object, we may exhaust the data needed for the moving # average filter. self.t_filtered = deque([], maxlen=1000) self.x_filtered = deque([], maxlen=1000) if self.save_data: datestring = datetime.now().strftime("%Y.%m.%d.%H.%M") self.store = Vessel(f"data/{datestring}.dat") self.store.t = [] self.store.x = [] def add(self, t, x): """Add new point.""" if self.demand_uniqueness: # Cannot add two successive identical values. if len(self.x) > 0: if self.x[-1] != x: self.t.append(t) self.x.append(x) self.save_to_store(t, x) else: self.t.append(t) self.x.append(x) self.save_to_store(t, x) else: self.t.append(t) self.x.append(x) self.save_to_store(t, x) if len(self.x) >= self.M and self.do_filter: self.filter() def save_to_store(self, t, x): if self.save_data: self.store.t.append(t) self.store.x.append(x) if np.mod(len(self.store.t), 1000) == 0: # Save every 1000 samples. self.store.save() def filter(self): """Super efficient moving average filter.""" M, p, q = self.M, self.p, self.q x = self.x idx = len(self.x) - (p + 1) x_ = self.x_prev + (x[idx + p] - x[idx - q]) / M self.t_.append(self.t[idx]) self.t_filtered.append(self.t[idx]) self.x_.append(x_) self.x_filtered.append(x_) self.x_prev = x_ @property def sample(self): """Return first observed pair (t, x), still in queue.""" if self.do_filter: if len(self.t_filtered) > 0: yield self.t_filtered.popleft(), self.x_filtered.popleft() else: yield None, None else: # let's not filter if len(self.t) > 0: yield self.t.popleft(), self.x.popleft() else: yield None, None if __name__ == "__main__": import pylab as plt plt.ion() plt.close("all") # Create a noisy sinusoidal signal. t = np.linspace(0, 10, 1000) x = np.sin(2 * np.pi * t / 3) + 0.05 * np.random.randn(1000) + 15 # Estimate number of taps required for specified cutoff frequency. # See (https://goo.gl/yCySp4) for more details. fs = 100 # sampling rate fc = 5 # cutoff frequency Fco = fc / fs # normalized cutoff frequency alpha = 0.196202 N = int(np.ceil(np.sqrt(alpha + Fco ** 2) / Fco)) # Plot the example data plt.figure() plt.plot(t, x) # Create a data stash! pzt = Stash(N) # Add a bunch of samples to the stash. for t_, x_ in zip(t, x): pzt.add(t_, x_) # Now plot the resulting filtered data. t_, x_ = pzt.t_filtered, pzt.x_filtered plt.plot(t_, x_) # Note also that you can sample from the object because it's a generator. t0, x0 = next(pzt.sample) t1, x1 = next(pzt.sample) # ... and so on
[ "\"\"\"A class for stashing data (and possibly filtering it, in an online way).\"\"\"\nfrom vessel import Vessel\n\nfrom datetime import datetime\nimport numpy as np\nfrom collections import deque\n\n\nclass Stash(object):\n \"\"\"Store data and filter it.\"\"\"\n\n def __init__(\n self,\n nb_taps: int = 5,\n demand_uniqueness: bool = True,\n do_filter=True,\n save_data=False,\n ):\n self.do_filter = do_filter\n self.save_data = save_data\n self.demand_uniqueness = demand_uniqueness\n self.M = M = nb_taps\n self.p = p = int((M - 1) / 2)\n self.q = p + 1\n\n # These vectors hold the time/values being added to the stash.\n self.x = deque([], maxlen=1000)\n self.t = deque([], maxlen=1000)\n\n # These variables are the filtered version of t/x; cannot sample from these vectors...\n self.t_ = deque([], maxlen=1000)\n self.x_ = deque([], maxlen=1000)\n self.x_prev = 0\n\n # These variables are the filtered version from which we sample. We\n # have two versions because, depending on how quickly we're sampling\n # from the the object, we may exhaust the data needed for the moving\n # average filter.\n self.t_filtered = deque([], maxlen=1000)\n self.x_filtered = deque([], maxlen=1000)\n if self.save_data:\n datestring = datetime.now().strftime(\"%Y.%m.%d.%H.%M\")\n self.store = Vessel(f\"data/{datestring}.dat\")\n self.store.t = []\n self.store.x = []\n\n def add(self, t, x):\n \"\"\"Add new point.\"\"\"\n if self.demand_uniqueness:\n # Cannot add two successive identical values.\n if len(self.x) > 0:\n if self.x[-1] != x:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n if len(self.x) >= self.M and self.do_filter:\n self.filter()\n\n def save_to_store(self, t, x):\n if self.save_data:\n self.store.t.append(t)\n self.store.x.append(x)\n if np.mod(len(self.store.t), 1000) == 0:\n # Save every 1000 samples.\n self.store.save()\n\n def filter(self):\n \"\"\"Super efficient moving average filter.\"\"\"\n M, p, q = self.M, self.p, self.q\n x = self.x\n idx = len(self.x) - (p + 1)\n x_ = self.x_prev + (x[idx + p] - x[idx - q]) / M\n self.t_.append(self.t[idx])\n self.t_filtered.append(self.t[idx])\n self.x_.append(x_)\n self.x_filtered.append(x_)\n self.x_prev = x_\n\n @property\n def sample(self):\n \"\"\"Return first observed pair (t, x), still in queue.\"\"\"\n if self.do_filter:\n if len(self.t_filtered) > 0:\n yield self.t_filtered.popleft(), self.x_filtered.popleft()\n else:\n yield None, None\n else: # let's not filter\n if len(self.t) > 0:\n yield self.t.popleft(), self.x.popleft()\n else:\n yield None, None\n\n\nif __name__ == \"__main__\":\n import pylab as plt\n\n plt.ion()\n plt.close(\"all\")\n\n # Create a noisy sinusoidal signal.\n t = np.linspace(0, 10, 1000)\n x = np.sin(2 * np.pi * t / 3) + 0.05 * np.random.randn(1000) + 15\n\n # Estimate number of taps required for specified cutoff frequency.\n # See (https://goo.gl/yCySp4) for more details.\n fs = 100 # sampling rate\n fc = 5 # cutoff frequency\n Fco = fc / fs # normalized cutoff frequency\n alpha = 0.196202\n N = int(np.ceil(np.sqrt(alpha + Fco ** 2) / Fco))\n\n # Plot the example data\n plt.figure()\n plt.plot(t, x)\n\n # Create a data stash!\n pzt = Stash(N)\n\n # Add a bunch of samples to the stash.\n for t_, x_ in zip(t, x):\n pzt.add(t_, x_)\n\n # Now plot the resulting filtered data.\n t_, x_ = pzt.t_filtered, pzt.x_filtered\n plt.plot(t_, x_)\n\n # Note also that you can sample from the object because it's a generator.\n t0, x0 = next(pzt.sample)\n t1, x1 = next(pzt.sample)\n # ... and so on\n", "<docstring token>\nfrom vessel import Vessel\nfrom datetime import datetime\nimport numpy as np\nfrom collections import deque\n\n\nclass Stash(object):\n \"\"\"Store data and filter it.\"\"\"\n\n def __init__(self, nb_taps: int=5, demand_uniqueness: bool=True,\n do_filter=True, save_data=False):\n self.do_filter = do_filter\n self.save_data = save_data\n self.demand_uniqueness = demand_uniqueness\n self.M = M = nb_taps\n self.p = p = int((M - 1) / 2)\n self.q = p + 1\n self.x = deque([], maxlen=1000)\n self.t = deque([], maxlen=1000)\n self.t_ = deque([], maxlen=1000)\n self.x_ = deque([], maxlen=1000)\n self.x_prev = 0\n self.t_filtered = deque([], maxlen=1000)\n self.x_filtered = deque([], maxlen=1000)\n if self.save_data:\n datestring = datetime.now().strftime('%Y.%m.%d.%H.%M')\n self.store = Vessel(f'data/{datestring}.dat')\n self.store.t = []\n self.store.x = []\n\n def add(self, t, x):\n \"\"\"Add new point.\"\"\"\n if self.demand_uniqueness:\n if len(self.x) > 0:\n if self.x[-1] != x:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n if len(self.x) >= self.M and self.do_filter:\n self.filter()\n\n def save_to_store(self, t, x):\n if self.save_data:\n self.store.t.append(t)\n self.store.x.append(x)\n if np.mod(len(self.store.t), 1000) == 0:\n self.store.save()\n\n def filter(self):\n \"\"\"Super efficient moving average filter.\"\"\"\n M, p, q = self.M, self.p, self.q\n x = self.x\n idx = len(self.x) - (p + 1)\n x_ = self.x_prev + (x[idx + p] - x[idx - q]) / M\n self.t_.append(self.t[idx])\n self.t_filtered.append(self.t[idx])\n self.x_.append(x_)\n self.x_filtered.append(x_)\n self.x_prev = x_\n\n @property\n def sample(self):\n \"\"\"Return first observed pair (t, x), still in queue.\"\"\"\n if self.do_filter:\n if len(self.t_filtered) > 0:\n yield self.t_filtered.popleft(), self.x_filtered.popleft()\n else:\n yield None, None\n elif len(self.t) > 0:\n yield self.t.popleft(), self.x.popleft()\n else:\n yield None, None\n\n\nif __name__ == '__main__':\n import pylab as plt\n plt.ion()\n plt.close('all')\n t = np.linspace(0, 10, 1000)\n x = np.sin(2 * np.pi * t / 3) + 0.05 * np.random.randn(1000) + 15\n fs = 100\n fc = 5\n Fco = fc / fs\n alpha = 0.196202\n N = int(np.ceil(np.sqrt(alpha + Fco ** 2) / Fco))\n plt.figure()\n plt.plot(t, x)\n pzt = Stash(N)\n for t_, x_ in zip(t, x):\n pzt.add(t_, x_)\n t_, x_ = pzt.t_filtered, pzt.x_filtered\n plt.plot(t_, x_)\n t0, x0 = next(pzt.sample)\n t1, x1 = next(pzt.sample)\n", "<docstring token>\n<import token>\n\n\nclass Stash(object):\n \"\"\"Store data and filter it.\"\"\"\n\n def __init__(self, nb_taps: int=5, demand_uniqueness: bool=True,\n do_filter=True, save_data=False):\n self.do_filter = do_filter\n self.save_data = save_data\n self.demand_uniqueness = demand_uniqueness\n self.M = M = nb_taps\n self.p = p = int((M - 1) / 2)\n self.q = p + 1\n self.x = deque([], maxlen=1000)\n self.t = deque([], maxlen=1000)\n self.t_ = deque([], maxlen=1000)\n self.x_ = deque([], maxlen=1000)\n self.x_prev = 0\n self.t_filtered = deque([], maxlen=1000)\n self.x_filtered = deque([], maxlen=1000)\n if self.save_data:\n datestring = datetime.now().strftime('%Y.%m.%d.%H.%M')\n self.store = Vessel(f'data/{datestring}.dat')\n self.store.t = []\n self.store.x = []\n\n def add(self, t, x):\n \"\"\"Add new point.\"\"\"\n if self.demand_uniqueness:\n if len(self.x) > 0:\n if self.x[-1] != x:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n if len(self.x) >= self.M and self.do_filter:\n self.filter()\n\n def save_to_store(self, t, x):\n if self.save_data:\n self.store.t.append(t)\n self.store.x.append(x)\n if np.mod(len(self.store.t), 1000) == 0:\n self.store.save()\n\n def filter(self):\n \"\"\"Super efficient moving average filter.\"\"\"\n M, p, q = self.M, self.p, self.q\n x = self.x\n idx = len(self.x) - (p + 1)\n x_ = self.x_prev + (x[idx + p] - x[idx - q]) / M\n self.t_.append(self.t[idx])\n self.t_filtered.append(self.t[idx])\n self.x_.append(x_)\n self.x_filtered.append(x_)\n self.x_prev = x_\n\n @property\n def sample(self):\n \"\"\"Return first observed pair (t, x), still in queue.\"\"\"\n if self.do_filter:\n if len(self.t_filtered) > 0:\n yield self.t_filtered.popleft(), self.x_filtered.popleft()\n else:\n yield None, None\n elif len(self.t) > 0:\n yield self.t.popleft(), self.x.popleft()\n else:\n yield None, None\n\n\nif __name__ == '__main__':\n import pylab as plt\n plt.ion()\n plt.close('all')\n t = np.linspace(0, 10, 1000)\n x = np.sin(2 * np.pi * t / 3) + 0.05 * np.random.randn(1000) + 15\n fs = 100\n fc = 5\n Fco = fc / fs\n alpha = 0.196202\n N = int(np.ceil(np.sqrt(alpha + Fco ** 2) / Fco))\n plt.figure()\n plt.plot(t, x)\n pzt = Stash(N)\n for t_, x_ in zip(t, x):\n pzt.add(t_, x_)\n t_, x_ = pzt.t_filtered, pzt.x_filtered\n plt.plot(t_, x_)\n t0, x0 = next(pzt.sample)\n t1, x1 = next(pzt.sample)\n", "<docstring token>\n<import token>\n\n\nclass Stash(object):\n \"\"\"Store data and filter it.\"\"\"\n\n def __init__(self, nb_taps: int=5, demand_uniqueness: bool=True,\n do_filter=True, save_data=False):\n self.do_filter = do_filter\n self.save_data = save_data\n self.demand_uniqueness = demand_uniqueness\n self.M = M = nb_taps\n self.p = p = int((M - 1) / 2)\n self.q = p + 1\n self.x = deque([], maxlen=1000)\n self.t = deque([], maxlen=1000)\n self.t_ = deque([], maxlen=1000)\n self.x_ = deque([], maxlen=1000)\n self.x_prev = 0\n self.t_filtered = deque([], maxlen=1000)\n self.x_filtered = deque([], maxlen=1000)\n if self.save_data:\n datestring = datetime.now().strftime('%Y.%m.%d.%H.%M')\n self.store = Vessel(f'data/{datestring}.dat')\n self.store.t = []\n self.store.x = []\n\n def add(self, t, x):\n \"\"\"Add new point.\"\"\"\n if self.demand_uniqueness:\n if len(self.x) > 0:\n if self.x[-1] != x:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n if len(self.x) >= self.M and self.do_filter:\n self.filter()\n\n def save_to_store(self, t, x):\n if self.save_data:\n self.store.t.append(t)\n self.store.x.append(x)\n if np.mod(len(self.store.t), 1000) == 0:\n self.store.save()\n\n def filter(self):\n \"\"\"Super efficient moving average filter.\"\"\"\n M, p, q = self.M, self.p, self.q\n x = self.x\n idx = len(self.x) - (p + 1)\n x_ = self.x_prev + (x[idx + p] - x[idx - q]) / M\n self.t_.append(self.t[idx])\n self.t_filtered.append(self.t[idx])\n self.x_.append(x_)\n self.x_filtered.append(x_)\n self.x_prev = x_\n\n @property\n def sample(self):\n \"\"\"Return first observed pair (t, x), still in queue.\"\"\"\n if self.do_filter:\n if len(self.t_filtered) > 0:\n yield self.t_filtered.popleft(), self.x_filtered.popleft()\n else:\n yield None, None\n elif len(self.t) > 0:\n yield self.t.popleft(), self.x.popleft()\n else:\n yield None, None\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass Stash(object):\n <docstring token>\n\n def __init__(self, nb_taps: int=5, demand_uniqueness: bool=True,\n do_filter=True, save_data=False):\n self.do_filter = do_filter\n self.save_data = save_data\n self.demand_uniqueness = demand_uniqueness\n self.M = M = nb_taps\n self.p = p = int((M - 1) / 2)\n self.q = p + 1\n self.x = deque([], maxlen=1000)\n self.t = deque([], maxlen=1000)\n self.t_ = deque([], maxlen=1000)\n self.x_ = deque([], maxlen=1000)\n self.x_prev = 0\n self.t_filtered = deque([], maxlen=1000)\n self.x_filtered = deque([], maxlen=1000)\n if self.save_data:\n datestring = datetime.now().strftime('%Y.%m.%d.%H.%M')\n self.store = Vessel(f'data/{datestring}.dat')\n self.store.t = []\n self.store.x = []\n\n def add(self, t, x):\n \"\"\"Add new point.\"\"\"\n if self.demand_uniqueness:\n if len(self.x) > 0:\n if self.x[-1] != x:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n if len(self.x) >= self.M and self.do_filter:\n self.filter()\n\n def save_to_store(self, t, x):\n if self.save_data:\n self.store.t.append(t)\n self.store.x.append(x)\n if np.mod(len(self.store.t), 1000) == 0:\n self.store.save()\n\n def filter(self):\n \"\"\"Super efficient moving average filter.\"\"\"\n M, p, q = self.M, self.p, self.q\n x = self.x\n idx = len(self.x) - (p + 1)\n x_ = self.x_prev + (x[idx + p] - x[idx - q]) / M\n self.t_.append(self.t[idx])\n self.t_filtered.append(self.t[idx])\n self.x_.append(x_)\n self.x_filtered.append(x_)\n self.x_prev = x_\n\n @property\n def sample(self):\n \"\"\"Return first observed pair (t, x), still in queue.\"\"\"\n if self.do_filter:\n if len(self.t_filtered) > 0:\n yield self.t_filtered.popleft(), self.x_filtered.popleft()\n else:\n yield None, None\n elif len(self.t) > 0:\n yield self.t.popleft(), self.x.popleft()\n else:\n yield None, None\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass Stash(object):\n <docstring token>\n\n def __init__(self, nb_taps: int=5, demand_uniqueness: bool=True,\n do_filter=True, save_data=False):\n self.do_filter = do_filter\n self.save_data = save_data\n self.demand_uniqueness = demand_uniqueness\n self.M = M = nb_taps\n self.p = p = int((M - 1) / 2)\n self.q = p + 1\n self.x = deque([], maxlen=1000)\n self.t = deque([], maxlen=1000)\n self.t_ = deque([], maxlen=1000)\n self.x_ = deque([], maxlen=1000)\n self.x_prev = 0\n self.t_filtered = deque([], maxlen=1000)\n self.x_filtered = deque([], maxlen=1000)\n if self.save_data:\n datestring = datetime.now().strftime('%Y.%m.%d.%H.%M')\n self.store = Vessel(f'data/{datestring}.dat')\n self.store.t = []\n self.store.x = []\n\n def add(self, t, x):\n \"\"\"Add new point.\"\"\"\n if self.demand_uniqueness:\n if len(self.x) > 0:\n if self.x[-1] != x:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n if len(self.x) >= self.M and self.do_filter:\n self.filter()\n <function token>\n\n def filter(self):\n \"\"\"Super efficient moving average filter.\"\"\"\n M, p, q = self.M, self.p, self.q\n x = self.x\n idx = len(self.x) - (p + 1)\n x_ = self.x_prev + (x[idx + p] - x[idx - q]) / M\n self.t_.append(self.t[idx])\n self.t_filtered.append(self.t[idx])\n self.x_.append(x_)\n self.x_filtered.append(x_)\n self.x_prev = x_\n\n @property\n def sample(self):\n \"\"\"Return first observed pair (t, x), still in queue.\"\"\"\n if self.do_filter:\n if len(self.t_filtered) > 0:\n yield self.t_filtered.popleft(), self.x_filtered.popleft()\n else:\n yield None, None\n elif len(self.t) > 0:\n yield self.t.popleft(), self.x.popleft()\n else:\n yield None, None\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass Stash(object):\n <docstring token>\n <function token>\n\n def add(self, t, x):\n \"\"\"Add new point.\"\"\"\n if self.demand_uniqueness:\n if len(self.x) > 0:\n if self.x[-1] != x:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n if len(self.x) >= self.M and self.do_filter:\n self.filter()\n <function token>\n\n def filter(self):\n \"\"\"Super efficient moving average filter.\"\"\"\n M, p, q = self.M, self.p, self.q\n x = self.x\n idx = len(self.x) - (p + 1)\n x_ = self.x_prev + (x[idx + p] - x[idx - q]) / M\n self.t_.append(self.t[idx])\n self.t_filtered.append(self.t[idx])\n self.x_.append(x_)\n self.x_filtered.append(x_)\n self.x_prev = x_\n\n @property\n def sample(self):\n \"\"\"Return first observed pair (t, x), still in queue.\"\"\"\n if self.do_filter:\n if len(self.t_filtered) > 0:\n yield self.t_filtered.popleft(), self.x_filtered.popleft()\n else:\n yield None, None\n elif len(self.t) > 0:\n yield self.t.popleft(), self.x.popleft()\n else:\n yield None, None\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass Stash(object):\n <docstring token>\n <function token>\n\n def add(self, t, x):\n \"\"\"Add new point.\"\"\"\n if self.demand_uniqueness:\n if len(self.x) > 0:\n if self.x[-1] != x:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n else:\n self.t.append(t)\n self.x.append(x)\n self.save_to_store(t, x)\n if len(self.x) >= self.M and self.do_filter:\n self.filter()\n <function token>\n <function token>\n\n @property\n def sample(self):\n \"\"\"Return first observed pair (t, x), still in queue.\"\"\"\n if self.do_filter:\n if len(self.t_filtered) > 0:\n yield self.t_filtered.popleft(), self.x_filtered.popleft()\n else:\n yield None, None\n elif len(self.t) > 0:\n yield self.t.popleft(), self.x.popleft()\n else:\n yield None, None\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass Stash(object):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n @property\n def sample(self):\n \"\"\"Return first observed pair (t, x), still in queue.\"\"\"\n if self.do_filter:\n if len(self.t_filtered) > 0:\n yield self.t_filtered.popleft(), self.x_filtered.popleft()\n else:\n yield None, None\n elif len(self.t) > 0:\n yield self.t.popleft(), self.x.popleft()\n else:\n yield None, None\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\nclass Stash(object):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<docstring token>\n<import token>\n<class token>\n<code token>\n" ]
false
99,510
e0460ad5579f53fa9a310dd448976733e9047ed2
import unittest import springer_link_csv_to_bibtex_parser import tempfile import shutil import filecmp from os import path class TestSplitCamelCaseJoinedNames(unittest.TestCase): def test_regular_joined_camel_case_names(self): split_name = springer_link_csv_to_bibtex_parser.split_camel_case_joined_names("JohnMarkPeter") self.assertEqual(split_name, ["John", "Mark", "Peter"]) def test_lower_case_first_name_in_camel_case_joined_names(self): split_name = springer_link_csv_to_bibtex_parser.split_camel_case_joined_names("johnMarkPeter") self.assertEqual(split_name, ["john", "Mark", "Peter"]) def test_accented_characters_in_camel_case_joined_name(self): split_name = springer_link_csv_to_bibtex_parser.split_camel_case_joined_names("JoãoAdriánFrançois") self.assertEqual(split_name, ["João", "Adrián", "François"]) class TestJoinNamesAsCamelCase(unittest.TestCase): def test_regular_name(self): camel_case_joined_name = springer_link_csv_to_bibtex_parser.join_names_as_camel_case("Sally Carter") self.assertEquals(camel_case_joined_name, "sallyCarter") def test_triple_name(self): camel_case_joined_name = springer_link_csv_to_bibtex_parser.join_names_as_camel_case("John James Peter") self.assertEquals(camel_case_joined_name, "johnJamesPeter") def test_accented_characters_in_names(self): camel_case_joined_name = springer_link_csv_to_bibtex_parser.join_names_as_camel_case("Zoë Noël") self.assertEquals(camel_case_joined_name, "zoëNoël") class TestConvertCsvToBibtex(unittest.TestCase): def setUp(self): self.test_directory = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.test_directory) def test_single_csv_to_bibtex_entry(self): test_single_bibtex_entry = path.join(self.test_directory, "test_single_bibtex_entry.bib") expected_single_bibtex_entry = "gold_standard_bibtex_files/single_bibtex_entry.bib" parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser("test_csv_files/single_csv_entry.csv", test_single_bibtex_entry) parser.convert_csv_to_bibtex() self.assertTrue(filecmp.cmp(test_single_bibtex_entry, expected_single_bibtex_entry), "Files do not match") def test_multiple_csv_to_bibtex_entry(self): test_multiple_bibtex_entries = path.join(self.test_directory, "test_multiple_bibtex_entries.bib") expected_multiple_bibtex_entries = "gold_standard_bibtex_files/multiple_bibtex_entries.bib" parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser("test_csv_files/multiple_csv_entries.csv", test_multiple_bibtex_entries) parser.convert_csv_to_bibtex() self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries, expected_multiple_bibtex_entries), "Files do not match") if __name__ == '__main__': unittest.main()
[ "import unittest\nimport springer_link_csv_to_bibtex_parser\nimport tempfile\nimport shutil\nimport filecmp\nfrom os import path\n\n\nclass TestSplitCamelCaseJoinedNames(unittest.TestCase):\n\n def test_regular_joined_camel_case_names(self):\n split_name = springer_link_csv_to_bibtex_parser.split_camel_case_joined_names(\"JohnMarkPeter\")\n self.assertEqual(split_name, [\"John\", \"Mark\", \"Peter\"])\n\n def test_lower_case_first_name_in_camel_case_joined_names(self):\n split_name = springer_link_csv_to_bibtex_parser.split_camel_case_joined_names(\"johnMarkPeter\")\n self.assertEqual(split_name, [\"john\", \"Mark\", \"Peter\"])\n\n def test_accented_characters_in_camel_case_joined_name(self):\n split_name = springer_link_csv_to_bibtex_parser.split_camel_case_joined_names(\"JoãoAdriánFrançois\")\n self.assertEqual(split_name, [\"João\", \"Adrián\", \"François\"])\n\n\nclass TestJoinNamesAsCamelCase(unittest.TestCase):\n\n def test_regular_name(self):\n camel_case_joined_name = springer_link_csv_to_bibtex_parser.join_names_as_camel_case(\"Sally Carter\")\n self.assertEquals(camel_case_joined_name, \"sallyCarter\")\n\n def test_triple_name(self):\n camel_case_joined_name = springer_link_csv_to_bibtex_parser.join_names_as_camel_case(\"John James Peter\")\n self.assertEquals(camel_case_joined_name, \"johnJamesPeter\")\n\n def test_accented_characters_in_names(self):\n camel_case_joined_name = springer_link_csv_to_bibtex_parser.join_names_as_camel_case(\"Zoë Noël\")\n self.assertEquals(camel_case_joined_name, \"zoëNoël\")\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n\n def setUp(self):\n self.test_directory = tempfile.mkdtemp()\n\n def tearDown(self):\n shutil.rmtree(self.test_directory)\n\n def test_single_csv_to_bibtex_entry(self):\n test_single_bibtex_entry = path.join(self.test_directory, \"test_single_bibtex_entry.bib\")\n expected_single_bibtex_entry = \"gold_standard_bibtex_files/single_bibtex_entry.bib\"\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\"test_csv_files/single_csv_entry.csv\",\n test_single_bibtex_entry)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_single_bibtex_entry, expected_single_bibtex_entry), \"Files do not match\")\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory, \"test_multiple_bibtex_entries.bib\")\n expected_multiple_bibtex_entries = \"gold_standard_bibtex_files/multiple_bibtex_entries.bib\"\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\"test_csv_files/multiple_csv_entries.csv\",\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries, expected_multiple_bibtex_entries),\n \"Files do not match\")\n\n\nif __name__ == '__main__':\n unittest.main()\n", "import unittest\nimport springer_link_csv_to_bibtex_parser\nimport tempfile\nimport shutil\nimport filecmp\nfrom os import path\n\n\nclass TestSplitCamelCaseJoinedNames(unittest.TestCase):\n\n def test_regular_joined_camel_case_names(self):\n split_name = (springer_link_csv_to_bibtex_parser.\n split_camel_case_joined_names('JohnMarkPeter'))\n self.assertEqual(split_name, ['John', 'Mark', 'Peter'])\n\n def test_lower_case_first_name_in_camel_case_joined_names(self):\n split_name = (springer_link_csv_to_bibtex_parser.\n split_camel_case_joined_names('johnMarkPeter'))\n self.assertEqual(split_name, ['john', 'Mark', 'Peter'])\n\n def test_accented_characters_in_camel_case_joined_name(self):\n split_name = (springer_link_csv_to_bibtex_parser.\n split_camel_case_joined_names('JoãoAdriánFrançois'))\n self.assertEqual(split_name, ['João', 'Adrián', 'François'])\n\n\nclass TestJoinNamesAsCamelCase(unittest.TestCase):\n\n def test_regular_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Sally Carter'))\n self.assertEquals(camel_case_joined_name, 'sallyCarter')\n\n def test_triple_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('John James Peter'))\n self.assertEquals(camel_case_joined_name, 'johnJamesPeter')\n\n def test_accented_characters_in_names(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Zoë Noël'))\n self.assertEquals(camel_case_joined_name, 'zoëNoël')\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n\n def setUp(self):\n self.test_directory = tempfile.mkdtemp()\n\n def tearDown(self):\n shutil.rmtree(self.test_directory)\n\n def test_single_csv_to_bibtex_entry(self):\n test_single_bibtex_entry = path.join(self.test_directory,\n 'test_single_bibtex_entry.bib')\n expected_single_bibtex_entry = (\n 'gold_standard_bibtex_files/single_bibtex_entry.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/single_csv_entry.csv', test_single_bibtex_entry)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_single_bibtex_entry,\n expected_single_bibtex_entry), 'Files do not match')\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory,\n 'test_multiple_bibtex_entries.bib')\n expected_multiple_bibtex_entries = (\n 'gold_standard_bibtex_files/multiple_bibtex_entries.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/multiple_csv_entries.csv',\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries,\n expected_multiple_bibtex_entries), 'Files do not match')\n\n\nif __name__ == '__main__':\n unittest.main()\n", "<import token>\n\n\nclass TestSplitCamelCaseJoinedNames(unittest.TestCase):\n\n def test_regular_joined_camel_case_names(self):\n split_name = (springer_link_csv_to_bibtex_parser.\n split_camel_case_joined_names('JohnMarkPeter'))\n self.assertEqual(split_name, ['John', 'Mark', 'Peter'])\n\n def test_lower_case_first_name_in_camel_case_joined_names(self):\n split_name = (springer_link_csv_to_bibtex_parser.\n split_camel_case_joined_names('johnMarkPeter'))\n self.assertEqual(split_name, ['john', 'Mark', 'Peter'])\n\n def test_accented_characters_in_camel_case_joined_name(self):\n split_name = (springer_link_csv_to_bibtex_parser.\n split_camel_case_joined_names('JoãoAdriánFrançois'))\n self.assertEqual(split_name, ['João', 'Adrián', 'François'])\n\n\nclass TestJoinNamesAsCamelCase(unittest.TestCase):\n\n def test_regular_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Sally Carter'))\n self.assertEquals(camel_case_joined_name, 'sallyCarter')\n\n def test_triple_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('John James Peter'))\n self.assertEquals(camel_case_joined_name, 'johnJamesPeter')\n\n def test_accented_characters_in_names(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Zoë Noël'))\n self.assertEquals(camel_case_joined_name, 'zoëNoël')\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n\n def setUp(self):\n self.test_directory = tempfile.mkdtemp()\n\n def tearDown(self):\n shutil.rmtree(self.test_directory)\n\n def test_single_csv_to_bibtex_entry(self):\n test_single_bibtex_entry = path.join(self.test_directory,\n 'test_single_bibtex_entry.bib')\n expected_single_bibtex_entry = (\n 'gold_standard_bibtex_files/single_bibtex_entry.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/single_csv_entry.csv', test_single_bibtex_entry)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_single_bibtex_entry,\n expected_single_bibtex_entry), 'Files do not match')\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory,\n 'test_multiple_bibtex_entries.bib')\n expected_multiple_bibtex_entries = (\n 'gold_standard_bibtex_files/multiple_bibtex_entries.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/multiple_csv_entries.csv',\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries,\n expected_multiple_bibtex_entries), 'Files do not match')\n\n\nif __name__ == '__main__':\n unittest.main()\n", "<import token>\n\n\nclass TestSplitCamelCaseJoinedNames(unittest.TestCase):\n\n def test_regular_joined_camel_case_names(self):\n split_name = (springer_link_csv_to_bibtex_parser.\n split_camel_case_joined_names('JohnMarkPeter'))\n self.assertEqual(split_name, ['John', 'Mark', 'Peter'])\n\n def test_lower_case_first_name_in_camel_case_joined_names(self):\n split_name = (springer_link_csv_to_bibtex_parser.\n split_camel_case_joined_names('johnMarkPeter'))\n self.assertEqual(split_name, ['john', 'Mark', 'Peter'])\n\n def test_accented_characters_in_camel_case_joined_name(self):\n split_name = (springer_link_csv_to_bibtex_parser.\n split_camel_case_joined_names('JoãoAdriánFrançois'))\n self.assertEqual(split_name, ['João', 'Adrián', 'François'])\n\n\nclass TestJoinNamesAsCamelCase(unittest.TestCase):\n\n def test_regular_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Sally Carter'))\n self.assertEquals(camel_case_joined_name, 'sallyCarter')\n\n def test_triple_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('John James Peter'))\n self.assertEquals(camel_case_joined_name, 'johnJamesPeter')\n\n def test_accented_characters_in_names(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Zoë Noël'))\n self.assertEquals(camel_case_joined_name, 'zoëNoël')\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n\n def setUp(self):\n self.test_directory = tempfile.mkdtemp()\n\n def tearDown(self):\n shutil.rmtree(self.test_directory)\n\n def test_single_csv_to_bibtex_entry(self):\n test_single_bibtex_entry = path.join(self.test_directory,\n 'test_single_bibtex_entry.bib')\n expected_single_bibtex_entry = (\n 'gold_standard_bibtex_files/single_bibtex_entry.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/single_csv_entry.csv', test_single_bibtex_entry)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_single_bibtex_entry,\n expected_single_bibtex_entry), 'Files do not match')\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory,\n 'test_multiple_bibtex_entries.bib')\n expected_multiple_bibtex_entries = (\n 'gold_standard_bibtex_files/multiple_bibtex_entries.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/multiple_csv_entries.csv',\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries,\n expected_multiple_bibtex_entries), 'Files do not match')\n\n\n<code token>\n", "<import token>\n\n\nclass TestSplitCamelCaseJoinedNames(unittest.TestCase):\n\n def test_regular_joined_camel_case_names(self):\n split_name = (springer_link_csv_to_bibtex_parser.\n split_camel_case_joined_names('JohnMarkPeter'))\n self.assertEqual(split_name, ['John', 'Mark', 'Peter'])\n\n def test_lower_case_first_name_in_camel_case_joined_names(self):\n split_name = (springer_link_csv_to_bibtex_parser.\n split_camel_case_joined_names('johnMarkPeter'))\n self.assertEqual(split_name, ['john', 'Mark', 'Peter'])\n <function token>\n\n\nclass TestJoinNamesAsCamelCase(unittest.TestCase):\n\n def test_regular_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Sally Carter'))\n self.assertEquals(camel_case_joined_name, 'sallyCarter')\n\n def test_triple_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('John James Peter'))\n self.assertEquals(camel_case_joined_name, 'johnJamesPeter')\n\n def test_accented_characters_in_names(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Zoë Noël'))\n self.assertEquals(camel_case_joined_name, 'zoëNoël')\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n\n def setUp(self):\n self.test_directory = tempfile.mkdtemp()\n\n def tearDown(self):\n shutil.rmtree(self.test_directory)\n\n def test_single_csv_to_bibtex_entry(self):\n test_single_bibtex_entry = path.join(self.test_directory,\n 'test_single_bibtex_entry.bib')\n expected_single_bibtex_entry = (\n 'gold_standard_bibtex_files/single_bibtex_entry.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/single_csv_entry.csv', test_single_bibtex_entry)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_single_bibtex_entry,\n expected_single_bibtex_entry), 'Files do not match')\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory,\n 'test_multiple_bibtex_entries.bib')\n expected_multiple_bibtex_entries = (\n 'gold_standard_bibtex_files/multiple_bibtex_entries.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/multiple_csv_entries.csv',\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries,\n expected_multiple_bibtex_entries), 'Files do not match')\n\n\n<code token>\n", "<import token>\n\n\nclass TestSplitCamelCaseJoinedNames(unittest.TestCase):\n <function token>\n\n def test_lower_case_first_name_in_camel_case_joined_names(self):\n split_name = (springer_link_csv_to_bibtex_parser.\n split_camel_case_joined_names('johnMarkPeter'))\n self.assertEqual(split_name, ['john', 'Mark', 'Peter'])\n <function token>\n\n\nclass TestJoinNamesAsCamelCase(unittest.TestCase):\n\n def test_regular_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Sally Carter'))\n self.assertEquals(camel_case_joined_name, 'sallyCarter')\n\n def test_triple_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('John James Peter'))\n self.assertEquals(camel_case_joined_name, 'johnJamesPeter')\n\n def test_accented_characters_in_names(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Zoë Noël'))\n self.assertEquals(camel_case_joined_name, 'zoëNoël')\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n\n def setUp(self):\n self.test_directory = tempfile.mkdtemp()\n\n def tearDown(self):\n shutil.rmtree(self.test_directory)\n\n def test_single_csv_to_bibtex_entry(self):\n test_single_bibtex_entry = path.join(self.test_directory,\n 'test_single_bibtex_entry.bib')\n expected_single_bibtex_entry = (\n 'gold_standard_bibtex_files/single_bibtex_entry.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/single_csv_entry.csv', test_single_bibtex_entry)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_single_bibtex_entry,\n expected_single_bibtex_entry), 'Files do not match')\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory,\n 'test_multiple_bibtex_entries.bib')\n expected_multiple_bibtex_entries = (\n 'gold_standard_bibtex_files/multiple_bibtex_entries.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/multiple_csv_entries.csv',\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries,\n expected_multiple_bibtex_entries), 'Files do not match')\n\n\n<code token>\n", "<import token>\n\n\nclass TestSplitCamelCaseJoinedNames(unittest.TestCase):\n <function token>\n <function token>\n <function token>\n\n\nclass TestJoinNamesAsCamelCase(unittest.TestCase):\n\n def test_regular_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Sally Carter'))\n self.assertEquals(camel_case_joined_name, 'sallyCarter')\n\n def test_triple_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('John James Peter'))\n self.assertEquals(camel_case_joined_name, 'johnJamesPeter')\n\n def test_accented_characters_in_names(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Zoë Noël'))\n self.assertEquals(camel_case_joined_name, 'zoëNoël')\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n\n def setUp(self):\n self.test_directory = tempfile.mkdtemp()\n\n def tearDown(self):\n shutil.rmtree(self.test_directory)\n\n def test_single_csv_to_bibtex_entry(self):\n test_single_bibtex_entry = path.join(self.test_directory,\n 'test_single_bibtex_entry.bib')\n expected_single_bibtex_entry = (\n 'gold_standard_bibtex_files/single_bibtex_entry.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/single_csv_entry.csv', test_single_bibtex_entry)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_single_bibtex_entry,\n expected_single_bibtex_entry), 'Files do not match')\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory,\n 'test_multiple_bibtex_entries.bib')\n expected_multiple_bibtex_entries = (\n 'gold_standard_bibtex_files/multiple_bibtex_entries.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/multiple_csv_entries.csv',\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries,\n expected_multiple_bibtex_entries), 'Files do not match')\n\n\n<code token>\n", "<import token>\n<class token>\n\n\nclass TestJoinNamesAsCamelCase(unittest.TestCase):\n\n def test_regular_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Sally Carter'))\n self.assertEquals(camel_case_joined_name, 'sallyCarter')\n\n def test_triple_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('John James Peter'))\n self.assertEquals(camel_case_joined_name, 'johnJamesPeter')\n\n def test_accented_characters_in_names(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Zoë Noël'))\n self.assertEquals(camel_case_joined_name, 'zoëNoël')\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n\n def setUp(self):\n self.test_directory = tempfile.mkdtemp()\n\n def tearDown(self):\n shutil.rmtree(self.test_directory)\n\n def test_single_csv_to_bibtex_entry(self):\n test_single_bibtex_entry = path.join(self.test_directory,\n 'test_single_bibtex_entry.bib')\n expected_single_bibtex_entry = (\n 'gold_standard_bibtex_files/single_bibtex_entry.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/single_csv_entry.csv', test_single_bibtex_entry)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_single_bibtex_entry,\n expected_single_bibtex_entry), 'Files do not match')\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory,\n 'test_multiple_bibtex_entries.bib')\n expected_multiple_bibtex_entries = (\n 'gold_standard_bibtex_files/multiple_bibtex_entries.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/multiple_csv_entries.csv',\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries,\n expected_multiple_bibtex_entries), 'Files do not match')\n\n\n<code token>\n", "<import token>\n<class token>\n\n\nclass TestJoinNamesAsCamelCase(unittest.TestCase):\n\n def test_regular_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Sally Carter'))\n self.assertEquals(camel_case_joined_name, 'sallyCarter')\n\n def test_triple_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('John James Peter'))\n self.assertEquals(camel_case_joined_name, 'johnJamesPeter')\n <function token>\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n\n def setUp(self):\n self.test_directory = tempfile.mkdtemp()\n\n def tearDown(self):\n shutil.rmtree(self.test_directory)\n\n def test_single_csv_to_bibtex_entry(self):\n test_single_bibtex_entry = path.join(self.test_directory,\n 'test_single_bibtex_entry.bib')\n expected_single_bibtex_entry = (\n 'gold_standard_bibtex_files/single_bibtex_entry.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/single_csv_entry.csv', test_single_bibtex_entry)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_single_bibtex_entry,\n expected_single_bibtex_entry), 'Files do not match')\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory,\n 'test_multiple_bibtex_entries.bib')\n expected_multiple_bibtex_entries = (\n 'gold_standard_bibtex_files/multiple_bibtex_entries.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/multiple_csv_entries.csv',\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries,\n expected_multiple_bibtex_entries), 'Files do not match')\n\n\n<code token>\n", "<import token>\n<class token>\n\n\nclass TestJoinNamesAsCamelCase(unittest.TestCase):\n\n def test_regular_name(self):\n camel_case_joined_name = (springer_link_csv_to_bibtex_parser.\n join_names_as_camel_case('Sally Carter'))\n self.assertEquals(camel_case_joined_name, 'sallyCarter')\n <function token>\n <function token>\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n\n def setUp(self):\n self.test_directory = tempfile.mkdtemp()\n\n def tearDown(self):\n shutil.rmtree(self.test_directory)\n\n def test_single_csv_to_bibtex_entry(self):\n test_single_bibtex_entry = path.join(self.test_directory,\n 'test_single_bibtex_entry.bib')\n expected_single_bibtex_entry = (\n 'gold_standard_bibtex_files/single_bibtex_entry.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/single_csv_entry.csv', test_single_bibtex_entry)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_single_bibtex_entry,\n expected_single_bibtex_entry), 'Files do not match')\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory,\n 'test_multiple_bibtex_entries.bib')\n expected_multiple_bibtex_entries = (\n 'gold_standard_bibtex_files/multiple_bibtex_entries.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/multiple_csv_entries.csv',\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries,\n expected_multiple_bibtex_entries), 'Files do not match')\n\n\n<code token>\n", "<import token>\n<class token>\n\n\nclass TestJoinNamesAsCamelCase(unittest.TestCase):\n <function token>\n <function token>\n <function token>\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n\n def setUp(self):\n self.test_directory = tempfile.mkdtemp()\n\n def tearDown(self):\n shutil.rmtree(self.test_directory)\n\n def test_single_csv_to_bibtex_entry(self):\n test_single_bibtex_entry = path.join(self.test_directory,\n 'test_single_bibtex_entry.bib')\n expected_single_bibtex_entry = (\n 'gold_standard_bibtex_files/single_bibtex_entry.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/single_csv_entry.csv', test_single_bibtex_entry)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_single_bibtex_entry,\n expected_single_bibtex_entry), 'Files do not match')\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory,\n 'test_multiple_bibtex_entries.bib')\n expected_multiple_bibtex_entries = (\n 'gold_standard_bibtex_files/multiple_bibtex_entries.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/multiple_csv_entries.csv',\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries,\n expected_multiple_bibtex_entries), 'Files do not match')\n\n\n<code token>\n", "<import token>\n<class token>\n<class token>\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n\n def setUp(self):\n self.test_directory = tempfile.mkdtemp()\n\n def tearDown(self):\n shutil.rmtree(self.test_directory)\n\n def test_single_csv_to_bibtex_entry(self):\n test_single_bibtex_entry = path.join(self.test_directory,\n 'test_single_bibtex_entry.bib')\n expected_single_bibtex_entry = (\n 'gold_standard_bibtex_files/single_bibtex_entry.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/single_csv_entry.csv', test_single_bibtex_entry)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_single_bibtex_entry,\n expected_single_bibtex_entry), 'Files do not match')\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory,\n 'test_multiple_bibtex_entries.bib')\n expected_multiple_bibtex_entries = (\n 'gold_standard_bibtex_files/multiple_bibtex_entries.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/multiple_csv_entries.csv',\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries,\n expected_multiple_bibtex_entries), 'Files do not match')\n\n\n<code token>\n", "<import token>\n<class token>\n<class token>\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n\n def setUp(self):\n self.test_directory = tempfile.mkdtemp()\n <function token>\n\n def test_single_csv_to_bibtex_entry(self):\n test_single_bibtex_entry = path.join(self.test_directory,\n 'test_single_bibtex_entry.bib')\n expected_single_bibtex_entry = (\n 'gold_standard_bibtex_files/single_bibtex_entry.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/single_csv_entry.csv', test_single_bibtex_entry)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_single_bibtex_entry,\n expected_single_bibtex_entry), 'Files do not match')\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory,\n 'test_multiple_bibtex_entries.bib')\n expected_multiple_bibtex_entries = (\n 'gold_standard_bibtex_files/multiple_bibtex_entries.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/multiple_csv_entries.csv',\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries,\n expected_multiple_bibtex_entries), 'Files do not match')\n\n\n<code token>\n", "<import token>\n<class token>\n<class token>\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n\n def setUp(self):\n self.test_directory = tempfile.mkdtemp()\n <function token>\n <function token>\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory,\n 'test_multiple_bibtex_entries.bib')\n expected_multiple_bibtex_entries = (\n 'gold_standard_bibtex_files/multiple_bibtex_entries.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/multiple_csv_entries.csv',\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries,\n expected_multiple_bibtex_entries), 'Files do not match')\n\n\n<code token>\n", "<import token>\n<class token>\n<class token>\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n <function token>\n <function token>\n <function token>\n\n def test_multiple_csv_to_bibtex_entry(self):\n test_multiple_bibtex_entries = path.join(self.test_directory,\n 'test_multiple_bibtex_entries.bib')\n expected_multiple_bibtex_entries = (\n 'gold_standard_bibtex_files/multiple_bibtex_entries.bib')\n parser = springer_link_csv_to_bibtex_parser.CsvToBibtexParser(\n 'test_csv_files/multiple_csv_entries.csv',\n test_multiple_bibtex_entries)\n parser.convert_csv_to_bibtex()\n self.assertTrue(filecmp.cmp(test_multiple_bibtex_entries,\n expected_multiple_bibtex_entries), 'Files do not match')\n\n\n<code token>\n", "<import token>\n<class token>\n<class token>\n\n\nclass TestConvertCsvToBibtex(unittest.TestCase):\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n<class token>\n<class token>\n<class token>\n<code token>\n" ]
false
99,511
39798e390e9cdc1721da5c3a0e3c8fadc02193b8
import soporte import parte1 v = soporte.vector_known_range(300000) c = [0] * 300000 def contar(vector): contador_casillas_no_vacias = 0 for x in vector: c[x] += 1 for num in c: if num != 0: contador_casillas_no_vacias += 1 return contador_casillas_no_vacias mas_freq, index_mas_freq = parte1.mas_frequente(v) print('5.', contar(v)) print('6.', mas_freq) print('7.', index_mas_freq)
[ "import soporte\nimport parte1\n\nv = soporte.vector_known_range(300000)\nc = [0] * 300000\n\n\ndef contar(vector):\n\tcontador_casillas_no_vacias = 0\n\tfor x in vector:\n\t\tc[x] += 1\n\n\tfor num in c:\n\t\tif num != 0:\n\t\t\tcontador_casillas_no_vacias += 1\n\treturn contador_casillas_no_vacias\n\n\nmas_freq, index_mas_freq = parte1.mas_frequente(v)\n\n\nprint('5.', contar(v))\nprint('6.', mas_freq)\nprint('7.', index_mas_freq)\n", "import soporte\nimport parte1\nv = soporte.vector_known_range(300000)\nc = [0] * 300000\n\n\ndef contar(vector):\n contador_casillas_no_vacias = 0\n for x in vector:\n c[x] += 1\n for num in c:\n if num != 0:\n contador_casillas_no_vacias += 1\n return contador_casillas_no_vacias\n\n\nmas_freq, index_mas_freq = parte1.mas_frequente(v)\nprint('5.', contar(v))\nprint('6.', mas_freq)\nprint('7.', index_mas_freq)\n", "<import token>\nv = soporte.vector_known_range(300000)\nc = [0] * 300000\n\n\ndef contar(vector):\n contador_casillas_no_vacias = 0\n for x in vector:\n c[x] += 1\n for num in c:\n if num != 0:\n contador_casillas_no_vacias += 1\n return contador_casillas_no_vacias\n\n\nmas_freq, index_mas_freq = parte1.mas_frequente(v)\nprint('5.', contar(v))\nprint('6.', mas_freq)\nprint('7.', index_mas_freq)\n", "<import token>\n<assignment token>\n\n\ndef contar(vector):\n contador_casillas_no_vacias = 0\n for x in vector:\n c[x] += 1\n for num in c:\n if num != 0:\n contador_casillas_no_vacias += 1\n return contador_casillas_no_vacias\n\n\n<assignment token>\nprint('5.', contar(v))\nprint('6.', mas_freq)\nprint('7.', index_mas_freq)\n", "<import token>\n<assignment token>\n\n\ndef contar(vector):\n contador_casillas_no_vacias = 0\n for x in vector:\n c[x] += 1\n for num in c:\n if num != 0:\n contador_casillas_no_vacias += 1\n return contador_casillas_no_vacias\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
99,512
1f97ab7cb40ff9555f5b33c6107c89ed7ab058b5
x=10 y=20 print(x+y) s1='Hello' s2=' Rishabh' print(s1+s2) l1=[1,2,3,4] l2=[5,6,7,8] print(l1+l2)
[ "x=10\ny=20\n\nprint(x+y)\n\n\ns1='Hello'\ns2=' Rishabh'\n\nprint(s1+s2)\n\nl1=[1,2,3,4]\nl2=[5,6,7,8]\n\nprint(l1+l2)", "x = 10\ny = 20\nprint(x + y)\ns1 = 'Hello'\ns2 = ' Rishabh'\nprint(s1 + s2)\nl1 = [1, 2, 3, 4]\nl2 = [5, 6, 7, 8]\nprint(l1 + l2)\n", "<assignment token>\nprint(x + y)\n<assignment token>\nprint(s1 + s2)\n<assignment token>\nprint(l1 + l2)\n", "<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,513
e34bc7363cc05676e10f5d876c57e868989aa216
import copy def decorator_deepcopy_arguments_and_return_value(f): def f_wrapper(*args, **kwargs): # deepcopy the arguments and keyword arguments (copied_args, copied_kwargs) = tuple( map(copy.deepcopy, (args, kwargs))) # call the function return_value = f(*copied_args, **copied_kwargs) # deepcopy the return values copied_return_value = copy.deepcopy(return_value) return copied_return_value return f_wrapper
[ "\nimport copy\n\n\ndef decorator_deepcopy_arguments_and_return_value(f):\n def f_wrapper(*args, **kwargs):\n # deepcopy the arguments and keyword arguments\n (copied_args, copied_kwargs) = tuple(\n map(copy.deepcopy, (args, kwargs)))\n # call the function\n return_value = f(*copied_args, **copied_kwargs)\n\n # deepcopy the return values\n copied_return_value = copy.deepcopy(return_value)\n return copied_return_value\n\n return f_wrapper\n", "import copy\n\n\ndef decorator_deepcopy_arguments_and_return_value(f):\n\n def f_wrapper(*args, **kwargs):\n copied_args, copied_kwargs = tuple(map(copy.deepcopy, (args, kwargs)))\n return_value = f(*copied_args, **copied_kwargs)\n copied_return_value = copy.deepcopy(return_value)\n return copied_return_value\n return f_wrapper\n", "<import token>\n\n\ndef decorator_deepcopy_arguments_and_return_value(f):\n\n def f_wrapper(*args, **kwargs):\n copied_args, copied_kwargs = tuple(map(copy.deepcopy, (args, kwargs)))\n return_value = f(*copied_args, **copied_kwargs)\n copied_return_value = copy.deepcopy(return_value)\n return copied_return_value\n return f_wrapper\n", "<import token>\n<function token>\n" ]
false
99,514
07268ced7c67b2975138403e6b66689d3664bbe8
my_dict = { 'a':50, 'b':58, 'c':56, 'd':40, 'e':100, 'f':20 } max1=0 max2=2 max3=0 list1=[] for i in my_dict.values(): list1.append(i) j=0 while j<len(list1): if list1[j]>max1: max2=max1 max1=list1[j] if max1>list1[j]and max2<list1[j]: max2=max3 max2=list1[j] if max3<max2 and max3<max1: max3=list1[j] max3=max2 j+=1 print(max1,max2,max3)
[ "my_dict = {\n 'a':50, \n 'b':58, \n 'c':56,\n 'd':40, \n 'e':100, \n 'f':20\n }\nmax1=0\nmax2=2\nmax3=0\nlist1=[]\nfor i in my_dict.values():\n list1.append(i)\nj=0\nwhile j<len(list1):\n if list1[j]>max1:\n max2=max1\n max1=list1[j]\n if max1>list1[j]and max2<list1[j]:\n max2=max3\n max2=list1[j]\n if max3<max2 and max3<max1:\n max3=list1[j]\n max3=max2\n j+=1\nprint(max1,max2,max3)", "my_dict = {'a': 50, 'b': 58, 'c': 56, 'd': 40, 'e': 100, 'f': 20}\nmax1 = 0\nmax2 = 2\nmax3 = 0\nlist1 = []\nfor i in my_dict.values():\n list1.append(i)\nj = 0\nwhile j < len(list1):\n if list1[j] > max1:\n max2 = max1\n max1 = list1[j]\n if max1 > list1[j] and max2 < list1[j]:\n max2 = max3\n max2 = list1[j]\n if max3 < max2 and max3 < max1:\n max3 = list1[j]\n max3 = max2\n j += 1\nprint(max1, max2, max3)\n", "<assignment token>\nfor i in my_dict.values():\n list1.append(i)\n<assignment token>\nwhile j < len(list1):\n if list1[j] > max1:\n max2 = max1\n max1 = list1[j]\n if max1 > list1[j] and max2 < list1[j]:\n max2 = max3\n max2 = list1[j]\n if max3 < max2 and max3 < max1:\n max3 = list1[j]\n max3 = max2\n j += 1\nprint(max1, max2, max3)\n", "<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,515
5d2331c3777e54d87f2d57d5255333a83d1e60ac
import numpy as np import os import matplotlib.pyplot as plt # Input folder #folder_path # Opening file file = open("Motor_test.txt","r") # Reading the file content = file.read() file.close() # Splitting each list of number first by \n then by coma a = content.split("\n") left_speeds = map(float, (a[1].replace(" ","")).split(",")) timeL = map(float, (a[3].replace(" ","")).split(",")) right_speeds = map(float, (a[5].replace(" ","")).split(",")) timeR = map(float, (a[7].replace(" ","")).split(",")) diff_time_left=[] for i in range(1, len(timeL)): diff_time_left.append(timeL[i] - timeL[i-1]) diff_time_right=[] for i in range(1, len(timeR)): diff_time_right.append(timeR[i] - timeR[i-1]) diff_time = [] for i in range(max(len(timeL), len(timeR))): diff_time.append(timeL[i] - timeR[i]) speed_diff=[] for i in range(max(len(left_speeds ), len(right_speeds ))): speed_diff.append(left_speeds[i] - right_speeds[i]) sum_distance_left=[] sum_distance_right=[] sum_distance_left.append(0) sum_distance_right.append(0) for i in range(1,len(left_speeds)): #print("left_speed:"+str(left_speeds[i])) #print("right_speed:"+str(right_speeds[i])) sum_distance_left.append( ((left_speeds[i]*(timeL[i]-timeL[i-1])*0.1)/6.0) + sum_distance_left[i-1] ) sum_distance_right.append( ((right_speeds[i]*(timeR[i]-timeR[i-1])*0.1)/6.0) + sum_distance_right[i-1] ) ######################################################## ## Evolution de la difference de vitesse ) ######################################################## plt.xlabel('index of time') plt.ylabel('Difference de distance en m') plt.title('Evolution de la difference de vitesse ') axis=np.linspace(0, len(speed_diff)-1,len(speed_diff) ) #len(timeR)) plt.plot(axis, speed_diff, label='Evolution de la difference de vitesse ') plt.legend() plt.savefig('Evolution_de_la_difference_de_vitesse.png') plt.clf() ######################################################## ## Evolution des distances parcourus gauche et droite ######################################################## plt.xlabel('index of time') plt.ylabel('Distance gauche et droite parcouru en m') plt.title('Evolution des distances parcourus gauche et droite ') plt.plot(timeL, sum_distance_left, label='left distance') plt.plot(timeR, sum_distance_right, label='right distance') plt.legend() plt.savefig('Evolution_des_distances_parcourus_gauche_et_droite.png') plt.clf() ######################################################## ## Evolution du flux du temps ######################################################## plt.xlabel('Time flux') plt.ylabel('Flux of time') plt.title('index') length_of_plot=10 axis=np.linspace(0,length_of_plot-1,length_of_plot) #len(timeR)) plt.plot(axis,timeL[0:length_of_plot],label='left time') plt.plot(axis,timeR[0:length_of_plot],label = 'right time') #plt.plot(axis,axis, label = 'right time') plt.legend() plt.savefig('Evolution_of_time_flux.png') plt.clf() ######################################################## ## Evolution de la vitesse ######################################################## plt.xlabel('Time in s') plt.ylabel('Speed in rad/s') plt.title('Evolution of speed') plt.plot(timeL, left_speeds,label='left speed') plt.plot(timeR, right_speeds, label = 'right speed') plt.legend() plt.savefig('Evolution_of_speed.png') plt.clf() ######################################################## ## Difference of time ######################################################## axis_bis=np.linspace(0,len(diff_time_left)-1,len(diff_time_left)) #len(timeR)) plt.xlabel('index') plt.ylabel('Difference of time s') plt.title('Evolution of Difference of time ') plt.plot(axis_bis, diff_time_left ,label='left difference of time') plt.plot(axis_bis, diff_time_right, label = 'right difference of time') plt.legend() plt.savefig('Evolution of Difference of time.png') plt.clf() ######################################################## ## Difference of time between Left and right ######################################################## plt.xlabel('Time in s') plt.ylabel('Difference of time in s') plt.title('Difference of time') plt.plot(range(len(diff_time)), diff_time) plt.savefig('difference_of_time.png')
[ "import numpy as np\nimport os\nimport matplotlib.pyplot as plt\n\n\n# Input folder\n#folder_path \n\n# Opening file\nfile = open(\"Motor_test.txt\",\"r\") \n\n# Reading the file\ncontent = file.read()\n\nfile.close()\n\n# Splitting each list of number first by \\n then by coma\na = content.split(\"\\n\")\nleft_speeds = map(float, (a[1].replace(\" \",\"\")).split(\",\"))\ntimeL = map(float, (a[3].replace(\" \",\"\")).split(\",\"))\nright_speeds = map(float, (a[5].replace(\" \",\"\")).split(\",\"))\ntimeR = map(float, (a[7].replace(\" \",\"\")).split(\",\"))\n\n\n\ndiff_time_left=[]\nfor i in range(1, len(timeL)):\n\tdiff_time_left.append(timeL[i] - timeL[i-1])\n\ndiff_time_right=[]\nfor i in range(1, len(timeR)):\n\tdiff_time_right.append(timeR[i] - timeR[i-1])\n\ndiff_time = []\n\nfor i in range(max(len(timeL), len(timeR))):\n\tdiff_time.append(timeL[i] - timeR[i])\n\nspeed_diff=[]\nfor i in range(max(len(left_speeds ), len(right_speeds ))):\n\tspeed_diff.append(left_speeds[i] - right_speeds[i])\n\n\nsum_distance_left=[]\nsum_distance_right=[]\nsum_distance_left.append(0)\nsum_distance_right.append(0)\nfor i in range(1,len(left_speeds)):\n\t#print(\"left_speed:\"+str(left_speeds[i]))\n\t#print(\"right_speed:\"+str(right_speeds[i]))\n\tsum_distance_left.append( ((left_speeds[i]*(timeL[i]-timeL[i-1])*0.1)/6.0) + sum_distance_left[i-1] )\n\tsum_distance_right.append( ((right_speeds[i]*(timeR[i]-timeR[i-1])*0.1)/6.0) + sum_distance_right[i-1] )\n\n\n\n########################################################\n## Evolution de la difference de vitesse ) \n########################################################\n\nplt.xlabel('index of time')\nplt.ylabel('Difference de distance en m')\nplt.title('Evolution de la difference de vitesse ')\n\n\naxis=np.linspace(0, len(speed_diff)-1,len(speed_diff) ) #len(timeR))\nplt.plot(axis, speed_diff, label='Evolution de la difference de vitesse ')\n\nplt.legend()\nplt.savefig('Evolution_de_la_difference_de_vitesse.png')\nplt.clf()\n\n\n########################################################\n## Evolution des distances parcourus gauche et droite \n########################################################\n\nplt.xlabel('index of time')\nplt.ylabel('Distance gauche et droite parcouru en m')\nplt.title('Evolution des distances parcourus gauche et droite ')\n\nplt.plot(timeL, sum_distance_left, label='left distance')\nplt.plot(timeR, sum_distance_right, label='right distance')\n\n\nplt.legend()\nplt.savefig('Evolution_des_distances_parcourus_gauche_et_droite.png')\nplt.clf()\n\n\n########################################################\n## Evolution du flux du temps \n########################################################\n\nplt.xlabel('Time flux')\nplt.ylabel('Flux of time')\nplt.title('index')\n\nlength_of_plot=10\naxis=np.linspace(0,length_of_plot-1,length_of_plot) #len(timeR))\nplt.plot(axis,timeL[0:length_of_plot],label='left time')\nplt.plot(axis,timeR[0:length_of_plot],label = 'right time')\n#plt.plot(axis,axis, label = 'right time')\n\nplt.legend()\nplt.savefig('Evolution_of_time_flux.png')\nplt.clf()\n\n########################################################\n## Evolution de la vitesse \n########################################################\n\n\nplt.xlabel('Time in s')\nplt.ylabel('Speed in rad/s')\nplt.title('Evolution of speed')\n\nplt.plot(timeL, left_speeds,label='left speed')\nplt.plot(timeR, right_speeds, label = 'right speed')\n\nplt.legend()\nplt.savefig('Evolution_of_speed.png')\nplt.clf()\n\n\n########################################################\n## Difference of time \n########################################################\n\n\naxis_bis=np.linspace(0,len(diff_time_left)-1,len(diff_time_left)) #len(timeR))\n\n\nplt.xlabel('index')\nplt.ylabel('Difference of time s')\nplt.title('Evolution of Difference of time ')\n\nplt.plot(axis_bis, diff_time_left ,label='left difference of time')\nplt.plot(axis_bis, diff_time_right, label = 'right difference of time')\n\nplt.legend()\nplt.savefig('Evolution of Difference of time.png')\nplt.clf()\n\n########################################################\n## Difference of time between Left and right\n########################################################\n\nplt.xlabel('Time in s')\nplt.ylabel('Difference of time in s')\nplt.title('Difference of time')\n\nplt.plot(range(len(diff_time)), diff_time)\n\nplt.savefig('difference_of_time.png')\n\n\n\n\n", "import numpy as np\nimport os\nimport matplotlib.pyplot as plt\nfile = open('Motor_test.txt', 'r')\ncontent = file.read()\nfile.close()\na = content.split('\\n')\nleft_speeds = map(float, a[1].replace(' ', '').split(','))\ntimeL = map(float, a[3].replace(' ', '').split(','))\nright_speeds = map(float, a[5].replace(' ', '').split(','))\ntimeR = map(float, a[7].replace(' ', '').split(','))\ndiff_time_left = []\nfor i in range(1, len(timeL)):\n diff_time_left.append(timeL[i] - timeL[i - 1])\ndiff_time_right = []\nfor i in range(1, len(timeR)):\n diff_time_right.append(timeR[i] - timeR[i - 1])\ndiff_time = []\nfor i in range(max(len(timeL), len(timeR))):\n diff_time.append(timeL[i] - timeR[i])\nspeed_diff = []\nfor i in range(max(len(left_speeds), len(right_speeds))):\n speed_diff.append(left_speeds[i] - right_speeds[i])\nsum_distance_left = []\nsum_distance_right = []\nsum_distance_left.append(0)\nsum_distance_right.append(0)\nfor i in range(1, len(left_speeds)):\n sum_distance_left.append(left_speeds[i] * (timeL[i] - timeL[i - 1]) * \n 0.1 / 6.0 + sum_distance_left[i - 1])\n sum_distance_right.append(right_speeds[i] * (timeR[i] - timeR[i - 1]) *\n 0.1 / 6.0 + sum_distance_right[i - 1])\nplt.xlabel('index of time')\nplt.ylabel('Difference de distance en m')\nplt.title('Evolution de la difference de vitesse ')\naxis = np.linspace(0, len(speed_diff) - 1, len(speed_diff))\nplt.plot(axis, speed_diff, label='Evolution de la difference de vitesse ')\nplt.legend()\nplt.savefig('Evolution_de_la_difference_de_vitesse.png')\nplt.clf()\nplt.xlabel('index of time')\nplt.ylabel('Distance gauche et droite parcouru en m')\nplt.title('Evolution des distances parcourus gauche et droite ')\nplt.plot(timeL, sum_distance_left, label='left distance')\nplt.plot(timeR, sum_distance_right, label='right distance')\nplt.legend()\nplt.savefig('Evolution_des_distances_parcourus_gauche_et_droite.png')\nplt.clf()\nplt.xlabel('Time flux')\nplt.ylabel('Flux of time')\nplt.title('index')\nlength_of_plot = 10\naxis = np.linspace(0, length_of_plot - 1, length_of_plot)\nplt.plot(axis, timeL[0:length_of_plot], label='left time')\nplt.plot(axis, timeR[0:length_of_plot], label='right time')\nplt.legend()\nplt.savefig('Evolution_of_time_flux.png')\nplt.clf()\nplt.xlabel('Time in s')\nplt.ylabel('Speed in rad/s')\nplt.title('Evolution of speed')\nplt.plot(timeL, left_speeds, label='left speed')\nplt.plot(timeR, right_speeds, label='right speed')\nplt.legend()\nplt.savefig('Evolution_of_speed.png')\nplt.clf()\naxis_bis = np.linspace(0, len(diff_time_left) - 1, len(diff_time_left))\nplt.xlabel('index')\nplt.ylabel('Difference of time s')\nplt.title('Evolution of Difference of time ')\nplt.plot(axis_bis, diff_time_left, label='left difference of time')\nplt.plot(axis_bis, diff_time_right, label='right difference of time')\nplt.legend()\nplt.savefig('Evolution of Difference of time.png')\nplt.clf()\nplt.xlabel('Time in s')\nplt.ylabel('Difference of time in s')\nplt.title('Difference of time')\nplt.plot(range(len(diff_time)), diff_time)\nplt.savefig('difference_of_time.png')\n", "<import token>\nfile = open('Motor_test.txt', 'r')\ncontent = file.read()\nfile.close()\na = content.split('\\n')\nleft_speeds = map(float, a[1].replace(' ', '').split(','))\ntimeL = map(float, a[3].replace(' ', '').split(','))\nright_speeds = map(float, a[5].replace(' ', '').split(','))\ntimeR = map(float, a[7].replace(' ', '').split(','))\ndiff_time_left = []\nfor i in range(1, len(timeL)):\n diff_time_left.append(timeL[i] - timeL[i - 1])\ndiff_time_right = []\nfor i in range(1, len(timeR)):\n diff_time_right.append(timeR[i] - timeR[i - 1])\ndiff_time = []\nfor i in range(max(len(timeL), len(timeR))):\n diff_time.append(timeL[i] - timeR[i])\nspeed_diff = []\nfor i in range(max(len(left_speeds), len(right_speeds))):\n speed_diff.append(left_speeds[i] - right_speeds[i])\nsum_distance_left = []\nsum_distance_right = []\nsum_distance_left.append(0)\nsum_distance_right.append(0)\nfor i in range(1, len(left_speeds)):\n sum_distance_left.append(left_speeds[i] * (timeL[i] - timeL[i - 1]) * \n 0.1 / 6.0 + sum_distance_left[i - 1])\n sum_distance_right.append(right_speeds[i] * (timeR[i] - timeR[i - 1]) *\n 0.1 / 6.0 + sum_distance_right[i - 1])\nplt.xlabel('index of time')\nplt.ylabel('Difference de distance en m')\nplt.title('Evolution de la difference de vitesse ')\naxis = np.linspace(0, len(speed_diff) - 1, len(speed_diff))\nplt.plot(axis, speed_diff, label='Evolution de la difference de vitesse ')\nplt.legend()\nplt.savefig('Evolution_de_la_difference_de_vitesse.png')\nplt.clf()\nplt.xlabel('index of time')\nplt.ylabel('Distance gauche et droite parcouru en m')\nplt.title('Evolution des distances parcourus gauche et droite ')\nplt.plot(timeL, sum_distance_left, label='left distance')\nplt.plot(timeR, sum_distance_right, label='right distance')\nplt.legend()\nplt.savefig('Evolution_des_distances_parcourus_gauche_et_droite.png')\nplt.clf()\nplt.xlabel('Time flux')\nplt.ylabel('Flux of time')\nplt.title('index')\nlength_of_plot = 10\naxis = np.linspace(0, length_of_plot - 1, length_of_plot)\nplt.plot(axis, timeL[0:length_of_plot], label='left time')\nplt.plot(axis, timeR[0:length_of_plot], label='right time')\nplt.legend()\nplt.savefig('Evolution_of_time_flux.png')\nplt.clf()\nplt.xlabel('Time in s')\nplt.ylabel('Speed in rad/s')\nplt.title('Evolution of speed')\nplt.plot(timeL, left_speeds, label='left speed')\nplt.plot(timeR, right_speeds, label='right speed')\nplt.legend()\nplt.savefig('Evolution_of_speed.png')\nplt.clf()\naxis_bis = np.linspace(0, len(diff_time_left) - 1, len(diff_time_left))\nplt.xlabel('index')\nplt.ylabel('Difference of time s')\nplt.title('Evolution of Difference of time ')\nplt.plot(axis_bis, diff_time_left, label='left difference of time')\nplt.plot(axis_bis, diff_time_right, label='right difference of time')\nplt.legend()\nplt.savefig('Evolution of Difference of time.png')\nplt.clf()\nplt.xlabel('Time in s')\nplt.ylabel('Difference of time in s')\nplt.title('Difference of time')\nplt.plot(range(len(diff_time)), diff_time)\nplt.savefig('difference_of_time.png')\n", "<import token>\n<assignment token>\nfile.close()\n<assignment token>\nfor i in range(1, len(timeL)):\n diff_time_left.append(timeL[i] - timeL[i - 1])\n<assignment token>\nfor i in range(1, len(timeR)):\n diff_time_right.append(timeR[i] - timeR[i - 1])\n<assignment token>\nfor i in range(max(len(timeL), len(timeR))):\n diff_time.append(timeL[i] - timeR[i])\n<assignment token>\nfor i in range(max(len(left_speeds), len(right_speeds))):\n speed_diff.append(left_speeds[i] - right_speeds[i])\n<assignment token>\nsum_distance_left.append(0)\nsum_distance_right.append(0)\nfor i in range(1, len(left_speeds)):\n sum_distance_left.append(left_speeds[i] * (timeL[i] - timeL[i - 1]) * \n 0.1 / 6.0 + sum_distance_left[i - 1])\n sum_distance_right.append(right_speeds[i] * (timeR[i] - timeR[i - 1]) *\n 0.1 / 6.0 + sum_distance_right[i - 1])\nplt.xlabel('index of time')\nplt.ylabel('Difference de distance en m')\nplt.title('Evolution de la difference de vitesse ')\n<assignment token>\nplt.plot(axis, speed_diff, label='Evolution de la difference de vitesse ')\nplt.legend()\nplt.savefig('Evolution_de_la_difference_de_vitesse.png')\nplt.clf()\nplt.xlabel('index of time')\nplt.ylabel('Distance gauche et droite parcouru en m')\nplt.title('Evolution des distances parcourus gauche et droite ')\nplt.plot(timeL, sum_distance_left, label='left distance')\nplt.plot(timeR, sum_distance_right, label='right distance')\nplt.legend()\nplt.savefig('Evolution_des_distances_parcourus_gauche_et_droite.png')\nplt.clf()\nplt.xlabel('Time flux')\nplt.ylabel('Flux of time')\nplt.title('index')\n<assignment token>\nplt.plot(axis, timeL[0:length_of_plot], label='left time')\nplt.plot(axis, timeR[0:length_of_plot], label='right time')\nplt.legend()\nplt.savefig('Evolution_of_time_flux.png')\nplt.clf()\nplt.xlabel('Time in s')\nplt.ylabel('Speed in rad/s')\nplt.title('Evolution of speed')\nplt.plot(timeL, left_speeds, label='left speed')\nplt.plot(timeR, right_speeds, label='right speed')\nplt.legend()\nplt.savefig('Evolution_of_speed.png')\nplt.clf()\n<assignment token>\nplt.xlabel('index')\nplt.ylabel('Difference of time s')\nplt.title('Evolution of Difference of time ')\nplt.plot(axis_bis, diff_time_left, label='left difference of time')\nplt.plot(axis_bis, diff_time_right, label='right difference of time')\nplt.legend()\nplt.savefig('Evolution of Difference of time.png')\nplt.clf()\nplt.xlabel('Time in s')\nplt.ylabel('Difference of time in s')\nplt.title('Difference of time')\nplt.plot(range(len(diff_time)), diff_time)\nplt.savefig('difference_of_time.png')\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,516
d62160ced36203d94ceafbb3bffffcfec0b75c0c
from click.testing import CliRunner from hokusai.cli.base import base from test import HokusaiSmokeTestCase class TestReviewApp(HokusaiSmokeTestCase): def test_review_app_with_underscore(self): runner = CliRunner() result = runner.invoke(base, ['review_app']) assert result.exit_code == 0 def test_review_app_with_dash(self): runner = CliRunner() result = runner.invoke(base, ['review-app']) assert result.exit_code != 0
[ "from click.testing import CliRunner\nfrom hokusai.cli.base import base\nfrom test import HokusaiSmokeTestCase\n\nclass TestReviewApp(HokusaiSmokeTestCase):\n def test_review_app_with_underscore(self):\n runner = CliRunner()\n result = runner.invoke(base, ['review_app'])\n assert result.exit_code == 0\n def test_review_app_with_dash(self):\n runner = CliRunner()\n result = runner.invoke(base, ['review-app'])\n assert result.exit_code != 0\n", "from click.testing import CliRunner\nfrom hokusai.cli.base import base\nfrom test import HokusaiSmokeTestCase\n\n\nclass TestReviewApp(HokusaiSmokeTestCase):\n\n def test_review_app_with_underscore(self):\n runner = CliRunner()\n result = runner.invoke(base, ['review_app'])\n assert result.exit_code == 0\n\n def test_review_app_with_dash(self):\n runner = CliRunner()\n result = runner.invoke(base, ['review-app'])\n assert result.exit_code != 0\n", "<import token>\n\n\nclass TestReviewApp(HokusaiSmokeTestCase):\n\n def test_review_app_with_underscore(self):\n runner = CliRunner()\n result = runner.invoke(base, ['review_app'])\n assert result.exit_code == 0\n\n def test_review_app_with_dash(self):\n runner = CliRunner()\n result = runner.invoke(base, ['review-app'])\n assert result.exit_code != 0\n", "<import token>\n\n\nclass TestReviewApp(HokusaiSmokeTestCase):\n <function token>\n\n def test_review_app_with_dash(self):\n runner = CliRunner()\n result = runner.invoke(base, ['review-app'])\n assert result.exit_code != 0\n", "<import token>\n\n\nclass TestReviewApp(HokusaiSmokeTestCase):\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,517
6eb51fa17181bb5f28e8335c2bf4af47c7d4218c
## SaveFile.py ## Mustafa Haddara ## Tue Mar-18-2014 import hashlib import struct from BoardException import * ''' File Format Size | Description of content 0x04 bytes | CK02 , where CK is the "signature" for the file type and 02 is the version of save file (future revisions) 0x10 bytes | that hold the raw data for the board. 0x01 byte | A byte that holds whos turn was last played and whether it was vs player or vs AI where the first five bits are reserved | and the 6th is 0 if the first player controls red, 1 if the first player controls black | and the 7th is 1 if the second player is human, 0 if AI and the eighth bit is whos turn as that bit + 1 0x01 byte | Contains turn number 0x01 byte | Contains the time remaining in the turn 0x20 bytes | An SHA256 hash of the previous content ''' #saveFile: Saves the current game state to a file #array: The array which holds the contents of the board; second_player: Whether the player is playing against a human or AI; #turn: Who's turn it currently is; turn_number: The current number of turns played, currently unused. def saveFile(array, first_player = 0, second_player = 0, turn = 0, turn_number = 1, time = 60): ## array of board positions ## first_player = 0 if first player controls red ## = 1 if first player controls black ## second_player = 0 if playing against computer, ## = 1 if playing against human ## turn = 0 if first player's turn, ## = 1 if second player's turn outFile = open("save.chck", "wb") data = "CK02" ## Writing data from the array into the data string for i in array: #data += str(i) + "i" data += struct.pack('H',i) data += struct.pack('B', (first_player << 2) | (second_player << 1) | turn) data += struct.pack('B', turn_number) data += struct.pack('B', time) data += hash(data[:]) outFile.write(data) outFile.close() #loadFile: Loads save.chck and sets the game to where the player left off #Returns, the board configuration, whether the second player is human or not, and who's turn it is. def loadFile(): try: inFile = open("save.chck", "rb") except: raise BoardException("No save file found!") data = inFile.read() boardData = data[:-32] hashCheck = data[-32:] if hash(boardData) != hashCheck or data[0:2] != "CK": raise BoardException("Oi! Stop mucking with my save file!") if (data[2:4] != "01") and (data[2:4] != "02"): if int(data[2:4]) > 2: raise BoardException("Unrecognized save file version. Please download version " + data[2:4] + " in order to load this game correctly.") else: raise BoardException("Unrecognized save file version. Unable to find appropriate version.") inFile.close() playerTurn = int(struct.unpack('B', boardData[20])[0]) & 0x1 turn_number = 0 #Some conditions for backward compatibility if data[2:4] == "01": first_player = 1 time = 60 elif data[2:4] == "02": first_player = int(struct.unpack('B', boardData[20])[0]) turn_number = int(struct.unpack('B', boardData[21])[0]) time = int(struct.unpack('B', boardData[22])[0]) second_player = (first_player & 0x2) >> 1 first_player = (first_player & 0x4) >> 2 boardLayout = []; for i in range(4,19,2): boardLayout.append(int(struct.unpack('H', boardData[i:i+2])[0])) #Prevent "replays" of using older versions if data[2:4] == "01": saveFile(boardLayout, first_player, second_player, playerTurn, turn_number, time) boardLayout, first_player, second_player, playerTurn, turn_number,time = loadFile() return boardLayout, first_player, second_player, playerTurn, turn_number,time #hash: Hashes a string #Returns: The hash as a sequence of bits rather than it's string representation def hash(string): secure = hashlib.sha256() secure.update(string) return secure.digest()
[ "## SaveFile.py\n## Mustafa Haddara\n## Tue Mar-18-2014\n\nimport hashlib\nimport struct\nfrom BoardException import *\n\n'''\nFile Format\nSize\t | Description of content\n0x04 bytes | CK02 , where CK is the \"signature\" for the file type and 02 is the version of save file (future revisions)\n0x10 bytes | that hold the raw data for the board.\n0x01 byte | A byte that holds whos turn was last played and whether it was vs player or vs AI where the first five bits are reserved\n\t\t | and the 6th is 0 if the first player controls red, 1 if the first player controls black\n\t\t | and the 7th is 1 if the second player is human, 0 if AI and the eighth bit is whos turn as that bit + 1\n0x01 byte | Contains turn number\n0x01 byte | Contains the time remaining in the turn\n0x20 bytes | An SHA256 hash of the previous content\n'''\n\n#saveFile: Saves the current game state to a file\n#array: The array which holds the contents of the board; second_player: Whether the player is playing against a human or AI;\n#turn: Who's turn it currently is; turn_number: The current number of turns played, currently unused.\ndef saveFile(array, first_player = 0, second_player = 0, turn = 0, turn_number = 1, time = 60):\n\t## array of board positions\n\t## first_player = 0 if first player controls red\n\t##\t\t\t\t = 1 if first player controls black\n\t## second_player = 0 if playing against computer, \n\t##\t\t\t\t = 1 if playing against human\n\t## turn = 0 if first player's turn, \n\t##\t\t= 1 if second player's turn\n\n\toutFile = open(\"save.chck\", \"wb\")\n\tdata = \"CK02\"\n\n\t## Writing data from the array into the data string\n\tfor i in array:\n\t\t#data += str(i) + \"i\"\n\t\tdata += struct.pack('H',i)\n\tdata += struct.pack('B', (first_player << 2) | (second_player << 1) | turn)\n\tdata += struct.pack('B', turn_number)\n\tdata += struct.pack('B', time)\n\tdata += hash(data[:]) \n\t\n\toutFile.write(data)\n\toutFile.close()\n\n#loadFile: Loads save.chck and sets the game to where the player left off\n#Returns, the board configuration, whether the second player is human or not, and who's turn it is.\ndef loadFile():\n\ttry:\n\t\tinFile = open(\"save.chck\", \"rb\")\n\texcept:\n\t\traise BoardException(\"No save file found!\")\n\tdata = inFile.read()\n\tboardData = data[:-32]\n\thashCheck = data[-32:]\n\tif hash(boardData) != hashCheck or data[0:2] != \"CK\":\n\t\traise BoardException(\"Oi! Stop mucking with my save file!\")\n\tif (data[2:4] != \"01\") and (data[2:4] != \"02\"):\n\t\tif int(data[2:4]) > 2: \n\t\t\traise BoardException(\"Unrecognized save file version. Please download version \" + data[2:4] + \" in order to load this game correctly.\")\n\t\telse:\n\t\t\traise BoardException(\"Unrecognized save file version. Unable to find appropriate version.\")\n\tinFile.close()\n\tplayerTurn = int(struct.unpack('B', boardData[20])[0]) & 0x1\n\tturn_number = 0\n\t#Some conditions for backward compatibility\n\tif data[2:4] == \"01\":\n\t\tfirst_player = 1\n\t\ttime = 60\n\telif data[2:4] == \"02\":\n\t\tfirst_player = int(struct.unpack('B', boardData[20])[0]) \n\t\tturn_number = int(struct.unpack('B', boardData[21])[0])\n\t\ttime = int(struct.unpack('B', boardData[22])[0])\n\tsecond_player = (first_player & 0x2) >> 1\n\tfirst_player = (first_player & 0x4) >> 2\n\tboardLayout = [];\n\tfor i in range(4,19,2):\n\t\tboardLayout.append(int(struct.unpack('H', boardData[i:i+2])[0]))\n\t#Prevent \"replays\" of using older versions\n\tif data[2:4] == \"01\":\n\t\tsaveFile(boardLayout, first_player, second_player, playerTurn, turn_number, time)\n\t\tboardLayout, first_player, second_player, playerTurn, turn_number,time = loadFile()\n\treturn boardLayout, first_player, second_player, playerTurn, turn_number,time\n\n#hash: Hashes a string\n#Returns: The hash as a sequence of bits rather than it's string representation\ndef hash(string):\n\tsecure = hashlib.sha256()\n\tsecure.update(string)\n\treturn secure.digest()\n", "import hashlib\nimport struct\nfrom BoardException import *\n<docstring token>\n\n\ndef saveFile(array, first_player=0, second_player=0, turn=0, turn_number=1,\n time=60):\n outFile = open('save.chck', 'wb')\n data = 'CK02'\n for i in array:\n data += struct.pack('H', i)\n data += struct.pack('B', first_player << 2 | second_player << 1 | turn)\n data += struct.pack('B', turn_number)\n data += struct.pack('B', time)\n data += hash(data[:])\n outFile.write(data)\n outFile.close()\n\n\ndef loadFile():\n try:\n inFile = open('save.chck', 'rb')\n except:\n raise BoardException('No save file found!')\n data = inFile.read()\n boardData = data[:-32]\n hashCheck = data[-32:]\n if hash(boardData) != hashCheck or data[0:2] != 'CK':\n raise BoardException('Oi! Stop mucking with my save file!')\n if data[2:4] != '01' and data[2:4] != '02':\n if int(data[2:4]) > 2:\n raise BoardException(\n 'Unrecognized save file version. Please download version ' +\n data[2:4] + ' in order to load this game correctly.')\n else:\n raise BoardException(\n 'Unrecognized save file version. Unable to find appropriate version.'\n )\n inFile.close()\n playerTurn = int(struct.unpack('B', boardData[20])[0]) & 1\n turn_number = 0\n if data[2:4] == '01':\n first_player = 1\n time = 60\n elif data[2:4] == '02':\n first_player = int(struct.unpack('B', boardData[20])[0])\n turn_number = int(struct.unpack('B', boardData[21])[0])\n time = int(struct.unpack('B', boardData[22])[0])\n second_player = (first_player & 2) >> 1\n first_player = (first_player & 4) >> 2\n boardLayout = []\n for i in range(4, 19, 2):\n boardLayout.append(int(struct.unpack('H', boardData[i:i + 2])[0]))\n if data[2:4] == '01':\n saveFile(boardLayout, first_player, second_player, playerTurn,\n turn_number, time)\n (boardLayout, first_player, second_player, playerTurn, turn_number,\n time) = loadFile()\n return (boardLayout, first_player, second_player, playerTurn,\n turn_number, time)\n\n\ndef hash(string):\n secure = hashlib.sha256()\n secure.update(string)\n return secure.digest()\n", "<import token>\n<docstring token>\n\n\ndef saveFile(array, first_player=0, second_player=0, turn=0, turn_number=1,\n time=60):\n outFile = open('save.chck', 'wb')\n data = 'CK02'\n for i in array:\n data += struct.pack('H', i)\n data += struct.pack('B', first_player << 2 | second_player << 1 | turn)\n data += struct.pack('B', turn_number)\n data += struct.pack('B', time)\n data += hash(data[:])\n outFile.write(data)\n outFile.close()\n\n\ndef loadFile():\n try:\n inFile = open('save.chck', 'rb')\n except:\n raise BoardException('No save file found!')\n data = inFile.read()\n boardData = data[:-32]\n hashCheck = data[-32:]\n if hash(boardData) != hashCheck or data[0:2] != 'CK':\n raise BoardException('Oi! Stop mucking with my save file!')\n if data[2:4] != '01' and data[2:4] != '02':\n if int(data[2:4]) > 2:\n raise BoardException(\n 'Unrecognized save file version. Please download version ' +\n data[2:4] + ' in order to load this game correctly.')\n else:\n raise BoardException(\n 'Unrecognized save file version. Unable to find appropriate version.'\n )\n inFile.close()\n playerTurn = int(struct.unpack('B', boardData[20])[0]) & 1\n turn_number = 0\n if data[2:4] == '01':\n first_player = 1\n time = 60\n elif data[2:4] == '02':\n first_player = int(struct.unpack('B', boardData[20])[0])\n turn_number = int(struct.unpack('B', boardData[21])[0])\n time = int(struct.unpack('B', boardData[22])[0])\n second_player = (first_player & 2) >> 1\n first_player = (first_player & 4) >> 2\n boardLayout = []\n for i in range(4, 19, 2):\n boardLayout.append(int(struct.unpack('H', boardData[i:i + 2])[0]))\n if data[2:4] == '01':\n saveFile(boardLayout, first_player, second_player, playerTurn,\n turn_number, time)\n (boardLayout, first_player, second_player, playerTurn, turn_number,\n time) = loadFile()\n return (boardLayout, first_player, second_player, playerTurn,\n turn_number, time)\n\n\ndef hash(string):\n secure = hashlib.sha256()\n secure.update(string)\n return secure.digest()\n", "<import token>\n<docstring token>\n\n\ndef saveFile(array, first_player=0, second_player=0, turn=0, turn_number=1,\n time=60):\n outFile = open('save.chck', 'wb')\n data = 'CK02'\n for i in array:\n data += struct.pack('H', i)\n data += struct.pack('B', first_player << 2 | second_player << 1 | turn)\n data += struct.pack('B', turn_number)\n data += struct.pack('B', time)\n data += hash(data[:])\n outFile.write(data)\n outFile.close()\n\n\ndef loadFile():\n try:\n inFile = open('save.chck', 'rb')\n except:\n raise BoardException('No save file found!')\n data = inFile.read()\n boardData = data[:-32]\n hashCheck = data[-32:]\n if hash(boardData) != hashCheck or data[0:2] != 'CK':\n raise BoardException('Oi! Stop mucking with my save file!')\n if data[2:4] != '01' and data[2:4] != '02':\n if int(data[2:4]) > 2:\n raise BoardException(\n 'Unrecognized save file version. Please download version ' +\n data[2:4] + ' in order to load this game correctly.')\n else:\n raise BoardException(\n 'Unrecognized save file version. Unable to find appropriate version.'\n )\n inFile.close()\n playerTurn = int(struct.unpack('B', boardData[20])[0]) & 1\n turn_number = 0\n if data[2:4] == '01':\n first_player = 1\n time = 60\n elif data[2:4] == '02':\n first_player = int(struct.unpack('B', boardData[20])[0])\n turn_number = int(struct.unpack('B', boardData[21])[0])\n time = int(struct.unpack('B', boardData[22])[0])\n second_player = (first_player & 2) >> 1\n first_player = (first_player & 4) >> 2\n boardLayout = []\n for i in range(4, 19, 2):\n boardLayout.append(int(struct.unpack('H', boardData[i:i + 2])[0]))\n if data[2:4] == '01':\n saveFile(boardLayout, first_player, second_player, playerTurn,\n turn_number, time)\n (boardLayout, first_player, second_player, playerTurn, turn_number,\n time) = loadFile()\n return (boardLayout, first_player, second_player, playerTurn,\n turn_number, time)\n\n\n<function token>\n", "<import token>\n<docstring token>\n\n\ndef saveFile(array, first_player=0, second_player=0, turn=0, turn_number=1,\n time=60):\n outFile = open('save.chck', 'wb')\n data = 'CK02'\n for i in array:\n data += struct.pack('H', i)\n data += struct.pack('B', first_player << 2 | second_player << 1 | turn)\n data += struct.pack('B', turn_number)\n data += struct.pack('B', time)\n data += hash(data[:])\n outFile.write(data)\n outFile.close()\n\n\n<function token>\n<function token>\n", "<import token>\n<docstring token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,518
1a18b81669dc0572c2d333964a9f82ab3d0be3ee
"""Tests for the BSBLan integration.""" import aiohttp from homeassistant.components.bsblan.const import DOMAIN from homeassistant.config_entries import ConfigEntryState from homeassistant.core import HomeAssistant from tests.components.bsblan import init_integration, init_integration_without_auth from tests.test_util.aiohttp import AiohttpClientMocker async def test_config_entry_not_ready( hass: HomeAssistant, aioclient_mock: AiohttpClientMocker ) -> None: """Test the BSBLan configuration entry not ready.""" aioclient_mock.post( "http://example.local:80/1234/JQ?Parameter=6224,6225,6226", exc=aiohttp.ClientError, ) entry = await init_integration(hass, aioclient_mock) assert entry.state is ConfigEntryState.SETUP_RETRY async def test_unload_config_entry( hass: HomeAssistant, aioclient_mock: AiohttpClientMocker ) -> None: """Test the BSBLan configuration entry unloading.""" entry = await init_integration(hass, aioclient_mock) assert hass.data[DOMAIN] await hass.config_entries.async_unload(entry.entry_id) await hass.async_block_till_done() assert not hass.data.get(DOMAIN) async def test_config_entry_no_authentication( hass: HomeAssistant, aioclient_mock: AiohttpClientMocker ) -> None: """Test the BSBLan configuration entry not ready.""" aioclient_mock.post( "http://example.local:80/1234/JQ?Parameter=6224,6225,6226", exc=aiohttp.ClientError, ) entry = await init_integration_without_auth(hass, aioclient_mock) assert entry.state is ConfigEntryState.SETUP_RETRY
[ "\"\"\"Tests for the BSBLan integration.\"\"\"\nimport aiohttp\n\nfrom homeassistant.components.bsblan.const import DOMAIN\nfrom homeassistant.config_entries import ConfigEntryState\nfrom homeassistant.core import HomeAssistant\n\nfrom tests.components.bsblan import init_integration, init_integration_without_auth\nfrom tests.test_util.aiohttp import AiohttpClientMocker\n\n\nasync def test_config_entry_not_ready(\n hass: HomeAssistant, aioclient_mock: AiohttpClientMocker\n) -> None:\n \"\"\"Test the BSBLan configuration entry not ready.\"\"\"\n aioclient_mock.post(\n \"http://example.local:80/1234/JQ?Parameter=6224,6225,6226\",\n exc=aiohttp.ClientError,\n )\n\n entry = await init_integration(hass, aioclient_mock)\n assert entry.state is ConfigEntryState.SETUP_RETRY\n\n\nasync def test_unload_config_entry(\n hass: HomeAssistant, aioclient_mock: AiohttpClientMocker\n) -> None:\n \"\"\"Test the BSBLan configuration entry unloading.\"\"\"\n entry = await init_integration(hass, aioclient_mock)\n assert hass.data[DOMAIN]\n\n await hass.config_entries.async_unload(entry.entry_id)\n await hass.async_block_till_done()\n assert not hass.data.get(DOMAIN)\n\n\nasync def test_config_entry_no_authentication(\n hass: HomeAssistant, aioclient_mock: AiohttpClientMocker\n) -> None:\n \"\"\"Test the BSBLan configuration entry not ready.\"\"\"\n aioclient_mock.post(\n \"http://example.local:80/1234/JQ?Parameter=6224,6225,6226\",\n exc=aiohttp.ClientError,\n )\n\n entry = await init_integration_without_auth(hass, aioclient_mock)\n assert entry.state is ConfigEntryState.SETUP_RETRY\n", "<docstring token>\nimport aiohttp\nfrom homeassistant.components.bsblan.const import DOMAIN\nfrom homeassistant.config_entries import ConfigEntryState\nfrom homeassistant.core import HomeAssistant\nfrom tests.components.bsblan import init_integration, init_integration_without_auth\nfrom tests.test_util.aiohttp import AiohttpClientMocker\n\n\nasync def test_config_entry_not_ready(hass: HomeAssistant, aioclient_mock:\n AiohttpClientMocker) ->None:\n \"\"\"Test the BSBLan configuration entry not ready.\"\"\"\n aioclient_mock.post(\n 'http://example.local:80/1234/JQ?Parameter=6224,6225,6226', exc=\n aiohttp.ClientError)\n entry = await init_integration(hass, aioclient_mock)\n assert entry.state is ConfigEntryState.SETUP_RETRY\n\n\nasync def test_unload_config_entry(hass: HomeAssistant, aioclient_mock:\n AiohttpClientMocker) ->None:\n \"\"\"Test the BSBLan configuration entry unloading.\"\"\"\n entry = await init_integration(hass, aioclient_mock)\n assert hass.data[DOMAIN]\n await hass.config_entries.async_unload(entry.entry_id)\n await hass.async_block_till_done()\n assert not hass.data.get(DOMAIN)\n\n\nasync def test_config_entry_no_authentication(hass: HomeAssistant,\n aioclient_mock: AiohttpClientMocker) ->None:\n \"\"\"Test the BSBLan configuration entry not ready.\"\"\"\n aioclient_mock.post(\n 'http://example.local:80/1234/JQ?Parameter=6224,6225,6226', exc=\n aiohttp.ClientError)\n entry = await init_integration_without_auth(hass, aioclient_mock)\n assert entry.state is ConfigEntryState.SETUP_RETRY\n", "<docstring token>\n<import token>\n\n\nasync def test_config_entry_not_ready(hass: HomeAssistant, aioclient_mock:\n AiohttpClientMocker) ->None:\n \"\"\"Test the BSBLan configuration entry not ready.\"\"\"\n aioclient_mock.post(\n 'http://example.local:80/1234/JQ?Parameter=6224,6225,6226', exc=\n aiohttp.ClientError)\n entry = await init_integration(hass, aioclient_mock)\n assert entry.state is ConfigEntryState.SETUP_RETRY\n\n\nasync def test_unload_config_entry(hass: HomeAssistant, aioclient_mock:\n AiohttpClientMocker) ->None:\n \"\"\"Test the BSBLan configuration entry unloading.\"\"\"\n entry = await init_integration(hass, aioclient_mock)\n assert hass.data[DOMAIN]\n await hass.config_entries.async_unload(entry.entry_id)\n await hass.async_block_till_done()\n assert not hass.data.get(DOMAIN)\n\n\nasync def test_config_entry_no_authentication(hass: HomeAssistant,\n aioclient_mock: AiohttpClientMocker) ->None:\n \"\"\"Test the BSBLan configuration entry not ready.\"\"\"\n aioclient_mock.post(\n 'http://example.local:80/1234/JQ?Parameter=6224,6225,6226', exc=\n aiohttp.ClientError)\n entry = await init_integration_without_auth(hass, aioclient_mock)\n assert entry.state is ConfigEntryState.SETUP_RETRY\n", "<docstring token>\n<import token>\n<code token>\n" ]
false
99,519
953d250081ad1cdb7855b0395b8479ef02f1b0ee
__author__ = 'Irwan Fathurrahman <[email protected]>' __date__ = '15/06/20' import datetime import json import os import requests import time from django.conf import settings from django.test import TestCase from django.utils.dateparse import parse_datetime class TestAnalyzeImpact(TestCase): def setUp(self): self.forecast_date_range_start = "1990-01-01T17:00:00.000Z" self.forecast_date_range_end = "1990-01-30T17:00:00.000Z" # we check if our queue is empty url = os.path.join( settings.POSTGREST_BASE_URL, 'hazard_event_queue') is_empty = False while not is_empty: response = requests.get(url) is_empty = len(response.json()) == 0 if not is_empty: time.sleep(10) def test_peformance(self): """ Test impact calculation peformance and also return time of progress """ timedeltas = [] for file in os.listdir(settings.ANALYSIS_REPORT_FOLDER): _file = open(os.path.join(settings.ANALYSIS_REPORT_FOLDER, file), "r") report = json.loads(_file.read()) timedeltas.append( parse_datetime(report['finish']) - parse_datetime(report['start'])) _file.close() # number of queue print('NUMBER OF QUEUE = {}'.format(len(timedeltas))) # get average time average_timedelta = sum(timedeltas, datetime.timedelta(0)) / len(timedeltas) print('AVERAGE = {}'.format(average_timedelta)) self.assertTrue(average_timedelta < datetime.timedelta(minutes=3)) # get total process time total = timedeltas[0] for delta in timedeltas[:1]: total += delta print('TOTAL = {}'.format(total)) self.assertTrue(total < datetime.timedelta(minutes=3 * len(timedeltas))) def test_event_historical(self): """ Test for return list of historical event """ url = os.path.join( settings.POSTGREST_BASE_URL, 'rpc/flood_event_historical_forecast_list_f') events = requests.post(url, data={ 'forecast_date_range_start': self.forecast_date_range_start, 'forecast_date_range_end': self.forecast_date_range_end }).json() self.assertTrue(len(events) != 0) def test_hazard_event(self): """ Test of hazard event in date of tests """ url = os.path.join( settings.POSTGREST_BASE_URL, 'hazard_event?and=(forecast_date.gte.{},forecast_date.lt.{})' '&order=acquisition_date.desc'.format( self.forecast_date_range_start, self.forecast_date_range_end )) events = requests.get(url).json() # district summary fixture district_summary_fixture = os.path.join( settings.FIXTURES, 'test', 'district_summary.json') with open(district_summary_fixture, 'r') as _file: district_summary_fixture = json.load(_file) # road district summary fixture road_district_summary_fixture = os.path.join( settings.FIXTURES, 'test', 'road_district_summary.json') with open(road_district_summary_fixture, 'r') as _file: road_district_summary_fixture = json.load(_file) # world pop district summary fixture world_pop_district_summary = os.path.join( settings.FIXTURES, 'test', 'world_pop_district_summary.json') with open(world_pop_district_summary, 'r') as _file: world_pop_district_summary = json.load(_file) for event in events: # check district summary url = os.path.join( settings.POSTGREST_BASE_URL, 'mv_flood_event_district_summary?flood_event_id=eq.{}'.format( event['id'])) for summary in requests.get(url).json(): fixture = district_summary_fixture[summary['name']] for key, value in summary.items(): if key == 'flood_event_id': return self.assertEqual(value, fixture[key]) # check road district summary url = os.path.join( settings.POSTGREST_BASE_URL, 'mv_flood_event_road_district_summary?flood_event_id=eq.{}'.format( event['id'])) for summary in requests.get(url).json(): fixture = road_district_summary_fixture[summary['name']] for key, value in summary.items(): if key == 'flood_event_id': return self.assertEqual(value, fixture[key]) # check world pop district summary url = os.path.join( settings.POSTGREST_BASE_URL, 'mv_flood_event_world_pop_district_summary?flood_event_id=eq.{}'.format( event['id'])) for summary in requests.get(url).json(): fixture = world_pop_district_summary[summary['name']] for key, value in summary.items(): if key == 'flood_event_id': return self.assertEqual(value, fixture[key])
[ "__author__ = 'Irwan Fathurrahman <[email protected]>'\n__date__ = '15/06/20'\n\nimport datetime\nimport json\nimport os\nimport requests\nimport time\nfrom django.conf import settings\nfrom django.test import TestCase\nfrom django.utils.dateparse import parse_datetime\n\n\nclass TestAnalyzeImpact(TestCase):\n\n def setUp(self):\n self.forecast_date_range_start = \"1990-01-01T17:00:00.000Z\"\n self.forecast_date_range_end = \"1990-01-30T17:00:00.000Z\"\n # we check if our queue is empty\n url = os.path.join(\n settings.POSTGREST_BASE_URL,\n 'hazard_event_queue')\n is_empty = False\n while not is_empty:\n response = requests.get(url)\n is_empty = len(response.json()) == 0\n if not is_empty:\n time.sleep(10)\n\n def test_peformance(self):\n \"\"\" Test impact calculation peformance\n and also return time of progress\n \"\"\"\n timedeltas = []\n for file in os.listdir(settings.ANALYSIS_REPORT_FOLDER):\n _file = open(os.path.join(settings.ANALYSIS_REPORT_FOLDER, file), \"r\")\n report = json.loads(_file.read())\n timedeltas.append(\n parse_datetime(report['finish']) - parse_datetime(report['start']))\n _file.close()\n\n # number of queue\n print('NUMBER OF QUEUE = {}'.format(len(timedeltas)))\n\n # get average time\n average_timedelta = sum(timedeltas, datetime.timedelta(0)) / len(timedeltas)\n print('AVERAGE = {}'.format(average_timedelta))\n self.assertTrue(average_timedelta < datetime.timedelta(minutes=3))\n\n # get total process time\n total = timedeltas[0]\n for delta in timedeltas[:1]:\n total += delta\n print('TOTAL = {}'.format(total))\n self.assertTrue(total < datetime.timedelta(minutes=3 * len(timedeltas)))\n\n def test_event_historical(self):\n \"\"\" Test for return list of historical event\n \"\"\"\n url = os.path.join(\n settings.POSTGREST_BASE_URL,\n 'rpc/flood_event_historical_forecast_list_f')\n events = requests.post(url, data={\n 'forecast_date_range_start': self.forecast_date_range_start,\n 'forecast_date_range_end': self.forecast_date_range_end\n }).json()\n self.assertTrue(len(events) != 0)\n\n def test_hazard_event(self):\n \"\"\" Test of hazard event in date of tests\n \"\"\"\n\n url = os.path.join(\n settings.POSTGREST_BASE_URL,\n 'hazard_event?and=(forecast_date.gte.{},forecast_date.lt.{})'\n '&order=acquisition_date.desc'.format(\n self.forecast_date_range_start, self.forecast_date_range_end\n ))\n events = requests.get(url).json()\n\n # district summary fixture\n district_summary_fixture = os.path.join(\n settings.FIXTURES, 'test', 'district_summary.json')\n with open(district_summary_fixture, 'r') as _file:\n district_summary_fixture = json.load(_file)\n\n # road district summary fixture\n road_district_summary_fixture = os.path.join(\n settings.FIXTURES, 'test', 'road_district_summary.json')\n with open(road_district_summary_fixture, 'r') as _file:\n road_district_summary_fixture = json.load(_file)\n\n # world pop district summary fixture\n world_pop_district_summary = os.path.join(\n settings.FIXTURES, 'test', 'world_pop_district_summary.json')\n with open(world_pop_district_summary, 'r') as _file:\n world_pop_district_summary = json.load(_file)\n\n for event in events:\n # check district summary\n url = os.path.join(\n settings.POSTGREST_BASE_URL,\n 'mv_flood_event_district_summary?flood_event_id=eq.{}'.format(\n event['id']))\n for summary in requests.get(url).json():\n fixture = district_summary_fixture[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n\n # check road district summary\n url = os.path.join(\n settings.POSTGREST_BASE_URL,\n 'mv_flood_event_road_district_summary?flood_event_id=eq.{}'.format(\n event['id']))\n for summary in requests.get(url).json():\n fixture = road_district_summary_fixture[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n\n # check world pop district summary\n url = os.path.join(\n settings.POSTGREST_BASE_URL,\n 'mv_flood_event_world_pop_district_summary?flood_event_id=eq.{}'.format(\n event['id']))\n for summary in requests.get(url).json():\n fixture = world_pop_district_summary[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n", "__author__ = 'Irwan Fathurrahman <[email protected]>'\n__date__ = '15/06/20'\nimport datetime\nimport json\nimport os\nimport requests\nimport time\nfrom django.conf import settings\nfrom django.test import TestCase\nfrom django.utils.dateparse import parse_datetime\n\n\nclass TestAnalyzeImpact(TestCase):\n\n def setUp(self):\n self.forecast_date_range_start = '1990-01-01T17:00:00.000Z'\n self.forecast_date_range_end = '1990-01-30T17:00:00.000Z'\n url = os.path.join(settings.POSTGREST_BASE_URL, 'hazard_event_queue')\n is_empty = False\n while not is_empty:\n response = requests.get(url)\n is_empty = len(response.json()) == 0\n if not is_empty:\n time.sleep(10)\n\n def test_peformance(self):\n \"\"\" Test impact calculation peformance\n and also return time of progress\n \"\"\"\n timedeltas = []\n for file in os.listdir(settings.ANALYSIS_REPORT_FOLDER):\n _file = open(os.path.join(settings.ANALYSIS_REPORT_FOLDER, file\n ), 'r')\n report = json.loads(_file.read())\n timedeltas.append(parse_datetime(report['finish']) -\n parse_datetime(report['start']))\n _file.close()\n print('NUMBER OF QUEUE = {}'.format(len(timedeltas)))\n average_timedelta = sum(timedeltas, datetime.timedelta(0)) / len(\n timedeltas)\n print('AVERAGE = {}'.format(average_timedelta))\n self.assertTrue(average_timedelta < datetime.timedelta(minutes=3))\n total = timedeltas[0]\n for delta in timedeltas[:1]:\n total += delta\n print('TOTAL = {}'.format(total))\n self.assertTrue(total < datetime.timedelta(minutes=3 * len(timedeltas))\n )\n\n def test_event_historical(self):\n \"\"\" Test for return list of historical event\n \"\"\"\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'rpc/flood_event_historical_forecast_list_f')\n events = requests.post(url, data={'forecast_date_range_start': self\n .forecast_date_range_start, 'forecast_date_range_end': self.\n forecast_date_range_end}).json()\n self.assertTrue(len(events) != 0)\n\n def test_hazard_event(self):\n \"\"\" Test of hazard event in date of tests\n \"\"\"\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'hazard_event?and=(forecast_date.gte.{},forecast_date.lt.{})&order=acquisition_date.desc'\n .format(self.forecast_date_range_start, self.\n forecast_date_range_end))\n events = requests.get(url).json()\n district_summary_fixture = os.path.join(settings.FIXTURES, 'test',\n 'district_summary.json')\n with open(district_summary_fixture, 'r') as _file:\n district_summary_fixture = json.load(_file)\n road_district_summary_fixture = os.path.join(settings.FIXTURES,\n 'test', 'road_district_summary.json')\n with open(road_district_summary_fixture, 'r') as _file:\n road_district_summary_fixture = json.load(_file)\n world_pop_district_summary = os.path.join(settings.FIXTURES, 'test',\n 'world_pop_district_summary.json')\n with open(world_pop_district_summary, 'r') as _file:\n world_pop_district_summary = json.load(_file)\n for event in events:\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_district_summary?flood_event_id=eq.{}'.\n format(event['id']))\n for summary in requests.get(url).json():\n fixture = district_summary_fixture[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_road_district_summary?flood_event_id=eq.{}'\n .format(event['id']))\n for summary in requests.get(url).json():\n fixture = road_district_summary_fixture[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_world_pop_district_summary?flood_event_id=eq.{}'\n .format(event['id']))\n for summary in requests.get(url).json():\n fixture = world_pop_district_summary[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n", "__author__ = 'Irwan Fathurrahman <[email protected]>'\n__date__ = '15/06/20'\n<import token>\n\n\nclass TestAnalyzeImpact(TestCase):\n\n def setUp(self):\n self.forecast_date_range_start = '1990-01-01T17:00:00.000Z'\n self.forecast_date_range_end = '1990-01-30T17:00:00.000Z'\n url = os.path.join(settings.POSTGREST_BASE_URL, 'hazard_event_queue')\n is_empty = False\n while not is_empty:\n response = requests.get(url)\n is_empty = len(response.json()) == 0\n if not is_empty:\n time.sleep(10)\n\n def test_peformance(self):\n \"\"\" Test impact calculation peformance\n and also return time of progress\n \"\"\"\n timedeltas = []\n for file in os.listdir(settings.ANALYSIS_REPORT_FOLDER):\n _file = open(os.path.join(settings.ANALYSIS_REPORT_FOLDER, file\n ), 'r')\n report = json.loads(_file.read())\n timedeltas.append(parse_datetime(report['finish']) -\n parse_datetime(report['start']))\n _file.close()\n print('NUMBER OF QUEUE = {}'.format(len(timedeltas)))\n average_timedelta = sum(timedeltas, datetime.timedelta(0)) / len(\n timedeltas)\n print('AVERAGE = {}'.format(average_timedelta))\n self.assertTrue(average_timedelta < datetime.timedelta(minutes=3))\n total = timedeltas[0]\n for delta in timedeltas[:1]:\n total += delta\n print('TOTAL = {}'.format(total))\n self.assertTrue(total < datetime.timedelta(minutes=3 * len(timedeltas))\n )\n\n def test_event_historical(self):\n \"\"\" Test for return list of historical event\n \"\"\"\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'rpc/flood_event_historical_forecast_list_f')\n events = requests.post(url, data={'forecast_date_range_start': self\n .forecast_date_range_start, 'forecast_date_range_end': self.\n forecast_date_range_end}).json()\n self.assertTrue(len(events) != 0)\n\n def test_hazard_event(self):\n \"\"\" Test of hazard event in date of tests\n \"\"\"\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'hazard_event?and=(forecast_date.gte.{},forecast_date.lt.{})&order=acquisition_date.desc'\n .format(self.forecast_date_range_start, self.\n forecast_date_range_end))\n events = requests.get(url).json()\n district_summary_fixture = os.path.join(settings.FIXTURES, 'test',\n 'district_summary.json')\n with open(district_summary_fixture, 'r') as _file:\n district_summary_fixture = json.load(_file)\n road_district_summary_fixture = os.path.join(settings.FIXTURES,\n 'test', 'road_district_summary.json')\n with open(road_district_summary_fixture, 'r') as _file:\n road_district_summary_fixture = json.load(_file)\n world_pop_district_summary = os.path.join(settings.FIXTURES, 'test',\n 'world_pop_district_summary.json')\n with open(world_pop_district_summary, 'r') as _file:\n world_pop_district_summary = json.load(_file)\n for event in events:\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_district_summary?flood_event_id=eq.{}'.\n format(event['id']))\n for summary in requests.get(url).json():\n fixture = district_summary_fixture[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_road_district_summary?flood_event_id=eq.{}'\n .format(event['id']))\n for summary in requests.get(url).json():\n fixture = road_district_summary_fixture[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_world_pop_district_summary?flood_event_id=eq.{}'\n .format(event['id']))\n for summary in requests.get(url).json():\n fixture = world_pop_district_summary[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n", "<assignment token>\n<import token>\n\n\nclass TestAnalyzeImpact(TestCase):\n\n def setUp(self):\n self.forecast_date_range_start = '1990-01-01T17:00:00.000Z'\n self.forecast_date_range_end = '1990-01-30T17:00:00.000Z'\n url = os.path.join(settings.POSTGREST_BASE_URL, 'hazard_event_queue')\n is_empty = False\n while not is_empty:\n response = requests.get(url)\n is_empty = len(response.json()) == 0\n if not is_empty:\n time.sleep(10)\n\n def test_peformance(self):\n \"\"\" Test impact calculation peformance\n and also return time of progress\n \"\"\"\n timedeltas = []\n for file in os.listdir(settings.ANALYSIS_REPORT_FOLDER):\n _file = open(os.path.join(settings.ANALYSIS_REPORT_FOLDER, file\n ), 'r')\n report = json.loads(_file.read())\n timedeltas.append(parse_datetime(report['finish']) -\n parse_datetime(report['start']))\n _file.close()\n print('NUMBER OF QUEUE = {}'.format(len(timedeltas)))\n average_timedelta = sum(timedeltas, datetime.timedelta(0)) / len(\n timedeltas)\n print('AVERAGE = {}'.format(average_timedelta))\n self.assertTrue(average_timedelta < datetime.timedelta(minutes=3))\n total = timedeltas[0]\n for delta in timedeltas[:1]:\n total += delta\n print('TOTAL = {}'.format(total))\n self.assertTrue(total < datetime.timedelta(minutes=3 * len(timedeltas))\n )\n\n def test_event_historical(self):\n \"\"\" Test for return list of historical event\n \"\"\"\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'rpc/flood_event_historical_forecast_list_f')\n events = requests.post(url, data={'forecast_date_range_start': self\n .forecast_date_range_start, 'forecast_date_range_end': self.\n forecast_date_range_end}).json()\n self.assertTrue(len(events) != 0)\n\n def test_hazard_event(self):\n \"\"\" Test of hazard event in date of tests\n \"\"\"\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'hazard_event?and=(forecast_date.gte.{},forecast_date.lt.{})&order=acquisition_date.desc'\n .format(self.forecast_date_range_start, self.\n forecast_date_range_end))\n events = requests.get(url).json()\n district_summary_fixture = os.path.join(settings.FIXTURES, 'test',\n 'district_summary.json')\n with open(district_summary_fixture, 'r') as _file:\n district_summary_fixture = json.load(_file)\n road_district_summary_fixture = os.path.join(settings.FIXTURES,\n 'test', 'road_district_summary.json')\n with open(road_district_summary_fixture, 'r') as _file:\n road_district_summary_fixture = json.load(_file)\n world_pop_district_summary = os.path.join(settings.FIXTURES, 'test',\n 'world_pop_district_summary.json')\n with open(world_pop_district_summary, 'r') as _file:\n world_pop_district_summary = json.load(_file)\n for event in events:\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_district_summary?flood_event_id=eq.{}'.\n format(event['id']))\n for summary in requests.get(url).json():\n fixture = district_summary_fixture[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_road_district_summary?flood_event_id=eq.{}'\n .format(event['id']))\n for summary in requests.get(url).json():\n fixture = road_district_summary_fixture[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_world_pop_district_summary?flood_event_id=eq.{}'\n .format(event['id']))\n for summary in requests.get(url).json():\n fixture = world_pop_district_summary[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n", "<assignment token>\n<import token>\n\n\nclass TestAnalyzeImpact(TestCase):\n <function token>\n\n def test_peformance(self):\n \"\"\" Test impact calculation peformance\n and also return time of progress\n \"\"\"\n timedeltas = []\n for file in os.listdir(settings.ANALYSIS_REPORT_FOLDER):\n _file = open(os.path.join(settings.ANALYSIS_REPORT_FOLDER, file\n ), 'r')\n report = json.loads(_file.read())\n timedeltas.append(parse_datetime(report['finish']) -\n parse_datetime(report['start']))\n _file.close()\n print('NUMBER OF QUEUE = {}'.format(len(timedeltas)))\n average_timedelta = sum(timedeltas, datetime.timedelta(0)) / len(\n timedeltas)\n print('AVERAGE = {}'.format(average_timedelta))\n self.assertTrue(average_timedelta < datetime.timedelta(minutes=3))\n total = timedeltas[0]\n for delta in timedeltas[:1]:\n total += delta\n print('TOTAL = {}'.format(total))\n self.assertTrue(total < datetime.timedelta(minutes=3 * len(timedeltas))\n )\n\n def test_event_historical(self):\n \"\"\" Test for return list of historical event\n \"\"\"\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'rpc/flood_event_historical_forecast_list_f')\n events = requests.post(url, data={'forecast_date_range_start': self\n .forecast_date_range_start, 'forecast_date_range_end': self.\n forecast_date_range_end}).json()\n self.assertTrue(len(events) != 0)\n\n def test_hazard_event(self):\n \"\"\" Test of hazard event in date of tests\n \"\"\"\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'hazard_event?and=(forecast_date.gte.{},forecast_date.lt.{})&order=acquisition_date.desc'\n .format(self.forecast_date_range_start, self.\n forecast_date_range_end))\n events = requests.get(url).json()\n district_summary_fixture = os.path.join(settings.FIXTURES, 'test',\n 'district_summary.json')\n with open(district_summary_fixture, 'r') as _file:\n district_summary_fixture = json.load(_file)\n road_district_summary_fixture = os.path.join(settings.FIXTURES,\n 'test', 'road_district_summary.json')\n with open(road_district_summary_fixture, 'r') as _file:\n road_district_summary_fixture = json.load(_file)\n world_pop_district_summary = os.path.join(settings.FIXTURES, 'test',\n 'world_pop_district_summary.json')\n with open(world_pop_district_summary, 'r') as _file:\n world_pop_district_summary = json.load(_file)\n for event in events:\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_district_summary?flood_event_id=eq.{}'.\n format(event['id']))\n for summary in requests.get(url).json():\n fixture = district_summary_fixture[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_road_district_summary?flood_event_id=eq.{}'\n .format(event['id']))\n for summary in requests.get(url).json():\n fixture = road_district_summary_fixture[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_world_pop_district_summary?flood_event_id=eq.{}'\n .format(event['id']))\n for summary in requests.get(url).json():\n fixture = world_pop_district_summary[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n", "<assignment token>\n<import token>\n\n\nclass TestAnalyzeImpact(TestCase):\n <function token>\n <function token>\n\n def test_event_historical(self):\n \"\"\" Test for return list of historical event\n \"\"\"\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'rpc/flood_event_historical_forecast_list_f')\n events = requests.post(url, data={'forecast_date_range_start': self\n .forecast_date_range_start, 'forecast_date_range_end': self.\n forecast_date_range_end}).json()\n self.assertTrue(len(events) != 0)\n\n def test_hazard_event(self):\n \"\"\" Test of hazard event in date of tests\n \"\"\"\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'hazard_event?and=(forecast_date.gte.{},forecast_date.lt.{})&order=acquisition_date.desc'\n .format(self.forecast_date_range_start, self.\n forecast_date_range_end))\n events = requests.get(url).json()\n district_summary_fixture = os.path.join(settings.FIXTURES, 'test',\n 'district_summary.json')\n with open(district_summary_fixture, 'r') as _file:\n district_summary_fixture = json.load(_file)\n road_district_summary_fixture = os.path.join(settings.FIXTURES,\n 'test', 'road_district_summary.json')\n with open(road_district_summary_fixture, 'r') as _file:\n road_district_summary_fixture = json.load(_file)\n world_pop_district_summary = os.path.join(settings.FIXTURES, 'test',\n 'world_pop_district_summary.json')\n with open(world_pop_district_summary, 'r') as _file:\n world_pop_district_summary = json.load(_file)\n for event in events:\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_district_summary?flood_event_id=eq.{}'.\n format(event['id']))\n for summary in requests.get(url).json():\n fixture = district_summary_fixture[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_road_district_summary?flood_event_id=eq.{}'\n .format(event['id']))\n for summary in requests.get(url).json():\n fixture = road_district_summary_fixture[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'mv_flood_event_world_pop_district_summary?flood_event_id=eq.{}'\n .format(event['id']))\n for summary in requests.get(url).json():\n fixture = world_pop_district_summary[summary['name']]\n for key, value in summary.items():\n if key == 'flood_event_id':\n return\n self.assertEqual(value, fixture[key])\n", "<assignment token>\n<import token>\n\n\nclass TestAnalyzeImpact(TestCase):\n <function token>\n <function token>\n\n def test_event_historical(self):\n \"\"\" Test for return list of historical event\n \"\"\"\n url = os.path.join(settings.POSTGREST_BASE_URL,\n 'rpc/flood_event_historical_forecast_list_f')\n events = requests.post(url, data={'forecast_date_range_start': self\n .forecast_date_range_start, 'forecast_date_range_end': self.\n forecast_date_range_end}).json()\n self.assertTrue(len(events) != 0)\n <function token>\n", "<assignment token>\n<import token>\n\n\nclass TestAnalyzeImpact(TestCase):\n <function token>\n <function token>\n <function token>\n <function token>\n", "<assignment token>\n<import token>\n<class token>\n" ]
false
99,520
41d2e2cb966e864a2c4c9eabb86eb22702842c68
from django.contrib import admin # Register your models here. from .models import Payee, Customer, CustomerAccount, FundTransfer admin.site.register(Payee) admin.site.register(Customer) admin.site.register(CustomerAccount) admin.site.register(FundTransfer)
[ "from django.contrib import admin\n\n# Register your models here.\n\n\nfrom .models import Payee, Customer, CustomerAccount, FundTransfer\n\nadmin.site.register(Payee)\nadmin.site.register(Customer)\nadmin.site.register(CustomerAccount)\nadmin.site.register(FundTransfer)\n", "from django.contrib import admin\nfrom .models import Payee, Customer, CustomerAccount, FundTransfer\nadmin.site.register(Payee)\nadmin.site.register(Customer)\nadmin.site.register(CustomerAccount)\nadmin.site.register(FundTransfer)\n", "<import token>\nadmin.site.register(Payee)\nadmin.site.register(Customer)\nadmin.site.register(CustomerAccount)\nadmin.site.register(FundTransfer)\n", "<import token>\n<code token>\n" ]
false
99,521
93842ba636015563f2e89651c0aed2718d74310e
''' Created on Sep 2, 2014 @author: Kevin ''' from test.pickletester import MyList # from Adam Barr's wonderful book "Find the Bug" ''' This function draws a card from a deck and puts it into a hand. It is meant to be part of the game Go Fish, so if the resulting hand has all four suits for a given card rank, those four cards are removed from the hand. Cards are identified by their rank and suit: the rank is one of the elements in the list ["2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A"] and the suit is on of the elements of the list ["spades", "hearts", "diamonds", "clubs"]. A deck is a list that initially contains 52 elements. Each element of the list is a tuple with two elements: the rank and the suit. So a single entry in the deck might be the tuple ("K", "spades"), which is the king of spades. A hand is a dictionary. In each element of the dictionary, the key is the rank and the value is a list that contains the names of the suits that the hand holds for that rank. E.g., if a hand as the 3 of spades and the 3 of hearts, and no other 3s, then the key "3" has the value ["spades", "hearts"]. A key should not have an empty list associated with it - if no cards of a given rank are held, no value exists for that key.''' import random import sys rankList = ["2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A"] suitList = ["spades", "hearts", "diamonds", "clubs"] GOFISH = "Go Fish" def log_stdout(msg): '''Print msg to the screen.''' print(msg) def makeDeck(): ''' Creates a deck. A deck is a list that initially contains 52 elements. Each element of the list is a tuple with two elements: the rank and the suit. So a single entry in the deck might be the tuple ("K", "spades"), which is the king of spades. ''' deck = [] for r in rankList: for s in suitList: deck.append([r, s]) return deck def getCard(deck): ''' Randomly remove a single card from the deck and return it. Assumes that the deck is not empty. deck: A deck as described above Returns: a single card, which is a tuple with two elements, the rank and the suit ''' index = random.randint(0,len(deck)-1) newCard = deck[index] del deck[index] return newCard def askForCard(requestor, requestorHand, giver, giverHand ): '''Asks other player for a needed rank ''' if len(requestorHand) == 0: print("%s has no cards. %s" %(requestor,GOFISH)) return #find the rank with maximum count maxKey = GOFISH maxCount = 0 for key in requestorHand: count=len(requestorHand.get(key)) if count > maxCount: maxKey = key maxCount = count if len(giverHand) == 0: print("%s has requested %s but %s has no cards. %s" %(requestor,maxKey,giver,GOFISH)) return GOFISH received = giverHand.get(maxKey,GOFISH) print("%s asked %s for %s and the answer was %s" %(requestor,giver, maxKey,received)) if received == GOFISH: return GOFISH for value in received: requestorHand[maxKey].append(value) del giverHand[maxKey] return received def drawCard(name, deck, hand): ''' Draw a new card from the deck and add it to the hand. If the hand now holds the rank in all four suits, then remove them from the hand. name: A string with the name of the playerHand, used only for display purposes. deck: A deck as described above hand: A hand dictionary as described above Returns: None. ''' if len(deck) > 0: # protect against empty deck newCard = getCard(deck) cardRank = newCard[0] cardSuit = newCard[1] else: return if cardRank in hand: # append this suit to the result hand[cardRank].append(cardSuit) else: # first of this suit, create a list with one element hand[cardRank] = [ cardSuit ] def initHand(deck,hand,numberOfCards): for i in range(numberOfCards): newCard=getCard(deck) cardRank = newCard[0] cardSuit = newCard[1] testList = hand.get(cardRank,"notAsuitSuit") if testList == "notAsuitSuit": hand[cardRank]=[cardSuit] else: hand[cardRank].append(cardSuit) def playHand(name,hand): played=False for r in rankList: cardSuits=hand.get(r,"notAsuitSuit") if len(cardSuits) == 4: print('%s %s %s' % (name, "lay down", r + "s")) del hand[r] played=True if not played: print("player %s has nothing to play" %(name)) class GoFish: ''' Play a game of Go Fish! ''' def __init__(self, playerList=["DefaultPlayer1", "DefaultPlayer2"]): if (len(playerList)>0): tempPlayers = playerList else: tempPlayers = ["DefaultPlayer1", "DefaultPlayer2"] self.deck=makeDeck() self.players={} initCardCount=7 if (len(tempPlayers)>4): initCardCount=5 for name in tempPlayers: self.players[name]={} initHand(self.deck, self.players[name], initCardCount) def autoPlay(self): '''Plays a game of GoFish''' notDone = True roundNumber = 0 whoToAsk={} while notDone: roundNumber+=1 print('Round %i !' % (roundNumber)) for player in self.players: playersHand = self.players.get(player) print('player %s is now playing and has %i ranks' % (player,len(playersHand))) temp = whoToAsk.get(player,GOFISH) if (temp == GOFISH) or (len(temp)==0): whoToAsk[player]=[] for temp in self.players: if temp != player: whoToAsk[player].append(temp) giver = whoToAsk[player].pop(0) giverHand = self.players.get(giver) received = askForCard(player, playersHand, giver, giverHand) if received == GOFISH: if len(self.deck) == 0: print("nothing to draw. moving along. will ask another player next round") #for debugPlayer in self.players: # print("player %s has the following cards %s" %(debugPlayer,self.players.get(debugPlayer))) #notDone=False #continue else: drawCard(player, self.deck, playersHand) playHand(player, playersHand) if len(playersHand) <= 0: print('player %s has won!' %(player)) notDone=False continue print("game over") # Main if __name__ == '__main__': '''Plays a Go Fish with the players passed as arguments''' # #ToDo - add interactive mode # players = [] count = 0 for p in sys.argv[1:]: players.append(p) count += 1 game = GoFish(playerList=players) game.autoPlay()
[ "'''\r\nCreated on Sep 2, 2014\r\n\r\n@author: Kevin\r\n'''\r\nfrom test.pickletester import MyList\r\n\r\n# from Adam Barr's wonderful book \"Find the Bug\"\r\n\r\n''' This function draws a card from a deck and puts it into a hand. It is\r\nmeant to be part of the game Go Fish, so if the resulting hand has all four \r\nsuits for a given card rank, those four cards are removed from the hand. \r\n\r\nCards are identified by their rank and suit: the rank is one of the elements\r\nin the list [\"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\", \"10\", \"J\", \"Q\", \"K\", \"A\"]\r\nand the suit is on of the elements of the list [\"spades\", \"hearts\", \"diamonds\", \"clubs\"].\r\n\r\nA deck is a list that initially contains 52 elements. Each element of the list\r\nis a tuple with two elements: the rank and the suit. So a single entry\r\nin the deck might be the tuple (\"K\", \"spades\"), which is the king of spades.\r\n\r\nA hand is a dictionary. In each element of the dictionary, the key is\r\nthe rank and the value is a list that contains the names of the suits that the hand\r\nholds for that rank. E.g., if a hand as the 3 of spades and the 3 of hearts, and\r\nno other 3s, then the key \"3\" has the value [\"spades\", \"hearts\"]. A key should not\r\nhave an empty list associated with it - if no cards of a given rank are held,\r\nno value exists for that key.'''\r\n\r\nimport random\r\nimport sys\r\n\r\nrankList = [\"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\", \"10\", \"J\", \"Q\", \"K\", \"A\"]\r\nsuitList = [\"spades\", \"hearts\", \"diamonds\", \"clubs\"]\r\nGOFISH = \"Go Fish\"\r\n \r\ndef log_stdout(msg):\r\n '''Print msg to the screen.'''\r\n print(msg)\r\n\r\ndef makeDeck():\r\n ''' Creates a deck.\r\n A deck is a list that initially contains 52 elements. Each element of the list\r\n is a tuple with two elements: the rank and the suit. So a single entry\r\n in the deck might be the tuple (\"K\", \"spades\"), which is the king of spades. \r\n '''\r\n \r\n deck = []\r\n for r in rankList:\r\n for s in suitList:\r\n deck.append([r, s])\r\n return deck\r\n\r\ndef getCard(deck):\r\n\r\n ''' Randomly remove a single card from the deck and return it. Assumes that the deck \r\n is not empty.\r\n\r\n deck: A deck as described above\r\n\r\n Returns: a single card, which is a tuple with two elements, the rank and the suit\r\n\r\n '''\r\n index = random.randint(0,len(deck)-1)\r\n newCard = deck[index]\r\n del deck[index]\r\n return newCard\r\n\r\ndef askForCard(requestor, requestorHand, giver, giverHand ):\r\n '''Asks other player for a needed rank '''\r\n if len(requestorHand) == 0:\r\n print(\"%s has no cards. %s\" %(requestor,GOFISH))\r\n return\r\n\r\n #find the rank with maximum count\r\n maxKey = GOFISH\r\n maxCount = 0\r\n for key in requestorHand:\r\n count=len(requestorHand.get(key))\r\n if count > maxCount:\r\n maxKey = key\r\n maxCount = count\r\n \r\n if len(giverHand) == 0:\r\n print(\"%s has requested %s but %s has no cards. %s\" %(requestor,maxKey,giver,GOFISH))\r\n return GOFISH\r\n \r\n received = giverHand.get(maxKey,GOFISH)\r\n print(\"%s asked %s for %s and the answer was %s\" %(requestor,giver, maxKey,received))\r\n \r\n if received == GOFISH:\r\n return GOFISH\r\n for value in received:\r\n requestorHand[maxKey].append(value)\r\n del giverHand[maxKey]\r\n return received\r\n \r\n\r\ndef drawCard(name, deck, hand):\r\n\r\n ''' Draw a new card from the deck and add it to the hand. If the hand now holds the rank\r\n in all four suits, then remove them from the hand.\r\n\r\n name: A string with the name of the playerHand, used only for display purposes.\r\n deck: A deck as described above\r\n hand: A hand dictionary as described above\r\n\r\n Returns: None.\r\n '''\r\n\r\n if len(deck) > 0: # protect against empty deck\r\n newCard = getCard(deck)\r\n cardRank = newCard[0]\r\n cardSuit = newCard[1]\r\n else:\r\n return\r\n\r\n if cardRank in hand:\r\n # append this suit to the result\r\n hand[cardRank].append(cardSuit)\r\n else:\r\n # first of this suit, create a list with one element\r\n hand[cardRank] = [ cardSuit ]\r\n\r\ndef initHand(deck,hand,numberOfCards):\r\n for i in range(numberOfCards):\r\n newCard=getCard(deck)\r\n cardRank = newCard[0]\r\n cardSuit = newCard[1]\r\n testList = hand.get(cardRank,\"notAsuitSuit\")\r\n if testList == \"notAsuitSuit\":\r\n hand[cardRank]=[cardSuit]\r\n else:\r\n hand[cardRank].append(cardSuit)\r\n\r\ndef playHand(name,hand):\r\n played=False\r\n for r in rankList:\r\n cardSuits=hand.get(r,\"notAsuitSuit\")\r\n if len(cardSuits) == 4:\r\n print('%s %s %s' % (name, \"lay down\", r + \"s\"))\r\n del hand[r]\r\n played=True\r\n if not played:\r\n print(\"player %s has nothing to play\" %(name)) \r\n \r\nclass GoFish:\r\n ''' Play a game of Go Fish!\r\n '''\r\n def __init__(self, playerList=[\"DefaultPlayer1\", \"DefaultPlayer2\"]):\r\n if (len(playerList)>0):\r\n tempPlayers = playerList\r\n else:\r\n tempPlayers = [\"DefaultPlayer1\", \"DefaultPlayer2\"]\r\n self.deck=makeDeck()\r\n self.players={}\r\n initCardCount=7 \r\n if (len(tempPlayers)>4):\r\n initCardCount=5\r\n for name in tempPlayers:\r\n self.players[name]={}\r\n initHand(self.deck, self.players[name], initCardCount)\r\n\r\n def autoPlay(self):\r\n '''Plays a game of GoFish'''\r\n notDone = True\r\n roundNumber = 0\r\n whoToAsk={}\r\n while notDone:\r\n roundNumber+=1\r\n print('Round %i !' % (roundNumber))\r\n for player in self.players:\r\n playersHand = self.players.get(player)\r\n print('player %s is now playing and has %i ranks' % (player,len(playersHand))) \r\n \r\n temp = whoToAsk.get(player,GOFISH)\r\n if (temp == GOFISH) or (len(temp)==0):\r\n whoToAsk[player]=[]\r\n for temp in self.players:\r\n if temp != player:\r\n whoToAsk[player].append(temp)\r\n \r\n giver = whoToAsk[player].pop(0)\r\n giverHand = self.players.get(giver)\r\n received = askForCard(player, playersHand, giver, giverHand)\r\n if received == GOFISH:\r\n if len(self.deck) == 0:\r\n print(\"nothing to draw. moving along. will ask another player next round\")\r\n #for debugPlayer in self.players:\r\n # print(\"player %s has the following cards %s\" %(debugPlayer,self.players.get(debugPlayer)))\r\n #notDone=False\r\n #continue\r\n else:\r\n drawCard(player, self.deck, playersHand)\r\n playHand(player, playersHand)\r\n if len(playersHand) <= 0:\r\n print('player %s has won!' %(player))\r\n notDone=False\r\n continue\r\n print(\"game over\")\r\n \r\n# Main\r\nif __name__ == '__main__':\r\n '''Plays a Go Fish with the players passed as arguments'''\r\n #\r\n #ToDo - add interactive mode\r\n # \r\n players = []\r\n count = 0\r\n for p in sys.argv[1:]:\r\n players.append(p)\r\n count += 1\r\n\r\n game = GoFish(playerList=players)\r\n game.autoPlay()\r\n \r\n", "<docstring token>\nfrom test.pickletester import MyList\n<docstring token>\nimport random\nimport sys\nrankList = ['2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K', 'A']\nsuitList = ['spades', 'hearts', 'diamonds', 'clubs']\nGOFISH = 'Go Fish'\n\n\ndef log_stdout(msg):\n \"\"\"Print msg to the screen.\"\"\"\n print(msg)\n\n\ndef makeDeck():\n \"\"\" Creates a deck.\n A deck is a list that initially contains 52 elements. Each element of the list\n is a tuple with two elements: the rank and the suit. So a single entry\n in the deck might be the tuple (\"K\", \"spades\"), which is the king of spades. \n \"\"\"\n deck = []\n for r in rankList:\n for s in suitList:\n deck.append([r, s])\n return deck\n\n\ndef getCard(deck):\n \"\"\" Randomly remove a single card from the deck and return it. Assumes that the deck \n is not empty.\n\n deck: A deck as described above\n\n Returns: a single card, which is a tuple with two elements, the rank and the suit\n\n \"\"\"\n index = random.randint(0, len(deck) - 1)\n newCard = deck[index]\n del deck[index]\n return newCard\n\n\ndef askForCard(requestor, requestorHand, giver, giverHand):\n \"\"\"Asks other player for a needed rank \"\"\"\n if len(requestorHand) == 0:\n print('%s has no cards. %s' % (requestor, GOFISH))\n return\n maxKey = GOFISH\n maxCount = 0\n for key in requestorHand:\n count = len(requestorHand.get(key))\n if count > maxCount:\n maxKey = key\n maxCount = count\n if len(giverHand) == 0:\n print('%s has requested %s but %s has no cards. %s' % (requestor,\n maxKey, giver, GOFISH))\n return GOFISH\n received = giverHand.get(maxKey, GOFISH)\n print('%s asked %s for %s and the answer was %s' % (requestor, giver,\n maxKey, received))\n if received == GOFISH:\n return GOFISH\n for value in received:\n requestorHand[maxKey].append(value)\n del giverHand[maxKey]\n return received\n\n\ndef drawCard(name, deck, hand):\n \"\"\" Draw a new card from the deck and add it to the hand. If the hand now holds the rank\n in all four suits, then remove them from the hand.\n\n name: A string with the name of the playerHand, used only for display purposes.\n deck: A deck as described above\n hand: A hand dictionary as described above\n\n Returns: None.\n \"\"\"\n if len(deck) > 0:\n newCard = getCard(deck)\n cardRank = newCard[0]\n cardSuit = newCard[1]\n else:\n return\n if cardRank in hand:\n hand[cardRank].append(cardSuit)\n else:\n hand[cardRank] = [cardSuit]\n\n\ndef initHand(deck, hand, numberOfCards):\n for i in range(numberOfCards):\n newCard = getCard(deck)\n cardRank = newCard[0]\n cardSuit = newCard[1]\n testList = hand.get(cardRank, 'notAsuitSuit')\n if testList == 'notAsuitSuit':\n hand[cardRank] = [cardSuit]\n else:\n hand[cardRank].append(cardSuit)\n\n\ndef playHand(name, hand):\n played = False\n for r in rankList:\n cardSuits = hand.get(r, 'notAsuitSuit')\n if len(cardSuits) == 4:\n print('%s %s %s' % (name, 'lay down', r + 's'))\n del hand[r]\n played = True\n if not played:\n print('player %s has nothing to play' % name)\n\n\nclass GoFish:\n \"\"\" Play a game of Go Fish!\n \"\"\"\n\n def __init__(self, playerList=['DefaultPlayer1', 'DefaultPlayer2']):\n if len(playerList) > 0:\n tempPlayers = playerList\n else:\n tempPlayers = ['DefaultPlayer1', 'DefaultPlayer2']\n self.deck = makeDeck()\n self.players = {}\n initCardCount = 7\n if len(tempPlayers) > 4:\n initCardCount = 5\n for name in tempPlayers:\n self.players[name] = {}\n initHand(self.deck, self.players[name], initCardCount)\n\n def autoPlay(self):\n \"\"\"Plays a game of GoFish\"\"\"\n notDone = True\n roundNumber = 0\n whoToAsk = {}\n while notDone:\n roundNumber += 1\n print('Round %i !' % roundNumber)\n for player in self.players:\n playersHand = self.players.get(player)\n print('player %s is now playing and has %i ranks' % (player,\n len(playersHand)))\n temp = whoToAsk.get(player, GOFISH)\n if temp == GOFISH or len(temp) == 0:\n whoToAsk[player] = []\n for temp in self.players:\n if temp != player:\n whoToAsk[player].append(temp)\n giver = whoToAsk[player].pop(0)\n giverHand = self.players.get(giver)\n received = askForCard(player, playersHand, giver, giverHand)\n if received == GOFISH:\n if len(self.deck) == 0:\n print(\n 'nothing to draw. moving along. will ask another player next round'\n )\n else:\n drawCard(player, self.deck, playersHand)\n playHand(player, playersHand)\n if len(playersHand) <= 0:\n print('player %s has won!' % player)\n notDone = False\n continue\n print('game over')\n\n\nif __name__ == '__main__':\n \"\"\"Plays a Go Fish with the players passed as arguments\"\"\"\n players = []\n count = 0\n for p in sys.argv[1:]:\n players.append(p)\n count += 1\n game = GoFish(playerList=players)\n game.autoPlay()\n", "<docstring token>\n<import token>\n<docstring token>\n<import token>\nrankList = ['2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K', 'A']\nsuitList = ['spades', 'hearts', 'diamonds', 'clubs']\nGOFISH = 'Go Fish'\n\n\ndef log_stdout(msg):\n \"\"\"Print msg to the screen.\"\"\"\n print(msg)\n\n\ndef makeDeck():\n \"\"\" Creates a deck.\n A deck is a list that initially contains 52 elements. Each element of the list\n is a tuple with two elements: the rank and the suit. So a single entry\n in the deck might be the tuple (\"K\", \"spades\"), which is the king of spades. \n \"\"\"\n deck = []\n for r in rankList:\n for s in suitList:\n deck.append([r, s])\n return deck\n\n\ndef getCard(deck):\n \"\"\" Randomly remove a single card from the deck and return it. Assumes that the deck \n is not empty.\n\n deck: A deck as described above\n\n Returns: a single card, which is a tuple with two elements, the rank and the suit\n\n \"\"\"\n index = random.randint(0, len(deck) - 1)\n newCard = deck[index]\n del deck[index]\n return newCard\n\n\ndef askForCard(requestor, requestorHand, giver, giverHand):\n \"\"\"Asks other player for a needed rank \"\"\"\n if len(requestorHand) == 0:\n print('%s has no cards. %s' % (requestor, GOFISH))\n return\n maxKey = GOFISH\n maxCount = 0\n for key in requestorHand:\n count = len(requestorHand.get(key))\n if count > maxCount:\n maxKey = key\n maxCount = count\n if len(giverHand) == 0:\n print('%s has requested %s but %s has no cards. %s' % (requestor,\n maxKey, giver, GOFISH))\n return GOFISH\n received = giverHand.get(maxKey, GOFISH)\n print('%s asked %s for %s and the answer was %s' % (requestor, giver,\n maxKey, received))\n if received == GOFISH:\n return GOFISH\n for value in received:\n requestorHand[maxKey].append(value)\n del giverHand[maxKey]\n return received\n\n\ndef drawCard(name, deck, hand):\n \"\"\" Draw a new card from the deck and add it to the hand. If the hand now holds the rank\n in all four suits, then remove them from the hand.\n\n name: A string with the name of the playerHand, used only for display purposes.\n deck: A deck as described above\n hand: A hand dictionary as described above\n\n Returns: None.\n \"\"\"\n if len(deck) > 0:\n newCard = getCard(deck)\n cardRank = newCard[0]\n cardSuit = newCard[1]\n else:\n return\n if cardRank in hand:\n hand[cardRank].append(cardSuit)\n else:\n hand[cardRank] = [cardSuit]\n\n\ndef initHand(deck, hand, numberOfCards):\n for i in range(numberOfCards):\n newCard = getCard(deck)\n cardRank = newCard[0]\n cardSuit = newCard[1]\n testList = hand.get(cardRank, 'notAsuitSuit')\n if testList == 'notAsuitSuit':\n hand[cardRank] = [cardSuit]\n else:\n hand[cardRank].append(cardSuit)\n\n\ndef playHand(name, hand):\n played = False\n for r in rankList:\n cardSuits = hand.get(r, 'notAsuitSuit')\n if len(cardSuits) == 4:\n print('%s %s %s' % (name, 'lay down', r + 's'))\n del hand[r]\n played = True\n if not played:\n print('player %s has nothing to play' % name)\n\n\nclass GoFish:\n \"\"\" Play a game of Go Fish!\n \"\"\"\n\n def __init__(self, playerList=['DefaultPlayer1', 'DefaultPlayer2']):\n if len(playerList) > 0:\n tempPlayers = playerList\n else:\n tempPlayers = ['DefaultPlayer1', 'DefaultPlayer2']\n self.deck = makeDeck()\n self.players = {}\n initCardCount = 7\n if len(tempPlayers) > 4:\n initCardCount = 5\n for name in tempPlayers:\n self.players[name] = {}\n initHand(self.deck, self.players[name], initCardCount)\n\n def autoPlay(self):\n \"\"\"Plays a game of GoFish\"\"\"\n notDone = True\n roundNumber = 0\n whoToAsk = {}\n while notDone:\n roundNumber += 1\n print('Round %i !' % roundNumber)\n for player in self.players:\n playersHand = self.players.get(player)\n print('player %s is now playing and has %i ranks' % (player,\n len(playersHand)))\n temp = whoToAsk.get(player, GOFISH)\n if temp == GOFISH or len(temp) == 0:\n whoToAsk[player] = []\n for temp in self.players:\n if temp != player:\n whoToAsk[player].append(temp)\n giver = whoToAsk[player].pop(0)\n giverHand = self.players.get(giver)\n received = askForCard(player, playersHand, giver, giverHand)\n if received == GOFISH:\n if len(self.deck) == 0:\n print(\n 'nothing to draw. moving along. will ask another player next round'\n )\n else:\n drawCard(player, self.deck, playersHand)\n playHand(player, playersHand)\n if len(playersHand) <= 0:\n print('player %s has won!' % player)\n notDone = False\n continue\n print('game over')\n\n\nif __name__ == '__main__':\n \"\"\"Plays a Go Fish with the players passed as arguments\"\"\"\n players = []\n count = 0\n for p in sys.argv[1:]:\n players.append(p)\n count += 1\n game = GoFish(playerList=players)\n game.autoPlay()\n", "<docstring token>\n<import token>\n<docstring token>\n<import token>\n<assignment token>\n\n\ndef log_stdout(msg):\n \"\"\"Print msg to the screen.\"\"\"\n print(msg)\n\n\ndef makeDeck():\n \"\"\" Creates a deck.\n A deck is a list that initially contains 52 elements. Each element of the list\n is a tuple with two elements: the rank and the suit. So a single entry\n in the deck might be the tuple (\"K\", \"spades\"), which is the king of spades. \n \"\"\"\n deck = []\n for r in rankList:\n for s in suitList:\n deck.append([r, s])\n return deck\n\n\ndef getCard(deck):\n \"\"\" Randomly remove a single card from the deck and return it. Assumes that the deck \n is not empty.\n\n deck: A deck as described above\n\n Returns: a single card, which is a tuple with two elements, the rank and the suit\n\n \"\"\"\n index = random.randint(0, len(deck) - 1)\n newCard = deck[index]\n del deck[index]\n return newCard\n\n\ndef askForCard(requestor, requestorHand, giver, giverHand):\n \"\"\"Asks other player for a needed rank \"\"\"\n if len(requestorHand) == 0:\n print('%s has no cards. %s' % (requestor, GOFISH))\n return\n maxKey = GOFISH\n maxCount = 0\n for key in requestorHand:\n count = len(requestorHand.get(key))\n if count > maxCount:\n maxKey = key\n maxCount = count\n if len(giverHand) == 0:\n print('%s has requested %s but %s has no cards. %s' % (requestor,\n maxKey, giver, GOFISH))\n return GOFISH\n received = giverHand.get(maxKey, GOFISH)\n print('%s asked %s for %s and the answer was %s' % (requestor, giver,\n maxKey, received))\n if received == GOFISH:\n return GOFISH\n for value in received:\n requestorHand[maxKey].append(value)\n del giverHand[maxKey]\n return received\n\n\ndef drawCard(name, deck, hand):\n \"\"\" Draw a new card from the deck and add it to the hand. If the hand now holds the rank\n in all four suits, then remove them from the hand.\n\n name: A string with the name of the playerHand, used only for display purposes.\n deck: A deck as described above\n hand: A hand dictionary as described above\n\n Returns: None.\n \"\"\"\n if len(deck) > 0:\n newCard = getCard(deck)\n cardRank = newCard[0]\n cardSuit = newCard[1]\n else:\n return\n if cardRank in hand:\n hand[cardRank].append(cardSuit)\n else:\n hand[cardRank] = [cardSuit]\n\n\ndef initHand(deck, hand, numberOfCards):\n for i in range(numberOfCards):\n newCard = getCard(deck)\n cardRank = newCard[0]\n cardSuit = newCard[1]\n testList = hand.get(cardRank, 'notAsuitSuit')\n if testList == 'notAsuitSuit':\n hand[cardRank] = [cardSuit]\n else:\n hand[cardRank].append(cardSuit)\n\n\ndef playHand(name, hand):\n played = False\n for r in rankList:\n cardSuits = hand.get(r, 'notAsuitSuit')\n if len(cardSuits) == 4:\n print('%s %s %s' % (name, 'lay down', r + 's'))\n del hand[r]\n played = True\n if not played:\n print('player %s has nothing to play' % name)\n\n\nclass GoFish:\n \"\"\" Play a game of Go Fish!\n \"\"\"\n\n def __init__(self, playerList=['DefaultPlayer1', 'DefaultPlayer2']):\n if len(playerList) > 0:\n tempPlayers = playerList\n else:\n tempPlayers = ['DefaultPlayer1', 'DefaultPlayer2']\n self.deck = makeDeck()\n self.players = {}\n initCardCount = 7\n if len(tempPlayers) > 4:\n initCardCount = 5\n for name in tempPlayers:\n self.players[name] = {}\n initHand(self.deck, self.players[name], initCardCount)\n\n def autoPlay(self):\n \"\"\"Plays a game of GoFish\"\"\"\n notDone = True\n roundNumber = 0\n whoToAsk = {}\n while notDone:\n roundNumber += 1\n print('Round %i !' % roundNumber)\n for player in self.players:\n playersHand = self.players.get(player)\n print('player %s is now playing and has %i ranks' % (player,\n len(playersHand)))\n temp = whoToAsk.get(player, GOFISH)\n if temp == GOFISH or len(temp) == 0:\n whoToAsk[player] = []\n for temp in self.players:\n if temp != player:\n whoToAsk[player].append(temp)\n giver = whoToAsk[player].pop(0)\n giverHand = self.players.get(giver)\n received = askForCard(player, playersHand, giver, giverHand)\n if received == GOFISH:\n if len(self.deck) == 0:\n print(\n 'nothing to draw. moving along. will ask another player next round'\n )\n else:\n drawCard(player, self.deck, playersHand)\n playHand(player, playersHand)\n if len(playersHand) <= 0:\n print('player %s has won!' % player)\n notDone = False\n continue\n print('game over')\n\n\nif __name__ == '__main__':\n \"\"\"Plays a Go Fish with the players passed as arguments\"\"\"\n players = []\n count = 0\n for p in sys.argv[1:]:\n players.append(p)\n count += 1\n game = GoFish(playerList=players)\n game.autoPlay()\n", "<docstring token>\n<import token>\n<docstring token>\n<import token>\n<assignment token>\n\n\ndef log_stdout(msg):\n \"\"\"Print msg to the screen.\"\"\"\n print(msg)\n\n\ndef makeDeck():\n \"\"\" Creates a deck.\n A deck is a list that initially contains 52 elements. Each element of the list\n is a tuple with two elements: the rank and the suit. So a single entry\n in the deck might be the tuple (\"K\", \"spades\"), which is the king of spades. \n \"\"\"\n deck = []\n for r in rankList:\n for s in suitList:\n deck.append([r, s])\n return deck\n\n\ndef getCard(deck):\n \"\"\" Randomly remove a single card from the deck and return it. Assumes that the deck \n is not empty.\n\n deck: A deck as described above\n\n Returns: a single card, which is a tuple with two elements, the rank and the suit\n\n \"\"\"\n index = random.randint(0, len(deck) - 1)\n newCard = deck[index]\n del deck[index]\n return newCard\n\n\ndef askForCard(requestor, requestorHand, giver, giverHand):\n \"\"\"Asks other player for a needed rank \"\"\"\n if len(requestorHand) == 0:\n print('%s has no cards. %s' % (requestor, GOFISH))\n return\n maxKey = GOFISH\n maxCount = 0\n for key in requestorHand:\n count = len(requestorHand.get(key))\n if count > maxCount:\n maxKey = key\n maxCount = count\n if len(giverHand) == 0:\n print('%s has requested %s but %s has no cards. %s' % (requestor,\n maxKey, giver, GOFISH))\n return GOFISH\n received = giverHand.get(maxKey, GOFISH)\n print('%s asked %s for %s and the answer was %s' % (requestor, giver,\n maxKey, received))\n if received == GOFISH:\n return GOFISH\n for value in received:\n requestorHand[maxKey].append(value)\n del giverHand[maxKey]\n return received\n\n\ndef drawCard(name, deck, hand):\n \"\"\" Draw a new card from the deck and add it to the hand. If the hand now holds the rank\n in all four suits, then remove them from the hand.\n\n name: A string with the name of the playerHand, used only for display purposes.\n deck: A deck as described above\n hand: A hand dictionary as described above\n\n Returns: None.\n \"\"\"\n if len(deck) > 0:\n newCard = getCard(deck)\n cardRank = newCard[0]\n cardSuit = newCard[1]\n else:\n return\n if cardRank in hand:\n hand[cardRank].append(cardSuit)\n else:\n hand[cardRank] = [cardSuit]\n\n\ndef initHand(deck, hand, numberOfCards):\n for i in range(numberOfCards):\n newCard = getCard(deck)\n cardRank = newCard[0]\n cardSuit = newCard[1]\n testList = hand.get(cardRank, 'notAsuitSuit')\n if testList == 'notAsuitSuit':\n hand[cardRank] = [cardSuit]\n else:\n hand[cardRank].append(cardSuit)\n\n\ndef playHand(name, hand):\n played = False\n for r in rankList:\n cardSuits = hand.get(r, 'notAsuitSuit')\n if len(cardSuits) == 4:\n print('%s %s %s' % (name, 'lay down', r + 's'))\n del hand[r]\n played = True\n if not played:\n print('player %s has nothing to play' % name)\n\n\nclass GoFish:\n \"\"\" Play a game of Go Fish!\n \"\"\"\n\n def __init__(self, playerList=['DefaultPlayer1', 'DefaultPlayer2']):\n if len(playerList) > 0:\n tempPlayers = playerList\n else:\n tempPlayers = ['DefaultPlayer1', 'DefaultPlayer2']\n self.deck = makeDeck()\n self.players = {}\n initCardCount = 7\n if len(tempPlayers) > 4:\n initCardCount = 5\n for name in tempPlayers:\n self.players[name] = {}\n initHand(self.deck, self.players[name], initCardCount)\n\n def autoPlay(self):\n \"\"\"Plays a game of GoFish\"\"\"\n notDone = True\n roundNumber = 0\n whoToAsk = {}\n while notDone:\n roundNumber += 1\n print('Round %i !' % roundNumber)\n for player in self.players:\n playersHand = self.players.get(player)\n print('player %s is now playing and has %i ranks' % (player,\n len(playersHand)))\n temp = whoToAsk.get(player, GOFISH)\n if temp == GOFISH or len(temp) == 0:\n whoToAsk[player] = []\n for temp in self.players:\n if temp != player:\n whoToAsk[player].append(temp)\n giver = whoToAsk[player].pop(0)\n giverHand = self.players.get(giver)\n received = askForCard(player, playersHand, giver, giverHand)\n if received == GOFISH:\n if len(self.deck) == 0:\n print(\n 'nothing to draw. moving along. will ask another player next round'\n )\n else:\n drawCard(player, self.deck, playersHand)\n playHand(player, playersHand)\n if len(playersHand) <= 0:\n print('player %s has won!' % player)\n notDone = False\n continue\n print('game over')\n\n\n<code token>\n", "<docstring token>\n<import token>\n<docstring token>\n<import token>\n<assignment token>\n\n\ndef log_stdout(msg):\n \"\"\"Print msg to the screen.\"\"\"\n print(msg)\n\n\ndef makeDeck():\n \"\"\" Creates a deck.\n A deck is a list that initially contains 52 elements. Each element of the list\n is a tuple with two elements: the rank and the suit. So a single entry\n in the deck might be the tuple (\"K\", \"spades\"), which is the king of spades. \n \"\"\"\n deck = []\n for r in rankList:\n for s in suitList:\n deck.append([r, s])\n return deck\n\n\ndef getCard(deck):\n \"\"\" Randomly remove a single card from the deck and return it. Assumes that the deck \n is not empty.\n\n deck: A deck as described above\n\n Returns: a single card, which is a tuple with two elements, the rank and the suit\n\n \"\"\"\n index = random.randint(0, len(deck) - 1)\n newCard = deck[index]\n del deck[index]\n return newCard\n\n\ndef askForCard(requestor, requestorHand, giver, giverHand):\n \"\"\"Asks other player for a needed rank \"\"\"\n if len(requestorHand) == 0:\n print('%s has no cards. %s' % (requestor, GOFISH))\n return\n maxKey = GOFISH\n maxCount = 0\n for key in requestorHand:\n count = len(requestorHand.get(key))\n if count > maxCount:\n maxKey = key\n maxCount = count\n if len(giverHand) == 0:\n print('%s has requested %s but %s has no cards. %s' % (requestor,\n maxKey, giver, GOFISH))\n return GOFISH\n received = giverHand.get(maxKey, GOFISH)\n print('%s asked %s for %s and the answer was %s' % (requestor, giver,\n maxKey, received))\n if received == GOFISH:\n return GOFISH\n for value in received:\n requestorHand[maxKey].append(value)\n del giverHand[maxKey]\n return received\n\n\n<function token>\n\n\ndef initHand(deck, hand, numberOfCards):\n for i in range(numberOfCards):\n newCard = getCard(deck)\n cardRank = newCard[0]\n cardSuit = newCard[1]\n testList = hand.get(cardRank, 'notAsuitSuit')\n if testList == 'notAsuitSuit':\n hand[cardRank] = [cardSuit]\n else:\n hand[cardRank].append(cardSuit)\n\n\ndef playHand(name, hand):\n played = False\n for r in rankList:\n cardSuits = hand.get(r, 'notAsuitSuit')\n if len(cardSuits) == 4:\n print('%s %s %s' % (name, 'lay down', r + 's'))\n del hand[r]\n played = True\n if not played:\n print('player %s has nothing to play' % name)\n\n\nclass GoFish:\n \"\"\" Play a game of Go Fish!\n \"\"\"\n\n def __init__(self, playerList=['DefaultPlayer1', 'DefaultPlayer2']):\n if len(playerList) > 0:\n tempPlayers = playerList\n else:\n tempPlayers = ['DefaultPlayer1', 'DefaultPlayer2']\n self.deck = makeDeck()\n self.players = {}\n initCardCount = 7\n if len(tempPlayers) > 4:\n initCardCount = 5\n for name in tempPlayers:\n self.players[name] = {}\n initHand(self.deck, self.players[name], initCardCount)\n\n def autoPlay(self):\n \"\"\"Plays a game of GoFish\"\"\"\n notDone = True\n roundNumber = 0\n whoToAsk = {}\n while notDone:\n roundNumber += 1\n print('Round %i !' % roundNumber)\n for player in self.players:\n playersHand = self.players.get(player)\n print('player %s is now playing and has %i ranks' % (player,\n len(playersHand)))\n temp = whoToAsk.get(player, GOFISH)\n if temp == GOFISH or len(temp) == 0:\n whoToAsk[player] = []\n for temp in self.players:\n if temp != player:\n whoToAsk[player].append(temp)\n giver = whoToAsk[player].pop(0)\n giverHand = self.players.get(giver)\n received = askForCard(player, playersHand, giver, giverHand)\n if received == GOFISH:\n if len(self.deck) == 0:\n print(\n 'nothing to draw. moving along. will ask another player next round'\n )\n else:\n drawCard(player, self.deck, playersHand)\n playHand(player, playersHand)\n if len(playersHand) <= 0:\n print('player %s has won!' % player)\n notDone = False\n continue\n print('game over')\n\n\n<code token>\n", "<docstring token>\n<import token>\n<docstring token>\n<import token>\n<assignment token>\n\n\ndef log_stdout(msg):\n \"\"\"Print msg to the screen.\"\"\"\n print(msg)\n\n\ndef makeDeck():\n \"\"\" Creates a deck.\n A deck is a list that initially contains 52 elements. Each element of the list\n is a tuple with two elements: the rank and the suit. So a single entry\n in the deck might be the tuple (\"K\", \"spades\"), which is the king of spades. \n \"\"\"\n deck = []\n for r in rankList:\n for s in suitList:\n deck.append([r, s])\n return deck\n\n\n<function token>\n\n\ndef askForCard(requestor, requestorHand, giver, giverHand):\n \"\"\"Asks other player for a needed rank \"\"\"\n if len(requestorHand) == 0:\n print('%s has no cards. %s' % (requestor, GOFISH))\n return\n maxKey = GOFISH\n maxCount = 0\n for key in requestorHand:\n count = len(requestorHand.get(key))\n if count > maxCount:\n maxKey = key\n maxCount = count\n if len(giverHand) == 0:\n print('%s has requested %s but %s has no cards. %s' % (requestor,\n maxKey, giver, GOFISH))\n return GOFISH\n received = giverHand.get(maxKey, GOFISH)\n print('%s asked %s for %s and the answer was %s' % (requestor, giver,\n maxKey, received))\n if received == GOFISH:\n return GOFISH\n for value in received:\n requestorHand[maxKey].append(value)\n del giverHand[maxKey]\n return received\n\n\n<function token>\n\n\ndef initHand(deck, hand, numberOfCards):\n for i in range(numberOfCards):\n newCard = getCard(deck)\n cardRank = newCard[0]\n cardSuit = newCard[1]\n testList = hand.get(cardRank, 'notAsuitSuit')\n if testList == 'notAsuitSuit':\n hand[cardRank] = [cardSuit]\n else:\n hand[cardRank].append(cardSuit)\n\n\ndef playHand(name, hand):\n played = False\n for r in rankList:\n cardSuits = hand.get(r, 'notAsuitSuit')\n if len(cardSuits) == 4:\n print('%s %s %s' % (name, 'lay down', r + 's'))\n del hand[r]\n played = True\n if not played:\n print('player %s has nothing to play' % name)\n\n\nclass GoFish:\n \"\"\" Play a game of Go Fish!\n \"\"\"\n\n def __init__(self, playerList=['DefaultPlayer1', 'DefaultPlayer2']):\n if len(playerList) > 0:\n tempPlayers = playerList\n else:\n tempPlayers = ['DefaultPlayer1', 'DefaultPlayer2']\n self.deck = makeDeck()\n self.players = {}\n initCardCount = 7\n if len(tempPlayers) > 4:\n initCardCount = 5\n for name in tempPlayers:\n self.players[name] = {}\n initHand(self.deck, self.players[name], initCardCount)\n\n def autoPlay(self):\n \"\"\"Plays a game of GoFish\"\"\"\n notDone = True\n roundNumber = 0\n whoToAsk = {}\n while notDone:\n roundNumber += 1\n print('Round %i !' % roundNumber)\n for player in self.players:\n playersHand = self.players.get(player)\n print('player %s is now playing and has %i ranks' % (player,\n len(playersHand)))\n temp = whoToAsk.get(player, GOFISH)\n if temp == GOFISH or len(temp) == 0:\n whoToAsk[player] = []\n for temp in self.players:\n if temp != player:\n whoToAsk[player].append(temp)\n giver = whoToAsk[player].pop(0)\n giverHand = self.players.get(giver)\n received = askForCard(player, playersHand, giver, giverHand)\n if received == GOFISH:\n if len(self.deck) == 0:\n print(\n 'nothing to draw. moving along. will ask another player next round'\n )\n else:\n drawCard(player, self.deck, playersHand)\n playHand(player, playersHand)\n if len(playersHand) <= 0:\n print('player %s has won!' % player)\n notDone = False\n continue\n print('game over')\n\n\n<code token>\n", "<docstring token>\n<import token>\n<docstring token>\n<import token>\n<assignment token>\n\n\ndef log_stdout(msg):\n \"\"\"Print msg to the screen.\"\"\"\n print(msg)\n\n\ndef makeDeck():\n \"\"\" Creates a deck.\n A deck is a list that initially contains 52 elements. Each element of the list\n is a tuple with two elements: the rank and the suit. So a single entry\n in the deck might be the tuple (\"K\", \"spades\"), which is the king of spades. \n \"\"\"\n deck = []\n for r in rankList:\n for s in suitList:\n deck.append([r, s])\n return deck\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef initHand(deck, hand, numberOfCards):\n for i in range(numberOfCards):\n newCard = getCard(deck)\n cardRank = newCard[0]\n cardSuit = newCard[1]\n testList = hand.get(cardRank, 'notAsuitSuit')\n if testList == 'notAsuitSuit':\n hand[cardRank] = [cardSuit]\n else:\n hand[cardRank].append(cardSuit)\n\n\ndef playHand(name, hand):\n played = False\n for r in rankList:\n cardSuits = hand.get(r, 'notAsuitSuit')\n if len(cardSuits) == 4:\n print('%s %s %s' % (name, 'lay down', r + 's'))\n del hand[r]\n played = True\n if not played:\n print('player %s has nothing to play' % name)\n\n\nclass GoFish:\n \"\"\" Play a game of Go Fish!\n \"\"\"\n\n def __init__(self, playerList=['DefaultPlayer1', 'DefaultPlayer2']):\n if len(playerList) > 0:\n tempPlayers = playerList\n else:\n tempPlayers = ['DefaultPlayer1', 'DefaultPlayer2']\n self.deck = makeDeck()\n self.players = {}\n initCardCount = 7\n if len(tempPlayers) > 4:\n initCardCount = 5\n for name in tempPlayers:\n self.players[name] = {}\n initHand(self.deck, self.players[name], initCardCount)\n\n def autoPlay(self):\n \"\"\"Plays a game of GoFish\"\"\"\n notDone = True\n roundNumber = 0\n whoToAsk = {}\n while notDone:\n roundNumber += 1\n print('Round %i !' % roundNumber)\n for player in self.players:\n playersHand = self.players.get(player)\n print('player %s is now playing and has %i ranks' % (player,\n len(playersHand)))\n temp = whoToAsk.get(player, GOFISH)\n if temp == GOFISH or len(temp) == 0:\n whoToAsk[player] = []\n for temp in self.players:\n if temp != player:\n whoToAsk[player].append(temp)\n giver = whoToAsk[player].pop(0)\n giverHand = self.players.get(giver)\n received = askForCard(player, playersHand, giver, giverHand)\n if received == GOFISH:\n if len(self.deck) == 0:\n print(\n 'nothing to draw. moving along. will ask another player next round'\n )\n else:\n drawCard(player, self.deck, playersHand)\n playHand(player, playersHand)\n if len(playersHand) <= 0:\n print('player %s has won!' % player)\n notDone = False\n continue\n print('game over')\n\n\n<code token>\n", "<docstring token>\n<import token>\n<docstring token>\n<import token>\n<assignment token>\n\n\ndef log_stdout(msg):\n \"\"\"Print msg to the screen.\"\"\"\n print(msg)\n\n\ndef makeDeck():\n \"\"\" Creates a deck.\n A deck is a list that initially contains 52 elements. Each element of the list\n is a tuple with two elements: the rank and the suit. So a single entry\n in the deck might be the tuple (\"K\", \"spades\"), which is the king of spades. \n \"\"\"\n deck = []\n for r in rankList:\n for s in suitList:\n deck.append([r, s])\n return deck\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef initHand(deck, hand, numberOfCards):\n for i in range(numberOfCards):\n newCard = getCard(deck)\n cardRank = newCard[0]\n cardSuit = newCard[1]\n testList = hand.get(cardRank, 'notAsuitSuit')\n if testList == 'notAsuitSuit':\n hand[cardRank] = [cardSuit]\n else:\n hand[cardRank].append(cardSuit)\n\n\n<function token>\n\n\nclass GoFish:\n \"\"\" Play a game of Go Fish!\n \"\"\"\n\n def __init__(self, playerList=['DefaultPlayer1', 'DefaultPlayer2']):\n if len(playerList) > 0:\n tempPlayers = playerList\n else:\n tempPlayers = ['DefaultPlayer1', 'DefaultPlayer2']\n self.deck = makeDeck()\n self.players = {}\n initCardCount = 7\n if len(tempPlayers) > 4:\n initCardCount = 5\n for name in tempPlayers:\n self.players[name] = {}\n initHand(self.deck, self.players[name], initCardCount)\n\n def autoPlay(self):\n \"\"\"Plays a game of GoFish\"\"\"\n notDone = True\n roundNumber = 0\n whoToAsk = {}\n while notDone:\n roundNumber += 1\n print('Round %i !' % roundNumber)\n for player in self.players:\n playersHand = self.players.get(player)\n print('player %s is now playing and has %i ranks' % (player,\n len(playersHand)))\n temp = whoToAsk.get(player, GOFISH)\n if temp == GOFISH or len(temp) == 0:\n whoToAsk[player] = []\n for temp in self.players:\n if temp != player:\n whoToAsk[player].append(temp)\n giver = whoToAsk[player].pop(0)\n giverHand = self.players.get(giver)\n received = askForCard(player, playersHand, giver, giverHand)\n if received == GOFISH:\n if len(self.deck) == 0:\n print(\n 'nothing to draw. moving along. will ask another player next round'\n )\n else:\n drawCard(player, self.deck, playersHand)\n playHand(player, playersHand)\n if len(playersHand) <= 0:\n print('player %s has won!' % player)\n notDone = False\n continue\n print('game over')\n\n\n<code token>\n", "<docstring token>\n<import token>\n<docstring token>\n<import token>\n<assignment token>\n<function token>\n\n\ndef makeDeck():\n \"\"\" Creates a deck.\n A deck is a list that initially contains 52 elements. Each element of the list\n is a tuple with two elements: the rank and the suit. So a single entry\n in the deck might be the tuple (\"K\", \"spades\"), which is the king of spades. \n \"\"\"\n deck = []\n for r in rankList:\n for s in suitList:\n deck.append([r, s])\n return deck\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef initHand(deck, hand, numberOfCards):\n for i in range(numberOfCards):\n newCard = getCard(deck)\n cardRank = newCard[0]\n cardSuit = newCard[1]\n testList = hand.get(cardRank, 'notAsuitSuit')\n if testList == 'notAsuitSuit':\n hand[cardRank] = [cardSuit]\n else:\n hand[cardRank].append(cardSuit)\n\n\n<function token>\n\n\nclass GoFish:\n \"\"\" Play a game of Go Fish!\n \"\"\"\n\n def __init__(self, playerList=['DefaultPlayer1', 'DefaultPlayer2']):\n if len(playerList) > 0:\n tempPlayers = playerList\n else:\n tempPlayers = ['DefaultPlayer1', 'DefaultPlayer2']\n self.deck = makeDeck()\n self.players = {}\n initCardCount = 7\n if len(tempPlayers) > 4:\n initCardCount = 5\n for name in tempPlayers:\n self.players[name] = {}\n initHand(self.deck, self.players[name], initCardCount)\n\n def autoPlay(self):\n \"\"\"Plays a game of GoFish\"\"\"\n notDone = True\n roundNumber = 0\n whoToAsk = {}\n while notDone:\n roundNumber += 1\n print('Round %i !' % roundNumber)\n for player in self.players:\n playersHand = self.players.get(player)\n print('player %s is now playing and has %i ranks' % (player,\n len(playersHand)))\n temp = whoToAsk.get(player, GOFISH)\n if temp == GOFISH or len(temp) == 0:\n whoToAsk[player] = []\n for temp in self.players:\n if temp != player:\n whoToAsk[player].append(temp)\n giver = whoToAsk[player].pop(0)\n giverHand = self.players.get(giver)\n received = askForCard(player, playersHand, giver, giverHand)\n if received == GOFISH:\n if len(self.deck) == 0:\n print(\n 'nothing to draw. moving along. will ask another player next round'\n )\n else:\n drawCard(player, self.deck, playersHand)\n playHand(player, playersHand)\n if len(playersHand) <= 0:\n print('player %s has won!' % player)\n notDone = False\n continue\n print('game over')\n\n\n<code token>\n", "<docstring token>\n<import token>\n<docstring token>\n<import token>\n<assignment token>\n<function token>\n\n\ndef makeDeck():\n \"\"\" Creates a deck.\n A deck is a list that initially contains 52 elements. Each element of the list\n is a tuple with two elements: the rank and the suit. So a single entry\n in the deck might be the tuple (\"K\", \"spades\"), which is the king of spades. \n \"\"\"\n deck = []\n for r in rankList:\n for s in suitList:\n deck.append([r, s])\n return deck\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass GoFish:\n \"\"\" Play a game of Go Fish!\n \"\"\"\n\n def __init__(self, playerList=['DefaultPlayer1', 'DefaultPlayer2']):\n if len(playerList) > 0:\n tempPlayers = playerList\n else:\n tempPlayers = ['DefaultPlayer1', 'DefaultPlayer2']\n self.deck = makeDeck()\n self.players = {}\n initCardCount = 7\n if len(tempPlayers) > 4:\n initCardCount = 5\n for name in tempPlayers:\n self.players[name] = {}\n initHand(self.deck, self.players[name], initCardCount)\n\n def autoPlay(self):\n \"\"\"Plays a game of GoFish\"\"\"\n notDone = True\n roundNumber = 0\n whoToAsk = {}\n while notDone:\n roundNumber += 1\n print('Round %i !' % roundNumber)\n for player in self.players:\n playersHand = self.players.get(player)\n print('player %s is now playing and has %i ranks' % (player,\n len(playersHand)))\n temp = whoToAsk.get(player, GOFISH)\n if temp == GOFISH or len(temp) == 0:\n whoToAsk[player] = []\n for temp in self.players:\n if temp != player:\n whoToAsk[player].append(temp)\n giver = whoToAsk[player].pop(0)\n giverHand = self.players.get(giver)\n received = askForCard(player, playersHand, giver, giverHand)\n if received == GOFISH:\n if len(self.deck) == 0:\n print(\n 'nothing to draw. moving along. will ask another player next round'\n )\n else:\n drawCard(player, self.deck, playersHand)\n playHand(player, playersHand)\n if len(playersHand) <= 0:\n print('player %s has won!' % player)\n notDone = False\n continue\n print('game over')\n\n\n<code token>\n", "<docstring token>\n<import token>\n<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass GoFish:\n \"\"\" Play a game of Go Fish!\n \"\"\"\n\n def __init__(self, playerList=['DefaultPlayer1', 'DefaultPlayer2']):\n if len(playerList) > 0:\n tempPlayers = playerList\n else:\n tempPlayers = ['DefaultPlayer1', 'DefaultPlayer2']\n self.deck = makeDeck()\n self.players = {}\n initCardCount = 7\n if len(tempPlayers) > 4:\n initCardCount = 5\n for name in tempPlayers:\n self.players[name] = {}\n initHand(self.deck, self.players[name], initCardCount)\n\n def autoPlay(self):\n \"\"\"Plays a game of GoFish\"\"\"\n notDone = True\n roundNumber = 0\n whoToAsk = {}\n while notDone:\n roundNumber += 1\n print('Round %i !' % roundNumber)\n for player in self.players:\n playersHand = self.players.get(player)\n print('player %s is now playing and has %i ranks' % (player,\n len(playersHand)))\n temp = whoToAsk.get(player, GOFISH)\n if temp == GOFISH or len(temp) == 0:\n whoToAsk[player] = []\n for temp in self.players:\n if temp != player:\n whoToAsk[player].append(temp)\n giver = whoToAsk[player].pop(0)\n giverHand = self.players.get(giver)\n received = askForCard(player, playersHand, giver, giverHand)\n if received == GOFISH:\n if len(self.deck) == 0:\n print(\n 'nothing to draw. moving along. will ask another player next round'\n )\n else:\n drawCard(player, self.deck, playersHand)\n playHand(player, playersHand)\n if len(playersHand) <= 0:\n print('player %s has won!' % player)\n notDone = False\n continue\n print('game over')\n\n\n<code token>\n", "<docstring token>\n<import token>\n<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass GoFish:\n <docstring token>\n\n def __init__(self, playerList=['DefaultPlayer1', 'DefaultPlayer2']):\n if len(playerList) > 0:\n tempPlayers = playerList\n else:\n tempPlayers = ['DefaultPlayer1', 'DefaultPlayer2']\n self.deck = makeDeck()\n self.players = {}\n initCardCount = 7\n if len(tempPlayers) > 4:\n initCardCount = 5\n for name in tempPlayers:\n self.players[name] = {}\n initHand(self.deck, self.players[name], initCardCount)\n\n def autoPlay(self):\n \"\"\"Plays a game of GoFish\"\"\"\n notDone = True\n roundNumber = 0\n whoToAsk = {}\n while notDone:\n roundNumber += 1\n print('Round %i !' % roundNumber)\n for player in self.players:\n playersHand = self.players.get(player)\n print('player %s is now playing and has %i ranks' % (player,\n len(playersHand)))\n temp = whoToAsk.get(player, GOFISH)\n if temp == GOFISH or len(temp) == 0:\n whoToAsk[player] = []\n for temp in self.players:\n if temp != player:\n whoToAsk[player].append(temp)\n giver = whoToAsk[player].pop(0)\n giverHand = self.players.get(giver)\n received = askForCard(player, playersHand, giver, giverHand)\n if received == GOFISH:\n if len(self.deck) == 0:\n print(\n 'nothing to draw. moving along. will ask another player next round'\n )\n else:\n drawCard(player, self.deck, playersHand)\n playHand(player, playersHand)\n if len(playersHand) <= 0:\n print('player %s has won!' % player)\n notDone = False\n continue\n print('game over')\n\n\n<code token>\n", "<docstring token>\n<import token>\n<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass GoFish:\n <docstring token>\n <function token>\n\n def autoPlay(self):\n \"\"\"Plays a game of GoFish\"\"\"\n notDone = True\n roundNumber = 0\n whoToAsk = {}\n while notDone:\n roundNumber += 1\n print('Round %i !' % roundNumber)\n for player in self.players:\n playersHand = self.players.get(player)\n print('player %s is now playing and has %i ranks' % (player,\n len(playersHand)))\n temp = whoToAsk.get(player, GOFISH)\n if temp == GOFISH or len(temp) == 0:\n whoToAsk[player] = []\n for temp in self.players:\n if temp != player:\n whoToAsk[player].append(temp)\n giver = whoToAsk[player].pop(0)\n giverHand = self.players.get(giver)\n received = askForCard(player, playersHand, giver, giverHand)\n if received == GOFISH:\n if len(self.deck) == 0:\n print(\n 'nothing to draw. moving along. will ask another player next round'\n )\n else:\n drawCard(player, self.deck, playersHand)\n playHand(player, playersHand)\n if len(playersHand) <= 0:\n print('player %s has won!' % player)\n notDone = False\n continue\n print('game over')\n\n\n<code token>\n", "<docstring token>\n<import token>\n<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\nclass GoFish:\n <docstring token>\n <function token>\n <function token>\n\n\n<code token>\n", "<docstring token>\n<import token>\n<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<class token>\n<code token>\n" ]
false
99,522
9a3ba83e989d9ee2905aa7b4df65f3a5badf62ea
def isNum(n): if(n == "0" or n == "1" or n == "2" or n == "3" or n == "4" or n == "5" or n == "6" or n == "7" or n == "8" or n == "9"): return True else: return False inputNum, dec = input().split(" ") dec = int(dec) result = 0 for i in range(len(inputNum)): if isNum(inputNum[i]): # print("type1", int(inputNum[i]), int(inputNum[i])*dec**(len(inputNum)-1-i)) result += (int(inputNum[i])*dec**(len(inputNum)-1-i)) else: # print("type2", (ord(inputNum[i])-55), (ord(inputNum[i])-55)*dec**(len(inputNum)-1-i)) result += ((ord(inputNum[i])-55)*dec**(len(inputNum)-1-i)) print(result)
[ "def isNum(n):\n if(n == \"0\" or n == \"1\" or n == \"2\" or n == \"3\" or n == \"4\" or n == \"5\" or n == \"6\" or n == \"7\" or n == \"8\" or n == \"9\"):\n return True\n else:\n return False\n\n\ninputNum, dec = input().split(\" \")\ndec = int(dec)\nresult = 0\nfor i in range(len(inputNum)):\n if isNum(inputNum[i]):\n # print(\"type1\", int(inputNum[i]), int(inputNum[i])*dec**(len(inputNum)-1-i))\n result += (int(inputNum[i])*dec**(len(inputNum)-1-i))\n else:\n # print(\"type2\", (ord(inputNum[i])-55), (ord(inputNum[i])-55)*dec**(len(inputNum)-1-i))\n result += ((ord(inputNum[i])-55)*dec**(len(inputNum)-1-i))\nprint(result)\n", "def isNum(n):\n if (n == '0' or n == '1' or n == '2' or n == '3' or n == '4' or n ==\n '5' or n == '6' or n == '7' or n == '8' or n == '9'):\n return True\n else:\n return False\n\n\ninputNum, dec = input().split(' ')\ndec = int(dec)\nresult = 0\nfor i in range(len(inputNum)):\n if isNum(inputNum[i]):\n result += int(inputNum[i]) * dec ** (len(inputNum) - 1 - i)\n else:\n result += (ord(inputNum[i]) - 55) * dec ** (len(inputNum) - 1 - i)\nprint(result)\n", "def isNum(n):\n if (n == '0' or n == '1' or n == '2' or n == '3' or n == '4' or n ==\n '5' or n == '6' or n == '7' or n == '8' or n == '9'):\n return True\n else:\n return False\n\n\n<assignment token>\nfor i in range(len(inputNum)):\n if isNum(inputNum[i]):\n result += int(inputNum[i]) * dec ** (len(inputNum) - 1 - i)\n else:\n result += (ord(inputNum[i]) - 55) * dec ** (len(inputNum) - 1 - i)\nprint(result)\n", "def isNum(n):\n if (n == '0' or n == '1' or n == '2' or n == '3' or n == '4' or n ==\n '5' or n == '6' or n == '7' or n == '8' or n == '9'):\n return True\n else:\n return False\n\n\n<assignment token>\n<code token>\n", "<function token>\n<assignment token>\n<code token>\n" ]
false
99,523
16204468e556558ea63a1082dbe8777a79d2a658
from builders import Literal from internal.writer import Writer class Script(object): def __init__(self): self._children = [] self._writer = Writer() def add(self, child): # We special-case strings so that people don't need to write "Literal" everywhere. if isinstance(child, str): child = Literal(child) self._children.append(child) return self # Converts everything in the script to a string # and returns it. def serialize(self): for child in self._children[:-1]: child.build().accept(self._writer) self._writer.newline(1) # We don't want a newline after the last line, so we add it separately. self._children[-1].build().accept(self._writer) return self._writer.done()
[ "from builders import Literal\nfrom internal.writer import Writer\n\nclass Script(object):\n def __init__(self):\n self._children = []\n self._writer = Writer()\n\n def add(self, child):\n # We special-case strings so that people don't need to write \"Literal\" everywhere.\n if isinstance(child, str):\n child = Literal(child)\n self._children.append(child)\n return self\n\n # Converts everything in the script to a string\n # and returns it.\n def serialize(self):\n for child in self._children[:-1]:\n child.build().accept(self._writer)\n self._writer.newline(1)\n # We don't want a newline after the last line, so we add it separately.\n self._children[-1].build().accept(self._writer)\n return self._writer.done()", "from builders import Literal\nfrom internal.writer import Writer\n\n\nclass Script(object):\n\n def __init__(self):\n self._children = []\n self._writer = Writer()\n\n def add(self, child):\n if isinstance(child, str):\n child = Literal(child)\n self._children.append(child)\n return self\n\n def serialize(self):\n for child in self._children[:-1]:\n child.build().accept(self._writer)\n self._writer.newline(1)\n self._children[-1].build().accept(self._writer)\n return self._writer.done()\n", "<import token>\n\n\nclass Script(object):\n\n def __init__(self):\n self._children = []\n self._writer = Writer()\n\n def add(self, child):\n if isinstance(child, str):\n child = Literal(child)\n self._children.append(child)\n return self\n\n def serialize(self):\n for child in self._children[:-1]:\n child.build().accept(self._writer)\n self._writer.newline(1)\n self._children[-1].build().accept(self._writer)\n return self._writer.done()\n", "<import token>\n\n\nclass Script(object):\n\n def __init__(self):\n self._children = []\n self._writer = Writer()\n\n def add(self, child):\n if isinstance(child, str):\n child = Literal(child)\n self._children.append(child)\n return self\n <function token>\n", "<import token>\n\n\nclass Script(object):\n\n def __init__(self):\n self._children = []\n self._writer = Writer()\n <function token>\n <function token>\n", "<import token>\n\n\nclass Script(object):\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,524
cf9d1ed0768c28745719e1949a88c7de972313ed
# _*_ coding: utf-8 _*_ from flask import Flask from config import Config def create_app(): app = Flask(__name__) app.config.from_object(Config) from .views import main_bp app.register_blueprint(main_bp) return app
[ "# _*_ coding: utf-8 _*_\nfrom flask import Flask\nfrom config import Config\n\n\ndef create_app():\n app = Flask(__name__)\n app.config.from_object(Config)\n\n from .views import main_bp\n\n app.register_blueprint(main_bp)\n\n return app\n", "from flask import Flask\nfrom config import Config\n\n\ndef create_app():\n app = Flask(__name__)\n app.config.from_object(Config)\n from .views import main_bp\n app.register_blueprint(main_bp)\n return app\n", "<import token>\n\n\ndef create_app():\n app = Flask(__name__)\n app.config.from_object(Config)\n from .views import main_bp\n app.register_blueprint(main_bp)\n return app\n", "<import token>\n<function token>\n" ]
false
99,525
40ab6ef57075a5eaef6a423c040bd453dce791f7
import setuptools setuptools.setup( entry_points={ "console_scripts": [ "run_etl = sliide_etl.main:main" ] }, name="sliide_etl", package_dir={ "sliide_etl": "" }, packages=setuptools.find_packages(), install_requires=[ "pandas" ], setup_requires=[ "pytest-runner" ], tests_require=[ "pytest-runner", "pytest" ], package_data={ "": ["*"] }, version='0.1.0', )
[ "import setuptools\n\nsetuptools.setup(\n entry_points={\n \"console_scripts\": [\n \"run_etl = sliide_etl.main:main\"\n ]\n },\n name=\"sliide_etl\",\n package_dir={\n \"sliide_etl\": \"\"\n },\n packages=setuptools.find_packages(),\n install_requires=[\n \"pandas\"\n ],\n setup_requires=[\n \"pytest-runner\"\n ],\n tests_require=[\n \"pytest-runner\",\n \"pytest\"\n ],\n package_data={\n \"\": [\"*\"]\n },\n version='0.1.0',\n)\n", "import setuptools\nsetuptools.setup(entry_points={'console_scripts': [\n 'run_etl = sliide_etl.main:main']}, name='sliide_etl', package_dir={\n 'sliide_etl': ''}, packages=setuptools.find_packages(),\n install_requires=['pandas'], setup_requires=['pytest-runner'],\n tests_require=['pytest-runner', 'pytest'], package_data={'': ['*']},\n version='0.1.0')\n", "<import token>\nsetuptools.setup(entry_points={'console_scripts': [\n 'run_etl = sliide_etl.main:main']}, name='sliide_etl', package_dir={\n 'sliide_etl': ''}, packages=setuptools.find_packages(),\n install_requires=['pandas'], setup_requires=['pytest-runner'],\n tests_require=['pytest-runner', 'pytest'], package_data={'': ['*']},\n version='0.1.0')\n", "<import token>\n<code token>\n" ]
false
99,526
5ee7989bc9e1fc0595b7aa43636a041864304bd0
# coding: utf-8 """ Cloudbreak API Cloudbreak is a powerful left surf that breaks over a coral reef, a mile off southwest the island of Tavarua, Fiji. Cloudbreak is a cloud agnostic Hadoop as a Service API. Abstracts the provisioning and ease management and monitoring of on-demand clusters. SequenceIQ's Cloudbreak is a RESTful application development platform with the goal of helping developers to build solutions for deploying Hadoop YARN clusters in different environments. Once it is deployed in your favourite servlet container it exposes a REST API allowing to span up Hadoop clusters of arbitary sizes and cloud providers. Provisioning Hadoop has never been easier. Cloudbreak is built on the foundation of cloud providers API (Amazon AWS, Microsoft Azure, Google Cloud Platform, Openstack), Apache Ambari, Docker lightweight containers, Swarm and Consul. For further product documentation follow the link: <a href=\"http://hortonworks.com/apache/cloudbreak/\">http://hortonworks.com/apache/cloudbreak/</a> OpenAPI spec version: 2.9.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class InstanceGroupAdjustment(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'instance_group': 'str', 'scaling_adjustment': 'int' } attribute_map = { 'instance_group': 'instanceGroup', 'scaling_adjustment': 'scalingAdjustment' } def __init__(self, instance_group=None, scaling_adjustment=None): """ InstanceGroupAdjustment - a model defined in Swagger """ self._instance_group = None self._scaling_adjustment = None self.instance_group = instance_group self.scaling_adjustment = scaling_adjustment @property def instance_group(self): """ Gets the instance_group of this InstanceGroupAdjustment. name of the instance group :return: The instance_group of this InstanceGroupAdjustment. :rtype: str """ return self._instance_group @instance_group.setter def instance_group(self, instance_group): """ Sets the instance_group of this InstanceGroupAdjustment. name of the instance group :param instance_group: The instance_group of this InstanceGroupAdjustment. :type: str """ if instance_group is None: raise ValueError("Invalid value for `instance_group`, must not be `None`") self._instance_group = instance_group @property def scaling_adjustment(self): """ Gets the scaling_adjustment of this InstanceGroupAdjustment. scaling adjustment of the instance groups :return: The scaling_adjustment of this InstanceGroupAdjustment. :rtype: int """ return self._scaling_adjustment @scaling_adjustment.setter def scaling_adjustment(self, scaling_adjustment): """ Sets the scaling_adjustment of this InstanceGroupAdjustment. scaling adjustment of the instance groups :param scaling_adjustment: The scaling_adjustment of this InstanceGroupAdjustment. :type: int """ if scaling_adjustment is None: raise ValueError("Invalid value for `scaling_adjustment`, must not be `None`") self._scaling_adjustment = scaling_adjustment def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, InstanceGroupAdjustment): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
[ "# coding: utf-8\n\n\"\"\"\n Cloudbreak API\n\n Cloudbreak is a powerful left surf that breaks over a coral reef, a mile off southwest the island of Tavarua, Fiji. Cloudbreak is a cloud agnostic Hadoop as a Service API. Abstracts the provisioning and ease management and monitoring of on-demand clusters. SequenceIQ's Cloudbreak is a RESTful application development platform with the goal of helping developers to build solutions for deploying Hadoop YARN clusters in different environments. Once it is deployed in your favourite servlet container it exposes a REST API allowing to span up Hadoop clusters of arbitary sizes and cloud providers. Provisioning Hadoop has never been easier. Cloudbreak is built on the foundation of cloud providers API (Amazon AWS, Microsoft Azure, Google Cloud Platform, Openstack), Apache Ambari, Docker lightweight containers, Swarm and Consul. For further product documentation follow the link: <a href=\\\"http://hortonworks.com/apache/cloudbreak/\\\">http://hortonworks.com/apache/cloudbreak/</a>\n\n OpenAPI spec version: 2.9.0\n \n Generated by: https://github.com/swagger-api/swagger-codegen.git\n\"\"\"\n\n\nfrom pprint import pformat\nfrom six import iteritems\nimport re\n\n\nclass InstanceGroupAdjustment(object):\n \"\"\"\n NOTE: This class is auto generated by the swagger code generator program.\n Do not edit the class manually.\n \"\"\"\n\n\n \"\"\"\n Attributes:\n swagger_types (dict): The key is attribute name\n and the value is attribute type.\n attribute_map (dict): The key is attribute name\n and the value is json key in definition.\n \"\"\"\n swagger_types = {\n 'instance_group': 'str',\n 'scaling_adjustment': 'int'\n }\n\n attribute_map = {\n 'instance_group': 'instanceGroup',\n 'scaling_adjustment': 'scalingAdjustment'\n }\n\n def __init__(self, instance_group=None, scaling_adjustment=None):\n \"\"\"\n InstanceGroupAdjustment - a model defined in Swagger\n \"\"\"\n\n self._instance_group = None\n self._scaling_adjustment = None\n\n self.instance_group = instance_group\n self.scaling_adjustment = scaling_adjustment\n\n @property\n def instance_group(self):\n \"\"\"\n Gets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :return: The instance_group of this InstanceGroupAdjustment.\n :rtype: str\n \"\"\"\n return self._instance_group\n\n @instance_group.setter\n def instance_group(self, instance_group):\n \"\"\"\n Sets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :param instance_group: The instance_group of this InstanceGroupAdjustment.\n :type: str\n \"\"\"\n if instance_group is None:\n raise ValueError(\"Invalid value for `instance_group`, must not be `None`\")\n\n self._instance_group = instance_group\n\n @property\n def scaling_adjustment(self):\n \"\"\"\n Gets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :return: The scaling_adjustment of this InstanceGroupAdjustment.\n :rtype: int\n \"\"\"\n return self._scaling_adjustment\n\n @scaling_adjustment.setter\n def scaling_adjustment(self, scaling_adjustment):\n \"\"\"\n Sets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :param scaling_adjustment: The scaling_adjustment of this InstanceGroupAdjustment.\n :type: int\n \"\"\"\n if scaling_adjustment is None:\n raise ValueError(\"Invalid value for `scaling_adjustment`, must not be `None`\")\n\n self._scaling_adjustment = scaling_adjustment\n\n def to_dict(self):\n \"\"\"\n Returns the model properties as a dict\n \"\"\"\n result = {}\n\n for attr, _ in iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(\n lambda x: x.to_dict() if hasattr(x, \"to_dict\") else x,\n value\n ))\n elif hasattr(value, \"to_dict\"):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(\n lambda item: (item[0], item[1].to_dict())\n if hasattr(item[1], \"to_dict\") else item,\n value.items()\n ))\n else:\n result[attr] = value\n\n return result\n\n def to_str(self):\n \"\"\"\n Returns the string representation of the model\n \"\"\"\n return pformat(self.to_dict())\n\n def __repr__(self):\n \"\"\"\n For `print` and `pprint`\n \"\"\"\n return self.to_str()\n\n def __eq__(self, other):\n \"\"\"\n Returns true if both objects are equal\n \"\"\"\n if not isinstance(other, InstanceGroupAdjustment):\n return False\n\n return self.__dict__ == other.__dict__\n\n def __ne__(self, other):\n \"\"\"\n Returns true if both objects are not equal\n \"\"\"\n return not self == other\n", "<docstring token>\nfrom pprint import pformat\nfrom six import iteritems\nimport re\n\n\nclass InstanceGroupAdjustment(object):\n \"\"\"\n NOTE: This class is auto generated by the swagger code generator program.\n Do not edit the class manually.\n \"\"\"\n \"\"\"\n Attributes:\n swagger_types (dict): The key is attribute name\n and the value is attribute type.\n attribute_map (dict): The key is attribute name\n and the value is json key in definition.\n \"\"\"\n swagger_types = {'instance_group': 'str', 'scaling_adjustment': 'int'}\n attribute_map = {'instance_group': 'instanceGroup',\n 'scaling_adjustment': 'scalingAdjustment'}\n\n def __init__(self, instance_group=None, scaling_adjustment=None):\n \"\"\"\n InstanceGroupAdjustment - a model defined in Swagger\n \"\"\"\n self._instance_group = None\n self._scaling_adjustment = None\n self.instance_group = instance_group\n self.scaling_adjustment = scaling_adjustment\n\n @property\n def instance_group(self):\n \"\"\"\n Gets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :return: The instance_group of this InstanceGroupAdjustment.\n :rtype: str\n \"\"\"\n return self._instance_group\n\n @instance_group.setter\n def instance_group(self, instance_group):\n \"\"\"\n Sets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :param instance_group: The instance_group of this InstanceGroupAdjustment.\n :type: str\n \"\"\"\n if instance_group is None:\n raise ValueError(\n 'Invalid value for `instance_group`, must not be `None`')\n self._instance_group = instance_group\n\n @property\n def scaling_adjustment(self):\n \"\"\"\n Gets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :return: The scaling_adjustment of this InstanceGroupAdjustment.\n :rtype: int\n \"\"\"\n return self._scaling_adjustment\n\n @scaling_adjustment.setter\n def scaling_adjustment(self, scaling_adjustment):\n \"\"\"\n Sets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :param scaling_adjustment: The scaling_adjustment of this InstanceGroupAdjustment.\n :type: int\n \"\"\"\n if scaling_adjustment is None:\n raise ValueError(\n 'Invalid value for `scaling_adjustment`, must not be `None`')\n self._scaling_adjustment = scaling_adjustment\n\n def to_dict(self):\n \"\"\"\n Returns the model properties as a dict\n \"\"\"\n result = {}\n for attr, _ in iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n return result\n\n def to_str(self):\n \"\"\"\n Returns the string representation of the model\n \"\"\"\n return pformat(self.to_dict())\n\n def __repr__(self):\n \"\"\"\n For `print` and `pprint`\n \"\"\"\n return self.to_str()\n\n def __eq__(self, other):\n \"\"\"\n Returns true if both objects are equal\n \"\"\"\n if not isinstance(other, InstanceGroupAdjustment):\n return False\n return self.__dict__ == other.__dict__\n\n def __ne__(self, other):\n \"\"\"\n Returns true if both objects are not equal\n \"\"\"\n return not self == other\n", "<docstring token>\n<import token>\n\n\nclass InstanceGroupAdjustment(object):\n \"\"\"\n NOTE: This class is auto generated by the swagger code generator program.\n Do not edit the class manually.\n \"\"\"\n \"\"\"\n Attributes:\n swagger_types (dict): The key is attribute name\n and the value is attribute type.\n attribute_map (dict): The key is attribute name\n and the value is json key in definition.\n \"\"\"\n swagger_types = {'instance_group': 'str', 'scaling_adjustment': 'int'}\n attribute_map = {'instance_group': 'instanceGroup',\n 'scaling_adjustment': 'scalingAdjustment'}\n\n def __init__(self, instance_group=None, scaling_adjustment=None):\n \"\"\"\n InstanceGroupAdjustment - a model defined in Swagger\n \"\"\"\n self._instance_group = None\n self._scaling_adjustment = None\n self.instance_group = instance_group\n self.scaling_adjustment = scaling_adjustment\n\n @property\n def instance_group(self):\n \"\"\"\n Gets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :return: The instance_group of this InstanceGroupAdjustment.\n :rtype: str\n \"\"\"\n return self._instance_group\n\n @instance_group.setter\n def instance_group(self, instance_group):\n \"\"\"\n Sets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :param instance_group: The instance_group of this InstanceGroupAdjustment.\n :type: str\n \"\"\"\n if instance_group is None:\n raise ValueError(\n 'Invalid value for `instance_group`, must not be `None`')\n self._instance_group = instance_group\n\n @property\n def scaling_adjustment(self):\n \"\"\"\n Gets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :return: The scaling_adjustment of this InstanceGroupAdjustment.\n :rtype: int\n \"\"\"\n return self._scaling_adjustment\n\n @scaling_adjustment.setter\n def scaling_adjustment(self, scaling_adjustment):\n \"\"\"\n Sets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :param scaling_adjustment: The scaling_adjustment of this InstanceGroupAdjustment.\n :type: int\n \"\"\"\n if scaling_adjustment is None:\n raise ValueError(\n 'Invalid value for `scaling_adjustment`, must not be `None`')\n self._scaling_adjustment = scaling_adjustment\n\n def to_dict(self):\n \"\"\"\n Returns the model properties as a dict\n \"\"\"\n result = {}\n for attr, _ in iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n return result\n\n def to_str(self):\n \"\"\"\n Returns the string representation of the model\n \"\"\"\n return pformat(self.to_dict())\n\n def __repr__(self):\n \"\"\"\n For `print` and `pprint`\n \"\"\"\n return self.to_str()\n\n def __eq__(self, other):\n \"\"\"\n Returns true if both objects are equal\n \"\"\"\n if not isinstance(other, InstanceGroupAdjustment):\n return False\n return self.__dict__ == other.__dict__\n\n def __ne__(self, other):\n \"\"\"\n Returns true if both objects are not equal\n \"\"\"\n return not self == other\n", "<docstring token>\n<import token>\n\n\nclass InstanceGroupAdjustment(object):\n <docstring token>\n <docstring token>\n swagger_types = {'instance_group': 'str', 'scaling_adjustment': 'int'}\n attribute_map = {'instance_group': 'instanceGroup',\n 'scaling_adjustment': 'scalingAdjustment'}\n\n def __init__(self, instance_group=None, scaling_adjustment=None):\n \"\"\"\n InstanceGroupAdjustment - a model defined in Swagger\n \"\"\"\n self._instance_group = None\n self._scaling_adjustment = None\n self.instance_group = instance_group\n self.scaling_adjustment = scaling_adjustment\n\n @property\n def instance_group(self):\n \"\"\"\n Gets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :return: The instance_group of this InstanceGroupAdjustment.\n :rtype: str\n \"\"\"\n return self._instance_group\n\n @instance_group.setter\n def instance_group(self, instance_group):\n \"\"\"\n Sets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :param instance_group: The instance_group of this InstanceGroupAdjustment.\n :type: str\n \"\"\"\n if instance_group is None:\n raise ValueError(\n 'Invalid value for `instance_group`, must not be `None`')\n self._instance_group = instance_group\n\n @property\n def scaling_adjustment(self):\n \"\"\"\n Gets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :return: The scaling_adjustment of this InstanceGroupAdjustment.\n :rtype: int\n \"\"\"\n return self._scaling_adjustment\n\n @scaling_adjustment.setter\n def scaling_adjustment(self, scaling_adjustment):\n \"\"\"\n Sets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :param scaling_adjustment: The scaling_adjustment of this InstanceGroupAdjustment.\n :type: int\n \"\"\"\n if scaling_adjustment is None:\n raise ValueError(\n 'Invalid value for `scaling_adjustment`, must not be `None`')\n self._scaling_adjustment = scaling_adjustment\n\n def to_dict(self):\n \"\"\"\n Returns the model properties as a dict\n \"\"\"\n result = {}\n for attr, _ in iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n return result\n\n def to_str(self):\n \"\"\"\n Returns the string representation of the model\n \"\"\"\n return pformat(self.to_dict())\n\n def __repr__(self):\n \"\"\"\n For `print` and `pprint`\n \"\"\"\n return self.to_str()\n\n def __eq__(self, other):\n \"\"\"\n Returns true if both objects are equal\n \"\"\"\n if not isinstance(other, InstanceGroupAdjustment):\n return False\n return self.__dict__ == other.__dict__\n\n def __ne__(self, other):\n \"\"\"\n Returns true if both objects are not equal\n \"\"\"\n return not self == other\n", "<docstring token>\n<import token>\n\n\nclass InstanceGroupAdjustment(object):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n\n def __init__(self, instance_group=None, scaling_adjustment=None):\n \"\"\"\n InstanceGroupAdjustment - a model defined in Swagger\n \"\"\"\n self._instance_group = None\n self._scaling_adjustment = None\n self.instance_group = instance_group\n self.scaling_adjustment = scaling_adjustment\n\n @property\n def instance_group(self):\n \"\"\"\n Gets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :return: The instance_group of this InstanceGroupAdjustment.\n :rtype: str\n \"\"\"\n return self._instance_group\n\n @instance_group.setter\n def instance_group(self, instance_group):\n \"\"\"\n Sets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :param instance_group: The instance_group of this InstanceGroupAdjustment.\n :type: str\n \"\"\"\n if instance_group is None:\n raise ValueError(\n 'Invalid value for `instance_group`, must not be `None`')\n self._instance_group = instance_group\n\n @property\n def scaling_adjustment(self):\n \"\"\"\n Gets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :return: The scaling_adjustment of this InstanceGroupAdjustment.\n :rtype: int\n \"\"\"\n return self._scaling_adjustment\n\n @scaling_adjustment.setter\n def scaling_adjustment(self, scaling_adjustment):\n \"\"\"\n Sets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :param scaling_adjustment: The scaling_adjustment of this InstanceGroupAdjustment.\n :type: int\n \"\"\"\n if scaling_adjustment is None:\n raise ValueError(\n 'Invalid value for `scaling_adjustment`, must not be `None`')\n self._scaling_adjustment = scaling_adjustment\n\n def to_dict(self):\n \"\"\"\n Returns the model properties as a dict\n \"\"\"\n result = {}\n for attr, _ in iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n return result\n\n def to_str(self):\n \"\"\"\n Returns the string representation of the model\n \"\"\"\n return pformat(self.to_dict())\n\n def __repr__(self):\n \"\"\"\n For `print` and `pprint`\n \"\"\"\n return self.to_str()\n\n def __eq__(self, other):\n \"\"\"\n Returns true if both objects are equal\n \"\"\"\n if not isinstance(other, InstanceGroupAdjustment):\n return False\n return self.__dict__ == other.__dict__\n\n def __ne__(self, other):\n \"\"\"\n Returns true if both objects are not equal\n \"\"\"\n return not self == other\n", "<docstring token>\n<import token>\n\n\nclass InstanceGroupAdjustment(object):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n\n def __init__(self, instance_group=None, scaling_adjustment=None):\n \"\"\"\n InstanceGroupAdjustment - a model defined in Swagger\n \"\"\"\n self._instance_group = None\n self._scaling_adjustment = None\n self.instance_group = instance_group\n self.scaling_adjustment = scaling_adjustment\n\n @property\n def instance_group(self):\n \"\"\"\n Gets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :return: The instance_group of this InstanceGroupAdjustment.\n :rtype: str\n \"\"\"\n return self._instance_group\n\n @instance_group.setter\n def instance_group(self, instance_group):\n \"\"\"\n Sets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :param instance_group: The instance_group of this InstanceGroupAdjustment.\n :type: str\n \"\"\"\n if instance_group is None:\n raise ValueError(\n 'Invalid value for `instance_group`, must not be `None`')\n self._instance_group = instance_group\n\n @property\n def scaling_adjustment(self):\n \"\"\"\n Gets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :return: The scaling_adjustment of this InstanceGroupAdjustment.\n :rtype: int\n \"\"\"\n return self._scaling_adjustment\n\n @scaling_adjustment.setter\n def scaling_adjustment(self, scaling_adjustment):\n \"\"\"\n Sets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :param scaling_adjustment: The scaling_adjustment of this InstanceGroupAdjustment.\n :type: int\n \"\"\"\n if scaling_adjustment is None:\n raise ValueError(\n 'Invalid value for `scaling_adjustment`, must not be `None`')\n self._scaling_adjustment = scaling_adjustment\n\n def to_dict(self):\n \"\"\"\n Returns the model properties as a dict\n \"\"\"\n result = {}\n for attr, _ in iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n return result\n\n def to_str(self):\n \"\"\"\n Returns the string representation of the model\n \"\"\"\n return pformat(self.to_dict())\n <function token>\n\n def __eq__(self, other):\n \"\"\"\n Returns true if both objects are equal\n \"\"\"\n if not isinstance(other, InstanceGroupAdjustment):\n return False\n return self.__dict__ == other.__dict__\n\n def __ne__(self, other):\n \"\"\"\n Returns true if both objects are not equal\n \"\"\"\n return not self == other\n", "<docstring token>\n<import token>\n\n\nclass InstanceGroupAdjustment(object):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <function token>\n\n @property\n def instance_group(self):\n \"\"\"\n Gets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :return: The instance_group of this InstanceGroupAdjustment.\n :rtype: str\n \"\"\"\n return self._instance_group\n\n @instance_group.setter\n def instance_group(self, instance_group):\n \"\"\"\n Sets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :param instance_group: The instance_group of this InstanceGroupAdjustment.\n :type: str\n \"\"\"\n if instance_group is None:\n raise ValueError(\n 'Invalid value for `instance_group`, must not be `None`')\n self._instance_group = instance_group\n\n @property\n def scaling_adjustment(self):\n \"\"\"\n Gets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :return: The scaling_adjustment of this InstanceGroupAdjustment.\n :rtype: int\n \"\"\"\n return self._scaling_adjustment\n\n @scaling_adjustment.setter\n def scaling_adjustment(self, scaling_adjustment):\n \"\"\"\n Sets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :param scaling_adjustment: The scaling_adjustment of this InstanceGroupAdjustment.\n :type: int\n \"\"\"\n if scaling_adjustment is None:\n raise ValueError(\n 'Invalid value for `scaling_adjustment`, must not be `None`')\n self._scaling_adjustment = scaling_adjustment\n\n def to_dict(self):\n \"\"\"\n Returns the model properties as a dict\n \"\"\"\n result = {}\n for attr, _ in iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n return result\n\n def to_str(self):\n \"\"\"\n Returns the string representation of the model\n \"\"\"\n return pformat(self.to_dict())\n <function token>\n\n def __eq__(self, other):\n \"\"\"\n Returns true if both objects are equal\n \"\"\"\n if not isinstance(other, InstanceGroupAdjustment):\n return False\n return self.__dict__ == other.__dict__\n\n def __ne__(self, other):\n \"\"\"\n Returns true if both objects are not equal\n \"\"\"\n return not self == other\n", "<docstring token>\n<import token>\n\n\nclass InstanceGroupAdjustment(object):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n @instance_group.setter\n def instance_group(self, instance_group):\n \"\"\"\n Sets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :param instance_group: The instance_group of this InstanceGroupAdjustment.\n :type: str\n \"\"\"\n if instance_group is None:\n raise ValueError(\n 'Invalid value for `instance_group`, must not be `None`')\n self._instance_group = instance_group\n\n @property\n def scaling_adjustment(self):\n \"\"\"\n Gets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :return: The scaling_adjustment of this InstanceGroupAdjustment.\n :rtype: int\n \"\"\"\n return self._scaling_adjustment\n\n @scaling_adjustment.setter\n def scaling_adjustment(self, scaling_adjustment):\n \"\"\"\n Sets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :param scaling_adjustment: The scaling_adjustment of this InstanceGroupAdjustment.\n :type: int\n \"\"\"\n if scaling_adjustment is None:\n raise ValueError(\n 'Invalid value for `scaling_adjustment`, must not be `None`')\n self._scaling_adjustment = scaling_adjustment\n\n def to_dict(self):\n \"\"\"\n Returns the model properties as a dict\n \"\"\"\n result = {}\n for attr, _ in iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n return result\n\n def to_str(self):\n \"\"\"\n Returns the string representation of the model\n \"\"\"\n return pformat(self.to_dict())\n <function token>\n\n def __eq__(self, other):\n \"\"\"\n Returns true if both objects are equal\n \"\"\"\n if not isinstance(other, InstanceGroupAdjustment):\n return False\n return self.__dict__ == other.__dict__\n\n def __ne__(self, other):\n \"\"\"\n Returns true if both objects are not equal\n \"\"\"\n return not self == other\n", "<docstring token>\n<import token>\n\n\nclass InstanceGroupAdjustment(object):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n @instance_group.setter\n def instance_group(self, instance_group):\n \"\"\"\n Sets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :param instance_group: The instance_group of this InstanceGroupAdjustment.\n :type: str\n \"\"\"\n if instance_group is None:\n raise ValueError(\n 'Invalid value for `instance_group`, must not be `None`')\n self._instance_group = instance_group\n\n @property\n def scaling_adjustment(self):\n \"\"\"\n Gets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :return: The scaling_adjustment of this InstanceGroupAdjustment.\n :rtype: int\n \"\"\"\n return self._scaling_adjustment\n\n @scaling_adjustment.setter\n def scaling_adjustment(self, scaling_adjustment):\n \"\"\"\n Sets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :param scaling_adjustment: The scaling_adjustment of this InstanceGroupAdjustment.\n :type: int\n \"\"\"\n if scaling_adjustment is None:\n raise ValueError(\n 'Invalid value for `scaling_adjustment`, must not be `None`')\n self._scaling_adjustment = scaling_adjustment\n\n def to_dict(self):\n \"\"\"\n Returns the model properties as a dict\n \"\"\"\n result = {}\n for attr, _ in iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n return result\n\n def to_str(self):\n \"\"\"\n Returns the string representation of the model\n \"\"\"\n return pformat(self.to_dict())\n <function token>\n\n def __eq__(self, other):\n \"\"\"\n Returns true if both objects are equal\n \"\"\"\n if not isinstance(other, InstanceGroupAdjustment):\n return False\n return self.__dict__ == other.__dict__\n <function token>\n", "<docstring token>\n<import token>\n\n\nclass InstanceGroupAdjustment(object):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n @instance_group.setter\n def instance_group(self, instance_group):\n \"\"\"\n Sets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :param instance_group: The instance_group of this InstanceGroupAdjustment.\n :type: str\n \"\"\"\n if instance_group is None:\n raise ValueError(\n 'Invalid value for `instance_group`, must not be `None`')\n self._instance_group = instance_group\n\n @property\n def scaling_adjustment(self):\n \"\"\"\n Gets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :return: The scaling_adjustment of this InstanceGroupAdjustment.\n :rtype: int\n \"\"\"\n return self._scaling_adjustment\n <function token>\n\n def to_dict(self):\n \"\"\"\n Returns the model properties as a dict\n \"\"\"\n result = {}\n for attr, _ in iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n return result\n\n def to_str(self):\n \"\"\"\n Returns the string representation of the model\n \"\"\"\n return pformat(self.to_dict())\n <function token>\n\n def __eq__(self, other):\n \"\"\"\n Returns true if both objects are equal\n \"\"\"\n if not isinstance(other, InstanceGroupAdjustment):\n return False\n return self.__dict__ == other.__dict__\n <function token>\n", "<docstring token>\n<import token>\n\n\nclass InstanceGroupAdjustment(object):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n @instance_group.setter\n def instance_group(self, instance_group):\n \"\"\"\n Sets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :param instance_group: The instance_group of this InstanceGroupAdjustment.\n :type: str\n \"\"\"\n if instance_group is None:\n raise ValueError(\n 'Invalid value for `instance_group`, must not be `None`')\n self._instance_group = instance_group\n\n @property\n def scaling_adjustment(self):\n \"\"\"\n Gets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :return: The scaling_adjustment of this InstanceGroupAdjustment.\n :rtype: int\n \"\"\"\n return self._scaling_adjustment\n <function token>\n\n def to_dict(self):\n \"\"\"\n Returns the model properties as a dict\n \"\"\"\n result = {}\n for attr, _ in iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n return result\n <function token>\n <function token>\n\n def __eq__(self, other):\n \"\"\"\n Returns true if both objects are equal\n \"\"\"\n if not isinstance(other, InstanceGroupAdjustment):\n return False\n return self.__dict__ == other.__dict__\n <function token>\n", "<docstring token>\n<import token>\n\n\nclass InstanceGroupAdjustment(object):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n @instance_group.setter\n def instance_group(self, instance_group):\n \"\"\"\n Sets the instance_group of this InstanceGroupAdjustment.\n name of the instance group\n\n :param instance_group: The instance_group of this InstanceGroupAdjustment.\n :type: str\n \"\"\"\n if instance_group is None:\n raise ValueError(\n 'Invalid value for `instance_group`, must not be `None`')\n self._instance_group = instance_group\n\n @property\n def scaling_adjustment(self):\n \"\"\"\n Gets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :return: The scaling_adjustment of this InstanceGroupAdjustment.\n :rtype: int\n \"\"\"\n return self._scaling_adjustment\n <function token>\n\n def to_dict(self):\n \"\"\"\n Returns the model properties as a dict\n \"\"\"\n result = {}\n for attr, _ in iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n return result\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n\n\nclass InstanceGroupAdjustment(object):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n @property\n def scaling_adjustment(self):\n \"\"\"\n Gets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :return: The scaling_adjustment of this InstanceGroupAdjustment.\n :rtype: int\n \"\"\"\n return self._scaling_adjustment\n <function token>\n\n def to_dict(self):\n \"\"\"\n Returns the model properties as a dict\n \"\"\"\n result = {}\n for attr, _ in iteritems(self.swagger_types):\n value = getattr(self, attr)\n if isinstance(value, list):\n result[attr] = list(map(lambda x: x.to_dict() if hasattr(x,\n 'to_dict') else x, value))\n elif hasattr(value, 'to_dict'):\n result[attr] = value.to_dict()\n elif isinstance(value, dict):\n result[attr] = dict(map(lambda item: (item[0], item[1].\n to_dict()) if hasattr(item[1], 'to_dict') else item,\n value.items()))\n else:\n result[attr] = value\n return result\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n\n\nclass InstanceGroupAdjustment(object):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n\n @property\n def scaling_adjustment(self):\n \"\"\"\n Gets the scaling_adjustment of this InstanceGroupAdjustment.\n scaling adjustment of the instance groups\n\n :return: The scaling_adjustment of this InstanceGroupAdjustment.\n :rtype: int\n \"\"\"\n return self._scaling_adjustment\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n\n\nclass InstanceGroupAdjustment(object):\n <docstring token>\n <docstring token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<docstring token>\n<import token>\n<class token>\n" ]
false
99,527
e09421f3a93d1ef618be1cc8154f74f666b14354
from CyberSource import * from pathlib import Path import os import json from importlib.machinery import SourceFileLoader config_file = os.path.join(os.getcwd(), "data", "Configuration.py") configuration = SourceFileLoader("module.name", config_file).load_module() # To delete None values in Input Request Json body def del_none(d): for key, value in list(d.items()): if value is None: del d[key] elif isinstance(value, dict): del_none(value) return d def create_search_request(): save = False name = "MRN" timezone = "America/Chicago" query = "clientReferenceInformation.code:TC50171_3 AND submitTimeUtc:[NOW/DAY-7DAYS TO NOW/DAY+1DAY}" offset = 0 limit = 100 sort = "id:asc,submitTimeUtc:asc" requestObj = CreateSearchRequest( save = save, name = name, timezone = timezone, query = query, offset = offset, limit = limit, sort = sort ) requestObj = del_none(requestObj.__dict__) requestObj = json.dumps(requestObj) try: config_obj = configuration.Configuration() client_config = config_obj.get_configuration() api_instance = SearchTransactionsApi(client_config) return_data, status, body = api_instance.create_search(requestObj) print("\nAPI RESPONSE CODE : ", status) print("\nAPI RESPONSE BODY : ", body) write_log_audit(status) return return_data except Exception as e: write_log_audit(e.status if hasattr(e, 'status') else 999) print("\nException when calling SearchTransactionsApi->create_search: %s\n" % e) def write_log_audit(status): print(f"[Sample Code Testing] [{Path(__file__).stem}] {status}") if __name__ == "__main__": create_search_request()
[ "from CyberSource import *\nfrom pathlib import Path\nimport os\nimport json\nfrom importlib.machinery import SourceFileLoader\n\nconfig_file = os.path.join(os.getcwd(), \"data\", \"Configuration.py\")\nconfiguration = SourceFileLoader(\"module.name\", config_file).load_module()\n\n# To delete None values in Input Request Json body\ndef del_none(d):\n for key, value in list(d.items()):\n if value is None:\n del d[key]\n elif isinstance(value, dict):\n del_none(value)\n return d\n\ndef create_search_request():\n save = False\n name = \"MRN\"\n timezone = \"America/Chicago\"\n query = \"clientReferenceInformation.code:TC50171_3 AND submitTimeUtc:[NOW/DAY-7DAYS TO NOW/DAY+1DAY}\"\n offset = 0\n limit = 100\n sort = \"id:asc,submitTimeUtc:asc\"\n requestObj = CreateSearchRequest(\n save = save,\n name = name,\n timezone = timezone,\n query = query,\n offset = offset,\n limit = limit,\n sort = sort\n )\n\n\n requestObj = del_none(requestObj.__dict__)\n requestObj = json.dumps(requestObj)\n\n\n try:\n config_obj = configuration.Configuration()\n client_config = config_obj.get_configuration()\n api_instance = SearchTransactionsApi(client_config)\n return_data, status, body = api_instance.create_search(requestObj)\n\n print(\"\\nAPI RESPONSE CODE : \", status)\n print(\"\\nAPI RESPONSE BODY : \", body)\n\n write_log_audit(status)\n return return_data\n except Exception as e:\n write_log_audit(e.status if hasattr(e, 'status') else 999)\n print(\"\\nException when calling SearchTransactionsApi->create_search: %s\\n\" % e)\n\ndef write_log_audit(status):\n print(f\"[Sample Code Testing] [{Path(__file__).stem}] {status}\")\n\nif __name__ == \"__main__\":\n create_search_request()\n", "from CyberSource import *\nfrom pathlib import Path\nimport os\nimport json\nfrom importlib.machinery import SourceFileLoader\nconfig_file = os.path.join(os.getcwd(), 'data', 'Configuration.py')\nconfiguration = SourceFileLoader('module.name', config_file).load_module()\n\n\ndef del_none(d):\n for key, value in list(d.items()):\n if value is None:\n del d[key]\n elif isinstance(value, dict):\n del_none(value)\n return d\n\n\ndef create_search_request():\n save = False\n name = 'MRN'\n timezone = 'America/Chicago'\n query = (\n 'clientReferenceInformation.code:TC50171_3 AND submitTimeUtc:[NOW/DAY-7DAYS TO NOW/DAY+1DAY}'\n )\n offset = 0\n limit = 100\n sort = 'id:asc,submitTimeUtc:asc'\n requestObj = CreateSearchRequest(save=save, name=name, timezone=\n timezone, query=query, offset=offset, limit=limit, sort=sort)\n requestObj = del_none(requestObj.__dict__)\n requestObj = json.dumps(requestObj)\n try:\n config_obj = configuration.Configuration()\n client_config = config_obj.get_configuration()\n api_instance = SearchTransactionsApi(client_config)\n return_data, status, body = api_instance.create_search(requestObj)\n print('\\nAPI RESPONSE CODE : ', status)\n print('\\nAPI RESPONSE BODY : ', body)\n write_log_audit(status)\n return return_data\n except Exception as e:\n write_log_audit(e.status if hasattr(e, 'status') else 999)\n print(\n '\\nException when calling SearchTransactionsApi->create_search: %s\\n'\n % e)\n\n\ndef write_log_audit(status):\n print(f'[Sample Code Testing] [{Path(__file__).stem}] {status}')\n\n\nif __name__ == '__main__':\n create_search_request()\n", "<import token>\nconfig_file = os.path.join(os.getcwd(), 'data', 'Configuration.py')\nconfiguration = SourceFileLoader('module.name', config_file).load_module()\n\n\ndef del_none(d):\n for key, value in list(d.items()):\n if value is None:\n del d[key]\n elif isinstance(value, dict):\n del_none(value)\n return d\n\n\ndef create_search_request():\n save = False\n name = 'MRN'\n timezone = 'America/Chicago'\n query = (\n 'clientReferenceInformation.code:TC50171_3 AND submitTimeUtc:[NOW/DAY-7DAYS TO NOW/DAY+1DAY}'\n )\n offset = 0\n limit = 100\n sort = 'id:asc,submitTimeUtc:asc'\n requestObj = CreateSearchRequest(save=save, name=name, timezone=\n timezone, query=query, offset=offset, limit=limit, sort=sort)\n requestObj = del_none(requestObj.__dict__)\n requestObj = json.dumps(requestObj)\n try:\n config_obj = configuration.Configuration()\n client_config = config_obj.get_configuration()\n api_instance = SearchTransactionsApi(client_config)\n return_data, status, body = api_instance.create_search(requestObj)\n print('\\nAPI RESPONSE CODE : ', status)\n print('\\nAPI RESPONSE BODY : ', body)\n write_log_audit(status)\n return return_data\n except Exception as e:\n write_log_audit(e.status if hasattr(e, 'status') else 999)\n print(\n '\\nException when calling SearchTransactionsApi->create_search: %s\\n'\n % e)\n\n\ndef write_log_audit(status):\n print(f'[Sample Code Testing] [{Path(__file__).stem}] {status}')\n\n\nif __name__ == '__main__':\n create_search_request()\n", "<import token>\n<assignment token>\n\n\ndef del_none(d):\n for key, value in list(d.items()):\n if value is None:\n del d[key]\n elif isinstance(value, dict):\n del_none(value)\n return d\n\n\ndef create_search_request():\n save = False\n name = 'MRN'\n timezone = 'America/Chicago'\n query = (\n 'clientReferenceInformation.code:TC50171_3 AND submitTimeUtc:[NOW/DAY-7DAYS TO NOW/DAY+1DAY}'\n )\n offset = 0\n limit = 100\n sort = 'id:asc,submitTimeUtc:asc'\n requestObj = CreateSearchRequest(save=save, name=name, timezone=\n timezone, query=query, offset=offset, limit=limit, sort=sort)\n requestObj = del_none(requestObj.__dict__)\n requestObj = json.dumps(requestObj)\n try:\n config_obj = configuration.Configuration()\n client_config = config_obj.get_configuration()\n api_instance = SearchTransactionsApi(client_config)\n return_data, status, body = api_instance.create_search(requestObj)\n print('\\nAPI RESPONSE CODE : ', status)\n print('\\nAPI RESPONSE BODY : ', body)\n write_log_audit(status)\n return return_data\n except Exception as e:\n write_log_audit(e.status if hasattr(e, 'status') else 999)\n print(\n '\\nException when calling SearchTransactionsApi->create_search: %s\\n'\n % e)\n\n\ndef write_log_audit(status):\n print(f'[Sample Code Testing] [{Path(__file__).stem}] {status}')\n\n\nif __name__ == '__main__':\n create_search_request()\n", "<import token>\n<assignment token>\n\n\ndef del_none(d):\n for key, value in list(d.items()):\n if value is None:\n del d[key]\n elif isinstance(value, dict):\n del_none(value)\n return d\n\n\ndef create_search_request():\n save = False\n name = 'MRN'\n timezone = 'America/Chicago'\n query = (\n 'clientReferenceInformation.code:TC50171_3 AND submitTimeUtc:[NOW/DAY-7DAYS TO NOW/DAY+1DAY}'\n )\n offset = 0\n limit = 100\n sort = 'id:asc,submitTimeUtc:asc'\n requestObj = CreateSearchRequest(save=save, name=name, timezone=\n timezone, query=query, offset=offset, limit=limit, sort=sort)\n requestObj = del_none(requestObj.__dict__)\n requestObj = json.dumps(requestObj)\n try:\n config_obj = configuration.Configuration()\n client_config = config_obj.get_configuration()\n api_instance = SearchTransactionsApi(client_config)\n return_data, status, body = api_instance.create_search(requestObj)\n print('\\nAPI RESPONSE CODE : ', status)\n print('\\nAPI RESPONSE BODY : ', body)\n write_log_audit(status)\n return return_data\n except Exception as e:\n write_log_audit(e.status if hasattr(e, 'status') else 999)\n print(\n '\\nException when calling SearchTransactionsApi->create_search: %s\\n'\n % e)\n\n\ndef write_log_audit(status):\n print(f'[Sample Code Testing] [{Path(__file__).stem}] {status}')\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n\n\ndef create_search_request():\n save = False\n name = 'MRN'\n timezone = 'America/Chicago'\n query = (\n 'clientReferenceInformation.code:TC50171_3 AND submitTimeUtc:[NOW/DAY-7DAYS TO NOW/DAY+1DAY}'\n )\n offset = 0\n limit = 100\n sort = 'id:asc,submitTimeUtc:asc'\n requestObj = CreateSearchRequest(save=save, name=name, timezone=\n timezone, query=query, offset=offset, limit=limit, sort=sort)\n requestObj = del_none(requestObj.__dict__)\n requestObj = json.dumps(requestObj)\n try:\n config_obj = configuration.Configuration()\n client_config = config_obj.get_configuration()\n api_instance = SearchTransactionsApi(client_config)\n return_data, status, body = api_instance.create_search(requestObj)\n print('\\nAPI RESPONSE CODE : ', status)\n print('\\nAPI RESPONSE BODY : ', body)\n write_log_audit(status)\n return return_data\n except Exception as e:\n write_log_audit(e.status if hasattr(e, 'status') else 999)\n print(\n '\\nException when calling SearchTransactionsApi->create_search: %s\\n'\n % e)\n\n\ndef write_log_audit(status):\n print(f'[Sample Code Testing] [{Path(__file__).stem}] {status}')\n\n\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n\n\ndef create_search_request():\n save = False\n name = 'MRN'\n timezone = 'America/Chicago'\n query = (\n 'clientReferenceInformation.code:TC50171_3 AND submitTimeUtc:[NOW/DAY-7DAYS TO NOW/DAY+1DAY}'\n )\n offset = 0\n limit = 100\n sort = 'id:asc,submitTimeUtc:asc'\n requestObj = CreateSearchRequest(save=save, name=name, timezone=\n timezone, query=query, offset=offset, limit=limit, sort=sort)\n requestObj = del_none(requestObj.__dict__)\n requestObj = json.dumps(requestObj)\n try:\n config_obj = configuration.Configuration()\n client_config = config_obj.get_configuration()\n api_instance = SearchTransactionsApi(client_config)\n return_data, status, body = api_instance.create_search(requestObj)\n print('\\nAPI RESPONSE CODE : ', status)\n print('\\nAPI RESPONSE BODY : ', body)\n write_log_audit(status)\n return return_data\n except Exception as e:\n write_log_audit(e.status if hasattr(e, 'status') else 999)\n print(\n '\\nException when calling SearchTransactionsApi->create_search: %s\\n'\n % e)\n\n\n<function token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,528
fbdb648eec38897dd5eb898ac4ff48b921f3ed5b
import mutagen import os def extract(l): """ Extract the first element of a list, raise an error if more than 1 elem """ if l is None: return None if len(l) > 1: raise ValueError('More than 1 Value') try: return l[0] except IndexError: return None def get_tag(tags, name): return list(tags.get(name, [])) def sanitize_genres(genres): l = list() for genre in genres: for g in genre.split(','): l.append(g.strip()) return l def sanitize_year(year): if year is None: return year if isinstance(year, mutagen.id3.ID3TimeStamp): return year.year if len(year) == 4: return int(year) return None def sanitize_track(track): if track is None: return track if isinstance(track, tuple): return track[0] if '/' in track: return int(track.split('/')[0]) return int(track) def sanitize_disk(disk): if disk is None: return disk if isinstance(disk, tuple): return disk[0] if '/' in disk: return int(disk.split('/')[0]) return int(disk) def get_track_info_mp4(filepath, tags, stream, cover=None): """ Parses track information from mp4 file """ discogs = extract(tags.get('----:com.apple.iTunes:DISCOGS_RELEASE_ID')) if not cover: coverinfo = extract(tags.get('covr')) if coverinfo: if coverinfo.imageformat == mutagen.mp4.AtomDataType.JPEG: cover = os.path.dirname(filepath) + '/cover.jpg' elif coverinfo.imageformat == mutagen.mp4.AtomDataType.PNG: cover = os.path.dirname(filepath) + '/cover.png' if cover: f = open(cover, 'wb+') f.write(bytes(coverinfo)) f.close() return { "title": extract(tags.get('\xa9nam')), "track": sanitize_track(extract(tags.get('trkn'))), "artists": tags.get('\xa9ART'), "albumartist": extract(tags.get('aART')) or extract(tags.get('\xa9ART')), "album": extract(tags.get('\xa9alb')), "discogs_id": bytes(discogs).decode('utf-8') if discogs else None, "musicbrainz_id": "", "disk": sanitize_disk(extract(tags.get('disk'))), "year": sanitize_year(extract(tags.get('\xa9day'))), "genres": sanitize_genres(tags.get('\xa9gen')), "length": stream.length, "bitrate": stream.bitrate, "size": os.path.getsize(filepath), "cover": cover, "filepath": filepath, } def get_track_info_mp3(filepath, tags, stream, cover): """ Parses track information from mp3 file """ tag = lambda t: get_tag(tags, t) discogs = extract(list(filter(lambda x: x.desc == 'DISCOGS_RELEASE_ID', tags.getall('TXXX')))) musicbrainz = extract(list(filter(lambda x: x.desc == 'MusicBrainz Album Id', tags.getall('TXXX')))) if musicbrainz: musicbrainz = extract(musicbrainz.text) if not cover: coverinfo = tags.get('APIC:') if coverinfo: if coverinfo.mime == 'image/jpeg': cover = os.path.dirname(filepath) + '/cover.jpg' else: raise ValueError('Not supporting %s' % coverinfo.mime) if cover: f = open(cover, 'wb+') f.write(coverinfo.data) f.close() track = sanitize_track(extract(tag('TRCK'))) date = tag('TDRC') or tag('TDAT') or tag('TYER') return { "title": extract(tag('TIT2')), "track": track, "artists": tag('TPE1'), "albumartist": extract(tag('TPE2')) or extract(tags.get('TPE1')), "album": extract(tag('TALB')), "discogs_id": bytes(discogs).decode('utf-8') if discogs else None, "musicbrainz_id": musicbrainz, "disk": sanitize_disk(extract(tag('TPOS'))), "year": sanitize_year(extract(date)), "genres": sanitize_genres(tag('TCON')), "length": stream.length, "bitrate": stream.bitrate, "size": os.path.getsize(filepath), "cover": cover, "filepath": filepath, } def get_track_info_opus(filepath, tags, stream, cover): # for k, v in tags: # print(k) # print(v) return { "title": extract(tags.get("TITLE")), "track": extract(tags.get("TRACK")), "artists": tags.get('ARTIST'), "albumartist": extract(tags.get("ALBUMARTIST")), "album": extract(tags.get("ALBUM")), # "discogs_id": bytes(discogs).decode('utf-8') if discogs else None, "musicbrainz_song_id": extract(tags.get("MUSICBRAINZ_TRACKID")), "musicbrainz_album_id":extract(tags.get("MUSICBRAINZ_ALBUMID")), # "musicbrainz_artist_id":tags.get("MUSICBRAINZ_ARTISTID"), "musicbrainz_albumartist_id":extract(tags.get("MUSICBRAINZ_ALBUMARTISTID")), # "disk": sanitize_disk(extract(tag('TPOS'))), "year": extract(tags.get("YEAR")), "genres": tags.get("GENRE"), "length": stream.length, # "bitrate": stream.bitrate, "size": os.path.getsize(filepath), "cover": cover, "filepath": filepath, } COVERS = {} def find_cover(folder): """ Find the cover file base on a folder """ if COVERS.get(folder) is None: for prefix in ['cover', 'Cover', 'Folder', 'folder']: for suffix in ['.png', '.jpg', '.jpeg']: f = os.path.join(folder, prefix + suffix) if os.path.isfile(f): COVERS[folder] = f return f return COVERS.get(folder) def get_track_info(dirpath, f): """ Parses track information from mutagen """ filepath = os.path.join(dirpath, f) track = mutagen.File(filepath) if not track: if filepath.endswith('.mp3') or filepath.endswith('.m4a'): raise ValueError('Skipped an mp3 or an m4a') return None cover = find_cover(dirpath) if isinstance(track.tags, mutagen.id3.ID3): return get_track_info_mp3(filepath, track.tags, track.info, cover) if isinstance(track.tags, mutagen.mp4.MP4Tags): return get_track_info_mp4(filepath, track.tags, track.info, cover) if isinstance(track, mutagen.oggopus.OggOpus): return get_track_info_opus(filepath, track.tags, track.info, cover) raise ValueError("No parser for file format")
[ "\nimport mutagen\nimport os\n\ndef extract(l):\n \"\"\" Extract the first element of a list, raise an error if more than 1 elem \"\"\"\n if l is None: return None\n if len(l) > 1:\n raise ValueError('More than 1 Value')\n try:\n return l[0]\n except IndexError:\n return None\n\ndef get_tag(tags, name):\n return list(tags.get(name, []))\n\n\ndef sanitize_genres(genres):\n l = list()\n for genre in genres:\n for g in genre.split(','):\n l.append(g.strip())\n return l\n\ndef sanitize_year(year):\n if year is None: return year\n if isinstance(year, mutagen.id3.ID3TimeStamp):\n return year.year\n if len(year) == 4: return int(year)\n return None\n\ndef sanitize_track(track):\n if track is None: return track\n if isinstance(track, tuple):\n return track[0]\n if '/' in track:\n return int(track.split('/')[0])\n return int(track)\n\ndef sanitize_disk(disk):\n if disk is None: return disk\n if isinstance(disk, tuple):\n return disk[0]\n if '/' in disk:\n return int(disk.split('/')[0])\n return int(disk)\n\ndef get_track_info_mp4(filepath, tags, stream, cover=None):\n \"\"\" Parses track information from mp4 file \"\"\"\n discogs = extract(tags.get('----:com.apple.iTunes:DISCOGS_RELEASE_ID'))\n if not cover:\n coverinfo = extract(tags.get('covr'))\n if coverinfo:\n if coverinfo.imageformat == mutagen.mp4.AtomDataType.JPEG:\n cover = os.path.dirname(filepath) + '/cover.jpg'\n elif coverinfo.imageformat == mutagen.mp4.AtomDataType.PNG:\n cover = os.path.dirname(filepath) + '/cover.png'\n if cover:\n f = open(cover, 'wb+')\n f.write(bytes(coverinfo))\n f.close()\n\n return {\n \"title\": extract(tags.get('\\xa9nam')),\n \"track\": sanitize_track(extract(tags.get('trkn'))),\n \"artists\": tags.get('\\xa9ART'),\n \"albumartist\": extract(tags.get('aART')) or extract(tags.get('\\xa9ART')),\n \"album\": extract(tags.get('\\xa9alb')),\n \"discogs_id\": bytes(discogs).decode('utf-8') if discogs else None,\n \"musicbrainz_id\": \"\",\n \"disk\": sanitize_disk(extract(tags.get('disk'))),\n \"year\": sanitize_year(extract(tags.get('\\xa9day'))),\n \"genres\": sanitize_genres(tags.get('\\xa9gen')),\n \"length\": stream.length,\n \"bitrate\": stream.bitrate,\n \"size\": os.path.getsize(filepath),\n \"cover\": cover,\n \"filepath\": filepath,\n }\n\ndef get_track_info_mp3(filepath, tags, stream, cover):\n \"\"\" Parses track information from mp3 file \"\"\"\n tag = lambda t: get_tag(tags, t)\n discogs = extract(list(filter(lambda x: x.desc == 'DISCOGS_RELEASE_ID', tags.getall('TXXX'))))\n musicbrainz = extract(list(filter(lambda x: x.desc == 'MusicBrainz Album Id', tags.getall('TXXX'))))\n if musicbrainz: musicbrainz = extract(musicbrainz.text)\n if not cover:\n coverinfo = tags.get('APIC:')\n if coverinfo:\n if coverinfo.mime == 'image/jpeg':\n cover = os.path.dirname(filepath) + '/cover.jpg'\n else:\n raise ValueError('Not supporting %s' % coverinfo.mime)\n if cover:\n f = open(cover, 'wb+')\n f.write(coverinfo.data)\n f.close()\n\n track = sanitize_track(extract(tag('TRCK')))\n\n date = tag('TDRC') or tag('TDAT') or tag('TYER')\n return {\n \"title\": extract(tag('TIT2')),\n \"track\": track,\n \"artists\": tag('TPE1'),\n \"albumartist\": extract(tag('TPE2')) or extract(tags.get('TPE1')),\n \"album\": extract(tag('TALB')),\n \"discogs_id\": bytes(discogs).decode('utf-8') if discogs else None,\n \"musicbrainz_id\": musicbrainz,\n \"disk\": sanitize_disk(extract(tag('TPOS'))),\n \"year\": sanitize_year(extract(date)),\n \"genres\": sanitize_genres(tag('TCON')),\n \"length\": stream.length,\n \"bitrate\": stream.bitrate,\n \"size\": os.path.getsize(filepath),\n \"cover\": cover,\n \"filepath\": filepath,\n }\n\ndef get_track_info_opus(filepath, tags, stream, cover):\n\n # for k, v in tags:\n # print(k)\n # print(v)\n return {\n \"title\": extract(tags.get(\"TITLE\")),\n \"track\": extract(tags.get(\"TRACK\")),\n \"artists\": tags.get('ARTIST'),\n \"albumartist\": extract(tags.get(\"ALBUMARTIST\")),\n \"album\": extract(tags.get(\"ALBUM\")),\n # \"discogs_id\": bytes(discogs).decode('utf-8') if discogs else None,\n \"musicbrainz_song_id\": extract(tags.get(\"MUSICBRAINZ_TRACKID\")),\n \"musicbrainz_album_id\":extract(tags.get(\"MUSICBRAINZ_ALBUMID\")),\n # \"musicbrainz_artist_id\":tags.get(\"MUSICBRAINZ_ARTISTID\"),\n \"musicbrainz_albumartist_id\":extract(tags.get(\"MUSICBRAINZ_ALBUMARTISTID\")),\n # \"disk\": sanitize_disk(extract(tag('TPOS'))),\n \"year\": extract(tags.get(\"YEAR\")),\n \"genres\": tags.get(\"GENRE\"),\n \"length\": stream.length,\n # \"bitrate\": stream.bitrate,\n \"size\": os.path.getsize(filepath),\n \"cover\": cover,\n \"filepath\": filepath,\n }\n\nCOVERS = {}\ndef find_cover(folder):\n \"\"\" Find the cover file base on a folder \"\"\"\n if COVERS.get(folder) is None:\n for prefix in ['cover', 'Cover', 'Folder', 'folder']:\n for suffix in ['.png', '.jpg', '.jpeg']:\n f = os.path.join(folder, prefix + suffix)\n if os.path.isfile(f):\n COVERS[folder] = f\n return f\n return COVERS.get(folder)\n\ndef get_track_info(dirpath, f):\n \"\"\" Parses track information from mutagen \"\"\"\n filepath = os.path.join(dirpath, f)\n track = mutagen.File(filepath)\n if not track:\n if filepath.endswith('.mp3') or filepath.endswith('.m4a'):\n raise ValueError('Skipped an mp3 or an m4a')\n return None\n\n cover = find_cover(dirpath)\n if isinstance(track.tags, mutagen.id3.ID3):\n return get_track_info_mp3(filepath, track.tags, track.info, cover)\n if isinstance(track.tags, mutagen.mp4.MP4Tags):\n return get_track_info_mp4(filepath, track.tags, track.info, cover)\n if isinstance(track, mutagen.oggopus.OggOpus):\n return get_track_info_opus(filepath, track.tags, track.info, cover)\n raise ValueError(\"No parser for file format\")\n", "import mutagen\nimport os\n\n\ndef extract(l):\n \"\"\" Extract the first element of a list, raise an error if more than 1 elem \"\"\"\n if l is None:\n return None\n if len(l) > 1:\n raise ValueError('More than 1 Value')\n try:\n return l[0]\n except IndexError:\n return None\n\n\ndef get_tag(tags, name):\n return list(tags.get(name, []))\n\n\ndef sanitize_genres(genres):\n l = list()\n for genre in genres:\n for g in genre.split(','):\n l.append(g.strip())\n return l\n\n\ndef sanitize_year(year):\n if year is None:\n return year\n if isinstance(year, mutagen.id3.ID3TimeStamp):\n return year.year\n if len(year) == 4:\n return int(year)\n return None\n\n\ndef sanitize_track(track):\n if track is None:\n return track\n if isinstance(track, tuple):\n return track[0]\n if '/' in track:\n return int(track.split('/')[0])\n return int(track)\n\n\ndef sanitize_disk(disk):\n if disk is None:\n return disk\n if isinstance(disk, tuple):\n return disk[0]\n if '/' in disk:\n return int(disk.split('/')[0])\n return int(disk)\n\n\ndef get_track_info_mp4(filepath, tags, stream, cover=None):\n \"\"\" Parses track information from mp4 file \"\"\"\n discogs = extract(tags.get('----:com.apple.iTunes:DISCOGS_RELEASE_ID'))\n if not cover:\n coverinfo = extract(tags.get('covr'))\n if coverinfo:\n if coverinfo.imageformat == mutagen.mp4.AtomDataType.JPEG:\n cover = os.path.dirname(filepath) + '/cover.jpg'\n elif coverinfo.imageformat == mutagen.mp4.AtomDataType.PNG:\n cover = os.path.dirname(filepath) + '/cover.png'\n if cover:\n f = open(cover, 'wb+')\n f.write(bytes(coverinfo))\n f.close()\n return {'title': extract(tags.get('©nam')), 'track': sanitize_track(\n extract(tags.get('trkn'))), 'artists': tags.get('©ART'),\n 'albumartist': extract(tags.get('aART')) or extract(tags.get('©ART'\n )), 'album': extract(tags.get('©alb')), 'discogs_id': bytes(discogs\n ).decode('utf-8') if discogs else None, 'musicbrainz_id': '',\n 'disk': sanitize_disk(extract(tags.get('disk'))), 'year':\n sanitize_year(extract(tags.get('©day'))), 'genres': sanitize_genres\n (tags.get('©gen')), 'length': stream.length, 'bitrate': stream.\n bitrate, 'size': os.path.getsize(filepath), 'cover': cover,\n 'filepath': filepath}\n\n\ndef get_track_info_mp3(filepath, tags, stream, cover):\n \"\"\" Parses track information from mp3 file \"\"\"\n tag = lambda t: get_tag(tags, t)\n discogs = extract(list(filter(lambda x: x.desc == 'DISCOGS_RELEASE_ID',\n tags.getall('TXXX'))))\n musicbrainz = extract(list(filter(lambda x: x.desc ==\n 'MusicBrainz Album Id', tags.getall('TXXX'))))\n if musicbrainz:\n musicbrainz = extract(musicbrainz.text)\n if not cover:\n coverinfo = tags.get('APIC:')\n if coverinfo:\n if coverinfo.mime == 'image/jpeg':\n cover = os.path.dirname(filepath) + '/cover.jpg'\n else:\n raise ValueError('Not supporting %s' % coverinfo.mime)\n if cover:\n f = open(cover, 'wb+')\n f.write(coverinfo.data)\n f.close()\n track = sanitize_track(extract(tag('TRCK')))\n date = tag('TDRC') or tag('TDAT') or tag('TYER')\n return {'title': extract(tag('TIT2')), 'track': track, 'artists': tag(\n 'TPE1'), 'albumartist': extract(tag('TPE2')) or extract(tags.get(\n 'TPE1')), 'album': extract(tag('TALB')), 'discogs_id': bytes(\n discogs).decode('utf-8') if discogs else None, 'musicbrainz_id':\n musicbrainz, 'disk': sanitize_disk(extract(tag('TPOS'))), 'year':\n sanitize_year(extract(date)), 'genres': sanitize_genres(tag('TCON')\n ), 'length': stream.length, 'bitrate': stream.bitrate, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\ndef get_track_info_opus(filepath, tags, stream, cover):\n return {'title': extract(tags.get('TITLE')), 'track': extract(tags.get(\n 'TRACK')), 'artists': tags.get('ARTIST'), 'albumartist': extract(\n tags.get('ALBUMARTIST')), 'album': extract(tags.get('ALBUM')),\n 'musicbrainz_song_id': extract(tags.get('MUSICBRAINZ_TRACKID')),\n 'musicbrainz_album_id': extract(tags.get('MUSICBRAINZ_ALBUMID')),\n 'musicbrainz_albumartist_id': extract(tags.get(\n 'MUSICBRAINZ_ALBUMARTISTID')), 'year': extract(tags.get('YEAR')),\n 'genres': tags.get('GENRE'), 'length': stream.length, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\nCOVERS = {}\n\n\ndef find_cover(folder):\n \"\"\" Find the cover file base on a folder \"\"\"\n if COVERS.get(folder) is None:\n for prefix in ['cover', 'Cover', 'Folder', 'folder']:\n for suffix in ['.png', '.jpg', '.jpeg']:\n f = os.path.join(folder, prefix + suffix)\n if os.path.isfile(f):\n COVERS[folder] = f\n return f\n return COVERS.get(folder)\n\n\ndef get_track_info(dirpath, f):\n \"\"\" Parses track information from mutagen \"\"\"\n filepath = os.path.join(dirpath, f)\n track = mutagen.File(filepath)\n if not track:\n if filepath.endswith('.mp3') or filepath.endswith('.m4a'):\n raise ValueError('Skipped an mp3 or an m4a')\n return None\n cover = find_cover(dirpath)\n if isinstance(track.tags, mutagen.id3.ID3):\n return get_track_info_mp3(filepath, track.tags, track.info, cover)\n if isinstance(track.tags, mutagen.mp4.MP4Tags):\n return get_track_info_mp4(filepath, track.tags, track.info, cover)\n if isinstance(track, mutagen.oggopus.OggOpus):\n return get_track_info_opus(filepath, track.tags, track.info, cover)\n raise ValueError('No parser for file format')\n", "<import token>\n\n\ndef extract(l):\n \"\"\" Extract the first element of a list, raise an error if more than 1 elem \"\"\"\n if l is None:\n return None\n if len(l) > 1:\n raise ValueError('More than 1 Value')\n try:\n return l[0]\n except IndexError:\n return None\n\n\ndef get_tag(tags, name):\n return list(tags.get(name, []))\n\n\ndef sanitize_genres(genres):\n l = list()\n for genre in genres:\n for g in genre.split(','):\n l.append(g.strip())\n return l\n\n\ndef sanitize_year(year):\n if year is None:\n return year\n if isinstance(year, mutagen.id3.ID3TimeStamp):\n return year.year\n if len(year) == 4:\n return int(year)\n return None\n\n\ndef sanitize_track(track):\n if track is None:\n return track\n if isinstance(track, tuple):\n return track[0]\n if '/' in track:\n return int(track.split('/')[0])\n return int(track)\n\n\ndef sanitize_disk(disk):\n if disk is None:\n return disk\n if isinstance(disk, tuple):\n return disk[0]\n if '/' in disk:\n return int(disk.split('/')[0])\n return int(disk)\n\n\ndef get_track_info_mp4(filepath, tags, stream, cover=None):\n \"\"\" Parses track information from mp4 file \"\"\"\n discogs = extract(tags.get('----:com.apple.iTunes:DISCOGS_RELEASE_ID'))\n if not cover:\n coverinfo = extract(tags.get('covr'))\n if coverinfo:\n if coverinfo.imageformat == mutagen.mp4.AtomDataType.JPEG:\n cover = os.path.dirname(filepath) + '/cover.jpg'\n elif coverinfo.imageformat == mutagen.mp4.AtomDataType.PNG:\n cover = os.path.dirname(filepath) + '/cover.png'\n if cover:\n f = open(cover, 'wb+')\n f.write(bytes(coverinfo))\n f.close()\n return {'title': extract(tags.get('©nam')), 'track': sanitize_track(\n extract(tags.get('trkn'))), 'artists': tags.get('©ART'),\n 'albumartist': extract(tags.get('aART')) or extract(tags.get('©ART'\n )), 'album': extract(tags.get('©alb')), 'discogs_id': bytes(discogs\n ).decode('utf-8') if discogs else None, 'musicbrainz_id': '',\n 'disk': sanitize_disk(extract(tags.get('disk'))), 'year':\n sanitize_year(extract(tags.get('©day'))), 'genres': sanitize_genres\n (tags.get('©gen')), 'length': stream.length, 'bitrate': stream.\n bitrate, 'size': os.path.getsize(filepath), 'cover': cover,\n 'filepath': filepath}\n\n\ndef get_track_info_mp3(filepath, tags, stream, cover):\n \"\"\" Parses track information from mp3 file \"\"\"\n tag = lambda t: get_tag(tags, t)\n discogs = extract(list(filter(lambda x: x.desc == 'DISCOGS_RELEASE_ID',\n tags.getall('TXXX'))))\n musicbrainz = extract(list(filter(lambda x: x.desc ==\n 'MusicBrainz Album Id', tags.getall('TXXX'))))\n if musicbrainz:\n musicbrainz = extract(musicbrainz.text)\n if not cover:\n coverinfo = tags.get('APIC:')\n if coverinfo:\n if coverinfo.mime == 'image/jpeg':\n cover = os.path.dirname(filepath) + '/cover.jpg'\n else:\n raise ValueError('Not supporting %s' % coverinfo.mime)\n if cover:\n f = open(cover, 'wb+')\n f.write(coverinfo.data)\n f.close()\n track = sanitize_track(extract(tag('TRCK')))\n date = tag('TDRC') or tag('TDAT') or tag('TYER')\n return {'title': extract(tag('TIT2')), 'track': track, 'artists': tag(\n 'TPE1'), 'albumartist': extract(tag('TPE2')) or extract(tags.get(\n 'TPE1')), 'album': extract(tag('TALB')), 'discogs_id': bytes(\n discogs).decode('utf-8') if discogs else None, 'musicbrainz_id':\n musicbrainz, 'disk': sanitize_disk(extract(tag('TPOS'))), 'year':\n sanitize_year(extract(date)), 'genres': sanitize_genres(tag('TCON')\n ), 'length': stream.length, 'bitrate': stream.bitrate, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\ndef get_track_info_opus(filepath, tags, stream, cover):\n return {'title': extract(tags.get('TITLE')), 'track': extract(tags.get(\n 'TRACK')), 'artists': tags.get('ARTIST'), 'albumartist': extract(\n tags.get('ALBUMARTIST')), 'album': extract(tags.get('ALBUM')),\n 'musicbrainz_song_id': extract(tags.get('MUSICBRAINZ_TRACKID')),\n 'musicbrainz_album_id': extract(tags.get('MUSICBRAINZ_ALBUMID')),\n 'musicbrainz_albumartist_id': extract(tags.get(\n 'MUSICBRAINZ_ALBUMARTISTID')), 'year': extract(tags.get('YEAR')),\n 'genres': tags.get('GENRE'), 'length': stream.length, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\nCOVERS = {}\n\n\ndef find_cover(folder):\n \"\"\" Find the cover file base on a folder \"\"\"\n if COVERS.get(folder) is None:\n for prefix in ['cover', 'Cover', 'Folder', 'folder']:\n for suffix in ['.png', '.jpg', '.jpeg']:\n f = os.path.join(folder, prefix + suffix)\n if os.path.isfile(f):\n COVERS[folder] = f\n return f\n return COVERS.get(folder)\n\n\ndef get_track_info(dirpath, f):\n \"\"\" Parses track information from mutagen \"\"\"\n filepath = os.path.join(dirpath, f)\n track = mutagen.File(filepath)\n if not track:\n if filepath.endswith('.mp3') or filepath.endswith('.m4a'):\n raise ValueError('Skipped an mp3 or an m4a')\n return None\n cover = find_cover(dirpath)\n if isinstance(track.tags, mutagen.id3.ID3):\n return get_track_info_mp3(filepath, track.tags, track.info, cover)\n if isinstance(track.tags, mutagen.mp4.MP4Tags):\n return get_track_info_mp4(filepath, track.tags, track.info, cover)\n if isinstance(track, mutagen.oggopus.OggOpus):\n return get_track_info_opus(filepath, track.tags, track.info, cover)\n raise ValueError('No parser for file format')\n", "<import token>\n\n\ndef extract(l):\n \"\"\" Extract the first element of a list, raise an error if more than 1 elem \"\"\"\n if l is None:\n return None\n if len(l) > 1:\n raise ValueError('More than 1 Value')\n try:\n return l[0]\n except IndexError:\n return None\n\n\ndef get_tag(tags, name):\n return list(tags.get(name, []))\n\n\ndef sanitize_genres(genres):\n l = list()\n for genre in genres:\n for g in genre.split(','):\n l.append(g.strip())\n return l\n\n\ndef sanitize_year(year):\n if year is None:\n return year\n if isinstance(year, mutagen.id3.ID3TimeStamp):\n return year.year\n if len(year) == 4:\n return int(year)\n return None\n\n\ndef sanitize_track(track):\n if track is None:\n return track\n if isinstance(track, tuple):\n return track[0]\n if '/' in track:\n return int(track.split('/')[0])\n return int(track)\n\n\ndef sanitize_disk(disk):\n if disk is None:\n return disk\n if isinstance(disk, tuple):\n return disk[0]\n if '/' in disk:\n return int(disk.split('/')[0])\n return int(disk)\n\n\ndef get_track_info_mp4(filepath, tags, stream, cover=None):\n \"\"\" Parses track information from mp4 file \"\"\"\n discogs = extract(tags.get('----:com.apple.iTunes:DISCOGS_RELEASE_ID'))\n if not cover:\n coverinfo = extract(tags.get('covr'))\n if coverinfo:\n if coverinfo.imageformat == mutagen.mp4.AtomDataType.JPEG:\n cover = os.path.dirname(filepath) + '/cover.jpg'\n elif coverinfo.imageformat == mutagen.mp4.AtomDataType.PNG:\n cover = os.path.dirname(filepath) + '/cover.png'\n if cover:\n f = open(cover, 'wb+')\n f.write(bytes(coverinfo))\n f.close()\n return {'title': extract(tags.get('©nam')), 'track': sanitize_track(\n extract(tags.get('trkn'))), 'artists': tags.get('©ART'),\n 'albumartist': extract(tags.get('aART')) or extract(tags.get('©ART'\n )), 'album': extract(tags.get('©alb')), 'discogs_id': bytes(discogs\n ).decode('utf-8') if discogs else None, 'musicbrainz_id': '',\n 'disk': sanitize_disk(extract(tags.get('disk'))), 'year':\n sanitize_year(extract(tags.get('©day'))), 'genres': sanitize_genres\n (tags.get('©gen')), 'length': stream.length, 'bitrate': stream.\n bitrate, 'size': os.path.getsize(filepath), 'cover': cover,\n 'filepath': filepath}\n\n\ndef get_track_info_mp3(filepath, tags, stream, cover):\n \"\"\" Parses track information from mp3 file \"\"\"\n tag = lambda t: get_tag(tags, t)\n discogs = extract(list(filter(lambda x: x.desc == 'DISCOGS_RELEASE_ID',\n tags.getall('TXXX'))))\n musicbrainz = extract(list(filter(lambda x: x.desc ==\n 'MusicBrainz Album Id', tags.getall('TXXX'))))\n if musicbrainz:\n musicbrainz = extract(musicbrainz.text)\n if not cover:\n coverinfo = tags.get('APIC:')\n if coverinfo:\n if coverinfo.mime == 'image/jpeg':\n cover = os.path.dirname(filepath) + '/cover.jpg'\n else:\n raise ValueError('Not supporting %s' % coverinfo.mime)\n if cover:\n f = open(cover, 'wb+')\n f.write(coverinfo.data)\n f.close()\n track = sanitize_track(extract(tag('TRCK')))\n date = tag('TDRC') or tag('TDAT') or tag('TYER')\n return {'title': extract(tag('TIT2')), 'track': track, 'artists': tag(\n 'TPE1'), 'albumartist': extract(tag('TPE2')) or extract(tags.get(\n 'TPE1')), 'album': extract(tag('TALB')), 'discogs_id': bytes(\n discogs).decode('utf-8') if discogs else None, 'musicbrainz_id':\n musicbrainz, 'disk': sanitize_disk(extract(tag('TPOS'))), 'year':\n sanitize_year(extract(date)), 'genres': sanitize_genres(tag('TCON')\n ), 'length': stream.length, 'bitrate': stream.bitrate, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\ndef get_track_info_opus(filepath, tags, stream, cover):\n return {'title': extract(tags.get('TITLE')), 'track': extract(tags.get(\n 'TRACK')), 'artists': tags.get('ARTIST'), 'albumartist': extract(\n tags.get('ALBUMARTIST')), 'album': extract(tags.get('ALBUM')),\n 'musicbrainz_song_id': extract(tags.get('MUSICBRAINZ_TRACKID')),\n 'musicbrainz_album_id': extract(tags.get('MUSICBRAINZ_ALBUMID')),\n 'musicbrainz_albumartist_id': extract(tags.get(\n 'MUSICBRAINZ_ALBUMARTISTID')), 'year': extract(tags.get('YEAR')),\n 'genres': tags.get('GENRE'), 'length': stream.length, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\n<assignment token>\n\n\ndef find_cover(folder):\n \"\"\" Find the cover file base on a folder \"\"\"\n if COVERS.get(folder) is None:\n for prefix in ['cover', 'Cover', 'Folder', 'folder']:\n for suffix in ['.png', '.jpg', '.jpeg']:\n f = os.path.join(folder, prefix + suffix)\n if os.path.isfile(f):\n COVERS[folder] = f\n return f\n return COVERS.get(folder)\n\n\ndef get_track_info(dirpath, f):\n \"\"\" Parses track information from mutagen \"\"\"\n filepath = os.path.join(dirpath, f)\n track = mutagen.File(filepath)\n if not track:\n if filepath.endswith('.mp3') or filepath.endswith('.m4a'):\n raise ValueError('Skipped an mp3 or an m4a')\n return None\n cover = find_cover(dirpath)\n if isinstance(track.tags, mutagen.id3.ID3):\n return get_track_info_mp3(filepath, track.tags, track.info, cover)\n if isinstance(track.tags, mutagen.mp4.MP4Tags):\n return get_track_info_mp4(filepath, track.tags, track.info, cover)\n if isinstance(track, mutagen.oggopus.OggOpus):\n return get_track_info_opus(filepath, track.tags, track.info, cover)\n raise ValueError('No parser for file format')\n", "<import token>\n\n\ndef extract(l):\n \"\"\" Extract the first element of a list, raise an error if more than 1 elem \"\"\"\n if l is None:\n return None\n if len(l) > 1:\n raise ValueError('More than 1 Value')\n try:\n return l[0]\n except IndexError:\n return None\n\n\ndef get_tag(tags, name):\n return list(tags.get(name, []))\n\n\ndef sanitize_genres(genres):\n l = list()\n for genre in genres:\n for g in genre.split(','):\n l.append(g.strip())\n return l\n\n\ndef sanitize_year(year):\n if year is None:\n return year\n if isinstance(year, mutagen.id3.ID3TimeStamp):\n return year.year\n if len(year) == 4:\n return int(year)\n return None\n\n\ndef sanitize_track(track):\n if track is None:\n return track\n if isinstance(track, tuple):\n return track[0]\n if '/' in track:\n return int(track.split('/')[0])\n return int(track)\n\n\ndef sanitize_disk(disk):\n if disk is None:\n return disk\n if isinstance(disk, tuple):\n return disk[0]\n if '/' in disk:\n return int(disk.split('/')[0])\n return int(disk)\n\n\ndef get_track_info_mp4(filepath, tags, stream, cover=None):\n \"\"\" Parses track information from mp4 file \"\"\"\n discogs = extract(tags.get('----:com.apple.iTunes:DISCOGS_RELEASE_ID'))\n if not cover:\n coverinfo = extract(tags.get('covr'))\n if coverinfo:\n if coverinfo.imageformat == mutagen.mp4.AtomDataType.JPEG:\n cover = os.path.dirname(filepath) + '/cover.jpg'\n elif coverinfo.imageformat == mutagen.mp4.AtomDataType.PNG:\n cover = os.path.dirname(filepath) + '/cover.png'\n if cover:\n f = open(cover, 'wb+')\n f.write(bytes(coverinfo))\n f.close()\n return {'title': extract(tags.get('©nam')), 'track': sanitize_track(\n extract(tags.get('trkn'))), 'artists': tags.get('©ART'),\n 'albumartist': extract(tags.get('aART')) or extract(tags.get('©ART'\n )), 'album': extract(tags.get('©alb')), 'discogs_id': bytes(discogs\n ).decode('utf-8') if discogs else None, 'musicbrainz_id': '',\n 'disk': sanitize_disk(extract(tags.get('disk'))), 'year':\n sanitize_year(extract(tags.get('©day'))), 'genres': sanitize_genres\n (tags.get('©gen')), 'length': stream.length, 'bitrate': stream.\n bitrate, 'size': os.path.getsize(filepath), 'cover': cover,\n 'filepath': filepath}\n\n\ndef get_track_info_mp3(filepath, tags, stream, cover):\n \"\"\" Parses track information from mp3 file \"\"\"\n tag = lambda t: get_tag(tags, t)\n discogs = extract(list(filter(lambda x: x.desc == 'DISCOGS_RELEASE_ID',\n tags.getall('TXXX'))))\n musicbrainz = extract(list(filter(lambda x: x.desc ==\n 'MusicBrainz Album Id', tags.getall('TXXX'))))\n if musicbrainz:\n musicbrainz = extract(musicbrainz.text)\n if not cover:\n coverinfo = tags.get('APIC:')\n if coverinfo:\n if coverinfo.mime == 'image/jpeg':\n cover = os.path.dirname(filepath) + '/cover.jpg'\n else:\n raise ValueError('Not supporting %s' % coverinfo.mime)\n if cover:\n f = open(cover, 'wb+')\n f.write(coverinfo.data)\n f.close()\n track = sanitize_track(extract(tag('TRCK')))\n date = tag('TDRC') or tag('TDAT') or tag('TYER')\n return {'title': extract(tag('TIT2')), 'track': track, 'artists': tag(\n 'TPE1'), 'albumartist': extract(tag('TPE2')) or extract(tags.get(\n 'TPE1')), 'album': extract(tag('TALB')), 'discogs_id': bytes(\n discogs).decode('utf-8') if discogs else None, 'musicbrainz_id':\n musicbrainz, 'disk': sanitize_disk(extract(tag('TPOS'))), 'year':\n sanitize_year(extract(date)), 'genres': sanitize_genres(tag('TCON')\n ), 'length': stream.length, 'bitrate': stream.bitrate, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\ndef get_track_info_opus(filepath, tags, stream, cover):\n return {'title': extract(tags.get('TITLE')), 'track': extract(tags.get(\n 'TRACK')), 'artists': tags.get('ARTIST'), 'albumartist': extract(\n tags.get('ALBUMARTIST')), 'album': extract(tags.get('ALBUM')),\n 'musicbrainz_song_id': extract(tags.get('MUSICBRAINZ_TRACKID')),\n 'musicbrainz_album_id': extract(tags.get('MUSICBRAINZ_ALBUMID')),\n 'musicbrainz_albumartist_id': extract(tags.get(\n 'MUSICBRAINZ_ALBUMARTISTID')), 'year': extract(tags.get('YEAR')),\n 'genres': tags.get('GENRE'), 'length': stream.length, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\n<assignment token>\n\n\ndef find_cover(folder):\n \"\"\" Find the cover file base on a folder \"\"\"\n if COVERS.get(folder) is None:\n for prefix in ['cover', 'Cover', 'Folder', 'folder']:\n for suffix in ['.png', '.jpg', '.jpeg']:\n f = os.path.join(folder, prefix + suffix)\n if os.path.isfile(f):\n COVERS[folder] = f\n return f\n return COVERS.get(folder)\n\n\n<function token>\n", "<import token>\n\n\ndef extract(l):\n \"\"\" Extract the first element of a list, raise an error if more than 1 elem \"\"\"\n if l is None:\n return None\n if len(l) > 1:\n raise ValueError('More than 1 Value')\n try:\n return l[0]\n except IndexError:\n return None\n\n\ndef get_tag(tags, name):\n return list(tags.get(name, []))\n\n\ndef sanitize_genres(genres):\n l = list()\n for genre in genres:\n for g in genre.split(','):\n l.append(g.strip())\n return l\n\n\ndef sanitize_year(year):\n if year is None:\n return year\n if isinstance(year, mutagen.id3.ID3TimeStamp):\n return year.year\n if len(year) == 4:\n return int(year)\n return None\n\n\ndef sanitize_track(track):\n if track is None:\n return track\n if isinstance(track, tuple):\n return track[0]\n if '/' in track:\n return int(track.split('/')[0])\n return int(track)\n\n\ndef sanitize_disk(disk):\n if disk is None:\n return disk\n if isinstance(disk, tuple):\n return disk[0]\n if '/' in disk:\n return int(disk.split('/')[0])\n return int(disk)\n\n\n<function token>\n\n\ndef get_track_info_mp3(filepath, tags, stream, cover):\n \"\"\" Parses track information from mp3 file \"\"\"\n tag = lambda t: get_tag(tags, t)\n discogs = extract(list(filter(lambda x: x.desc == 'DISCOGS_RELEASE_ID',\n tags.getall('TXXX'))))\n musicbrainz = extract(list(filter(lambda x: x.desc ==\n 'MusicBrainz Album Id', tags.getall('TXXX'))))\n if musicbrainz:\n musicbrainz = extract(musicbrainz.text)\n if not cover:\n coverinfo = tags.get('APIC:')\n if coverinfo:\n if coverinfo.mime == 'image/jpeg':\n cover = os.path.dirname(filepath) + '/cover.jpg'\n else:\n raise ValueError('Not supporting %s' % coverinfo.mime)\n if cover:\n f = open(cover, 'wb+')\n f.write(coverinfo.data)\n f.close()\n track = sanitize_track(extract(tag('TRCK')))\n date = tag('TDRC') or tag('TDAT') or tag('TYER')\n return {'title': extract(tag('TIT2')), 'track': track, 'artists': tag(\n 'TPE1'), 'albumartist': extract(tag('TPE2')) or extract(tags.get(\n 'TPE1')), 'album': extract(tag('TALB')), 'discogs_id': bytes(\n discogs).decode('utf-8') if discogs else None, 'musicbrainz_id':\n musicbrainz, 'disk': sanitize_disk(extract(tag('TPOS'))), 'year':\n sanitize_year(extract(date)), 'genres': sanitize_genres(tag('TCON')\n ), 'length': stream.length, 'bitrate': stream.bitrate, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\ndef get_track_info_opus(filepath, tags, stream, cover):\n return {'title': extract(tags.get('TITLE')), 'track': extract(tags.get(\n 'TRACK')), 'artists': tags.get('ARTIST'), 'albumartist': extract(\n tags.get('ALBUMARTIST')), 'album': extract(tags.get('ALBUM')),\n 'musicbrainz_song_id': extract(tags.get('MUSICBRAINZ_TRACKID')),\n 'musicbrainz_album_id': extract(tags.get('MUSICBRAINZ_ALBUMID')),\n 'musicbrainz_albumartist_id': extract(tags.get(\n 'MUSICBRAINZ_ALBUMARTISTID')), 'year': extract(tags.get('YEAR')),\n 'genres': tags.get('GENRE'), 'length': stream.length, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\n<assignment token>\n\n\ndef find_cover(folder):\n \"\"\" Find the cover file base on a folder \"\"\"\n if COVERS.get(folder) is None:\n for prefix in ['cover', 'Cover', 'Folder', 'folder']:\n for suffix in ['.png', '.jpg', '.jpeg']:\n f = os.path.join(folder, prefix + suffix)\n if os.path.isfile(f):\n COVERS[folder] = f\n return f\n return COVERS.get(folder)\n\n\n<function token>\n", "<import token>\n\n\ndef extract(l):\n \"\"\" Extract the first element of a list, raise an error if more than 1 elem \"\"\"\n if l is None:\n return None\n if len(l) > 1:\n raise ValueError('More than 1 Value')\n try:\n return l[0]\n except IndexError:\n return None\n\n\ndef get_tag(tags, name):\n return list(tags.get(name, []))\n\n\ndef sanitize_genres(genres):\n l = list()\n for genre in genres:\n for g in genre.split(','):\n l.append(g.strip())\n return l\n\n\ndef sanitize_year(year):\n if year is None:\n return year\n if isinstance(year, mutagen.id3.ID3TimeStamp):\n return year.year\n if len(year) == 4:\n return int(year)\n return None\n\n\ndef sanitize_track(track):\n if track is None:\n return track\n if isinstance(track, tuple):\n return track[0]\n if '/' in track:\n return int(track.split('/')[0])\n return int(track)\n\n\n<function token>\n<function token>\n\n\ndef get_track_info_mp3(filepath, tags, stream, cover):\n \"\"\" Parses track information from mp3 file \"\"\"\n tag = lambda t: get_tag(tags, t)\n discogs = extract(list(filter(lambda x: x.desc == 'DISCOGS_RELEASE_ID',\n tags.getall('TXXX'))))\n musicbrainz = extract(list(filter(lambda x: x.desc ==\n 'MusicBrainz Album Id', tags.getall('TXXX'))))\n if musicbrainz:\n musicbrainz = extract(musicbrainz.text)\n if not cover:\n coverinfo = tags.get('APIC:')\n if coverinfo:\n if coverinfo.mime == 'image/jpeg':\n cover = os.path.dirname(filepath) + '/cover.jpg'\n else:\n raise ValueError('Not supporting %s' % coverinfo.mime)\n if cover:\n f = open(cover, 'wb+')\n f.write(coverinfo.data)\n f.close()\n track = sanitize_track(extract(tag('TRCK')))\n date = tag('TDRC') or tag('TDAT') or tag('TYER')\n return {'title': extract(tag('TIT2')), 'track': track, 'artists': tag(\n 'TPE1'), 'albumartist': extract(tag('TPE2')) or extract(tags.get(\n 'TPE1')), 'album': extract(tag('TALB')), 'discogs_id': bytes(\n discogs).decode('utf-8') if discogs else None, 'musicbrainz_id':\n musicbrainz, 'disk': sanitize_disk(extract(tag('TPOS'))), 'year':\n sanitize_year(extract(date)), 'genres': sanitize_genres(tag('TCON')\n ), 'length': stream.length, 'bitrate': stream.bitrate, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\ndef get_track_info_opus(filepath, tags, stream, cover):\n return {'title': extract(tags.get('TITLE')), 'track': extract(tags.get(\n 'TRACK')), 'artists': tags.get('ARTIST'), 'albumartist': extract(\n tags.get('ALBUMARTIST')), 'album': extract(tags.get('ALBUM')),\n 'musicbrainz_song_id': extract(tags.get('MUSICBRAINZ_TRACKID')),\n 'musicbrainz_album_id': extract(tags.get('MUSICBRAINZ_ALBUMID')),\n 'musicbrainz_albumartist_id': extract(tags.get(\n 'MUSICBRAINZ_ALBUMARTISTID')), 'year': extract(tags.get('YEAR')),\n 'genres': tags.get('GENRE'), 'length': stream.length, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\n<assignment token>\n\n\ndef find_cover(folder):\n \"\"\" Find the cover file base on a folder \"\"\"\n if COVERS.get(folder) is None:\n for prefix in ['cover', 'Cover', 'Folder', 'folder']:\n for suffix in ['.png', '.jpg', '.jpeg']:\n f = os.path.join(folder, prefix + suffix)\n if os.path.isfile(f):\n COVERS[folder] = f\n return f\n return COVERS.get(folder)\n\n\n<function token>\n", "<import token>\n\n\ndef extract(l):\n \"\"\" Extract the first element of a list, raise an error if more than 1 elem \"\"\"\n if l is None:\n return None\n if len(l) > 1:\n raise ValueError('More than 1 Value')\n try:\n return l[0]\n except IndexError:\n return None\n\n\ndef get_tag(tags, name):\n return list(tags.get(name, []))\n\n\ndef sanitize_genres(genres):\n l = list()\n for genre in genres:\n for g in genre.split(','):\n l.append(g.strip())\n return l\n\n\ndef sanitize_year(year):\n if year is None:\n return year\n if isinstance(year, mutagen.id3.ID3TimeStamp):\n return year.year\n if len(year) == 4:\n return int(year)\n return None\n\n\ndef sanitize_track(track):\n if track is None:\n return track\n if isinstance(track, tuple):\n return track[0]\n if '/' in track:\n return int(track.split('/')[0])\n return int(track)\n\n\n<function token>\n<function token>\n\n\ndef get_track_info_mp3(filepath, tags, stream, cover):\n \"\"\" Parses track information from mp3 file \"\"\"\n tag = lambda t: get_tag(tags, t)\n discogs = extract(list(filter(lambda x: x.desc == 'DISCOGS_RELEASE_ID',\n tags.getall('TXXX'))))\n musicbrainz = extract(list(filter(lambda x: x.desc ==\n 'MusicBrainz Album Id', tags.getall('TXXX'))))\n if musicbrainz:\n musicbrainz = extract(musicbrainz.text)\n if not cover:\n coverinfo = tags.get('APIC:')\n if coverinfo:\n if coverinfo.mime == 'image/jpeg':\n cover = os.path.dirname(filepath) + '/cover.jpg'\n else:\n raise ValueError('Not supporting %s' % coverinfo.mime)\n if cover:\n f = open(cover, 'wb+')\n f.write(coverinfo.data)\n f.close()\n track = sanitize_track(extract(tag('TRCK')))\n date = tag('TDRC') or tag('TDAT') or tag('TYER')\n return {'title': extract(tag('TIT2')), 'track': track, 'artists': tag(\n 'TPE1'), 'albumartist': extract(tag('TPE2')) or extract(tags.get(\n 'TPE1')), 'album': extract(tag('TALB')), 'discogs_id': bytes(\n discogs).decode('utf-8') if discogs else None, 'musicbrainz_id':\n musicbrainz, 'disk': sanitize_disk(extract(tag('TPOS'))), 'year':\n sanitize_year(extract(date)), 'genres': sanitize_genres(tag('TCON')\n ), 'length': stream.length, 'bitrate': stream.bitrate, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\n<function token>\n<assignment token>\n\n\ndef find_cover(folder):\n \"\"\" Find the cover file base on a folder \"\"\"\n if COVERS.get(folder) is None:\n for prefix in ['cover', 'Cover', 'Folder', 'folder']:\n for suffix in ['.png', '.jpg', '.jpeg']:\n f = os.path.join(folder, prefix + suffix)\n if os.path.isfile(f):\n COVERS[folder] = f\n return f\n return COVERS.get(folder)\n\n\n<function token>\n", "<import token>\n\n\ndef extract(l):\n \"\"\" Extract the first element of a list, raise an error if more than 1 elem \"\"\"\n if l is None:\n return None\n if len(l) > 1:\n raise ValueError('More than 1 Value')\n try:\n return l[0]\n except IndexError:\n return None\n\n\n<function token>\n\n\ndef sanitize_genres(genres):\n l = list()\n for genre in genres:\n for g in genre.split(','):\n l.append(g.strip())\n return l\n\n\ndef sanitize_year(year):\n if year is None:\n return year\n if isinstance(year, mutagen.id3.ID3TimeStamp):\n return year.year\n if len(year) == 4:\n return int(year)\n return None\n\n\ndef sanitize_track(track):\n if track is None:\n return track\n if isinstance(track, tuple):\n return track[0]\n if '/' in track:\n return int(track.split('/')[0])\n return int(track)\n\n\n<function token>\n<function token>\n\n\ndef get_track_info_mp3(filepath, tags, stream, cover):\n \"\"\" Parses track information from mp3 file \"\"\"\n tag = lambda t: get_tag(tags, t)\n discogs = extract(list(filter(lambda x: x.desc == 'DISCOGS_RELEASE_ID',\n tags.getall('TXXX'))))\n musicbrainz = extract(list(filter(lambda x: x.desc ==\n 'MusicBrainz Album Id', tags.getall('TXXX'))))\n if musicbrainz:\n musicbrainz = extract(musicbrainz.text)\n if not cover:\n coverinfo = tags.get('APIC:')\n if coverinfo:\n if coverinfo.mime == 'image/jpeg':\n cover = os.path.dirname(filepath) + '/cover.jpg'\n else:\n raise ValueError('Not supporting %s' % coverinfo.mime)\n if cover:\n f = open(cover, 'wb+')\n f.write(coverinfo.data)\n f.close()\n track = sanitize_track(extract(tag('TRCK')))\n date = tag('TDRC') or tag('TDAT') or tag('TYER')\n return {'title': extract(tag('TIT2')), 'track': track, 'artists': tag(\n 'TPE1'), 'albumartist': extract(tag('TPE2')) or extract(tags.get(\n 'TPE1')), 'album': extract(tag('TALB')), 'discogs_id': bytes(\n discogs).decode('utf-8') if discogs else None, 'musicbrainz_id':\n musicbrainz, 'disk': sanitize_disk(extract(tag('TPOS'))), 'year':\n sanitize_year(extract(date)), 'genres': sanitize_genres(tag('TCON')\n ), 'length': stream.length, 'bitrate': stream.bitrate, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\n<function token>\n<assignment token>\n\n\ndef find_cover(folder):\n \"\"\" Find the cover file base on a folder \"\"\"\n if COVERS.get(folder) is None:\n for prefix in ['cover', 'Cover', 'Folder', 'folder']:\n for suffix in ['.png', '.jpg', '.jpeg']:\n f = os.path.join(folder, prefix + suffix)\n if os.path.isfile(f):\n COVERS[folder] = f\n return f\n return COVERS.get(folder)\n\n\n<function token>\n", "<import token>\n\n\ndef extract(l):\n \"\"\" Extract the first element of a list, raise an error if more than 1 elem \"\"\"\n if l is None:\n return None\n if len(l) > 1:\n raise ValueError('More than 1 Value')\n try:\n return l[0]\n except IndexError:\n return None\n\n\n<function token>\n\n\ndef sanitize_genres(genres):\n l = list()\n for genre in genres:\n for g in genre.split(','):\n l.append(g.strip())\n return l\n\n\ndef sanitize_year(year):\n if year is None:\n return year\n if isinstance(year, mutagen.id3.ID3TimeStamp):\n return year.year\n if len(year) == 4:\n return int(year)\n return None\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef get_track_info_mp3(filepath, tags, stream, cover):\n \"\"\" Parses track information from mp3 file \"\"\"\n tag = lambda t: get_tag(tags, t)\n discogs = extract(list(filter(lambda x: x.desc == 'DISCOGS_RELEASE_ID',\n tags.getall('TXXX'))))\n musicbrainz = extract(list(filter(lambda x: x.desc ==\n 'MusicBrainz Album Id', tags.getall('TXXX'))))\n if musicbrainz:\n musicbrainz = extract(musicbrainz.text)\n if not cover:\n coverinfo = tags.get('APIC:')\n if coverinfo:\n if coverinfo.mime == 'image/jpeg':\n cover = os.path.dirname(filepath) + '/cover.jpg'\n else:\n raise ValueError('Not supporting %s' % coverinfo.mime)\n if cover:\n f = open(cover, 'wb+')\n f.write(coverinfo.data)\n f.close()\n track = sanitize_track(extract(tag('TRCK')))\n date = tag('TDRC') or tag('TDAT') or tag('TYER')\n return {'title': extract(tag('TIT2')), 'track': track, 'artists': tag(\n 'TPE1'), 'albumartist': extract(tag('TPE2')) or extract(tags.get(\n 'TPE1')), 'album': extract(tag('TALB')), 'discogs_id': bytes(\n discogs).decode('utf-8') if discogs else None, 'musicbrainz_id':\n musicbrainz, 'disk': sanitize_disk(extract(tag('TPOS'))), 'year':\n sanitize_year(extract(date)), 'genres': sanitize_genres(tag('TCON')\n ), 'length': stream.length, 'bitrate': stream.bitrate, 'size': os.\n path.getsize(filepath), 'cover': cover, 'filepath': filepath}\n\n\n<function token>\n<assignment token>\n\n\ndef find_cover(folder):\n \"\"\" Find the cover file base on a folder \"\"\"\n if COVERS.get(folder) is None:\n for prefix in ['cover', 'Cover', 'Folder', 'folder']:\n for suffix in ['.png', '.jpg', '.jpeg']:\n f = os.path.join(folder, prefix + suffix)\n if os.path.isfile(f):\n COVERS[folder] = f\n return f\n return COVERS.get(folder)\n\n\n<function token>\n", "<import token>\n\n\ndef extract(l):\n \"\"\" Extract the first element of a list, raise an error if more than 1 elem \"\"\"\n if l is None:\n return None\n if len(l) > 1:\n raise ValueError('More than 1 Value')\n try:\n return l[0]\n except IndexError:\n return None\n\n\n<function token>\n\n\ndef sanitize_genres(genres):\n l = list()\n for genre in genres:\n for g in genre.split(','):\n l.append(g.strip())\n return l\n\n\ndef sanitize_year(year):\n if year is None:\n return year\n if isinstance(year, mutagen.id3.ID3TimeStamp):\n return year.year\n if len(year) == 4:\n return int(year)\n return None\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n\n\ndef find_cover(folder):\n \"\"\" Find the cover file base on a folder \"\"\"\n if COVERS.get(folder) is None:\n for prefix in ['cover', 'Cover', 'Folder', 'folder']:\n for suffix in ['.png', '.jpg', '.jpeg']:\n f = os.path.join(folder, prefix + suffix)\n if os.path.isfile(f):\n COVERS[folder] = f\n return f\n return COVERS.get(folder)\n\n\n<function token>\n", "<import token>\n\n\ndef extract(l):\n \"\"\" Extract the first element of a list, raise an error if more than 1 elem \"\"\"\n if l is None:\n return None\n if len(l) > 1:\n raise ValueError('More than 1 Value')\n try:\n return l[0]\n except IndexError:\n return None\n\n\n<function token>\n<function token>\n\n\ndef sanitize_year(year):\n if year is None:\n return year\n if isinstance(year, mutagen.id3.ID3TimeStamp):\n return year.year\n if len(year) == 4:\n return int(year)\n return None\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n\n\ndef find_cover(folder):\n \"\"\" Find the cover file base on a folder \"\"\"\n if COVERS.get(folder) is None:\n for prefix in ['cover', 'Cover', 'Folder', 'folder']:\n for suffix in ['.png', '.jpg', '.jpeg']:\n f = os.path.join(folder, prefix + suffix)\n if os.path.isfile(f):\n COVERS[folder] = f\n return f\n return COVERS.get(folder)\n\n\n<function token>\n", "<import token>\n\n\ndef extract(l):\n \"\"\" Extract the first element of a list, raise an error if more than 1 elem \"\"\"\n if l is None:\n return None\n if len(l) > 1:\n raise ValueError('More than 1 Value')\n try:\n return l[0]\n except IndexError:\n return None\n\n\n<function token>\n<function token>\n\n\ndef sanitize_year(year):\n if year is None:\n return year\n if isinstance(year, mutagen.id3.ID3TimeStamp):\n return year.year\n if len(year) == 4:\n return int(year)\n return None\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n", "<import token>\n\n\ndef extract(l):\n \"\"\" Extract the first element of a list, raise an error if more than 1 elem \"\"\"\n if l is None:\n return None\n if len(l) > 1:\n raise ValueError('More than 1 Value')\n try:\n return l[0]\n except IndexError:\n return None\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<function token>\n<function token>\n" ]
false
99,529
e9d1b152476dc413ce851133bfe628341fa5b175
from math import ceil if __name__ == "__main__": t = int(input()) for _ in range(t): a, b = map(int, input().split()) print(ceil((a - 2) / 3.0) * ceil((b - 2) / 3.0))
[ "from math import ceil\n\nif __name__ == \"__main__\":\n t = int(input())\n\n for _ in range(t):\n a, b = map(int, input().split())\n print(ceil((a - 2) / 3.0) * ceil((b - 2) / 3.0))", "from math import ceil\nif __name__ == '__main__':\n t = int(input())\n for _ in range(t):\n a, b = map(int, input().split())\n print(ceil((a - 2) / 3.0) * ceil((b - 2) / 3.0))\n", "<import token>\nif __name__ == '__main__':\n t = int(input())\n for _ in range(t):\n a, b = map(int, input().split())\n print(ceil((a - 2) / 3.0) * ceil((b - 2) / 3.0))\n", "<import token>\n<code token>\n" ]
false
99,530
22da550ef268e582ff3f2a3c45fd48bcf22b6e36
import argparse import os import glob import time import sys sys.path.insert(0,'./utils') from globalVariables import ret_dict,data,res_dict,LABELS_SWORD_COL,_2stream CHEKPOINT = "./checkpoints" WEIGHTS = "weights" LABELS = "classes" # settings for WampServer php_webservice = "http://localhost/combine/webservices.php" wamp_folder = 'C:/wamp64/www/combine/' def get_sys_info(sys_name): rgb_dir = None oflow_dir = None lstm_dir = None labels = None # find which words folder been chosen. systems = glob.glob(os.path.join(CHEKPOINT,'*')) systems = list(map(lambda s: s.rsplit(f'{os.sep}',1)[-1],systems)) if not sys_name in systems or len(systems) == 0: raise ValueError(f"ERROR : could not find {sys_name} in {CHEKPOINT} directory.") sys_path = os.path.join(CHEKPOINT,sys_name) # get weights. sys_weights = glob.glob(os.path.join(sys_path,WEIGHTS,'*.h5')) if len(sys_weights) == 0: raise ValueError(f"ERROR : no weights has been found in {WEIGHTS} folder.") # find rgb,oflow,lstm,lstm_cpu h5_files = ['rgb','oflow','lstm','cpu'] h5_dirs = {} for h5_file in h5_files: h5_dir = [weights for weights in sys_weights if h5_file in weights.lower()] if len(h5_dir) > 1: raise ValueError(f"ERROR : In {h5_dir[0].rsplit(os.sep,1)[0]} directory more than one {h5_file} file found.") h5_dirs[h5_file] = h5_dir[0] if len(h5_dir) > 0 else None # get labels file sys_labels = glob.glob(os.path.join(sys_path,LABELS,'*.csv')) if len(sys_labels) != 1: raise ValueError(f"ERROR : something wrong with {LABELS} folder.") return h5_dirs,sys_labels[0] def print_sys_info(args): print("running the system with:") for arg in vars(args): print(' '*3,f'{arg} = {getattr(args,arg)}') if __name__ == '__main__' : parser = argparse.ArgumentParser() # --run parser.add_argument( '-run', '--run', dest='run_method', type=str, default='webcam', help='choose a way to test the sign language system.') parser.add_argument( '-sys', '--system', dest='system_name', type=str, default='turkish_10_word', help='choose which sign language system to run.') parser.add_argument( '-use_lstm', '--use_lstm', dest='use_lstm', type=bool, default=False, help='add lstm on top of stream network.') parser.add_argument( '-rgb', '--rgb_only', dest='use_rgb', type=bool, default=True, help='just use rgb stream.') parser.add_argument( '-oflow', '--oflow_only', dest='use_oflow', type=bool, default=False, help='just use optical flow stream.') parser.add_argument( '-on_cpu', '--use_cpu', dest='on_cpu', type=bool, default=True, help='run the system on cpu.') parser.add_argument( '-pred_type', '--prediction_type', dest='pred_type', type=str, default='word', help='define how the system output will be, either word or sentence.') parser.add_argument( '-nTop', '--top_predictions', dest='nTop', type=int, default=3, help='how many result(output) should the system give.') parser.add_argument( '-download', '--download', dest='download', type=bool, default=False, help='download weights and classes to checkpoints directory.') parser.add_argument( '-mul_oflow', '--multiprocessing_opticalflow', dest='mul_oflow', type=bool, default=False, help="faster optical flow calculation with multiprocessing.") parser.add_argument( '-oflow_pnum', '--oflow_process_num', dest='oflow_pnum', type=int, default=4, help="number of processes to calculate optical flow.") parser.add_argument( '-mul_2stream', '--multiprocessing_two_stream', dest='mul_2stream', type=bool, default=False, help='run two stream on different processes.') # CPU OR GPU # HOW MUCH FRACTION ON GPU DO YOU WANT TO USE # WHICH GPU TO RUN ON # WORDS OR SENTENCES # SINGLE CPU OR MULTIPULE # use just rgb or just oflow # don't use lstm args = parser.parse_args() # run test script run_method = args.run_method use_lstm = args.use_lstm use_rgb = args.use_rgb use_oflow = args.use_oflow on_cpu = args.on_cpu pred_type = args.pred_type nTop = args.nTop download = args.download mul_oflow = args.mul_oflow oflow_pnum = args.oflow_pnum mul_2stream = args.mul_2stream system_name = args.system_name # download model weights and labels if download: from checkpoints.download import download_sys Dir = CHEKPOINT+os.sep+system_name print(f"downloading weights and lables for {system_name} system to {Dir}.") download_sys(system_name,Dir) #load checkpoints and labels models_dir,labels_dir = get_sys_info(system_name) # informative message print(f"In {args.system_name} folder:") for k,v in models_dir.items(): if v is not None: # informative message print(f"{' '*4}{k.upper()} WEIGHTS found : {v.rsplit(os.sep,1)[-1]}") # informative message print(f"{' '*4}labels : {labels_dir.rsplit(os.sep,1)[-1]}") # make sure that flags are set properlly if use_rgb and use_oflow: raise ValueError("""ERROR : both rgb and oflow flags are on. trying to use both? set both flag to 'False'""") if not pred_type == "word" and not pred_type == "sentence": raise ValueError("ERROR : pred_type should be 'word' or 'sentence'") con = mul_oflow and not oflow_pnum > 0 #notcon = not mul_oflow and oflow_pnum > 0 if con: raise ValueError("ERROR : check mul_oflow and oflow_pnum flags.") if not on_cpu and mul_2stream: raise ValueError("ERROR : you can't use multiprocessing on streams while the system is running on gpu.") if (use_rgb or use_oflow) and mul_2stream: raise ValueError("ERROR : you can't do multiprocessing while using just one stream!.") # print informative messages for what will be used next print_sys_info(args) # create tmp dir os.makedirs('./tmp', exist_ok=True) if on_cpu: os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = "-1" from collections import defaultdict models = defaultdict(lambda : None) from utils.util import load_models,csv_to_dict from multiprocessing import Manager from multiprocessing import Process labels = csv_to_dict(labels_dir,LABELS_SWORD_COL) if not mul_2stream: # load labels print(f"loading labels from {labels_dir}.") labels = csv_to_dict(labels_dir,LABELS_SWORD_COL) print(f"{len(labels)} word found in {labels_dir}") # load models uploading_time = time.time() print("Initializing models") models = load_models(models_dir, on_cpu, use_rgb, use_oflow, use_lstm, False) print(f"Uploading took {round(time.time()-uploading_time,2)} sec") else: models['oflow'] = 1 from utils.parallel_streams import nn_work _2stream.append(Process(target=nn_work, args=('oflow',models_dir,labels_dir,pred_type,nTop,mul_oflow,oflow_pnum))) _2stream.append(Process(target=nn_work, args=('rgb',models_dir,labels_dir,pred_type,nTop,mul_oflow,oflow_pnum))) if use_lstm: _2stream.append(Process(target=nn_work, args=('oflow',models_dir,labels_dir,pred_type,nTop,mul_oflow,oflow_pnum))) for p in _2stream: p.start() print(f"{len(_2stream)} process has been initialized.") # run some server with flags cpu gpu pred_type nTop # if wamp if run_method == "wamp": print("running wamp server.") from run.wamp import run_server if not os.path.exists(wamp_folder): raise ValueError(f"ERROR : can't find wamp service in {wamp_folder} directory") # running wamp server run_server(php_webservice, wamp_folder, models, labels, pred_type, nTop, mul_oflow, oflow_pnum, mul_2stream) elif run_method == "webcam": print("testing system on webcam, to close webcam press 'q'.") from run.webcam import test test(models, labels, pred_type, nTop, mul_oflow, oflow_pnum, mul_2stream) elif run_method == "REST_API": print("Initiate REST API server ...") from run.REST_API import server server.run(models, labels, pred_type, nTop, mul_oflow, oflow_pnum, mul_2stream, host="0.0.0.0")
[ "import argparse\nimport os \nimport glob\nimport time \nimport sys\n\n\nsys.path.insert(0,'./utils')\nfrom globalVariables import ret_dict,data,res_dict,LABELS_SWORD_COL,_2stream\n\nCHEKPOINT = \"./checkpoints\"\nWEIGHTS = \"weights\"\nLABELS = \"classes\"\n\n# settings for WampServer \nphp_webservice = \"http://localhost/combine/webservices.php\"\nwamp_folder = 'C:/wamp64/www/combine/'\n\n\ndef get_sys_info(sys_name):\n\t\n\trgb_dir = None\n\toflow_dir = None\n\tlstm_dir = None\n\tlabels = None\n\n\t# find which words folder been chosen.\n\tsystems = glob.glob(os.path.join(CHEKPOINT,'*'))\t\n\tsystems = list(map(lambda s: s.rsplit(f'{os.sep}',1)[-1],systems))\n\n\tif not sys_name in systems or len(systems) == 0:\n\t\traise ValueError(f\"ERROR : could not find {sys_name} in {CHEKPOINT} directory.\")\n\n\tsys_path = os.path.join(CHEKPOINT,sys_name)\n\n\t# get weights.\n\tsys_weights = glob.glob(os.path.join(sys_path,WEIGHTS,'*.h5'))\n\n\tif len(sys_weights) == 0:\n\t\traise ValueError(f\"ERROR : no weights has been found in {WEIGHTS} folder.\")\n\n\t# find rgb,oflow,lstm,lstm_cpu\n\th5_files = ['rgb','oflow','lstm','cpu']\n\th5_dirs = {}\n\tfor h5_file in h5_files:\n\n\t\th5_dir = [weights for weights in sys_weights if h5_file in weights.lower()]\n\t\tif len(h5_dir) > 1:\n\t\t\traise ValueError(f\"ERROR : In {h5_dir[0].rsplit(os.sep,1)[0]} directory more than one {h5_file} file found.\")\n\t\t\n\t\th5_dirs[h5_file] = h5_dir[0] if len(h5_dir) > 0 else None\n\n\t# get labels file\n\tsys_labels = glob.glob(os.path.join(sys_path,LABELS,'*.csv'))\n\n\n\tif len(sys_labels) != 1:\n\t\traise ValueError(f\"ERROR : something wrong with {LABELS} folder.\")\n\n\treturn h5_dirs,sys_labels[0]\t\n\ndef print_sys_info(args):\n\n\tprint(\"running the system with:\")\n\tfor arg in vars(args):\n\t\tprint(' '*3,f'{arg} = {getattr(args,arg)}')\n\nif __name__ == '__main__' :\n\n\tparser = argparse.ArgumentParser()\n\n\t# --run \n\tparser.add_argument(\n\t\t'-run',\n\t\t'--run',\n\t\tdest='run_method',\n\t\ttype=str,\n\t\tdefault='webcam',\n\t\thelp='choose a way to test the sign language system.')\n\tparser.add_argument(\n\t\t'-sys',\n\t\t'--system',\n\t\tdest='system_name',\n\t\ttype=str,\n\t\tdefault='turkish_10_word',\n\t\thelp='choose which sign language system to run.')\n\tparser.add_argument(\n\t\t'-use_lstm',\n\t\t'--use_lstm',\n\t\tdest='use_lstm',\n\t\ttype=bool,\n\t\tdefault=False,\n\t\thelp='add lstm on top of stream network.')\n\tparser.add_argument(\n\t\t'-rgb',\n\t\t'--rgb_only',\n\t\tdest='use_rgb',\n\t\ttype=bool,\n\t\tdefault=True,\n\t\thelp='just use rgb stream.')\n\tparser.add_argument(\n\t\t'-oflow',\n\t\t'--oflow_only',\n\t\tdest='use_oflow',\n\t\ttype=bool,\n\t\tdefault=False,\n\t\thelp='just use optical flow stream.')\n\tparser.add_argument(\n\t\t'-on_cpu',\n\t\t'--use_cpu',\n\t\tdest='on_cpu',\n\t\ttype=bool,\n\t\tdefault=True,\n\t\thelp='run the system on cpu.')\n\tparser.add_argument(\n\t\t'-pred_type',\n\t\t'--prediction_type',\n\t\tdest='pred_type',\n\t\ttype=str,\n\t\tdefault='word',\n\t\thelp='define how the system output will be, either word or sentence.')\n\tparser.add_argument(\n\t\t'-nTop',\n\t\t'--top_predictions',\n\t\tdest='nTop',\n\t\ttype=int,\n\t\tdefault=3,\n\t\thelp='how many result(output) should the system give.')\n\tparser.add_argument(\n\t\t'-download',\n\t\t'--download',\n\t\tdest='download',\n\t\ttype=bool,\n\t\tdefault=False,\n\t\thelp='download weights and classes to checkpoints directory.')\n\tparser.add_argument(\n\t\t'-mul_oflow',\n\t\t'--multiprocessing_opticalflow',\n\t\tdest='mul_oflow',\n\t\ttype=bool,\n\t\tdefault=False,\n\t\thelp=\"faster optical flow calculation with multiprocessing.\")\n\tparser.add_argument(\n\t\t'-oflow_pnum',\n\t\t'--oflow_process_num',\n\t\tdest='oflow_pnum',\n\t\ttype=int,\n\t\tdefault=4,\n\t\thelp=\"number of processes to calculate optical flow.\")\n\tparser.add_argument(\n\t\t'-mul_2stream',\n\t\t'--multiprocessing_two_stream',\n\t\tdest='mul_2stream',\n\t\ttype=bool,\n\t\tdefault=False,\n\t\thelp='run two stream on different processes.')\n\t# CPU OR GPU\n\t# HOW MUCH FRACTION ON GPU DO YOU WANT TO USE \n\t# WHICH GPU TO RUN ON\n\t# WORDS OR SENTENCES\n\t# SINGLE CPU OR MULTIPULE\n\t# use just rgb or just oflow\n\t# don't use lstm\n\targs = parser.parse_args()\n\n\t# run test script \n\trun_method = args.run_method\n\tuse_lstm = args.use_lstm\n\tuse_rgb = args.use_rgb\t\n\tuse_oflow = args.use_oflow\n\ton_cpu = args.on_cpu\t\n\tpred_type = args.pred_type\n\tnTop = args.nTop\n\tdownload = args.download\n\tmul_oflow = args.mul_oflow\n\toflow_pnum = args.oflow_pnum\n\tmul_2stream = args.mul_2stream\n\tsystem_name = args.system_name\n\n\t# download model weights and labels\n\tif download:\n\t\tfrom checkpoints.download import download_sys\n\t\tDir = CHEKPOINT+os.sep+system_name\n\t\tprint(f\"downloading weights and lables for {system_name} system to {Dir}.\")\n\t\tdownload_sys(system_name,Dir)\n\n\t#load checkpoints and labels\n\tmodels_dir,labels_dir = get_sys_info(system_name)\n\t# informative message\n\tprint(f\"In {args.system_name} folder:\")\n\tfor k,v in models_dir.items():\n\t\tif v is not None:\n\t\t\t# informative message\n\t\t\tprint(f\"{' '*4}{k.upper()} WEIGHTS found : {v.rsplit(os.sep,1)[-1]}\")\n\t# informative message\n\tprint(f\"{' '*4}labels : {labels_dir.rsplit(os.sep,1)[-1]}\")\n\n\t\n\t# make sure that flags are set properlly\n\tif use_rgb and use_oflow:\n\t\traise ValueError(\"\"\"ERROR : both rgb and oflow flags are on.\n\t\t\t\t\t\t trying to use both? set both flag to 'False'\"\"\")\n\tif not pred_type == \"word\" and not pred_type == \"sentence\":\n\t\traise ValueError(\"ERROR : pred_type should be 'word' or 'sentence'\")\n\tcon = mul_oflow and not oflow_pnum > 0\n\t#notcon = not mul_oflow and oflow_pnum > 0 \n\tif con:\n\t\traise ValueError(\"ERROR : check mul_oflow and oflow_pnum flags.\")\n\tif not on_cpu and mul_2stream:\n\t\traise ValueError(\"ERROR : you can't use multiprocessing on streams while the system is running on gpu.\") \n\tif (use_rgb or use_oflow) and mul_2stream:\n\t\traise ValueError(\"ERROR : you can't do multiprocessing while using just one stream!.\")\n\t# print informative messages for what will be used next\n\tprint_sys_info(args) \n\n\t# create tmp dir\n\tos.makedirs('./tmp', exist_ok=True)\n\n\tif on_cpu:\n\t\tos.environ[\"CUDA_DEVICE_ORDER\"] = \"PCI_BUS_ID\" # see issue #152\n\t\tos.environ[\"CUDA_VISIBLE_DEVICES\"] = \"-1\"\n\n\n\tfrom collections import defaultdict\n\n\tmodels = defaultdict(lambda : None)\n\n\tfrom utils.util import load_models,csv_to_dict\n\tfrom multiprocessing import Manager\n\tfrom multiprocessing import Process\n\n\tlabels = csv_to_dict(labels_dir,LABELS_SWORD_COL)\n\t\t\n\tif not mul_2stream:\n\n\t\t# load labels\n\t\tprint(f\"loading labels from {labels_dir}.\")\n\t\tlabels = csv_to_dict(labels_dir,LABELS_SWORD_COL)\n\t\tprint(f\"{len(labels)} word found in {labels_dir}\")\n\n\n\t\t# load models\n\t\tuploading_time = time.time()\n\t\tprint(\"Initializing models\")\n\t\tmodels = load_models(models_dir,\n\t\t\t\t\t\t\t\ton_cpu,\n\t\t\t\t\t\t\t\tuse_rgb,\n\t\t\t\t\t\t\t\tuse_oflow,\n\t\t\t\t\t\t\t\tuse_lstm,\n\t\t\t\t\t\t\t\tFalse)\n\t\tprint(f\"Uploading took {round(time.time()-uploading_time,2)} sec\")\n\telse:\n\t\tmodels['oflow'] = 1\n\t\tfrom utils.parallel_streams import nn_work\n\n\t\t_2stream.append(Process(target=nn_work, args=('oflow',models_dir,labels_dir,pred_type,nTop,mul_oflow,oflow_pnum)))\n\t\t_2stream.append(Process(target=nn_work, args=('rgb',models_dir,labels_dir,pred_type,nTop,mul_oflow,oflow_pnum)))\n\t\tif use_lstm:\n\t\t\t_2stream.append(Process(target=nn_work, args=('oflow',models_dir,labels_dir,pred_type,nTop,mul_oflow,oflow_pnum)))\n\n\t\tfor p in _2stream:\n\t\t\tp.start()\n\n\t\tprint(f\"{len(_2stream)} process has been initialized.\")\n\n\t# run some server with flags cpu gpu pred_type nTop\n\t# if wamp\n\tif run_method == \"wamp\":\n\t\tprint(\"running wamp server.\")\n\t\tfrom run.wamp import run_server \n\n\t\tif not os.path.exists(wamp_folder):\n\t\t\traise ValueError(f\"ERROR : can't find wamp service in {wamp_folder} directory\")\n\n\t\t# running wamp server\n\t\trun_server(php_webservice,\n\t\t\t\twamp_folder,\n\t\t\t\tmodels,\n\t\t\t\tlabels,\n\t\t\t\tpred_type,\n\t\t\t\tnTop,\n\t\t\t\tmul_oflow,\n\t\t\t\toflow_pnum,\n\t\t\t\tmul_2stream)\n\t\n\telif run_method == \"webcam\":\n\t\tprint(\"testing system on webcam, to close webcam press 'q'.\")\n\t\tfrom run.webcam import test\n\n\t\ttest(models,\n\t\t\tlabels,\n\t\t\tpred_type,\n\t\t\tnTop,\n\t\t\tmul_oflow,\n\t\t\toflow_pnum,\n\t\t\tmul_2stream)\n\n\telif run_method == \"REST_API\":\n\t\tprint(\"Initiate REST API server ...\")\n\t\tfrom run.REST_API import server\n\n\t\tserver.run(models,\n\t\t\t\t\tlabels,\n\t\t\t\t\tpred_type,\n\t\t\t\t\tnTop,\n\t\t\t\t\tmul_oflow,\n\t\t\t\t\toflow_pnum,\n\t\t\t\t\tmul_2stream,\n\t\t\t\t\thost=\"0.0.0.0\")\n", "import argparse\nimport os\nimport glob\nimport time\nimport sys\nsys.path.insert(0, './utils')\nfrom globalVariables import ret_dict, data, res_dict, LABELS_SWORD_COL, _2stream\nCHEKPOINT = './checkpoints'\nWEIGHTS = 'weights'\nLABELS = 'classes'\nphp_webservice = 'http://localhost/combine/webservices.php'\nwamp_folder = 'C:/wamp64/www/combine/'\n\n\ndef get_sys_info(sys_name):\n rgb_dir = None\n oflow_dir = None\n lstm_dir = None\n labels = None\n systems = glob.glob(os.path.join(CHEKPOINT, '*'))\n systems = list(map(lambda s: s.rsplit(f'{os.sep}', 1)[-1], systems))\n if not sys_name in systems or len(systems) == 0:\n raise ValueError(\n f'ERROR : could not find {sys_name} in {CHEKPOINT} directory.')\n sys_path = os.path.join(CHEKPOINT, sys_name)\n sys_weights = glob.glob(os.path.join(sys_path, WEIGHTS, '*.h5'))\n if len(sys_weights) == 0:\n raise ValueError(\n f'ERROR : no weights has been found in {WEIGHTS} folder.')\n h5_files = ['rgb', 'oflow', 'lstm', 'cpu']\n h5_dirs = {}\n for h5_file in h5_files:\n h5_dir = [weights for weights in sys_weights if h5_file in weights.\n lower()]\n if len(h5_dir) > 1:\n raise ValueError(\n f'ERROR : In {h5_dir[0].rsplit(os.sep, 1)[0]} directory more than one {h5_file} file found.'\n )\n h5_dirs[h5_file] = h5_dir[0] if len(h5_dir) > 0 else None\n sys_labels = glob.glob(os.path.join(sys_path, LABELS, '*.csv'))\n if len(sys_labels) != 1:\n raise ValueError(f'ERROR : something wrong with {LABELS} folder.')\n return h5_dirs, sys_labels[0]\n\n\ndef print_sys_info(args):\n print('running the system with:')\n for arg in vars(args):\n print(' ' * 3, f'{arg} = {getattr(args, arg)}')\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser()\n parser.add_argument('-run', '--run', dest='run_method', type=str,\n default='webcam', help='choose a way to test the sign language system.'\n )\n parser.add_argument('-sys', '--system', dest='system_name', type=str,\n default='turkish_10_word', help=\n 'choose which sign language system to run.')\n parser.add_argument('-use_lstm', '--use_lstm', dest='use_lstm', type=\n bool, default=False, help='add lstm on top of stream network.')\n parser.add_argument('-rgb', '--rgb_only', dest='use_rgb', type=bool,\n default=True, help='just use rgb stream.')\n parser.add_argument('-oflow', '--oflow_only', dest='use_oflow', type=\n bool, default=False, help='just use optical flow stream.')\n parser.add_argument('-on_cpu', '--use_cpu', dest='on_cpu', type=bool,\n default=True, help='run the system on cpu.')\n parser.add_argument('-pred_type', '--prediction_type', dest='pred_type',\n type=str, default='word', help=\n 'define how the system output will be, either word or sentence.')\n parser.add_argument('-nTop', '--top_predictions', dest='nTop', type=int,\n default=3, help='how many result(output) should the system give.')\n parser.add_argument('-download', '--download', dest='download', type=\n bool, default=False, help=\n 'download weights and classes to checkpoints directory.')\n parser.add_argument('-mul_oflow', '--multiprocessing_opticalflow', dest\n ='mul_oflow', type=bool, default=False, help=\n 'faster optical flow calculation with multiprocessing.')\n parser.add_argument('-oflow_pnum', '--oflow_process_num', dest=\n 'oflow_pnum', type=int, default=4, help=\n 'number of processes to calculate optical flow.')\n parser.add_argument('-mul_2stream', '--multiprocessing_two_stream',\n dest='mul_2stream', type=bool, default=False, help=\n 'run two stream on different processes.')\n args = parser.parse_args()\n run_method = args.run_method\n use_lstm = args.use_lstm\n use_rgb = args.use_rgb\n use_oflow = args.use_oflow\n on_cpu = args.on_cpu\n pred_type = args.pred_type\n nTop = args.nTop\n download = args.download\n mul_oflow = args.mul_oflow\n oflow_pnum = args.oflow_pnum\n mul_2stream = args.mul_2stream\n system_name = args.system_name\n if download:\n from checkpoints.download import download_sys\n Dir = CHEKPOINT + os.sep + system_name\n print(\n f'downloading weights and lables for {system_name} system to {Dir}.'\n )\n download_sys(system_name, Dir)\n models_dir, labels_dir = get_sys_info(system_name)\n print(f'In {args.system_name} folder:')\n for k, v in models_dir.items():\n if v is not None:\n print(\n f\"{' ' * 4}{k.upper()} WEIGHTS found : {v.rsplit(os.sep, 1)[-1]}\"\n )\n print(f\"{' ' * 4}labels : {labels_dir.rsplit(os.sep, 1)[-1]}\")\n if use_rgb and use_oflow:\n raise ValueError(\n \"\"\"ERROR : both rgb and oflow flags are on.\n\t\t\t\t\t\t trying to use both? set both flag to 'False'\"\"\"\n )\n if not pred_type == 'word' and not pred_type == 'sentence':\n raise ValueError(\"ERROR : pred_type should be 'word' or 'sentence'\")\n con = mul_oflow and not oflow_pnum > 0\n if con:\n raise ValueError('ERROR : check mul_oflow and oflow_pnum flags.')\n if not on_cpu and mul_2stream:\n raise ValueError(\n \"ERROR : you can't use multiprocessing on streams while the system is running on gpu.\"\n )\n if (use_rgb or use_oflow) and mul_2stream:\n raise ValueError(\n \"ERROR : you can't do multiprocessing while using just one stream!.\"\n )\n print_sys_info(args)\n os.makedirs('./tmp', exist_ok=True)\n if on_cpu:\n os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'\n os.environ['CUDA_VISIBLE_DEVICES'] = '-1'\n from collections import defaultdict\n models = defaultdict(lambda : None)\n from utils.util import load_models, csv_to_dict\n from multiprocessing import Manager\n from multiprocessing import Process\n labels = csv_to_dict(labels_dir, LABELS_SWORD_COL)\n if not mul_2stream:\n print(f'loading labels from {labels_dir}.')\n labels = csv_to_dict(labels_dir, LABELS_SWORD_COL)\n print(f'{len(labels)} word found in {labels_dir}')\n uploading_time = time.time()\n print('Initializing models')\n models = load_models(models_dir, on_cpu, use_rgb, use_oflow,\n use_lstm, False)\n print(f'Uploading took {round(time.time() - uploading_time, 2)} sec')\n else:\n models['oflow'] = 1\n from utils.parallel_streams import nn_work\n _2stream.append(Process(target=nn_work, args=('oflow', models_dir,\n labels_dir, pred_type, nTop, mul_oflow, oflow_pnum)))\n _2stream.append(Process(target=nn_work, args=('rgb', models_dir,\n labels_dir, pred_type, nTop, mul_oflow, oflow_pnum)))\n if use_lstm:\n _2stream.append(Process(target=nn_work, args=('oflow',\n models_dir, labels_dir, pred_type, nTop, mul_oflow,\n oflow_pnum)))\n for p in _2stream:\n p.start()\n print(f'{len(_2stream)} process has been initialized.')\n if run_method == 'wamp':\n print('running wamp server.')\n from run.wamp import run_server\n if not os.path.exists(wamp_folder):\n raise ValueError(\n f\"ERROR : can't find wamp service in {wamp_folder} directory\")\n run_server(php_webservice, wamp_folder, models, labels, pred_type,\n nTop, mul_oflow, oflow_pnum, mul_2stream)\n elif run_method == 'webcam':\n print(\"testing system on webcam, to close webcam press 'q'.\")\n from run.webcam import test\n test(models, labels, pred_type, nTop, mul_oflow, oflow_pnum,\n mul_2stream)\n elif run_method == 'REST_API':\n print('Initiate REST API server ...')\n from run.REST_API import server\n server.run(models, labels, pred_type, nTop, mul_oflow, oflow_pnum,\n mul_2stream, host='0.0.0.0')\n", "<import token>\nsys.path.insert(0, './utils')\n<import token>\nCHEKPOINT = './checkpoints'\nWEIGHTS = 'weights'\nLABELS = 'classes'\nphp_webservice = 'http://localhost/combine/webservices.php'\nwamp_folder = 'C:/wamp64/www/combine/'\n\n\ndef get_sys_info(sys_name):\n rgb_dir = None\n oflow_dir = None\n lstm_dir = None\n labels = None\n systems = glob.glob(os.path.join(CHEKPOINT, '*'))\n systems = list(map(lambda s: s.rsplit(f'{os.sep}', 1)[-1], systems))\n if not sys_name in systems or len(systems) == 0:\n raise ValueError(\n f'ERROR : could not find {sys_name} in {CHEKPOINT} directory.')\n sys_path = os.path.join(CHEKPOINT, sys_name)\n sys_weights = glob.glob(os.path.join(sys_path, WEIGHTS, '*.h5'))\n if len(sys_weights) == 0:\n raise ValueError(\n f'ERROR : no weights has been found in {WEIGHTS} folder.')\n h5_files = ['rgb', 'oflow', 'lstm', 'cpu']\n h5_dirs = {}\n for h5_file in h5_files:\n h5_dir = [weights for weights in sys_weights if h5_file in weights.\n lower()]\n if len(h5_dir) > 1:\n raise ValueError(\n f'ERROR : In {h5_dir[0].rsplit(os.sep, 1)[0]} directory more than one {h5_file} file found.'\n )\n h5_dirs[h5_file] = h5_dir[0] if len(h5_dir) > 0 else None\n sys_labels = glob.glob(os.path.join(sys_path, LABELS, '*.csv'))\n if len(sys_labels) != 1:\n raise ValueError(f'ERROR : something wrong with {LABELS} folder.')\n return h5_dirs, sys_labels[0]\n\n\ndef print_sys_info(args):\n print('running the system with:')\n for arg in vars(args):\n print(' ' * 3, f'{arg} = {getattr(args, arg)}')\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser()\n parser.add_argument('-run', '--run', dest='run_method', type=str,\n default='webcam', help='choose a way to test the sign language system.'\n )\n parser.add_argument('-sys', '--system', dest='system_name', type=str,\n default='turkish_10_word', help=\n 'choose which sign language system to run.')\n parser.add_argument('-use_lstm', '--use_lstm', dest='use_lstm', type=\n bool, default=False, help='add lstm on top of stream network.')\n parser.add_argument('-rgb', '--rgb_only', dest='use_rgb', type=bool,\n default=True, help='just use rgb stream.')\n parser.add_argument('-oflow', '--oflow_only', dest='use_oflow', type=\n bool, default=False, help='just use optical flow stream.')\n parser.add_argument('-on_cpu', '--use_cpu', dest='on_cpu', type=bool,\n default=True, help='run the system on cpu.')\n parser.add_argument('-pred_type', '--prediction_type', dest='pred_type',\n type=str, default='word', help=\n 'define how the system output will be, either word or sentence.')\n parser.add_argument('-nTop', '--top_predictions', dest='nTop', type=int,\n default=3, help='how many result(output) should the system give.')\n parser.add_argument('-download', '--download', dest='download', type=\n bool, default=False, help=\n 'download weights and classes to checkpoints directory.')\n parser.add_argument('-mul_oflow', '--multiprocessing_opticalflow', dest\n ='mul_oflow', type=bool, default=False, help=\n 'faster optical flow calculation with multiprocessing.')\n parser.add_argument('-oflow_pnum', '--oflow_process_num', dest=\n 'oflow_pnum', type=int, default=4, help=\n 'number of processes to calculate optical flow.')\n parser.add_argument('-mul_2stream', '--multiprocessing_two_stream',\n dest='mul_2stream', type=bool, default=False, help=\n 'run two stream on different processes.')\n args = parser.parse_args()\n run_method = args.run_method\n use_lstm = args.use_lstm\n use_rgb = args.use_rgb\n use_oflow = args.use_oflow\n on_cpu = args.on_cpu\n pred_type = args.pred_type\n nTop = args.nTop\n download = args.download\n mul_oflow = args.mul_oflow\n oflow_pnum = args.oflow_pnum\n mul_2stream = args.mul_2stream\n system_name = args.system_name\n if download:\n from checkpoints.download import download_sys\n Dir = CHEKPOINT + os.sep + system_name\n print(\n f'downloading weights and lables for {system_name} system to {Dir}.'\n )\n download_sys(system_name, Dir)\n models_dir, labels_dir = get_sys_info(system_name)\n print(f'In {args.system_name} folder:')\n for k, v in models_dir.items():\n if v is not None:\n print(\n f\"{' ' * 4}{k.upper()} WEIGHTS found : {v.rsplit(os.sep, 1)[-1]}\"\n )\n print(f\"{' ' * 4}labels : {labels_dir.rsplit(os.sep, 1)[-1]}\")\n if use_rgb and use_oflow:\n raise ValueError(\n \"\"\"ERROR : both rgb and oflow flags are on.\n\t\t\t\t\t\t trying to use both? set both flag to 'False'\"\"\"\n )\n if not pred_type == 'word' and not pred_type == 'sentence':\n raise ValueError(\"ERROR : pred_type should be 'word' or 'sentence'\")\n con = mul_oflow and not oflow_pnum > 0\n if con:\n raise ValueError('ERROR : check mul_oflow and oflow_pnum flags.')\n if not on_cpu and mul_2stream:\n raise ValueError(\n \"ERROR : you can't use multiprocessing on streams while the system is running on gpu.\"\n )\n if (use_rgb or use_oflow) and mul_2stream:\n raise ValueError(\n \"ERROR : you can't do multiprocessing while using just one stream!.\"\n )\n print_sys_info(args)\n os.makedirs('./tmp', exist_ok=True)\n if on_cpu:\n os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'\n os.environ['CUDA_VISIBLE_DEVICES'] = '-1'\n from collections import defaultdict\n models = defaultdict(lambda : None)\n from utils.util import load_models, csv_to_dict\n from multiprocessing import Manager\n from multiprocessing import Process\n labels = csv_to_dict(labels_dir, LABELS_SWORD_COL)\n if not mul_2stream:\n print(f'loading labels from {labels_dir}.')\n labels = csv_to_dict(labels_dir, LABELS_SWORD_COL)\n print(f'{len(labels)} word found in {labels_dir}')\n uploading_time = time.time()\n print('Initializing models')\n models = load_models(models_dir, on_cpu, use_rgb, use_oflow,\n use_lstm, False)\n print(f'Uploading took {round(time.time() - uploading_time, 2)} sec')\n else:\n models['oflow'] = 1\n from utils.parallel_streams import nn_work\n _2stream.append(Process(target=nn_work, args=('oflow', models_dir,\n labels_dir, pred_type, nTop, mul_oflow, oflow_pnum)))\n _2stream.append(Process(target=nn_work, args=('rgb', models_dir,\n labels_dir, pred_type, nTop, mul_oflow, oflow_pnum)))\n if use_lstm:\n _2stream.append(Process(target=nn_work, args=('oflow',\n models_dir, labels_dir, pred_type, nTop, mul_oflow,\n oflow_pnum)))\n for p in _2stream:\n p.start()\n print(f'{len(_2stream)} process has been initialized.')\n if run_method == 'wamp':\n print('running wamp server.')\n from run.wamp import run_server\n if not os.path.exists(wamp_folder):\n raise ValueError(\n f\"ERROR : can't find wamp service in {wamp_folder} directory\")\n run_server(php_webservice, wamp_folder, models, labels, pred_type,\n nTop, mul_oflow, oflow_pnum, mul_2stream)\n elif run_method == 'webcam':\n print(\"testing system on webcam, to close webcam press 'q'.\")\n from run.webcam import test\n test(models, labels, pred_type, nTop, mul_oflow, oflow_pnum,\n mul_2stream)\n elif run_method == 'REST_API':\n print('Initiate REST API server ...')\n from run.REST_API import server\n server.run(models, labels, pred_type, nTop, mul_oflow, oflow_pnum,\n mul_2stream, host='0.0.0.0')\n", "<import token>\nsys.path.insert(0, './utils')\n<import token>\n<assignment token>\n\n\ndef get_sys_info(sys_name):\n rgb_dir = None\n oflow_dir = None\n lstm_dir = None\n labels = None\n systems = glob.glob(os.path.join(CHEKPOINT, '*'))\n systems = list(map(lambda s: s.rsplit(f'{os.sep}', 1)[-1], systems))\n if not sys_name in systems or len(systems) == 0:\n raise ValueError(\n f'ERROR : could not find {sys_name} in {CHEKPOINT} directory.')\n sys_path = os.path.join(CHEKPOINT, sys_name)\n sys_weights = glob.glob(os.path.join(sys_path, WEIGHTS, '*.h5'))\n if len(sys_weights) == 0:\n raise ValueError(\n f'ERROR : no weights has been found in {WEIGHTS} folder.')\n h5_files = ['rgb', 'oflow', 'lstm', 'cpu']\n h5_dirs = {}\n for h5_file in h5_files:\n h5_dir = [weights for weights in sys_weights if h5_file in weights.\n lower()]\n if len(h5_dir) > 1:\n raise ValueError(\n f'ERROR : In {h5_dir[0].rsplit(os.sep, 1)[0]} directory more than one {h5_file} file found.'\n )\n h5_dirs[h5_file] = h5_dir[0] if len(h5_dir) > 0 else None\n sys_labels = glob.glob(os.path.join(sys_path, LABELS, '*.csv'))\n if len(sys_labels) != 1:\n raise ValueError(f'ERROR : something wrong with {LABELS} folder.')\n return h5_dirs, sys_labels[0]\n\n\ndef print_sys_info(args):\n print('running the system with:')\n for arg in vars(args):\n print(' ' * 3, f'{arg} = {getattr(args, arg)}')\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser()\n parser.add_argument('-run', '--run', dest='run_method', type=str,\n default='webcam', help='choose a way to test the sign language system.'\n )\n parser.add_argument('-sys', '--system', dest='system_name', type=str,\n default='turkish_10_word', help=\n 'choose which sign language system to run.')\n parser.add_argument('-use_lstm', '--use_lstm', dest='use_lstm', type=\n bool, default=False, help='add lstm on top of stream network.')\n parser.add_argument('-rgb', '--rgb_only', dest='use_rgb', type=bool,\n default=True, help='just use rgb stream.')\n parser.add_argument('-oflow', '--oflow_only', dest='use_oflow', type=\n bool, default=False, help='just use optical flow stream.')\n parser.add_argument('-on_cpu', '--use_cpu', dest='on_cpu', type=bool,\n default=True, help='run the system on cpu.')\n parser.add_argument('-pred_type', '--prediction_type', dest='pred_type',\n type=str, default='word', help=\n 'define how the system output will be, either word or sentence.')\n parser.add_argument('-nTop', '--top_predictions', dest='nTop', type=int,\n default=3, help='how many result(output) should the system give.')\n parser.add_argument('-download', '--download', dest='download', type=\n bool, default=False, help=\n 'download weights and classes to checkpoints directory.')\n parser.add_argument('-mul_oflow', '--multiprocessing_opticalflow', dest\n ='mul_oflow', type=bool, default=False, help=\n 'faster optical flow calculation with multiprocessing.')\n parser.add_argument('-oflow_pnum', '--oflow_process_num', dest=\n 'oflow_pnum', type=int, default=4, help=\n 'number of processes to calculate optical flow.')\n parser.add_argument('-mul_2stream', '--multiprocessing_two_stream',\n dest='mul_2stream', type=bool, default=False, help=\n 'run two stream on different processes.')\n args = parser.parse_args()\n run_method = args.run_method\n use_lstm = args.use_lstm\n use_rgb = args.use_rgb\n use_oflow = args.use_oflow\n on_cpu = args.on_cpu\n pred_type = args.pred_type\n nTop = args.nTop\n download = args.download\n mul_oflow = args.mul_oflow\n oflow_pnum = args.oflow_pnum\n mul_2stream = args.mul_2stream\n system_name = args.system_name\n if download:\n from checkpoints.download import download_sys\n Dir = CHEKPOINT + os.sep + system_name\n print(\n f'downloading weights and lables for {system_name} system to {Dir}.'\n )\n download_sys(system_name, Dir)\n models_dir, labels_dir = get_sys_info(system_name)\n print(f'In {args.system_name} folder:')\n for k, v in models_dir.items():\n if v is not None:\n print(\n f\"{' ' * 4}{k.upper()} WEIGHTS found : {v.rsplit(os.sep, 1)[-1]}\"\n )\n print(f\"{' ' * 4}labels : {labels_dir.rsplit(os.sep, 1)[-1]}\")\n if use_rgb and use_oflow:\n raise ValueError(\n \"\"\"ERROR : both rgb and oflow flags are on.\n\t\t\t\t\t\t trying to use both? set both flag to 'False'\"\"\"\n )\n if not pred_type == 'word' and not pred_type == 'sentence':\n raise ValueError(\"ERROR : pred_type should be 'word' or 'sentence'\")\n con = mul_oflow and not oflow_pnum > 0\n if con:\n raise ValueError('ERROR : check mul_oflow and oflow_pnum flags.')\n if not on_cpu and mul_2stream:\n raise ValueError(\n \"ERROR : you can't use multiprocessing on streams while the system is running on gpu.\"\n )\n if (use_rgb or use_oflow) and mul_2stream:\n raise ValueError(\n \"ERROR : you can't do multiprocessing while using just one stream!.\"\n )\n print_sys_info(args)\n os.makedirs('./tmp', exist_ok=True)\n if on_cpu:\n os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'\n os.environ['CUDA_VISIBLE_DEVICES'] = '-1'\n from collections import defaultdict\n models = defaultdict(lambda : None)\n from utils.util import load_models, csv_to_dict\n from multiprocessing import Manager\n from multiprocessing import Process\n labels = csv_to_dict(labels_dir, LABELS_SWORD_COL)\n if not mul_2stream:\n print(f'loading labels from {labels_dir}.')\n labels = csv_to_dict(labels_dir, LABELS_SWORD_COL)\n print(f'{len(labels)} word found in {labels_dir}')\n uploading_time = time.time()\n print('Initializing models')\n models = load_models(models_dir, on_cpu, use_rgb, use_oflow,\n use_lstm, False)\n print(f'Uploading took {round(time.time() - uploading_time, 2)} sec')\n else:\n models['oflow'] = 1\n from utils.parallel_streams import nn_work\n _2stream.append(Process(target=nn_work, args=('oflow', models_dir,\n labels_dir, pred_type, nTop, mul_oflow, oflow_pnum)))\n _2stream.append(Process(target=nn_work, args=('rgb', models_dir,\n labels_dir, pred_type, nTop, mul_oflow, oflow_pnum)))\n if use_lstm:\n _2stream.append(Process(target=nn_work, args=('oflow',\n models_dir, labels_dir, pred_type, nTop, mul_oflow,\n oflow_pnum)))\n for p in _2stream:\n p.start()\n print(f'{len(_2stream)} process has been initialized.')\n if run_method == 'wamp':\n print('running wamp server.')\n from run.wamp import run_server\n if not os.path.exists(wamp_folder):\n raise ValueError(\n f\"ERROR : can't find wamp service in {wamp_folder} directory\")\n run_server(php_webservice, wamp_folder, models, labels, pred_type,\n nTop, mul_oflow, oflow_pnum, mul_2stream)\n elif run_method == 'webcam':\n print(\"testing system on webcam, to close webcam press 'q'.\")\n from run.webcam import test\n test(models, labels, pred_type, nTop, mul_oflow, oflow_pnum,\n mul_2stream)\n elif run_method == 'REST_API':\n print('Initiate REST API server ...')\n from run.REST_API import server\n server.run(models, labels, pred_type, nTop, mul_oflow, oflow_pnum,\n mul_2stream, host='0.0.0.0')\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef get_sys_info(sys_name):\n rgb_dir = None\n oflow_dir = None\n lstm_dir = None\n labels = None\n systems = glob.glob(os.path.join(CHEKPOINT, '*'))\n systems = list(map(lambda s: s.rsplit(f'{os.sep}', 1)[-1], systems))\n if not sys_name in systems or len(systems) == 0:\n raise ValueError(\n f'ERROR : could not find {sys_name} in {CHEKPOINT} directory.')\n sys_path = os.path.join(CHEKPOINT, sys_name)\n sys_weights = glob.glob(os.path.join(sys_path, WEIGHTS, '*.h5'))\n if len(sys_weights) == 0:\n raise ValueError(\n f'ERROR : no weights has been found in {WEIGHTS} folder.')\n h5_files = ['rgb', 'oflow', 'lstm', 'cpu']\n h5_dirs = {}\n for h5_file in h5_files:\n h5_dir = [weights for weights in sys_weights if h5_file in weights.\n lower()]\n if len(h5_dir) > 1:\n raise ValueError(\n f'ERROR : In {h5_dir[0].rsplit(os.sep, 1)[0]} directory more than one {h5_file} file found.'\n )\n h5_dirs[h5_file] = h5_dir[0] if len(h5_dir) > 0 else None\n sys_labels = glob.glob(os.path.join(sys_path, LABELS, '*.csv'))\n if len(sys_labels) != 1:\n raise ValueError(f'ERROR : something wrong with {LABELS} folder.')\n return h5_dirs, sys_labels[0]\n\n\ndef print_sys_info(args):\n print('running the system with:')\n for arg in vars(args):\n print(' ' * 3, f'{arg} = {getattr(args, arg)}')\n\n\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\ndef get_sys_info(sys_name):\n rgb_dir = None\n oflow_dir = None\n lstm_dir = None\n labels = None\n systems = glob.glob(os.path.join(CHEKPOINT, '*'))\n systems = list(map(lambda s: s.rsplit(f'{os.sep}', 1)[-1], systems))\n if not sys_name in systems or len(systems) == 0:\n raise ValueError(\n f'ERROR : could not find {sys_name} in {CHEKPOINT} directory.')\n sys_path = os.path.join(CHEKPOINT, sys_name)\n sys_weights = glob.glob(os.path.join(sys_path, WEIGHTS, '*.h5'))\n if len(sys_weights) == 0:\n raise ValueError(\n f'ERROR : no weights has been found in {WEIGHTS} folder.')\n h5_files = ['rgb', 'oflow', 'lstm', 'cpu']\n h5_dirs = {}\n for h5_file in h5_files:\n h5_dir = [weights for weights in sys_weights if h5_file in weights.\n lower()]\n if len(h5_dir) > 1:\n raise ValueError(\n f'ERROR : In {h5_dir[0].rsplit(os.sep, 1)[0]} directory more than one {h5_file} file found.'\n )\n h5_dirs[h5_file] = h5_dir[0] if len(h5_dir) > 0 else None\n sys_labels = glob.glob(os.path.join(sys_path, LABELS, '*.csv'))\n if len(sys_labels) != 1:\n raise ValueError(f'ERROR : something wrong with {LABELS} folder.')\n return h5_dirs, sys_labels[0]\n\n\n<function token>\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,531
a48a05321659aa6dabf7a8743007d01c1c3d74cc
import json from django.http import HttpResponse from django.views.decorators.http import require_http_methods from django.shortcuts import render_to_response from utils import validate_geojson, get_remote_json from exc import GeoJSONValidationException, NonFetchableURLException def home(request): """ GET / Show the home page """ return render_to_response('index.html') @require_http_methods(['GET', 'POST']) def validate(request): """ POST /validate Validate GeoJSON data in POST body """ testing = request.GET.get('testing') if request.method == 'POST': stringy_json = request.raw_post_data else: # GET try: remote_url = request.GET['url'] stringy_json = get_remote_json(remote_url) except KeyError: # The "url" URL parameter was missing return _geojson_error('When validating via GET, a "url" URL parameter is required.', status=400) except NonFetchableURLException: return _geojson_error('The URL passed could not be fetched.') try: test_geojson = json.loads(stringy_json) if not isinstance(test_geojson, dict): return _geojson_error('Data was not a JSON object.', testing) except: return _geojson_error('Data was not JSON serializeable.', testing) if not 'type' in test_geojson: return _geojson_error('The "type" member is required and was not found.', testing) try: validate_geojson(test_geojson) except GeoJSONValidationException as e: return _geojson_error(str(e), testing) # Everything checked out. Return 'ok'. resp = { 'status': 'ok', } return HttpResponse(json.dumps(resp), mimetype='application/json') def _geojson_error(message, testing=False, status=200): resp = { 'status': 'error', 'message': message, } return HttpResponse(json.dumps(resp), mimetype='application/json', status=status)
[ "import json\n\nfrom django.http import HttpResponse\nfrom django.views.decorators.http import require_http_methods\nfrom django.shortcuts import render_to_response\n\nfrom utils import validate_geojson, get_remote_json\nfrom exc import GeoJSONValidationException, NonFetchableURLException\n\n\ndef home(request):\n \"\"\"\n GET /\n\n Show the home page\n \"\"\"\n return render_to_response('index.html')\n\n\n@require_http_methods(['GET', 'POST'])\ndef validate(request):\n \"\"\"\n POST /validate\n\n Validate GeoJSON data in POST body\n \"\"\"\n\n testing = request.GET.get('testing')\n\n if request.method == 'POST':\n stringy_json = request.raw_post_data\n else: # GET\n try:\n remote_url = request.GET['url']\n stringy_json = get_remote_json(remote_url)\n except KeyError: # The \"url\" URL parameter was missing\n return _geojson_error('When validating via GET, a \"url\" URL parameter is required.', status=400)\n except NonFetchableURLException:\n return _geojson_error('The URL passed could not be fetched.')\n\n try:\n test_geojson = json.loads(stringy_json)\n if not isinstance(test_geojson, dict):\n return _geojson_error('Data was not a JSON object.', testing)\n except:\n return _geojson_error('Data was not JSON serializeable.', testing)\n\n if not 'type' in test_geojson:\n return _geojson_error('The \"type\" member is required and was not found.', testing)\n\n try:\n validate_geojson(test_geojson)\n except GeoJSONValidationException as e:\n return _geojson_error(str(e), testing)\n\n # Everything checked out. Return 'ok'.\n resp = {\n 'status': 'ok',\n }\n return HttpResponse(json.dumps(resp), mimetype='application/json')\n\n\ndef _geojson_error(message, testing=False, status=200):\n resp = {\n 'status': 'error',\n 'message': message,\n }\n return HttpResponse(json.dumps(resp), mimetype='application/json', status=status)\n", "import json\nfrom django.http import HttpResponse\nfrom django.views.decorators.http import require_http_methods\nfrom django.shortcuts import render_to_response\nfrom utils import validate_geojson, get_remote_json\nfrom exc import GeoJSONValidationException, NonFetchableURLException\n\n\ndef home(request):\n \"\"\"\n GET /\n\n Show the home page\n \"\"\"\n return render_to_response('index.html')\n\n\n@require_http_methods(['GET', 'POST'])\ndef validate(request):\n \"\"\"\n POST /validate\n\n Validate GeoJSON data in POST body\n \"\"\"\n testing = request.GET.get('testing')\n if request.method == 'POST':\n stringy_json = request.raw_post_data\n else:\n try:\n remote_url = request.GET['url']\n stringy_json = get_remote_json(remote_url)\n except KeyError:\n return _geojson_error(\n 'When validating via GET, a \"url\" URL parameter is required.',\n status=400)\n except NonFetchableURLException:\n return _geojson_error('The URL passed could not be fetched.')\n try:\n test_geojson = json.loads(stringy_json)\n if not isinstance(test_geojson, dict):\n return _geojson_error('Data was not a JSON object.', testing)\n except:\n return _geojson_error('Data was not JSON serializeable.', testing)\n if not 'type' in test_geojson:\n return _geojson_error(\n 'The \"type\" member is required and was not found.', testing)\n try:\n validate_geojson(test_geojson)\n except GeoJSONValidationException as e:\n return _geojson_error(str(e), testing)\n resp = {'status': 'ok'}\n return HttpResponse(json.dumps(resp), mimetype='application/json')\n\n\ndef _geojson_error(message, testing=False, status=200):\n resp = {'status': 'error', 'message': message}\n return HttpResponse(json.dumps(resp), mimetype='application/json',\n status=status)\n", "<import token>\n\n\ndef home(request):\n \"\"\"\n GET /\n\n Show the home page\n \"\"\"\n return render_to_response('index.html')\n\n\n@require_http_methods(['GET', 'POST'])\ndef validate(request):\n \"\"\"\n POST /validate\n\n Validate GeoJSON data in POST body\n \"\"\"\n testing = request.GET.get('testing')\n if request.method == 'POST':\n stringy_json = request.raw_post_data\n else:\n try:\n remote_url = request.GET['url']\n stringy_json = get_remote_json(remote_url)\n except KeyError:\n return _geojson_error(\n 'When validating via GET, a \"url\" URL parameter is required.',\n status=400)\n except NonFetchableURLException:\n return _geojson_error('The URL passed could not be fetched.')\n try:\n test_geojson = json.loads(stringy_json)\n if not isinstance(test_geojson, dict):\n return _geojson_error('Data was not a JSON object.', testing)\n except:\n return _geojson_error('Data was not JSON serializeable.', testing)\n if not 'type' in test_geojson:\n return _geojson_error(\n 'The \"type\" member is required and was not found.', testing)\n try:\n validate_geojson(test_geojson)\n except GeoJSONValidationException as e:\n return _geojson_error(str(e), testing)\n resp = {'status': 'ok'}\n return HttpResponse(json.dumps(resp), mimetype='application/json')\n\n\ndef _geojson_error(message, testing=False, status=200):\n resp = {'status': 'error', 'message': message}\n return HttpResponse(json.dumps(resp), mimetype='application/json',\n status=status)\n", "<import token>\n<function token>\n\n\n@require_http_methods(['GET', 'POST'])\ndef validate(request):\n \"\"\"\n POST /validate\n\n Validate GeoJSON data in POST body\n \"\"\"\n testing = request.GET.get('testing')\n if request.method == 'POST':\n stringy_json = request.raw_post_data\n else:\n try:\n remote_url = request.GET['url']\n stringy_json = get_remote_json(remote_url)\n except KeyError:\n return _geojson_error(\n 'When validating via GET, a \"url\" URL parameter is required.',\n status=400)\n except NonFetchableURLException:\n return _geojson_error('The URL passed could not be fetched.')\n try:\n test_geojson = json.loads(stringy_json)\n if not isinstance(test_geojson, dict):\n return _geojson_error('Data was not a JSON object.', testing)\n except:\n return _geojson_error('Data was not JSON serializeable.', testing)\n if not 'type' in test_geojson:\n return _geojson_error(\n 'The \"type\" member is required and was not found.', testing)\n try:\n validate_geojson(test_geojson)\n except GeoJSONValidationException as e:\n return _geojson_error(str(e), testing)\n resp = {'status': 'ok'}\n return HttpResponse(json.dumps(resp), mimetype='application/json')\n\n\ndef _geojson_error(message, testing=False, status=200):\n resp = {'status': 'error', 'message': message}\n return HttpResponse(json.dumps(resp), mimetype='application/json',\n status=status)\n", "<import token>\n<function token>\n\n\n@require_http_methods(['GET', 'POST'])\ndef validate(request):\n \"\"\"\n POST /validate\n\n Validate GeoJSON data in POST body\n \"\"\"\n testing = request.GET.get('testing')\n if request.method == 'POST':\n stringy_json = request.raw_post_data\n else:\n try:\n remote_url = request.GET['url']\n stringy_json = get_remote_json(remote_url)\n except KeyError:\n return _geojson_error(\n 'When validating via GET, a \"url\" URL parameter is required.',\n status=400)\n except NonFetchableURLException:\n return _geojson_error('The URL passed could not be fetched.')\n try:\n test_geojson = json.loads(stringy_json)\n if not isinstance(test_geojson, dict):\n return _geojson_error('Data was not a JSON object.', testing)\n except:\n return _geojson_error('Data was not JSON serializeable.', testing)\n if not 'type' in test_geojson:\n return _geojson_error(\n 'The \"type\" member is required and was not found.', testing)\n try:\n validate_geojson(test_geojson)\n except GeoJSONValidationException as e:\n return _geojson_error(str(e), testing)\n resp = {'status': 'ok'}\n return HttpResponse(json.dumps(resp), mimetype='application/json')\n\n\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,532
bf1bddc8dafc357fcdc4a4ca156d4a3b19a94e56
ITEM: TIMESTEP 1000 ITEM: NUMBER OF ATOMS 2048 ITEM: BOX BOUNDS pp pp pp -2.7012907437591949e-01 4.7470129074369581e+01 -2.7012907437591949e-01 4.7470129074369581e+01 -2.7012907437591949e-01 4.7470129074369581e+01 ITEM: ATOMS id type xs ys zs 8 1 0.118514 0.0599866 0.0631161 35 1 0.0692648 0.12677 0.0619928 130 1 0.0703103 0.0649093 0.126251 165 1 0.138603 0.117881 0.127473 155 1 0.802452 -0.00225189 0.190937 279 1 0.682405 -0.00102136 0.320418 85 1 0.617155 0.249443 0.014004 134 1 0.190224 0.042665 0.122036 12 1 0.248376 0.0662609 0.0678188 39 1 0.189758 0.118437 0.0604761 43 1 0.30201 0.122494 0.054495 138 1 0.318919 0.0606008 0.121184 169 1 0.25401 0.123982 0.124703 618 1 0.314046 0.423935 0.498843 157 1 0.882592 0.0144295 0.135182 1167 1 0.446654 0.498932 0.178384 1439 1 0.930856 0.489936 0.429996 16 1 0.377532 0.0788858 0.0614955 47 1 0.443232 0.119355 0.0599885 142 1 0.437491 0.0522965 0.123421 173 1 0.381328 0.126711 0.132362 177 1 0.498436 0.123563 0.127073 594 1 0.571856 0.317841 0.497458 1183 1 0.939923 0.497092 0.177559 1415 1 0.183325 0.497855 0.452079 50 1 0.559938 0.181833 -0.000667064 20 1 0.504471 0.0635768 0.0603335 24 1 0.626716 0.0534061 0.0583679 51 1 0.567867 0.120083 0.0614 146 1 0.550245 0.0584699 0.124254 181 1 0.634136 0.115482 0.116651 407 1 0.686788 0.00162551 0.449686 49 1 0.497971 0.119963 0.00499224 150 1 0.698101 0.046347 0.110991 28 1 0.755827 0.0629804 0.060971 55 1 0.690196 0.125129 0.0563922 59 1 0.814925 0.123202 0.0486223 154 1 0.814239 0.0472368 0.1162 185 1 0.748493 0.115375 0.124793 389 1 0.131156 0.00768717 0.374367 122 1 0.813826 0.45016 -0.00226142 4 1 0.00571049 0.0642641 0.0516869 161 1 0.0145263 0.120345 0.125595 32 1 0.882638 0.0641087 0.0624529 63 1 0.944441 0.133281 0.0668484 158 1 0.942773 0.0621624 0.121663 189 1 0.884011 0.12647 0.120856 31 1 0.949647 0.00451724 0.0592671 40 1 0.126322 0.180487 0.0591702 67 1 0.076321 0.256897 0.0481963 162 1 0.0737709 0.18292 0.125443 197 1 0.124175 0.243848 0.132161 72 1 0.128136 0.314366 0.0799744 194 1 0.068254 0.291934 0.117875 193 1 0.00924748 0.233044 0.121644 36 1 0.0115579 0.187866 0.0596469 1437 1 0.863518 0.486486 0.384824 411 1 0.807086 0.0047618 0.438232 391 1 0.187557 0.0128456 0.441716 166 1 0.186668 0.177231 0.122783 198 1 0.178173 0.312545 0.144773 170 1 0.317746 0.169357 0.138677 44 1 0.246056 0.188666 0.0715916 71 1 0.189382 0.250992 0.0744894 201 1 0.238849 0.241488 0.132444 75 1 0.301765 0.250298 0.0782923 76 1 0.239888 0.308852 0.0584296 202 1 0.293209 0.307263 0.137376 606 1 0.942553 0.303178 0.49923 401 1 0.496693 0.000873129 0.37682 102 1 0.182723 0.436664 -0.000478082 1427 1 0.570435 0.500057 0.429309 48 1 0.393356 0.190678 0.0599849 174 1 0.437689 0.18471 0.139591 79 1 0.440983 0.255103 0.0581657 205 1 0.365623 0.249313 0.130058 80 1 0.379197 0.303608 0.0704467 206 1 0.432488 0.323907 0.127045 621 1 0.373617 0.367529 0.49599 14 1 0.43862 0.0587564 0.00627447 52 1 0.484423 0.188543 0.0665317 84 1 0.500018 0.31934 0.07723 209 1 0.488284 0.254011 0.128159 178 1 0.546072 0.185375 0.136579 56 1 0.613229 0.185539 0.0768676 83 1 0.545828 0.242915 0.0664197 88 1 0.611037 0.319933 0.0619186 210 1 0.555776 0.302342 0.129695 213 1 0.622974 0.244927 0.125081 186 1 0.802287 0.173743 0.124388 182 1 0.69117 0.179418 0.113282 60 1 0.75244 0.195119 0.0569863 87 1 0.691608 0.250977 0.0559722 217 1 0.754972 0.236141 0.125877 218 1 0.823524 0.299716 0.118129 92 1 0.760961 0.313528 0.0687033 91 1 0.82084 0.237089 0.0685305 214 1 0.686067 0.313695 0.116799 1039 1 0.445446 0.49796 0.0697614 1173 1 0.627414 0.495995 0.116266 283 1 0.820211 0.00151803 0.318055 74 1 0.323208 0.294976 0.00990392 68 1 0.00301754 0.313786 0.0554314 190 1 0.950554 0.184051 0.13353 64 1 0.874802 0.186404 0.0518447 95 1 0.920281 0.251951 0.0571724 221 1 0.875537 0.220154 0.135128 222 1 0.95689 0.308093 0.121029 96 1 0.873156 0.312464 0.0536935 1177 1 0.753974 0.500885 0.119529 546 1 0.0630301 0.184789 0.495837 99 1 0.0687252 0.384531 0.0673004 104 1 0.136695 0.440047 0.0634071 226 1 0.0742081 0.450335 0.121242 229 1 0.126825 0.375727 0.135456 19 1 0.548714 0.00136653 0.058336 265 1 0.250521 0.00638232 0.237985 399 1 0.442478 0.0051812 0.437462 65 1 0.013382 0.251309 0.00485621 143 1 0.43864 0.00191848 0.186309 103 1 0.195233 0.369267 0.0611842 108 1 0.251689 0.420277 0.0546987 230 1 0.189032 0.429653 0.119762 233 1 0.246148 0.374706 0.125159 234 1 0.304974 0.434872 0.136514 107 1 0.304012 0.347258 0.066143 1305 1 0.755913 0.493287 0.248738 1283 1 0.0579747 0.488959 0.312582 111 1 0.41954 0.370177 0.0672681 112 1 0.354168 0.432917 0.0728413 237 1 0.366392 0.370227 0.129009 238 1 0.430399 0.430965 0.133122 578 1 0.0795431 0.302974 0.492861 116 1 0.501339 0.432268 0.0580372 241 1 0.482526 0.378881 0.134142 115 1 0.566084 0.382841 0.047451 120 1 0.640461 0.440452 0.0528615 242 1 0.56158 0.431715 0.110301 245 1 0.622856 0.376628 0.132713 38 1 0.190477 0.190911 0.00114873 566 1 0.677669 0.188694 0.496938 246 1 0.685867 0.443722 0.117934 119 1 0.690218 0.369414 0.0595599 123 1 0.818524 0.387424 0.0536907 124 1 0.748616 0.445361 0.0507502 249 1 0.757569 0.377445 0.116976 250 1 0.811663 0.438016 0.112322 510 1 0.915903 0.434147 0.36995 126 1 0.972249 0.449212 0.0017488 511 1 0.939026 0.368121 0.434918 1311 1 0.940591 0.48799 0.302905 23 1 0.691187 0.00148969 0.0509751 100 1 0.997448 0.449269 0.0774573 225 1 0.994329 0.376387 0.106942 127 1 0.929108 0.388978 0.050183 128 1 0.878847 0.45188 0.0501073 253 1 0.881601 0.366095 0.123638 254 1 0.935466 0.436971 0.127853 9 1 0.265799 0.000498899 0.0113705 163 1 0.0707224 0.12067 0.185834 136 1 0.131257 0.0632023 0.193464 258 1 0.065459 0.0641483 0.244256 264 1 0.130556 0.0663226 0.310906 291 1 0.066086 0.128529 0.320081 293 1 0.126742 0.121291 0.250636 260 1 0.00938821 0.064928 0.310796 289 1 0.001251 0.135354 0.26037 1421 1 0.370749 0.492516 0.371624 171 1 0.318207 0.106202 0.191346 262 1 0.200675 0.0637096 0.25129 167 1 0.192966 0.130268 0.188828 140 1 0.249489 0.0623364 0.178885 266 1 0.327336 0.0583692 0.25424 297 1 0.255416 0.124076 0.251139 268 1 0.267696 0.049357 0.312791 299 1 0.313521 0.111967 0.323083 144 1 0.372563 0.0565053 0.186376 175 1 0.435031 0.113593 0.19408 270 1 0.428226 0.0647762 0.253003 301 1 0.370036 0.119884 0.25734 303 1 0.437192 0.12239 0.317112 272 1 0.369799 0.0496622 0.318752 148 1 0.503398 0.0615788 0.194244 1179 1 0.8207 0.492422 0.181946 276 1 0.494555 0.0625772 0.305486 305 1 0.500672 0.120962 0.246257 179 1 0.57125 0.120613 0.172074 152 1 0.630617 0.0560961 0.186879 274 1 0.566035 0.0738323 0.245885 309 1 0.633561 0.118334 0.250946 280 1 0.618156 0.0540839 0.305725 307 1 0.567833 0.121863 0.308126 387 1 0.0697478 0.00643595 0.437573 156 1 0.752557 0.0516617 0.175757 183 1 0.692954 0.114931 0.177945 278 1 0.691187 0.0604386 0.239381 282 1 0.812934 0.0523742 0.259847 284 1 0.750159 0.0589086 0.308726 313 1 0.741775 0.12767 0.250088 187 1 0.819947 0.110361 0.178322 315 1 0.797582 0.118836 0.31243 311 1 0.688368 0.108002 0.310323 405 1 0.618834 0.00349033 0.374101 160 1 0.882446 0.0668656 0.199144 1035 1 0.302622 0.49573 0.0659356 132 1 0.0103734 0.0683327 0.190101 191 1 0.943116 0.116028 0.182531 286 1 0.94532 0.0727851 0.251805 288 1 0.876924 0.0607833 0.314023 317 1 0.86857 0.118622 0.264616 168 1 0.137856 0.183316 0.187528 195 1 0.0743311 0.235452 0.196622 200 1 0.109581 0.310019 0.193939 290 1 0.0721373 0.18299 0.253189 325 1 0.123716 0.247241 0.262148 322 1 0.062828 0.311933 0.263019 323 1 0.068578 0.249774 0.324761 296 1 0.119282 0.189087 0.333289 328 1 0.124947 0.317752 0.318061 196 1 0.0194401 0.292051 0.190091 164 1 0.0125664 0.183964 0.186864 172 1 0.251399 0.186957 0.190209 326 1 0.186542 0.302384 0.247595 327 1 0.191837 0.251715 0.321374 199 1 0.188637 0.240024 0.194065 294 1 0.184304 0.190726 0.254172 300 1 0.247523 0.180066 0.319473 329 1 0.243051 0.249727 0.262853 330 1 0.309259 0.310577 0.259672 331 1 0.30739 0.247344 0.307115 332 1 0.24043 0.322178 0.307556 204 1 0.25269 0.31284 0.201194 298 1 0.303916 0.183638 0.252862 203 1 0.309328 0.247044 0.182746 302 1 0.444861 0.178708 0.256232 176 1 0.370881 0.186633 0.199857 207 1 0.427222 0.247481 0.186114 304 1 0.367232 0.186046 0.30512 333 1 0.362061 0.256042 0.246677 334 1 0.44034 0.316548 0.252522 335 1 0.436936 0.254129 0.297573 336 1 0.375638 0.306719 0.308759 208 1 0.374193 0.312995 0.180471 308 1 0.507375 0.181129 0.311045 212 1 0.493034 0.310921 0.189424 180 1 0.500946 0.180957 0.19797 337 1 0.510236 0.251395 0.243778 184 1 0.62257 0.178732 0.191661 211 1 0.574451 0.248376 0.197664 216 1 0.624436 0.308785 0.182108 306 1 0.564385 0.174235 0.242509 312 1 0.638816 0.172643 0.316978 338 1 0.565728 0.315652 0.252899 339 1 0.56265 0.2578 0.308184 341 1 0.622307 0.231887 0.257868 344 1 0.63008 0.308303 0.312779 310 1 0.684542 0.183471 0.237051 340 1 0.515481 0.319836 0.303985 188 1 0.743699 0.173984 0.185743 342 1 0.690746 0.313526 0.237522 343 1 0.687366 0.249605 0.315489 314 1 0.803843 0.175876 0.251949 215 1 0.683977 0.243848 0.179279 345 1 0.740194 0.250409 0.236417 346 1 0.81016 0.322556 0.240466 220 1 0.752354 0.302462 0.179514 219 1 0.805974 0.243593 0.192992 348 1 0.753464 0.302853 0.298569 316 1 0.733869 0.17149 0.319092 347 1 0.806721 0.243829 0.299436 324 1 0.998384 0.309484 0.314138 321 1 0.00472738 0.249669 0.263241 292 1 -3.48524e-05 0.18787 0.317446 192 1 0.86915 0.189475 0.211274 223 1 0.950325 0.240918 0.198691 224 1 0.869733 0.294903 0.184127 318 1 0.939829 0.185931 0.252912 320 1 0.870373 0.182399 0.309988 349 1 0.861931 0.262995 0.258256 350 1 0.937321 0.291816 0.255468 352 1 0.873818 0.316685 0.309806 351 1 0.935468 0.241755 0.313017 1553 1 0.511316 0.49911 0.496922 101 1 0.123586 0.382663 0.0058635 227 1 0.0591683 0.372661 0.185434 232 1 0.127525 0.439844 0.182481 354 1 0.0590146 0.430447 0.251999 355 1 0.0507042 0.380194 0.313365 357 1 0.115009 0.375403 0.239623 360 1 0.124379 0.436125 0.306641 3 1 0.0569214 0.00126409 0.0601337 1161 1 0.235651 0.496119 0.118679 45 1 0.373823 0.134806 0.00641269 231 1 0.183001 0.37841 0.189905 236 1 0.241633 0.434285 0.189762 358 1 0.181967 0.439963 0.252226 361 1 0.267945 0.380422 0.248152 364 1 0.245792 0.435535 0.306225 363 1 0.323423 0.372394 0.317974 362 1 0.307359 0.447638 0.241571 235 1 0.321659 0.37203 0.193938 359 1 0.181426 0.381278 0.307363 514 1 0.0722279 0.065593 0.494081 622 1 0.439223 0.426951 0.481953 240 1 0.367489 0.429214 0.18921 239 1 0.424896 0.369324 0.187921 365 1 0.379354 0.368766 0.257408 366 1 0.436154 0.450428 0.248841 367 1 0.437607 0.368689 0.315361 368 1 0.379672 0.431514 0.318504 244 1 0.509221 0.435704 0.183107 372 1 0.499926 0.446236 0.304935 369 1 0.499547 0.384687 0.252067 243 1 0.552897 0.358223 0.186542 248 1 0.629755 0.432905 0.188826 370 1 0.560367 0.435859 0.245465 371 1 0.568381 0.381061 0.310445 373 1 0.620329 0.375681 0.24783 376 1 0.635822 0.463798 0.302935 509 1 0.86504 0.356649 0.383999 374 1 0.686696 0.442238 0.24301 375 1 0.691934 0.375482 0.312211 247 1 0.691398 0.379844 0.176753 252 1 0.748887 0.443305 0.176101 377 1 0.738038 0.378944 0.236258 380 1 0.747421 0.454819 0.328098 378 1 0.812566 0.436518 0.244632 379 1 0.786022 0.379454 0.298561 251 1 0.815193 0.38675 0.182723 484 1 0.00266108 0.42695 0.427328 353 1 0.998238 0.360195 0.241094 356 1 0.993109 0.430081 0.329548 228 1 0.0107157 0.435179 0.175066 255 1 0.941546 0.374804 0.175594 256 1 0.885752 0.424401 0.189602 381 1 0.883979 0.356512 0.233483 382 1 0.957127 0.432555 0.243227 383 1 0.944983 0.368109 0.311968 384 1 0.866107 0.406348 0.313546 386 1 0.0680251 0.068533 0.379664 392 1 0.13419 0.0689766 0.43098 419 1 0.0655568 0.127146 0.442593 421 1 0.127483 0.126004 0.379446 388 1 -0.000852562 0.0605331 0.438945 417 1 0.00686336 0.122699 0.38276 525 1 0.366203 0.00590256 0.497599 554 1 0.339524 0.194979 0.485974 598 1 0.701731 0.31107 0.49765 295 1 0.183162 0.132046 0.31645 82 1 0.557418 0.311008 0.0067994 423 1 0.203405 0.122946 0.444606 390 1 0.201726 0.0619705 0.371967 394 1 0.317135 0.0455882 0.374177 396 1 0.260996 0.0541055 0.430731 425 1 0.241628 0.130419 0.376684 427 1 0.310506 0.118174 0.431324 10 1 0.32116 0.0607328 0.000550233 398 1 0.439534 0.0525346 0.368472 400 1 0.377848 0.0553987 0.422199 429 1 0.375383 0.113342 0.367778 431 1 0.448512 0.101567 0.443121 630 1 0.691118 0.42488 0.498634 433 1 0.498581 0.11914 0.367541 404 1 0.519597 0.0640253 0.436275 402 1 0.559267 0.0527202 0.358355 408 1 0.6227 0.0617705 0.442596 435 1 0.572995 0.123536 0.430971 437 1 0.622568 0.112706 0.365199 481 1 0.997341 0.358809 0.382754 1165 1 0.367818 0.497661 0.140442 1309 1 0.891404 0.490047 0.243884 562 1 0.561654 0.181484 0.48601 1423 1 0.430604 0.490676 0.430924 406 1 0.682333 0.0544716 0.388791 412 1 0.754501 0.0730608 0.441638 439 1 0.680973 0.124113 0.433829 441 1 0.740139 0.110888 0.372033 443 1 0.807228 0.13019 0.433752 410 1 0.797682 0.0560852 0.372701 257 1 0.00295484 0.00763216 0.249672 89 1 0.757532 0.263667 0.0066509 319 1 0.946268 0.118886 0.314702 589 1 0.396991 0.249207 0.480039 414 1 0.943247 0.0660529 0.372274 416 1 0.87479 0.0469134 0.431722 445 1 0.872408 0.11783 0.360315 447 1 0.945373 0.129415 0.433991 601 1 0.749512 0.235626 0.498404 418 1 0.0553018 0.193968 0.386331 424 1 0.118797 0.183696 0.431976 450 1 0.0656293 0.315449 0.381068 451 1 0.0556372 0.259133 0.433577 453 1 0.127245 0.247558 0.384759 456 1 0.132483 0.312607 0.434768 610 1 0.0496199 0.44117 0.489946 503 1 0.685967 0.374213 0.431625 1289 1 0.238966 0.501693 0.251155 263 1 0.192968 0.0056835 0.300005 460 1 0.244439 0.306528 0.434564 428 1 0.255059 0.183217 0.443301 422 1 0.183996 0.196677 0.375745 426 1 0.316628 0.180418 0.371229 454 1 0.192119 0.315028 0.371582 455 1 0.189518 0.242617 0.454299 457 1 0.250268 0.243958 0.371817 458 1 0.298552 0.312051 0.360802 459 1 0.308851 0.250712 0.428288 1285 1 0.116481 0.491998 0.255369 506 1 0.812904 0.430023 0.370899 1417 1 0.249112 0.485407 0.377114 430 1 0.441701 0.199704 0.360128 432 1 0.389032 0.182223 0.425645 461 1 0.370803 0.245054 0.37149 462 1 0.454141 0.309045 0.373849 463 1 0.454277 0.246273 0.432995 464 1 0.372844 0.310179 0.428198 468 1 0.518381 0.310551 0.445361 436 1 0.492208 0.174056 0.430224 465 1 0.513761 0.253854 0.364145 440 1 0.620933 0.186598 0.437367 467 1 0.566655 0.245832 0.428722 469 1 0.621799 0.252399 0.372789 434 1 0.558688 0.181588 0.374504 466 1 0.563376 0.319869 0.365647 472 1 0.620616 0.310887 0.427869 505 1 0.743021 0.379794 0.382571 538 1 0.813374 0.0813273 0.497929 474 1 0.812251 0.288634 0.36542 471 1 0.691481 0.25158 0.440328 444 1 0.748957 0.18914 0.44206 473 1 0.748427 0.239163 0.367052 442 1 0.816563 0.187735 0.384058 438 1 0.678334 0.196422 0.382618 476 1 0.761744 0.31053 0.421663 470 1 0.676501 0.311353 0.374078 475 1 0.81564 0.243754 0.44874 1307 1 0.824716 0.487753 0.303139 449 1 -7.31866e-05 0.257654 0.379034 452 1 0.000553588 0.310402 0.442312 420 1 0.00423474 0.193711 0.437647 446 1 0.945693 0.185782 0.37554 480 1 0.879294 0.303477 0.443183 448 1 0.879126 0.178648 0.446186 478 1 0.932198 0.302689 0.367797 479 1 0.934984 0.240049 0.439826 477 1 0.882491 0.236655 0.372174 508 1 0.751799 0.438068 0.442169 1419 1 0.311483 0.502242 0.43804 488 1 0.139401 0.429364 0.447633 482 1 0.0748751 0.440477 0.379114 483 1 0.0609223 0.376964 0.441506 485 1 0.128904 0.377723 0.372408 512 1 0.886452 0.421826 0.435743 507 1 0.813739 0.379195 0.446697 502 1 0.68172 0.445788 0.359489 542 1 0.938851 0.0682873 0.488342 487 1 0.193327 0.373452 0.428016 490 1 0.324144 0.42509 0.378469 486 1 0.189241 0.433775 0.377087 489 1 0.24906 0.385354 0.369934 492 1 0.242173 0.44208 0.445249 491 1 0.30298 0.362211 0.435965 259 1 0.0751918 0.0118994 0.316801 590 1 0.435694 0.312226 0.498352 494 1 0.436055 0.433976 0.368849 495 1 0.462663 0.36695 0.430359 497 1 0.510472 0.380108 0.36046 496 1 0.368352 0.427843 0.439115 493 1 0.38457 0.37103 0.378788 501 1 0.630501 0.37889 0.365235 504 1 0.627284 0.440439 0.431882 500 1 0.51759 0.432052 0.438886 498 1 0.569345 0.451105 0.364118 499 1 0.571237 0.372667 0.436921 626 1 0.566143 0.446515 0.498248 545 1 0.00376218 0.121892 0.497779 285 1 0.876943 0.00418521 0.253792 1157 1 0.139656 0.497046 0.126973 385 1 0.0133585 0.00778122 0.372984 1409 1 0.995006 0.491869 0.37633 110 1 0.421707 0.444431 0.00793448 57 1 0.75032 0.13106 0.00662346 593 1 0.5067 0.24472 0.498846 565 1 0.630598 0.119456 0.498211 585 1 0.26582 0.241364 0.499759 25 1 0.753499 0.00893035 0.00308082 637 1 0.880594 0.360539 0.493989 558 1 0.439652 0.171778 0.496556 41 1 0.250472 0.126748 0.00466704 586 1 0.321745 0.30241 0.492484 105 1 0.265927 0.358039 0.00199529 121 1 0.748968 0.377222 0.00675747 602 1 0.805627 0.308463 0.497316 617 1 0.246973 0.361643 0.498163 520 1 0.119484 0.0721829 0.568929 547 1 0.0567147 0.120422 0.5675 642 1 0.0605527 0.0658549 0.627865 677 1 0.126463 0.135005 0.629719 516 1 -0.000793228 0.0511352 0.567637 98 1 0.0715222 0.448062 0.988917 646 1 0.195074 0.0655452 0.639861 524 1 0.254553 0.0688769 0.568231 551 1 0.192697 0.130853 0.569312 555 1 0.315257 0.119302 0.571498 650 1 0.326255 0.0668198 0.633068 681 1 0.257499 0.121413 0.62293 90 1 0.815844 0.30733 0.978163 528 1 0.379832 0.0697787 0.567435 559 1 0.444851 0.118971 0.571744 654 1 0.445887 0.056591 0.631284 685 1 0.389673 0.122225 0.625994 689 1 0.505996 0.116677 0.628854 532 1 0.501425 0.0619956 0.562994 536 1 0.623991 0.0552943 0.563254 563 1 0.565017 0.125033 0.561884 658 1 0.564152 0.0570042 0.630851 693 1 0.632805 0.115808 0.625878 18 1 0.551511 0.0590333 0.99471 5 1 0.130084 0.00953429 0.998606 671 1 0.931796 0.00305215 0.684179 614 1 0.19016 0.42383 0.515139 37 1 0.142579 0.121907 0.992345 540 1 0.756679 0.0708244 0.57039 567 1 0.677666 0.128052 0.55741 571 1 0.81729 0.125708 0.570236 662 1 0.691666 0.0608531 0.614085 666 1 0.810194 0.0663205 0.632979 697 1 0.747567 0.132373 0.62061 550 1 0.179995 0.171365 0.501344 673 1 0.998402 0.11608 0.624756 544 1 0.873249 0.0706477 0.567657 575 1 0.940873 0.122891 0.563819 670 1 0.92993 0.0599448 0.63007 701 1 0.889081 0.131842 0.623885 1689 1 0.736807 0.495821 0.636098 663 1 0.680879 0.00694437 0.683811 669 1 0.872443 0.00734611 0.626887 674 1 0.0554049 0.179878 0.624694 552 1 0.136652 0.184411 0.571996 579 1 0.0542564 0.239734 0.565753 584 1 0.113514 0.292945 0.573478 709 1 0.123614 0.242114 0.638961 706 1 0.0588879 0.310987 0.633783 580 1 0.995622 0.308554 0.558266 682 1 0.320274 0.18103 0.631023 678 1 0.200872 0.189542 0.624156 556 1 0.263569 0.181278 0.562752 583 1 0.197289 0.238821 0.549396 710 1 0.182885 0.295604 0.621175 713 1 0.245672 0.248958 0.617187 714 1 0.332149 0.303865 0.627787 587 1 0.315891 0.245045 0.565039 588 1 0.2565 0.29963 0.560426 577 1 0.00642403 0.246107 0.499577 522 1 0.309199 0.0694449 0.503449 686 1 0.445319 0.180423 0.630209 560 1 0.372853 0.174806 0.561585 591 1 0.428157 0.237125 0.556301 592 1 0.376767 0.302067 0.554258 717 1 0.377223 0.23427 0.624793 718 1 0.442728 0.295625 0.625064 721 1 0.502789 0.242329 0.632488 564 1 0.50846 0.184832 0.554721 596 1 0.518283 0.306729 0.563472 568 1 0.620147 0.187872 0.569561 595 1 0.55531 0.242525 0.57076 600 1 0.624536 0.31152 0.555745 690 1 0.558964 0.182211 0.632972 722 1 0.562203 0.308242 0.633951 725 1 0.631229 0.251034 0.630584 1565 1 0.875942 0.479427 0.499035 33 1 0.99181 0.132856 0.999343 526 1 0.436278 0.0636613 0.517299 1547 1 0.321973 0.495016 0.556104 694 1 0.687564 0.190329 0.626284 572 1 0.747246 0.196711 0.568958 599 1 0.684709 0.253102 0.554427 604 1 0.749972 0.308596 0.561346 729 1 0.736712 0.256784 0.631543 726 1 0.676773 0.32416 0.625437 698 1 0.802341 0.198614 0.638934 603 1 0.816013 0.251538 0.569909 730 1 0.811119 0.319315 0.629385 1947 1 0.827035 0.495085 0.934463 661 1 0.626559 0.000484791 0.627034 1793 1 0.996006 0.484571 0.754541 548 1 0.0042625 0.185055 0.564697 705 1 0.00795119 0.247313 0.633949 576 1 0.880031 0.183654 0.562893 607 1 0.945213 0.250019 0.574366 608 1 0.878752 0.304551 0.573346 702 1 0.945816 0.188006 0.634644 733 1 0.87456 0.241515 0.638212 734 1 0.939441 0.319223 0.637954 582 1 0.191731 0.305239 0.497595 114 1 0.57076 0.449494 0.997252 569 1 0.753676 0.125724 0.51479 611 1 0.0589659 0.371155 0.552918 616 1 0.110959 0.43862 0.561642 738 1 0.0591427 0.421152 0.63104 741 1 0.126098 0.366226 0.609 737 1 0.00519757 0.364963 0.617639 42 1 0.308816 0.189912 1.00184 1801 1 0.241194 0.491972 0.752468 549 1 0.124714 0.123612 0.504035 638 1 0.9427 0.423314 0.500605 1795 1 0.0798952 0.50077 0.806352 615 1 0.189443 0.350305 0.561701 619 1 0.32632 0.365718 0.556359 620 1 0.261696 0.425858 0.555777 742 1 0.200024 0.431295 0.618819 745 1 0.262514 0.358467 0.615278 746 1 0.321881 0.423414 0.609587 62 1 0.936565 0.194836 0.995879 927 1 0.927834 0.0050196 0.930338 647 1 0.194767 0.00308285 0.686708 623 1 0.446301 0.356272 0.575178 624 1 0.384693 0.429706 0.558568 749 1 0.388014 0.368198 0.63455 750 1 0.427655 0.443877 0.637205 789 1 0.633119 0.0113925 0.743067 118 1 0.693371 0.433829 0.99837 793 1 0.746829 0.00912197 0.749596 530 1 0.560277 0.0653703 0.502939 541 1 0.87264 0.000483334 0.499698 628 1 0.479452 0.42871 0.552224 753 1 0.508283 0.371353 0.616624 627 1 0.5725 0.371505 0.560323 632 1 0.618899 0.441187 0.566306 754 1 0.536276 0.447316 0.603302 757 1 0.620296 0.387388 0.620955 625 1 0.505561 0.370067 0.509726 631 1 0.685935 0.370053 0.560614 636 1 0.742775 0.431522 0.56053 758 1 0.668282 0.441908 0.630658 761 1 0.744234 0.378059 0.613696 762 1 0.803772 0.438264 0.626331 635 1 0.829306 0.362481 0.563769 919 1 0.686683 0.00288297 0.948113 897 1 1.00126 0.0152432 0.867365 1671 1 0.184022 0.484898 0.672949 1665 1 0.988401 0.491262 0.650882 612 1 0.993274 0.431294 0.570367 639 1 0.93155 0.362352 0.560425 640 1 0.881995 0.430557 0.558822 765 1 0.879353 0.373671 0.623683 766 1 0.930571 0.434037 0.639399 1021 1 0.863251 0.380186 0.875939 46 1 0.437599 0.182515 0.994737 675 1 0.0695834 0.123738 0.68783 648 1 0.12634 0.0582919 0.683276 770 1 0.0648734 0.0546171 0.761085 805 1 0.111493 0.125689 0.763015 776 1 0.130526 0.0643865 0.817327 803 1 0.0582228 0.124866 0.821419 518 1 0.189343 0.0678568 0.522961 772 1 0.999197 0.0728225 0.809949 613 1 0.12934 0.372237 0.509516 774 1 0.205574 0.0581839 0.746462 679 1 0.176286 0.13379 0.694977 807 1 0.187328 0.128922 0.800503 652 1 0.263206 0.0536113 0.693804 683 1 0.319462 0.132762 0.691907 778 1 0.310093 0.0664434 0.750302 780 1 0.251672 0.0680278 0.818581 809 1 0.257045 0.130103 0.751678 811 1 0.308953 0.129778 0.815355 1927 1 0.177492 0.490945 0.944433 687 1 0.437809 0.135074 0.701602 656 1 0.381683 0.0572173 0.691041 782 1 0.445393 0.0600293 0.763184 784 1 0.365069 0.0587097 0.810888 813 1 0.379319 0.12349 0.756901 815 1 0.443808 0.121919 0.814987 788 1 0.506568 0.0555537 0.820425 923 1 0.807105 0.0107831 0.940682 660 1 0.501312 0.0614201 0.690428 817 1 0.502402 0.128513 0.757558 664 1 0.618135 0.0663291 0.690149 691 1 0.56004 0.125495 0.691233 786 1 0.56466 0.068407 0.755709 819 1 0.560328 0.122455 0.815474 821 1 0.626228 0.125539 0.762982 792 1 0.620942 0.0691399 0.816997 539 1 0.815726 0.00343228 0.561163 1019 1 0.801515 0.381963 0.942037 1024 1 0.890191 0.442669 0.938776 1929 1 0.250897 0.500074 0.883178 695 1 0.69099 0.119127 0.697062 699 1 0.803814 0.134229 0.681247 790 1 0.688727 0.0629733 0.751189 668 1 0.743568 0.0677211 0.67635 794 1 0.808233 0.0585816 0.750065 796 1 0.750273 0.063013 0.80975 823 1 0.683157 0.124458 0.813009 825 1 0.74964 0.121352 0.742366 827 1 0.80306 0.130363 0.813486 529 1 0.501183 0.00648414 0.506452 1667 1 0.0702545 0.491452 0.701943 801 1 0.017878 0.12229 0.751484 644 1 0.00780911 0.066073 0.700848 672 1 0.870123 0.0748916 0.695052 703 1 0.94919 0.115635 0.707172 798 1 0.94061 0.0514792 0.753121 800 1 0.86633 0.0578959 0.811779 829 1 0.868083 0.124995 0.7665 831 1 0.940735 0.125737 0.813735 707 1 0.0669627 0.25393 0.688929 712 1 0.123995 0.319381 0.677755 808 1 0.133606 0.193717 0.81744 680 1 0.126292 0.191531 0.697509 802 1 0.0580881 0.194035 0.756614 834 1 0.0539715 0.30961 0.754408 835 1 0.0702148 0.251113 0.81234 837 1 0.122527 0.258933 0.750769 840 1 0.125237 0.310903 0.824252 716 1 0.270661 0.320983 0.684817 715 1 0.313564 0.241916 0.690276 839 1 0.185474 0.259669 0.829304 684 1 0.251713 0.202551 0.681179 711 1 0.18955 0.253114 0.689188 806 1 0.189343 0.198419 0.745919 810 1 0.320624 0.191992 0.753735 838 1 0.190592 0.313895 0.744657 841 1 0.250874 0.243018 0.761431 842 1 0.31399 0.295308 0.746015 844 1 0.254736 0.310935 0.808023 843 1 0.307189 0.253893 0.811603 812 1 0.247307 0.187653 0.814995 720 1 0.383342 0.306655 0.690439 688 1 0.378867 0.195841 0.698353 719 1 0.453679 0.25657 0.69955 814 1 0.452301 0.194312 0.760686 816 1 0.376947 0.178423 0.827594 845 1 0.387651 0.249562 0.751261 846 1 0.440361 0.315926 0.749525 848 1 0.379811 0.315076 0.802185 847 1 0.43264 0.251706 0.817377 724 1 0.505445 0.308845 0.68375 852 1 0.500485 0.306224 0.817565 820 1 0.49086 0.194048 0.829385 692 1 0.499192 0.179909 0.686996 849 1 0.51071 0.245278 0.763146 818 1 0.570153 0.182568 0.741173 696 1 0.641398 0.182927 0.685012 723 1 0.567049 0.250101 0.692472 824 1 0.628044 0.196963 0.823274 853 1 0.634362 0.239732 0.758002 856 1 0.621285 0.320019 0.814337 850 1 0.55851 0.306778 0.74992 851 1 0.566694 0.256725 0.825507 728 1 0.632984 0.323653 0.692285 822 1 0.68885 0.184818 0.757259 700 1 0.743836 0.191384 0.697881 826 1 0.818976 0.184078 0.753628 727 1 0.686144 0.258258 0.689294 731 1 0.815606 0.247323 0.702101 854 1 0.675718 0.307933 0.752753 857 1 0.746206 0.258693 0.746633 859 1 0.802904 0.261844 0.8141 860 1 0.73886 0.321248 0.826298 828 1 0.749299 0.198793 0.817685 855 1 0.69081 0.25198 0.814816 858 1 0.799329 0.320465 0.762513 732 1 0.7399 0.32227 0.693956 708 1 0.998825 0.306306 0.69385 804 1 0.996802 0.181345 0.8063 836 1 0.996772 0.311601 0.818859 676 1 0.00684498 0.181565 0.692723 833 1 -0.000332978 0.259737 0.760563 735 1 0.944316 0.251927 0.7048 830 1 0.937192 0.18658 0.755637 704 1 0.871334 0.181069 0.698997 736 1 0.872321 0.318292 0.682439 832 1 0.866169 0.185238 0.810259 861 1 0.877688 0.25643 0.744652 864 1 0.870367 0.324343 0.817676 863 1 0.924774 0.252404 0.803592 862 1 0.937565 0.3101 0.753295 34 1 0.0817242 0.180423 0.996098 739 1 0.0514445 0.373116 0.701635 744 1 0.135686 0.404834 0.689589 866 1 0.0677881 0.4354 0.757566 869 1 0.127634 0.364291 0.755621 872 1 0.136041 0.439361 0.798672 867 1 0.0757071 0.377875 0.810963 865 1 0.995713 0.373477 0.768842 1543 1 0.187994 0.484944 0.56052 1022 1 0.937146 0.428828 0.861333 899 1 0.0552067 -0.00136842 0.929307 633 1 0.75307 0.379665 0.504484 743 1 0.19695 0.361827 0.663307 747 1 0.310986 0.38961 0.685953 748 1 0.247876 0.439201 0.693589 870 1 0.18863 0.425039 0.746142 871 1 0.195549 0.363326 0.808324 873 1 0.250941 0.372209 0.749786 874 1 0.307901 0.439774 0.753559 875 1 0.321365 0.369122 0.805342 876 1 0.245957 0.428628 0.815104 1799 1 0.197322 0.496355 0.823153 109 1 0.377572 0.375775 1.00226 797 1 0.864488 0.00739925 0.740892 751 1 0.453706 0.370432 0.691569 752 1 0.374416 0.443539 0.701449 877 1 0.371672 0.371114 0.741139 878 1 0.449601 0.436262 0.735531 879 1 0.434897 0.37147 0.802382 880 1 0.38348 0.438485 0.808559 756 1 0.510034 0.43142 0.682118 1017 1 0.765587 0.386833 0.870317 881 1 0.510223 0.372983 0.748723 884 1 0.495834 0.429418 0.806619 755 1 0.563993 0.377886 0.681078 760 1 0.611572 0.446979 0.694808 882 1 0.55866 0.439022 0.751724 883 1 0.554917 0.375676 0.828504 885 1 0.617291 0.381724 0.757394 888 1 0.615151 0.440755 0.812042 887 1 0.68787 0.380674 0.816935 759 1 0.673878 0.391367 0.685545 763 1 0.797642 0.370948 0.689143 764 1 0.741408 0.435976 0.697203 886 1 0.67265 0.436283 0.752501 889 1 0.735456 0.374061 0.750919 890 1 0.794701 0.423626 0.745325 892 1 0.7459 0.440172 0.802061 891 1 0.809663 0.377387 0.809343 125 1 0.874302 0.367578 0.990146 740 1 0.995782 0.426671 0.690559 868 1 0.00494423 0.434499 0.811835 767 1 0.929546 0.367931 0.700073 768 1 0.858297 0.434147 0.685045 893 1 0.860196 0.378294 0.74083 894 1 0.924764 0.430266 0.748432 895 1 0.925601 0.374401 0.81032 896 1 0.858918 0.439914 0.810478 1020 1 0.752309 0.446778 0.931014 643 1 0.0672311 0.00676494 0.701434 1675 1 0.317221 0.484658 0.663423 898 1 0.0613656 0.0630173 0.868226 904 1 0.123655 0.0751259 0.921774 931 1 0.0694937 0.135335 0.930972 933 1 0.138094 0.135103 0.870813 929 1 0.00236131 0.130199 0.877928 900 1 0.994383 0.0749211 0.942648 523 1 0.317054 0.014835 0.565368 795 1 0.80383 0.0104227 0.821815 902 1 0.191486 0.0644111 0.882345 908 1 0.260042 0.0628228 0.941534 935 1 0.197159 0.130472 0.930539 937 1 0.25864 0.125522 0.876892 939 1 0.311682 0.122772 0.93632 906 1 0.309172 0.061501 0.867961 657 1 0.503991 0.00918264 0.628989 1817 1 0.74529 0.500766 0.74829 26 1 0.812734 0.0634912 0.996121 535 1 0.689673 0.00759371 0.555853 910 1 0.443395 0.0481133 0.869012 912 1 0.384922 0.0527096 0.936597 941 1 0.379162 0.112514 0.877704 943 1 0.437362 0.112478 0.95304 945 1 0.496657 0.123595 0.880795 916 1 0.503603 0.0624516 0.933307 925 1 0.854719 0.00452411 0.878801 1551 1 0.427879 0.490271 0.565312 1023 1 0.939769 0.374638 0.925577 93 1 0.874642 0.254823 0.987877 1925 1 0.13666 0.497285 0.870083 914 1 0.561651 0.0579226 0.876146 920 1 0.615684 0.0519085 0.935807 947 1 0.559551 0.123682 0.931625 949 1 0.616019 0.124332 0.87368 1537 1 0.997004 0.495193 0.505349 73 1 0.252002 0.248931 0.996833 573 1 0.884574 0.122166 0.502371 1005 1 0.372345 0.380741 0.870639 1669 1 0.115979 0.493673 0.636089 1016 1 0.631721 0.444565 0.939791 1009 1 0.488395 0.368177 0.87686 918 1 0.676665 0.0653261 0.884339 924 1 0.739446 0.0646824 0.937612 951 1 0.677455 0.129606 0.938196 953 1 0.741824 0.128242 0.879599 922 1 0.807514 0.0727506 0.876135 955 1 0.804646 0.12974 0.943862 22 1 0.675882 0.065562 0.997967 1695 1 0.927657 0.491638 0.700228 1014 1 0.689265 0.444283 0.861571 1006 1 0.438934 0.450173 0.862196 781 1 0.371686 0.00500199 0.750594 94 1 0.942767 0.308913 0.993551 926 1 0.92827 0.0655167 0.877046 928 1 0.865281 0.0710357 0.929173 957 1 0.868745 0.12817 0.872464 959 1 0.938038 0.133409 0.924102 1545 1 0.256376 0.497637 0.503224 659 1 0.561049 0.00831303 0.691219 930 1 0.0543391 0.20128 0.865714 936 1 0.132334 0.188641 0.939134 963 1 0.0688132 0.254779 0.941527 965 1 0.120503 0.257652 0.886449 968 1 0.129665 0.322635 0.937982 962 1 0.051998 0.307924 0.880302 932 1 0.997741 0.198185 0.941885 964 1 0.997716 0.312824 0.939553 1567 1 0.938794 0.487399 0.561508 966 1 0.191549 0.319672 0.88808 934 1 0.197489 0.191123 0.880979 938 1 0.311915 0.195425 0.875408 940 1 0.259947 0.18993 0.941708 967 1 0.191033 0.253178 0.93274 969 1 0.251958 0.254364 0.872047 970 1 0.32039 0.311859 0.862201 971 1 0.31365 0.25703 0.938101 972 1 0.258339 0.308182 0.938376 533 1 0.6129 0.00353819 0.506633 2 1 0.0647357 0.0502504 0.99087 976 1 0.363557 0.321856 0.938613 973 1 0.375356 0.250306 0.864665 944 1 0.368819 0.179409 0.9388 942 1 0.441374 0.175044 0.895025 975 1 0.43699 0.253035 0.937368 974 1 0.431345 0.310733 0.875805 948 1 0.503838 0.197166 0.943427 977 1 0.497884 0.254112 0.885279 1012 1 0.499641 0.460274 0.935019 1941 1 0.627182 0.497764 0.869112 980 1 0.50252 0.314056 0.931585 946 1 0.555033 0.1845 0.876698 984 1 0.626371 0.306688 0.946601 978 1 0.566051 0.319889 0.879251 981 1 0.617845 0.256429 0.89202 979 1 0.560126 0.250232 0.942411 952 1 0.619104 0.183156 0.935559 1008 1 0.385711 0.438677 0.931999 1011 1 0.559626 0.380224 0.940523 983 1 0.681466 0.235702 0.9456 988 1 0.740978 0.307487 0.941992 954 1 0.810894 0.192618 0.886828 982 1 0.682331 0.309511 0.887534 986 1 0.799991 0.301807 0.889284 987 1 0.808134 0.24226 0.942136 985 1 0.737115 0.245808 0.880955 950 1 0.687989 0.186515 0.876156 956 1 0.742123 0.187264 0.948549 961 1 0.988083 0.244268 0.851732 960 1 0.875745 0.190876 0.936923 992 1 0.882739 0.311569 0.935379 991 1 0.939487 0.247349 0.929848 990 1 0.932192 0.312302 0.868165 989 1 0.868313 0.255012 0.879209 958 1 0.927933 0.191616 0.863856 1010 1 0.556412 0.442261 0.874649 570 1 0.813858 0.176244 0.500264 66 1 0.0698777 0.327025 1.00156 993 1 0.99814 0.373222 0.870495 996 1 0.00811803 0.457013 0.922 995 1 0.0698222 0.377218 0.933566 1000 1 0.128727 0.428116 0.938659 994 1 0.0785669 0.439214 0.869247 997 1 0.13216 0.373596 0.872516 1015 1 0.691528 0.379211 0.931262 117 1 0.625398 0.381386 0.992024 998 1 0.186941 0.432743 0.880603 1018 1 0.81509 0.449319 0.877918 999 1 0.200754 0.378231 0.94332 553 1 0.24495 0.124791 0.512439 1003 1 0.314347 0.378686 0.927802 1004 1 0.253811 0.440098 0.940141 1001 1 0.255648 0.366124 0.875598 1002 1 0.330136 0.451289 0.872533 1013 1 0.626954 0.383265 0.876812 665 1 0.739597 0.00308836 0.626055 1007 1 0.439974 0.375165 0.932601 667 1 0.798982 0.00391006 0.689776 651 1 0.32286 0.00444817 0.683585 581 1 0.120313 0.236194 0.519289 61 1 0.869894 0.124039 0.984871 69 1 0.132798 0.24778 0.991381 769 1 0.00247514 0.00606499 0.756186 641 1 0.994021 0.00782668 0.636512 921 1 0.739977 0.0133991 0.873053 645 1 0.125911 0.0133496 0.62217 609 1 0.993693 0.368105 0.499501 534 1 0.694205 0.0644564 0.508526 634 1 0.802983 0.442205 0.511319 537 1 0.755935 0.00980972 0.497739 1687 1 0.670713 0.497372 0.68666 58 1 0.821456 0.18816 0.995762 543 1 0.933483 0.00718876 0.565534 515 1 0.0687268 0.00211202 0.558718 81 1 0.49411 0.259264 0.995162 605 1 0.871823 0.238154 0.507667 1539 1 0.0479169 0.493943 0.591345 787 1 0.571082 0.000748198 0.811635 6 1 0.198467 0.0532124 0.998825 54 1 0.675001 0.178463 0.999837 1673 1 0.248195 0.492862 0.621208 1823 1 0.927538 0.491391 0.808734 649 1 0.250452 0.00714321 0.624116 30 1 0.933437 0.0523442 0.996387 653 1 0.37895 0.00997412 0.61564 113 1 0.502067 0.376188 0.994431 561 1 0.498244 0.119812 0.507348 70 1 0.186391 0.308723 0.997168 597 1 0.61723 0.247419 0.502972 557 1 0.370899 0.124992 0.50278 1685 1 0.589002 0.497343 0.63002 1033 1 0.244702 0.498192 0.995414 799 1 0.929589 0.0045761 0.830962 773 1 0.129405 0.00972938 0.757891 531 1 0.564092 0.00327346 0.569308 917 1 0.630032 0.00269852 0.872503 78 1 0.439115 0.321842 0.996373 97 1 0.00461453 0.374074 0.998675 53 1 0.61427 0.117742 0.997112 86 1 0.682292 0.317677 0.996064 1557 1 0.62951 0.487546 0.503293 29 1 0.866811 0.00194934 0.987609 574 1 0.944124 0.188366 0.502859 1541 1 0.119126 0.497553 0.504977 106 1 0.305832 0.428343 0.993804 77 1 0.375994 0.239108 0.993437 517 1 0.137691 0.000757272 0.511744 629 1 0.637312 0.369592 0.500184 1032 1 0.133235 0.561034 0.0650331 1059 1 0.0586676 0.637557 0.0726162 1154 1 0.0739497 0.580621 0.127382 1189 1 0.131222 0.62961 0.121198 1550 1 0.439669 0.54319 0.492639 513 1 1.00283 0.998181 0.501329 1114 1 0.817906 0.815522 0.00978496 269 1 0.373546 0.995092 0.256814 1036 1 0.241128 0.560142 0.0493492 1063 1 0.191115 0.630051 0.0563151 1158 1 0.186827 0.57201 0.127304 1162 1 0.300596 0.561395 0.123536 1193 1 0.253364 0.637328 0.126995 1067 1 0.301713 0.612293 0.0517501 1625 1 0.76096 0.75115 0.488216 1295 1 0.422838 0.507177 0.316779 1040 1 0.375127 0.543647 0.0710112 1071 1 0.437419 0.619215 0.0694525 1166 1 0.433408 0.560372 0.130668 1197 1 0.370957 0.622012 0.124942 1201 1 0.494322 0.631289 0.12229 1505 1 0.000407664 0.883093 0.378181 1175 1 0.687789 0.504505 0.178251 1055 1 0.950092 0.507398 0.0623324 1044 1 0.495512 0.563475 0.0650434 1048 1 0.63466 0.569894 0.0551154 1075 1 0.562129 0.612496 0.0498027 1170 1 0.573004 0.562863 0.116387 1205 1 0.629269 0.630995 0.117921 1411 1 0.0612997 0.498157 0.442046 151 1 0.687651 0.990553 0.16032 1605 1 0.104331 0.760778 0.493799 1050 1 0.819265 0.572087 0.0114147 139 1 0.322415 0.998076 0.194765 1079 1 0.687893 0.634514 0.0755269 1052 1 0.753471 0.572607 0.0574249 1083 1 0.813201 0.628993 0.0736585 1174 1 0.687942 0.566189 0.126013 1178 1 0.813546 0.553115 0.120907 1209 1 0.751518 0.624505 0.126565 1641 1 0.245393 0.878659 0.492431 415 1 0.942326 0.998241 0.442503 1028 1 0.00816142 0.565529 0.0751015 1185 1 0.00180562 0.631734 0.126592 1056 1 0.879923 0.565408 0.0750482 1087 1 0.951882 0.632446 0.0645866 1182 1 0.942712 0.568383 0.124745 1213 1 0.885437 0.634596 0.122144 413 1 0.886334 0.99818 0.376267 1163 1 0.300421 0.508392 0.18435 1106 1 0.557258 0.820564 0.00666078 1598 1 0.93495 0.690689 0.495428 1064 1 0.127839 0.693499 0.0685189 1091 1 0.0699725 0.764429 0.0740933 1186 1 0.0614845 0.698755 0.128874 1221 1 0.129525 0.746583 0.133732 1096 1 0.136137 0.808968 0.0632818 1218 1 0.0523898 0.826014 0.124584 1060 1 0.995243 0.701652 0.0718728 1092 1 0.995025 0.822291 0.0655567 1281 1 0.992782 0.502444 0.244237 1194 1 0.315522 0.701094 0.130761 1068 1 0.245301 0.689668 0.0684342 1095 1 0.195861 0.755594 0.0599096 1099 1 0.308075 0.751091 0.0679935 1190 1 0.190031 0.683934 0.121778 1222 1 0.194195 0.82527 0.127545 1225 1 0.25113 0.751185 0.122934 1100 1 0.254734 0.810956 0.0617377 1226 1 0.305526 0.808524 0.125233 1601 1 0.00648317 0.750225 0.497759 1072 1 0.361005 0.679988 0.0676568 1103 1 0.442766 0.745477 0.0579489 1104 1 0.372086 0.824643 0.0675941 1198 1 0.427271 0.679658 0.120866 1229 1 0.368399 0.760499 0.119022 1230 1 0.446162 0.806941 0.130616 1076 1 0.485598 0.68114 0.0617381 1233 1 0.507083 0.75477 0.12522 1108 1 0.498319 0.814404 0.0755306 27 1 0.815712 0.999977 0.0587262 1080 1 0.6163 0.669915 0.0458205 1107 1 0.550679 0.754196 0.0576603 1202 1 0.564899 0.678069 0.123355 1234 1 0.569116 0.813227 0.129211 1237 1 0.619634 0.749381 0.120215 1112 1 0.625733 0.804603 0.0626961 1653 1 0.630191 0.865702 0.498885 1084 1 0.756306 0.673925 0.0606281 1206 1 0.680165 0.698047 0.122837 1111 1 0.687163 0.739551 0.0548369 1115 1 0.816287 0.747896 0.071034 1116 1 0.743666 0.818373 0.0639308 1210 1 0.810691 0.693285 0.133089 1238 1 0.691879 0.809235 0.122353 1241 1 0.746861 0.750536 0.129485 1242 1 0.81633 0.813066 0.104476 1590 1 0.702385 0.693742 0.495736 1217 1 0.00655718 0.756247 0.131706 1214 1 0.939987 0.691333 0.124311 1088 1 0.871121 0.694066 0.0678465 1119 1 0.937299 0.752056 0.0664051 1120 1 0.886809 0.807588 0.0580872 1245 1 0.879082 0.750244 0.136912 1246 1 0.939288 0.80936 0.126067 1070 1 0.42958 0.686464 0.00650336 1123 1 0.0596838 0.887568 0.0663159 1128 1 0.122979 0.944939 0.0572074 1250 1 0.0666657 0.943325 0.12586 1253 1 0.121937 0.874647 0.114281 1047 1 0.68657 0.505201 0.0554006 1124 1 0.0031593 0.93658 0.0666966 287 1 0.937224 0.994572 0.306754 1536 1 0.869799 0.951279 0.430329 133 1 0.122048 0.996789 0.136105 1586 1 0.570195 0.707681 0.499556 1027 1 0.0640324 0.513958 0.0707043 1127 1 0.190401 0.87645 0.0657779 1131 1 0.31179 0.874753 0.0635236 1132 1 0.245847 0.935893 0.0728158 1254 1 0.182995 0.940973 0.129101 1257 1 0.258976 0.876393 0.13629 1258 1 0.32436 0.930958 0.132833 149 1 0.616507 0.992052 0.104045 1135 1 0.437595 0.867413 0.0654568 1136 1 0.365456 0.931483 0.0513803 1261 1 0.37006 0.866144 0.134021 1262 1 0.434643 0.939427 0.126459 1299 1 0.563008 0.501009 0.30015 281 1 0.745122 1.00039 0.26209 129 1 1.0006 0.993881 0.137773 1140 1 0.49759 0.929771 0.0649851 1265 1 0.498347 0.873021 0.13379 1139 1 0.552353 0.869766 0.0739318 1144 1 0.614542 0.931442 0.0570055 1266 1 0.565693 0.923317 0.125338 1269 1 0.626279 0.866736 0.117354 1549 1 0.377392 0.495945 0.497437 1057 1 0.0100486 0.643233 0.000380593 1143 1 0.684961 0.873324 0.0537199 1148 1 0.752381 0.936153 0.0626681 1270 1 0.676906 0.92777 0.105346 1273 1 0.742616 0.874345 0.125777 1274 1 0.81732 0.94831 0.132697 1147 1 0.808221 0.879711 0.0679622 1293 1 0.381731 0.502761 0.247338 1249 1 0.989633 0.889199 0.12485 1029 1 0.121273 0.501545 0.00901012 1618 1 0.557474 0.805777 0.496329 1151 1 0.929835 0.88225 0.0652406 1152 1 0.876235 0.952498 0.071984 1277 1 0.866018 0.877353 0.124521 1278 1 0.93645 0.940872 0.128817 1533 1 0.886348 0.891964 0.372833 1160 1 0.124317 0.55187 0.18899 1187 1 0.0596389 0.62767 0.190236 1282 1 0.0554381 0.552936 0.246384 1288 1 0.108349 0.57531 0.318683 1315 1 0.0401748 0.615772 0.323041 1317 1 0.120263 0.636554 0.248692 1156 1 0.999082 0.576276 0.195346 1191 1 0.177629 0.634601 0.190221 1319 1 0.176227 0.631448 0.306555 1164 1 0.239083 0.567913 0.19813 1195 1 0.314153 0.623003 0.180706 1286 1 0.169737 0.561683 0.265295 1292 1 0.237911 0.562719 0.306394 1321 1 0.244819 0.634852 0.250765 1323 1 0.305677 0.623025 0.301422 1290 1 0.306611 0.559565 0.250778 271 1 0.425484 0.985969 0.309516 1413 1 0.137925 0.501129 0.385215 1291 1 0.318934 0.510607 0.307187 1168 1 0.36209 0.565308 0.187143 1199 1 0.426877 0.623958 0.188477 1294 1 0.436035 0.559093 0.250092 1296 1 0.370406 0.570188 0.320039 1325 1 0.373233 0.620369 0.24623 1327 1 0.434114 0.622123 0.305384 1329 1 0.49739 0.621183 0.245113 1172 1 0.497511 0.561766 0.18752 1300 1 0.495549 0.560016 0.299613 137 1 0.251871 0.993853 0.127691 1102 1 0.443431 0.81075 0.00129525 1514 1 0.315598 0.927065 0.38465 1203 1 0.552921 0.619137 0.182589 1176 1 0.62598 0.568962 0.189452 1298 1 0.560023 0.565583 0.236581 1331 1 0.560577 0.624349 0.306652 1333 1 0.616072 0.623112 0.251498 1304 1 0.622794 0.553174 0.304471 1602 1 0.0522865 0.822853 0.486641 1511 1 0.181348 0.875148 0.433815 1303 1 0.697441 0.515133 0.315075 1510 1 0.182922 0.927564 0.370463 1153 1 0.00159339 0.510011 0.132246 1302 1 0.69164 0.571547 0.243349 1180 1 0.748706 0.556252 0.190707 1207 1 0.689478 0.620189 0.189493 1211 1 0.805694 0.6306 0.183435 1308 1 0.775273 0.56337 0.301551 1335 1 0.692102 0.615278 0.306401 1337 1 0.749545 0.63156 0.245447 1339 1 0.819866 0.635292 0.309812 1306 1 0.811308 0.55803 0.231348 1513 1 0.244071 0.864521 0.38595 1171 1 0.566545 0.500389 0.181876 1621 1 0.631923 0.762306 0.488169 1313 1 0.994634 0.631765 0.246013 1284 1 0.995696 0.551982 0.311974 1184 1 0.875629 0.547982 0.185209 1215 1 0.933226 0.632645 0.183578 1310 1 0.936715 0.562159 0.238991 1312 1 0.865766 0.561073 0.299948 1341 1 0.869597 0.620156 0.243452 1343 1 0.917332 0.619389 0.305895 1110 1 0.674344 0.813122 0.00331751 1219 1 0.0568602 0.751833 0.194018 1314 1 0.065473 0.693911 0.260349 1320 1 0.115569 0.687513 0.318674 1192 1 0.11853 0.692114 0.1844 1346 1 0.0543641 0.807616 0.255415 1349 1 0.127602 0.743393 0.256227 1347 1 0.0551803 0.74417 0.320359 1352 1 0.107359 0.802974 0.31769 1220 1 0.000596447 0.809414 0.188338 1224 1 0.116505 0.817024 0.180787 1196 1 0.250121 0.686047 0.187921 1324 1 0.259392 0.687834 0.310058 1223 1 0.193646 0.742251 0.191136 1228 1 0.25118 0.810718 0.181423 1227 1 0.313994 0.760278 0.197984 1318 1 0.188166 0.692449 0.251458 1322 1 0.319501 0.693092 0.262319 1350 1 0.194828 0.805546 0.253487 1353 1 0.249945 0.750372 0.261307 1355 1 0.310315 0.752825 0.317228 1354 1 0.305525 0.815172 0.263189 1351 1 0.187248 0.7546 0.309297 1356 1 0.249897 0.814006 0.319405 1232 1 0.379128 0.80414 0.194055 1328 1 0.381634 0.682087 0.307549 1200 1 0.373399 0.684068 0.19405 1231 1 0.43115 0.745856 0.179053 1326 1 0.447724 0.686786 0.248555 1357 1 0.38776 0.745944 0.255059 1358 1 0.441151 0.807455 0.245041 1359 1 0.444851 0.742305 0.313211 1360 1 0.38706 0.804325 0.302943 1204 1 0.494516 0.6813 0.190735 1332 1 0.493796 0.668262 0.314506 1361 1 0.495211 0.746843 0.237131 1364 1 0.506483 0.821925 0.306303 1236 1 0.506984 0.814988 0.182385 1208 1 0.627024 0.675718 0.187371 1240 1 0.643076 0.817108 0.185844 1235 1 0.569772 0.73934 0.179238 1330 1 0.558555 0.677535 0.237407 1336 1 0.625739 0.683716 0.308077 1363 1 0.553606 0.738302 0.306793 1365 1 0.616654 0.74081 0.24343 1368 1 0.629558 0.805763 0.314848 1362 1 0.555745 0.799449 0.236506 1338 1 0.818583 0.690248 0.250477 1212 1 0.747121 0.69403 0.192478 1334 1 0.680354 0.68186 0.245354 1239 1 0.686731 0.751977 0.184975 1244 1 0.749028 0.814725 0.190383 1366 1 0.686083 0.807072 0.256261 1367 1 0.701421 0.74206 0.304875 1369 1 0.754698 0.75545 0.253756 1370 1 0.809227 0.811373 0.258672 1371 1 0.822831 0.753225 0.318935 1340 1 0.762237 0.68408 0.304886 1243 1 0.814836 0.747858 0.192434 1372 1 0.753379 0.810408 0.320684 1348 1 1.0001 0.815635 0.314349 1188 1 0.00642665 0.694041 0.181044 1316 1 0.991819 0.685395 0.316389 1345 1 0.998703 0.74541 0.264242 1342 1 0.941162 0.693956 0.243705 1216 1 0.876939 0.684748 0.181306 1247 1 0.940871 0.747191 0.18817 1373 1 0.869395 0.751679 0.251497 1374 1 0.938376 0.808246 0.243504 1375 1 0.946689 0.747105 0.321212 1376 1 0.88743 0.814741 0.31907 1344 1 0.884929 0.695426 0.320544 1248 1 0.860768 0.81931 0.184841 1301 1 0.631698 0.506035 0.23618 1515 1 0.328513 0.859559 0.432246 1256 1 0.115988 0.927083 0.19205 1251 1 0.056614 0.872527 0.192329 1378 1 0.059712 0.943552 0.251805 1379 1 0.0548703 0.871643 0.320705 1381 1 0.104363 0.873459 0.257873 1384 1 0.128477 0.945254 0.314676 1377 1 0.999855 0.875273 0.253319 277 1 0.63119 0.986901 0.24403 1382 1 0.188505 0.935543 0.252037 1259 1 0.319568 0.870486 0.198392 1260 1 0.268826 0.936053 0.193895 1383 1 0.187897 0.864096 0.310039 1255 1 0.185078 0.87475 0.187069 1385 1 0.245109 0.872171 0.243107 1386 1 0.31854 0.928998 0.257499 1387 1 0.305869 0.869828 0.321704 1388 1 0.251641 0.927537 0.320532 7 1 0.198564 0.99612 0.0575 1530 1 0.80992 0.939724 0.369764 1043 1 0.562244 0.5123 0.0546134 1433 1 0.753229 0.505532 0.380009 1431 1 0.695405 0.508277 0.432965 1263 1 0.436833 0.881672 0.185239 1264 1 0.375752 0.93628 0.199638 1389 1 0.388833 0.872765 0.249295 1390 1 0.441112 0.940178 0.250485 1391 1 0.435147 0.867973 0.312681 1392 1 0.372969 0.923245 0.314112 1396 1 0.500718 0.92868 0.307549 1268 1 0.507309 0.944716 0.182893 15 1 0.426109 0.991152 0.0615466 393 1 0.240266 0.99118 0.372025 1169 1 0.512484 0.50253 0.119705 1393 1 0.501362 0.874548 0.246765 1272 1 0.625497 0.930828 0.168602 1267 1 0.568259 0.872729 0.181549 1394 1 0.566852 0.93386 0.239616 1395 1 0.579821 0.868334 0.300508 1397 1 0.629039 0.887544 0.238737 1400 1 0.627316 0.93338 0.307357 1137 1 0.497802 0.873823 0.0032286 1520 1 0.368146 0.933128 0.449441 1025 1 0.0158237 0.51308 0.00310311 1518 1 0.437449 0.930498 0.36552 131 1 0.0650039 1.00232 0.188958 1271 1 0.697443 0.869624 0.205361 1275 1 0.806957 0.876447 0.178995 1276 1 0.754934 0.933319 0.182547 1398 1 0.698634 0.941057 0.238672 1401 1 0.763326 0.87927 0.263544 1402 1 0.810581 0.929448 0.239313 1399 1 0.690096 0.874319 0.301068 1403 1 0.818765 0.867487 0.324803 1404 1 0.747818 0.938377 0.324636 1380 1 0.00366803 0.940854 0.317312 1523 1 0.564699 0.870109 0.446106 1252 1 0.00560034 0.929997 0.193947 1279 1 0.942155 0.874923 0.191388 1280 1 0.868857 0.943369 0.186003 1405 1 0.877198 0.867862 0.239851 1406 1 0.934559 0.930676 0.243732 1407 1 0.941966 0.880867 0.310797 1408 1 0.865163 0.934984 0.3126 1058 1 0.0693244 0.703718 0.0183677 1090 1 0.0559742 0.811251 0.00631994 1410 1 0.042862 0.558842 0.378389 1416 1 0.111456 0.567036 0.435008 1443 1 0.0426487 0.622204 0.449186 1445 1 0.117288 0.631849 0.37358 1516 1 0.244987 0.943954 0.430471 1414 1 0.175397 0.56856 0.361875 1447 1 0.177764 0.628261 0.440314 1449 1 0.242923 0.615297 0.371379 1451 1 0.309592 0.632092 0.432086 1420 1 0.231452 0.56416 0.434838 1418 1 0.302987 0.565798 0.372536 1528 1 0.622406 0.95027 0.449106 1519 1 0.419161 0.867605 0.442696 1069 1 0.371778 0.62248 0.0106544 1424 1 0.359625 0.57112 0.423186 1455 1 0.438769 0.617492 0.44561 1422 1 0.427495 0.56383 0.384787 1453 1 0.368762 0.631218 0.370317 1457 1 0.493041 0.616667 0.381092 1428 1 0.501729 0.559546 0.434977 1517 1 0.3723 0.857821 0.3719 13 1 0.378656 0.994098 -0.000898437 273 1 0.493627 0.998675 0.244443 1461 1 0.620828 0.625681 0.360262 1426 1 0.564159 0.57412 0.373229 1432 1 0.620649 0.559386 0.437669 1459 1 0.556569 0.621189 0.440926 1121 1 0.999149 0.881093 0.0101904 1522 1 0.563319 0.944453 0.368021 1535 1 0.925158 0.876444 0.438929 1532 1 0.768895 0.933039 0.440824 11 1 0.318685 0.988755 0.0723316 1525 1 0.629098 0.874014 0.368293 409 1 0.746377 0.99292 0.395857 1430 1 0.685249 0.571648 0.375767 1463 1 0.674916 0.623694 0.453933 1436 1 0.745899 0.573401 0.430938 1434 1 0.815125 0.561766 0.369813 1465 1 0.756727 0.624474 0.363823 1467 1 0.81923 0.624107 0.432056 1577 1 0.245904 0.6231 0.492816 135 1 0.185615 0.993839 0.190334 1441 1 0.983551 0.62484 0.381598 1412 1 0.993827 0.556068 0.440082 1471 1 0.929276 0.606929 0.432789 1469 1 0.879768 0.631488 0.371088 1440 1 0.872454 0.553947 0.448168 1438 1 0.933793 0.545717 0.371935 275 1 0.557671 0.992471 0.30573 1085 1 0.883255 0.636118 0.0169433 261 1 0.124433 0.99248 0.246341 1524 1 0.482088 0.931854 0.433937 1442 1 0.0502404 0.683779 0.382258 1475 1 0.0556208 0.755547 0.426243 1448 1 0.121797 0.692712 0.441504 1480 1 0.122575 0.817554 0.433904 1477 1 0.1219 0.745246 0.36833 1474 1 0.0565942 0.81947 0.374376 1444 1 0.997911 0.686139 0.439719 1038 1 0.432624 0.567 0.00907785 1529 1 0.756535 0.866175 0.37623 403 1 0.561492 0.996937 0.438605 1446 1 0.19177 0.685558 0.364184 1484 1 0.242112 0.802929 0.437542 1452 1 0.252949 0.684086 0.429663 1482 1 0.317545 0.802525 0.377749 1481 1 0.247063 0.746369 0.378159 1479 1 0.187372 0.73618 0.437359 1483 1 0.311614 0.749258 0.443591 1450 1 0.304705 0.679851 0.371667 1478 1 0.179555 0.798902 0.383845 1297 1 0.497809 0.500808 0.240999 1534 1 0.949825 0.944416 0.378567 1507 1 0.068096 0.880509 0.426625 1456 1 0.377173 0.69294 0.445917 1454 1 0.434328 0.678464 0.384414 1485 1 0.374005 0.726527 0.377668 1486 1 0.436721 0.801911 0.360903 1487 1 0.440483 0.748544 0.442983 1488 1 0.384652 0.801439 0.422989 1460 1 0.504099 0.687529 0.446584 1492 1 0.497055 0.815032 0.421832 1521 1 0.502428 0.879231 0.370169 1489 1 0.494012 0.739515 0.376803 1491 1 0.561769 0.754256 0.426809 1464 1 0.616987 0.680419 0.429702 1496 1 0.621169 0.814891 0.430857 1490 1 0.565071 0.808268 0.366689 1458 1 0.556428 0.680281 0.373598 1493 1 0.630485 0.75092 0.376642 1526 1 0.685538 0.940053 0.37344 1527 1 0.690616 0.863922 0.433177 1462 1 0.695422 0.679148 0.374252 1495 1 0.69057 0.756665 0.432418 1494 1 0.69614 0.800915 0.368994 1497 1 0.752612 0.748243 0.37851 1466 1 0.81696 0.692955 0.37424 1468 1 0.752415 0.684987 0.435497 1498 1 0.825884 0.804665 0.383675 1499 1 0.812949 0.748268 0.434662 1500 1 0.754718 0.809002 0.427472 1508 1 1.00222 0.93214 0.443844 1531 1 0.838776 0.874303 0.441805 1476 1 0.000856156 0.827275 0.433421 1473 1 0.998605 0.763281 0.379959 1503 1 0.945635 0.752704 0.441636 1504 1 0.884979 0.801329 0.453017 1470 1 0.943994 0.69155 0.377458 1501 1 0.876089 0.753669 0.378416 1472 1 0.885302 0.685537 0.434468 1502 1 0.942837 0.817203 0.374036 1155 1 0.0684256 0.500601 0.17778 1512 1 0.128278 0.949063 0.429777 1506 1 0.0620351 0.943838 0.380049 1509 1 0.121233 0.874431 0.363241 1159 1 0.192719 0.502829 0.180722 159 1 0.940083 0.998896 0.191973 1078 1 0.688184 0.675016 0.00145789 1287 1 0.180811 0.501548 0.32047 1086 1 0.941446 0.691557 0.00809947 1062 1 0.183397 0.702042 0.00587774 1435 1 0.799277 0.508407 0.451298 1129 1 0.240927 0.876132 0.00392808 267 1 0.313198 0.988181 0.31507 1101 1 0.367541 0.760817 0.0049146 397 1 0.380415 0.989645 0.379608 1054 1 0.950118 0.573178 0.00821139 1146 1 0.814166 0.934567 0.00810057 395 1 0.312314 0.994487 0.433568 1098 1 0.320981 0.822353 0.00180813 1425 1 0.49833 0.508944 0.362397 1118 1 0.939887 0.818994 -0.000637169 1145 1 0.7596 0.8725 0.00391901 1051 1 0.821815 0.508287 0.0551497 141 1 0.376337 0.993587 0.127887 145 1 0.497106 0.991163 0.121556 1610 1 0.306183 0.807197 0.493576 147 1 0.570846 0.993082 0.173029 1113 1 0.753949 0.751546 0.00926469 1637 1 0.114624 0.890239 0.486876 1581 1 0.371533 0.614468 0.485541 1429 1 0.636688 0.514651 0.37301 1626 1 0.808655 0.817852 0.493836 153 1 0.757336 0.99586 0.118092 1125 1 0.122904 0.868934 0.00765674 1638 1 0.183489 0.927924 0.492131 1181 1 0.887888 0.505015 0.119548 1031 1 0.183796 0.501276 0.0593412 1650 1 0.552711 0.933376 0.495678 1649 1 0.495795 0.879945 0.495413 1578 1 0.31168 0.677296 0.497131 1142 1 0.682859 0.933968 0.00299223 1617 1 0.500274 0.750047 0.496298 1662 1 0.932927 0.935847 0.49877 1041 1 0.494601 0.506405 0.00870656 1646 1 0.433205 0.943392 0.497395 1546 1 0.31653 0.55352 0.493133 1053 1 0.887049 0.520261 0.00890926 1554 1 0.562882 0.566209 0.496012 1066 1 0.306269 0.685622 0.00766841 1613 1 0.377064 0.763467 0.495608 1657 1 0.754245 0.869688 0.493538 1544 1 0.121665 0.545454 0.571509 1571 1 0.063624 0.618332 0.571809 1666 1 0.0628063 0.559336 0.631791 1701 1 0.12836 0.620363 0.621311 1815 1 0.690821 0.502217 0.805573 655 1 0.438788 0.99353 0.696012 1677 1 0.372802 0.505904 0.615743 1670 1 0.175156 0.55122 0.633289 1548 1 0.249473 0.562585 0.55321 1575 1 0.187504 0.618762 0.565768 1579 1 0.315511 0.615202 0.560737 1674 1 0.306723 0.555726 0.610175 1705 1 0.242289 0.597475 0.629283 1634 1 0.0615921 0.941919 0.5009 1642 1 0.323966 0.931165 0.508913 1552 1 0.376024 0.560946 0.558733 1583 1 0.435314 0.62624 0.563682 1678 1 0.428519 0.557057 0.630561 1709 1 0.376942 0.615762 0.617361 1093 1 0.124977 0.757322 0.990251 1094 1 0.183528 0.816186 0.994199 907 1 0.310108 0.999604 0.939133 1681 1 0.497049 0.510205 0.615667 1126 1 0.180284 0.934612 0.999037 1713 1 0.496748 0.624594 0.625214 1556 1 0.495687 0.566301 0.550633 1560 1 0.612712 0.57473 0.562055 1587 1 0.548683 0.63202 0.569533 1682 1 0.551243 0.569872 0.618884 1717 1 0.622074 0.623607 0.61942 1542 1 0.179123 0.569012 0.499036 1945 1 0.748661 0.503078 0.872272 1049 1 0.754762 0.511397 0.998387 1686 1 0.674149 0.556437 0.628631 1591 1 0.67083 0.625669 0.558122 1564 1 0.742824 0.551138 0.568639 1595 1 0.807555 0.631617 0.568772 1690 1 0.803111 0.565823 0.642341 1721 1 0.738181 0.621418 0.620602 1089 1 0.99698 0.750824 0.988435 785 1 0.501597 0.99317 0.766311 1540 1 0.991709 0.541316 0.572975 1697 1 0.003793 0.630757 0.624785 1568 1 0.886957 0.545359 0.572802 1599 1 0.929644 0.627991 0.582269 1694 1 0.929944 0.560461 0.637449 1725 1 0.867096 0.628719 0.628218 1594 1 0.810791 0.683801 0.503461 1597 1 0.880726 0.623946 0.506215 1576 1 0.122725 0.681758 0.562856 1603 1 0.0666914 0.743317 0.56425 1608 1 0.115876 0.833292 0.559628 1698 1 0.0714704 0.688873 0.630708 1730 1 0.0740393 0.813872 0.633165 1733 1 0.132838 0.745556 0.622476 1572 1 -0.000556281 0.68961 0.562839 1604 1 0.017896 0.826916 0.57073 1563 1 0.804538 0.500098 0.573575 1706 1 0.310297 0.663052 0.620551 1580 1 0.244078 0.668006 0.565804 1734 1 0.182354 0.816014 0.613306 1607 1 0.179102 0.764018 0.55542 1611 1 0.301484 0.750436 0.557633 1702 1 0.178468 0.679754 0.612239 1737 1 0.242568 0.75622 0.616045 1612 1 0.240354 0.823968 0.559697 1738 1 0.306877 0.810414 0.617815 21 1 0.616387 0.999011 1.00138 1939 1 0.558736 0.514593 0.921923 783 1 0.437036 0.997417 0.813286 1710 1 0.432011 0.683906 0.61647 1584 1 0.366267 0.678929 0.56088 1615 1 0.437671 0.759069 0.558858 1616 1 0.374146 0.815283 0.566781 1741 1 0.370327 0.746319 0.609901 1742 1 0.426676 0.812449 0.639123 1620 1 0.496526 0.82184 0.57332 1745 1 0.477117 0.7501 0.624268 1138 1 0.561235 0.930025 0.985825 1803 1 0.314777 0.506294 0.814359 1558 1 0.673205 0.55983 0.500578 1588 1 0.494905 0.695021 0.565324 1714 1 0.555178 0.693374 0.623648 1592 1 0.617948 0.698786 0.57071 1619 1 0.55472 0.748431 0.569215 1624 1 0.613347 0.810649 0.560916 1749 1 0.615425 0.752991 0.624358 1746 1 0.565519 0.817885 0.625453 1933 1 0.372707 0.518584 0.87092 1750 1 0.672646 0.817925 0.621548 1623 1 0.691297 0.752131 0.560673 1722 1 0.813058 0.694625 0.619634 1596 1 0.744836 0.679668 0.557279 1627 1 0.807008 0.753478 0.560398 1718 1 0.686482 0.691529 0.611673 1753 1 0.747623 0.743544 0.627421 1754 1 0.800194 0.819207 0.631896 1628 1 0.746602 0.817897 0.57384 1077 1 0.611278 0.621463 0.983004 1150 1 0.94327 0.940193 0.994561 1729 1 0.00888984 0.751953 0.618258 1600 1 0.875497 0.689167 0.571216 1631 1 0.941973 0.752289 0.564112 1632 1 0.881114 0.801619 0.565994 1726 1 0.950103 0.694073 0.629755 1757 1 0.866146 0.758128 0.62659 1758 1 0.94724 0.810832 0.634767 1046 1 0.683533 0.572403 0.989215 1805 1 0.357523 0.516155 0.741926 1117 1 0.878328 0.74766 1.0015 1635 1 0.0649191 0.899693 0.582867 1640 1 0.12668 0.940492 0.561636 1762 1 0.0629821 0.960842 0.635923 1765 1 0.134139 0.88912 0.625939 1636 1 1.0014 0.957494 0.566894 1585 1 0.492549 0.63826 0.509699 791 1 0.68283 0.984469 0.808128 519 1 0.194853 0.993809 0.566386 1065 1 0.247686 0.617587 0.99621 1030 1 0.175597 0.565255 0.979984 1811 1 0.554248 0.508686 0.819025 1133 1 0.38484 0.874308 0.998213 915 1 0.561452 0.994287 0.937055 1658 1 0.823704 0.934253 0.506845 1639 1 0.186577 0.885971 0.564005 1643 1 0.310415 0.876874 0.569834 1644 1 0.257177 0.941846 0.553909 1766 1 0.195955 0.944 0.628182 1769 1 0.248908 0.885643 0.621869 1770 1 0.306919 0.953591 0.629603 1589 1 0.615543 0.643728 0.506151 1821 1 0.861789 0.50271 0.75528 1645 1 0.388153 0.870794 0.512407 1691 1 0.807681 0.500714 0.689278 1807 1 0.416881 0.511742 0.805746 1647 1 0.436124 0.882545 0.580881 1648 1 0.373548 0.936779 0.571827 1773 1 0.375007 0.875972 0.635365 1774 1 0.4536 0.947215 0.626206 1777 1 0.507019 0.878509 0.629222 1652 1 0.508989 0.944656 0.563082 2047 1 0.933044 0.880949 0.942604 1797 1 0.148613 0.503145 0.748645 1651 1 0.564103 0.886411 0.559446 1656 1 0.630169 0.937883 0.551064 1778 1 0.556063 0.942109 0.630978 1781 1 0.61183 0.882144 0.625104 1931 1 0.317739 0.50168 0.937694 1629 1 0.873727 0.740938 0.50593 909 1 0.379052 0.998461 0.877808 2033 1 0.501867 0.873195 0.875425 1614 1 0.444948 0.811565 0.50599 1813 1 0.612454 0.503909 0.758155 2048 1 0.876905 0.93835 0.934652 1655 1 0.684886 0.874827 0.563533 1659 1 0.814761 0.876564 0.57863 1660 1 0.757306 0.938 0.573524 1782 1 0.690981 0.932633 0.615783 1785 1 0.740195 0.869027 0.627092 1786 1 0.816008 0.942039 0.626337 1573 1 0.119821 0.624897 0.50037 1633 1 0.00912669 0.88797 0.514299 2046 1 0.937101 0.937738 0.881597 1761 1 1.0029 0.879276 0.634081 1951 1 0.951043 0.516274 0.945131 1663 1 0.941191 0.877032 0.565033 1664 1 0.874973 0.943519 0.564538 1789 1 0.881217 0.867339 0.63319 1790 1 0.937429 0.947413 0.633374 1555 1 0.572591 0.508618 0.551433 2040 1 0.627957 0.936811 0.94068 1672 1 0.119637 0.554987 0.687893 1699 1 0.0581429 0.626361 0.696799 1794 1 0.080009 0.555556 0.754465 1800 1 0.147181 0.568221 0.809946 1829 1 0.13552 0.623647 0.74892 1827 1 0.0751359 0.629021 0.815346 1825 1 0.00157492 0.636229 0.756443 1796 1 0.0158056 0.567817 0.805539 1061 1 0.134893 0.638618 0.993651 2045 1 0.870148 0.878354 0.878613 1798 1 0.203637 0.566856 0.74595 1676 1 0.261028 0.54149 0.689414 1703 1 0.184809 0.626513 0.681924 1707 1 0.297081 0.624235 0.694102 1804 1 0.245083 0.566286 0.820387 1831 1 0.186515 0.641902 0.810338 1833 1 0.248717 0.643077 0.744924 1835 1 0.314263 0.643619 0.803904 1802 1 0.296203 0.56948 0.760716 1037 1 0.371187 0.50808 0.999697 1680 1 0.358277 0.562758 0.681386 1711 1 0.4244 0.630437 0.688388 1806 1 0.441943 0.567119 0.750873 1837 1 0.372586 0.627269 0.7472 1839 1 0.425275 0.636898 0.805457 1808 1 0.367425 0.576069 0.811697 1841 1 0.480895 0.633662 0.750275 1683 1 0.546489 0.506003 0.7083 775 1 0.20266 0.998955 0.820421 1715 1 0.554867 0.637874 0.675661 1812 1 0.497689 0.576028 0.810013 1684 1 0.506732 0.569881 0.67761 1688 1 0.611941 0.569973 0.678944 1810 1 0.552785 0.56423 0.753747 1816 1 0.628294 0.568463 0.803914 1843 1 0.552912 0.635985 0.805428 1845 1 0.619726 0.630941 0.740154 1105 1 0.503725 0.754895 0.985465 1034 1 0.315945 0.556551 0.998275 2015 1 0.929768 0.753955 0.934815 1692 1 0.738943 0.56129 0.689843 1719 1 0.679963 0.628995 0.677634 1814 1 0.67673 0.55928 0.737495 1820 1 0.740003 0.564543 0.792425 1849 1 0.746811 0.623294 0.737583 1851 1 0.821873 0.641883 0.807069 1818 1 0.813118 0.570486 0.758593 1723 1 0.808573 0.629856 0.679278 1847 1 0.679106 0.630924 0.796491 1622 1 0.694872 0.816913 0.501387 2026 1 0.321069 0.933684 0.874354 1668 1 0.00161641 0.550264 0.691927 1696 1 0.867747 0.568443 0.692261 1727 1 0.936716 0.620347 0.692061 1822 1 0.937906 0.554054 0.754391 1824 1 0.878493 0.563723 0.806043 1853 1 0.870993 0.620269 0.751233 1855 1 0.932516 0.629236 0.798814 1921 1 0.985802 0.508446 0.869208 2032 1 0.381012 0.936744 0.937401 1826 1 0.0807973 0.68209 0.748804 1704 1 0.12443 0.677993 0.680486 1731 1 0.070339 0.755927 0.681903 1736 1 0.131592 0.818875 0.688611 1859 1 0.0641793 0.75404 0.815074 1861 1 0.111521 0.760471 0.744401 1864 1 0.129457 0.818756 0.807558 1832 1 0.128859 0.691221 0.807491 1858 1 0.0581076 0.822646 0.759003 1732 1 0.0156928 0.815219 0.684325 1700 1 0.0123007 0.702903 0.701072 1860 1 0.00329759 0.827669 0.812835 1834 1 0.323 0.688258 0.742466 1739 1 0.302031 0.746807 0.680102 1830 1 0.184109 0.692155 0.747925 1740 1 0.242392 0.811399 0.670195 1708 1 0.247609 0.682811 0.679502 1735 1 0.181548 0.753772 0.686433 1836 1 0.265717 0.698965 0.810633 1865 1 0.247954 0.7437 0.741667 1868 1 0.24032 0.820014 0.808097 1863 1 0.194217 0.752434 0.821037 1867 1 0.314991 0.766759 0.822679 1866 1 0.295705 0.804461 0.740179 1862 1 0.189481 0.813175 0.74149 1840 1 0.371803 0.707571 0.803478 1744 1 0.356219 0.809092 0.683614 1712 1 0.371809 0.690161 0.677282 1743 1 0.420897 0.752948 0.684708 1838 1 0.43067 0.69662 0.749595 1869 1 0.367827 0.761744 0.748145 1870 1 0.444586 0.812807 0.741914 1871 1 0.438308 0.760911 0.806357 1872 1 0.374519 0.82 0.812243 1844 1 0.49573 0.686809 0.81329 1873 1 0.494444 0.744388 0.74629 1716 1 0.485372 0.683785 0.68533 1748 1 0.493662 0.812513 0.67854 1876 1 0.500661 0.81425 0.816415 1720 1 0.622297 0.681038 0.674616 1842 1 0.55194 0.687401 0.738406 1747 1 0.55161 0.757404 0.670048 1752 1 0.621861 0.810448 0.685259 1877 1 0.617308 0.749257 0.730547 1848 1 0.612785 0.690826 0.799551 1880 1 0.625012 0.804769 0.797951 1875 1 0.551878 0.744538 0.808005 1874 1 0.553533 0.805319 0.740525 1751 1 0.674198 0.753033 0.677584 1878 1 0.684679 0.818089 0.740569 1724 1 0.75231 0.679197 0.676579 1846 1 0.675428 0.689974 0.738277 1850 1 0.822801 0.687768 0.734407 1852 1 0.744784 0.681451 0.793088 1881 1 0.754105 0.738564 0.742288 1882 1 0.808592 0.811774 0.756821 1884 1 0.739069 0.812507 0.81132 1879 1 0.687611 0.744017 0.799345 1755 1 0.805647 0.757348 0.686294 1883 1 0.806278 0.746975 0.807062 1756 1 0.741653 0.801849 0.681033 1828 1 0.990302 0.700004 0.808206 1857 1 0.00445425 0.763245 0.753641 1728 1 0.877122 0.695511 0.674022 1759 1 0.939167 0.764761 0.700511 1854 1 0.935599 0.689576 0.742005 1856 1 0.883202 0.696759 0.797015 1885 1 0.870273 0.760598 0.756718 1887 1 0.941038 0.765099 0.80757 1886 1 0.942224 0.833795 0.746646 1760 1 0.873044 0.819252 0.695674 1888 1 0.873734 0.824906 0.808311 1763 1 0.0669978 0.89104 0.680456 1768 1 0.13516 0.948558 0.683183 1890 1 0.0719176 0.945566 0.760274 1891 1 0.0738221 0.888538 0.81695 1893 1 0.130007 0.880443 0.746897 1896 1 0.138871 0.942428 0.809177 1 1 -0.000345354 1.00054 0.985762 1889 1 0.991597 0.890052 0.76296 1892 1 0.991231 0.954422 0.817775 1081 1 0.752757 0.618298 0.985083 1561 1 0.726648 0.499815 0.508004 1767 1 0.191559 0.87958 0.686637 1772 1 0.251286 0.937505 0.686555 1895 1 0.187436 0.884019 0.827287 1894 1 0.203743 0.943216 0.759878 1897 1 0.237257 0.875193 0.748985 1898 1 0.310414 0.928991 0.740973 1900 1 0.260555 0.936575 0.816079 1771 1 0.301876 0.876917 0.685035 1899 1 0.311587 0.870488 0.806565 1693 1 0.876449 0.502379 0.643031 911 1 0.445789 0.990647 0.932933 1819 1 0.805275 0.502167 0.816109 1775 1 0.439457 0.881571 0.684573 1776 1 0.376379 0.940809 0.674989 1901 1 0.373089 0.869296 0.747204 1902 1 0.430301 0.929905 0.75138 1903 1 0.437285 0.871019 0.81659 1904 1 0.36072 0.934372 0.80388 901 1 0.139686 0.997202 0.876433 1908 1 0.504662 0.933637 0.819032 1905 1 0.500396 0.872981 0.748976 1935 1 0.433193 0.520077 0.943852 1780 1 0.500135 0.936322 0.698187 1779 1 0.563316 0.87341 0.686774 1784 1 0.611428 0.947133 0.683542 1906 1 0.560208 0.934531 0.746375 1907 1 0.558455 0.883478 0.816587 1909 1 0.61905 0.866614 0.744557 1912 1 0.622407 0.938304 0.803008 2013 1 0.866956 0.760866 0.871368 1783 1 0.671506 0.879808 0.676346 1787 1 0.807913 0.875665 0.690035 1911 1 0.688684 0.884837 0.81583 1788 1 0.747427 0.941708 0.685399 1910 1 0.684739 0.928874 0.732162 1913 1 0.740244 0.870822 0.759029 1914 1 0.813713 0.944882 0.747207 1916 1 0.757257 0.941182 0.800066 1915 1 0.81269 0.887004 0.817763 2041 1 0.741601 0.874401 0.877129 2016 1 0.865348 0.817349 0.937515 2031 1 0.440344 0.868326 0.94242 1569 1 0.977567 0.624767 0.500665 1764 1 0.00324025 0.944907 0.702638 1792 1 0.875862 0.942925 0.683502 1920 1 0.869625 0.946275 0.820721 1791 1 0.942606 0.886619 0.688496 1917 1 0.867943 0.889593 0.75236 1918 1 0.933364 0.961517 0.759499 1919 1 0.935364 0.875109 0.817042 1809 1 0.491035 0.505618 0.770446 1922 1 0.0790721 0.545239 0.865939 1928 1 0.116821 0.577712 0.929277 1955 1 0.0637864 0.641881 0.935774 1957 1 0.129389 0.638529 0.883045 2017 1 1.00055 0.872175 0.88189 2036 1 0.498694 0.929636 0.940222 1926 1 0.182419 0.564945 0.883415 1930 1 0.309444 0.574807 0.878552 1963 1 0.3071 0.638292 0.93652 1961 1 0.253971 0.639924 0.88063 1932 1 0.245202 0.557673 0.937703 1959 1 0.195667 0.630349 0.935184 2019 1 0.0682419 0.882473 0.947645 1982 1 0.93191 0.710264 0.86941 2029 1 0.379551 0.88448 0.873863 2038 1 0.708696 0.945125 0.889332 2024 1 0.12496 0.937131 0.937305 1967 1 0.432948 0.636867 0.9414 1965 1 0.370028 0.636361 0.87195 1934 1 0.428661 0.573256 0.872295 1936 1 0.370598 0.58749 0.937681 2043 1 0.811456 0.866277 0.942757 1985 1 0.0123405 0.763055 0.878259 1582 1 0.439708 0.701636 0.505918 2039 1 0.679121 0.871829 0.94815 1940 1 0.488593 0.57206 0.92654 1969 1 0.494148 0.6276 0.872205 1938 1 0.56884 0.574775 0.865186 1944 1 0.621435 0.565212 0.928118 1971 1 0.564237 0.631207 0.920439 1973 1 0.62985 0.64269 0.858756 1562 1 0.815932 0.561768 0.51757 2042 1 0.801806 0.940674 0.880897 2035 1 0.564937 0.868679 0.937368 1975 1 0.69673 0.631164 0.922824 1942 1 0.680087 0.570382 0.868936 1946 1 0.82499 0.582323 0.870036 1977 1 0.758608 0.615841 0.849923 1948 1 0.759872 0.565802 0.923609 1979 1 0.827124 0.626626 0.943473 2044 1 0.764585 0.930941 0.943411 2018 1 0.049107 0.938726 0.875643 1026 1 0.0626372 0.576169 0.99856 2028 1 0.265951 0.935618 0.938025 2030 1 0.442121 0.933748 0.868458 1661 1 0.873983 0.864455 0.521039 1953 1 0.999242 0.63398 0.862671 1924 1 0.02005 0.579924 0.912463 1950 1 0.940409 0.577627 0.866312 1952 1 0.876156 0.568137 0.937317 1983 1 0.932122 0.630111 0.939589 1981 1 0.884409 0.640752 0.863058 2020 1 0.999303 0.939469 0.937781 2023 1 0.190205 0.857188 0.934394 1992 1 0.119834 0.818289 0.94048 1987 1 0.0650098 0.729369 0.928843 1960 1 0.13573 0.692807 0.93785 1989 1 0.12192 0.744342 0.877863 1986 1 0.066467 0.818692 0.872371 1954 1 0.0559901 0.688495 0.863822 1956 1 0.992859 0.6971 0.925681 1988 1 0.00178636 0.824759 0.947454 2037 1 0.624427 0.86563 0.853467 777 1 0.260067 1.00014 0.755069 2025 1 0.250939 0.875095 0.866972 1570 1 0.0520063 0.674491 0.501167 527 1 0.441692 0.997477 0.562529 1995 1 0.320197 0.764859 0.933165 1962 1 0.313569 0.698813 0.882665 1990 1 0.176067 0.810609 0.869406 1958 1 0.206869 0.699756 0.87587 1993 1 0.255758 0.761332 0.870087 1964 1 0.252452 0.694758 0.94587 1996 1 0.261869 0.813717 0.934664 1991 1 0.192274 0.759845 0.930855 1994 1 0.321282 0.82215 0.871782 2022 1 0.202296 0.941567 0.888517 913 1 0.509303 0.991335 0.87085 1042 1 0.549569 0.566349 0.981552 1984 1 0.869021 0.693825 0.941216 1968 1 0.365199 0.69541 0.949182 1966 1 0.417276 0.695439 0.87307 2000 1 0.38096 0.819375 0.94223 1997 1 0.374362 0.756851 0.87359 1998 1 0.442971 0.80958 0.882953 1999 1 0.434817 0.749915 0.947828 2004 1 0.506351 0.813986 0.931828 1972 1 0.498017 0.683914 0.932271 2001 1 0.491942 0.748281 0.87934 2014 1 0.940761 0.81614 0.882824 2034 1 0.574135 0.929194 0.880377 1970 1 0.564546 0.689732 0.867841 1976 1 0.627102 0.68574 0.933978 2003 1 0.559997 0.761141 0.931595 2008 1 0.623244 0.813435 0.928187 2005 1 0.640758 0.737378 0.871889 2002 1 0.566999 0.808699 0.868313 1679 1 0.424506 0.501989 0.693354 2027 1 0.324966 0.872924 0.940011 1538 1 0.0535105 0.548949 0.509707 2009 1 0.756649 0.750367 0.870096 2006 1 0.696111 0.80216 0.885883 2011 1 0.808869 0.764741 0.937588 2010 1 0.811126 0.821923 0.865416 1974 1 0.706618 0.683419 0.862927 1978 1 0.813892 0.695866 0.886152 2007 1 0.689794 0.744755 0.94433 2012 1 0.74312 0.815516 0.948319 1980 1 0.755776 0.698414 0.94192 2021 1 0.121848 0.877079 0.877819 1559 1 0.666917 0.503741 0.56892 905 1 0.257391 0.997637 0.876499 1923 1 0.070895 0.512034 0.939968 1943 1 0.679428 0.508224 0.932538 779 1 0.310697 0.998645 0.808374 771 1 0.0814049 0.997028 0.819121 903 1 0.197266 0.996449 0.940246 1574 1 0.188148 0.687326 0.50333 1141 1 0.619536 0.867238 0.989806 1949 1 0.877631 0.520167 0.87078 1937 1 0.489419 0.508329 0.867968 1122 1 0.0655199 0.94057 1.00274 17 1 0.487396 0.997212 0.992121 1630 1 0.957182 0.813431 0.508595 1566 1 0.935028 0.548432 0.509281 1045 1 0.620439 0.513331 0.984104 1074 1 0.54883 0.693369 0.996351 1134 1 0.4448 0.934961 0.994347 1097 1 0.263014 0.759057 0.996555 1109 1 0.614229 0.739445 0.990976 521 1 0.237527 0.998982 0.504056 1606 1 0.175535 0.825284 0.505947 1073 1 0.496369 0.621679 0.997938 1609 1 0.238777 0.741904 0.503833 1149 1 0.876436 0.870862 0.995722 1082 1 0.819471 0.686564 0.996925 1593 1 0.738269 0.615687 0.512377 1130 1 0.315631 0.938343 0.996257 1654 1 0.690808 0.94745 0.503011
[ "ITEM: TIMESTEP\n1000\nITEM: NUMBER OF ATOMS\n2048\nITEM: BOX BOUNDS pp pp pp\n-2.7012907437591949e-01 4.7470129074369581e+01\n-2.7012907437591949e-01 4.7470129074369581e+01\n-2.7012907437591949e-01 4.7470129074369581e+01\nITEM: ATOMS id type xs ys zs\n8 1 0.118514 0.0599866 0.0631161\n35 1 0.0692648 0.12677 0.0619928\n130 1 0.0703103 0.0649093 0.126251\n165 1 0.138603 0.117881 0.127473\n155 1 0.802452 -0.00225189 0.190937\n279 1 0.682405 -0.00102136 0.320418\n85 1 0.617155 0.249443 0.014004\n134 1 0.190224 0.042665 0.122036\n12 1 0.248376 0.0662609 0.0678188\n39 1 0.189758 0.118437 0.0604761\n43 1 0.30201 0.122494 0.054495\n138 1 0.318919 0.0606008 0.121184\n169 1 0.25401 0.123982 0.124703\n618 1 0.314046 0.423935 0.498843\n157 1 0.882592 0.0144295 0.135182\n1167 1 0.446654 0.498932 0.178384\n1439 1 0.930856 0.489936 0.429996\n16 1 0.377532 0.0788858 0.0614955\n47 1 0.443232 0.119355 0.0599885\n142 1 0.437491 0.0522965 0.123421\n173 1 0.381328 0.126711 0.132362\n177 1 0.498436 0.123563 0.127073\n594 1 0.571856 0.317841 0.497458\n1183 1 0.939923 0.497092 0.177559\n1415 1 0.183325 0.497855 0.452079\n50 1 0.559938 0.181833 -0.000667064\n20 1 0.504471 0.0635768 0.0603335\n24 1 0.626716 0.0534061 0.0583679\n51 1 0.567867 0.120083 0.0614\n146 1 0.550245 0.0584699 0.124254\n181 1 0.634136 0.115482 0.116651\n407 1 0.686788 0.00162551 0.449686\n49 1 0.497971 0.119963 0.00499224\n150 1 0.698101 0.046347 0.110991\n28 1 0.755827 0.0629804 0.060971\n55 1 0.690196 0.125129 0.0563922\n59 1 0.814925 0.123202 0.0486223\n154 1 0.814239 0.0472368 0.1162\n185 1 0.748493 0.115375 0.124793\n389 1 0.131156 0.00768717 0.374367\n122 1 0.813826 0.45016 -0.00226142\n4 1 0.00571049 0.0642641 0.0516869\n161 1 0.0145263 0.120345 0.125595\n32 1 0.882638 0.0641087 0.0624529\n63 1 0.944441 0.133281 0.0668484\n158 1 0.942773 0.0621624 0.121663\n189 1 0.884011 0.12647 0.120856\n31 1 0.949647 0.00451724 0.0592671\n40 1 0.126322 0.180487 0.0591702\n67 1 0.076321 0.256897 0.0481963\n162 1 0.0737709 0.18292 0.125443\n197 1 0.124175 0.243848 0.132161\n72 1 0.128136 0.314366 0.0799744\n194 1 0.068254 0.291934 0.117875\n193 1 0.00924748 0.233044 0.121644\n36 1 0.0115579 0.187866 0.0596469\n1437 1 0.863518 0.486486 0.384824\n411 1 0.807086 0.0047618 0.438232\n391 1 0.187557 0.0128456 0.441716\n166 1 0.186668 0.177231 0.122783\n198 1 0.178173 0.312545 0.144773\n170 1 0.317746 0.169357 0.138677\n44 1 0.246056 0.188666 0.0715916\n71 1 0.189382 0.250992 0.0744894\n201 1 0.238849 0.241488 0.132444\n75 1 0.301765 0.250298 0.0782923\n76 1 0.239888 0.308852 0.0584296\n202 1 0.293209 0.307263 0.137376\n606 1 0.942553 0.303178 0.49923\n401 1 0.496693 0.000873129 0.37682\n102 1 0.182723 0.436664 -0.000478082\n1427 1 0.570435 0.500057 0.429309\n48 1 0.393356 0.190678 0.0599849\n174 1 0.437689 0.18471 0.139591\n79 1 0.440983 0.255103 0.0581657\n205 1 0.365623 0.249313 0.130058\n80 1 0.379197 0.303608 0.0704467\n206 1 0.432488 0.323907 0.127045\n621 1 0.373617 0.367529 0.49599\n14 1 0.43862 0.0587564 0.00627447\n52 1 0.484423 0.188543 0.0665317\n84 1 0.500018 0.31934 0.07723\n209 1 0.488284 0.254011 0.128159\n178 1 0.546072 0.185375 0.136579\n56 1 0.613229 0.185539 0.0768676\n83 1 0.545828 0.242915 0.0664197\n88 1 0.611037 0.319933 0.0619186\n210 1 0.555776 0.302342 0.129695\n213 1 0.622974 0.244927 0.125081\n186 1 0.802287 0.173743 0.124388\n182 1 0.69117 0.179418 0.113282\n60 1 0.75244 0.195119 0.0569863\n87 1 0.691608 0.250977 0.0559722\n217 1 0.754972 0.236141 0.125877\n218 1 0.823524 0.299716 0.118129\n92 1 0.760961 0.313528 0.0687033\n91 1 0.82084 0.237089 0.0685305\n214 1 0.686067 0.313695 0.116799\n1039 1 0.445446 0.49796 0.0697614\n1173 1 0.627414 0.495995 0.116266\n283 1 0.820211 0.00151803 0.318055\n74 1 0.323208 0.294976 0.00990392\n68 1 0.00301754 0.313786 0.0554314\n190 1 0.950554 0.184051 0.13353\n64 1 0.874802 0.186404 0.0518447\n95 1 0.920281 0.251951 0.0571724\n221 1 0.875537 0.220154 0.135128\n222 1 0.95689 0.308093 0.121029\n96 1 0.873156 0.312464 0.0536935\n1177 1 0.753974 0.500885 0.119529\n546 1 0.0630301 0.184789 0.495837\n99 1 0.0687252 0.384531 0.0673004\n104 1 0.136695 0.440047 0.0634071\n226 1 0.0742081 0.450335 0.121242\n229 1 0.126825 0.375727 0.135456\n19 1 0.548714 0.00136653 0.058336\n265 1 0.250521 0.00638232 0.237985\n399 1 0.442478 0.0051812 0.437462\n65 1 0.013382 0.251309 0.00485621\n143 1 0.43864 0.00191848 0.186309\n103 1 0.195233 0.369267 0.0611842\n108 1 0.251689 0.420277 0.0546987\n230 1 0.189032 0.429653 0.119762\n233 1 0.246148 0.374706 0.125159\n234 1 0.304974 0.434872 0.136514\n107 1 0.304012 0.347258 0.066143\n1305 1 0.755913 0.493287 0.248738\n1283 1 0.0579747 0.488959 0.312582\n111 1 0.41954 0.370177 0.0672681\n112 1 0.354168 0.432917 0.0728413\n237 1 0.366392 0.370227 0.129009\n238 1 0.430399 0.430965 0.133122\n578 1 0.0795431 0.302974 0.492861\n116 1 0.501339 0.432268 0.0580372\n241 1 0.482526 0.378881 0.134142\n115 1 0.566084 0.382841 0.047451\n120 1 0.640461 0.440452 0.0528615\n242 1 0.56158 0.431715 0.110301\n245 1 0.622856 0.376628 0.132713\n38 1 0.190477 0.190911 0.00114873\n566 1 0.677669 0.188694 0.496938\n246 1 0.685867 0.443722 0.117934\n119 1 0.690218 0.369414 0.0595599\n123 1 0.818524 0.387424 0.0536907\n124 1 0.748616 0.445361 0.0507502\n249 1 0.757569 0.377445 0.116976\n250 1 0.811663 0.438016 0.112322\n510 1 0.915903 0.434147 0.36995\n126 1 0.972249 0.449212 0.0017488\n511 1 0.939026 0.368121 0.434918\n1311 1 0.940591 0.48799 0.302905\n23 1 0.691187 0.00148969 0.0509751\n100 1 0.997448 0.449269 0.0774573\n225 1 0.994329 0.376387 0.106942\n127 1 0.929108 0.388978 0.050183\n128 1 0.878847 0.45188 0.0501073\n253 1 0.881601 0.366095 0.123638\n254 1 0.935466 0.436971 0.127853\n9 1 0.265799 0.000498899 0.0113705\n163 1 0.0707224 0.12067 0.185834\n136 1 0.131257 0.0632023 0.193464\n258 1 0.065459 0.0641483 0.244256\n264 1 0.130556 0.0663226 0.310906\n291 1 0.066086 0.128529 0.320081\n293 1 0.126742 0.121291 0.250636\n260 1 0.00938821 0.064928 0.310796\n289 1 0.001251 0.135354 0.26037\n1421 1 0.370749 0.492516 0.371624\n171 1 0.318207 0.106202 0.191346\n262 1 0.200675 0.0637096 0.25129\n167 1 0.192966 0.130268 0.188828\n140 1 0.249489 0.0623364 0.178885\n266 1 0.327336 0.0583692 0.25424\n297 1 0.255416 0.124076 0.251139\n268 1 0.267696 0.049357 0.312791\n299 1 0.313521 0.111967 0.323083\n144 1 0.372563 0.0565053 0.186376\n175 1 0.435031 0.113593 0.19408\n270 1 0.428226 0.0647762 0.253003\n301 1 0.370036 0.119884 0.25734\n303 1 0.437192 0.12239 0.317112\n272 1 0.369799 0.0496622 0.318752\n148 1 0.503398 0.0615788 0.194244\n1179 1 0.8207 0.492422 0.181946\n276 1 0.494555 0.0625772 0.305486\n305 1 0.500672 0.120962 0.246257\n179 1 0.57125 0.120613 0.172074\n152 1 0.630617 0.0560961 0.186879\n274 1 0.566035 0.0738323 0.245885\n309 1 0.633561 0.118334 0.250946\n280 1 0.618156 0.0540839 0.305725\n307 1 0.567833 0.121863 0.308126\n387 1 0.0697478 0.00643595 0.437573\n156 1 0.752557 0.0516617 0.175757\n183 1 0.692954 0.114931 0.177945\n278 1 0.691187 0.0604386 0.239381\n282 1 0.812934 0.0523742 0.259847\n284 1 0.750159 0.0589086 0.308726\n313 1 0.741775 0.12767 0.250088\n187 1 0.819947 0.110361 0.178322\n315 1 0.797582 0.118836 0.31243\n311 1 0.688368 0.108002 0.310323\n405 1 0.618834 0.00349033 0.374101\n160 1 0.882446 0.0668656 0.199144\n1035 1 0.302622 0.49573 0.0659356\n132 1 0.0103734 0.0683327 0.190101\n191 1 0.943116 0.116028 0.182531\n286 1 0.94532 0.0727851 0.251805\n288 1 0.876924 0.0607833 0.314023\n317 1 0.86857 0.118622 0.264616\n168 1 0.137856 0.183316 0.187528\n195 1 0.0743311 0.235452 0.196622\n200 1 0.109581 0.310019 0.193939\n290 1 0.0721373 0.18299 0.253189\n325 1 0.123716 0.247241 0.262148\n322 1 0.062828 0.311933 0.263019\n323 1 0.068578 0.249774 0.324761\n296 1 0.119282 0.189087 0.333289\n328 1 0.124947 0.317752 0.318061\n196 1 0.0194401 0.292051 0.190091\n164 1 0.0125664 0.183964 0.186864\n172 1 0.251399 0.186957 0.190209\n326 1 0.186542 0.302384 0.247595\n327 1 0.191837 0.251715 0.321374\n199 1 0.188637 0.240024 0.194065\n294 1 0.184304 0.190726 0.254172\n300 1 0.247523 0.180066 0.319473\n329 1 0.243051 0.249727 0.262853\n330 1 0.309259 0.310577 0.259672\n331 1 0.30739 0.247344 0.307115\n332 1 0.24043 0.322178 0.307556\n204 1 0.25269 0.31284 0.201194\n298 1 0.303916 0.183638 0.252862\n203 1 0.309328 0.247044 0.182746\n302 1 0.444861 0.178708 0.256232\n176 1 0.370881 0.186633 0.199857\n207 1 0.427222 0.247481 0.186114\n304 1 0.367232 0.186046 0.30512\n333 1 0.362061 0.256042 0.246677\n334 1 0.44034 0.316548 0.252522\n335 1 0.436936 0.254129 0.297573\n336 1 0.375638 0.306719 0.308759\n208 1 0.374193 0.312995 0.180471\n308 1 0.507375 0.181129 0.311045\n212 1 0.493034 0.310921 0.189424\n180 1 0.500946 0.180957 0.19797\n337 1 0.510236 0.251395 0.243778\n184 1 0.62257 0.178732 0.191661\n211 1 0.574451 0.248376 0.197664\n216 1 0.624436 0.308785 0.182108\n306 1 0.564385 0.174235 0.242509\n312 1 0.638816 0.172643 0.316978\n338 1 0.565728 0.315652 0.252899\n339 1 0.56265 0.2578 0.308184\n341 1 0.622307 0.231887 0.257868\n344 1 0.63008 0.308303 0.312779\n310 1 0.684542 0.183471 0.237051\n340 1 0.515481 0.319836 0.303985\n188 1 0.743699 0.173984 0.185743\n342 1 0.690746 0.313526 0.237522\n343 1 0.687366 0.249605 0.315489\n314 1 0.803843 0.175876 0.251949\n215 1 0.683977 0.243848 0.179279\n345 1 0.740194 0.250409 0.236417\n346 1 0.81016 0.322556 0.240466\n220 1 0.752354 0.302462 0.179514\n219 1 0.805974 0.243593 0.192992\n348 1 0.753464 0.302853 0.298569\n316 1 0.733869 0.17149 0.319092\n347 1 0.806721 0.243829 0.299436\n324 1 0.998384 0.309484 0.314138\n321 1 0.00472738 0.249669 0.263241\n292 1 -3.48524e-05 0.18787 0.317446\n192 1 0.86915 0.189475 0.211274\n223 1 0.950325 0.240918 0.198691\n224 1 0.869733 0.294903 0.184127\n318 1 0.939829 0.185931 0.252912\n320 1 0.870373 0.182399 0.309988\n349 1 0.861931 0.262995 0.258256\n350 1 0.937321 0.291816 0.255468\n352 1 0.873818 0.316685 0.309806\n351 1 0.935468 0.241755 0.313017\n1553 1 0.511316 0.49911 0.496922\n101 1 0.123586 0.382663 0.0058635\n227 1 0.0591683 0.372661 0.185434\n232 1 0.127525 0.439844 0.182481\n354 1 0.0590146 0.430447 0.251999\n355 1 0.0507042 0.380194 0.313365\n357 1 0.115009 0.375403 0.239623\n360 1 0.124379 0.436125 0.306641\n3 1 0.0569214 0.00126409 0.0601337\n1161 1 0.235651 0.496119 0.118679\n45 1 0.373823 0.134806 0.00641269\n231 1 0.183001 0.37841 0.189905\n236 1 0.241633 0.434285 0.189762\n358 1 0.181967 0.439963 0.252226\n361 1 0.267945 0.380422 0.248152\n364 1 0.245792 0.435535 0.306225\n363 1 0.323423 0.372394 0.317974\n362 1 0.307359 0.447638 0.241571\n235 1 0.321659 0.37203 0.193938\n359 1 0.181426 0.381278 0.307363\n514 1 0.0722279 0.065593 0.494081\n622 1 0.439223 0.426951 0.481953\n240 1 0.367489 0.429214 0.18921\n239 1 0.424896 0.369324 0.187921\n365 1 0.379354 0.368766 0.257408\n366 1 0.436154 0.450428 0.248841\n367 1 0.437607 0.368689 0.315361\n368 1 0.379672 0.431514 0.318504\n244 1 0.509221 0.435704 0.183107\n372 1 0.499926 0.446236 0.304935\n369 1 0.499547 0.384687 0.252067\n243 1 0.552897 0.358223 0.186542\n248 1 0.629755 0.432905 0.188826\n370 1 0.560367 0.435859 0.245465\n371 1 0.568381 0.381061 0.310445\n373 1 0.620329 0.375681 0.24783\n376 1 0.635822 0.463798 0.302935\n509 1 0.86504 0.356649 0.383999\n374 1 0.686696 0.442238 0.24301\n375 1 0.691934 0.375482 0.312211\n247 1 0.691398 0.379844 0.176753\n252 1 0.748887 0.443305 0.176101\n377 1 0.738038 0.378944 0.236258\n380 1 0.747421 0.454819 0.328098\n378 1 0.812566 0.436518 0.244632\n379 1 0.786022 0.379454 0.298561\n251 1 0.815193 0.38675 0.182723\n484 1 0.00266108 0.42695 0.427328\n353 1 0.998238 0.360195 0.241094\n356 1 0.993109 0.430081 0.329548\n228 1 0.0107157 0.435179 0.175066\n255 1 0.941546 0.374804 0.175594\n256 1 0.885752 0.424401 0.189602\n381 1 0.883979 0.356512 0.233483\n382 1 0.957127 0.432555 0.243227\n383 1 0.944983 0.368109 0.311968\n384 1 0.866107 0.406348 0.313546\n386 1 0.0680251 0.068533 0.379664\n392 1 0.13419 0.0689766 0.43098\n419 1 0.0655568 0.127146 0.442593\n421 1 0.127483 0.126004 0.379446\n388 1 -0.000852562 0.0605331 0.438945\n417 1 0.00686336 0.122699 0.38276\n525 1 0.366203 0.00590256 0.497599\n554 1 0.339524 0.194979 0.485974\n598 1 0.701731 0.31107 0.49765\n295 1 0.183162 0.132046 0.31645\n82 1 0.557418 0.311008 0.0067994\n423 1 0.203405 0.122946 0.444606\n390 1 0.201726 0.0619705 0.371967\n394 1 0.317135 0.0455882 0.374177\n396 1 0.260996 0.0541055 0.430731\n425 1 0.241628 0.130419 0.376684\n427 1 0.310506 0.118174 0.431324\n10 1 0.32116 0.0607328 0.000550233\n398 1 0.439534 0.0525346 0.368472\n400 1 0.377848 0.0553987 0.422199\n429 1 0.375383 0.113342 0.367778\n431 1 0.448512 0.101567 0.443121\n630 1 0.691118 0.42488 0.498634\n433 1 0.498581 0.11914 0.367541\n404 1 0.519597 0.0640253 0.436275\n402 1 0.559267 0.0527202 0.358355\n408 1 0.6227 0.0617705 0.442596\n435 1 0.572995 0.123536 0.430971\n437 1 0.622568 0.112706 0.365199\n481 1 0.997341 0.358809 0.382754\n1165 1 0.367818 0.497661 0.140442\n1309 1 0.891404 0.490047 0.243884\n562 1 0.561654 0.181484 0.48601\n1423 1 0.430604 0.490676 0.430924\n406 1 0.682333 0.0544716 0.388791\n412 1 0.754501 0.0730608 0.441638\n439 1 0.680973 0.124113 0.433829\n441 1 0.740139 0.110888 0.372033\n443 1 0.807228 0.13019 0.433752\n410 1 0.797682 0.0560852 0.372701\n257 1 0.00295484 0.00763216 0.249672\n89 1 0.757532 0.263667 0.0066509\n319 1 0.946268 0.118886 0.314702\n589 1 0.396991 0.249207 0.480039\n414 1 0.943247 0.0660529 0.372274\n416 1 0.87479 0.0469134 0.431722\n445 1 0.872408 0.11783 0.360315\n447 1 0.945373 0.129415 0.433991\n601 1 0.749512 0.235626 0.498404\n418 1 0.0553018 0.193968 0.386331\n424 1 0.118797 0.183696 0.431976\n450 1 0.0656293 0.315449 0.381068\n451 1 0.0556372 0.259133 0.433577\n453 1 0.127245 0.247558 0.384759\n456 1 0.132483 0.312607 0.434768\n610 1 0.0496199 0.44117 0.489946\n503 1 0.685967 0.374213 0.431625\n1289 1 0.238966 0.501693 0.251155\n263 1 0.192968 0.0056835 0.300005\n460 1 0.244439 0.306528 0.434564\n428 1 0.255059 0.183217 0.443301\n422 1 0.183996 0.196677 0.375745\n426 1 0.316628 0.180418 0.371229\n454 1 0.192119 0.315028 0.371582\n455 1 0.189518 0.242617 0.454299\n457 1 0.250268 0.243958 0.371817\n458 1 0.298552 0.312051 0.360802\n459 1 0.308851 0.250712 0.428288\n1285 1 0.116481 0.491998 0.255369\n506 1 0.812904 0.430023 0.370899\n1417 1 0.249112 0.485407 0.377114\n430 1 0.441701 0.199704 0.360128\n432 1 0.389032 0.182223 0.425645\n461 1 0.370803 0.245054 0.37149\n462 1 0.454141 0.309045 0.373849\n463 1 0.454277 0.246273 0.432995\n464 1 0.372844 0.310179 0.428198\n468 1 0.518381 0.310551 0.445361\n436 1 0.492208 0.174056 0.430224\n465 1 0.513761 0.253854 0.364145\n440 1 0.620933 0.186598 0.437367\n467 1 0.566655 0.245832 0.428722\n469 1 0.621799 0.252399 0.372789\n434 1 0.558688 0.181588 0.374504\n466 1 0.563376 0.319869 0.365647\n472 1 0.620616 0.310887 0.427869\n505 1 0.743021 0.379794 0.382571\n538 1 0.813374 0.0813273 0.497929\n474 1 0.812251 0.288634 0.36542\n471 1 0.691481 0.25158 0.440328\n444 1 0.748957 0.18914 0.44206\n473 1 0.748427 0.239163 0.367052\n442 1 0.816563 0.187735 0.384058\n438 1 0.678334 0.196422 0.382618\n476 1 0.761744 0.31053 0.421663\n470 1 0.676501 0.311353 0.374078\n475 1 0.81564 0.243754 0.44874\n1307 1 0.824716 0.487753 0.303139\n449 1 -7.31866e-05 0.257654 0.379034\n452 1 0.000553588 0.310402 0.442312\n420 1 0.00423474 0.193711 0.437647\n446 1 0.945693 0.185782 0.37554\n480 1 0.879294 0.303477 0.443183\n448 1 0.879126 0.178648 0.446186\n478 1 0.932198 0.302689 0.367797\n479 1 0.934984 0.240049 0.439826\n477 1 0.882491 0.236655 0.372174\n508 1 0.751799 0.438068 0.442169\n1419 1 0.311483 0.502242 0.43804\n488 1 0.139401 0.429364 0.447633\n482 1 0.0748751 0.440477 0.379114\n483 1 0.0609223 0.376964 0.441506\n485 1 0.128904 0.377723 0.372408\n512 1 0.886452 0.421826 0.435743\n507 1 0.813739 0.379195 0.446697\n502 1 0.68172 0.445788 0.359489\n542 1 0.938851 0.0682873 0.488342\n487 1 0.193327 0.373452 0.428016\n490 1 0.324144 0.42509 0.378469\n486 1 0.189241 0.433775 0.377087\n489 1 0.24906 0.385354 0.369934\n492 1 0.242173 0.44208 0.445249\n491 1 0.30298 0.362211 0.435965\n259 1 0.0751918 0.0118994 0.316801\n590 1 0.435694 0.312226 0.498352\n494 1 0.436055 0.433976 0.368849\n495 1 0.462663 0.36695 0.430359\n497 1 0.510472 0.380108 0.36046\n496 1 0.368352 0.427843 0.439115\n493 1 0.38457 0.37103 0.378788\n501 1 0.630501 0.37889 0.365235\n504 1 0.627284 0.440439 0.431882\n500 1 0.51759 0.432052 0.438886\n498 1 0.569345 0.451105 0.364118\n499 1 0.571237 0.372667 0.436921\n626 1 0.566143 0.446515 0.498248\n545 1 0.00376218 0.121892 0.497779\n285 1 0.876943 0.00418521 0.253792\n1157 1 0.139656 0.497046 0.126973\n385 1 0.0133585 0.00778122 0.372984\n1409 1 0.995006 0.491869 0.37633\n110 1 0.421707 0.444431 0.00793448\n57 1 0.75032 0.13106 0.00662346\n593 1 0.5067 0.24472 0.498846\n565 1 0.630598 0.119456 0.498211\n585 1 0.26582 0.241364 0.499759\n25 1 0.753499 0.00893035 0.00308082\n637 1 0.880594 0.360539 0.493989\n558 1 0.439652 0.171778 0.496556\n41 1 0.250472 0.126748 0.00466704\n586 1 0.321745 0.30241 0.492484\n105 1 0.265927 0.358039 0.00199529\n121 1 0.748968 0.377222 0.00675747\n602 1 0.805627 0.308463 0.497316\n617 1 0.246973 0.361643 0.498163\n520 1 0.119484 0.0721829 0.568929\n547 1 0.0567147 0.120422 0.5675\n642 1 0.0605527 0.0658549 0.627865\n677 1 0.126463 0.135005 0.629719\n516 1 -0.000793228 0.0511352 0.567637\n98 1 0.0715222 0.448062 0.988917\n646 1 0.195074 0.0655452 0.639861\n524 1 0.254553 0.0688769 0.568231\n551 1 0.192697 0.130853 0.569312\n555 1 0.315257 0.119302 0.571498\n650 1 0.326255 0.0668198 0.633068\n681 1 0.257499 0.121413 0.62293\n90 1 0.815844 0.30733 0.978163\n528 1 0.379832 0.0697787 0.567435\n559 1 0.444851 0.118971 0.571744\n654 1 0.445887 0.056591 0.631284\n685 1 0.389673 0.122225 0.625994\n689 1 0.505996 0.116677 0.628854\n532 1 0.501425 0.0619956 0.562994\n536 1 0.623991 0.0552943 0.563254\n563 1 0.565017 0.125033 0.561884\n658 1 0.564152 0.0570042 0.630851\n693 1 0.632805 0.115808 0.625878\n18 1 0.551511 0.0590333 0.99471\n5 1 0.130084 0.00953429 0.998606\n671 1 0.931796 0.00305215 0.684179\n614 1 0.19016 0.42383 0.515139\n37 1 0.142579 0.121907 0.992345\n540 1 0.756679 0.0708244 0.57039\n567 1 0.677666 0.128052 0.55741\n571 1 0.81729 0.125708 0.570236\n662 1 0.691666 0.0608531 0.614085\n666 1 0.810194 0.0663205 0.632979\n697 1 0.747567 0.132373 0.62061\n550 1 0.179995 0.171365 0.501344\n673 1 0.998402 0.11608 0.624756\n544 1 0.873249 0.0706477 0.567657\n575 1 0.940873 0.122891 0.563819\n670 1 0.92993 0.0599448 0.63007\n701 1 0.889081 0.131842 0.623885\n1689 1 0.736807 0.495821 0.636098\n663 1 0.680879 0.00694437 0.683811\n669 1 0.872443 0.00734611 0.626887\n674 1 0.0554049 0.179878 0.624694\n552 1 0.136652 0.184411 0.571996\n579 1 0.0542564 0.239734 0.565753\n584 1 0.113514 0.292945 0.573478\n709 1 0.123614 0.242114 0.638961\n706 1 0.0588879 0.310987 0.633783\n580 1 0.995622 0.308554 0.558266\n682 1 0.320274 0.18103 0.631023\n678 1 0.200872 0.189542 0.624156\n556 1 0.263569 0.181278 0.562752\n583 1 0.197289 0.238821 0.549396\n710 1 0.182885 0.295604 0.621175\n713 1 0.245672 0.248958 0.617187\n714 1 0.332149 0.303865 0.627787\n587 1 0.315891 0.245045 0.565039\n588 1 0.2565 0.29963 0.560426\n577 1 0.00642403 0.246107 0.499577\n522 1 0.309199 0.0694449 0.503449\n686 1 0.445319 0.180423 0.630209\n560 1 0.372853 0.174806 0.561585\n591 1 0.428157 0.237125 0.556301\n592 1 0.376767 0.302067 0.554258\n717 1 0.377223 0.23427 0.624793\n718 1 0.442728 0.295625 0.625064\n721 1 0.502789 0.242329 0.632488\n564 1 0.50846 0.184832 0.554721\n596 1 0.518283 0.306729 0.563472\n568 1 0.620147 0.187872 0.569561\n595 1 0.55531 0.242525 0.57076\n600 1 0.624536 0.31152 0.555745\n690 1 0.558964 0.182211 0.632972\n722 1 0.562203 0.308242 0.633951\n725 1 0.631229 0.251034 0.630584\n1565 1 0.875942 0.479427 0.499035\n33 1 0.99181 0.132856 0.999343\n526 1 0.436278 0.0636613 0.517299\n1547 1 0.321973 0.495016 0.556104\n694 1 0.687564 0.190329 0.626284\n572 1 0.747246 0.196711 0.568958\n599 1 0.684709 0.253102 0.554427\n604 1 0.749972 0.308596 0.561346\n729 1 0.736712 0.256784 0.631543\n726 1 0.676773 0.32416 0.625437\n698 1 0.802341 0.198614 0.638934\n603 1 0.816013 0.251538 0.569909\n730 1 0.811119 0.319315 0.629385\n1947 1 0.827035 0.495085 0.934463\n661 1 0.626559 0.000484791 0.627034\n1793 1 0.996006 0.484571 0.754541\n548 1 0.0042625 0.185055 0.564697\n705 1 0.00795119 0.247313 0.633949\n576 1 0.880031 0.183654 0.562893\n607 1 0.945213 0.250019 0.574366\n608 1 0.878752 0.304551 0.573346\n702 1 0.945816 0.188006 0.634644\n733 1 0.87456 0.241515 0.638212\n734 1 0.939441 0.319223 0.637954\n582 1 0.191731 0.305239 0.497595\n114 1 0.57076 0.449494 0.997252\n569 1 0.753676 0.125724 0.51479\n611 1 0.0589659 0.371155 0.552918\n616 1 0.110959 0.43862 0.561642\n738 1 0.0591427 0.421152 0.63104\n741 1 0.126098 0.366226 0.609\n737 1 0.00519757 0.364963 0.617639\n42 1 0.308816 0.189912 1.00184\n1801 1 0.241194 0.491972 0.752468\n549 1 0.124714 0.123612 0.504035\n638 1 0.9427 0.423314 0.500605\n1795 1 0.0798952 0.50077 0.806352\n615 1 0.189443 0.350305 0.561701\n619 1 0.32632 0.365718 0.556359\n620 1 0.261696 0.425858 0.555777\n742 1 0.200024 0.431295 0.618819\n745 1 0.262514 0.358467 0.615278\n746 1 0.321881 0.423414 0.609587\n62 1 0.936565 0.194836 0.995879\n927 1 0.927834 0.0050196 0.930338\n647 1 0.194767 0.00308285 0.686708\n623 1 0.446301 0.356272 0.575178\n624 1 0.384693 0.429706 0.558568\n749 1 0.388014 0.368198 0.63455\n750 1 0.427655 0.443877 0.637205\n789 1 0.633119 0.0113925 0.743067\n118 1 0.693371 0.433829 0.99837\n793 1 0.746829 0.00912197 0.749596\n530 1 0.560277 0.0653703 0.502939\n541 1 0.87264 0.000483334 0.499698\n628 1 0.479452 0.42871 0.552224\n753 1 0.508283 0.371353 0.616624\n627 1 0.5725 0.371505 0.560323\n632 1 0.618899 0.441187 0.566306\n754 1 0.536276 0.447316 0.603302\n757 1 0.620296 0.387388 0.620955\n625 1 0.505561 0.370067 0.509726\n631 1 0.685935 0.370053 0.560614\n636 1 0.742775 0.431522 0.56053\n758 1 0.668282 0.441908 0.630658\n761 1 0.744234 0.378059 0.613696\n762 1 0.803772 0.438264 0.626331\n635 1 0.829306 0.362481 0.563769\n919 1 0.686683 0.00288297 0.948113\n897 1 1.00126 0.0152432 0.867365\n1671 1 0.184022 0.484898 0.672949\n1665 1 0.988401 0.491262 0.650882\n612 1 0.993274 0.431294 0.570367\n639 1 0.93155 0.362352 0.560425\n640 1 0.881995 0.430557 0.558822\n765 1 0.879353 0.373671 0.623683\n766 1 0.930571 0.434037 0.639399\n1021 1 0.863251 0.380186 0.875939\n46 1 0.437599 0.182515 0.994737\n675 1 0.0695834 0.123738 0.68783\n648 1 0.12634 0.0582919 0.683276\n770 1 0.0648734 0.0546171 0.761085\n805 1 0.111493 0.125689 0.763015\n776 1 0.130526 0.0643865 0.817327\n803 1 0.0582228 0.124866 0.821419\n518 1 0.189343 0.0678568 0.522961\n772 1 0.999197 0.0728225 0.809949\n613 1 0.12934 0.372237 0.509516\n774 1 0.205574 0.0581839 0.746462\n679 1 0.176286 0.13379 0.694977\n807 1 0.187328 0.128922 0.800503\n652 1 0.263206 0.0536113 0.693804\n683 1 0.319462 0.132762 0.691907\n778 1 0.310093 0.0664434 0.750302\n780 1 0.251672 0.0680278 0.818581\n809 1 0.257045 0.130103 0.751678\n811 1 0.308953 0.129778 0.815355\n1927 1 0.177492 0.490945 0.944433\n687 1 0.437809 0.135074 0.701602\n656 1 0.381683 0.0572173 0.691041\n782 1 0.445393 0.0600293 0.763184\n784 1 0.365069 0.0587097 0.810888\n813 1 0.379319 0.12349 0.756901\n815 1 0.443808 0.121919 0.814987\n788 1 0.506568 0.0555537 0.820425\n923 1 0.807105 0.0107831 0.940682\n660 1 0.501312 0.0614201 0.690428\n817 1 0.502402 0.128513 0.757558\n664 1 0.618135 0.0663291 0.690149\n691 1 0.56004 0.125495 0.691233\n786 1 0.56466 0.068407 0.755709\n819 1 0.560328 0.122455 0.815474\n821 1 0.626228 0.125539 0.762982\n792 1 0.620942 0.0691399 0.816997\n539 1 0.815726 0.00343228 0.561163\n1019 1 0.801515 0.381963 0.942037\n1024 1 0.890191 0.442669 0.938776\n1929 1 0.250897 0.500074 0.883178\n695 1 0.69099 0.119127 0.697062\n699 1 0.803814 0.134229 0.681247\n790 1 0.688727 0.0629733 0.751189\n668 1 0.743568 0.0677211 0.67635\n794 1 0.808233 0.0585816 0.750065\n796 1 0.750273 0.063013 0.80975\n823 1 0.683157 0.124458 0.813009\n825 1 0.74964 0.121352 0.742366\n827 1 0.80306 0.130363 0.813486\n529 1 0.501183 0.00648414 0.506452\n1667 1 0.0702545 0.491452 0.701943\n801 1 0.017878 0.12229 0.751484\n644 1 0.00780911 0.066073 0.700848\n672 1 0.870123 0.0748916 0.695052\n703 1 0.94919 0.115635 0.707172\n798 1 0.94061 0.0514792 0.753121\n800 1 0.86633 0.0578959 0.811779\n829 1 0.868083 0.124995 0.7665\n831 1 0.940735 0.125737 0.813735\n707 1 0.0669627 0.25393 0.688929\n712 1 0.123995 0.319381 0.677755\n808 1 0.133606 0.193717 0.81744\n680 1 0.126292 0.191531 0.697509\n802 1 0.0580881 0.194035 0.756614\n834 1 0.0539715 0.30961 0.754408\n835 1 0.0702148 0.251113 0.81234\n837 1 0.122527 0.258933 0.750769\n840 1 0.125237 0.310903 0.824252\n716 1 0.270661 0.320983 0.684817\n715 1 0.313564 0.241916 0.690276\n839 1 0.185474 0.259669 0.829304\n684 1 0.251713 0.202551 0.681179\n711 1 0.18955 0.253114 0.689188\n806 1 0.189343 0.198419 0.745919\n810 1 0.320624 0.191992 0.753735\n838 1 0.190592 0.313895 0.744657\n841 1 0.250874 0.243018 0.761431\n842 1 0.31399 0.295308 0.746015\n844 1 0.254736 0.310935 0.808023\n843 1 0.307189 0.253893 0.811603\n812 1 0.247307 0.187653 0.814995\n720 1 0.383342 0.306655 0.690439\n688 1 0.378867 0.195841 0.698353\n719 1 0.453679 0.25657 0.69955\n814 1 0.452301 0.194312 0.760686\n816 1 0.376947 0.178423 0.827594\n845 1 0.387651 0.249562 0.751261\n846 1 0.440361 0.315926 0.749525\n848 1 0.379811 0.315076 0.802185\n847 1 0.43264 0.251706 0.817377\n724 1 0.505445 0.308845 0.68375\n852 1 0.500485 0.306224 0.817565\n820 1 0.49086 0.194048 0.829385\n692 1 0.499192 0.179909 0.686996\n849 1 0.51071 0.245278 0.763146\n818 1 0.570153 0.182568 0.741173\n696 1 0.641398 0.182927 0.685012\n723 1 0.567049 0.250101 0.692472\n824 1 0.628044 0.196963 0.823274\n853 1 0.634362 0.239732 0.758002\n856 1 0.621285 0.320019 0.814337\n850 1 0.55851 0.306778 0.74992\n851 1 0.566694 0.256725 0.825507\n728 1 0.632984 0.323653 0.692285\n822 1 0.68885 0.184818 0.757259\n700 1 0.743836 0.191384 0.697881\n826 1 0.818976 0.184078 0.753628\n727 1 0.686144 0.258258 0.689294\n731 1 0.815606 0.247323 0.702101\n854 1 0.675718 0.307933 0.752753\n857 1 0.746206 0.258693 0.746633\n859 1 0.802904 0.261844 0.8141\n860 1 0.73886 0.321248 0.826298\n828 1 0.749299 0.198793 0.817685\n855 1 0.69081 0.25198 0.814816\n858 1 0.799329 0.320465 0.762513\n732 1 0.7399 0.32227 0.693956\n708 1 0.998825 0.306306 0.69385\n804 1 0.996802 0.181345 0.8063\n836 1 0.996772 0.311601 0.818859\n676 1 0.00684498 0.181565 0.692723\n833 1 -0.000332978 0.259737 0.760563\n735 1 0.944316 0.251927 0.7048\n830 1 0.937192 0.18658 0.755637\n704 1 0.871334 0.181069 0.698997\n736 1 0.872321 0.318292 0.682439\n832 1 0.866169 0.185238 0.810259\n861 1 0.877688 0.25643 0.744652\n864 1 0.870367 0.324343 0.817676\n863 1 0.924774 0.252404 0.803592\n862 1 0.937565 0.3101 0.753295\n34 1 0.0817242 0.180423 0.996098\n739 1 0.0514445 0.373116 0.701635\n744 1 0.135686 0.404834 0.689589\n866 1 0.0677881 0.4354 0.757566\n869 1 0.127634 0.364291 0.755621\n872 1 0.136041 0.439361 0.798672\n867 1 0.0757071 0.377875 0.810963\n865 1 0.995713 0.373477 0.768842\n1543 1 0.187994 0.484944 0.56052\n1022 1 0.937146 0.428828 0.861333\n899 1 0.0552067 -0.00136842 0.929307\n633 1 0.75307 0.379665 0.504484\n743 1 0.19695 0.361827 0.663307\n747 1 0.310986 0.38961 0.685953\n748 1 0.247876 0.439201 0.693589\n870 1 0.18863 0.425039 0.746142\n871 1 0.195549 0.363326 0.808324\n873 1 0.250941 0.372209 0.749786\n874 1 0.307901 0.439774 0.753559\n875 1 0.321365 0.369122 0.805342\n876 1 0.245957 0.428628 0.815104\n1799 1 0.197322 0.496355 0.823153\n109 1 0.377572 0.375775 1.00226\n797 1 0.864488 0.00739925 0.740892\n751 1 0.453706 0.370432 0.691569\n752 1 0.374416 0.443539 0.701449\n877 1 0.371672 0.371114 0.741139\n878 1 0.449601 0.436262 0.735531\n879 1 0.434897 0.37147 0.802382\n880 1 0.38348 0.438485 0.808559\n756 1 0.510034 0.43142 0.682118\n1017 1 0.765587 0.386833 0.870317\n881 1 0.510223 0.372983 0.748723\n884 1 0.495834 0.429418 0.806619\n755 1 0.563993 0.377886 0.681078\n760 1 0.611572 0.446979 0.694808\n882 1 0.55866 0.439022 0.751724\n883 1 0.554917 0.375676 0.828504\n885 1 0.617291 0.381724 0.757394\n888 1 0.615151 0.440755 0.812042\n887 1 0.68787 0.380674 0.816935\n759 1 0.673878 0.391367 0.685545\n763 1 0.797642 0.370948 0.689143\n764 1 0.741408 0.435976 0.697203\n886 1 0.67265 0.436283 0.752501\n889 1 0.735456 0.374061 0.750919\n890 1 0.794701 0.423626 0.745325\n892 1 0.7459 0.440172 0.802061\n891 1 0.809663 0.377387 0.809343\n125 1 0.874302 0.367578 0.990146\n740 1 0.995782 0.426671 0.690559\n868 1 0.00494423 0.434499 0.811835\n767 1 0.929546 0.367931 0.700073\n768 1 0.858297 0.434147 0.685045\n893 1 0.860196 0.378294 0.74083\n894 1 0.924764 0.430266 0.748432\n895 1 0.925601 0.374401 0.81032\n896 1 0.858918 0.439914 0.810478\n1020 1 0.752309 0.446778 0.931014\n643 1 0.0672311 0.00676494 0.701434\n1675 1 0.317221 0.484658 0.663423\n898 1 0.0613656 0.0630173 0.868226\n904 1 0.123655 0.0751259 0.921774\n931 1 0.0694937 0.135335 0.930972\n933 1 0.138094 0.135103 0.870813\n929 1 0.00236131 0.130199 0.877928\n900 1 0.994383 0.0749211 0.942648\n523 1 0.317054 0.014835 0.565368\n795 1 0.80383 0.0104227 0.821815\n902 1 0.191486 0.0644111 0.882345\n908 1 0.260042 0.0628228 0.941534\n935 1 0.197159 0.130472 0.930539\n937 1 0.25864 0.125522 0.876892\n939 1 0.311682 0.122772 0.93632\n906 1 0.309172 0.061501 0.867961\n657 1 0.503991 0.00918264 0.628989\n1817 1 0.74529 0.500766 0.74829\n26 1 0.812734 0.0634912 0.996121\n535 1 0.689673 0.00759371 0.555853\n910 1 0.443395 0.0481133 0.869012\n912 1 0.384922 0.0527096 0.936597\n941 1 0.379162 0.112514 0.877704\n943 1 0.437362 0.112478 0.95304\n945 1 0.496657 0.123595 0.880795\n916 1 0.503603 0.0624516 0.933307\n925 1 0.854719 0.00452411 0.878801\n1551 1 0.427879 0.490271 0.565312\n1023 1 0.939769 0.374638 0.925577\n93 1 0.874642 0.254823 0.987877\n1925 1 0.13666 0.497285 0.870083\n914 1 0.561651 0.0579226 0.876146\n920 1 0.615684 0.0519085 0.935807\n947 1 0.559551 0.123682 0.931625\n949 1 0.616019 0.124332 0.87368\n1537 1 0.997004 0.495193 0.505349\n73 1 0.252002 0.248931 0.996833\n573 1 0.884574 0.122166 0.502371\n1005 1 0.372345 0.380741 0.870639\n1669 1 0.115979 0.493673 0.636089\n1016 1 0.631721 0.444565 0.939791\n1009 1 0.488395 0.368177 0.87686\n918 1 0.676665 0.0653261 0.884339\n924 1 0.739446 0.0646824 0.937612\n951 1 0.677455 0.129606 0.938196\n953 1 0.741824 0.128242 0.879599\n922 1 0.807514 0.0727506 0.876135\n955 1 0.804646 0.12974 0.943862\n22 1 0.675882 0.065562 0.997967\n1695 1 0.927657 0.491638 0.700228\n1014 1 0.689265 0.444283 0.861571\n1006 1 0.438934 0.450173 0.862196\n781 1 0.371686 0.00500199 0.750594\n94 1 0.942767 0.308913 0.993551\n926 1 0.92827 0.0655167 0.877046\n928 1 0.865281 0.0710357 0.929173\n957 1 0.868745 0.12817 0.872464\n959 1 0.938038 0.133409 0.924102\n1545 1 0.256376 0.497637 0.503224\n659 1 0.561049 0.00831303 0.691219\n930 1 0.0543391 0.20128 0.865714\n936 1 0.132334 0.188641 0.939134\n963 1 0.0688132 0.254779 0.941527\n965 1 0.120503 0.257652 0.886449\n968 1 0.129665 0.322635 0.937982\n962 1 0.051998 0.307924 0.880302\n932 1 0.997741 0.198185 0.941885\n964 1 0.997716 0.312824 0.939553\n1567 1 0.938794 0.487399 0.561508\n966 1 0.191549 0.319672 0.88808\n934 1 0.197489 0.191123 0.880979\n938 1 0.311915 0.195425 0.875408\n940 1 0.259947 0.18993 0.941708\n967 1 0.191033 0.253178 0.93274\n969 1 0.251958 0.254364 0.872047\n970 1 0.32039 0.311859 0.862201\n971 1 0.31365 0.25703 0.938101\n972 1 0.258339 0.308182 0.938376\n533 1 0.6129 0.00353819 0.506633\n2 1 0.0647357 0.0502504 0.99087\n976 1 0.363557 0.321856 0.938613\n973 1 0.375356 0.250306 0.864665\n944 1 0.368819 0.179409 0.9388\n942 1 0.441374 0.175044 0.895025\n975 1 0.43699 0.253035 0.937368\n974 1 0.431345 0.310733 0.875805\n948 1 0.503838 0.197166 0.943427\n977 1 0.497884 0.254112 0.885279\n1012 1 0.499641 0.460274 0.935019\n1941 1 0.627182 0.497764 0.869112\n980 1 0.50252 0.314056 0.931585\n946 1 0.555033 0.1845 0.876698\n984 1 0.626371 0.306688 0.946601\n978 1 0.566051 0.319889 0.879251\n981 1 0.617845 0.256429 0.89202\n979 1 0.560126 0.250232 0.942411\n952 1 0.619104 0.183156 0.935559\n1008 1 0.385711 0.438677 0.931999\n1011 1 0.559626 0.380224 0.940523\n983 1 0.681466 0.235702 0.9456\n988 1 0.740978 0.307487 0.941992\n954 1 0.810894 0.192618 0.886828\n982 1 0.682331 0.309511 0.887534\n986 1 0.799991 0.301807 0.889284\n987 1 0.808134 0.24226 0.942136\n985 1 0.737115 0.245808 0.880955\n950 1 0.687989 0.186515 0.876156\n956 1 0.742123 0.187264 0.948549\n961 1 0.988083 0.244268 0.851732\n960 1 0.875745 0.190876 0.936923\n992 1 0.882739 0.311569 0.935379\n991 1 0.939487 0.247349 0.929848\n990 1 0.932192 0.312302 0.868165\n989 1 0.868313 0.255012 0.879209\n958 1 0.927933 0.191616 0.863856\n1010 1 0.556412 0.442261 0.874649\n570 1 0.813858 0.176244 0.500264\n66 1 0.0698777 0.327025 1.00156\n993 1 0.99814 0.373222 0.870495\n996 1 0.00811803 0.457013 0.922\n995 1 0.0698222 0.377218 0.933566\n1000 1 0.128727 0.428116 0.938659\n994 1 0.0785669 0.439214 0.869247\n997 1 0.13216 0.373596 0.872516\n1015 1 0.691528 0.379211 0.931262\n117 1 0.625398 0.381386 0.992024\n998 1 0.186941 0.432743 0.880603\n1018 1 0.81509 0.449319 0.877918\n999 1 0.200754 0.378231 0.94332\n553 1 0.24495 0.124791 0.512439\n1003 1 0.314347 0.378686 0.927802\n1004 1 0.253811 0.440098 0.940141\n1001 1 0.255648 0.366124 0.875598\n1002 1 0.330136 0.451289 0.872533\n1013 1 0.626954 0.383265 0.876812\n665 1 0.739597 0.00308836 0.626055\n1007 1 0.439974 0.375165 0.932601\n667 1 0.798982 0.00391006 0.689776\n651 1 0.32286 0.00444817 0.683585\n581 1 0.120313 0.236194 0.519289\n61 1 0.869894 0.124039 0.984871\n69 1 0.132798 0.24778 0.991381\n769 1 0.00247514 0.00606499 0.756186\n641 1 0.994021 0.00782668 0.636512\n921 1 0.739977 0.0133991 0.873053\n645 1 0.125911 0.0133496 0.62217\n609 1 0.993693 0.368105 0.499501\n534 1 0.694205 0.0644564 0.508526\n634 1 0.802983 0.442205 0.511319\n537 1 0.755935 0.00980972 0.497739\n1687 1 0.670713 0.497372 0.68666\n58 1 0.821456 0.18816 0.995762\n543 1 0.933483 0.00718876 0.565534\n515 1 0.0687268 0.00211202 0.558718\n81 1 0.49411 0.259264 0.995162\n605 1 0.871823 0.238154 0.507667\n1539 1 0.0479169 0.493943 0.591345\n787 1 0.571082 0.000748198 0.811635\n6 1 0.198467 0.0532124 0.998825\n54 1 0.675001 0.178463 0.999837\n1673 1 0.248195 0.492862 0.621208\n1823 1 0.927538 0.491391 0.808734\n649 1 0.250452 0.00714321 0.624116\n30 1 0.933437 0.0523442 0.996387\n653 1 0.37895 0.00997412 0.61564\n113 1 0.502067 0.376188 0.994431\n561 1 0.498244 0.119812 0.507348\n70 1 0.186391 0.308723 0.997168\n597 1 0.61723 0.247419 0.502972\n557 1 0.370899 0.124992 0.50278\n1685 1 0.589002 0.497343 0.63002\n1033 1 0.244702 0.498192 0.995414\n799 1 0.929589 0.0045761 0.830962\n773 1 0.129405 0.00972938 0.757891\n531 1 0.564092 0.00327346 0.569308\n917 1 0.630032 0.00269852 0.872503\n78 1 0.439115 0.321842 0.996373\n97 1 0.00461453 0.374074 0.998675\n53 1 0.61427 0.117742 0.997112\n86 1 0.682292 0.317677 0.996064\n1557 1 0.62951 0.487546 0.503293\n29 1 0.866811 0.00194934 0.987609\n574 1 0.944124 0.188366 0.502859\n1541 1 0.119126 0.497553 0.504977\n106 1 0.305832 0.428343 0.993804\n77 1 0.375994 0.239108 0.993437\n517 1 0.137691 0.000757272 0.511744\n629 1 0.637312 0.369592 0.500184\n1032 1 0.133235 0.561034 0.0650331\n1059 1 0.0586676 0.637557 0.0726162\n1154 1 0.0739497 0.580621 0.127382\n1189 1 0.131222 0.62961 0.121198\n1550 1 0.439669 0.54319 0.492639\n513 1 1.00283 0.998181 0.501329\n1114 1 0.817906 0.815522 0.00978496\n269 1 0.373546 0.995092 0.256814\n1036 1 0.241128 0.560142 0.0493492\n1063 1 0.191115 0.630051 0.0563151\n1158 1 0.186827 0.57201 0.127304\n1162 1 0.300596 0.561395 0.123536\n1193 1 0.253364 0.637328 0.126995\n1067 1 0.301713 0.612293 0.0517501\n1625 1 0.76096 0.75115 0.488216\n1295 1 0.422838 0.507177 0.316779\n1040 1 0.375127 0.543647 0.0710112\n1071 1 0.437419 0.619215 0.0694525\n1166 1 0.433408 0.560372 0.130668\n1197 1 0.370957 0.622012 0.124942\n1201 1 0.494322 0.631289 0.12229\n1505 1 0.000407664 0.883093 0.378181\n1175 1 0.687789 0.504505 0.178251\n1055 1 0.950092 0.507398 0.0623324\n1044 1 0.495512 0.563475 0.0650434\n1048 1 0.63466 0.569894 0.0551154\n1075 1 0.562129 0.612496 0.0498027\n1170 1 0.573004 0.562863 0.116387\n1205 1 0.629269 0.630995 0.117921\n1411 1 0.0612997 0.498157 0.442046\n151 1 0.687651 0.990553 0.16032\n1605 1 0.104331 0.760778 0.493799\n1050 1 0.819265 0.572087 0.0114147\n139 1 0.322415 0.998076 0.194765\n1079 1 0.687893 0.634514 0.0755269\n1052 1 0.753471 0.572607 0.0574249\n1083 1 0.813201 0.628993 0.0736585\n1174 1 0.687942 0.566189 0.126013\n1178 1 0.813546 0.553115 0.120907\n1209 1 0.751518 0.624505 0.126565\n1641 1 0.245393 0.878659 0.492431\n415 1 0.942326 0.998241 0.442503\n1028 1 0.00816142 0.565529 0.0751015\n1185 1 0.00180562 0.631734 0.126592\n1056 1 0.879923 0.565408 0.0750482\n1087 1 0.951882 0.632446 0.0645866\n1182 1 0.942712 0.568383 0.124745\n1213 1 0.885437 0.634596 0.122144\n413 1 0.886334 0.99818 0.376267\n1163 1 0.300421 0.508392 0.18435\n1106 1 0.557258 0.820564 0.00666078\n1598 1 0.93495 0.690689 0.495428\n1064 1 0.127839 0.693499 0.0685189\n1091 1 0.0699725 0.764429 0.0740933\n1186 1 0.0614845 0.698755 0.128874\n1221 1 0.129525 0.746583 0.133732\n1096 1 0.136137 0.808968 0.0632818\n1218 1 0.0523898 0.826014 0.124584\n1060 1 0.995243 0.701652 0.0718728\n1092 1 0.995025 0.822291 0.0655567\n1281 1 0.992782 0.502444 0.244237\n1194 1 0.315522 0.701094 0.130761\n1068 1 0.245301 0.689668 0.0684342\n1095 1 0.195861 0.755594 0.0599096\n1099 1 0.308075 0.751091 0.0679935\n1190 1 0.190031 0.683934 0.121778\n1222 1 0.194195 0.82527 0.127545\n1225 1 0.25113 0.751185 0.122934\n1100 1 0.254734 0.810956 0.0617377\n1226 1 0.305526 0.808524 0.125233\n1601 1 0.00648317 0.750225 0.497759\n1072 1 0.361005 0.679988 0.0676568\n1103 1 0.442766 0.745477 0.0579489\n1104 1 0.372086 0.824643 0.0675941\n1198 1 0.427271 0.679658 0.120866\n1229 1 0.368399 0.760499 0.119022\n1230 1 0.446162 0.806941 0.130616\n1076 1 0.485598 0.68114 0.0617381\n1233 1 0.507083 0.75477 0.12522\n1108 1 0.498319 0.814404 0.0755306\n27 1 0.815712 0.999977 0.0587262\n1080 1 0.6163 0.669915 0.0458205\n1107 1 0.550679 0.754196 0.0576603\n1202 1 0.564899 0.678069 0.123355\n1234 1 0.569116 0.813227 0.129211\n1237 1 0.619634 0.749381 0.120215\n1112 1 0.625733 0.804603 0.0626961\n1653 1 0.630191 0.865702 0.498885\n1084 1 0.756306 0.673925 0.0606281\n1206 1 0.680165 0.698047 0.122837\n1111 1 0.687163 0.739551 0.0548369\n1115 1 0.816287 0.747896 0.071034\n1116 1 0.743666 0.818373 0.0639308\n1210 1 0.810691 0.693285 0.133089\n1238 1 0.691879 0.809235 0.122353\n1241 1 0.746861 0.750536 0.129485\n1242 1 0.81633 0.813066 0.104476\n1590 1 0.702385 0.693742 0.495736\n1217 1 0.00655718 0.756247 0.131706\n1214 1 0.939987 0.691333 0.124311\n1088 1 0.871121 0.694066 0.0678465\n1119 1 0.937299 0.752056 0.0664051\n1120 1 0.886809 0.807588 0.0580872\n1245 1 0.879082 0.750244 0.136912\n1246 1 0.939288 0.80936 0.126067\n1070 1 0.42958 0.686464 0.00650336\n1123 1 0.0596838 0.887568 0.0663159\n1128 1 0.122979 0.944939 0.0572074\n1250 1 0.0666657 0.943325 0.12586\n1253 1 0.121937 0.874647 0.114281\n1047 1 0.68657 0.505201 0.0554006\n1124 1 0.0031593 0.93658 0.0666966\n287 1 0.937224 0.994572 0.306754\n1536 1 0.869799 0.951279 0.430329\n133 1 0.122048 0.996789 0.136105\n1586 1 0.570195 0.707681 0.499556\n1027 1 0.0640324 0.513958 0.0707043\n1127 1 0.190401 0.87645 0.0657779\n1131 1 0.31179 0.874753 0.0635236\n1132 1 0.245847 0.935893 0.0728158\n1254 1 0.182995 0.940973 0.129101\n1257 1 0.258976 0.876393 0.13629\n1258 1 0.32436 0.930958 0.132833\n149 1 0.616507 0.992052 0.104045\n1135 1 0.437595 0.867413 0.0654568\n1136 1 0.365456 0.931483 0.0513803\n1261 1 0.37006 0.866144 0.134021\n1262 1 0.434643 0.939427 0.126459\n1299 1 0.563008 0.501009 0.30015\n281 1 0.745122 1.00039 0.26209\n129 1 1.0006 0.993881 0.137773\n1140 1 0.49759 0.929771 0.0649851\n1265 1 0.498347 0.873021 0.13379\n1139 1 0.552353 0.869766 0.0739318\n1144 1 0.614542 0.931442 0.0570055\n1266 1 0.565693 0.923317 0.125338\n1269 1 0.626279 0.866736 0.117354\n1549 1 0.377392 0.495945 0.497437\n1057 1 0.0100486 0.643233 0.000380593\n1143 1 0.684961 0.873324 0.0537199\n1148 1 0.752381 0.936153 0.0626681\n1270 1 0.676906 0.92777 0.105346\n1273 1 0.742616 0.874345 0.125777\n1274 1 0.81732 0.94831 0.132697\n1147 1 0.808221 0.879711 0.0679622\n1293 1 0.381731 0.502761 0.247338\n1249 1 0.989633 0.889199 0.12485\n1029 1 0.121273 0.501545 0.00901012\n1618 1 0.557474 0.805777 0.496329\n1151 1 0.929835 0.88225 0.0652406\n1152 1 0.876235 0.952498 0.071984\n1277 1 0.866018 0.877353 0.124521\n1278 1 0.93645 0.940872 0.128817\n1533 1 0.886348 0.891964 0.372833\n1160 1 0.124317 0.55187 0.18899\n1187 1 0.0596389 0.62767 0.190236\n1282 1 0.0554381 0.552936 0.246384\n1288 1 0.108349 0.57531 0.318683\n1315 1 0.0401748 0.615772 0.323041\n1317 1 0.120263 0.636554 0.248692\n1156 1 0.999082 0.576276 0.195346\n1191 1 0.177629 0.634601 0.190221\n1319 1 0.176227 0.631448 0.306555\n1164 1 0.239083 0.567913 0.19813\n1195 1 0.314153 0.623003 0.180706\n1286 1 0.169737 0.561683 0.265295\n1292 1 0.237911 0.562719 0.306394\n1321 1 0.244819 0.634852 0.250765\n1323 1 0.305677 0.623025 0.301422\n1290 1 0.306611 0.559565 0.250778\n271 1 0.425484 0.985969 0.309516\n1413 1 0.137925 0.501129 0.385215\n1291 1 0.318934 0.510607 0.307187\n1168 1 0.36209 0.565308 0.187143\n1199 1 0.426877 0.623958 0.188477\n1294 1 0.436035 0.559093 0.250092\n1296 1 0.370406 0.570188 0.320039\n1325 1 0.373233 0.620369 0.24623\n1327 1 0.434114 0.622123 0.305384\n1329 1 0.49739 0.621183 0.245113\n1172 1 0.497511 0.561766 0.18752\n1300 1 0.495549 0.560016 0.299613\n137 1 0.251871 0.993853 0.127691\n1102 1 0.443431 0.81075 0.00129525\n1514 1 0.315598 0.927065 0.38465\n1203 1 0.552921 0.619137 0.182589\n1176 1 0.62598 0.568962 0.189452\n1298 1 0.560023 0.565583 0.236581\n1331 1 0.560577 0.624349 0.306652\n1333 1 0.616072 0.623112 0.251498\n1304 1 0.622794 0.553174 0.304471\n1602 1 0.0522865 0.822853 0.486641\n1511 1 0.181348 0.875148 0.433815\n1303 1 0.697441 0.515133 0.315075\n1510 1 0.182922 0.927564 0.370463\n1153 1 0.00159339 0.510011 0.132246\n1302 1 0.69164 0.571547 0.243349\n1180 1 0.748706 0.556252 0.190707\n1207 1 0.689478 0.620189 0.189493\n1211 1 0.805694 0.6306 0.183435\n1308 1 0.775273 0.56337 0.301551\n1335 1 0.692102 0.615278 0.306401\n1337 1 0.749545 0.63156 0.245447\n1339 1 0.819866 0.635292 0.309812\n1306 1 0.811308 0.55803 0.231348\n1513 1 0.244071 0.864521 0.38595\n1171 1 0.566545 0.500389 0.181876\n1621 1 0.631923 0.762306 0.488169\n1313 1 0.994634 0.631765 0.246013\n1284 1 0.995696 0.551982 0.311974\n1184 1 0.875629 0.547982 0.185209\n1215 1 0.933226 0.632645 0.183578\n1310 1 0.936715 0.562159 0.238991\n1312 1 0.865766 0.561073 0.299948\n1341 1 0.869597 0.620156 0.243452\n1343 1 0.917332 0.619389 0.305895\n1110 1 0.674344 0.813122 0.00331751\n1219 1 0.0568602 0.751833 0.194018\n1314 1 0.065473 0.693911 0.260349\n1320 1 0.115569 0.687513 0.318674\n1192 1 0.11853 0.692114 0.1844\n1346 1 0.0543641 0.807616 0.255415\n1349 1 0.127602 0.743393 0.256227\n1347 1 0.0551803 0.74417 0.320359\n1352 1 0.107359 0.802974 0.31769\n1220 1 0.000596447 0.809414 0.188338\n1224 1 0.116505 0.817024 0.180787\n1196 1 0.250121 0.686047 0.187921\n1324 1 0.259392 0.687834 0.310058\n1223 1 0.193646 0.742251 0.191136\n1228 1 0.25118 0.810718 0.181423\n1227 1 0.313994 0.760278 0.197984\n1318 1 0.188166 0.692449 0.251458\n1322 1 0.319501 0.693092 0.262319\n1350 1 0.194828 0.805546 0.253487\n1353 1 0.249945 0.750372 0.261307\n1355 1 0.310315 0.752825 0.317228\n1354 1 0.305525 0.815172 0.263189\n1351 1 0.187248 0.7546 0.309297\n1356 1 0.249897 0.814006 0.319405\n1232 1 0.379128 0.80414 0.194055\n1328 1 0.381634 0.682087 0.307549\n1200 1 0.373399 0.684068 0.19405\n1231 1 0.43115 0.745856 0.179053\n1326 1 0.447724 0.686786 0.248555\n1357 1 0.38776 0.745944 0.255059\n1358 1 0.441151 0.807455 0.245041\n1359 1 0.444851 0.742305 0.313211\n1360 1 0.38706 0.804325 0.302943\n1204 1 0.494516 0.6813 0.190735\n1332 1 0.493796 0.668262 0.314506\n1361 1 0.495211 0.746843 0.237131\n1364 1 0.506483 0.821925 0.306303\n1236 1 0.506984 0.814988 0.182385\n1208 1 0.627024 0.675718 0.187371\n1240 1 0.643076 0.817108 0.185844\n1235 1 0.569772 0.73934 0.179238\n1330 1 0.558555 0.677535 0.237407\n1336 1 0.625739 0.683716 0.308077\n1363 1 0.553606 0.738302 0.306793\n1365 1 0.616654 0.74081 0.24343\n1368 1 0.629558 0.805763 0.314848\n1362 1 0.555745 0.799449 0.236506\n1338 1 0.818583 0.690248 0.250477\n1212 1 0.747121 0.69403 0.192478\n1334 1 0.680354 0.68186 0.245354\n1239 1 0.686731 0.751977 0.184975\n1244 1 0.749028 0.814725 0.190383\n1366 1 0.686083 0.807072 0.256261\n1367 1 0.701421 0.74206 0.304875\n1369 1 0.754698 0.75545 0.253756\n1370 1 0.809227 0.811373 0.258672\n1371 1 0.822831 0.753225 0.318935\n1340 1 0.762237 0.68408 0.304886\n1243 1 0.814836 0.747858 0.192434\n1372 1 0.753379 0.810408 0.320684\n1348 1 1.0001 0.815635 0.314349\n1188 1 0.00642665 0.694041 0.181044\n1316 1 0.991819 0.685395 0.316389\n1345 1 0.998703 0.74541 0.264242\n1342 1 0.941162 0.693956 0.243705\n1216 1 0.876939 0.684748 0.181306\n1247 1 0.940871 0.747191 0.18817\n1373 1 0.869395 0.751679 0.251497\n1374 1 0.938376 0.808246 0.243504\n1375 1 0.946689 0.747105 0.321212\n1376 1 0.88743 0.814741 0.31907\n1344 1 0.884929 0.695426 0.320544\n1248 1 0.860768 0.81931 0.184841\n1301 1 0.631698 0.506035 0.23618\n1515 1 0.328513 0.859559 0.432246\n1256 1 0.115988 0.927083 0.19205\n1251 1 0.056614 0.872527 0.192329\n1378 1 0.059712 0.943552 0.251805\n1379 1 0.0548703 0.871643 0.320705\n1381 1 0.104363 0.873459 0.257873\n1384 1 0.128477 0.945254 0.314676\n1377 1 0.999855 0.875273 0.253319\n277 1 0.63119 0.986901 0.24403\n1382 1 0.188505 0.935543 0.252037\n1259 1 0.319568 0.870486 0.198392\n1260 1 0.268826 0.936053 0.193895\n1383 1 0.187897 0.864096 0.310039\n1255 1 0.185078 0.87475 0.187069\n1385 1 0.245109 0.872171 0.243107\n1386 1 0.31854 0.928998 0.257499\n1387 1 0.305869 0.869828 0.321704\n1388 1 0.251641 0.927537 0.320532\n7 1 0.198564 0.99612 0.0575\n1530 1 0.80992 0.939724 0.369764\n1043 1 0.562244 0.5123 0.0546134\n1433 1 0.753229 0.505532 0.380009\n1431 1 0.695405 0.508277 0.432965\n1263 1 0.436833 0.881672 0.185239\n1264 1 0.375752 0.93628 0.199638\n1389 1 0.388833 0.872765 0.249295\n1390 1 0.441112 0.940178 0.250485\n1391 1 0.435147 0.867973 0.312681\n1392 1 0.372969 0.923245 0.314112\n1396 1 0.500718 0.92868 0.307549\n1268 1 0.507309 0.944716 0.182893\n15 1 0.426109 0.991152 0.0615466\n393 1 0.240266 0.99118 0.372025\n1169 1 0.512484 0.50253 0.119705\n1393 1 0.501362 0.874548 0.246765\n1272 1 0.625497 0.930828 0.168602\n1267 1 0.568259 0.872729 0.181549\n1394 1 0.566852 0.93386 0.239616\n1395 1 0.579821 0.868334 0.300508\n1397 1 0.629039 0.887544 0.238737\n1400 1 0.627316 0.93338 0.307357\n1137 1 0.497802 0.873823 0.0032286\n1520 1 0.368146 0.933128 0.449441\n1025 1 0.0158237 0.51308 0.00310311\n1518 1 0.437449 0.930498 0.36552\n131 1 0.0650039 1.00232 0.188958\n1271 1 0.697443 0.869624 0.205361\n1275 1 0.806957 0.876447 0.178995\n1276 1 0.754934 0.933319 0.182547\n1398 1 0.698634 0.941057 0.238672\n1401 1 0.763326 0.87927 0.263544\n1402 1 0.810581 0.929448 0.239313\n1399 1 0.690096 0.874319 0.301068\n1403 1 0.818765 0.867487 0.324803\n1404 1 0.747818 0.938377 0.324636\n1380 1 0.00366803 0.940854 0.317312\n1523 1 0.564699 0.870109 0.446106\n1252 1 0.00560034 0.929997 0.193947\n1279 1 0.942155 0.874923 0.191388\n1280 1 0.868857 0.943369 0.186003\n1405 1 0.877198 0.867862 0.239851\n1406 1 0.934559 0.930676 0.243732\n1407 1 0.941966 0.880867 0.310797\n1408 1 0.865163 0.934984 0.3126\n1058 1 0.0693244 0.703718 0.0183677\n1090 1 0.0559742 0.811251 0.00631994\n1410 1 0.042862 0.558842 0.378389\n1416 1 0.111456 0.567036 0.435008\n1443 1 0.0426487 0.622204 0.449186\n1445 1 0.117288 0.631849 0.37358\n1516 1 0.244987 0.943954 0.430471\n1414 1 0.175397 0.56856 0.361875\n1447 1 0.177764 0.628261 0.440314\n1449 1 0.242923 0.615297 0.371379\n1451 1 0.309592 0.632092 0.432086\n1420 1 0.231452 0.56416 0.434838\n1418 1 0.302987 0.565798 0.372536\n1528 1 0.622406 0.95027 0.449106\n1519 1 0.419161 0.867605 0.442696\n1069 1 0.371778 0.62248 0.0106544\n1424 1 0.359625 0.57112 0.423186\n1455 1 0.438769 0.617492 0.44561\n1422 1 0.427495 0.56383 0.384787\n1453 1 0.368762 0.631218 0.370317\n1457 1 0.493041 0.616667 0.381092\n1428 1 0.501729 0.559546 0.434977\n1517 1 0.3723 0.857821 0.3719\n13 1 0.378656 0.994098 -0.000898437\n273 1 0.493627 0.998675 0.244443\n1461 1 0.620828 0.625681 0.360262\n1426 1 0.564159 0.57412 0.373229\n1432 1 0.620649 0.559386 0.437669\n1459 1 0.556569 0.621189 0.440926\n1121 1 0.999149 0.881093 0.0101904\n1522 1 0.563319 0.944453 0.368021\n1535 1 0.925158 0.876444 0.438929\n1532 1 0.768895 0.933039 0.440824\n11 1 0.318685 0.988755 0.0723316\n1525 1 0.629098 0.874014 0.368293\n409 1 0.746377 0.99292 0.395857\n1430 1 0.685249 0.571648 0.375767\n1463 1 0.674916 0.623694 0.453933\n1436 1 0.745899 0.573401 0.430938\n1434 1 0.815125 0.561766 0.369813\n1465 1 0.756727 0.624474 0.363823\n1467 1 0.81923 0.624107 0.432056\n1577 1 0.245904 0.6231 0.492816\n135 1 0.185615 0.993839 0.190334\n1441 1 0.983551 0.62484 0.381598\n1412 1 0.993827 0.556068 0.440082\n1471 1 0.929276 0.606929 0.432789\n1469 1 0.879768 0.631488 0.371088\n1440 1 0.872454 0.553947 0.448168\n1438 1 0.933793 0.545717 0.371935\n275 1 0.557671 0.992471 0.30573\n1085 1 0.883255 0.636118 0.0169433\n261 1 0.124433 0.99248 0.246341\n1524 1 0.482088 0.931854 0.433937\n1442 1 0.0502404 0.683779 0.382258\n1475 1 0.0556208 0.755547 0.426243\n1448 1 0.121797 0.692712 0.441504\n1480 1 0.122575 0.817554 0.433904\n1477 1 0.1219 0.745246 0.36833\n1474 1 0.0565942 0.81947 0.374376\n1444 1 0.997911 0.686139 0.439719\n1038 1 0.432624 0.567 0.00907785\n1529 1 0.756535 0.866175 0.37623\n403 1 0.561492 0.996937 0.438605\n1446 1 0.19177 0.685558 0.364184\n1484 1 0.242112 0.802929 0.437542\n1452 1 0.252949 0.684086 0.429663\n1482 1 0.317545 0.802525 0.377749\n1481 1 0.247063 0.746369 0.378159\n1479 1 0.187372 0.73618 0.437359\n1483 1 0.311614 0.749258 0.443591\n1450 1 0.304705 0.679851 0.371667\n1478 1 0.179555 0.798902 0.383845\n1297 1 0.497809 0.500808 0.240999\n1534 1 0.949825 0.944416 0.378567\n1507 1 0.068096 0.880509 0.426625\n1456 1 0.377173 0.69294 0.445917\n1454 1 0.434328 0.678464 0.384414\n1485 1 0.374005 0.726527 0.377668\n1486 1 0.436721 0.801911 0.360903\n1487 1 0.440483 0.748544 0.442983\n1488 1 0.384652 0.801439 0.422989\n1460 1 0.504099 0.687529 0.446584\n1492 1 0.497055 0.815032 0.421832\n1521 1 0.502428 0.879231 0.370169\n1489 1 0.494012 0.739515 0.376803\n1491 1 0.561769 0.754256 0.426809\n1464 1 0.616987 0.680419 0.429702\n1496 1 0.621169 0.814891 0.430857\n1490 1 0.565071 0.808268 0.366689\n1458 1 0.556428 0.680281 0.373598\n1493 1 0.630485 0.75092 0.376642\n1526 1 0.685538 0.940053 0.37344\n1527 1 0.690616 0.863922 0.433177\n1462 1 0.695422 0.679148 0.374252\n1495 1 0.69057 0.756665 0.432418\n1494 1 0.69614 0.800915 0.368994\n1497 1 0.752612 0.748243 0.37851\n1466 1 0.81696 0.692955 0.37424\n1468 1 0.752415 0.684987 0.435497\n1498 1 0.825884 0.804665 0.383675\n1499 1 0.812949 0.748268 0.434662\n1500 1 0.754718 0.809002 0.427472\n1508 1 1.00222 0.93214 0.443844\n1531 1 0.838776 0.874303 0.441805\n1476 1 0.000856156 0.827275 0.433421\n1473 1 0.998605 0.763281 0.379959\n1503 1 0.945635 0.752704 0.441636\n1504 1 0.884979 0.801329 0.453017\n1470 1 0.943994 0.69155 0.377458\n1501 1 0.876089 0.753669 0.378416\n1472 1 0.885302 0.685537 0.434468\n1502 1 0.942837 0.817203 0.374036\n1155 1 0.0684256 0.500601 0.17778\n1512 1 0.128278 0.949063 0.429777\n1506 1 0.0620351 0.943838 0.380049\n1509 1 0.121233 0.874431 0.363241\n1159 1 0.192719 0.502829 0.180722\n159 1 0.940083 0.998896 0.191973\n1078 1 0.688184 0.675016 0.00145789\n1287 1 0.180811 0.501548 0.32047\n1086 1 0.941446 0.691557 0.00809947\n1062 1 0.183397 0.702042 0.00587774\n1435 1 0.799277 0.508407 0.451298\n1129 1 0.240927 0.876132 0.00392808\n267 1 0.313198 0.988181 0.31507\n1101 1 0.367541 0.760817 0.0049146\n397 1 0.380415 0.989645 0.379608\n1054 1 0.950118 0.573178 0.00821139\n1146 1 0.814166 0.934567 0.00810057\n395 1 0.312314 0.994487 0.433568\n1098 1 0.320981 0.822353 0.00180813\n1425 1 0.49833 0.508944 0.362397\n1118 1 0.939887 0.818994 -0.000637169\n1145 1 0.7596 0.8725 0.00391901\n1051 1 0.821815 0.508287 0.0551497\n141 1 0.376337 0.993587 0.127887\n145 1 0.497106 0.991163 0.121556\n1610 1 0.306183 0.807197 0.493576\n147 1 0.570846 0.993082 0.173029\n1113 1 0.753949 0.751546 0.00926469\n1637 1 0.114624 0.890239 0.486876\n1581 1 0.371533 0.614468 0.485541\n1429 1 0.636688 0.514651 0.37301\n1626 1 0.808655 0.817852 0.493836\n153 1 0.757336 0.99586 0.118092\n1125 1 0.122904 0.868934 0.00765674\n1638 1 0.183489 0.927924 0.492131\n1181 1 0.887888 0.505015 0.119548\n1031 1 0.183796 0.501276 0.0593412\n1650 1 0.552711 0.933376 0.495678\n1649 1 0.495795 0.879945 0.495413\n1578 1 0.31168 0.677296 0.497131\n1142 1 0.682859 0.933968 0.00299223\n1617 1 0.500274 0.750047 0.496298\n1662 1 0.932927 0.935847 0.49877\n1041 1 0.494601 0.506405 0.00870656\n1646 1 0.433205 0.943392 0.497395\n1546 1 0.31653 0.55352 0.493133\n1053 1 0.887049 0.520261 0.00890926\n1554 1 0.562882 0.566209 0.496012\n1066 1 0.306269 0.685622 0.00766841\n1613 1 0.377064 0.763467 0.495608\n1657 1 0.754245 0.869688 0.493538\n1544 1 0.121665 0.545454 0.571509\n1571 1 0.063624 0.618332 0.571809\n1666 1 0.0628063 0.559336 0.631791\n1701 1 0.12836 0.620363 0.621311\n1815 1 0.690821 0.502217 0.805573\n655 1 0.438788 0.99353 0.696012\n1677 1 0.372802 0.505904 0.615743\n1670 1 0.175156 0.55122 0.633289\n1548 1 0.249473 0.562585 0.55321\n1575 1 0.187504 0.618762 0.565768\n1579 1 0.315511 0.615202 0.560737\n1674 1 0.306723 0.555726 0.610175\n1705 1 0.242289 0.597475 0.629283\n1634 1 0.0615921 0.941919 0.5009\n1642 1 0.323966 0.931165 0.508913\n1552 1 0.376024 0.560946 0.558733\n1583 1 0.435314 0.62624 0.563682\n1678 1 0.428519 0.557057 0.630561\n1709 1 0.376942 0.615762 0.617361\n1093 1 0.124977 0.757322 0.990251\n1094 1 0.183528 0.816186 0.994199\n907 1 0.310108 0.999604 0.939133\n1681 1 0.497049 0.510205 0.615667\n1126 1 0.180284 0.934612 0.999037\n1713 1 0.496748 0.624594 0.625214\n1556 1 0.495687 0.566301 0.550633\n1560 1 0.612712 0.57473 0.562055\n1587 1 0.548683 0.63202 0.569533\n1682 1 0.551243 0.569872 0.618884\n1717 1 0.622074 0.623607 0.61942\n1542 1 0.179123 0.569012 0.499036\n1945 1 0.748661 0.503078 0.872272\n1049 1 0.754762 0.511397 0.998387\n1686 1 0.674149 0.556437 0.628631\n1591 1 0.67083 0.625669 0.558122\n1564 1 0.742824 0.551138 0.568639\n1595 1 0.807555 0.631617 0.568772\n1690 1 0.803111 0.565823 0.642341\n1721 1 0.738181 0.621418 0.620602\n1089 1 0.99698 0.750824 0.988435\n785 1 0.501597 0.99317 0.766311\n1540 1 0.991709 0.541316 0.572975\n1697 1 0.003793 0.630757 0.624785\n1568 1 0.886957 0.545359 0.572802\n1599 1 0.929644 0.627991 0.582269\n1694 1 0.929944 0.560461 0.637449\n1725 1 0.867096 0.628719 0.628218\n1594 1 0.810791 0.683801 0.503461\n1597 1 0.880726 0.623946 0.506215\n1576 1 0.122725 0.681758 0.562856\n1603 1 0.0666914 0.743317 0.56425\n1608 1 0.115876 0.833292 0.559628\n1698 1 0.0714704 0.688873 0.630708\n1730 1 0.0740393 0.813872 0.633165\n1733 1 0.132838 0.745556 0.622476\n1572 1 -0.000556281 0.68961 0.562839\n1604 1 0.017896 0.826916 0.57073\n1563 1 0.804538 0.500098 0.573575\n1706 1 0.310297 0.663052 0.620551\n1580 1 0.244078 0.668006 0.565804\n1734 1 0.182354 0.816014 0.613306\n1607 1 0.179102 0.764018 0.55542\n1611 1 0.301484 0.750436 0.557633\n1702 1 0.178468 0.679754 0.612239\n1737 1 0.242568 0.75622 0.616045\n1612 1 0.240354 0.823968 0.559697\n1738 1 0.306877 0.810414 0.617815\n21 1 0.616387 0.999011 1.00138\n1939 1 0.558736 0.514593 0.921923\n783 1 0.437036 0.997417 0.813286\n1710 1 0.432011 0.683906 0.61647\n1584 1 0.366267 0.678929 0.56088\n1615 1 0.437671 0.759069 0.558858\n1616 1 0.374146 0.815283 0.566781\n1741 1 0.370327 0.746319 0.609901\n1742 1 0.426676 0.812449 0.639123\n1620 1 0.496526 0.82184 0.57332\n1745 1 0.477117 0.7501 0.624268\n1138 1 0.561235 0.930025 0.985825\n1803 1 0.314777 0.506294 0.814359\n1558 1 0.673205 0.55983 0.500578\n1588 1 0.494905 0.695021 0.565324\n1714 1 0.555178 0.693374 0.623648\n1592 1 0.617948 0.698786 0.57071\n1619 1 0.55472 0.748431 0.569215\n1624 1 0.613347 0.810649 0.560916\n1749 1 0.615425 0.752991 0.624358\n1746 1 0.565519 0.817885 0.625453\n1933 1 0.372707 0.518584 0.87092\n1750 1 0.672646 0.817925 0.621548\n1623 1 0.691297 0.752131 0.560673\n1722 1 0.813058 0.694625 0.619634\n1596 1 0.744836 0.679668 0.557279\n1627 1 0.807008 0.753478 0.560398\n1718 1 0.686482 0.691529 0.611673\n1753 1 0.747623 0.743544 0.627421\n1754 1 0.800194 0.819207 0.631896\n1628 1 0.746602 0.817897 0.57384\n1077 1 0.611278 0.621463 0.983004\n1150 1 0.94327 0.940193 0.994561\n1729 1 0.00888984 0.751953 0.618258\n1600 1 0.875497 0.689167 0.571216\n1631 1 0.941973 0.752289 0.564112\n1632 1 0.881114 0.801619 0.565994\n1726 1 0.950103 0.694073 0.629755\n1757 1 0.866146 0.758128 0.62659\n1758 1 0.94724 0.810832 0.634767\n1046 1 0.683533 0.572403 0.989215\n1805 1 0.357523 0.516155 0.741926\n1117 1 0.878328 0.74766 1.0015\n1635 1 0.0649191 0.899693 0.582867\n1640 1 0.12668 0.940492 0.561636\n1762 1 0.0629821 0.960842 0.635923\n1765 1 0.134139 0.88912 0.625939\n1636 1 1.0014 0.957494 0.566894\n1585 1 0.492549 0.63826 0.509699\n791 1 0.68283 0.984469 0.808128\n519 1 0.194853 0.993809 0.566386\n1065 1 0.247686 0.617587 0.99621\n1030 1 0.175597 0.565255 0.979984\n1811 1 0.554248 0.508686 0.819025\n1133 1 0.38484 0.874308 0.998213\n915 1 0.561452 0.994287 0.937055\n1658 1 0.823704 0.934253 0.506845\n1639 1 0.186577 0.885971 0.564005\n1643 1 0.310415 0.876874 0.569834\n1644 1 0.257177 0.941846 0.553909\n1766 1 0.195955 0.944 0.628182\n1769 1 0.248908 0.885643 0.621869\n1770 1 0.306919 0.953591 0.629603\n1589 1 0.615543 0.643728 0.506151\n1821 1 0.861789 0.50271 0.75528\n1645 1 0.388153 0.870794 0.512407\n1691 1 0.807681 0.500714 0.689278\n1807 1 0.416881 0.511742 0.805746\n1647 1 0.436124 0.882545 0.580881\n1648 1 0.373548 0.936779 0.571827\n1773 1 0.375007 0.875972 0.635365\n1774 1 0.4536 0.947215 0.626206\n1777 1 0.507019 0.878509 0.629222\n1652 1 0.508989 0.944656 0.563082\n2047 1 0.933044 0.880949 0.942604\n1797 1 0.148613 0.503145 0.748645\n1651 1 0.564103 0.886411 0.559446\n1656 1 0.630169 0.937883 0.551064\n1778 1 0.556063 0.942109 0.630978\n1781 1 0.61183 0.882144 0.625104\n1931 1 0.317739 0.50168 0.937694\n1629 1 0.873727 0.740938 0.50593\n909 1 0.379052 0.998461 0.877808\n2033 1 0.501867 0.873195 0.875425\n1614 1 0.444948 0.811565 0.50599\n1813 1 0.612454 0.503909 0.758155\n2048 1 0.876905 0.93835 0.934652\n1655 1 0.684886 0.874827 0.563533\n1659 1 0.814761 0.876564 0.57863\n1660 1 0.757306 0.938 0.573524\n1782 1 0.690981 0.932633 0.615783\n1785 1 0.740195 0.869027 0.627092\n1786 1 0.816008 0.942039 0.626337\n1573 1 0.119821 0.624897 0.50037\n1633 1 0.00912669 0.88797 0.514299\n2046 1 0.937101 0.937738 0.881597\n1761 1 1.0029 0.879276 0.634081\n1951 1 0.951043 0.516274 0.945131\n1663 1 0.941191 0.877032 0.565033\n1664 1 0.874973 0.943519 0.564538\n1789 1 0.881217 0.867339 0.63319\n1790 1 0.937429 0.947413 0.633374\n1555 1 0.572591 0.508618 0.551433\n2040 1 0.627957 0.936811 0.94068\n1672 1 0.119637 0.554987 0.687893\n1699 1 0.0581429 0.626361 0.696799\n1794 1 0.080009 0.555556 0.754465\n1800 1 0.147181 0.568221 0.809946\n1829 1 0.13552 0.623647 0.74892\n1827 1 0.0751359 0.629021 0.815346\n1825 1 0.00157492 0.636229 0.756443\n1796 1 0.0158056 0.567817 0.805539\n1061 1 0.134893 0.638618 0.993651\n2045 1 0.870148 0.878354 0.878613\n1798 1 0.203637 0.566856 0.74595\n1676 1 0.261028 0.54149 0.689414\n1703 1 0.184809 0.626513 0.681924\n1707 1 0.297081 0.624235 0.694102\n1804 1 0.245083 0.566286 0.820387\n1831 1 0.186515 0.641902 0.810338\n1833 1 0.248717 0.643077 0.744924\n1835 1 0.314263 0.643619 0.803904\n1802 1 0.296203 0.56948 0.760716\n1037 1 0.371187 0.50808 0.999697\n1680 1 0.358277 0.562758 0.681386\n1711 1 0.4244 0.630437 0.688388\n1806 1 0.441943 0.567119 0.750873\n1837 1 0.372586 0.627269 0.7472\n1839 1 0.425275 0.636898 0.805457\n1808 1 0.367425 0.576069 0.811697\n1841 1 0.480895 0.633662 0.750275\n1683 1 0.546489 0.506003 0.7083\n775 1 0.20266 0.998955 0.820421\n1715 1 0.554867 0.637874 0.675661\n1812 1 0.497689 0.576028 0.810013\n1684 1 0.506732 0.569881 0.67761\n1688 1 0.611941 0.569973 0.678944\n1810 1 0.552785 0.56423 0.753747\n1816 1 0.628294 0.568463 0.803914\n1843 1 0.552912 0.635985 0.805428\n1845 1 0.619726 0.630941 0.740154\n1105 1 0.503725 0.754895 0.985465\n1034 1 0.315945 0.556551 0.998275\n2015 1 0.929768 0.753955 0.934815\n1692 1 0.738943 0.56129 0.689843\n1719 1 0.679963 0.628995 0.677634\n1814 1 0.67673 0.55928 0.737495\n1820 1 0.740003 0.564543 0.792425\n1849 1 0.746811 0.623294 0.737583\n1851 1 0.821873 0.641883 0.807069\n1818 1 0.813118 0.570486 0.758593\n1723 1 0.808573 0.629856 0.679278\n1847 1 0.679106 0.630924 0.796491\n1622 1 0.694872 0.816913 0.501387\n2026 1 0.321069 0.933684 0.874354\n1668 1 0.00161641 0.550264 0.691927\n1696 1 0.867747 0.568443 0.692261\n1727 1 0.936716 0.620347 0.692061\n1822 1 0.937906 0.554054 0.754391\n1824 1 0.878493 0.563723 0.806043\n1853 1 0.870993 0.620269 0.751233\n1855 1 0.932516 0.629236 0.798814\n1921 1 0.985802 0.508446 0.869208\n2032 1 0.381012 0.936744 0.937401\n1826 1 0.0807973 0.68209 0.748804\n1704 1 0.12443 0.677993 0.680486\n1731 1 0.070339 0.755927 0.681903\n1736 1 0.131592 0.818875 0.688611\n1859 1 0.0641793 0.75404 0.815074\n1861 1 0.111521 0.760471 0.744401\n1864 1 0.129457 0.818756 0.807558\n1832 1 0.128859 0.691221 0.807491\n1858 1 0.0581076 0.822646 0.759003\n1732 1 0.0156928 0.815219 0.684325\n1700 1 0.0123007 0.702903 0.701072\n1860 1 0.00329759 0.827669 0.812835\n1834 1 0.323 0.688258 0.742466\n1739 1 0.302031 0.746807 0.680102\n1830 1 0.184109 0.692155 0.747925\n1740 1 0.242392 0.811399 0.670195\n1708 1 0.247609 0.682811 0.679502\n1735 1 0.181548 0.753772 0.686433\n1836 1 0.265717 0.698965 0.810633\n1865 1 0.247954 0.7437 0.741667\n1868 1 0.24032 0.820014 0.808097\n1863 1 0.194217 0.752434 0.821037\n1867 1 0.314991 0.766759 0.822679\n1866 1 0.295705 0.804461 0.740179\n1862 1 0.189481 0.813175 0.74149\n1840 1 0.371803 0.707571 0.803478\n1744 1 0.356219 0.809092 0.683614\n1712 1 0.371809 0.690161 0.677282\n1743 1 0.420897 0.752948 0.684708\n1838 1 0.43067 0.69662 0.749595\n1869 1 0.367827 0.761744 0.748145\n1870 1 0.444586 0.812807 0.741914\n1871 1 0.438308 0.760911 0.806357\n1872 1 0.374519 0.82 0.812243\n1844 1 0.49573 0.686809 0.81329\n1873 1 0.494444 0.744388 0.74629\n1716 1 0.485372 0.683785 0.68533\n1748 1 0.493662 0.812513 0.67854\n1876 1 0.500661 0.81425 0.816415\n1720 1 0.622297 0.681038 0.674616\n1842 1 0.55194 0.687401 0.738406\n1747 1 0.55161 0.757404 0.670048\n1752 1 0.621861 0.810448 0.685259\n1877 1 0.617308 0.749257 0.730547\n1848 1 0.612785 0.690826 0.799551\n1880 1 0.625012 0.804769 0.797951\n1875 1 0.551878 0.744538 0.808005\n1874 1 0.553533 0.805319 0.740525\n1751 1 0.674198 0.753033 0.677584\n1878 1 0.684679 0.818089 0.740569\n1724 1 0.75231 0.679197 0.676579\n1846 1 0.675428 0.689974 0.738277\n1850 1 0.822801 0.687768 0.734407\n1852 1 0.744784 0.681451 0.793088\n1881 1 0.754105 0.738564 0.742288\n1882 1 0.808592 0.811774 0.756821\n1884 1 0.739069 0.812507 0.81132\n1879 1 0.687611 0.744017 0.799345\n1755 1 0.805647 0.757348 0.686294\n1883 1 0.806278 0.746975 0.807062\n1756 1 0.741653 0.801849 0.681033\n1828 1 0.990302 0.700004 0.808206\n1857 1 0.00445425 0.763245 0.753641\n1728 1 0.877122 0.695511 0.674022\n1759 1 0.939167 0.764761 0.700511\n1854 1 0.935599 0.689576 0.742005\n1856 1 0.883202 0.696759 0.797015\n1885 1 0.870273 0.760598 0.756718\n1887 1 0.941038 0.765099 0.80757\n1886 1 0.942224 0.833795 0.746646\n1760 1 0.873044 0.819252 0.695674\n1888 1 0.873734 0.824906 0.808311\n1763 1 0.0669978 0.89104 0.680456\n1768 1 0.13516 0.948558 0.683183\n1890 1 0.0719176 0.945566 0.760274\n1891 1 0.0738221 0.888538 0.81695\n1893 1 0.130007 0.880443 0.746897\n1896 1 0.138871 0.942428 0.809177\n1 1 -0.000345354 1.00054 0.985762\n1889 1 0.991597 0.890052 0.76296\n1892 1 0.991231 0.954422 0.817775\n1081 1 0.752757 0.618298 0.985083\n1561 1 0.726648 0.499815 0.508004\n1767 1 0.191559 0.87958 0.686637\n1772 1 0.251286 0.937505 0.686555\n1895 1 0.187436 0.884019 0.827287\n1894 1 0.203743 0.943216 0.759878\n1897 1 0.237257 0.875193 0.748985\n1898 1 0.310414 0.928991 0.740973\n1900 1 0.260555 0.936575 0.816079\n1771 1 0.301876 0.876917 0.685035\n1899 1 0.311587 0.870488 0.806565\n1693 1 0.876449 0.502379 0.643031\n911 1 0.445789 0.990647 0.932933\n1819 1 0.805275 0.502167 0.816109\n1775 1 0.439457 0.881571 0.684573\n1776 1 0.376379 0.940809 0.674989\n1901 1 0.373089 0.869296 0.747204\n1902 1 0.430301 0.929905 0.75138\n1903 1 0.437285 0.871019 0.81659\n1904 1 0.36072 0.934372 0.80388\n901 1 0.139686 0.997202 0.876433\n1908 1 0.504662 0.933637 0.819032\n1905 1 0.500396 0.872981 0.748976\n1935 1 0.433193 0.520077 0.943852\n1780 1 0.500135 0.936322 0.698187\n1779 1 0.563316 0.87341 0.686774\n1784 1 0.611428 0.947133 0.683542\n1906 1 0.560208 0.934531 0.746375\n1907 1 0.558455 0.883478 0.816587\n1909 1 0.61905 0.866614 0.744557\n1912 1 0.622407 0.938304 0.803008\n2013 1 0.866956 0.760866 0.871368\n1783 1 0.671506 0.879808 0.676346\n1787 1 0.807913 0.875665 0.690035\n1911 1 0.688684 0.884837 0.81583\n1788 1 0.747427 0.941708 0.685399\n1910 1 0.684739 0.928874 0.732162\n1913 1 0.740244 0.870822 0.759029\n1914 1 0.813713 0.944882 0.747207\n1916 1 0.757257 0.941182 0.800066\n1915 1 0.81269 0.887004 0.817763\n2041 1 0.741601 0.874401 0.877129\n2016 1 0.865348 0.817349 0.937515\n2031 1 0.440344 0.868326 0.94242\n1569 1 0.977567 0.624767 0.500665\n1764 1 0.00324025 0.944907 0.702638\n1792 1 0.875862 0.942925 0.683502\n1920 1 0.869625 0.946275 0.820721\n1791 1 0.942606 0.886619 0.688496\n1917 1 0.867943 0.889593 0.75236\n1918 1 0.933364 0.961517 0.759499\n1919 1 0.935364 0.875109 0.817042\n1809 1 0.491035 0.505618 0.770446\n1922 1 0.0790721 0.545239 0.865939\n1928 1 0.116821 0.577712 0.929277\n1955 1 0.0637864 0.641881 0.935774\n1957 1 0.129389 0.638529 0.883045\n2017 1 1.00055 0.872175 0.88189\n2036 1 0.498694 0.929636 0.940222\n1926 1 0.182419 0.564945 0.883415\n1930 1 0.309444 0.574807 0.878552\n1963 1 0.3071 0.638292 0.93652\n1961 1 0.253971 0.639924 0.88063\n1932 1 0.245202 0.557673 0.937703\n1959 1 0.195667 0.630349 0.935184\n2019 1 0.0682419 0.882473 0.947645\n1982 1 0.93191 0.710264 0.86941\n2029 1 0.379551 0.88448 0.873863\n2038 1 0.708696 0.945125 0.889332\n2024 1 0.12496 0.937131 0.937305\n1967 1 0.432948 0.636867 0.9414\n1965 1 0.370028 0.636361 0.87195\n1934 1 0.428661 0.573256 0.872295\n1936 1 0.370598 0.58749 0.937681\n2043 1 0.811456 0.866277 0.942757\n1985 1 0.0123405 0.763055 0.878259\n1582 1 0.439708 0.701636 0.505918\n2039 1 0.679121 0.871829 0.94815\n1940 1 0.488593 0.57206 0.92654\n1969 1 0.494148 0.6276 0.872205\n1938 1 0.56884 0.574775 0.865186\n1944 1 0.621435 0.565212 0.928118\n1971 1 0.564237 0.631207 0.920439\n1973 1 0.62985 0.64269 0.858756\n1562 1 0.815932 0.561768 0.51757\n2042 1 0.801806 0.940674 0.880897\n2035 1 0.564937 0.868679 0.937368\n1975 1 0.69673 0.631164 0.922824\n1942 1 0.680087 0.570382 0.868936\n1946 1 0.82499 0.582323 0.870036\n1977 1 0.758608 0.615841 0.849923\n1948 1 0.759872 0.565802 0.923609\n1979 1 0.827124 0.626626 0.943473\n2044 1 0.764585 0.930941 0.943411\n2018 1 0.049107 0.938726 0.875643\n1026 1 0.0626372 0.576169 0.99856\n2028 1 0.265951 0.935618 0.938025\n2030 1 0.442121 0.933748 0.868458\n1661 1 0.873983 0.864455 0.521039\n1953 1 0.999242 0.63398 0.862671\n1924 1 0.02005 0.579924 0.912463\n1950 1 0.940409 0.577627 0.866312\n1952 1 0.876156 0.568137 0.937317\n1983 1 0.932122 0.630111 0.939589\n1981 1 0.884409 0.640752 0.863058\n2020 1 0.999303 0.939469 0.937781\n2023 1 0.190205 0.857188 0.934394\n1992 1 0.119834 0.818289 0.94048\n1987 1 0.0650098 0.729369 0.928843\n1960 1 0.13573 0.692807 0.93785\n1989 1 0.12192 0.744342 0.877863\n1986 1 0.066467 0.818692 0.872371\n1954 1 0.0559901 0.688495 0.863822\n1956 1 0.992859 0.6971 0.925681\n1988 1 0.00178636 0.824759 0.947454\n2037 1 0.624427 0.86563 0.853467\n777 1 0.260067 1.00014 0.755069\n2025 1 0.250939 0.875095 0.866972\n1570 1 0.0520063 0.674491 0.501167\n527 1 0.441692 0.997477 0.562529\n1995 1 0.320197 0.764859 0.933165\n1962 1 0.313569 0.698813 0.882665\n1990 1 0.176067 0.810609 0.869406\n1958 1 0.206869 0.699756 0.87587\n1993 1 0.255758 0.761332 0.870087\n1964 1 0.252452 0.694758 0.94587\n1996 1 0.261869 0.813717 0.934664\n1991 1 0.192274 0.759845 0.930855\n1994 1 0.321282 0.82215 0.871782\n2022 1 0.202296 0.941567 0.888517\n913 1 0.509303 0.991335 0.87085\n1042 1 0.549569 0.566349 0.981552\n1984 1 0.869021 0.693825 0.941216\n1968 1 0.365199 0.69541 0.949182\n1966 1 0.417276 0.695439 0.87307\n2000 1 0.38096 0.819375 0.94223\n1997 1 0.374362 0.756851 0.87359\n1998 1 0.442971 0.80958 0.882953\n1999 1 0.434817 0.749915 0.947828\n2004 1 0.506351 0.813986 0.931828\n1972 1 0.498017 0.683914 0.932271\n2001 1 0.491942 0.748281 0.87934\n2014 1 0.940761 0.81614 0.882824\n2034 1 0.574135 0.929194 0.880377\n1970 1 0.564546 0.689732 0.867841\n1976 1 0.627102 0.68574 0.933978\n2003 1 0.559997 0.761141 0.931595\n2008 1 0.623244 0.813435 0.928187\n2005 1 0.640758 0.737378 0.871889\n2002 1 0.566999 0.808699 0.868313\n1679 1 0.424506 0.501989 0.693354\n2027 1 0.324966 0.872924 0.940011\n1538 1 0.0535105 0.548949 0.509707\n2009 1 0.756649 0.750367 0.870096\n2006 1 0.696111 0.80216 0.885883\n2011 1 0.808869 0.764741 0.937588\n2010 1 0.811126 0.821923 0.865416\n1974 1 0.706618 0.683419 0.862927\n1978 1 0.813892 0.695866 0.886152\n2007 1 0.689794 0.744755 0.94433\n2012 1 0.74312 0.815516 0.948319\n1980 1 0.755776 0.698414 0.94192\n2021 1 0.121848 0.877079 0.877819\n1559 1 0.666917 0.503741 0.56892\n905 1 0.257391 0.997637 0.876499\n1923 1 0.070895 0.512034 0.939968\n1943 1 0.679428 0.508224 0.932538\n779 1 0.310697 0.998645 0.808374\n771 1 0.0814049 0.997028 0.819121\n903 1 0.197266 0.996449 0.940246\n1574 1 0.188148 0.687326 0.50333\n1141 1 0.619536 0.867238 0.989806\n1949 1 0.877631 0.520167 0.87078\n1937 1 0.489419 0.508329 0.867968\n1122 1 0.0655199 0.94057 1.00274\n17 1 0.487396 0.997212 0.992121\n1630 1 0.957182 0.813431 0.508595\n1566 1 0.935028 0.548432 0.509281\n1045 1 0.620439 0.513331 0.984104\n1074 1 0.54883 0.693369 0.996351\n1134 1 0.4448 0.934961 0.994347\n1097 1 0.263014 0.759057 0.996555\n1109 1 0.614229 0.739445 0.990976\n521 1 0.237527 0.998982 0.504056\n1606 1 0.175535 0.825284 0.505947\n1073 1 0.496369 0.621679 0.997938\n1609 1 0.238777 0.741904 0.503833\n1149 1 0.876436 0.870862 0.995722\n1082 1 0.819471 0.686564 0.996925\n1593 1 0.738269 0.615687 0.512377\n1130 1 0.315631 0.938343 0.996257\n1654 1 0.690808 0.94745 0.503011\n" ]
true
99,533
10da6b06bd51d413b4937670e9141053f12bdc30
from pdfminer.pdfparser import PDFParser from pdfminer.pdfdocument import PDFDocument from pdfminer.pdfpage import PDFPage from pdfminer.pdfdevice import PDFDevice from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter, PDFTextState, PDFGraphicState from pdfminer.pdftypes import list_value, dict_value, stream_value, PDFStream from pdfminer.psparser import LIT, PSLiteral from pdfminer.pdftypes import PDFObjRef, resolve1 from pdfminer.utils import mult_matrix from pdftext import TextAnalyzer, textSpanBox import pdffonts import colorspace def literal(name): return LIT( name) if not isinstance(name, PSLiteral) else name def render_type(ftype): def render_function(func): def render_arguments(self, *args, **kwargs): if ftype in self.filtered: return return func(self, *args, **kwargs) return render_arguments return render_function def get_default(res_type): def binding(func): def get_arguments(self, objid, obj=None): res_list = getattr(self, res_type+'s', None) if res_list is None: return if objid is not None: objid = literal(objid) if objid in res_list: return res_list[objid] elif obj is None: return func(self, objid, obj=obj) if objid is not None: return res_list.get(objid) return get_arguments return binding class Paint: def __init__(self, cs, value): self.cs = cs self.value = value def draw(self): return self.cs.getRGB(*self.value) class TextState(PDFTextState): def __init__(self): super().__init__() self.fill = None self.extState = {} def copy(self): obj = self.__class__() obj.font = self.font obj.fontsize = self.fontsize obj.charspace = self.charspace obj.wordspace = self.wordspace obj.scaling = self.scaling obj.leading = self.leading obj.render = self.render obj.rise = self.rise obj.matrix = self.matrix obj.linematrix = self.linematrix obj.fill = self.fill obj.extState = self.extState return obj def __setattr__(self, key, value): if key in ['charspace', 'wordspace']: value *= getattr(self, 'scaling', 100) * 0.01 return object.__setattr__(self, key, value) class GraphicState(PDFGraphicState): def __init__(self): super().__init__() self.stroke = self.fill = None self.extState = {} def copy(self): obj = self.__class__() obj.linewidth = self.linewidth obj.linecap = self.linecap obj.linejoin = self.linejoin obj.miterlimit = self.miterlimit obj.dash = self.dash obj.intent = self.intent obj.flatness = self.flatness obj.stroke = self.stroke obj.fill = self.fill obj.extState = self.extState return obj class Device(PDFDevice): def __init__(self, filtered=None, laparams=None, check_visible=True): super().__init__(None) self.filtered = filtered or [] self.check_visible = check_visible self.analyzer = TextAnalyzer(**(laparams or {})) self.pageno = 1 self.reset() self.viewBox = [0, 0, 0, 0] def reset(self): self.images = {} self.text_layer = [] self.layers = {} self.layer_stack = [] def begin_page(self, page, ctm): self.reset() self.layers[LIT('Page')] = (page.cropbox, ctm) self.layer_stack = [LIT('Page')] self.viewBox = page.cropbox self.ymax = page.mediabox[3] - page.mediabox[1] def is_visible(self, span, bbox): boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox)) if len(boxset) < len(span.bbox): return False xmin, ymin, xmax, ymax = bbox return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset) def get_current_layer(self): i = -1 depth = 0 while True: layerName = self.layer_stack[i] if layerName == 'end': depth += 1 else: depth -= 1 if depth < 0: break i -= 1 return layerName, self.layers[layerName] def end_page(self, page): self.text_layer = filter(lambda x: not self.check_visible or self.is_visible(x, self.viewBox), self.text_layer) lines = self.analyzer.group_lines(self.text_layer) paras = self.analyzer.group_paras(lines) self.text_layer = paras self.pageno += 1 def begin_figure(self, name, bbox, matrix): x, y, w, h = bbox self.layers[name] = ([x, y, x+w, y+h], matrix) self.layer_stack.append(name) def end_figure(self, name): self.layer_stack.append('end') @render_type('path') def paint_path(self, graphicstate, stroke, fill, evenodd, path): # path handling suspended return path @render_type('image') def render_image(self, name, stream, anchored=False, textstate=None): bbox, matrix = self.get_current_layer()[1] self.images.setdefault(stream.objid, (name, stream, bbox, matrix)) @render_type('text') def render_string(self, textstate, seq, *args): layerName = self.get_current_layer()[0] x, y = textstate.linematrix a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm) matrix = a, b, c, d, e, self.ymax - f box = textSpanBox((x, y), seq, textstate, layerName=layerName, matrix=matrix) # check if text is visible if not textstate.extState.get('OP', False) or not textstate.extState.get('OPM', 0): self.text_layer.append(box) elif textstate.extState.get('OPM', 1) and any(textstate.fill.value): self.text_layer.append(box) textstate.linematrix = box.originbox[2] class ResourceManager(PDFResourceManager): def __init__(self): self.fonts = {} self.colorspaces = colorspace.defaults.copy() self.xobjects = {} self.cache = {} self.stream_objects = [] def clear(self): for res in self.fonts: stream_to_close = getattr(res, 'embedFont', None) stream_to_close and stream_to_close.close() self.fonts.clear() self.colorspaces.clear() self.xobjects.clear() def render_resource(self, res_type, res_obj): get_function = getattr(self, 'get_' + res_type.lower(), None) return get_function and get_function(None, obj=res_obj) @get_default('font') def get_font(self, objid, obj=None): for (fontid, spec) in dict_value(obj).items(): spec = dict_value(spec) spec, fontType, embedFont, opentype = pdffonts.getType(spec) if fontType: font = fontType(spec, embedFont=embedFont and self.xobjects.get( embedFont.objid, embedFont), opentype=opentype) if embedFont: objid = literal(embedFont.objid) if not objid in self.xobjects: self.xobjects[objid] = font.embedFont self.fonts[literal(fontid)] = font @get_default('colorspace') def get_colorspace(self, objid, obj=None): for (csid, spec) in dict_value(obj).items(): cs = colorspace.parse(spec) if cs: self.colorspaces[literal(csid)] = cs def get_procset(self, objid, obj=None): # procset handling suspended pass @get_default('xobject') def get_xobject(self, objid, obj=None): for (xobjid, xobjstrm) in dict_value(obj).items(): self.xobjects[literal(xobjid)] = xobjstrm class Interpreter(PDFPageInterpreter): def __init__(self, device): self.rsrcmgr = ResourceManager() self.device = device # custom logging here def log(self, message): pass def dup(self): return self.__class__(self.device) def close(self): self.rsrcmgr.clear() def init_resources(self, resources): self.resources = resources if resources: for (k, v) in dict_value(resources).items(): self.debug and self.log('Resource: %r: %r' % (k, v)) self.rsrcmgr.render_resource(k, v) def init_state(self, ctm): self.gstack = [] self.ctm = ctm self.device.set_ctm(self.ctm) self.textstate = TextState() self.graphicstate = GraphicState() self.curpath = [] self.argstack = [] self.scs = self.ncs = colorspace.CMYKColorSpace() def do_CS(self, name): self.scs = self.rsrcmgr.get_colorspace(literal(name)) def do_cs(self, name): self.ncs = self.rsrcmgr.get_colorspace(literal(name)) def do_SCN(self): n = len(self.scs.mode) pattern = self.argstack[-n:] self.graphicstate.stroke = Paint(self.scs, pattern) self.argstack = self.argstack[:-n] def do_scn(self): n = len(self.ncs.mode) pattern = self.argstack[-n:] self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern) self.argstack = self.argstack[:-n] def do_G(self, gray): cs = colorspace.GrayColorSpace() self.graphicstate.stroke = Paint(cs, gray) def do_g(self, gray): cs = colorspace.GrayColorSpace() self.graphicstate.fill = self.textstate.fill = Paint(cs, gray) def do_RG(self, r, g, b): cs = colorspace.RGBColorSpace() self.graphicstate.stroke = Paint(cs, (r, g, b)) def do_rg(self, r, g, b): cs = colorspace.RGBColorSpace() self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b)) def do_K(self, c, m, y, k): cs = colorspace.CMYKColorSpace() self.graphicstate.stroke = Paint(cs, (c, m, y, k)) def do_k(self, c, m, y, k): cs = colorspace.CMYKColorSpace() self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k)) def do_Tf(self, fontid, fontsize): self.textstate.font = self.rsrcmgr.get_font(literal(fontid)) self.textstate.fontsize = fontsize def do_Do(self, xobjid): xobj = self.rsrcmgr.get_xobject(literal(xobjid)) if not xobj: return self.debug and self.log('Processing xobj: %r' % xobj) xobj = stream_value(xobj) subtype = xobj.get('Subtype') if subtype is LIT('Form') and 'BBox' in xobj: interpreter = self.dup() bbox = list_value(xobj['BBox']) matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0))) # According to PDF reference 1.7 section 4.9.1, XObjects in # earlier PDFs (prior to v1.2) use the page's Resources entry # instead of having their own Resources entry. resources = dict_value(xobj.get('Resources') ) or self.resources.copy() self.device.begin_figure(xobjid, bbox, matrix) interpreter.render_contents( resources, [xobj], ctm=mult_matrix(matrix, self.ctm)) self.device.end_figure(xobjid) elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj: self.device.render_image(xobjid, xobj, anchored=True) else: # unsupported xobject type. pass def do_EI(self, obj): if 'W' in obj and 'H' in obj: self.device.render_image( str(id(obj)), obj, anchored=False, state=self.textstate) def do_gs(self, name): if isinstance(name, PSLiteral): name = name.name gstate = self.resources['ExtGState'].get(name) if gstate and not self.textstate.extState: gstate = resolve1(gstate) self.textstate.extState = gstate def do_q(self): self.gstack.append(self.get_current_state()) def do_Q(self): self.gstack and self.set_current_state(self.gstack.pop()) # def do_Td(self, tx, ty): # x, y = self.textstate.linematrix # # print((x,y), (tx,ty)) # (a, b, c, d, e, f) = self.textstate.matrix # print((x,y), (tx,ty), (tx*a+ty*c+e, tx*b+ty*d+f)) # self.textstate.matrix = (a, b, c, d, tx*a+ty*c+e, tx*b+ty*d+f) # self.textstate.linematrix = (0, 0)
[ "\nfrom pdfminer.pdfparser import PDFParser\nfrom pdfminer.pdfdocument import PDFDocument\nfrom pdfminer.pdfpage import PDFPage\nfrom pdfminer.pdfdevice import PDFDevice\nfrom pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter, PDFTextState, PDFGraphicState\nfrom pdfminer.pdftypes import list_value, dict_value, stream_value, PDFStream\nfrom pdfminer.psparser import LIT, PSLiteral\nfrom pdfminer.pdftypes import PDFObjRef, resolve1\nfrom pdfminer.utils import mult_matrix\n\nfrom pdftext import TextAnalyzer, textSpanBox\nimport pdffonts\nimport colorspace\n\n\ndef literal(name): return LIT(\n name) if not isinstance(name, PSLiteral) else name\n\n\ndef render_type(ftype):\n def render_function(func):\n def render_arguments(self, *args, **kwargs):\n if ftype in self.filtered:\n return\n return func(self, *args, **kwargs)\n return render_arguments\n return render_function\n\n\ndef get_default(res_type):\n def binding(func):\n def get_arguments(self, objid, obj=None):\n res_list = getattr(self, res_type+'s', None)\n if res_list is None:\n return\n if objid is not None:\n objid = literal(objid)\n if objid in res_list:\n return res_list[objid]\n elif obj is None:\n return\n func(self, objid, obj=obj)\n if objid is not None:\n return res_list.get(objid)\n return get_arguments\n return binding\n\n\nclass Paint:\n def __init__(self, cs, value):\n self.cs = cs\n self.value = value\n\n def draw(self):\n return self.cs.getRGB(*self.value)\n\n\nclass TextState(PDFTextState):\n def __init__(self):\n super().__init__()\n self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.font = self.font\n obj.fontsize = self.fontsize\n obj.charspace = self.charspace\n obj.wordspace = self.wordspace\n obj.scaling = self.scaling\n obj.leading = self.leading\n obj.render = self.render\n obj.rise = self.rise\n obj.matrix = self.matrix\n obj.linematrix = self.linematrix\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n def __setattr__(self, key, value):\n if key in ['charspace', 'wordspace']:\n value *= getattr(self, 'scaling', 100) * 0.01\n return object.__setattr__(self, key, value)\n\n\nclass GraphicState(PDFGraphicState):\n def __init__(self):\n super().__init__()\n self.stroke = self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.linewidth = self.linewidth\n obj.linecap = self.linecap\n obj.linejoin = self.linejoin\n obj.miterlimit = self.miterlimit\n obj.dash = self.dash\n obj.intent = self.intent\n obj.flatness = self.flatness\n obj.stroke = self.stroke\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n\nclass Device(PDFDevice):\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**(laparams or {}))\n\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = (page.cropbox, ctm)\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible\n or self.is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = ([x, y, x+w, y+h], matrix)\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n # path handling suspended\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName, matrix=matrix)\n\n # check if text is visible\n if not textstate.extState.get('OP', False) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for (fontid, spec) in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects.get(\n embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for (csid, spec) in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n # procset handling suspended\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for (xobjid, xobjstrm) in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n # custom logging here\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for (k, v) in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n # According to PDF reference 1.7 section 4.9.1, XObjects in\n # earlier PDFs (prior to v1.2) use the page's Resources entry\n # instead of having their own Resources entry.\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(\n resources, [xobj], ctm=mult_matrix(matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n # unsupported xobject type.\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(\n str(id(obj)), obj, anchored=False, state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n\n # def do_Td(self, tx, ty):\n # \tx, y = self.textstate.linematrix\n # \t# print((x,y), (tx,ty))\n # \t(a, b, c, d, e, f) = self.textstate.matrix\n # \tprint((x,y), (tx,ty), (tx*a+ty*c+e, tx*b+ty*d+f))\n # \tself.textstate.matrix = (a, b, c, d, tx*a+ty*c+e, tx*b+ty*d+f)\n # \tself.textstate.linematrix = (0, 0)\n\n", "from pdfminer.pdfparser import PDFParser\nfrom pdfminer.pdfdocument import PDFDocument\nfrom pdfminer.pdfpage import PDFPage\nfrom pdfminer.pdfdevice import PDFDevice\nfrom pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter, PDFTextState, PDFGraphicState\nfrom pdfminer.pdftypes import list_value, dict_value, stream_value, PDFStream\nfrom pdfminer.psparser import LIT, PSLiteral\nfrom pdfminer.pdftypes import PDFObjRef, resolve1\nfrom pdfminer.utils import mult_matrix\nfrom pdftext import TextAnalyzer, textSpanBox\nimport pdffonts\nimport colorspace\n\n\ndef literal(name):\n return LIT(name) if not isinstance(name, PSLiteral) else name\n\n\ndef render_type(ftype):\n\n def render_function(func):\n\n def render_arguments(self, *args, **kwargs):\n if ftype in self.filtered:\n return\n return func(self, *args, **kwargs)\n return render_arguments\n return render_function\n\n\ndef get_default(res_type):\n\n def binding(func):\n\n def get_arguments(self, objid, obj=None):\n res_list = getattr(self, res_type + 's', None)\n if res_list is None:\n return\n if objid is not None:\n objid = literal(objid)\n if objid in res_list:\n return res_list[objid]\n elif obj is None:\n return\n func(self, objid, obj=obj)\n if objid is not None:\n return res_list.get(objid)\n return get_arguments\n return binding\n\n\nclass Paint:\n\n def __init__(self, cs, value):\n self.cs = cs\n self.value = value\n\n def draw(self):\n return self.cs.getRGB(*self.value)\n\n\nclass TextState(PDFTextState):\n\n def __init__(self):\n super().__init__()\n self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.font = self.font\n obj.fontsize = self.fontsize\n obj.charspace = self.charspace\n obj.wordspace = self.wordspace\n obj.scaling = self.scaling\n obj.leading = self.leading\n obj.render = self.render\n obj.rise = self.rise\n obj.matrix = self.matrix\n obj.linematrix = self.linematrix\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n def __setattr__(self, key, value):\n if key in ['charspace', 'wordspace']:\n value *= getattr(self, 'scaling', 100) * 0.01\n return object.__setattr__(self, key, value)\n\n\nclass GraphicState(PDFGraphicState):\n\n def __init__(self):\n super().__init__()\n self.stroke = self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.linewidth = self.linewidth\n obj.linecap = self.linecap\n obj.linejoin = self.linejoin\n obj.miterlimit = self.miterlimit\n obj.dash = self.dash\n obj.intent = self.intent\n obj.flatness = self.flatness\n obj.stroke = self.stroke\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n\n\ndef literal(name):\n return LIT(name) if not isinstance(name, PSLiteral) else name\n\n\ndef render_type(ftype):\n\n def render_function(func):\n\n def render_arguments(self, *args, **kwargs):\n if ftype in self.filtered:\n return\n return func(self, *args, **kwargs)\n return render_arguments\n return render_function\n\n\ndef get_default(res_type):\n\n def binding(func):\n\n def get_arguments(self, objid, obj=None):\n res_list = getattr(self, res_type + 's', None)\n if res_list is None:\n return\n if objid is not None:\n objid = literal(objid)\n if objid in res_list:\n return res_list[objid]\n elif obj is None:\n return\n func(self, objid, obj=obj)\n if objid is not None:\n return res_list.get(objid)\n return get_arguments\n return binding\n\n\nclass Paint:\n\n def __init__(self, cs, value):\n self.cs = cs\n self.value = value\n\n def draw(self):\n return self.cs.getRGB(*self.value)\n\n\nclass TextState(PDFTextState):\n\n def __init__(self):\n super().__init__()\n self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.font = self.font\n obj.fontsize = self.fontsize\n obj.charspace = self.charspace\n obj.wordspace = self.wordspace\n obj.scaling = self.scaling\n obj.leading = self.leading\n obj.render = self.render\n obj.rise = self.rise\n obj.matrix = self.matrix\n obj.linematrix = self.linematrix\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n def __setattr__(self, key, value):\n if key in ['charspace', 'wordspace']:\n value *= getattr(self, 'scaling', 100) * 0.01\n return object.__setattr__(self, key, value)\n\n\nclass GraphicState(PDFGraphicState):\n\n def __init__(self):\n super().__init__()\n self.stroke = self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.linewidth = self.linewidth\n obj.linecap = self.linecap\n obj.linejoin = self.linejoin\n obj.miterlimit = self.miterlimit\n obj.dash = self.dash\n obj.intent = self.intent\n obj.flatness = self.flatness\n obj.stroke = self.stroke\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n\n\ndef render_type(ftype):\n\n def render_function(func):\n\n def render_arguments(self, *args, **kwargs):\n if ftype in self.filtered:\n return\n return func(self, *args, **kwargs)\n return render_arguments\n return render_function\n\n\ndef get_default(res_type):\n\n def binding(func):\n\n def get_arguments(self, objid, obj=None):\n res_list = getattr(self, res_type + 's', None)\n if res_list is None:\n return\n if objid is not None:\n objid = literal(objid)\n if objid in res_list:\n return res_list[objid]\n elif obj is None:\n return\n func(self, objid, obj=obj)\n if objid is not None:\n return res_list.get(objid)\n return get_arguments\n return binding\n\n\nclass Paint:\n\n def __init__(self, cs, value):\n self.cs = cs\n self.value = value\n\n def draw(self):\n return self.cs.getRGB(*self.value)\n\n\nclass TextState(PDFTextState):\n\n def __init__(self):\n super().__init__()\n self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.font = self.font\n obj.fontsize = self.fontsize\n obj.charspace = self.charspace\n obj.wordspace = self.wordspace\n obj.scaling = self.scaling\n obj.leading = self.leading\n obj.render = self.render\n obj.rise = self.rise\n obj.matrix = self.matrix\n obj.linematrix = self.linematrix\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n def __setattr__(self, key, value):\n if key in ['charspace', 'wordspace']:\n value *= getattr(self, 'scaling', 100) * 0.01\n return object.__setattr__(self, key, value)\n\n\nclass GraphicState(PDFGraphicState):\n\n def __init__(self):\n super().__init__()\n self.stroke = self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.linewidth = self.linewidth\n obj.linecap = self.linecap\n obj.linejoin = self.linejoin\n obj.miterlimit = self.miterlimit\n obj.dash = self.dash\n obj.intent = self.intent\n obj.flatness = self.flatness\n obj.stroke = self.stroke\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n\n\ndef get_default(res_type):\n\n def binding(func):\n\n def get_arguments(self, objid, obj=None):\n res_list = getattr(self, res_type + 's', None)\n if res_list is None:\n return\n if objid is not None:\n objid = literal(objid)\n if objid in res_list:\n return res_list[objid]\n elif obj is None:\n return\n func(self, objid, obj=obj)\n if objid is not None:\n return res_list.get(objid)\n return get_arguments\n return binding\n\n\nclass Paint:\n\n def __init__(self, cs, value):\n self.cs = cs\n self.value = value\n\n def draw(self):\n return self.cs.getRGB(*self.value)\n\n\nclass TextState(PDFTextState):\n\n def __init__(self):\n super().__init__()\n self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.font = self.font\n obj.fontsize = self.fontsize\n obj.charspace = self.charspace\n obj.wordspace = self.wordspace\n obj.scaling = self.scaling\n obj.leading = self.leading\n obj.render = self.render\n obj.rise = self.rise\n obj.matrix = self.matrix\n obj.linematrix = self.linematrix\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n def __setattr__(self, key, value):\n if key in ['charspace', 'wordspace']:\n value *= getattr(self, 'scaling', 100) * 0.01\n return object.__setattr__(self, key, value)\n\n\nclass GraphicState(PDFGraphicState):\n\n def __init__(self):\n super().__init__()\n self.stroke = self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.linewidth = self.linewidth\n obj.linecap = self.linecap\n obj.linejoin = self.linejoin\n obj.miterlimit = self.miterlimit\n obj.dash = self.dash\n obj.intent = self.intent\n obj.flatness = self.flatness\n obj.stroke = self.stroke\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\nclass Paint:\n\n def __init__(self, cs, value):\n self.cs = cs\n self.value = value\n\n def draw(self):\n return self.cs.getRGB(*self.value)\n\n\nclass TextState(PDFTextState):\n\n def __init__(self):\n super().__init__()\n self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.font = self.font\n obj.fontsize = self.fontsize\n obj.charspace = self.charspace\n obj.wordspace = self.wordspace\n obj.scaling = self.scaling\n obj.leading = self.leading\n obj.render = self.render\n obj.rise = self.rise\n obj.matrix = self.matrix\n obj.linematrix = self.linematrix\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n def __setattr__(self, key, value):\n if key in ['charspace', 'wordspace']:\n value *= getattr(self, 'scaling', 100) * 0.01\n return object.__setattr__(self, key, value)\n\n\nclass GraphicState(PDFGraphicState):\n\n def __init__(self):\n super().__init__()\n self.stroke = self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.linewidth = self.linewidth\n obj.linecap = self.linecap\n obj.linejoin = self.linejoin\n obj.miterlimit = self.miterlimit\n obj.dash = self.dash\n obj.intent = self.intent\n obj.flatness = self.flatness\n obj.stroke = self.stroke\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\nclass Paint:\n\n def __init__(self, cs, value):\n self.cs = cs\n self.value = value\n <function token>\n\n\nclass TextState(PDFTextState):\n\n def __init__(self):\n super().__init__()\n self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.font = self.font\n obj.fontsize = self.fontsize\n obj.charspace = self.charspace\n obj.wordspace = self.wordspace\n obj.scaling = self.scaling\n obj.leading = self.leading\n obj.render = self.render\n obj.rise = self.rise\n obj.matrix = self.matrix\n obj.linematrix = self.linematrix\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n def __setattr__(self, key, value):\n if key in ['charspace', 'wordspace']:\n value *= getattr(self, 'scaling', 100) * 0.01\n return object.__setattr__(self, key, value)\n\n\nclass GraphicState(PDFGraphicState):\n\n def __init__(self):\n super().__init__()\n self.stroke = self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.linewidth = self.linewidth\n obj.linecap = self.linecap\n obj.linejoin = self.linejoin\n obj.miterlimit = self.miterlimit\n obj.dash = self.dash\n obj.intent = self.intent\n obj.flatness = self.flatness\n obj.stroke = self.stroke\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\nclass Paint:\n <function token>\n <function token>\n\n\nclass TextState(PDFTextState):\n\n def __init__(self):\n super().__init__()\n self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.font = self.font\n obj.fontsize = self.fontsize\n obj.charspace = self.charspace\n obj.wordspace = self.wordspace\n obj.scaling = self.scaling\n obj.leading = self.leading\n obj.render = self.render\n obj.rise = self.rise\n obj.matrix = self.matrix\n obj.linematrix = self.linematrix\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n def __setattr__(self, key, value):\n if key in ['charspace', 'wordspace']:\n value *= getattr(self, 'scaling', 100) * 0.01\n return object.__setattr__(self, key, value)\n\n\nclass GraphicState(PDFGraphicState):\n\n def __init__(self):\n super().__init__()\n self.stroke = self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.linewidth = self.linewidth\n obj.linecap = self.linecap\n obj.linejoin = self.linejoin\n obj.miterlimit = self.miterlimit\n obj.dash = self.dash\n obj.intent = self.intent\n obj.flatness = self.flatness\n obj.stroke = self.stroke\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n\n\nclass TextState(PDFTextState):\n\n def __init__(self):\n super().__init__()\n self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.font = self.font\n obj.fontsize = self.fontsize\n obj.charspace = self.charspace\n obj.wordspace = self.wordspace\n obj.scaling = self.scaling\n obj.leading = self.leading\n obj.render = self.render\n obj.rise = self.rise\n obj.matrix = self.matrix\n obj.linematrix = self.linematrix\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n def __setattr__(self, key, value):\n if key in ['charspace', 'wordspace']:\n value *= getattr(self, 'scaling', 100) * 0.01\n return object.__setattr__(self, key, value)\n\n\nclass GraphicState(PDFGraphicState):\n\n def __init__(self):\n super().__init__()\n self.stroke = self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.linewidth = self.linewidth\n obj.linecap = self.linecap\n obj.linejoin = self.linejoin\n obj.miterlimit = self.miterlimit\n obj.dash = self.dash\n obj.intent = self.intent\n obj.flatness = self.flatness\n obj.stroke = self.stroke\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n\n\nclass TextState(PDFTextState):\n\n def __init__(self):\n super().__init__()\n self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.font = self.font\n obj.fontsize = self.fontsize\n obj.charspace = self.charspace\n obj.wordspace = self.wordspace\n obj.scaling = self.scaling\n obj.leading = self.leading\n obj.render = self.render\n obj.rise = self.rise\n obj.matrix = self.matrix\n obj.linematrix = self.linematrix\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n <function token>\n\n\nclass GraphicState(PDFGraphicState):\n\n def __init__(self):\n super().__init__()\n self.stroke = self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.linewidth = self.linewidth\n obj.linecap = self.linecap\n obj.linejoin = self.linejoin\n obj.miterlimit = self.miterlimit\n obj.dash = self.dash\n obj.intent = self.intent\n obj.flatness = self.flatness\n obj.stroke = self.stroke\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n\n\nclass TextState(PDFTextState):\n <function token>\n\n def copy(self):\n obj = self.__class__()\n obj.font = self.font\n obj.fontsize = self.fontsize\n obj.charspace = self.charspace\n obj.wordspace = self.wordspace\n obj.scaling = self.scaling\n obj.leading = self.leading\n obj.render = self.render\n obj.rise = self.rise\n obj.matrix = self.matrix\n obj.linematrix = self.linematrix\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n <function token>\n\n\nclass GraphicState(PDFGraphicState):\n\n def __init__(self):\n super().__init__()\n self.stroke = self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.linewidth = self.linewidth\n obj.linecap = self.linecap\n obj.linejoin = self.linejoin\n obj.miterlimit = self.miterlimit\n obj.dash = self.dash\n obj.intent = self.intent\n obj.flatness = self.flatness\n obj.stroke = self.stroke\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n\n\nclass TextState(PDFTextState):\n <function token>\n <function token>\n <function token>\n\n\nclass GraphicState(PDFGraphicState):\n\n def __init__(self):\n super().__init__()\n self.stroke = self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.linewidth = self.linewidth\n obj.linecap = self.linecap\n obj.linejoin = self.linejoin\n obj.miterlimit = self.miterlimit\n obj.dash = self.dash\n obj.intent = self.intent\n obj.flatness = self.flatness\n obj.stroke = self.stroke\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n\n\nclass GraphicState(PDFGraphicState):\n\n def __init__(self):\n super().__init__()\n self.stroke = self.fill = None\n self.extState = {}\n\n def copy(self):\n obj = self.__class__()\n obj.linewidth = self.linewidth\n obj.linecap = self.linecap\n obj.linejoin = self.linejoin\n obj.miterlimit = self.miterlimit\n obj.dash = self.dash\n obj.intent = self.intent\n obj.flatness = self.flatness\n obj.stroke = self.stroke\n obj.fill = self.fill\n obj.extState = self.extState\n return obj\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n\n\nclass GraphicState(PDFGraphicState):\n\n def __init__(self):\n super().__init__()\n self.stroke = self.fill = None\n self.extState = {}\n <function token>\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n\n\nclass GraphicState(PDFGraphicState):\n <function token>\n <function token>\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n\n def get_current_layer(self):\n i = -1\n depth = 0\n while True:\n layerName = self.layer_stack[i]\n if layerName == 'end':\n depth += 1\n else:\n depth -= 1\n if depth < 0:\n break\n i -= 1\n return layerName, self.layers[layerName]\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n <function token>\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n\n def begin_figure(self, name, bbox, matrix):\n x, y, w, h = bbox\n self.layers[name] = [x, y, x + w, y + h], matrix\n self.layer_stack.append(name)\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n <function token>\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n <function token>\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n\n @render_type('text')\n def render_string(self, textstate, seq, *args):\n layerName = self.get_current_layer()[0]\n x, y = textstate.linematrix\n a, b, c, d, e, f = mult_matrix(textstate.matrix, self.ctm)\n matrix = a, b, c, d, e, self.ymax - f\n box = textSpanBox((x, y), seq, textstate, layerName=layerName,\n matrix=matrix)\n if not textstate.extState.get('OP', False\n ) or not textstate.extState.get('OPM', 0):\n self.text_layer.append(box)\n elif textstate.extState.get('OPM', 1) and any(textstate.fill.value):\n self.text_layer.append(box)\n textstate.linematrix = box.originbox[2]\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n\n def is_visible(self, span, bbox):\n boxset = set(map(lambda p: (int(p[0]), int(p[1])), span.bbox))\n if len(boxset) < len(span.bbox):\n return False\n xmin, ymin, xmax, ymax = bbox\n return all(xmin < x < xmax and ymin < y < ymax for x, y in boxset)\n <function token>\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n <function token>\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n <function token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n <function token>\n <function token>\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n <function token>\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n\n @render_type('image')\n def render_image(self, name, stream, anchored=False, textstate=None):\n bbox, matrix = self.get_current_layer()[1]\n self.images.setdefault(stream.objid, (name, stream, bbox, matrix))\n <function token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n <function token>\n <function token>\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n <function token>\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n\n @render_type('path')\n def paint_path(self, graphicstate, stroke, fill, evenodd, path):\n return path\n <function token>\n <function token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n <function token>\n <function token>\n\n def end_page(self, page):\n self.text_layer = filter(lambda x: not self.check_visible or self.\n is_visible(x, self.viewBox), self.text_layer)\n lines = self.analyzer.group_lines(self.text_layer)\n paras = self.analyzer.group_paras(lines)\n self.text_layer = paras\n self.pageno += 1\n <function token>\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n <function token>\n <function token>\n <function token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Device(PDFDevice):\n\n def __init__(self, filtered=None, laparams=None, check_visible=True):\n super().__init__(None)\n self.filtered = filtered or []\n self.check_visible = check_visible\n self.analyzer = TextAnalyzer(**laparams or {})\n self.pageno = 1\n self.reset()\n self.viewBox = [0, 0, 0, 0]\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n <function token>\n <function token>\n <function token>\n <function token>\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n <function token>\n <function token>\n <function token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Device(PDFDevice):\n <function token>\n\n def reset(self):\n self.images = {}\n self.text_layer = []\n self.layers = {}\n self.layer_stack = []\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n <function token>\n <function token>\n <function token>\n <function token>\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n <function token>\n <function token>\n <function token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Device(PDFDevice):\n <function token>\n <function token>\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n <function token>\n <function token>\n <function token>\n <function token>\n\n def end_figure(self, name):\n self.layer_stack.append('end')\n <function token>\n <function token>\n <function token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Device(PDFDevice):\n <function token>\n <function token>\n\n def begin_page(self, page, ctm):\n self.reset()\n self.layers[LIT('Page')] = page.cropbox, ctm\n self.layer_stack = [LIT('Page')]\n self.viewBox = page.cropbox\n self.ymax = page.mediabox[3] - page.mediabox[1]\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n\n\nclass Device(PDFDevice):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n\n def render_resource(self, res_type, res_obj):\n get_function = getattr(self, 'get_' + res_type.lower(), None)\n return get_function and get_function(None, obj=res_obj)\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n <function token>\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n\n @get_default('colorspace')\n def get_colorspace(self, objid, obj=None):\n for csid, spec in dict_value(obj).items():\n cs = colorspace.parse(spec)\n if cs:\n self.colorspaces[literal(csid)] = cs\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n <function token>\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n <function token>\n\n def get_procset(self, objid, obj=None):\n pass\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n <function token>\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n <function token>\n <function token>\n\n @get_default('xobject')\n def get_xobject(self, objid, obj=None):\n for xobjid, xobjstrm in dict_value(obj).items():\n self.xobjects[literal(xobjid)] = xobjstrm\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n <function token>\n\n @get_default('font')\n def get_font(self, objid, obj=None):\n for fontid, spec in dict_value(obj).items():\n spec = dict_value(spec)\n spec, fontType, embedFont, opentype = pdffonts.getType(spec)\n if fontType:\n font = fontType(spec, embedFont=embedFont and self.xobjects\n .get(embedFont.objid, embedFont), opentype=opentype)\n if embedFont:\n objid = literal(embedFont.objid)\n if not objid in self.xobjects:\n self.xobjects[objid] = font.embedFont\n self.fonts[literal(fontid)] = font\n <function token>\n <function token>\n <function token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n\n def clear(self):\n for res in self.fonts:\n stream_to_close = getattr(res, 'embedFont', None)\n stream_to_close and stream_to_close.close()\n self.fonts.clear()\n self.colorspaces.clear()\n self.xobjects.clear()\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ResourceManager(PDFResourceManager):\n\n def __init__(self):\n self.fonts = {}\n self.colorspaces = colorspace.defaults.copy()\n self.xobjects = {}\n self.cache = {}\n self.stream_objects = []\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass ResourceManager(PDFResourceManager):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n\n def do_EI(self, obj):\n if 'W' in obj and 'H' in obj:\n self.device.render_image(str(id(obj)), obj, anchored=False,\n state=self.textstate)\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n\n def do_Do(self, xobjid):\n xobj = self.rsrcmgr.get_xobject(literal(xobjid))\n if not xobj:\n return\n self.debug and self.log('Processing xobj: %r' % xobj)\n xobj = stream_value(xobj)\n subtype = xobj.get('Subtype')\n if subtype is LIT('Form') and 'BBox' in xobj:\n interpreter = self.dup()\n bbox = list_value(xobj['BBox'])\n matrix = list_value(xobj.get('Matrix', (1, 0, 0, 1, 0, 0)))\n resources = dict_value(xobj.get('Resources')\n ) or self.resources.copy()\n self.device.begin_figure(xobjid, bbox, matrix)\n interpreter.render_contents(resources, [xobj], ctm=mult_matrix(\n matrix, self.ctm))\n self.device.end_figure(xobjid)\n elif subtype is LIT('Image') and 'Width' in xobj and 'Height' in xobj:\n self.device.render_image(xobjid, xobj, anchored=True)\n else:\n pass\n <function token>\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n <function token>\n <function token>\n\n def do_gs(self, name):\n if isinstance(name, PSLiteral):\n name = name.name\n gstate = self.resources['ExtGState'].get(name)\n if gstate and not self.textstate.extState:\n gstate = resolve1(gstate)\n self.textstate.extState = gstate\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n\n def dup(self):\n return self.__class__(self.device)\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n <function token>\n <function token>\n <function token>\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n\n def log(self, message):\n pass\n <function token>\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n <function token>\n <function token>\n <function token>\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n <function token>\n <function token>\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n\n def do_K(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.stroke = Paint(cs, (c, m, y, k))\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n <function token>\n <function token>\n <function token>\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n <function token>\n <function token>\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_scn(self):\n n = len(self.ncs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.fill = self.textstate.fill = Paint(self.ncs, pattern)\n self.argstack = self.argstack[:-n]\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n <function token>\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n <function token>\n <function token>\n <function token>\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n <function token>\n <function token>\n\n def close(self):\n self.rsrcmgr.clear()\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n <function token>\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n <function token>\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n <function token>\n <function token>\n <function token>\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n <function token>\n <function token>\n <function token>\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n <function token>\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n <function token>\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n\n def do_Tf(self, fontid, fontsize):\n self.textstate.font = self.rsrcmgr.get_font(literal(fontid))\n self.textstate.fontsize = fontsize\n <function token>\n <function token>\n <function token>\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n <function token>\n <function token>\n <function token>\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n <function token>\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n <function token>\n\n def do_k(self, c, m, y, k):\n cs = colorspace.CMYKColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (c, m, y, k))\n <function token>\n <function token>\n <function token>\n <function token>\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n <function token>\n <function token>\n <function token>\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n <function token>\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n\n def do_Q(self):\n self.gstack and self.set_current_state(self.gstack.pop())\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n <function token>\n <function token>\n <function token>\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_SCN(self):\n n = len(self.scs.mode)\n pattern = self.argstack[-n:]\n self.graphicstate.stroke = Paint(self.scs, pattern)\n self.argstack = self.argstack[:-n]\n <function token>\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n <function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n <function token>\n <function token>\n <function token>\n\n def init_resources(self, resources):\n self.resources = resources\n if resources:\n for k, v in dict_value(resources).items():\n self.debug and self.log('Resource: %r: %r' % (k, v))\n self.rsrcmgr.render_resource(k, v)\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n <function token>\n <function token>\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n <function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n <function token>\n <function token>\n <function token>\n <function token>\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n <function token>\n <function token>\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def do_q(self):\n self.gstack.append(self.get_current_state())\n <function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n\n def __init__(self, device):\n self.rsrcmgr = ResourceManager()\n self.device = device\n <function token>\n <function token>\n <function token>\n <function token>\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n <function token>\n <function token>\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n\n def do_CS(self, name):\n self.scs = self.rsrcmgr.get_colorspace(literal(name))\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n <function token>\n <function token>\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n <function token>\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n <function token>\n <function token>\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n\n def do_RG(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.stroke = Paint(cs, (r, g, b))\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n <function token>\n\n def do_cs(self, name):\n self.ncs = self.rsrcmgr.get_colorspace(literal(name))\n <function token>\n <function token>\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n <function token>\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n <function token>\n <function token>\n <function token>\n <function token>\n\n def do_G(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.stroke = Paint(cs, gray)\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n <function token>\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n <function token>\n\n def do_rg(self, r, g, b):\n cs = colorspace.RGBColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, (r, g, b))\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def init_state(self, ctm):\n self.gstack = []\n self.ctm = ctm\n self.device.set_ctm(self.ctm)\n self.textstate = TextState()\n self.graphicstate = GraphicState()\n self.curpath = []\n self.argstack = []\n self.scs = self.ncs = colorspace.CMYKColorSpace()\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def do_g(self, gray):\n cs = colorspace.GrayColorSpace()\n self.graphicstate.fill = self.textstate.fill = Paint(cs, gray)\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n\n\nclass Interpreter(PDFPageInterpreter):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n<class token>\n" ]
false
99,534
270cbd72ab3595ceb7ebbd16d7d2e3c4db1abad2
import ROOT from array import array from plothelper import * ROOT.gROOT.SetBatch(ROOT.kTRUE) setStyle() def adjust(hist): name = hist.GetName() #if "ntracks" in name: hist.Rebin() if "ntracks" in name: hist.GetXaxis().SetRangeUser(0,600) #if "npfs" in name: hist.Rebin() if "npfs" in name: hist.GetXaxis().SetRangeUser(0,600) if "nneutrals" in name: hist.GetXaxis().SetRangeUser(0,600) hist.GetXaxis().SetTitle("n neutrals") return def clean1D(hist): # Clean adjust(hist) hist.SetLineWidth(2) hist.GetYaxis().SetNdivisions(505) hist.GetXaxis().SetNdivisions(505) hist.SetDirectory(0) hist.Scale(1.0/hist.Integral(0,-1)) return hist def get1D(mMed,mDark,temp,decay,histname): # Get hist filename = "outputs/hist_mMed-{}_mDark-{}_temp-{}_decay-{}.root".format(mMed,mDark,temp,decay) f = ROOT.TFile.Open(filename) hist = f.Get(histname) clean1D(hist) return hist def getQCD(histname): # Get hist filename1 = "outputs/hist_QCD_HT1000to1500_TuneCP5_13TeV-madgraphMLM-pythia8.root"# do slicing later filename2 = "outputs/hist_QCD_HT1500to2000_TuneCP5_13TeV-madgraphMLM-pythia8.root"# do slicing later filename3 = "outputs/hist_QCD_HT2000toInf_TuneCP5_13TeV-madgraphMLM-pythia8.root"# do slicing later f1 = ROOT.TFile.Open(filename1) f2 = ROOT.TFile.Open(filename2) f3 = ROOT.TFile.Open(filename3) hist1 = f1.Get(histname) hist2 = f2.Get(histname) hist3 = f3.Get(histname) hist1.Scale(1207) hist2.Scale(119.9) hist3.Scale(25.24) hist1.Add(hist2) hist2.Add(hist3) clean1D(hist1) return hist1 def decay_label(decay): if "darkPhoHad" in decay: return "m_{A'}=0.7 GeV" if "darkPho" in decay: return "m_{A'}=0.5 GeV" if "generic" in decay: return "m_{A'}=m_{#phi}/2, A'#rightarrowu#bar{u}" def makeROC(hists,labels,filename): c = ROOT.TCanvas(filename,"",800,800) dy = 0.05*len(hists) leg = ROOT.TLegend(0.18,0.86-dy,0.86,0.86) leg.SetTextSize(0.04) leg.SetBorderSize(0) for i,hist in enumerate(hists): if "QCD" in labels[i] : hbkg = hist ymax = 0 mgraph = ROOT.TMultiGraph() for i,hist in enumerate(hists): if "QCD" in labels[i]: continue eff_sig = [] eff_bkg = [] err = [] for b in range(1,hist.GetNbinsX()+1): eff_sig.append( hist.Integral(b,-1) ) eff_bkg.append( hbkg.Integral(b,-1) ) err.append(0.000000001) graph = ROOT.TGraphErrors(len(err),array("d",eff_sig),array("d",eff_bkg),array("d",err),array("d",err)) graph.SetLineColor(colors[i]) mgraph.Add(graph) leg.AddEntry(graph,labels[i],"l") mgraph.SetTitle(";sig eff;bkg eff") mgraph.Draw("AELP") mgraph.GetYaxis().SetRangeUser(0.00000001,1) leg.Draw() c.SetLogy(1) c.SetLogx(0) c.Print("plots/{}.png".format(filename)) c.SetLogy(0) c.SetLogx(0) def compare1D(hists,labels,filename): c = ROOT.TCanvas(filename,"",800,800) dy = 0.05*len(hists) leg = ROOT.TLegend(0.18,0.86-dy,0.86,0.86) leg.SetTextSize(0.04) leg.SetBorderSize(0) ymax = 0 for i,hist in enumerate(hists): hist.SetLineColor(colors[i]) if "QCD" in labels[i]: hist.SetLineColor(ROOT.kBlack) if i==0: hist.Draw("hist") else : hist.Draw("hist same") if hist.GetMaximum() > ymax: ymax=hist.GetMaximum() leg.AddEntry(hist,labels[i],"l") leg.Draw() c.SetLogy(1) hists[0].GetYaxis().SetRangeUser(0.001,ymax*100) c.Print("plots/{}_log.png".format(filename)) hists[0].GetYaxis().SetRangeUser(0,ymax*1.8) c.SetLogy(0) c.Print("plots/{}_lin.png".format(filename)) def compareMass(temp,mDark,decay,histname): mMeds = [] mMeds.append(125) mMeds.append(400) mMeds.append(750) mMeds.append(1000) hists = [] labels = [] for mMed in mMeds: hists.append(get1D(mMed,mDark,temp,decay,histname)) label = "m_{S}=%i GeV, %s"%(mMed,decay_label(decay)) labels.append(label) hists.append(getQCD(histname)) labels.append("QCD, H_{T}>1 TeV") compare1D(hists,labels,"compare_mMed/temp{}_mDark{}_decay_{}_{}".format(temp,mDark,decay,histname)) if histname=="h_pf_ntracks": makeROC(hists,labels,"roc_curve/temp{}_mDark{}_decay_{}_{}".format(temp,mDark,decay,histname)) def compareDecay(mMed,temp,mDark,histname): decays = [] decays.append("darkPho") decays.append("darkPhoHad") decays.append("generic") hists = [] labels = [] for decay in decays: hists.append(get1D(mMed,mDark,temp,decay,histname)) label = "m_{S}=%i GeV,%s"%(mMed,decay_label(decay)) labels.append(label) compare1D(hists,labels,"compare_decay/mMed{}_temp{}_mDark{}_{}".format(mMed,temp,mDark,histname)) dists=[] dists.append("h_jet_eta") dists.append("h_pf_charged_ptzoom") dists.append("h_pf_neutral_e") dists.append("h_trigger") dists.append("h_jet_pt") dists.append("h_trig_ht") dists.append("h_pf_charged_qual") dists.append("h_pf_neutral_ptzoom") dists.append("h_trigger_jet") dists.append("h_pf_neutral_pt") dists.append("h_pf_npfs") dists.append("h_pf_neutral_eta") dists.append("h_pf_charged_phi") dists.append("h_pf_ntracks") dists.append("h_trigger_ht") dists.append("h_pf_neutral_phi") dists.append("h_trigger_met") dists.append("h_trig_njets") dists.append("h_trig_mht") dists.append("h_mht") dists.append("h_ht") dists.append("h_pf_charged_pt") dists.append("h_njets") dists.append("h_jet_phi") dists.append("h_pf_charged_eta") dists.append("h_pf_nneutrals") for dist in dists: #compareMass(2,2,"darkPho",dist) #compareMass(2,2,"darkPhoHad",dist) compareMass(2,2,"generic",dist) #compareDecay(750,2,2,dist)
[ "import ROOT\nfrom array import array\nfrom plothelper import *\nROOT.gROOT.SetBatch(ROOT.kTRUE)\n\nsetStyle()\n\ndef adjust(hist):\n name = hist.GetName()\n #if \"ntracks\" in name: hist.Rebin()\n if \"ntracks\" in name: hist.GetXaxis().SetRangeUser(0,600)\n #if \"npfs\" in name: hist.Rebin()\n if \"npfs\" in name: \n hist.GetXaxis().SetRangeUser(0,600)\n if \"nneutrals\" in name: \n hist.GetXaxis().SetRangeUser(0,600)\n hist.GetXaxis().SetTitle(\"n neutrals\")\n return\n\ndef clean1D(hist):\n # Clean\n adjust(hist)\n hist.SetLineWidth(2)\n hist.GetYaxis().SetNdivisions(505)\n hist.GetXaxis().SetNdivisions(505)\n hist.SetDirectory(0)\n hist.Scale(1.0/hist.Integral(0,-1))\n return hist\n\ndef get1D(mMed,mDark,temp,decay,histname):\n\n # Get hist\n filename = \"outputs/hist_mMed-{}_mDark-{}_temp-{}_decay-{}.root\".format(mMed,mDark,temp,decay)\n f = ROOT.TFile.Open(filename)\n hist = f.Get(histname)\n clean1D(hist)\n\n return hist\n\ndef getQCD(histname):\n\n # Get hist\n filename1 = \"outputs/hist_QCD_HT1000to1500_TuneCP5_13TeV-madgraphMLM-pythia8.root\"# do slicing later\n filename2 = \"outputs/hist_QCD_HT1500to2000_TuneCP5_13TeV-madgraphMLM-pythia8.root\"# do slicing later\n filename3 = \"outputs/hist_QCD_HT2000toInf_TuneCP5_13TeV-madgraphMLM-pythia8.root\"# do slicing later\n f1 = ROOT.TFile.Open(filename1)\n f2 = ROOT.TFile.Open(filename2)\n f3 = ROOT.TFile.Open(filename3)\n hist1 = f1.Get(histname)\n hist2 = f2.Get(histname)\n hist3 = f3.Get(histname)\n hist1.Scale(1207) \n hist2.Scale(119.9) \n hist3.Scale(25.24) \n hist1.Add(hist2)\n hist2.Add(hist3)\n clean1D(hist1)\n\n return hist1\n\ndef decay_label(decay):\n if \"darkPhoHad\" in decay: return \"m_{A'}=0.7 GeV\"\n if \"darkPho\" in decay: return \"m_{A'}=0.5 GeV\"\n if \"generic\" in decay: return \"m_{A'}=m_{#phi}/2, A'#rightarrowu#bar{u}\"\n\ndef makeROC(hists,labels,filename):\n c = ROOT.TCanvas(filename,\"\",800,800)\n\n dy = 0.05*len(hists)\n leg = ROOT.TLegend(0.18,0.86-dy,0.86,0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n\n for i,hist in enumerate(hists):\n if \"QCD\" in labels[i] : hbkg = hist\n\n ymax = 0\n mgraph = ROOT.TMultiGraph()\n for i,hist in enumerate(hists): \n if \"QCD\" in labels[i]: continue\n eff_sig = []\n eff_bkg = []\n err = []\n for b in range(1,hist.GetNbinsX()+1):\n eff_sig.append( hist.Integral(b,-1) )\n eff_bkg.append( hbkg.Integral(b,-1) )\n err.append(0.000000001)\n \n graph = ROOT.TGraphErrors(len(err),array(\"d\",eff_sig),array(\"d\",eff_bkg),array(\"d\",err),array(\"d\",err))\n\n graph.SetLineColor(colors[i])\n mgraph.Add(graph)\n leg.AddEntry(graph,labels[i],\"l\")\n \n mgraph.SetTitle(\";sig eff;bkg eff\")\n mgraph.Draw(\"AELP\")\n mgraph.GetYaxis().SetRangeUser(0.00000001,1)\n leg.Draw()\n c.SetLogy(1)\n c.SetLogx(0)\n c.Print(\"plots/{}.png\".format(filename))\n c.SetLogy(0)\n c.SetLogx(0)\n \n\ndef compare1D(hists,labels,filename):\n c = ROOT.TCanvas(filename,\"\",800,800)\n\n dy = 0.05*len(hists)\n leg = ROOT.TLegend(0.18,0.86-dy,0.86,0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n\n ymax = 0\n for i,hist in enumerate(hists): \n hist.SetLineColor(colors[i])\n if \"QCD\" in labels[i]: hist.SetLineColor(ROOT.kBlack) \n if i==0: hist.Draw(\"hist\")\n else : hist.Draw(\"hist same\")\n\n if hist.GetMaximum() > ymax: ymax=hist.GetMaximum()\n\n leg.AddEntry(hist,labels[i],\"l\")\n\n \n\n leg.Draw()\n \n c.SetLogy(1)\n hists[0].GetYaxis().SetRangeUser(0.001,ymax*100)\n c.Print(\"plots/{}_log.png\".format(filename))\n hists[0].GetYaxis().SetRangeUser(0,ymax*1.8)\n c.SetLogy(0)\n c.Print(\"plots/{}_lin.png\".format(filename))\n\ndef compareMass(temp,mDark,decay,histname):\n mMeds = []\n mMeds.append(125)\n mMeds.append(400)\n mMeds.append(750)\n mMeds.append(1000)\n\n hists = []\n labels = []\n for mMed in mMeds:\n hists.append(get1D(mMed,mDark,temp,decay,histname))\n label = \"m_{S}=%i GeV, %s\"%(mMed,decay_label(decay))\n labels.append(label)\n\n hists.append(getQCD(histname))\n labels.append(\"QCD, H_{T}>1 TeV\")\n \n compare1D(hists,labels,\"compare_mMed/temp{}_mDark{}_decay_{}_{}\".format(temp,mDark,decay,histname))\n if histname==\"h_pf_ntracks\": \n makeROC(hists,labels,\"roc_curve/temp{}_mDark{}_decay_{}_{}\".format(temp,mDark,decay,histname))\n\ndef compareDecay(mMed,temp,mDark,histname):\n decays = []\n decays.append(\"darkPho\")\n decays.append(\"darkPhoHad\")\n decays.append(\"generic\")\n\n hists = []\n labels = []\n for decay in decays:\n hists.append(get1D(mMed,mDark,temp,decay,histname))\n label = \"m_{S}=%i GeV,%s\"%(mMed,decay_label(decay))\n labels.append(label)\n \n compare1D(hists,labels,\"compare_decay/mMed{}_temp{}_mDark{}_{}\".format(mMed,temp,mDark,histname))\n\n\ndists=[]\ndists.append(\"h_jet_eta\")\t\ndists.append(\"h_pf_charged_ptzoom\")\t\ndists.append(\"h_pf_neutral_e\")\t\ndists.append(\"h_trigger\")\t\ndists.append(\"h_jet_pt\")\t\ndists.append(\"h_trig_ht\")\t\ndists.append(\"h_pf_charged_qual\")\t\ndists.append(\"h_pf_neutral_ptzoom\")\t\ndists.append(\"h_trigger_jet\")\t\ndists.append(\"h_pf_neutral_pt\")\t\ndists.append(\"h_pf_npfs\")\t\ndists.append(\"h_pf_neutral_eta\")\t\ndists.append(\"h_pf_charged_phi\")\t\ndists.append(\"h_pf_ntracks\")\t\ndists.append(\"h_trigger_ht\")\t\ndists.append(\"h_pf_neutral_phi\")\t\ndists.append(\"h_trigger_met\")\t\ndists.append(\"h_trig_njets\")\t\ndists.append(\"h_trig_mht\")\t\ndists.append(\"h_mht\")\t\ndists.append(\"h_ht\")\t\ndists.append(\"h_pf_charged_pt\")\t\ndists.append(\"h_njets\")\t\ndists.append(\"h_jet_phi\")\t\ndists.append(\"h_pf_charged_eta\")\t\ndists.append(\"h_pf_nneutrals\")\n\nfor dist in dists:\n #compareMass(2,2,\"darkPho\",dist)\n #compareMass(2,2,\"darkPhoHad\",dist)\n compareMass(2,2,\"generic\",dist)\n #compareDecay(750,2,2,dist)\n", "import ROOT\nfrom array import array\nfrom plothelper import *\nROOT.gROOT.SetBatch(ROOT.kTRUE)\nsetStyle()\n\n\ndef adjust(hist):\n name = hist.GetName()\n if 'ntracks' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'npfs' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'nneutrals' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n hist.GetXaxis().SetTitle('n neutrals')\n return\n\n\ndef clean1D(hist):\n adjust(hist)\n hist.SetLineWidth(2)\n hist.GetYaxis().SetNdivisions(505)\n hist.GetXaxis().SetNdivisions(505)\n hist.SetDirectory(0)\n hist.Scale(1.0 / hist.Integral(0, -1))\n return hist\n\n\ndef get1D(mMed, mDark, temp, decay, histname):\n filename = 'outputs/hist_mMed-{}_mDark-{}_temp-{}_decay-{}.root'.format(\n mMed, mDark, temp, decay)\n f = ROOT.TFile.Open(filename)\n hist = f.Get(histname)\n clean1D(hist)\n return hist\n\n\ndef getQCD(histname):\n filename1 = (\n 'outputs/hist_QCD_HT1000to1500_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n filename2 = (\n 'outputs/hist_QCD_HT1500to2000_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n filename3 = (\n 'outputs/hist_QCD_HT2000toInf_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n f1 = ROOT.TFile.Open(filename1)\n f2 = ROOT.TFile.Open(filename2)\n f3 = ROOT.TFile.Open(filename3)\n hist1 = f1.Get(histname)\n hist2 = f2.Get(histname)\n hist3 = f3.Get(histname)\n hist1.Scale(1207)\n hist2.Scale(119.9)\n hist3.Scale(25.24)\n hist1.Add(hist2)\n hist2.Add(hist3)\n clean1D(hist1)\n return hist1\n\n\ndef decay_label(decay):\n if 'darkPhoHad' in decay:\n return \"m_{A'}=0.7 GeV\"\n if 'darkPho' in decay:\n return \"m_{A'}=0.5 GeV\"\n if 'generic' in decay:\n return \"m_{A'}=m_{#phi}/2, A'#rightarrowu#bar{u}\"\n\n\ndef makeROC(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n hbkg = hist\n ymax = 0\n mgraph = ROOT.TMultiGraph()\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n continue\n eff_sig = []\n eff_bkg = []\n err = []\n for b in range(1, hist.GetNbinsX() + 1):\n eff_sig.append(hist.Integral(b, -1))\n eff_bkg.append(hbkg.Integral(b, -1))\n err.append(1e-09)\n graph = ROOT.TGraphErrors(len(err), array('d', eff_sig), array('d',\n eff_bkg), array('d', err), array('d', err))\n graph.SetLineColor(colors[i])\n mgraph.Add(graph)\n leg.AddEntry(graph, labels[i], 'l')\n mgraph.SetTitle(';sig eff;bkg eff')\n mgraph.Draw('AELP')\n mgraph.GetYaxis().SetRangeUser(1e-08, 1)\n leg.Draw()\n c.SetLogy(1)\n c.SetLogx(0)\n c.Print('plots/{}.png'.format(filename))\n c.SetLogy(0)\n c.SetLogx(0)\n\n\ndef compare1D(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n ymax = 0\n for i, hist in enumerate(hists):\n hist.SetLineColor(colors[i])\n if 'QCD' in labels[i]:\n hist.SetLineColor(ROOT.kBlack)\n if i == 0:\n hist.Draw('hist')\n else:\n hist.Draw('hist same')\n if hist.GetMaximum() > ymax:\n ymax = hist.GetMaximum()\n leg.AddEntry(hist, labels[i], 'l')\n leg.Draw()\n c.SetLogy(1)\n hists[0].GetYaxis().SetRangeUser(0.001, ymax * 100)\n c.Print('plots/{}_log.png'.format(filename))\n hists[0].GetYaxis().SetRangeUser(0, ymax * 1.8)\n c.SetLogy(0)\n c.Print('plots/{}_lin.png'.format(filename))\n\n\ndef compareMass(temp, mDark, decay, histname):\n mMeds = []\n mMeds.append(125)\n mMeds.append(400)\n mMeds.append(750)\n mMeds.append(1000)\n hists = []\n labels = []\n for mMed in mMeds:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV, %s' % (mMed, decay_label(decay))\n labels.append(label)\n hists.append(getQCD(histname))\n labels.append('QCD, H_{T}>1 TeV')\n compare1D(hists, labels, 'compare_mMed/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n if histname == 'h_pf_ntracks':\n makeROC(hists, labels, 'roc_curve/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n\n\ndef compareDecay(mMed, temp, mDark, histname):\n decays = []\n decays.append('darkPho')\n decays.append('darkPhoHad')\n decays.append('generic')\n hists = []\n labels = []\n for decay in decays:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV,%s' % (mMed, decay_label(decay))\n labels.append(label)\n compare1D(hists, labels, 'compare_decay/mMed{}_temp{}_mDark{}_{}'.\n format(mMed, temp, mDark, histname))\n\n\ndists = []\ndists.append('h_jet_eta')\ndists.append('h_pf_charged_ptzoom')\ndists.append('h_pf_neutral_e')\ndists.append('h_trigger')\ndists.append('h_jet_pt')\ndists.append('h_trig_ht')\ndists.append('h_pf_charged_qual')\ndists.append('h_pf_neutral_ptzoom')\ndists.append('h_trigger_jet')\ndists.append('h_pf_neutral_pt')\ndists.append('h_pf_npfs')\ndists.append('h_pf_neutral_eta')\ndists.append('h_pf_charged_phi')\ndists.append('h_pf_ntracks')\ndists.append('h_trigger_ht')\ndists.append('h_pf_neutral_phi')\ndists.append('h_trigger_met')\ndists.append('h_trig_njets')\ndists.append('h_trig_mht')\ndists.append('h_mht')\ndists.append('h_ht')\ndists.append('h_pf_charged_pt')\ndists.append('h_njets')\ndists.append('h_jet_phi')\ndists.append('h_pf_charged_eta')\ndists.append('h_pf_nneutrals')\nfor dist in dists:\n compareMass(2, 2, 'generic', dist)\n", "<import token>\nROOT.gROOT.SetBatch(ROOT.kTRUE)\nsetStyle()\n\n\ndef adjust(hist):\n name = hist.GetName()\n if 'ntracks' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'npfs' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'nneutrals' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n hist.GetXaxis().SetTitle('n neutrals')\n return\n\n\ndef clean1D(hist):\n adjust(hist)\n hist.SetLineWidth(2)\n hist.GetYaxis().SetNdivisions(505)\n hist.GetXaxis().SetNdivisions(505)\n hist.SetDirectory(0)\n hist.Scale(1.0 / hist.Integral(0, -1))\n return hist\n\n\ndef get1D(mMed, mDark, temp, decay, histname):\n filename = 'outputs/hist_mMed-{}_mDark-{}_temp-{}_decay-{}.root'.format(\n mMed, mDark, temp, decay)\n f = ROOT.TFile.Open(filename)\n hist = f.Get(histname)\n clean1D(hist)\n return hist\n\n\ndef getQCD(histname):\n filename1 = (\n 'outputs/hist_QCD_HT1000to1500_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n filename2 = (\n 'outputs/hist_QCD_HT1500to2000_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n filename3 = (\n 'outputs/hist_QCD_HT2000toInf_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n f1 = ROOT.TFile.Open(filename1)\n f2 = ROOT.TFile.Open(filename2)\n f3 = ROOT.TFile.Open(filename3)\n hist1 = f1.Get(histname)\n hist2 = f2.Get(histname)\n hist3 = f3.Get(histname)\n hist1.Scale(1207)\n hist2.Scale(119.9)\n hist3.Scale(25.24)\n hist1.Add(hist2)\n hist2.Add(hist3)\n clean1D(hist1)\n return hist1\n\n\ndef decay_label(decay):\n if 'darkPhoHad' in decay:\n return \"m_{A'}=0.7 GeV\"\n if 'darkPho' in decay:\n return \"m_{A'}=0.5 GeV\"\n if 'generic' in decay:\n return \"m_{A'}=m_{#phi}/2, A'#rightarrowu#bar{u}\"\n\n\ndef makeROC(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n hbkg = hist\n ymax = 0\n mgraph = ROOT.TMultiGraph()\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n continue\n eff_sig = []\n eff_bkg = []\n err = []\n for b in range(1, hist.GetNbinsX() + 1):\n eff_sig.append(hist.Integral(b, -1))\n eff_bkg.append(hbkg.Integral(b, -1))\n err.append(1e-09)\n graph = ROOT.TGraphErrors(len(err), array('d', eff_sig), array('d',\n eff_bkg), array('d', err), array('d', err))\n graph.SetLineColor(colors[i])\n mgraph.Add(graph)\n leg.AddEntry(graph, labels[i], 'l')\n mgraph.SetTitle(';sig eff;bkg eff')\n mgraph.Draw('AELP')\n mgraph.GetYaxis().SetRangeUser(1e-08, 1)\n leg.Draw()\n c.SetLogy(1)\n c.SetLogx(0)\n c.Print('plots/{}.png'.format(filename))\n c.SetLogy(0)\n c.SetLogx(0)\n\n\ndef compare1D(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n ymax = 0\n for i, hist in enumerate(hists):\n hist.SetLineColor(colors[i])\n if 'QCD' in labels[i]:\n hist.SetLineColor(ROOT.kBlack)\n if i == 0:\n hist.Draw('hist')\n else:\n hist.Draw('hist same')\n if hist.GetMaximum() > ymax:\n ymax = hist.GetMaximum()\n leg.AddEntry(hist, labels[i], 'l')\n leg.Draw()\n c.SetLogy(1)\n hists[0].GetYaxis().SetRangeUser(0.001, ymax * 100)\n c.Print('plots/{}_log.png'.format(filename))\n hists[0].GetYaxis().SetRangeUser(0, ymax * 1.8)\n c.SetLogy(0)\n c.Print('plots/{}_lin.png'.format(filename))\n\n\ndef compareMass(temp, mDark, decay, histname):\n mMeds = []\n mMeds.append(125)\n mMeds.append(400)\n mMeds.append(750)\n mMeds.append(1000)\n hists = []\n labels = []\n for mMed in mMeds:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV, %s' % (mMed, decay_label(decay))\n labels.append(label)\n hists.append(getQCD(histname))\n labels.append('QCD, H_{T}>1 TeV')\n compare1D(hists, labels, 'compare_mMed/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n if histname == 'h_pf_ntracks':\n makeROC(hists, labels, 'roc_curve/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n\n\ndef compareDecay(mMed, temp, mDark, histname):\n decays = []\n decays.append('darkPho')\n decays.append('darkPhoHad')\n decays.append('generic')\n hists = []\n labels = []\n for decay in decays:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV,%s' % (mMed, decay_label(decay))\n labels.append(label)\n compare1D(hists, labels, 'compare_decay/mMed{}_temp{}_mDark{}_{}'.\n format(mMed, temp, mDark, histname))\n\n\ndists = []\ndists.append('h_jet_eta')\ndists.append('h_pf_charged_ptzoom')\ndists.append('h_pf_neutral_e')\ndists.append('h_trigger')\ndists.append('h_jet_pt')\ndists.append('h_trig_ht')\ndists.append('h_pf_charged_qual')\ndists.append('h_pf_neutral_ptzoom')\ndists.append('h_trigger_jet')\ndists.append('h_pf_neutral_pt')\ndists.append('h_pf_npfs')\ndists.append('h_pf_neutral_eta')\ndists.append('h_pf_charged_phi')\ndists.append('h_pf_ntracks')\ndists.append('h_trigger_ht')\ndists.append('h_pf_neutral_phi')\ndists.append('h_trigger_met')\ndists.append('h_trig_njets')\ndists.append('h_trig_mht')\ndists.append('h_mht')\ndists.append('h_ht')\ndists.append('h_pf_charged_pt')\ndists.append('h_njets')\ndists.append('h_jet_phi')\ndists.append('h_pf_charged_eta')\ndists.append('h_pf_nneutrals')\nfor dist in dists:\n compareMass(2, 2, 'generic', dist)\n", "<import token>\nROOT.gROOT.SetBatch(ROOT.kTRUE)\nsetStyle()\n\n\ndef adjust(hist):\n name = hist.GetName()\n if 'ntracks' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'npfs' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'nneutrals' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n hist.GetXaxis().SetTitle('n neutrals')\n return\n\n\ndef clean1D(hist):\n adjust(hist)\n hist.SetLineWidth(2)\n hist.GetYaxis().SetNdivisions(505)\n hist.GetXaxis().SetNdivisions(505)\n hist.SetDirectory(0)\n hist.Scale(1.0 / hist.Integral(0, -1))\n return hist\n\n\ndef get1D(mMed, mDark, temp, decay, histname):\n filename = 'outputs/hist_mMed-{}_mDark-{}_temp-{}_decay-{}.root'.format(\n mMed, mDark, temp, decay)\n f = ROOT.TFile.Open(filename)\n hist = f.Get(histname)\n clean1D(hist)\n return hist\n\n\ndef getQCD(histname):\n filename1 = (\n 'outputs/hist_QCD_HT1000to1500_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n filename2 = (\n 'outputs/hist_QCD_HT1500to2000_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n filename3 = (\n 'outputs/hist_QCD_HT2000toInf_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n f1 = ROOT.TFile.Open(filename1)\n f2 = ROOT.TFile.Open(filename2)\n f3 = ROOT.TFile.Open(filename3)\n hist1 = f1.Get(histname)\n hist2 = f2.Get(histname)\n hist3 = f3.Get(histname)\n hist1.Scale(1207)\n hist2.Scale(119.9)\n hist3.Scale(25.24)\n hist1.Add(hist2)\n hist2.Add(hist3)\n clean1D(hist1)\n return hist1\n\n\ndef decay_label(decay):\n if 'darkPhoHad' in decay:\n return \"m_{A'}=0.7 GeV\"\n if 'darkPho' in decay:\n return \"m_{A'}=0.5 GeV\"\n if 'generic' in decay:\n return \"m_{A'}=m_{#phi}/2, A'#rightarrowu#bar{u}\"\n\n\ndef makeROC(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n hbkg = hist\n ymax = 0\n mgraph = ROOT.TMultiGraph()\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n continue\n eff_sig = []\n eff_bkg = []\n err = []\n for b in range(1, hist.GetNbinsX() + 1):\n eff_sig.append(hist.Integral(b, -1))\n eff_bkg.append(hbkg.Integral(b, -1))\n err.append(1e-09)\n graph = ROOT.TGraphErrors(len(err), array('d', eff_sig), array('d',\n eff_bkg), array('d', err), array('d', err))\n graph.SetLineColor(colors[i])\n mgraph.Add(graph)\n leg.AddEntry(graph, labels[i], 'l')\n mgraph.SetTitle(';sig eff;bkg eff')\n mgraph.Draw('AELP')\n mgraph.GetYaxis().SetRangeUser(1e-08, 1)\n leg.Draw()\n c.SetLogy(1)\n c.SetLogx(0)\n c.Print('plots/{}.png'.format(filename))\n c.SetLogy(0)\n c.SetLogx(0)\n\n\ndef compare1D(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n ymax = 0\n for i, hist in enumerate(hists):\n hist.SetLineColor(colors[i])\n if 'QCD' in labels[i]:\n hist.SetLineColor(ROOT.kBlack)\n if i == 0:\n hist.Draw('hist')\n else:\n hist.Draw('hist same')\n if hist.GetMaximum() > ymax:\n ymax = hist.GetMaximum()\n leg.AddEntry(hist, labels[i], 'l')\n leg.Draw()\n c.SetLogy(1)\n hists[0].GetYaxis().SetRangeUser(0.001, ymax * 100)\n c.Print('plots/{}_log.png'.format(filename))\n hists[0].GetYaxis().SetRangeUser(0, ymax * 1.8)\n c.SetLogy(0)\n c.Print('plots/{}_lin.png'.format(filename))\n\n\ndef compareMass(temp, mDark, decay, histname):\n mMeds = []\n mMeds.append(125)\n mMeds.append(400)\n mMeds.append(750)\n mMeds.append(1000)\n hists = []\n labels = []\n for mMed in mMeds:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV, %s' % (mMed, decay_label(decay))\n labels.append(label)\n hists.append(getQCD(histname))\n labels.append('QCD, H_{T}>1 TeV')\n compare1D(hists, labels, 'compare_mMed/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n if histname == 'h_pf_ntracks':\n makeROC(hists, labels, 'roc_curve/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n\n\ndef compareDecay(mMed, temp, mDark, histname):\n decays = []\n decays.append('darkPho')\n decays.append('darkPhoHad')\n decays.append('generic')\n hists = []\n labels = []\n for decay in decays:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV,%s' % (mMed, decay_label(decay))\n labels.append(label)\n compare1D(hists, labels, 'compare_decay/mMed{}_temp{}_mDark{}_{}'.\n format(mMed, temp, mDark, histname))\n\n\n<assignment token>\ndists.append('h_jet_eta')\ndists.append('h_pf_charged_ptzoom')\ndists.append('h_pf_neutral_e')\ndists.append('h_trigger')\ndists.append('h_jet_pt')\ndists.append('h_trig_ht')\ndists.append('h_pf_charged_qual')\ndists.append('h_pf_neutral_ptzoom')\ndists.append('h_trigger_jet')\ndists.append('h_pf_neutral_pt')\ndists.append('h_pf_npfs')\ndists.append('h_pf_neutral_eta')\ndists.append('h_pf_charged_phi')\ndists.append('h_pf_ntracks')\ndists.append('h_trigger_ht')\ndists.append('h_pf_neutral_phi')\ndists.append('h_trigger_met')\ndists.append('h_trig_njets')\ndists.append('h_trig_mht')\ndists.append('h_mht')\ndists.append('h_ht')\ndists.append('h_pf_charged_pt')\ndists.append('h_njets')\ndists.append('h_jet_phi')\ndists.append('h_pf_charged_eta')\ndists.append('h_pf_nneutrals')\nfor dist in dists:\n compareMass(2, 2, 'generic', dist)\n", "<import token>\n<code token>\n\n\ndef adjust(hist):\n name = hist.GetName()\n if 'ntracks' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'npfs' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'nneutrals' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n hist.GetXaxis().SetTitle('n neutrals')\n return\n\n\ndef clean1D(hist):\n adjust(hist)\n hist.SetLineWidth(2)\n hist.GetYaxis().SetNdivisions(505)\n hist.GetXaxis().SetNdivisions(505)\n hist.SetDirectory(0)\n hist.Scale(1.0 / hist.Integral(0, -1))\n return hist\n\n\ndef get1D(mMed, mDark, temp, decay, histname):\n filename = 'outputs/hist_mMed-{}_mDark-{}_temp-{}_decay-{}.root'.format(\n mMed, mDark, temp, decay)\n f = ROOT.TFile.Open(filename)\n hist = f.Get(histname)\n clean1D(hist)\n return hist\n\n\ndef getQCD(histname):\n filename1 = (\n 'outputs/hist_QCD_HT1000to1500_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n filename2 = (\n 'outputs/hist_QCD_HT1500to2000_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n filename3 = (\n 'outputs/hist_QCD_HT2000toInf_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n f1 = ROOT.TFile.Open(filename1)\n f2 = ROOT.TFile.Open(filename2)\n f3 = ROOT.TFile.Open(filename3)\n hist1 = f1.Get(histname)\n hist2 = f2.Get(histname)\n hist3 = f3.Get(histname)\n hist1.Scale(1207)\n hist2.Scale(119.9)\n hist3.Scale(25.24)\n hist1.Add(hist2)\n hist2.Add(hist3)\n clean1D(hist1)\n return hist1\n\n\ndef decay_label(decay):\n if 'darkPhoHad' in decay:\n return \"m_{A'}=0.7 GeV\"\n if 'darkPho' in decay:\n return \"m_{A'}=0.5 GeV\"\n if 'generic' in decay:\n return \"m_{A'}=m_{#phi}/2, A'#rightarrowu#bar{u}\"\n\n\ndef makeROC(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n hbkg = hist\n ymax = 0\n mgraph = ROOT.TMultiGraph()\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n continue\n eff_sig = []\n eff_bkg = []\n err = []\n for b in range(1, hist.GetNbinsX() + 1):\n eff_sig.append(hist.Integral(b, -1))\n eff_bkg.append(hbkg.Integral(b, -1))\n err.append(1e-09)\n graph = ROOT.TGraphErrors(len(err), array('d', eff_sig), array('d',\n eff_bkg), array('d', err), array('d', err))\n graph.SetLineColor(colors[i])\n mgraph.Add(graph)\n leg.AddEntry(graph, labels[i], 'l')\n mgraph.SetTitle(';sig eff;bkg eff')\n mgraph.Draw('AELP')\n mgraph.GetYaxis().SetRangeUser(1e-08, 1)\n leg.Draw()\n c.SetLogy(1)\n c.SetLogx(0)\n c.Print('plots/{}.png'.format(filename))\n c.SetLogy(0)\n c.SetLogx(0)\n\n\ndef compare1D(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n ymax = 0\n for i, hist in enumerate(hists):\n hist.SetLineColor(colors[i])\n if 'QCD' in labels[i]:\n hist.SetLineColor(ROOT.kBlack)\n if i == 0:\n hist.Draw('hist')\n else:\n hist.Draw('hist same')\n if hist.GetMaximum() > ymax:\n ymax = hist.GetMaximum()\n leg.AddEntry(hist, labels[i], 'l')\n leg.Draw()\n c.SetLogy(1)\n hists[0].GetYaxis().SetRangeUser(0.001, ymax * 100)\n c.Print('plots/{}_log.png'.format(filename))\n hists[0].GetYaxis().SetRangeUser(0, ymax * 1.8)\n c.SetLogy(0)\n c.Print('plots/{}_lin.png'.format(filename))\n\n\ndef compareMass(temp, mDark, decay, histname):\n mMeds = []\n mMeds.append(125)\n mMeds.append(400)\n mMeds.append(750)\n mMeds.append(1000)\n hists = []\n labels = []\n for mMed in mMeds:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV, %s' % (mMed, decay_label(decay))\n labels.append(label)\n hists.append(getQCD(histname))\n labels.append('QCD, H_{T}>1 TeV')\n compare1D(hists, labels, 'compare_mMed/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n if histname == 'h_pf_ntracks':\n makeROC(hists, labels, 'roc_curve/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n\n\ndef compareDecay(mMed, temp, mDark, histname):\n decays = []\n decays.append('darkPho')\n decays.append('darkPhoHad')\n decays.append('generic')\n hists = []\n labels = []\n for decay in decays:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV,%s' % (mMed, decay_label(decay))\n labels.append(label)\n compare1D(hists, labels, 'compare_decay/mMed{}_temp{}_mDark{}_{}'.\n format(mMed, temp, mDark, histname))\n\n\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n\n\ndef adjust(hist):\n name = hist.GetName()\n if 'ntracks' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'npfs' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'nneutrals' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n hist.GetXaxis().SetTitle('n neutrals')\n return\n\n\ndef clean1D(hist):\n adjust(hist)\n hist.SetLineWidth(2)\n hist.GetYaxis().SetNdivisions(505)\n hist.GetXaxis().SetNdivisions(505)\n hist.SetDirectory(0)\n hist.Scale(1.0 / hist.Integral(0, -1))\n return hist\n\n\ndef get1D(mMed, mDark, temp, decay, histname):\n filename = 'outputs/hist_mMed-{}_mDark-{}_temp-{}_decay-{}.root'.format(\n mMed, mDark, temp, decay)\n f = ROOT.TFile.Open(filename)\n hist = f.Get(histname)\n clean1D(hist)\n return hist\n\n\ndef getQCD(histname):\n filename1 = (\n 'outputs/hist_QCD_HT1000to1500_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n filename2 = (\n 'outputs/hist_QCD_HT1500to2000_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n filename3 = (\n 'outputs/hist_QCD_HT2000toInf_TuneCP5_13TeV-madgraphMLM-pythia8.root')\n f1 = ROOT.TFile.Open(filename1)\n f2 = ROOT.TFile.Open(filename2)\n f3 = ROOT.TFile.Open(filename3)\n hist1 = f1.Get(histname)\n hist2 = f2.Get(histname)\n hist3 = f3.Get(histname)\n hist1.Scale(1207)\n hist2.Scale(119.9)\n hist3.Scale(25.24)\n hist1.Add(hist2)\n hist2.Add(hist3)\n clean1D(hist1)\n return hist1\n\n\ndef decay_label(decay):\n if 'darkPhoHad' in decay:\n return \"m_{A'}=0.7 GeV\"\n if 'darkPho' in decay:\n return \"m_{A'}=0.5 GeV\"\n if 'generic' in decay:\n return \"m_{A'}=m_{#phi}/2, A'#rightarrowu#bar{u}\"\n\n\ndef makeROC(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n hbkg = hist\n ymax = 0\n mgraph = ROOT.TMultiGraph()\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n continue\n eff_sig = []\n eff_bkg = []\n err = []\n for b in range(1, hist.GetNbinsX() + 1):\n eff_sig.append(hist.Integral(b, -1))\n eff_bkg.append(hbkg.Integral(b, -1))\n err.append(1e-09)\n graph = ROOT.TGraphErrors(len(err), array('d', eff_sig), array('d',\n eff_bkg), array('d', err), array('d', err))\n graph.SetLineColor(colors[i])\n mgraph.Add(graph)\n leg.AddEntry(graph, labels[i], 'l')\n mgraph.SetTitle(';sig eff;bkg eff')\n mgraph.Draw('AELP')\n mgraph.GetYaxis().SetRangeUser(1e-08, 1)\n leg.Draw()\n c.SetLogy(1)\n c.SetLogx(0)\n c.Print('plots/{}.png'.format(filename))\n c.SetLogy(0)\n c.SetLogx(0)\n\n\n<function token>\n\n\ndef compareMass(temp, mDark, decay, histname):\n mMeds = []\n mMeds.append(125)\n mMeds.append(400)\n mMeds.append(750)\n mMeds.append(1000)\n hists = []\n labels = []\n for mMed in mMeds:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV, %s' % (mMed, decay_label(decay))\n labels.append(label)\n hists.append(getQCD(histname))\n labels.append('QCD, H_{T}>1 TeV')\n compare1D(hists, labels, 'compare_mMed/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n if histname == 'h_pf_ntracks':\n makeROC(hists, labels, 'roc_curve/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n\n\ndef compareDecay(mMed, temp, mDark, histname):\n decays = []\n decays.append('darkPho')\n decays.append('darkPhoHad')\n decays.append('generic')\n hists = []\n labels = []\n for decay in decays:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV,%s' % (mMed, decay_label(decay))\n labels.append(label)\n compare1D(hists, labels, 'compare_decay/mMed{}_temp{}_mDark{}_{}'.\n format(mMed, temp, mDark, histname))\n\n\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n\n\ndef adjust(hist):\n name = hist.GetName()\n if 'ntracks' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'npfs' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'nneutrals' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n hist.GetXaxis().SetTitle('n neutrals')\n return\n\n\ndef clean1D(hist):\n adjust(hist)\n hist.SetLineWidth(2)\n hist.GetYaxis().SetNdivisions(505)\n hist.GetXaxis().SetNdivisions(505)\n hist.SetDirectory(0)\n hist.Scale(1.0 / hist.Integral(0, -1))\n return hist\n\n\ndef get1D(mMed, mDark, temp, decay, histname):\n filename = 'outputs/hist_mMed-{}_mDark-{}_temp-{}_decay-{}.root'.format(\n mMed, mDark, temp, decay)\n f = ROOT.TFile.Open(filename)\n hist = f.Get(histname)\n clean1D(hist)\n return hist\n\n\n<function token>\n\n\ndef decay_label(decay):\n if 'darkPhoHad' in decay:\n return \"m_{A'}=0.7 GeV\"\n if 'darkPho' in decay:\n return \"m_{A'}=0.5 GeV\"\n if 'generic' in decay:\n return \"m_{A'}=m_{#phi}/2, A'#rightarrowu#bar{u}\"\n\n\ndef makeROC(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n hbkg = hist\n ymax = 0\n mgraph = ROOT.TMultiGraph()\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n continue\n eff_sig = []\n eff_bkg = []\n err = []\n for b in range(1, hist.GetNbinsX() + 1):\n eff_sig.append(hist.Integral(b, -1))\n eff_bkg.append(hbkg.Integral(b, -1))\n err.append(1e-09)\n graph = ROOT.TGraphErrors(len(err), array('d', eff_sig), array('d',\n eff_bkg), array('d', err), array('d', err))\n graph.SetLineColor(colors[i])\n mgraph.Add(graph)\n leg.AddEntry(graph, labels[i], 'l')\n mgraph.SetTitle(';sig eff;bkg eff')\n mgraph.Draw('AELP')\n mgraph.GetYaxis().SetRangeUser(1e-08, 1)\n leg.Draw()\n c.SetLogy(1)\n c.SetLogx(0)\n c.Print('plots/{}.png'.format(filename))\n c.SetLogy(0)\n c.SetLogx(0)\n\n\n<function token>\n\n\ndef compareMass(temp, mDark, decay, histname):\n mMeds = []\n mMeds.append(125)\n mMeds.append(400)\n mMeds.append(750)\n mMeds.append(1000)\n hists = []\n labels = []\n for mMed in mMeds:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV, %s' % (mMed, decay_label(decay))\n labels.append(label)\n hists.append(getQCD(histname))\n labels.append('QCD, H_{T}>1 TeV')\n compare1D(hists, labels, 'compare_mMed/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n if histname == 'h_pf_ntracks':\n makeROC(hists, labels, 'roc_curve/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n\n\ndef compareDecay(mMed, temp, mDark, histname):\n decays = []\n decays.append('darkPho')\n decays.append('darkPhoHad')\n decays.append('generic')\n hists = []\n labels = []\n for decay in decays:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV,%s' % (mMed, decay_label(decay))\n labels.append(label)\n compare1D(hists, labels, 'compare_decay/mMed{}_temp{}_mDark{}_{}'.\n format(mMed, temp, mDark, histname))\n\n\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n\n\ndef adjust(hist):\n name = hist.GetName()\n if 'ntracks' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'npfs' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'nneutrals' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n hist.GetXaxis().SetTitle('n neutrals')\n return\n\n\ndef clean1D(hist):\n adjust(hist)\n hist.SetLineWidth(2)\n hist.GetYaxis().SetNdivisions(505)\n hist.GetXaxis().SetNdivisions(505)\n hist.SetDirectory(0)\n hist.Scale(1.0 / hist.Integral(0, -1))\n return hist\n\n\ndef get1D(mMed, mDark, temp, decay, histname):\n filename = 'outputs/hist_mMed-{}_mDark-{}_temp-{}_decay-{}.root'.format(\n mMed, mDark, temp, decay)\n f = ROOT.TFile.Open(filename)\n hist = f.Get(histname)\n clean1D(hist)\n return hist\n\n\n<function token>\n\n\ndef decay_label(decay):\n if 'darkPhoHad' in decay:\n return \"m_{A'}=0.7 GeV\"\n if 'darkPho' in decay:\n return \"m_{A'}=0.5 GeV\"\n if 'generic' in decay:\n return \"m_{A'}=m_{#phi}/2, A'#rightarrowu#bar{u}\"\n\n\ndef makeROC(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n hbkg = hist\n ymax = 0\n mgraph = ROOT.TMultiGraph()\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n continue\n eff_sig = []\n eff_bkg = []\n err = []\n for b in range(1, hist.GetNbinsX() + 1):\n eff_sig.append(hist.Integral(b, -1))\n eff_bkg.append(hbkg.Integral(b, -1))\n err.append(1e-09)\n graph = ROOT.TGraphErrors(len(err), array('d', eff_sig), array('d',\n eff_bkg), array('d', err), array('d', err))\n graph.SetLineColor(colors[i])\n mgraph.Add(graph)\n leg.AddEntry(graph, labels[i], 'l')\n mgraph.SetTitle(';sig eff;bkg eff')\n mgraph.Draw('AELP')\n mgraph.GetYaxis().SetRangeUser(1e-08, 1)\n leg.Draw()\n c.SetLogy(1)\n c.SetLogx(0)\n c.Print('plots/{}.png'.format(filename))\n c.SetLogy(0)\n c.SetLogx(0)\n\n\n<function token>\n\n\ndef compareMass(temp, mDark, decay, histname):\n mMeds = []\n mMeds.append(125)\n mMeds.append(400)\n mMeds.append(750)\n mMeds.append(1000)\n hists = []\n labels = []\n for mMed in mMeds:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV, %s' % (mMed, decay_label(decay))\n labels.append(label)\n hists.append(getQCD(histname))\n labels.append('QCD, H_{T}>1 TeV')\n compare1D(hists, labels, 'compare_mMed/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n if histname == 'h_pf_ntracks':\n makeROC(hists, labels, 'roc_curve/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n\n\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n\n\ndef adjust(hist):\n name = hist.GetName()\n if 'ntracks' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'npfs' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'nneutrals' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n hist.GetXaxis().SetTitle('n neutrals')\n return\n\n\ndef clean1D(hist):\n adjust(hist)\n hist.SetLineWidth(2)\n hist.GetYaxis().SetNdivisions(505)\n hist.GetXaxis().SetNdivisions(505)\n hist.SetDirectory(0)\n hist.Scale(1.0 / hist.Integral(0, -1))\n return hist\n\n\ndef get1D(mMed, mDark, temp, decay, histname):\n filename = 'outputs/hist_mMed-{}_mDark-{}_temp-{}_decay-{}.root'.format(\n mMed, mDark, temp, decay)\n f = ROOT.TFile.Open(filename)\n hist = f.Get(histname)\n clean1D(hist)\n return hist\n\n\n<function token>\n<function token>\n\n\ndef makeROC(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n hbkg = hist\n ymax = 0\n mgraph = ROOT.TMultiGraph()\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n continue\n eff_sig = []\n eff_bkg = []\n err = []\n for b in range(1, hist.GetNbinsX() + 1):\n eff_sig.append(hist.Integral(b, -1))\n eff_bkg.append(hbkg.Integral(b, -1))\n err.append(1e-09)\n graph = ROOT.TGraphErrors(len(err), array('d', eff_sig), array('d',\n eff_bkg), array('d', err), array('d', err))\n graph.SetLineColor(colors[i])\n mgraph.Add(graph)\n leg.AddEntry(graph, labels[i], 'l')\n mgraph.SetTitle(';sig eff;bkg eff')\n mgraph.Draw('AELP')\n mgraph.GetYaxis().SetRangeUser(1e-08, 1)\n leg.Draw()\n c.SetLogy(1)\n c.SetLogx(0)\n c.Print('plots/{}.png'.format(filename))\n c.SetLogy(0)\n c.SetLogx(0)\n\n\n<function token>\n\n\ndef compareMass(temp, mDark, decay, histname):\n mMeds = []\n mMeds.append(125)\n mMeds.append(400)\n mMeds.append(750)\n mMeds.append(1000)\n hists = []\n labels = []\n for mMed in mMeds:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV, %s' % (mMed, decay_label(decay))\n labels.append(label)\n hists.append(getQCD(histname))\n labels.append('QCD, H_{T}>1 TeV')\n compare1D(hists, labels, 'compare_mMed/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n if histname == 'h_pf_ntracks':\n makeROC(hists, labels, 'roc_curve/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n\n\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n\n\ndef adjust(hist):\n name = hist.GetName()\n if 'ntracks' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'npfs' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'nneutrals' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n hist.GetXaxis().SetTitle('n neutrals')\n return\n\n\n<function token>\n\n\ndef get1D(mMed, mDark, temp, decay, histname):\n filename = 'outputs/hist_mMed-{}_mDark-{}_temp-{}_decay-{}.root'.format(\n mMed, mDark, temp, decay)\n f = ROOT.TFile.Open(filename)\n hist = f.Get(histname)\n clean1D(hist)\n return hist\n\n\n<function token>\n<function token>\n\n\ndef makeROC(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n hbkg = hist\n ymax = 0\n mgraph = ROOT.TMultiGraph()\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n continue\n eff_sig = []\n eff_bkg = []\n err = []\n for b in range(1, hist.GetNbinsX() + 1):\n eff_sig.append(hist.Integral(b, -1))\n eff_bkg.append(hbkg.Integral(b, -1))\n err.append(1e-09)\n graph = ROOT.TGraphErrors(len(err), array('d', eff_sig), array('d',\n eff_bkg), array('d', err), array('d', err))\n graph.SetLineColor(colors[i])\n mgraph.Add(graph)\n leg.AddEntry(graph, labels[i], 'l')\n mgraph.SetTitle(';sig eff;bkg eff')\n mgraph.Draw('AELP')\n mgraph.GetYaxis().SetRangeUser(1e-08, 1)\n leg.Draw()\n c.SetLogy(1)\n c.SetLogx(0)\n c.Print('plots/{}.png'.format(filename))\n c.SetLogy(0)\n c.SetLogx(0)\n\n\n<function token>\n\n\ndef compareMass(temp, mDark, decay, histname):\n mMeds = []\n mMeds.append(125)\n mMeds.append(400)\n mMeds.append(750)\n mMeds.append(1000)\n hists = []\n labels = []\n for mMed in mMeds:\n hists.append(get1D(mMed, mDark, temp, decay, histname))\n label = 'm_{S}=%i GeV, %s' % (mMed, decay_label(decay))\n labels.append(label)\n hists.append(getQCD(histname))\n labels.append('QCD, H_{T}>1 TeV')\n compare1D(hists, labels, 'compare_mMed/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n if histname == 'h_pf_ntracks':\n makeROC(hists, labels, 'roc_curve/temp{}_mDark{}_decay_{}_{}'.\n format(temp, mDark, decay, histname))\n\n\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n\n\ndef adjust(hist):\n name = hist.GetName()\n if 'ntracks' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'npfs' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n if 'nneutrals' in name:\n hist.GetXaxis().SetRangeUser(0, 600)\n hist.GetXaxis().SetTitle('n neutrals')\n return\n\n\n<function token>\n\n\ndef get1D(mMed, mDark, temp, decay, histname):\n filename = 'outputs/hist_mMed-{}_mDark-{}_temp-{}_decay-{}.root'.format(\n mMed, mDark, temp, decay)\n f = ROOT.TFile.Open(filename)\n hist = f.Get(histname)\n clean1D(hist)\n return hist\n\n\n<function token>\n<function token>\n\n\ndef makeROC(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n hbkg = hist\n ymax = 0\n mgraph = ROOT.TMultiGraph()\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n continue\n eff_sig = []\n eff_bkg = []\n err = []\n for b in range(1, hist.GetNbinsX() + 1):\n eff_sig.append(hist.Integral(b, -1))\n eff_bkg.append(hbkg.Integral(b, -1))\n err.append(1e-09)\n graph = ROOT.TGraphErrors(len(err), array('d', eff_sig), array('d',\n eff_bkg), array('d', err), array('d', err))\n graph.SetLineColor(colors[i])\n mgraph.Add(graph)\n leg.AddEntry(graph, labels[i], 'l')\n mgraph.SetTitle(';sig eff;bkg eff')\n mgraph.Draw('AELP')\n mgraph.GetYaxis().SetRangeUser(1e-08, 1)\n leg.Draw()\n c.SetLogy(1)\n c.SetLogx(0)\n c.Print('plots/{}.png'.format(filename))\n c.SetLogy(0)\n c.SetLogx(0)\n\n\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n<function token>\n<function token>\n\n\ndef get1D(mMed, mDark, temp, decay, histname):\n filename = 'outputs/hist_mMed-{}_mDark-{}_temp-{}_decay-{}.root'.format(\n mMed, mDark, temp, decay)\n f = ROOT.TFile.Open(filename)\n hist = f.Get(histname)\n clean1D(hist)\n return hist\n\n\n<function token>\n<function token>\n\n\ndef makeROC(hists, labels, filename):\n c = ROOT.TCanvas(filename, '', 800, 800)\n dy = 0.05 * len(hists)\n leg = ROOT.TLegend(0.18, 0.86 - dy, 0.86, 0.86)\n leg.SetTextSize(0.04)\n leg.SetBorderSize(0)\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n hbkg = hist\n ymax = 0\n mgraph = ROOT.TMultiGraph()\n for i, hist in enumerate(hists):\n if 'QCD' in labels[i]:\n continue\n eff_sig = []\n eff_bkg = []\n err = []\n for b in range(1, hist.GetNbinsX() + 1):\n eff_sig.append(hist.Integral(b, -1))\n eff_bkg.append(hbkg.Integral(b, -1))\n err.append(1e-09)\n graph = ROOT.TGraphErrors(len(err), array('d', eff_sig), array('d',\n eff_bkg), array('d', err), array('d', err))\n graph.SetLineColor(colors[i])\n mgraph.Add(graph)\n leg.AddEntry(graph, labels[i], 'l')\n mgraph.SetTitle(';sig eff;bkg eff')\n mgraph.Draw('AELP')\n mgraph.GetYaxis().SetRangeUser(1e-08, 1)\n leg.Draw()\n c.SetLogy(1)\n c.SetLogx(0)\n c.Print('plots/{}.png'.format(filename))\n c.SetLogy(0)\n c.SetLogx(0)\n\n\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n<function token>\n<function token>\n\n\ndef get1D(mMed, mDark, temp, decay, histname):\n filename = 'outputs/hist_mMed-{}_mDark-{}_temp-{}_decay-{}.root'.format(\n mMed, mDark, temp, decay)\n f = ROOT.TFile.Open(filename)\n hist = f.Get(histname)\n clean1D(hist)\n return hist\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<code token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
99,535
6761763bac39e70167f8d24d3148345889b4ed78
from igraph import Graph, Vertex from typing import List, Tuple from collections import Counter from graph_utils import set_name def is_empty_graph(graph: Graph): return len(graph.es) == 0 def find_maximum(item_list: List[Tuple[int, int]]) -> List[int]: max_item = None maximum_indices = [] for index, item in item_list: if max_item is None or item > max_item: max_item = item maximum_indices = [index] elif item == max_item: maximum_indices.append(index) return maximum_indices def compute_neighbour_degree_frequency(degree_per_vector: List[int], vertex: Vertex): degree_vector_for_vertex = [degree_per_vector[neighbour.index] for neighbour in vertex.neighbors()] return Counter(degree_vector_for_vertex) def select_vertices(graph: Graph) -> int: degree_per_vector = [v.degree() for v in graph.vs] counter_per_vertex = [compute_neighbour_degree_frequency(degree_per_vector, vertex) for vertex in graph.vs] degree = 1 index_of_vertex_with_most_neighbours_of_x_degree = None scan_only_indices = [i for i in range(len(graph.vs))] while index_of_vertex_with_most_neighbours_of_x_degree is None: how_many_neighbours_of_x_degree_per_vertex = \ [(index, counter_per_vertex[index][degree]) for index in scan_only_indices] maximum_indices = find_maximum(how_many_neighbours_of_x_degree_per_vertex) if len(maximum_indices) > 1: scan_only_indices = maximum_indices degree = degree + 1 if degree > len(graph.vs): # if degree > vertex number, just take the first one index_of_vertex_with_most_neighbours_of_x_degree = maximum_indices[0] else: index_of_vertex_with_most_neighbours_of_x_degree = maximum_indices[0] return graph.vs[index_of_vertex_with_most_neighbours_of_x_degree]['name'] def zero_vertices(graph: Graph, selected_vertices: List[int]): selected_set = graph.vs.select(name_in=selected_vertices) graph.delete_vertices(selected_set) def remove_vertex_and_neighbors(graph: Graph, v: Vertex): graph.delete_vertices([v.index] + [ve.index for ve in v.neighbors()]) def most_neighbors_with_minimal_degree_algo(_, orig: Graph): cover_group = [] graph: Graph = orig.copy() set_name(graph) while not is_empty_graph(graph): selected_vertex = select_vertices(graph) zero_vertices(graph, [selected_vertex]) cover_group = cover_group + [selected_vertex] return cover_group
[ "from igraph import Graph, Vertex\nfrom typing import List, Tuple\nfrom collections import Counter\n\nfrom graph_utils import set_name\n\n\ndef is_empty_graph(graph: Graph):\n return len(graph.es) == 0\n\n\ndef find_maximum(item_list: List[Tuple[int, int]]) -> List[int]:\n max_item = None\n maximum_indices = []\n for index, item in item_list:\n if max_item is None or item > max_item:\n max_item = item\n maximum_indices = [index]\n elif item == max_item:\n maximum_indices.append(index)\n\n return maximum_indices\n\n\ndef compute_neighbour_degree_frequency(degree_per_vector: List[int], vertex: Vertex):\n degree_vector_for_vertex = [degree_per_vector[neighbour.index] for neighbour in vertex.neighbors()]\n return Counter(degree_vector_for_vertex)\n\n\ndef select_vertices(graph: Graph) -> int:\n degree_per_vector = [v.degree() for v in graph.vs]\n counter_per_vertex = [compute_neighbour_degree_frequency(degree_per_vector, vertex) for vertex in graph.vs]\n\n degree = 1\n index_of_vertex_with_most_neighbours_of_x_degree = None\n scan_only_indices = [i for i in range(len(graph.vs))]\n\n while index_of_vertex_with_most_neighbours_of_x_degree is None:\n how_many_neighbours_of_x_degree_per_vertex = \\\n [(index, counter_per_vertex[index][degree]) for index in scan_only_indices]\n\n maximum_indices = find_maximum(how_many_neighbours_of_x_degree_per_vertex)\n if len(maximum_indices) > 1:\n scan_only_indices = maximum_indices\n degree = degree + 1\n\n if degree > len(graph.vs): # if degree > vertex number, just take the first one\n index_of_vertex_with_most_neighbours_of_x_degree = maximum_indices[0]\n else:\n index_of_vertex_with_most_neighbours_of_x_degree = maximum_indices[0]\n\n return graph.vs[index_of_vertex_with_most_neighbours_of_x_degree]['name']\n\n\ndef zero_vertices(graph: Graph, selected_vertices: List[int]):\n selected_set = graph.vs.select(name_in=selected_vertices)\n graph.delete_vertices(selected_set)\n\n\ndef remove_vertex_and_neighbors(graph: Graph, v: Vertex):\n graph.delete_vertices([v.index] + [ve.index for ve in v.neighbors()])\n\n\ndef most_neighbors_with_minimal_degree_algo(_, orig: Graph):\n cover_group = []\n graph: Graph = orig.copy()\n set_name(graph)\n\n while not is_empty_graph(graph):\n selected_vertex = select_vertices(graph)\n zero_vertices(graph, [selected_vertex])\n cover_group = cover_group + [selected_vertex]\n return cover_group\n", "from igraph import Graph, Vertex\nfrom typing import List, Tuple\nfrom collections import Counter\nfrom graph_utils import set_name\n\n\ndef is_empty_graph(graph: Graph):\n return len(graph.es) == 0\n\n\ndef find_maximum(item_list: List[Tuple[int, int]]) ->List[int]:\n max_item = None\n maximum_indices = []\n for index, item in item_list:\n if max_item is None or item > max_item:\n max_item = item\n maximum_indices = [index]\n elif item == max_item:\n maximum_indices.append(index)\n return maximum_indices\n\n\ndef compute_neighbour_degree_frequency(degree_per_vector: List[int], vertex:\n Vertex):\n degree_vector_for_vertex = [degree_per_vector[neighbour.index] for\n neighbour in vertex.neighbors()]\n return Counter(degree_vector_for_vertex)\n\n\ndef select_vertices(graph: Graph) ->int:\n degree_per_vector = [v.degree() for v in graph.vs]\n counter_per_vertex = [compute_neighbour_degree_frequency(\n degree_per_vector, vertex) for vertex in graph.vs]\n degree = 1\n index_of_vertex_with_most_neighbours_of_x_degree = None\n scan_only_indices = [i for i in range(len(graph.vs))]\n while index_of_vertex_with_most_neighbours_of_x_degree is None:\n how_many_neighbours_of_x_degree_per_vertex = [(index,\n counter_per_vertex[index][degree]) for index in scan_only_indices]\n maximum_indices = find_maximum(\n how_many_neighbours_of_x_degree_per_vertex)\n if len(maximum_indices) > 1:\n scan_only_indices = maximum_indices\n degree = degree + 1\n if degree > len(graph.vs):\n index_of_vertex_with_most_neighbours_of_x_degree = (\n maximum_indices[0])\n else:\n index_of_vertex_with_most_neighbours_of_x_degree = maximum_indices[\n 0]\n return graph.vs[index_of_vertex_with_most_neighbours_of_x_degree]['name']\n\n\ndef zero_vertices(graph: Graph, selected_vertices: List[int]):\n selected_set = graph.vs.select(name_in=selected_vertices)\n graph.delete_vertices(selected_set)\n\n\ndef remove_vertex_and_neighbors(graph: Graph, v: Vertex):\n graph.delete_vertices([v.index] + [ve.index for ve in v.neighbors()])\n\n\ndef most_neighbors_with_minimal_degree_algo(_, orig: Graph):\n cover_group = []\n graph: Graph = orig.copy()\n set_name(graph)\n while not is_empty_graph(graph):\n selected_vertex = select_vertices(graph)\n zero_vertices(graph, [selected_vertex])\n cover_group = cover_group + [selected_vertex]\n return cover_group\n", "<import token>\n\n\ndef is_empty_graph(graph: Graph):\n return len(graph.es) == 0\n\n\ndef find_maximum(item_list: List[Tuple[int, int]]) ->List[int]:\n max_item = None\n maximum_indices = []\n for index, item in item_list:\n if max_item is None or item > max_item:\n max_item = item\n maximum_indices = [index]\n elif item == max_item:\n maximum_indices.append(index)\n return maximum_indices\n\n\ndef compute_neighbour_degree_frequency(degree_per_vector: List[int], vertex:\n Vertex):\n degree_vector_for_vertex = [degree_per_vector[neighbour.index] for\n neighbour in vertex.neighbors()]\n return Counter(degree_vector_for_vertex)\n\n\ndef select_vertices(graph: Graph) ->int:\n degree_per_vector = [v.degree() for v in graph.vs]\n counter_per_vertex = [compute_neighbour_degree_frequency(\n degree_per_vector, vertex) for vertex in graph.vs]\n degree = 1\n index_of_vertex_with_most_neighbours_of_x_degree = None\n scan_only_indices = [i for i in range(len(graph.vs))]\n while index_of_vertex_with_most_neighbours_of_x_degree is None:\n how_many_neighbours_of_x_degree_per_vertex = [(index,\n counter_per_vertex[index][degree]) for index in scan_only_indices]\n maximum_indices = find_maximum(\n how_many_neighbours_of_x_degree_per_vertex)\n if len(maximum_indices) > 1:\n scan_only_indices = maximum_indices\n degree = degree + 1\n if degree > len(graph.vs):\n index_of_vertex_with_most_neighbours_of_x_degree = (\n maximum_indices[0])\n else:\n index_of_vertex_with_most_neighbours_of_x_degree = maximum_indices[\n 0]\n return graph.vs[index_of_vertex_with_most_neighbours_of_x_degree]['name']\n\n\ndef zero_vertices(graph: Graph, selected_vertices: List[int]):\n selected_set = graph.vs.select(name_in=selected_vertices)\n graph.delete_vertices(selected_set)\n\n\ndef remove_vertex_and_neighbors(graph: Graph, v: Vertex):\n graph.delete_vertices([v.index] + [ve.index for ve in v.neighbors()])\n\n\ndef most_neighbors_with_minimal_degree_algo(_, orig: Graph):\n cover_group = []\n graph: Graph = orig.copy()\n set_name(graph)\n while not is_empty_graph(graph):\n selected_vertex = select_vertices(graph)\n zero_vertices(graph, [selected_vertex])\n cover_group = cover_group + [selected_vertex]\n return cover_group\n", "<import token>\n\n\ndef is_empty_graph(graph: Graph):\n return len(graph.es) == 0\n\n\n<function token>\n\n\ndef compute_neighbour_degree_frequency(degree_per_vector: List[int], vertex:\n Vertex):\n degree_vector_for_vertex = [degree_per_vector[neighbour.index] for\n neighbour in vertex.neighbors()]\n return Counter(degree_vector_for_vertex)\n\n\ndef select_vertices(graph: Graph) ->int:\n degree_per_vector = [v.degree() for v in graph.vs]\n counter_per_vertex = [compute_neighbour_degree_frequency(\n degree_per_vector, vertex) for vertex in graph.vs]\n degree = 1\n index_of_vertex_with_most_neighbours_of_x_degree = None\n scan_only_indices = [i for i in range(len(graph.vs))]\n while index_of_vertex_with_most_neighbours_of_x_degree is None:\n how_many_neighbours_of_x_degree_per_vertex = [(index,\n counter_per_vertex[index][degree]) for index in scan_only_indices]\n maximum_indices = find_maximum(\n how_many_neighbours_of_x_degree_per_vertex)\n if len(maximum_indices) > 1:\n scan_only_indices = maximum_indices\n degree = degree + 1\n if degree > len(graph.vs):\n index_of_vertex_with_most_neighbours_of_x_degree = (\n maximum_indices[0])\n else:\n index_of_vertex_with_most_neighbours_of_x_degree = maximum_indices[\n 0]\n return graph.vs[index_of_vertex_with_most_neighbours_of_x_degree]['name']\n\n\ndef zero_vertices(graph: Graph, selected_vertices: List[int]):\n selected_set = graph.vs.select(name_in=selected_vertices)\n graph.delete_vertices(selected_set)\n\n\ndef remove_vertex_and_neighbors(graph: Graph, v: Vertex):\n graph.delete_vertices([v.index] + [ve.index for ve in v.neighbors()])\n\n\ndef most_neighbors_with_minimal_degree_algo(_, orig: Graph):\n cover_group = []\n graph: Graph = orig.copy()\n set_name(graph)\n while not is_empty_graph(graph):\n selected_vertex = select_vertices(graph)\n zero_vertices(graph, [selected_vertex])\n cover_group = cover_group + [selected_vertex]\n return cover_group\n", "<import token>\n\n\ndef is_empty_graph(graph: Graph):\n return len(graph.es) == 0\n\n\n<function token>\n\n\ndef compute_neighbour_degree_frequency(degree_per_vector: List[int], vertex:\n Vertex):\n degree_vector_for_vertex = [degree_per_vector[neighbour.index] for\n neighbour in vertex.neighbors()]\n return Counter(degree_vector_for_vertex)\n\n\ndef select_vertices(graph: Graph) ->int:\n degree_per_vector = [v.degree() for v in graph.vs]\n counter_per_vertex = [compute_neighbour_degree_frequency(\n degree_per_vector, vertex) for vertex in graph.vs]\n degree = 1\n index_of_vertex_with_most_neighbours_of_x_degree = None\n scan_only_indices = [i for i in range(len(graph.vs))]\n while index_of_vertex_with_most_neighbours_of_x_degree is None:\n how_many_neighbours_of_x_degree_per_vertex = [(index,\n counter_per_vertex[index][degree]) for index in scan_only_indices]\n maximum_indices = find_maximum(\n how_many_neighbours_of_x_degree_per_vertex)\n if len(maximum_indices) > 1:\n scan_only_indices = maximum_indices\n degree = degree + 1\n if degree > len(graph.vs):\n index_of_vertex_with_most_neighbours_of_x_degree = (\n maximum_indices[0])\n else:\n index_of_vertex_with_most_neighbours_of_x_degree = maximum_indices[\n 0]\n return graph.vs[index_of_vertex_with_most_neighbours_of_x_degree]['name']\n\n\ndef zero_vertices(graph: Graph, selected_vertices: List[int]):\n selected_set = graph.vs.select(name_in=selected_vertices)\n graph.delete_vertices(selected_set)\n\n\n<function token>\n\n\ndef most_neighbors_with_minimal_degree_algo(_, orig: Graph):\n cover_group = []\n graph: Graph = orig.copy()\n set_name(graph)\n while not is_empty_graph(graph):\n selected_vertex = select_vertices(graph)\n zero_vertices(graph, [selected_vertex])\n cover_group = cover_group + [selected_vertex]\n return cover_group\n", "<import token>\n\n\ndef is_empty_graph(graph: Graph):\n return len(graph.es) == 0\n\n\n<function token>\n\n\ndef compute_neighbour_degree_frequency(degree_per_vector: List[int], vertex:\n Vertex):\n degree_vector_for_vertex = [degree_per_vector[neighbour.index] for\n neighbour in vertex.neighbors()]\n return Counter(degree_vector_for_vertex)\n\n\ndef select_vertices(graph: Graph) ->int:\n degree_per_vector = [v.degree() for v in graph.vs]\n counter_per_vertex = [compute_neighbour_degree_frequency(\n degree_per_vector, vertex) for vertex in graph.vs]\n degree = 1\n index_of_vertex_with_most_neighbours_of_x_degree = None\n scan_only_indices = [i for i in range(len(graph.vs))]\n while index_of_vertex_with_most_neighbours_of_x_degree is None:\n how_many_neighbours_of_x_degree_per_vertex = [(index,\n counter_per_vertex[index][degree]) for index in scan_only_indices]\n maximum_indices = find_maximum(\n how_many_neighbours_of_x_degree_per_vertex)\n if len(maximum_indices) > 1:\n scan_only_indices = maximum_indices\n degree = degree + 1\n if degree > len(graph.vs):\n index_of_vertex_with_most_neighbours_of_x_degree = (\n maximum_indices[0])\n else:\n index_of_vertex_with_most_neighbours_of_x_degree = maximum_indices[\n 0]\n return graph.vs[index_of_vertex_with_most_neighbours_of_x_degree]['name']\n\n\ndef zero_vertices(graph: Graph, selected_vertices: List[int]):\n selected_set = graph.vs.select(name_in=selected_vertices)\n graph.delete_vertices(selected_set)\n\n\n<function token>\n<function token>\n", "<import token>\n\n\ndef is_empty_graph(graph: Graph):\n return len(graph.es) == 0\n\n\n<function token>\n<function token>\n\n\ndef select_vertices(graph: Graph) ->int:\n degree_per_vector = [v.degree() for v in graph.vs]\n counter_per_vertex = [compute_neighbour_degree_frequency(\n degree_per_vector, vertex) for vertex in graph.vs]\n degree = 1\n index_of_vertex_with_most_neighbours_of_x_degree = None\n scan_only_indices = [i for i in range(len(graph.vs))]\n while index_of_vertex_with_most_neighbours_of_x_degree is None:\n how_many_neighbours_of_x_degree_per_vertex = [(index,\n counter_per_vertex[index][degree]) for index in scan_only_indices]\n maximum_indices = find_maximum(\n how_many_neighbours_of_x_degree_per_vertex)\n if len(maximum_indices) > 1:\n scan_only_indices = maximum_indices\n degree = degree + 1\n if degree > len(graph.vs):\n index_of_vertex_with_most_neighbours_of_x_degree = (\n maximum_indices[0])\n else:\n index_of_vertex_with_most_neighbours_of_x_degree = maximum_indices[\n 0]\n return graph.vs[index_of_vertex_with_most_neighbours_of_x_degree]['name']\n\n\ndef zero_vertices(graph: Graph, selected_vertices: List[int]):\n selected_set = graph.vs.select(name_in=selected_vertices)\n graph.delete_vertices(selected_set)\n\n\n<function token>\n<function token>\n", "<import token>\n\n\ndef is_empty_graph(graph: Graph):\n return len(graph.es) == 0\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef zero_vertices(graph: Graph, selected_vertices: List[int]):\n selected_set = graph.vs.select(name_in=selected_vertices)\n graph.delete_vertices(selected_set)\n\n\n<function token>\n<function token>\n", "<import token>\n\n\ndef is_empty_graph(graph: Graph):\n return len(graph.es) == 0\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,536
e0428a6b72fef4f3c6a52a6c34b30df1dd23f4ed
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- from __future__ import print_function from __future__ import absolute_import import os import os.path as osp import PIL root_dir = osp.join(osp.dirname(__file__), '..') data_dir = osp.join(root_dir, 'dataset/data') class imdb(object): def __init__(self, name): self._name = name self._classes = [] self._image_index = [] self._roidb = None self._roidb_handler = self.default_roidb @property def name(self): return self._name @property def classes(self): return self._classes @property def image_index(self): return self._image_index @property def num_classes(self): return len(self._classes) @property def roidb_handler(self): return self._roidb_handler @roidb_handler.setter def roidb_handler(self, val): self._roidb_handler = val @property def roidb(self): if self._roidb is not None: return self._roidb self._roidb = self.roidb_handler() return self._roidb def default_roidb(self): raise NotImplementedError def _get_widths(self): return [PIL.Image.open(self.image_path_at(i)).size[0] for i in range(self.num_images)] def append_flipped_images(self): num_images = self.num_images widths = self._get_widths() for i in range(num_images): boxes = self.roidb[i]['boxes'].copy() oldx1 = boxes[:, 0].copy() oldx2 = boxes[:, 2].copy() boxes[:, 0] = widths[i] - oldx2 - 1 boxes[:, 2] = widths[i] - oldx1 - 1 assert (boxes[:, 2] >= boxes[:, 0]).all() entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i]['gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'], 'flipped': True} self.roidb.append(entry) self._image_index = self._image_index * 2 @property def num_images(self): return len(self._image_index) def image_path_at(self, i): raise NotImplementedError def evaluate_detections(self, all_boxes, output_dir=None): """ all_boxes is a list of length number-of-classes. Each list element is a list of length number-of-images. Each of those list elements is either an empty list [] or a numpy array of detection. all_boxes[class][image] = [] or np.array of shape #dets x 5 """ raise NotImplementedError @property def cache_path(self): cache_path = osp.abspath(osp.join(data_dir, 'cache')) if not osp.exists(cache_path): os.makedirs(cache_path) return cache_path
[ "# --------------------------------------------------------\n# Fast R-CNN\n# Copyright (c) 2015 Microsoft\n# Licensed under The MIT License [see LICENSE for details]\n# Written by Ross Girshick\n# --------------------------------------------------------\n\nfrom __future__ import print_function\nfrom __future__ import absolute_import\n\nimport os\nimport os.path as osp\nimport PIL\n\nroot_dir = osp.join(osp.dirname(__file__), '..')\ndata_dir = osp.join(root_dir, 'dataset/data')\n\nclass imdb(object):\n def __init__(self, name):\n self._name = name\n self._classes = []\n self._image_index = []\n self._roidb = None\n self._roidb_handler = self.default_roidb\n\n @property\n def name(self):\n return self._name\n\n @property\n def classes(self):\n return self._classes\n\n @property\n def image_index(self):\n return self._image_index\n\n @property\n def num_classes(self):\n return len(self._classes)\n\n\n @property\n def roidb_handler(self):\n return self._roidb_handler\n\n @roidb_handler.setter\n def roidb_handler(self, val):\n self._roidb_handler = val\n\n\n @property\n def roidb(self):\n if self._roidb is not None:\n return self._roidb\n self._roidb = self.roidb_handler()\n return self._roidb\n\n def default_roidb(self):\n raise NotImplementedError\n\n def _get_widths(self):\n return [PIL.Image.open(self.image_path_at(i)).size[0]\n for i in range(self.num_images)]\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes,\n 'gt_overlaps': self.roidb[i]['gt_overlaps'],\n 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n\n def image_path_at(self, i):\n raise NotImplementedError\n\n def evaluate_detections(self, all_boxes, output_dir=None):\n\n \"\"\"\n all_boxes is a list of length number-of-classes.\n Each list element is a list of length number-of-images.\n Each of those list elements is either an empty list []\n or a numpy array of detection.\n all_boxes[class][image] = [] or np.array of shape #dets x 5\n \"\"\"\n raise NotImplementedError\n\n @property\n def cache_path(self):\n cache_path = osp.abspath(osp.join(data_dir, 'cache'))\n if not osp.exists(cache_path):\n os.makedirs(cache_path)\n return cache_path\n\n\n\n\n\n\n\n\n\n\n\n\n", "from __future__ import print_function\nfrom __future__ import absolute_import\nimport os\nimport os.path as osp\nimport PIL\nroot_dir = osp.join(osp.dirname(__file__), '..')\ndata_dir = osp.join(root_dir, 'dataset/data')\n\n\nclass imdb(object):\n\n def __init__(self, name):\n self._name = name\n self._classes = []\n self._image_index = []\n self._roidb = None\n self._roidb_handler = self.default_roidb\n\n @property\n def name(self):\n return self._name\n\n @property\n def classes(self):\n return self._classes\n\n @property\n def image_index(self):\n return self._image_index\n\n @property\n def num_classes(self):\n return len(self._classes)\n\n @property\n def roidb_handler(self):\n return self._roidb_handler\n\n @roidb_handler.setter\n def roidb_handler(self, val):\n self._roidb_handler = val\n\n @property\n def roidb(self):\n if self._roidb is not None:\n return self._roidb\n self._roidb = self.roidb_handler()\n return self._roidb\n\n def default_roidb(self):\n raise NotImplementedError\n\n def _get_widths(self):\n return [PIL.Image.open(self.image_path_at(i)).size[0] for i in\n range(self.num_images)]\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i][\n 'gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n\n def image_path_at(self, i):\n raise NotImplementedError\n\n def evaluate_detections(self, all_boxes, output_dir=None):\n \"\"\"\n all_boxes is a list of length number-of-classes.\n Each list element is a list of length number-of-images.\n Each of those list elements is either an empty list []\n or a numpy array of detection.\n all_boxes[class][image] = [] or np.array of shape #dets x 5\n \"\"\"\n raise NotImplementedError\n\n @property\n def cache_path(self):\n cache_path = osp.abspath(osp.join(data_dir, 'cache'))\n if not osp.exists(cache_path):\n os.makedirs(cache_path)\n return cache_path\n", "<import token>\nroot_dir = osp.join(osp.dirname(__file__), '..')\ndata_dir = osp.join(root_dir, 'dataset/data')\n\n\nclass imdb(object):\n\n def __init__(self, name):\n self._name = name\n self._classes = []\n self._image_index = []\n self._roidb = None\n self._roidb_handler = self.default_roidb\n\n @property\n def name(self):\n return self._name\n\n @property\n def classes(self):\n return self._classes\n\n @property\n def image_index(self):\n return self._image_index\n\n @property\n def num_classes(self):\n return len(self._classes)\n\n @property\n def roidb_handler(self):\n return self._roidb_handler\n\n @roidb_handler.setter\n def roidb_handler(self, val):\n self._roidb_handler = val\n\n @property\n def roidb(self):\n if self._roidb is not None:\n return self._roidb\n self._roidb = self.roidb_handler()\n return self._roidb\n\n def default_roidb(self):\n raise NotImplementedError\n\n def _get_widths(self):\n return [PIL.Image.open(self.image_path_at(i)).size[0] for i in\n range(self.num_images)]\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i][\n 'gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n\n def image_path_at(self, i):\n raise NotImplementedError\n\n def evaluate_detections(self, all_boxes, output_dir=None):\n \"\"\"\n all_boxes is a list of length number-of-classes.\n Each list element is a list of length number-of-images.\n Each of those list elements is either an empty list []\n or a numpy array of detection.\n all_boxes[class][image] = [] or np.array of shape #dets x 5\n \"\"\"\n raise NotImplementedError\n\n @property\n def cache_path(self):\n cache_path = osp.abspath(osp.join(data_dir, 'cache'))\n if not osp.exists(cache_path):\n os.makedirs(cache_path)\n return cache_path\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n\n def __init__(self, name):\n self._name = name\n self._classes = []\n self._image_index = []\n self._roidb = None\n self._roidb_handler = self.default_roidb\n\n @property\n def name(self):\n return self._name\n\n @property\n def classes(self):\n return self._classes\n\n @property\n def image_index(self):\n return self._image_index\n\n @property\n def num_classes(self):\n return len(self._classes)\n\n @property\n def roidb_handler(self):\n return self._roidb_handler\n\n @roidb_handler.setter\n def roidb_handler(self, val):\n self._roidb_handler = val\n\n @property\n def roidb(self):\n if self._roidb is not None:\n return self._roidb\n self._roidb = self.roidb_handler()\n return self._roidb\n\n def default_roidb(self):\n raise NotImplementedError\n\n def _get_widths(self):\n return [PIL.Image.open(self.image_path_at(i)).size[0] for i in\n range(self.num_images)]\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i][\n 'gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n\n def image_path_at(self, i):\n raise NotImplementedError\n\n def evaluate_detections(self, all_boxes, output_dir=None):\n \"\"\"\n all_boxes is a list of length number-of-classes.\n Each list element is a list of length number-of-images.\n Each of those list elements is either an empty list []\n or a numpy array of detection.\n all_boxes[class][image] = [] or np.array of shape #dets x 5\n \"\"\"\n raise NotImplementedError\n\n @property\n def cache_path(self):\n cache_path = osp.abspath(osp.join(data_dir, 'cache'))\n if not osp.exists(cache_path):\n os.makedirs(cache_path)\n return cache_path\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n\n def __init__(self, name):\n self._name = name\n self._classes = []\n self._image_index = []\n self._roidb = None\n self._roidb_handler = self.default_roidb\n\n @property\n def name(self):\n return self._name\n\n @property\n def classes(self):\n return self._classes\n\n @property\n def image_index(self):\n return self._image_index\n\n @property\n def num_classes(self):\n return len(self._classes)\n\n @property\n def roidb_handler(self):\n return self._roidb_handler\n <function token>\n\n @property\n def roidb(self):\n if self._roidb is not None:\n return self._roidb\n self._roidb = self.roidb_handler()\n return self._roidb\n\n def default_roidb(self):\n raise NotImplementedError\n\n def _get_widths(self):\n return [PIL.Image.open(self.image_path_at(i)).size[0] for i in\n range(self.num_images)]\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i][\n 'gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n\n def image_path_at(self, i):\n raise NotImplementedError\n\n def evaluate_detections(self, all_boxes, output_dir=None):\n \"\"\"\n all_boxes is a list of length number-of-classes.\n Each list element is a list of length number-of-images.\n Each of those list elements is either an empty list []\n or a numpy array of detection.\n all_boxes[class][image] = [] or np.array of shape #dets x 5\n \"\"\"\n raise NotImplementedError\n\n @property\n def cache_path(self):\n cache_path = osp.abspath(osp.join(data_dir, 'cache'))\n if not osp.exists(cache_path):\n os.makedirs(cache_path)\n return cache_path\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n\n def __init__(self, name):\n self._name = name\n self._classes = []\n self._image_index = []\n self._roidb = None\n self._roidb_handler = self.default_roidb\n\n @property\n def name(self):\n return self._name\n\n @property\n def classes(self):\n return self._classes\n <function token>\n\n @property\n def num_classes(self):\n return len(self._classes)\n\n @property\n def roidb_handler(self):\n return self._roidb_handler\n <function token>\n\n @property\n def roidb(self):\n if self._roidb is not None:\n return self._roidb\n self._roidb = self.roidb_handler()\n return self._roidb\n\n def default_roidb(self):\n raise NotImplementedError\n\n def _get_widths(self):\n return [PIL.Image.open(self.image_path_at(i)).size[0] for i in\n range(self.num_images)]\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i][\n 'gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n\n def image_path_at(self, i):\n raise NotImplementedError\n\n def evaluate_detections(self, all_boxes, output_dir=None):\n \"\"\"\n all_boxes is a list of length number-of-classes.\n Each list element is a list of length number-of-images.\n Each of those list elements is either an empty list []\n or a numpy array of detection.\n all_boxes[class][image] = [] or np.array of shape #dets x 5\n \"\"\"\n raise NotImplementedError\n\n @property\n def cache_path(self):\n cache_path = osp.abspath(osp.join(data_dir, 'cache'))\n if not osp.exists(cache_path):\n os.makedirs(cache_path)\n return cache_path\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n\n def __init__(self, name):\n self._name = name\n self._classes = []\n self._image_index = []\n self._roidb = None\n self._roidb_handler = self.default_roidb\n\n @property\n def name(self):\n return self._name\n <function token>\n <function token>\n\n @property\n def num_classes(self):\n return len(self._classes)\n\n @property\n def roidb_handler(self):\n return self._roidb_handler\n <function token>\n\n @property\n def roidb(self):\n if self._roidb is not None:\n return self._roidb\n self._roidb = self.roidb_handler()\n return self._roidb\n\n def default_roidb(self):\n raise NotImplementedError\n\n def _get_widths(self):\n return [PIL.Image.open(self.image_path_at(i)).size[0] for i in\n range(self.num_images)]\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i][\n 'gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n\n def image_path_at(self, i):\n raise NotImplementedError\n\n def evaluate_detections(self, all_boxes, output_dir=None):\n \"\"\"\n all_boxes is a list of length number-of-classes.\n Each list element is a list of length number-of-images.\n Each of those list elements is either an empty list []\n or a numpy array of detection.\n all_boxes[class][image] = [] or np.array of shape #dets x 5\n \"\"\"\n raise NotImplementedError\n\n @property\n def cache_path(self):\n cache_path = osp.abspath(osp.join(data_dir, 'cache'))\n if not osp.exists(cache_path):\n os.makedirs(cache_path)\n return cache_path\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n <function token>\n\n @property\n def name(self):\n return self._name\n <function token>\n <function token>\n\n @property\n def num_classes(self):\n return len(self._classes)\n\n @property\n def roidb_handler(self):\n return self._roidb_handler\n <function token>\n\n @property\n def roidb(self):\n if self._roidb is not None:\n return self._roidb\n self._roidb = self.roidb_handler()\n return self._roidb\n\n def default_roidb(self):\n raise NotImplementedError\n\n def _get_widths(self):\n return [PIL.Image.open(self.image_path_at(i)).size[0] for i in\n range(self.num_images)]\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i][\n 'gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n\n def image_path_at(self, i):\n raise NotImplementedError\n\n def evaluate_detections(self, all_boxes, output_dir=None):\n \"\"\"\n all_boxes is a list of length number-of-classes.\n Each list element is a list of length number-of-images.\n Each of those list elements is either an empty list []\n or a numpy array of detection.\n all_boxes[class][image] = [] or np.array of shape #dets x 5\n \"\"\"\n raise NotImplementedError\n\n @property\n def cache_path(self):\n cache_path = osp.abspath(osp.join(data_dir, 'cache'))\n if not osp.exists(cache_path):\n os.makedirs(cache_path)\n return cache_path\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n <function token>\n\n @property\n def name(self):\n return self._name\n <function token>\n <function token>\n\n @property\n def num_classes(self):\n return len(self._classes)\n\n @property\n def roidb_handler(self):\n return self._roidb_handler\n <function token>\n\n @property\n def roidb(self):\n if self._roidb is not None:\n return self._roidb\n self._roidb = self.roidb_handler()\n return self._roidb\n\n def default_roidb(self):\n raise NotImplementedError\n\n def _get_widths(self):\n return [PIL.Image.open(self.image_path_at(i)).size[0] for i in\n range(self.num_images)]\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i][\n 'gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n\n def image_path_at(self, i):\n raise NotImplementedError\n\n def evaluate_detections(self, all_boxes, output_dir=None):\n \"\"\"\n all_boxes is a list of length number-of-classes.\n Each list element is a list of length number-of-images.\n Each of those list elements is either an empty list []\n or a numpy array of detection.\n all_boxes[class][image] = [] or np.array of shape #dets x 5\n \"\"\"\n raise NotImplementedError\n <function token>\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n <function token>\n\n @property\n def name(self):\n return self._name\n <function token>\n <function token>\n\n @property\n def num_classes(self):\n return len(self._classes)\n\n @property\n def roidb_handler(self):\n return self._roidb_handler\n <function token>\n\n @property\n def roidb(self):\n if self._roidb is not None:\n return self._roidb\n self._roidb = self.roidb_handler()\n return self._roidb\n\n def default_roidb(self):\n raise NotImplementedError\n\n def _get_widths(self):\n return [PIL.Image.open(self.image_path_at(i)).size[0] for i in\n range(self.num_images)]\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i][\n 'gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n <function token>\n\n def evaluate_detections(self, all_boxes, output_dir=None):\n \"\"\"\n all_boxes is a list of length number-of-classes.\n Each list element is a list of length number-of-images.\n Each of those list elements is either an empty list []\n or a numpy array of detection.\n all_boxes[class][image] = [] or np.array of shape #dets x 5\n \"\"\"\n raise NotImplementedError\n <function token>\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n <function token>\n\n @property\n def name(self):\n return self._name\n <function token>\n <function token>\n <function token>\n\n @property\n def roidb_handler(self):\n return self._roidb_handler\n <function token>\n\n @property\n def roidb(self):\n if self._roidb is not None:\n return self._roidb\n self._roidb = self.roidb_handler()\n return self._roidb\n\n def default_roidb(self):\n raise NotImplementedError\n\n def _get_widths(self):\n return [PIL.Image.open(self.image_path_at(i)).size[0] for i in\n range(self.num_images)]\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i][\n 'gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n <function token>\n\n def evaluate_detections(self, all_boxes, output_dir=None):\n \"\"\"\n all_boxes is a list of length number-of-classes.\n Each list element is a list of length number-of-images.\n Each of those list elements is either an empty list []\n or a numpy array of detection.\n all_boxes[class][image] = [] or np.array of shape #dets x 5\n \"\"\"\n raise NotImplementedError\n <function token>\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n <function token>\n\n @property\n def name(self):\n return self._name\n <function token>\n <function token>\n <function token>\n\n @property\n def roidb_handler(self):\n return self._roidb_handler\n <function token>\n\n @property\n def roidb(self):\n if self._roidb is not None:\n return self._roidb\n self._roidb = self.roidb_handler()\n return self._roidb\n\n def default_roidb(self):\n raise NotImplementedError\n\n def _get_widths(self):\n return [PIL.Image.open(self.image_path_at(i)).size[0] for i in\n range(self.num_images)]\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i][\n 'gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n <function token>\n\n @property\n def name(self):\n return self._name\n <function token>\n <function token>\n <function token>\n\n @property\n def roidb_handler(self):\n return self._roidb_handler\n <function token>\n\n @property\n def roidb(self):\n if self._roidb is not None:\n return self._roidb\n self._roidb = self.roidb_handler()\n return self._roidb\n\n def default_roidb(self):\n raise NotImplementedError\n <function token>\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i][\n 'gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n <function token>\n\n @property\n def name(self):\n return self._name\n <function token>\n <function token>\n <function token>\n\n @property\n def roidb_handler(self):\n return self._roidb_handler\n <function token>\n <function token>\n\n def default_roidb(self):\n raise NotImplementedError\n <function token>\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i][\n 'gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n <function token>\n\n @property\n def name(self):\n return self._name\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def default_roidb(self):\n raise NotImplementedError\n <function token>\n\n def append_flipped_images(self):\n num_images = self.num_images\n widths = self._get_widths()\n for i in range(num_images):\n boxes = self.roidb[i]['boxes'].copy()\n oldx1 = boxes[:, 0].copy()\n oldx2 = boxes[:, 2].copy()\n boxes[:, 0] = widths[i] - oldx2 - 1\n boxes[:, 2] = widths[i] - oldx1 - 1\n assert (boxes[:, 2] >= boxes[:, 0]).all()\n entry = {'boxes': boxes, 'gt_overlaps': self.roidb[i][\n 'gt_overlaps'], 'gt_classes': self.roidb[i]['gt_classes'],\n 'flipped': True}\n self.roidb.append(entry)\n self._image_index = self._image_index * 2\n\n @property\n def num_images(self):\n return len(self._image_index)\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n <function token>\n\n @property\n def name(self):\n return self._name\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def default_roidb(self):\n raise NotImplementedError\n <function token>\n <function token>\n\n @property\n def num_images(self):\n return len(self._image_index)\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n <function token>\n\n @property\n def name(self):\n return self._name\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n @property\n def num_images(self):\n return len(self._image_index)\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n @property\n def num_images(self):\n return len(self._image_index)\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n\n\nclass imdb(object):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n<class token>\n" ]
false
99,537
4066a1bd7f5383f008dd937252b6ad57f050a628
#!/usr/bin/env python # encoding: utf-8 """ get_snapshot.py Fetch project from synergy and store on disc Created by Aske Olsson 2011-09-22. Copyright (c) 2011 Aske Olsson. All rights reserved. """ from ccm_objects_in_project import get_objects_in_project import os def get_snapshot(project, ccm, outdir): if not outdir.endswith('/'): outdir += '/' # get all objects in the project objects = get_objects_in_project(project, ccm) # write the objects to outdir for object, paths in objects.items(): # print(object, paths) if not ':dir:' in object and not ':project:' in object: content = ccm.cat(object).run() for path in paths: p = outdir + path dir = os.path.split(p)[0] if not os.path.exists(dir): os.makedirs(dir) print(("Writing %s to %s" %(object, p))) f = open(p, 'wb') f.write(content) f.close() # handle empty dirs by adding .gitignore to empty leaf dirs empty_dirs = get_empty_dirs(objects) write_empty_dirs(empty_dirs, outdir) def write_empty_dirs(dirs, outdir): for dir in dirs: path = os.path.join(outdir, dir) filepath = os.path.join(path, '.gitignore') if not os.path.exists(path): os.makedirs(path) print(("Writing empty .gitignore to %s" %filepath)) f = open(filepath, 'wb') f.write('') f.close() def get_empty_dirs(objects): dirs = [d for o, paths in objects.items() for d in paths if ':dir:' in o] file_dirs = [d.rsplit('/',1)[0] for o, paths in objects.items() for d in paths if ':dir:' not in o and ':project:' not in o] leaf_dirs = get_leaf_dirs(dirs) empty_leaves = set(leaf_dirs) - set(file_dirs) return empty_leaves def get_leaf_dirs(dirs): res = [sorted(dirs)[0]] previous = res[0] for dir in sorted(dirs): if previous in dir: res.remove(previous) res.append(dir) previous = dir return res def main(): pass if __name__ == '__main__': main()
[ "#!/usr/bin/env python\n# encoding: utf-8\n\"\"\"\nget_snapshot.py\n\nFetch project from synergy and store on disc\n\nCreated by Aske Olsson 2011-09-22.\nCopyright (c) 2011 Aske Olsson. All rights reserved.\n\"\"\"\n\nfrom ccm_objects_in_project import get_objects_in_project\nimport os\n\ndef get_snapshot(project, ccm, outdir):\n if not outdir.endswith('/'):\n outdir += '/'\n # get all objects in the project\n objects = get_objects_in_project(project, ccm)\n\n # write the objects to outdir\n for object, paths in objects.items():\n# print(object, paths)\n if not ':dir:' in object and not ':project:' in object:\n content = ccm.cat(object).run()\n for path in paths:\n p = outdir + path\n dir = os.path.split(p)[0]\n if not os.path.exists(dir):\n os.makedirs(dir)\n print((\"Writing %s to %s\" %(object, p)))\n f = open(p, 'wb')\n f.write(content)\n f.close()\n\n # handle empty dirs by adding .gitignore to empty leaf dirs\n empty_dirs = get_empty_dirs(objects)\n write_empty_dirs(empty_dirs, outdir)\n\ndef write_empty_dirs(dirs, outdir):\n for dir in dirs:\n path = os.path.join(outdir, dir)\n filepath = os.path.join(path, '.gitignore')\n if not os.path.exists(path):\n os.makedirs(path)\n print((\"Writing empty .gitignore to %s\" %filepath))\n f = open(filepath, 'wb')\n f.write('')\n f.close()\n\ndef get_empty_dirs(objects):\n dirs = [d for o, paths in objects.items() for d in paths if ':dir:' in o]\n file_dirs = [d.rsplit('/',1)[0] for o, paths in objects.items() for d in paths if ':dir:' not in o and ':project:' not in o]\n leaf_dirs = get_leaf_dirs(dirs)\n empty_leaves = set(leaf_dirs) - set(file_dirs)\n return empty_leaves\n\ndef get_leaf_dirs(dirs):\n res = [sorted(dirs)[0]]\n previous = res[0]\n for dir in sorted(dirs):\n if previous in dir:\n res.remove(previous)\n res.append(dir)\n previous = dir\n return res\n\ndef main():\n pass\n\nif __name__ == '__main__':\n main()\n", "<docstring token>\nfrom ccm_objects_in_project import get_objects_in_project\nimport os\n\n\ndef get_snapshot(project, ccm, outdir):\n if not outdir.endswith('/'):\n outdir += '/'\n objects = get_objects_in_project(project, ccm)\n for object, paths in objects.items():\n if not ':dir:' in object and not ':project:' in object:\n content = ccm.cat(object).run()\n for path in paths:\n p = outdir + path\n dir = os.path.split(p)[0]\n if not os.path.exists(dir):\n os.makedirs(dir)\n print('Writing %s to %s' % (object, p))\n f = open(p, 'wb')\n f.write(content)\n f.close()\n empty_dirs = get_empty_dirs(objects)\n write_empty_dirs(empty_dirs, outdir)\n\n\ndef write_empty_dirs(dirs, outdir):\n for dir in dirs:\n path = os.path.join(outdir, dir)\n filepath = os.path.join(path, '.gitignore')\n if not os.path.exists(path):\n os.makedirs(path)\n print('Writing empty .gitignore to %s' % filepath)\n f = open(filepath, 'wb')\n f.write('')\n f.close()\n\n\ndef get_empty_dirs(objects):\n dirs = [d for o, paths in objects.items() for d in paths if ':dir:' in o]\n file_dirs = [d.rsplit('/', 1)[0] for o, paths in objects.items() for d in\n paths if ':dir:' not in o and ':project:' not in o]\n leaf_dirs = get_leaf_dirs(dirs)\n empty_leaves = set(leaf_dirs) - set(file_dirs)\n return empty_leaves\n\n\ndef get_leaf_dirs(dirs):\n res = [sorted(dirs)[0]]\n previous = res[0]\n for dir in sorted(dirs):\n if previous in dir:\n res.remove(previous)\n res.append(dir)\n previous = dir\n return res\n\n\ndef main():\n pass\n\n\nif __name__ == '__main__':\n main()\n", "<docstring token>\n<import token>\n\n\ndef get_snapshot(project, ccm, outdir):\n if not outdir.endswith('/'):\n outdir += '/'\n objects = get_objects_in_project(project, ccm)\n for object, paths in objects.items():\n if not ':dir:' in object and not ':project:' in object:\n content = ccm.cat(object).run()\n for path in paths:\n p = outdir + path\n dir = os.path.split(p)[0]\n if not os.path.exists(dir):\n os.makedirs(dir)\n print('Writing %s to %s' % (object, p))\n f = open(p, 'wb')\n f.write(content)\n f.close()\n empty_dirs = get_empty_dirs(objects)\n write_empty_dirs(empty_dirs, outdir)\n\n\ndef write_empty_dirs(dirs, outdir):\n for dir in dirs:\n path = os.path.join(outdir, dir)\n filepath = os.path.join(path, '.gitignore')\n if not os.path.exists(path):\n os.makedirs(path)\n print('Writing empty .gitignore to %s' % filepath)\n f = open(filepath, 'wb')\n f.write('')\n f.close()\n\n\ndef get_empty_dirs(objects):\n dirs = [d for o, paths in objects.items() for d in paths if ':dir:' in o]\n file_dirs = [d.rsplit('/', 1)[0] for o, paths in objects.items() for d in\n paths if ':dir:' not in o and ':project:' not in o]\n leaf_dirs = get_leaf_dirs(dirs)\n empty_leaves = set(leaf_dirs) - set(file_dirs)\n return empty_leaves\n\n\ndef get_leaf_dirs(dirs):\n res = [sorted(dirs)[0]]\n previous = res[0]\n for dir in sorted(dirs):\n if previous in dir:\n res.remove(previous)\n res.append(dir)\n previous = dir\n return res\n\n\ndef main():\n pass\n\n\nif __name__ == '__main__':\n main()\n", "<docstring token>\n<import token>\n\n\ndef get_snapshot(project, ccm, outdir):\n if not outdir.endswith('/'):\n outdir += '/'\n objects = get_objects_in_project(project, ccm)\n for object, paths in objects.items():\n if not ':dir:' in object and not ':project:' in object:\n content = ccm.cat(object).run()\n for path in paths:\n p = outdir + path\n dir = os.path.split(p)[0]\n if not os.path.exists(dir):\n os.makedirs(dir)\n print('Writing %s to %s' % (object, p))\n f = open(p, 'wb')\n f.write(content)\n f.close()\n empty_dirs = get_empty_dirs(objects)\n write_empty_dirs(empty_dirs, outdir)\n\n\ndef write_empty_dirs(dirs, outdir):\n for dir in dirs:\n path = os.path.join(outdir, dir)\n filepath = os.path.join(path, '.gitignore')\n if not os.path.exists(path):\n os.makedirs(path)\n print('Writing empty .gitignore to %s' % filepath)\n f = open(filepath, 'wb')\n f.write('')\n f.close()\n\n\ndef get_empty_dirs(objects):\n dirs = [d for o, paths in objects.items() for d in paths if ':dir:' in o]\n file_dirs = [d.rsplit('/', 1)[0] for o, paths in objects.items() for d in\n paths if ':dir:' not in o and ':project:' not in o]\n leaf_dirs = get_leaf_dirs(dirs)\n empty_leaves = set(leaf_dirs) - set(file_dirs)\n return empty_leaves\n\n\ndef get_leaf_dirs(dirs):\n res = [sorted(dirs)[0]]\n previous = res[0]\n for dir in sorted(dirs):\n if previous in dir:\n res.remove(previous)\n res.append(dir)\n previous = dir\n return res\n\n\ndef main():\n pass\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\ndef get_snapshot(project, ccm, outdir):\n if not outdir.endswith('/'):\n outdir += '/'\n objects = get_objects_in_project(project, ccm)\n for object, paths in objects.items():\n if not ':dir:' in object and not ':project:' in object:\n content = ccm.cat(object).run()\n for path in paths:\n p = outdir + path\n dir = os.path.split(p)[0]\n if not os.path.exists(dir):\n os.makedirs(dir)\n print('Writing %s to %s' % (object, p))\n f = open(p, 'wb')\n f.write(content)\n f.close()\n empty_dirs = get_empty_dirs(objects)\n write_empty_dirs(empty_dirs, outdir)\n\n\ndef write_empty_dirs(dirs, outdir):\n for dir in dirs:\n path = os.path.join(outdir, dir)\n filepath = os.path.join(path, '.gitignore')\n if not os.path.exists(path):\n os.makedirs(path)\n print('Writing empty .gitignore to %s' % filepath)\n f = open(filepath, 'wb')\n f.write('')\n f.close()\n\n\n<function token>\n\n\ndef get_leaf_dirs(dirs):\n res = [sorted(dirs)[0]]\n previous = res[0]\n for dir in sorted(dirs):\n if previous in dir:\n res.remove(previous)\n res.append(dir)\n previous = dir\n return res\n\n\ndef main():\n pass\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\ndef get_snapshot(project, ccm, outdir):\n if not outdir.endswith('/'):\n outdir += '/'\n objects = get_objects_in_project(project, ccm)\n for object, paths in objects.items():\n if not ':dir:' in object and not ':project:' in object:\n content = ccm.cat(object).run()\n for path in paths:\n p = outdir + path\n dir = os.path.split(p)[0]\n if not os.path.exists(dir):\n os.makedirs(dir)\n print('Writing %s to %s' % (object, p))\n f = open(p, 'wb')\n f.write(content)\n f.close()\n empty_dirs = get_empty_dirs(objects)\n write_empty_dirs(empty_dirs, outdir)\n\n\n<function token>\n<function token>\n\n\ndef get_leaf_dirs(dirs):\n res = [sorted(dirs)[0]]\n previous = res[0]\n for dir in sorted(dirs):\n if previous in dir:\n res.remove(previous)\n res.append(dir)\n previous = dir\n return res\n\n\ndef main():\n pass\n\n\n<code token>\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef get_leaf_dirs(dirs):\n res = [sorted(dirs)[0]]\n previous = res[0]\n for dir in sorted(dirs):\n if previous in dir:\n res.remove(previous)\n res.append(dir)\n previous = dir\n return res\n\n\ndef main():\n pass\n\n\n<code token>\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef get_leaf_dirs(dirs):\n res = [sorted(dirs)[0]]\n previous = res[0]\n for dir in sorted(dirs):\n if previous in dir:\n res.remove(previous)\n res.append(dir)\n previous = dir\n return res\n\n\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,538
bd149b5e0505470f7801486f979697d0bab829f6
from typing import Optional, Any from fastapi import APIRouter, Depends from sqlalchemy.orm import Session from app import crud from app.api import deps router = APIRouter(prefix='/question') @router.get('/') async def get_question( qid: Optional[str] = None, subject: Optional[str] = None, is_simple: bool = True, db: Session = Depends(deps.get_db) ) -> Any: if qid: return crud.item.get_by_id(db, qid) if subject: results = crud.item.get_by_subject_all(db, subject) if not is_simple: return results return [ { "question_id": result.id, "answer": result.answer } for result in results ] return 'no function' @router.get('/random') async def get_question_random( subject: Optional[str] = None, db: Session = Depends(deps.get_db) ) -> Any: """ get question """ if subject: return crud.item.get_by_random(db, subject) else: return crud.item.get_by_random(db) @router.get('/order') async def get_question_order( subject: str, order: int, db: Session = Depends(deps.get_db) ) -> Any: return crud.item.get_by_subject_order(db, subject, order)
[ "from typing import Optional, Any\n\nfrom fastapi import APIRouter, Depends\nfrom sqlalchemy.orm import Session\n\nfrom app import crud\nfrom app.api import deps\n\n\nrouter = APIRouter(prefix='/question')\n\n\[email protected]('/')\nasync def get_question(\n qid: Optional[str] = None,\n subject: Optional[str] = None,\n is_simple: bool = True,\n db: Session = Depends(deps.get_db)\n) -> Any:\n if qid:\n return crud.item.get_by_id(db, qid)\n if subject:\n results = crud.item.get_by_subject_all(db, subject)\n if not is_simple:\n return results\n return [\n {\n \"question_id\": result.id,\n \"answer\": result.answer\n }\n for result in results\n ]\n return 'no function'\n\n\[email protected]('/random')\nasync def get_question_random(\n subject: Optional[str] = None,\n db: Session = Depends(deps.get_db)\n) -> Any:\n \"\"\"\n get question\n \"\"\"\n if subject:\n return crud.item.get_by_random(db, subject)\n else:\n return crud.item.get_by_random(db)\n\n\[email protected]('/order')\nasync def get_question_order(\n subject: str,\n order: int,\n db: Session = Depends(deps.get_db)\n) -> Any:\n return crud.item.get_by_subject_order(db, subject, order)\n", "from typing import Optional, Any\nfrom fastapi import APIRouter, Depends\nfrom sqlalchemy.orm import Session\nfrom app import crud\nfrom app.api import deps\nrouter = APIRouter(prefix='/question')\n\n\[email protected]('/')\nasync def get_question(qid: Optional[str]=None, subject: Optional[str]=None,\n is_simple: bool=True, db: Session=Depends(deps.get_db)) ->Any:\n if qid:\n return crud.item.get_by_id(db, qid)\n if subject:\n results = crud.item.get_by_subject_all(db, subject)\n if not is_simple:\n return results\n return [{'question_id': result.id, 'answer': result.answer} for\n result in results]\n return 'no function'\n\n\[email protected]('/random')\nasync def get_question_random(subject: Optional[str]=None, db: Session=\n Depends(deps.get_db)) ->Any:\n \"\"\"\n get question\n \"\"\"\n if subject:\n return crud.item.get_by_random(db, subject)\n else:\n return crud.item.get_by_random(db)\n\n\[email protected]('/order')\nasync def get_question_order(subject: str, order: int, db: Session=Depends(\n deps.get_db)) ->Any:\n return crud.item.get_by_subject_order(db, subject, order)\n", "<import token>\nrouter = APIRouter(prefix='/question')\n\n\[email protected]('/')\nasync def get_question(qid: Optional[str]=None, subject: Optional[str]=None,\n is_simple: bool=True, db: Session=Depends(deps.get_db)) ->Any:\n if qid:\n return crud.item.get_by_id(db, qid)\n if subject:\n results = crud.item.get_by_subject_all(db, subject)\n if not is_simple:\n return results\n return [{'question_id': result.id, 'answer': result.answer} for\n result in results]\n return 'no function'\n\n\[email protected]('/random')\nasync def get_question_random(subject: Optional[str]=None, db: Session=\n Depends(deps.get_db)) ->Any:\n \"\"\"\n get question\n \"\"\"\n if subject:\n return crud.item.get_by_random(db, subject)\n else:\n return crud.item.get_by_random(db)\n\n\[email protected]('/order')\nasync def get_question_order(subject: str, order: int, db: Session=Depends(\n deps.get_db)) ->Any:\n return crud.item.get_by_subject_order(db, subject, order)\n", "<import token>\n<assignment token>\n\n\[email protected]('/')\nasync def get_question(qid: Optional[str]=None, subject: Optional[str]=None,\n is_simple: bool=True, db: Session=Depends(deps.get_db)) ->Any:\n if qid:\n return crud.item.get_by_id(db, qid)\n if subject:\n results = crud.item.get_by_subject_all(db, subject)\n if not is_simple:\n return results\n return [{'question_id': result.id, 'answer': result.answer} for\n result in results]\n return 'no function'\n\n\[email protected]('/random')\nasync def get_question_random(subject: Optional[str]=None, db: Session=\n Depends(deps.get_db)) ->Any:\n \"\"\"\n get question\n \"\"\"\n if subject:\n return crud.item.get_by_random(db, subject)\n else:\n return crud.item.get_by_random(db)\n\n\[email protected]('/order')\nasync def get_question_order(subject: str, order: int, db: Session=Depends(\n deps.get_db)) ->Any:\n return crud.item.get_by_subject_order(db, subject, order)\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,539
c7b2850666e4157835580b46256dd1e2e9b63693
from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from src.pages.base_page import BasePage class DashboardPage(BasePage): DASHBOARD_BUTTON = (By.ID, "home_link") PROJECTS_BUTTON = (By.ID, "browse_link") ISSUES_BUTTON = (By.ID, "find_link") CREATE_BUTTON = (By.ID, "create_link") QUICK_SEARCH_FIELD = (By.ID, "quickSearchInput") PROFILE_LOGO = (By.ID, "header-details-user-fullname") CURRENT_SEARCH_ISSUES_SUBMENU_OPTION = (By.ID, "jira.top.navigation.bar:issues_drop_current_lnk") SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION = (By.ID, "issues_new_search_link") VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION = (By.ID, "dash_lnk_system_lnk") def __init__(self, driver): self.driver = driver def at_page(self): return ("System Dashboard - Hillel IT School JIRA" in self.driver.title) & (self.is_element_visible(self.PROFILE_LOGO)) def open_create_issue_page(self): self.is_element_visible(self.CREATE_BUTTON) self.driver.find_element(*self.CREATE_BUTTON).click() def open_search_issues_page(self): self.is_element_visible(self.ISSUES_BUTTON) self.driver.find_element(*self.ISSUES_BUTTON).click() self.is_element_visible(self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION) self.driver.find_element(*self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION).click() def open_dashboard_page(self): self.is_element_visible(self.DASHBOARD_BUTTON) self.driver.find_element(*self.DASHBOARD_BUTTON).click() self.is_element_visible(self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION) self.driver.find_element(*self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION).click() def quick_search(self, search_text): self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(search_text) self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER) def open_issue(self, issue_id): self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(issue_id) self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER)
[ "from selenium.webdriver.common.by import By\nfrom selenium.webdriver.common.keys import Keys\n\nfrom src.pages.base_page import BasePage\n\n\nclass DashboardPage(BasePage):\n\n DASHBOARD_BUTTON = (By.ID, \"home_link\")\n PROJECTS_BUTTON = (By.ID, \"browse_link\")\n ISSUES_BUTTON = (By.ID, \"find_link\")\n CREATE_BUTTON = (By.ID, \"create_link\")\n QUICK_SEARCH_FIELD = (By.ID, \"quickSearchInput\")\n PROFILE_LOGO = (By.ID, \"header-details-user-fullname\")\n CURRENT_SEARCH_ISSUES_SUBMENU_OPTION = (By.ID, \"jira.top.navigation.bar:issues_drop_current_lnk\")\n SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION = (By.ID, \"issues_new_search_link\")\n VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION = (By.ID, \"dash_lnk_system_lnk\")\n\n def __init__(self, driver):\n self.driver = driver\n\n def at_page(self):\n return (\"System Dashboard - Hillel IT School JIRA\" in self.driver.title) & (self.is_element_visible(self.PROFILE_LOGO))\n\n def open_create_issue_page(self):\n self.is_element_visible(self.CREATE_BUTTON)\n self.driver.find_element(*self.CREATE_BUTTON).click()\n\n def open_search_issues_page(self):\n self.is_element_visible(self.ISSUES_BUTTON)\n self.driver.find_element(*self.ISSUES_BUTTON).click()\n self.is_element_visible(self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION)\n self.driver.find_element(*self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION).click()\n\n def open_dashboard_page(self):\n self.is_element_visible(self.DASHBOARD_BUTTON)\n self.driver.find_element(*self.DASHBOARD_BUTTON).click()\n self.is_element_visible(self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION)\n self.driver.find_element(*self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION).click()\n\n def quick_search(self, search_text):\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(search_text)\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER)\n\n def open_issue(self, issue_id):\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(issue_id)\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER)\n", "from selenium.webdriver.common.by import By\nfrom selenium.webdriver.common.keys import Keys\nfrom src.pages.base_page import BasePage\n\n\nclass DashboardPage(BasePage):\n DASHBOARD_BUTTON = By.ID, 'home_link'\n PROJECTS_BUTTON = By.ID, 'browse_link'\n ISSUES_BUTTON = By.ID, 'find_link'\n CREATE_BUTTON = By.ID, 'create_link'\n QUICK_SEARCH_FIELD = By.ID, 'quickSearchInput'\n PROFILE_LOGO = By.ID, 'header-details-user-fullname'\n CURRENT_SEARCH_ISSUES_SUBMENU_OPTION = (By.ID,\n 'jira.top.navigation.bar:issues_drop_current_lnk')\n SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION = By.ID, 'issues_new_search_link'\n VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION = By.ID, 'dash_lnk_system_lnk'\n\n def __init__(self, driver):\n self.driver = driver\n\n def at_page(self):\n return ('System Dashboard - Hillel IT School JIRA' in self.driver.title\n ) & self.is_element_visible(self.PROFILE_LOGO)\n\n def open_create_issue_page(self):\n self.is_element_visible(self.CREATE_BUTTON)\n self.driver.find_element(*self.CREATE_BUTTON).click()\n\n def open_search_issues_page(self):\n self.is_element_visible(self.ISSUES_BUTTON)\n self.driver.find_element(*self.ISSUES_BUTTON).click()\n self.is_element_visible(self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION)\n self.driver.find_element(*self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION\n ).click()\n\n def open_dashboard_page(self):\n self.is_element_visible(self.DASHBOARD_BUTTON)\n self.driver.find_element(*self.DASHBOARD_BUTTON).click()\n self.is_element_visible(self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION)\n self.driver.find_element(*self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION\n ).click()\n\n def quick_search(self, search_text):\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(\n search_text)\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER\n )\n\n def open_issue(self, issue_id):\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(issue_id)\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER\n )\n", "<import token>\n\n\nclass DashboardPage(BasePage):\n DASHBOARD_BUTTON = By.ID, 'home_link'\n PROJECTS_BUTTON = By.ID, 'browse_link'\n ISSUES_BUTTON = By.ID, 'find_link'\n CREATE_BUTTON = By.ID, 'create_link'\n QUICK_SEARCH_FIELD = By.ID, 'quickSearchInput'\n PROFILE_LOGO = By.ID, 'header-details-user-fullname'\n CURRENT_SEARCH_ISSUES_SUBMENU_OPTION = (By.ID,\n 'jira.top.navigation.bar:issues_drop_current_lnk')\n SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION = By.ID, 'issues_new_search_link'\n VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION = By.ID, 'dash_lnk_system_lnk'\n\n def __init__(self, driver):\n self.driver = driver\n\n def at_page(self):\n return ('System Dashboard - Hillel IT School JIRA' in self.driver.title\n ) & self.is_element_visible(self.PROFILE_LOGO)\n\n def open_create_issue_page(self):\n self.is_element_visible(self.CREATE_BUTTON)\n self.driver.find_element(*self.CREATE_BUTTON).click()\n\n def open_search_issues_page(self):\n self.is_element_visible(self.ISSUES_BUTTON)\n self.driver.find_element(*self.ISSUES_BUTTON).click()\n self.is_element_visible(self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION)\n self.driver.find_element(*self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION\n ).click()\n\n def open_dashboard_page(self):\n self.is_element_visible(self.DASHBOARD_BUTTON)\n self.driver.find_element(*self.DASHBOARD_BUTTON).click()\n self.is_element_visible(self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION)\n self.driver.find_element(*self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION\n ).click()\n\n def quick_search(self, search_text):\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(\n search_text)\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER\n )\n\n def open_issue(self, issue_id):\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(issue_id)\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER\n )\n", "<import token>\n\n\nclass DashboardPage(BasePage):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __init__(self, driver):\n self.driver = driver\n\n def at_page(self):\n return ('System Dashboard - Hillel IT School JIRA' in self.driver.title\n ) & self.is_element_visible(self.PROFILE_LOGO)\n\n def open_create_issue_page(self):\n self.is_element_visible(self.CREATE_BUTTON)\n self.driver.find_element(*self.CREATE_BUTTON).click()\n\n def open_search_issues_page(self):\n self.is_element_visible(self.ISSUES_BUTTON)\n self.driver.find_element(*self.ISSUES_BUTTON).click()\n self.is_element_visible(self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION)\n self.driver.find_element(*self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION\n ).click()\n\n def open_dashboard_page(self):\n self.is_element_visible(self.DASHBOARD_BUTTON)\n self.driver.find_element(*self.DASHBOARD_BUTTON).click()\n self.is_element_visible(self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION)\n self.driver.find_element(*self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION\n ).click()\n\n def quick_search(self, search_text):\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(\n search_text)\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER\n )\n\n def open_issue(self, issue_id):\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(issue_id)\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER\n )\n", "<import token>\n\n\nclass DashboardPage(BasePage):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n def at_page(self):\n return ('System Dashboard - Hillel IT School JIRA' in self.driver.title\n ) & self.is_element_visible(self.PROFILE_LOGO)\n\n def open_create_issue_page(self):\n self.is_element_visible(self.CREATE_BUTTON)\n self.driver.find_element(*self.CREATE_BUTTON).click()\n\n def open_search_issues_page(self):\n self.is_element_visible(self.ISSUES_BUTTON)\n self.driver.find_element(*self.ISSUES_BUTTON).click()\n self.is_element_visible(self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION)\n self.driver.find_element(*self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION\n ).click()\n\n def open_dashboard_page(self):\n self.is_element_visible(self.DASHBOARD_BUTTON)\n self.driver.find_element(*self.DASHBOARD_BUTTON).click()\n self.is_element_visible(self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION)\n self.driver.find_element(*self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION\n ).click()\n\n def quick_search(self, search_text):\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(\n search_text)\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER\n )\n\n def open_issue(self, issue_id):\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(issue_id)\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER\n )\n", "<import token>\n\n\nclass DashboardPage(BasePage):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n def at_page(self):\n return ('System Dashboard - Hillel IT School JIRA' in self.driver.title\n ) & self.is_element_visible(self.PROFILE_LOGO)\n <function token>\n\n def open_search_issues_page(self):\n self.is_element_visible(self.ISSUES_BUTTON)\n self.driver.find_element(*self.ISSUES_BUTTON).click()\n self.is_element_visible(self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION)\n self.driver.find_element(*self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION\n ).click()\n\n def open_dashboard_page(self):\n self.is_element_visible(self.DASHBOARD_BUTTON)\n self.driver.find_element(*self.DASHBOARD_BUTTON).click()\n self.is_element_visible(self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION)\n self.driver.find_element(*self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION\n ).click()\n\n def quick_search(self, search_text):\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(\n search_text)\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER\n )\n\n def open_issue(self, issue_id):\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(issue_id)\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER\n )\n", "<import token>\n\n\nclass DashboardPage(BasePage):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n def at_page(self):\n return ('System Dashboard - Hillel IT School JIRA' in self.driver.title\n ) & self.is_element_visible(self.PROFILE_LOGO)\n <function token>\n\n def open_search_issues_page(self):\n self.is_element_visible(self.ISSUES_BUTTON)\n self.driver.find_element(*self.ISSUES_BUTTON).click()\n self.is_element_visible(self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION)\n self.driver.find_element(*self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION\n ).click()\n\n def open_dashboard_page(self):\n self.is_element_visible(self.DASHBOARD_BUTTON)\n self.driver.find_element(*self.DASHBOARD_BUTTON).click()\n self.is_element_visible(self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION)\n self.driver.find_element(*self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION\n ).click()\n\n def quick_search(self, search_text):\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(\n search_text)\n self.driver.find_element(*self.QUICK_SEARCH_FIELD).send_keys(Keys.ENTER\n )\n <function token>\n", "<import token>\n\n\nclass DashboardPage(BasePage):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n def at_page(self):\n return ('System Dashboard - Hillel IT School JIRA' in self.driver.title\n ) & self.is_element_visible(self.PROFILE_LOGO)\n <function token>\n\n def open_search_issues_page(self):\n self.is_element_visible(self.ISSUES_BUTTON)\n self.driver.find_element(*self.ISSUES_BUTTON).click()\n self.is_element_visible(self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION)\n self.driver.find_element(*self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION\n ).click()\n\n def open_dashboard_page(self):\n self.is_element_visible(self.DASHBOARD_BUTTON)\n self.driver.find_element(*self.DASHBOARD_BUTTON).click()\n self.is_element_visible(self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION)\n self.driver.find_element(*self.VIEW_SYSTEM_DASHBOARD_SUBMENU_OPTION\n ).click()\n <function token>\n <function token>\n", "<import token>\n\n\nclass DashboardPage(BasePage):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n def at_page(self):\n return ('System Dashboard - Hillel IT School JIRA' in self.driver.title\n ) & self.is_element_visible(self.PROFILE_LOGO)\n <function token>\n\n def open_search_issues_page(self):\n self.is_element_visible(self.ISSUES_BUTTON)\n self.driver.find_element(*self.ISSUES_BUTTON).click()\n self.is_element_visible(self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION)\n self.driver.find_element(*self.SEARCH_FOR_ISSUES_ISSUES_SUBMENU_OPTION\n ).click()\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass DashboardPage(BasePage):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n def at_page(self):\n return ('System Dashboard - Hillel IT School JIRA' in self.driver.title\n ) & self.is_element_visible(self.PROFILE_LOGO)\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n\n\nclass DashboardPage(BasePage):\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,540
322389e566466f0455eefe0d91fee05457fe987a
class Scheduler: currently_loaded_ids = [] minutes = {} def __init__(self, interval=15): self.interval = interval for i in range(self.interval): self.minutes[i] = [] def diff(self, first, second): second = set(second) return [item for item in first if item not in second] def load_ids(self, account_ids_list, minute): ''' Loads a list of new ids ''' self.currently_loaded_ids.extend(account_ids_list) account_ids_list_index = 0 for i in account_ids_list: minute_in_interval = (account_ids_list_index + minute) % self.interval self.minutes[minute_in_interval].append(i) account_ids_list_index += 1 def unload_ids(self, account_ids_list): ''' Unload removed ids from de system ''' for i in self.minutes: for j in account_ids_list: if j in self.minutes[i]: self.currently_loaded_ids.remove(j) self.minutes[i].remove(j) def get_account_ids_to_run(self, account_ids_list, minute): ''' Obtain the ids to run in a given minute ''' # Check for new ids in the given list minute = minute % self.interval new_ids = self.diff(account_ids_list, self.currently_loaded_ids) if( len(new_ids) > 0 ): self.load_ids(new_ids, minute) # Check for removed ids in the given list removed_ids = self.diff(self.currently_loaded_ids, account_ids_list) if( len(removed_ids) > 0): self.unload_ids(removed_ids) account_ids_to_return = self.minutes[minute] return account_ids_to_return # A little test if __name__ == "__main__": dummy_ids = [ 10001, 10002, 10003, 10004, 10005, 10006, 10007, 10008, 10009, 10010, 10011, 10012, 10013, 10014, 10015, 10016, 10017, ] s = Scheduler() for minute in range(120): print ( "Minute: %d" % (minute) ) # Loads more ids if minute == 25: more_ids = [ 9999, 7777, 8888, ] dummy_ids.extend(more_ids) # Unload some ids if minute == 59: dummy_ids = dummy_ids[:3] print (s.get_account_ids_to_run(dummy_ids, minute ))
[ "class Scheduler:\n currently_loaded_ids = []\n minutes = {}\n\n def __init__(self, interval=15):\n self.interval = interval\n for i in range(self.interval):\n self.minutes[i] = []\n\n def diff(self, first, second):\n second = set(second)\n return [item for item in first if item not in second]\n\n def load_ids(self, account_ids_list, minute):\n ''' Loads a list of new ids '''\n self.currently_loaded_ids.extend(account_ids_list)\n account_ids_list_index = 0\n for i in account_ids_list:\n minute_in_interval = (account_ids_list_index + minute) % self.interval\n self.minutes[minute_in_interval].append(i)\n account_ids_list_index += 1\n\n def unload_ids(self, account_ids_list):\n ''' Unload removed ids from de system '''\n for i in self.minutes:\n for j in account_ids_list:\n if j in self.minutes[i]:\n self.currently_loaded_ids.remove(j)\n self.minutes[i].remove(j)\n\n def get_account_ids_to_run(self, account_ids_list, minute):\n ''' Obtain the ids to run in a given minute '''\n\n # Check for new ids in the given list\n minute = minute % self.interval\n new_ids = self.diff(account_ids_list, self.currently_loaded_ids)\n if( len(new_ids) > 0 ):\n self.load_ids(new_ids, minute)\n\n # Check for removed ids in the given list\n removed_ids = self.diff(self.currently_loaded_ids, account_ids_list)\n if( len(removed_ids) > 0):\n self.unload_ids(removed_ids)\n\n account_ids_to_return = self.minutes[minute]\n return account_ids_to_return\n\n# A little test\nif __name__ == \"__main__\":\n dummy_ids = [\n 10001,\n 10002,\n 10003,\n 10004,\n 10005,\n 10006,\n 10007,\n 10008,\n 10009,\n 10010,\n 10011,\n 10012,\n 10013,\n 10014,\n 10015,\n 10016,\n 10017,\n ]\n\n s = Scheduler()\n for minute in range(120):\n print ( \"Minute: %d\" % (minute) )\n\n # Loads more ids\n if minute == 25:\n more_ids = [\n 9999,\n 7777,\n 8888,\n ]\n dummy_ids.extend(more_ids)\n\n # Unload some ids\n if minute == 59:\n dummy_ids = dummy_ids[:3]\n\n print (s.get_account_ids_to_run(dummy_ids, minute ))\n", "class Scheduler:\n currently_loaded_ids = []\n minutes = {}\n\n def __init__(self, interval=15):\n self.interval = interval\n for i in range(self.interval):\n self.minutes[i] = []\n\n def diff(self, first, second):\n second = set(second)\n return [item for item in first if item not in second]\n\n def load_ids(self, account_ids_list, minute):\n \"\"\" Loads a list of new ids \"\"\"\n self.currently_loaded_ids.extend(account_ids_list)\n account_ids_list_index = 0\n for i in account_ids_list:\n minute_in_interval = (account_ids_list_index + minute\n ) % self.interval\n self.minutes[minute_in_interval].append(i)\n account_ids_list_index += 1\n\n def unload_ids(self, account_ids_list):\n \"\"\" Unload removed ids from de system \"\"\"\n for i in self.minutes:\n for j in account_ids_list:\n if j in self.minutes[i]:\n self.currently_loaded_ids.remove(j)\n self.minutes[i].remove(j)\n\n def get_account_ids_to_run(self, account_ids_list, minute):\n \"\"\" Obtain the ids to run in a given minute \"\"\"\n minute = minute % self.interval\n new_ids = self.diff(account_ids_list, self.currently_loaded_ids)\n if len(new_ids) > 0:\n self.load_ids(new_ids, minute)\n removed_ids = self.diff(self.currently_loaded_ids, account_ids_list)\n if len(removed_ids) > 0:\n self.unload_ids(removed_ids)\n account_ids_to_return = self.minutes[minute]\n return account_ids_to_return\n\n\nif __name__ == '__main__':\n dummy_ids = [10001, 10002, 10003, 10004, 10005, 10006, 10007, 10008, \n 10009, 10010, 10011, 10012, 10013, 10014, 10015, 10016, 10017]\n s = Scheduler()\n for minute in range(120):\n print('Minute: %d' % minute)\n if minute == 25:\n more_ids = [9999, 7777, 8888]\n dummy_ids.extend(more_ids)\n if minute == 59:\n dummy_ids = dummy_ids[:3]\n print(s.get_account_ids_to_run(dummy_ids, minute))\n", "class Scheduler:\n currently_loaded_ids = []\n minutes = {}\n\n def __init__(self, interval=15):\n self.interval = interval\n for i in range(self.interval):\n self.minutes[i] = []\n\n def diff(self, first, second):\n second = set(second)\n return [item for item in first if item not in second]\n\n def load_ids(self, account_ids_list, minute):\n \"\"\" Loads a list of new ids \"\"\"\n self.currently_loaded_ids.extend(account_ids_list)\n account_ids_list_index = 0\n for i in account_ids_list:\n minute_in_interval = (account_ids_list_index + minute\n ) % self.interval\n self.minutes[minute_in_interval].append(i)\n account_ids_list_index += 1\n\n def unload_ids(self, account_ids_list):\n \"\"\" Unload removed ids from de system \"\"\"\n for i in self.minutes:\n for j in account_ids_list:\n if j in self.minutes[i]:\n self.currently_loaded_ids.remove(j)\n self.minutes[i].remove(j)\n\n def get_account_ids_to_run(self, account_ids_list, minute):\n \"\"\" Obtain the ids to run in a given minute \"\"\"\n minute = minute % self.interval\n new_ids = self.diff(account_ids_list, self.currently_loaded_ids)\n if len(new_ids) > 0:\n self.load_ids(new_ids, minute)\n removed_ids = self.diff(self.currently_loaded_ids, account_ids_list)\n if len(removed_ids) > 0:\n self.unload_ids(removed_ids)\n account_ids_to_return = self.minutes[minute]\n return account_ids_to_return\n\n\n<code token>\n", "class Scheduler:\n <assignment token>\n <assignment token>\n\n def __init__(self, interval=15):\n self.interval = interval\n for i in range(self.interval):\n self.minutes[i] = []\n\n def diff(self, first, second):\n second = set(second)\n return [item for item in first if item not in second]\n\n def load_ids(self, account_ids_list, minute):\n \"\"\" Loads a list of new ids \"\"\"\n self.currently_loaded_ids.extend(account_ids_list)\n account_ids_list_index = 0\n for i in account_ids_list:\n minute_in_interval = (account_ids_list_index + minute\n ) % self.interval\n self.minutes[minute_in_interval].append(i)\n account_ids_list_index += 1\n\n def unload_ids(self, account_ids_list):\n \"\"\" Unload removed ids from de system \"\"\"\n for i in self.minutes:\n for j in account_ids_list:\n if j in self.minutes[i]:\n self.currently_loaded_ids.remove(j)\n self.minutes[i].remove(j)\n\n def get_account_ids_to_run(self, account_ids_list, minute):\n \"\"\" Obtain the ids to run in a given minute \"\"\"\n minute = minute % self.interval\n new_ids = self.diff(account_ids_list, self.currently_loaded_ids)\n if len(new_ids) > 0:\n self.load_ids(new_ids, minute)\n removed_ids = self.diff(self.currently_loaded_ids, account_ids_list)\n if len(removed_ids) > 0:\n self.unload_ids(removed_ids)\n account_ids_to_return = self.minutes[minute]\n return account_ids_to_return\n\n\n<code token>\n", "class Scheduler:\n <assignment token>\n <assignment token>\n\n def __init__(self, interval=15):\n self.interval = interval\n for i in range(self.interval):\n self.minutes[i] = []\n\n def diff(self, first, second):\n second = set(second)\n return [item for item in first if item not in second]\n\n def load_ids(self, account_ids_list, minute):\n \"\"\" Loads a list of new ids \"\"\"\n self.currently_loaded_ids.extend(account_ids_list)\n account_ids_list_index = 0\n for i in account_ids_list:\n minute_in_interval = (account_ids_list_index + minute\n ) % self.interval\n self.minutes[minute_in_interval].append(i)\n account_ids_list_index += 1\n <function token>\n\n def get_account_ids_to_run(self, account_ids_list, minute):\n \"\"\" Obtain the ids to run in a given minute \"\"\"\n minute = minute % self.interval\n new_ids = self.diff(account_ids_list, self.currently_loaded_ids)\n if len(new_ids) > 0:\n self.load_ids(new_ids, minute)\n removed_ids = self.diff(self.currently_loaded_ids, account_ids_list)\n if len(removed_ids) > 0:\n self.unload_ids(removed_ids)\n account_ids_to_return = self.minutes[minute]\n return account_ids_to_return\n\n\n<code token>\n", "class Scheduler:\n <assignment token>\n <assignment token>\n\n def __init__(self, interval=15):\n self.interval = interval\n for i in range(self.interval):\n self.minutes[i] = []\n <function token>\n\n def load_ids(self, account_ids_list, minute):\n \"\"\" Loads a list of new ids \"\"\"\n self.currently_loaded_ids.extend(account_ids_list)\n account_ids_list_index = 0\n for i in account_ids_list:\n minute_in_interval = (account_ids_list_index + minute\n ) % self.interval\n self.minutes[minute_in_interval].append(i)\n account_ids_list_index += 1\n <function token>\n\n def get_account_ids_to_run(self, account_ids_list, minute):\n \"\"\" Obtain the ids to run in a given minute \"\"\"\n minute = minute % self.interval\n new_ids = self.diff(account_ids_list, self.currently_loaded_ids)\n if len(new_ids) > 0:\n self.load_ids(new_ids, minute)\n removed_ids = self.diff(self.currently_loaded_ids, account_ids_list)\n if len(removed_ids) > 0:\n self.unload_ids(removed_ids)\n account_ids_to_return = self.minutes[minute]\n return account_ids_to_return\n\n\n<code token>\n", "class Scheduler:\n <assignment token>\n <assignment token>\n\n def __init__(self, interval=15):\n self.interval = interval\n for i in range(self.interval):\n self.minutes[i] = []\n <function token>\n <function token>\n <function token>\n\n def get_account_ids_to_run(self, account_ids_list, minute):\n \"\"\" Obtain the ids to run in a given minute \"\"\"\n minute = minute % self.interval\n new_ids = self.diff(account_ids_list, self.currently_loaded_ids)\n if len(new_ids) > 0:\n self.load_ids(new_ids, minute)\n removed_ids = self.diff(self.currently_loaded_ids, account_ids_list)\n if len(removed_ids) > 0:\n self.unload_ids(removed_ids)\n account_ids_to_return = self.minutes[minute]\n return account_ids_to_return\n\n\n<code token>\n", "class Scheduler:\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def get_account_ids_to_run(self, account_ids_list, minute):\n \"\"\" Obtain the ids to run in a given minute \"\"\"\n minute = minute % self.interval\n new_ids = self.diff(account_ids_list, self.currently_loaded_ids)\n if len(new_ids) > 0:\n self.load_ids(new_ids, minute)\n removed_ids = self.diff(self.currently_loaded_ids, account_ids_list)\n if len(removed_ids) > 0:\n self.unload_ids(removed_ids)\n account_ids_to_return = self.minutes[minute]\n return account_ids_to_return\n\n\n<code token>\n", "class Scheduler:\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<class token>\n<code token>\n" ]
false
99,541
9d262d1bcda896119fdff13da27e0eef4561e50e
import inquirer from inquirer.themes import GreenPassion q = [ inquirer.Text('name', message='Whats your name?', default='No one'), inquirer.List('jon', message='Does Jon Snow know?', choices=['yes', 'no'], default='no'), inquirer.Checkbox('kill_list', message='Who you want to kill?', choices=['Cersei', 'Littlefinger', 'The Mountain'] ) ] inquirer.prompt(q, theme=GreenPassion())
[ "import inquirer\nfrom inquirer.themes import GreenPassion\n\nq = [\n inquirer.Text('name',\n message='Whats your name?',\n default='No one'),\n inquirer.List('jon',\n message='Does Jon Snow know?',\n choices=['yes', 'no'],\n default='no'),\n inquirer.Checkbox('kill_list',\n message='Who you want to kill?',\n choices=['Cersei', 'Littlefinger', 'The Mountain']\n )\n]\n\ninquirer.prompt(q, theme=GreenPassion())\n", "import inquirer\nfrom inquirer.themes import GreenPassion\nq = [inquirer.Text('name', message='Whats your name?', default='No one'),\n inquirer.List('jon', message='Does Jon Snow know?', choices=['yes',\n 'no'], default='no'), inquirer.Checkbox('kill_list', message=\n 'Who you want to kill?', choices=['Cersei', 'Littlefinger',\n 'The Mountain'])]\ninquirer.prompt(q, theme=GreenPassion())\n", "<import token>\nq = [inquirer.Text('name', message='Whats your name?', default='No one'),\n inquirer.List('jon', message='Does Jon Snow know?', choices=['yes',\n 'no'], default='no'), inquirer.Checkbox('kill_list', message=\n 'Who you want to kill?', choices=['Cersei', 'Littlefinger',\n 'The Mountain'])]\ninquirer.prompt(q, theme=GreenPassion())\n", "<import token>\n<assignment token>\ninquirer.prompt(q, theme=GreenPassion())\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,542
84ca183127159308d65d3c37798d3a759d4c6f82
from multiprocessing import Queue,Process import time,random list1 = ["java","Python","JavaScript"] def write(queue): for value in list1: print(f"正在向队列中添加数据-->{value}") queue.put_nowait(value) time.sleep(random.random()) def read(queue): while True: if not queue.empty(): value = queue.get_nowait() print(f"从队列中读取的数据为-->{value}") time.sleep(random.random()) else: break queue = Queue() write_data = Process(target=write,args = (queue,)) read_data = Process(target=read,args=(queue,)) write_data.start() write_data.join() read_data.start() read_data.join() print('ok')
[ "from multiprocessing import Queue,Process\nimport time,random\nlist1 = [\"java\",\"Python\",\"JavaScript\"]\n\ndef write(queue):\n for value in list1:\n print(f\"正在向队列中添加数据-->{value}\")\n queue.put_nowait(value)\n time.sleep(random.random())\n\ndef read(queue):\n while True:\n if not queue.empty():\n value = queue.get_nowait()\n print(f\"从队列中读取的数据为-->{value}\")\n time.sleep(random.random())\n else:\n break\n\nqueue = Queue()\nwrite_data = Process(target=write,args = (queue,))\nread_data = Process(target=read,args=(queue,))\n\nwrite_data.start()\nwrite_data.join()\nread_data.start()\nread_data.join()\nprint('ok')\n\n", "from multiprocessing import Queue, Process\nimport time, random\nlist1 = ['java', 'Python', 'JavaScript']\n\n\ndef write(queue):\n for value in list1:\n print(f'正在向队列中添加数据-->{value}')\n queue.put_nowait(value)\n time.sleep(random.random())\n\n\ndef read(queue):\n while True:\n if not queue.empty():\n value = queue.get_nowait()\n print(f'从队列中读取的数据为-->{value}')\n time.sleep(random.random())\n else:\n break\n\n\nqueue = Queue()\nwrite_data = Process(target=write, args=(queue,))\nread_data = Process(target=read, args=(queue,))\nwrite_data.start()\nwrite_data.join()\nread_data.start()\nread_data.join()\nprint('ok')\n", "<import token>\nlist1 = ['java', 'Python', 'JavaScript']\n\n\ndef write(queue):\n for value in list1:\n print(f'正在向队列中添加数据-->{value}')\n queue.put_nowait(value)\n time.sleep(random.random())\n\n\ndef read(queue):\n while True:\n if not queue.empty():\n value = queue.get_nowait()\n print(f'从队列中读取的数据为-->{value}')\n time.sleep(random.random())\n else:\n break\n\n\nqueue = Queue()\nwrite_data = Process(target=write, args=(queue,))\nread_data = Process(target=read, args=(queue,))\nwrite_data.start()\nwrite_data.join()\nread_data.start()\nread_data.join()\nprint('ok')\n", "<import token>\n<assignment token>\n\n\ndef write(queue):\n for value in list1:\n print(f'正在向队列中添加数据-->{value}')\n queue.put_nowait(value)\n time.sleep(random.random())\n\n\ndef read(queue):\n while True:\n if not queue.empty():\n value = queue.get_nowait()\n print(f'从队列中读取的数据为-->{value}')\n time.sleep(random.random())\n else:\n break\n\n\n<assignment token>\nwrite_data.start()\nwrite_data.join()\nread_data.start()\nread_data.join()\nprint('ok')\n", "<import token>\n<assignment token>\n\n\ndef write(queue):\n for value in list1:\n print(f'正在向队列中添加数据-->{value}')\n queue.put_nowait(value)\n time.sleep(random.random())\n\n\ndef read(queue):\n while True:\n if not queue.empty():\n value = queue.get_nowait()\n print(f'从队列中读取的数据为-->{value}')\n time.sleep(random.random())\n else:\n break\n\n\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n\n\ndef write(queue):\n for value in list1:\n print(f'正在向队列中添加数据-->{value}')\n queue.put_nowait(value)\n time.sleep(random.random())\n\n\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<assignment token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
99,543
c7a72bb88345558f06bce2b51a037ce3bc85cfb6
#!/usr/bin/env python3 # Enter your code here. Read input from STDIN. Print output to STDOUT def string_manipulate(string): even_string='' odd_string='' for idx, val in enumerate(string): if idx % 2 == 0: even_string+=val else: odd_string+=val return even_string+" "+odd_string if __name__ == '__main__': T = int(input().strip()) for t in range(T): string = str(input().strip()) print(string_manipulate(string))
[ "#!/usr/bin/env python3\n\n# Enter your code here. Read input from STDIN. Print output to STDOUT\n\n\ndef string_manipulate(string):\n even_string=''\n odd_string=''\n for idx, val in enumerate(string):\n if idx % 2 == 0:\n even_string+=val\n else:\n odd_string+=val\n \n return even_string+\" \"+odd_string\n \n \nif __name__ == '__main__':\n T = int(input().strip())\n for t in range(T):\n string = str(input().strip()) \n print(string_manipulate(string))\n \n\n", "def string_manipulate(string):\n even_string = ''\n odd_string = ''\n for idx, val in enumerate(string):\n if idx % 2 == 0:\n even_string += val\n else:\n odd_string += val\n return even_string + ' ' + odd_string\n\n\nif __name__ == '__main__':\n T = int(input().strip())\n for t in range(T):\n string = str(input().strip())\n print(string_manipulate(string))\n", "def string_manipulate(string):\n even_string = ''\n odd_string = ''\n for idx, val in enumerate(string):\n if idx % 2 == 0:\n even_string += val\n else:\n odd_string += val\n return even_string + ' ' + odd_string\n\n\n<code token>\n", "<function token>\n<code token>\n" ]
false
99,544
7b45d0f2de38afed5c1ab2ef58644ec9494eeede
from django.db import models class Assessment(models.Model): """ Assessment Model """ name = models.CharField(max_length=400) description = models.TextField(null=True, blank=True) user = models.ForeignKey('accounts.UserProfile', null=True, blank=True, on_delete=models.SET_NULL) def __str__(self): return self.name def get_name(self): return self.name class Question(models.Model): """ Question Model """ assessment = models.ForeignKey('Assessment', null=True, blank=True, on_delete=models.SET_NULL) question_number = models.CharField(max_length=2, null=True, blank=True) question = models.TextField() image = models.ImageField(null=True, blank=True) image_url = models.URLField(max_length=1024, null=True, blank=True) def __str__(self): return self.question
[ "from django.db import models\n\n\nclass Assessment(models.Model):\n \"\"\"\n Assessment Model\n \"\"\"\n name = models.CharField(max_length=400)\n description = models.TextField(null=True, blank=True)\n user = models.ForeignKey('accounts.UserProfile', null=True, blank=True,\n on_delete=models.SET_NULL)\n\n def __str__(self):\n return self.name\n\n def get_name(self):\n return self.name\n\n\nclass Question(models.Model):\n \"\"\"\n Question Model\n \"\"\"\n assessment = models.ForeignKey('Assessment', null=True, blank=True,\n on_delete=models.SET_NULL)\n question_number = models.CharField(max_length=2, null=True, blank=True)\n question = models.TextField()\n image = models.ImageField(null=True, blank=True)\n image_url = models.URLField(max_length=1024, null=True, blank=True)\n\n def __str__(self):\n return self.question\n", "from django.db import models\n\n\nclass Assessment(models.Model):\n \"\"\"\n Assessment Model\n \"\"\"\n name = models.CharField(max_length=400)\n description = models.TextField(null=True, blank=True)\n user = models.ForeignKey('accounts.UserProfile', null=True, blank=True,\n on_delete=models.SET_NULL)\n\n def __str__(self):\n return self.name\n\n def get_name(self):\n return self.name\n\n\nclass Question(models.Model):\n \"\"\"\n Question Model\n \"\"\"\n assessment = models.ForeignKey('Assessment', null=True, blank=True,\n on_delete=models.SET_NULL)\n question_number = models.CharField(max_length=2, null=True, blank=True)\n question = models.TextField()\n image = models.ImageField(null=True, blank=True)\n image_url = models.URLField(max_length=1024, null=True, blank=True)\n\n def __str__(self):\n return self.question\n", "<import token>\n\n\nclass Assessment(models.Model):\n \"\"\"\n Assessment Model\n \"\"\"\n name = models.CharField(max_length=400)\n description = models.TextField(null=True, blank=True)\n user = models.ForeignKey('accounts.UserProfile', null=True, blank=True,\n on_delete=models.SET_NULL)\n\n def __str__(self):\n return self.name\n\n def get_name(self):\n return self.name\n\n\nclass Question(models.Model):\n \"\"\"\n Question Model\n \"\"\"\n assessment = models.ForeignKey('Assessment', null=True, blank=True,\n on_delete=models.SET_NULL)\n question_number = models.CharField(max_length=2, null=True, blank=True)\n question = models.TextField()\n image = models.ImageField(null=True, blank=True)\n image_url = models.URLField(max_length=1024, null=True, blank=True)\n\n def __str__(self):\n return self.question\n", "<import token>\n\n\nclass Assessment(models.Model):\n <docstring token>\n name = models.CharField(max_length=400)\n description = models.TextField(null=True, blank=True)\n user = models.ForeignKey('accounts.UserProfile', null=True, blank=True,\n on_delete=models.SET_NULL)\n\n def __str__(self):\n return self.name\n\n def get_name(self):\n return self.name\n\n\nclass Question(models.Model):\n \"\"\"\n Question Model\n \"\"\"\n assessment = models.ForeignKey('Assessment', null=True, blank=True,\n on_delete=models.SET_NULL)\n question_number = models.CharField(max_length=2, null=True, blank=True)\n question = models.TextField()\n image = models.ImageField(null=True, blank=True)\n image_url = models.URLField(max_length=1024, null=True, blank=True)\n\n def __str__(self):\n return self.question\n", "<import token>\n\n\nclass Assessment(models.Model):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.name\n\n def get_name(self):\n return self.name\n\n\nclass Question(models.Model):\n \"\"\"\n Question Model\n \"\"\"\n assessment = models.ForeignKey('Assessment', null=True, blank=True,\n on_delete=models.SET_NULL)\n question_number = models.CharField(max_length=2, null=True, blank=True)\n question = models.TextField()\n image = models.ImageField(null=True, blank=True)\n image_url = models.URLField(max_length=1024, null=True, blank=True)\n\n def __str__(self):\n return self.question\n", "<import token>\n\n\nclass Assessment(models.Model):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n\n def get_name(self):\n return self.name\n\n\nclass Question(models.Model):\n \"\"\"\n Question Model\n \"\"\"\n assessment = models.ForeignKey('Assessment', null=True, blank=True,\n on_delete=models.SET_NULL)\n question_number = models.CharField(max_length=2, null=True, blank=True)\n question = models.TextField()\n image = models.ImageField(null=True, blank=True)\n image_url = models.URLField(max_length=1024, null=True, blank=True)\n\n def __str__(self):\n return self.question\n", "<import token>\n\n\nclass Assessment(models.Model):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n <function token>\n\n\nclass Question(models.Model):\n \"\"\"\n Question Model\n \"\"\"\n assessment = models.ForeignKey('Assessment', null=True, blank=True,\n on_delete=models.SET_NULL)\n question_number = models.CharField(max_length=2, null=True, blank=True)\n question = models.TextField()\n image = models.ImageField(null=True, blank=True)\n image_url = models.URLField(max_length=1024, null=True, blank=True)\n\n def __str__(self):\n return self.question\n", "<import token>\n<class token>\n\n\nclass Question(models.Model):\n \"\"\"\n Question Model\n \"\"\"\n assessment = models.ForeignKey('Assessment', null=True, blank=True,\n on_delete=models.SET_NULL)\n question_number = models.CharField(max_length=2, null=True, blank=True)\n question = models.TextField()\n image = models.ImageField(null=True, blank=True)\n image_url = models.URLField(max_length=1024, null=True, blank=True)\n\n def __str__(self):\n return self.question\n", "<import token>\n<class token>\n\n\nclass Question(models.Model):\n <docstring token>\n assessment = models.ForeignKey('Assessment', null=True, blank=True,\n on_delete=models.SET_NULL)\n question_number = models.CharField(max_length=2, null=True, blank=True)\n question = models.TextField()\n image = models.ImageField(null=True, blank=True)\n image_url = models.URLField(max_length=1024, null=True, blank=True)\n\n def __str__(self):\n return self.question\n", "<import token>\n<class token>\n\n\nclass Question(models.Model):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n\n def __str__(self):\n return self.question\n", "<import token>\n<class token>\n\n\nclass Question(models.Model):\n <docstring token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <assignment token>\n <function token>\n", "<import token>\n<class token>\n<class token>\n" ]
false
99,545
4f2f962919e36962ec2bbb7d16f8569d201a4188
# coding=utf-8 import xml import xml.dom.minidom import inspect from xml.dom.minidom import parse file=open("test.xast") xml=parse(file) print(xml.toxml()) print(dir(xml)) # print inspect # print dir(inspect)
[ "# coding=utf-8\nimport xml\nimport xml.dom.minidom\nimport inspect\nfrom xml.dom.minidom import parse\nfile=open(\"test.xast\")\nxml=parse(file)\nprint(xml.toxml())\nprint(dir(xml))\n# print inspect\n# print dir(inspect)", "import xml\nimport xml.dom.minidom\nimport inspect\nfrom xml.dom.minidom import parse\nfile = open('test.xast')\nxml = parse(file)\nprint(xml.toxml())\nprint(dir(xml))\n", "<import token>\nfile = open('test.xast')\nxml = parse(file)\nprint(xml.toxml())\nprint(dir(xml))\n", "<import token>\n<assignment token>\nprint(xml.toxml())\nprint(dir(xml))\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,546
f039d4068dd6896c41043f2983b3966bcf903e83
class Galaxia: _g_id=100000 def __init__(self): self._id = Galaxia._g_id self.planetas =[] Galaxia._g_id += 1 def modificar_galaxia(self, planeta): if planeta not in self.planetas: print("Ese planeta no se encuentra en esta galaxia") else: i = int(input("¿Que atributo deseas modificar? Introduzca el numero asociado: ")) print("0 : Tasa de minerales") print("1 : Tasa de deuterio") print("2 : Cantidad de soldados") print("3 : Cantidad de magos") print("4 : Crear planeta") print("5 : Eliminar planeta") if i == 0: n = int(input("Introduzca el nuevo valor para la tasa de minerales: ")) while n < 1 or n > 10: print("Ese valor no es valido.") n = int(input("Introduzca el nuevo valor para la tasa de minerales: "))
[ "class Galaxia:\r\n _g_id=100000\r\n def __init__(self):\r\n self._id = Galaxia._g_id\r\n self.planetas =[]\r\n Galaxia._g_id += 1\r\n\r\n def modificar_galaxia(self, planeta):\r\n if planeta not in self.planetas:\r\n print(\"Ese planeta no se encuentra en esta galaxia\")\r\n else:\r\n i = int(input(\"¿Que atributo deseas modificar? Introduzca el numero asociado: \"))\r\n print(\"0 : Tasa de minerales\")\r\n print(\"1 : Tasa de deuterio\")\r\n print(\"2 : Cantidad de soldados\")\r\n print(\"3 : Cantidad de magos\")\r\n print(\"4 : Crear planeta\")\r\n print(\"5 : Eliminar planeta\")\r\n\r\n if i == 0:\r\n n = int(input(\"Introduzca el nuevo valor para la tasa de minerales: \"))\r\n while n < 1 or n > 10:\r\n print(\"Ese valor no es valido.\")\r\n n = int(input(\"Introduzca el nuevo valor para la tasa de minerales: \"))\r\n\r\n\r\n\r\n\r\n", "class Galaxia:\n _g_id = 100000\n\n def __init__(self):\n self._id = Galaxia._g_id\n self.planetas = []\n Galaxia._g_id += 1\n\n def modificar_galaxia(self, planeta):\n if planeta not in self.planetas:\n print('Ese planeta no se encuentra en esta galaxia')\n else:\n i = int(input(\n '¿Que atributo deseas modificar? Introduzca el numero asociado: '\n ))\n print('0 : Tasa de minerales')\n print('1 : Tasa de deuterio')\n print('2 : Cantidad de soldados')\n print('3 : Cantidad de magos')\n print('4 : Crear planeta')\n print('5 : Eliminar planeta')\n if i == 0:\n n = int(input(\n 'Introduzca el nuevo valor para la tasa de minerales: '))\n while n < 1 or n > 10:\n print('Ese valor no es valido.')\n n = int(input(\n 'Introduzca el nuevo valor para la tasa de minerales: '\n ))\n", "class Galaxia:\n <assignment token>\n\n def __init__(self):\n self._id = Galaxia._g_id\n self.planetas = []\n Galaxia._g_id += 1\n\n def modificar_galaxia(self, planeta):\n if planeta not in self.planetas:\n print('Ese planeta no se encuentra en esta galaxia')\n else:\n i = int(input(\n '¿Que atributo deseas modificar? Introduzca el numero asociado: '\n ))\n print('0 : Tasa de minerales')\n print('1 : Tasa de deuterio')\n print('2 : Cantidad de soldados')\n print('3 : Cantidad de magos')\n print('4 : Crear planeta')\n print('5 : Eliminar planeta')\n if i == 0:\n n = int(input(\n 'Introduzca el nuevo valor para la tasa de minerales: '))\n while n < 1 or n > 10:\n print('Ese valor no es valido.')\n n = int(input(\n 'Introduzca el nuevo valor para la tasa de minerales: '\n ))\n", "class Galaxia:\n <assignment token>\n\n def __init__(self):\n self._id = Galaxia._g_id\n self.planetas = []\n Galaxia._g_id += 1\n <function token>\n", "class Galaxia:\n <assignment token>\n <function token>\n <function token>\n", "<class token>\n" ]
false
99,547
e716f04f8f53972f78dc6bc8cec55a3f97cee441
# Copyright (c) Dec 22, 2014 CareerMonk Publications and others. # E-Mail : [email protected] # Creation Date : 2014-01-10 06:15:46 # Last modification : 2008-10-31 # by : Narasimha Karumanchi # Book Title : Data Structures And Algorithms Made In Java # Warranty : This software is provided "as is" without any # warranty; without even the implied warranty of # merchantability or fitness for a particular purpose. class Node: def __init__(self, data): self.set_data(data) self.set_next(None) self.set_rand(None) # method for setting the data field of the node def set_data(self, data): self.data = data # method for getting the data field of the node def get_data(self): return self.data # method for setting the next field of the node def set_next(self, nextV): self.next = nextV # method for setting the next field of the node def set_rand(self, rand): self.rand = rand # method for getting the next field of the node def get_rand(self): return self.rand # method for getting the next field of the node def get_next(self): return self.next # returns true if the node points to another node def has_next(self): return self.next != None def clone_linked_list(old): if not old: return old_copy = old root = Node(old.get_data()) prev = root temp = None old = old.get_next() mapping = {} while old: temp = Node(old.get_data()) mapping[old] = temp prev.set_next(temp) prev = temp old = old.get_next() old = old_copy temp = root while old: temp.set_rand(mapping[old.rand]) temp = temp.get_next() old = old.get_next() return root
[ "# Copyright (c) Dec 22, 2014 CareerMonk Publications and others.\n# E-Mail \t\t: [email protected] \n# Creation Date \t\t: 2014-01-10 06:15:46 \n# Last modification\t\t: 2008-10-31 \n# by\t\t: Narasimha Karumanchi \n# Book Title\t\t\t: Data Structures And Algorithms Made In Java\n# Warranty \t\t: This software is provided \"as is\" without any \n# \t\t\t\t warranty; without even the implied warranty of \n# \t\t\t\t merchantability or fitness for a particular purpose. \n\nclass Node:\n\tdef __init__(self, data):\n\t\tself.set_data(data)\n\t\tself.set_next(None)\n\t\tself.set_rand(None)\n\t# method for setting the data field of the node \n\tdef set_data(self, data):\n\t\tself.data = data\n\t# method for getting the data field of the node \n\tdef get_data(self):\n\t\treturn self.data\n\t# method for setting the next field of the node\n\tdef set_next(self, nextV):\n\t\tself.next = nextV\n\t# method for setting the next field of the node\n\tdef set_rand(self, rand):\n\t\tself.rand = rand\t\n\t# method for getting the next field of the node\n\tdef get_rand(self):\n\t\treturn self.rand\t\n\t# method for getting the next field of the node \n\tdef get_next(self):\n\t\treturn self.next\n\t# returns true if the node points to another node\n\tdef has_next(self):\n\t return self.next != None\n\t \n\tdef clone_linked_list(old):\n\t if not old:\n\t\treturn\n\n\t old_copy = old\n\t root = Node(old.get_data())\n\t prev = root\n\t temp = None\n\n\t old = old.get_next()\n\n\t mapping = {}\n\t \n\t while old:\n\t\ttemp = Node(old.get_data())\n\t\tmapping[old] = temp\n\t\t\n\t\tprev.set_next(temp)\n\t\tprev = temp\n\t\told = old.get_next()\n\n\t old = old_copy\n\t temp = root\n\n\t while old:\n\t\ttemp.set_rand(mapping[old.rand])\n\t\ttemp = temp.get_next()\n\t\told = old.get_next()\n\n\t return root\n" ]
true
99,548
eb2401d35e08cea16ee76441d6a77214a8edcfa7
from PyQt4 import QtCore import numpy as np from collections import namedtuple Position = namedtuple("Position", "direction scannumber polarization freqindex") class TimeScanner(QtCore.QObject): scanPositionChanged = QtCore.pyqtSignal(int) changeTemperature = QtCore.pyqtSignal(int) nextIndexChanged = QtCore.pyqtSignal(tuple) topReached = QtCore.pyqtSignal(int) bottomReached = QtCore.pyqtSignal(int) boundaryReached = QtCore.pyqtSignal(tuple) measured = QtCore.pyqtSignal(int) dtChanged = QtCore.pyqtSignal(float) bottomChanged = QtCore.pyqtSignal(int) UP, DOWN = 0, 1 def __init__(self, n=100, parent=None): QtCore.QObject.__init__(self, parent) self.direction = TimeScanner.UP self.top = 65535 self.bot = 0 self.ndot = n self.nscans = 3 #self.period = 60 # is not used for now self.debugprint = False self.updaterange() def setTop(self, top): self.top = top self.updaterange() def setBottom(self, bot): self.bot = bot self.updaterange() def setNdot(self, n): self.ndot = n self.updaterange() def updaterange(self): self.range = np.array(np.linspace(self.bot, self.top, self.ndot), dtype=int) self.temperatureList = np.append(self.range, self.range[::-1]) self.dtChanged.emit(float(self.range[1]-self.range[0])) self.bottomChanged.emit(self.range[0]) # for each scan we have 2 directions, # for each dirrection we have 2 polarization states self.statesNumber = self.nscans * self.ndot * 2 * 2 self.reset() def measure(self): targetT = self.temperatureList[self.pos.freqindex] if self.pos.direction == TimeScanner.UP: self.measured.emit(targetT) else: self.measured.emit(2 * self.top - targetT) def stateToPos(self, state): rest, polarization = divmod(state, 2) rest, tempindex = divmod(rest, self.ndot) rest, direction = divmod(rest, 2) rest, scannumber = divmod(rest, self.nscans) assert rest == 0, "Index calculation failed" if direction == TimeScanner.DOWN: tempindex = self.ndot - tempindex - 1 pos = Position(direction, scannumber, polarization, tempindex) return pos def inc(self): if self.state is None: self.state = 0 self.pos = self.stateToPos(self.state) return self.state = self.state + 1 if self.state == self.statesNumber: self.state = self.ndot * 2 * 2 self.pos = self.stateToPos(self.state) def scan(self): self.inc() pos = self.pos if self.debugprint: self.debugprint = False print "debug print! pos:", self.pos self.nextIndexChanged.emit(pos) targetT = self.temperatureList[pos.freqindex] self.changeTemperature.emit(targetT) if pos.direction == TimeScanner.UP: self.scanPositionChanged.emit(targetT) else: self.scanPositionChanged.emit(2 * self.top - targetT) if pos.freqindex == 0 and \ pos.direction == TimeScanner.DOWN and \ pos.polarization == 1: print "bottom reached! pos:", self.pos self.debugprint = True self.bottomReached.emit(pos.scannumber) self.boundaryReached.emit((pos.direction, pos.scannumber)) if pos.freqindex == self.ndot - 1 and \ pos.polarization == 1 and \ pos.direction == TimeScanner.UP : print "top reached! pos:", self.pos self.debugprint = True self.topReached.emit(pos.scannumber) self.boundaryReached.emit((pos.direction, pos.scannumber)) def reset(self): self.state = None self.pos = None
[ "from PyQt4 import QtCore\nimport numpy as np\nfrom collections import namedtuple\n\nPosition = namedtuple(\"Position\", \"direction scannumber polarization freqindex\")\n\nclass TimeScanner(QtCore.QObject):\n scanPositionChanged = QtCore.pyqtSignal(int)\n changeTemperature = QtCore.pyqtSignal(int)\n nextIndexChanged = QtCore.pyqtSignal(tuple)\n topReached = QtCore.pyqtSignal(int)\n bottomReached = QtCore.pyqtSignal(int)\n boundaryReached = QtCore.pyqtSignal(tuple)\n measured = QtCore.pyqtSignal(int)\n dtChanged = QtCore.pyqtSignal(float)\n bottomChanged = QtCore.pyqtSignal(int)\n UP, DOWN = 0, 1\n def __init__(self, n=100, parent=None):\n QtCore.QObject.__init__(self, parent)\n self.direction = TimeScanner.UP\n self.top = 65535\n self.bot = 0\n self.ndot = n\n self.nscans = 3\n #self.period = 60 # is not used for now\n self.debugprint = False\n self.updaterange()\n \n def setTop(self, top):\n self.top = top\n self.updaterange()\n \n def setBottom(self, bot):\n self.bot = bot\n self.updaterange()\n \n def setNdot(self, n):\n self.ndot = n\n self.updaterange()\n \n def updaterange(self):\n self.range = np.array(np.linspace(self.bot, self.top, self.ndot), dtype=int)\n self.temperatureList = np.append(self.range, self.range[::-1])\n self.dtChanged.emit(float(self.range[1]-self.range[0]))\n self.bottomChanged.emit(self.range[0])\n # for each scan we have 2 directions,\n # for each dirrection we have 2 polarization states\n self.statesNumber = self.nscans * self.ndot * 2 * 2 \n self.reset()\n \n def measure(self):\n targetT = self.temperatureList[self.pos.freqindex]\n if self.pos.direction == TimeScanner.UP:\n self.measured.emit(targetT)\n else:\n self.measured.emit(2 * self.top - targetT)\n \n def stateToPos(self, state):\n rest, polarization = divmod(state, 2)\n rest, tempindex = divmod(rest, self.ndot)\n rest, direction = divmod(rest, 2)\n rest, scannumber = divmod(rest, self.nscans)\n assert rest == 0, \"Index calculation failed\"\n if direction == TimeScanner.DOWN:\n tempindex = self.ndot - tempindex - 1 \n pos = Position(direction, scannumber, polarization, tempindex)\n return pos\n \n def inc(self):\n if self.state is None:\n self.state = 0\n self.pos = self.stateToPos(self.state)\n return\n \n self.state = self.state + 1 \n if self.state == self.statesNumber:\n self.state = self.ndot * 2 * 2 \n self.pos = self.stateToPos(self.state)\n \n def scan(self):\n self.inc()\n pos = self.pos\n if self.debugprint:\n self.debugprint = False\n print \"debug print! pos:\", self.pos\n \n self.nextIndexChanged.emit(pos)\n targetT = self.temperatureList[pos.freqindex]\n self.changeTemperature.emit(targetT)\n if pos.direction == TimeScanner.UP:\n self.scanPositionChanged.emit(targetT)\n else:\n self.scanPositionChanged.emit(2 * self.top - targetT)\n if pos.freqindex == 0 and \\\n pos.direction == TimeScanner.DOWN and \\\n pos.polarization == 1:\n print \"bottom reached! pos:\", self.pos\n self.debugprint = True\n self.bottomReached.emit(pos.scannumber)\n self.boundaryReached.emit((pos.direction, pos.scannumber))\n\n if pos.freqindex == self.ndot - 1 and \\\n pos.polarization == 1 and \\\n pos.direction == TimeScanner.UP :\n print \"top reached! pos:\", self.pos\n self.debugprint = True\n self.topReached.emit(pos.scannumber)\n self.boundaryReached.emit((pos.direction, pos.scannumber))\n \n \n def reset(self):\n self.state = None\n self.pos = None\n" ]
true
99,549
6a969bafe3f196c2a57fff1feaf7081ac7e35bf7
import argparse from tqdm import tqdm def win(inputfile): for en in inputfile['endpoints']: for con in en['connections']: con['lat'] = en['data_lat'] - con['lat'] return inputfile def read_file(path): with open(path, 'r') as reader: count_videos, count_endpoints, count_requests, count_caches, storage_cache = [int(i) for i in reader.readline().split(" ")] video_sizes = [int(i) for i in reader.readline().split(" ")] endpoints = [] for eid in tqdm(range(count_endpoints), desc="Reading endpoints"): data_lat, connected_caches = [int (i) for i in reader.readline().split(" ")] connections = [] for cnumb in range(connected_caches): number_cache, lat_cache = [int (i) for i in reader.readline().split(" ")] connections.append({'id':number_cache, 'lat': lat_cache}) endpoints.append({'id': eid, 'data_lat': data_lat, 'connections': connections, 'requests':[]}) for rid in tqdm(range(count_requests), desc="Reading requests"): number_video, eid, requests = [int(i) for i in reader.readline().split(" ")] endpoints[eid]['requests'].append({'number_video': number_video, 'count_requests': requests}) return { 'count_videos': count_videos, 'count_endpoints': count_endpoints, 'count_requests': count_requests, 'count_caches': count_caches, 'storage_cache': storage_cache, 'video_sizes': video_sizes, 'endpoints': endpoints } parser = argparse.ArgumentParser() parser.add_argument("input", help="input file") parser.add_argument("output", help="output file") args = parser.parse_args() inputfile = read_file(args.input) inputfile= win(inputfile) with open(args.output, 'r') as reader: count_caches = int(reader.readline()) caches = [] for i in tqdm(range(count_caches), desc='read output'): line = reader.readline().split(" ") id = int(line[0]) videos = [] line.remove(line[0]) for v in line: videos.append(int(v)) caches.append({'id': id, 'videos': videos}) score = 0 print(inputfile) for end in tqdm(inputfile['endpoints'], desc='counting scores'): for req in end['requests']: variants = [] variants.append(0) for c in caches: for v in c['videos']: if v == req['number_video']: for con in end['connections']: if con['id'] == c['id']: variants.append(con['lat']*req['count_requests']) variants.sort(reverse=1) score+=variants[0] print("Scores: ", score)
[ "import argparse\r\nfrom tqdm import tqdm\r\n\r\ndef win(inputfile):\r\n for en in inputfile['endpoints']:\r\n for con in en['connections']:\r\n con['lat'] = en['data_lat'] - con['lat']\r\n return inputfile\r\n\r\ndef read_file(path):\r\n with open(path, 'r') as reader:\r\n\r\n\r\n count_videos, count_endpoints, count_requests, count_caches, storage_cache = [int(i) for i in reader.readline().split(\" \")]\r\n\r\n video_sizes = [int(i) for i in reader.readline().split(\" \")]\r\n endpoints = []\r\n for eid in tqdm(range(count_endpoints), desc=\"Reading endpoints\"):\r\n data_lat, connected_caches = [int (i) for i in reader.readline().split(\" \")]\r\n connections = []\r\n\r\n for cnumb in range(connected_caches):\r\n number_cache, lat_cache = [int (i) for i in reader.readline().split(\" \")]\r\n connections.append({'id':number_cache, 'lat': lat_cache})\r\n\r\n endpoints.append({'id': eid, 'data_lat': data_lat, 'connections': connections, 'requests':[]})\r\n\r\n\r\n for rid in tqdm(range(count_requests), desc=\"Reading requests\"):\r\n number_video, eid, requests = [int(i) for i in reader.readline().split(\" \")]\r\n endpoints[eid]['requests'].append({'number_video': number_video, 'count_requests': requests})\r\n\r\n return {\r\n 'count_videos': count_videos,\r\n 'count_endpoints': count_endpoints,\r\n 'count_requests': count_requests,\r\n 'count_caches': count_caches,\r\n 'storage_cache': storage_cache,\r\n 'video_sizes': video_sizes,\r\n 'endpoints': endpoints\r\n }\r\n\r\nparser = argparse.ArgumentParser()\r\n\r\nparser.add_argument(\"input\", help=\"input file\")\r\nparser.add_argument(\"output\", help=\"output file\")\r\nargs = parser.parse_args()\r\n\r\ninputfile = read_file(args.input)\r\ninputfile= win(inputfile)\r\nwith open(args.output, 'r') as reader:\r\n count_caches = int(reader.readline())\r\n caches = []\r\n for i in tqdm(range(count_caches), desc='read output'):\r\n line = reader.readline().split(\" \")\r\n id = int(line[0])\r\n videos = []\r\n line.remove(line[0])\r\n for v in line:\r\n videos.append(int(v))\r\n caches.append({'id': id, 'videos': videos})\r\n\r\n score = 0\r\n print(inputfile)\r\n for end in tqdm(inputfile['endpoints'], desc='counting scores'):\r\n for req in end['requests']:\r\n variants = []\r\n variants.append(0)\r\n for c in caches:\r\n for v in c['videos']:\r\n if v == req['number_video']:\r\n for con in end['connections']:\r\n if con['id'] == c['id']:\r\n variants.append(con['lat']*req['count_requests'])\r\n variants.sort(reverse=1)\r\n score+=variants[0]\r\n print(\"Scores: \", score)\r\n", "import argparse\nfrom tqdm import tqdm\n\n\ndef win(inputfile):\n for en in inputfile['endpoints']:\n for con in en['connections']:\n con['lat'] = en['data_lat'] - con['lat']\n return inputfile\n\n\ndef read_file(path):\n with open(path, 'r') as reader:\n (count_videos, count_endpoints, count_requests, count_caches,\n storage_cache) = [int(i) for i in reader.readline().split(' ')]\n video_sizes = [int(i) for i in reader.readline().split(' ')]\n endpoints = []\n for eid in tqdm(range(count_endpoints), desc='Reading endpoints'):\n data_lat, connected_caches = [int(i) for i in reader.readline()\n .split(' ')]\n connections = []\n for cnumb in range(connected_caches):\n number_cache, lat_cache = [int(i) for i in reader.readline(\n ).split(' ')]\n connections.append({'id': number_cache, 'lat': lat_cache})\n endpoints.append({'id': eid, 'data_lat': data_lat,\n 'connections': connections, 'requests': []})\n for rid in tqdm(range(count_requests), desc='Reading requests'):\n number_video, eid, requests = [int(i) for i in reader.readline(\n ).split(' ')]\n endpoints[eid]['requests'].append({'number_video': number_video,\n 'count_requests': requests})\n return {'count_videos': count_videos, 'count_endpoints':\n count_endpoints, 'count_requests': count_requests,\n 'count_caches': count_caches, 'storage_cache': storage_cache,\n 'video_sizes': video_sizes, 'endpoints': endpoints}\n\n\nparser = argparse.ArgumentParser()\nparser.add_argument('input', help='input file')\nparser.add_argument('output', help='output file')\nargs = parser.parse_args()\ninputfile = read_file(args.input)\ninputfile = win(inputfile)\nwith open(args.output, 'r') as reader:\n count_caches = int(reader.readline())\n caches = []\n for i in tqdm(range(count_caches), desc='read output'):\n line = reader.readline().split(' ')\n id = int(line[0])\n videos = []\n line.remove(line[0])\n for v in line:\n videos.append(int(v))\n caches.append({'id': id, 'videos': videos})\n score = 0\n print(inputfile)\n for end in tqdm(inputfile['endpoints'], desc='counting scores'):\n for req in end['requests']:\n variants = []\n variants.append(0)\n for c in caches:\n for v in c['videos']:\n if v == req['number_video']:\n for con in end['connections']:\n if con['id'] == c['id']:\n variants.append(con['lat'] * req[\n 'count_requests'])\n variants.sort(reverse=1)\n score += variants[0]\n print('Scores: ', score)\n", "<import token>\n\n\ndef win(inputfile):\n for en in inputfile['endpoints']:\n for con in en['connections']:\n con['lat'] = en['data_lat'] - con['lat']\n return inputfile\n\n\ndef read_file(path):\n with open(path, 'r') as reader:\n (count_videos, count_endpoints, count_requests, count_caches,\n storage_cache) = [int(i) for i in reader.readline().split(' ')]\n video_sizes = [int(i) for i in reader.readline().split(' ')]\n endpoints = []\n for eid in tqdm(range(count_endpoints), desc='Reading endpoints'):\n data_lat, connected_caches = [int(i) for i in reader.readline()\n .split(' ')]\n connections = []\n for cnumb in range(connected_caches):\n number_cache, lat_cache = [int(i) for i in reader.readline(\n ).split(' ')]\n connections.append({'id': number_cache, 'lat': lat_cache})\n endpoints.append({'id': eid, 'data_lat': data_lat,\n 'connections': connections, 'requests': []})\n for rid in tqdm(range(count_requests), desc='Reading requests'):\n number_video, eid, requests = [int(i) for i in reader.readline(\n ).split(' ')]\n endpoints[eid]['requests'].append({'number_video': number_video,\n 'count_requests': requests})\n return {'count_videos': count_videos, 'count_endpoints':\n count_endpoints, 'count_requests': count_requests,\n 'count_caches': count_caches, 'storage_cache': storage_cache,\n 'video_sizes': video_sizes, 'endpoints': endpoints}\n\n\nparser = argparse.ArgumentParser()\nparser.add_argument('input', help='input file')\nparser.add_argument('output', help='output file')\nargs = parser.parse_args()\ninputfile = read_file(args.input)\ninputfile = win(inputfile)\nwith open(args.output, 'r') as reader:\n count_caches = int(reader.readline())\n caches = []\n for i in tqdm(range(count_caches), desc='read output'):\n line = reader.readline().split(' ')\n id = int(line[0])\n videos = []\n line.remove(line[0])\n for v in line:\n videos.append(int(v))\n caches.append({'id': id, 'videos': videos})\n score = 0\n print(inputfile)\n for end in tqdm(inputfile['endpoints'], desc='counting scores'):\n for req in end['requests']:\n variants = []\n variants.append(0)\n for c in caches:\n for v in c['videos']:\n if v == req['number_video']:\n for con in end['connections']:\n if con['id'] == c['id']:\n variants.append(con['lat'] * req[\n 'count_requests'])\n variants.sort(reverse=1)\n score += variants[0]\n print('Scores: ', score)\n", "<import token>\n\n\ndef win(inputfile):\n for en in inputfile['endpoints']:\n for con in en['connections']:\n con['lat'] = en['data_lat'] - con['lat']\n return inputfile\n\n\ndef read_file(path):\n with open(path, 'r') as reader:\n (count_videos, count_endpoints, count_requests, count_caches,\n storage_cache) = [int(i) for i in reader.readline().split(' ')]\n video_sizes = [int(i) for i in reader.readline().split(' ')]\n endpoints = []\n for eid in tqdm(range(count_endpoints), desc='Reading endpoints'):\n data_lat, connected_caches = [int(i) for i in reader.readline()\n .split(' ')]\n connections = []\n for cnumb in range(connected_caches):\n number_cache, lat_cache = [int(i) for i in reader.readline(\n ).split(' ')]\n connections.append({'id': number_cache, 'lat': lat_cache})\n endpoints.append({'id': eid, 'data_lat': data_lat,\n 'connections': connections, 'requests': []})\n for rid in tqdm(range(count_requests), desc='Reading requests'):\n number_video, eid, requests = [int(i) for i in reader.readline(\n ).split(' ')]\n endpoints[eid]['requests'].append({'number_video': number_video,\n 'count_requests': requests})\n return {'count_videos': count_videos, 'count_endpoints':\n count_endpoints, 'count_requests': count_requests,\n 'count_caches': count_caches, 'storage_cache': storage_cache,\n 'video_sizes': video_sizes, 'endpoints': endpoints}\n\n\n<assignment token>\nparser.add_argument('input', help='input file')\nparser.add_argument('output', help='output file')\n<assignment token>\nwith open(args.output, 'r') as reader:\n count_caches = int(reader.readline())\n caches = []\n for i in tqdm(range(count_caches), desc='read output'):\n line = reader.readline().split(' ')\n id = int(line[0])\n videos = []\n line.remove(line[0])\n for v in line:\n videos.append(int(v))\n caches.append({'id': id, 'videos': videos})\n score = 0\n print(inputfile)\n for end in tqdm(inputfile['endpoints'], desc='counting scores'):\n for req in end['requests']:\n variants = []\n variants.append(0)\n for c in caches:\n for v in c['videos']:\n if v == req['number_video']:\n for con in end['connections']:\n if con['id'] == c['id']:\n variants.append(con['lat'] * req[\n 'count_requests'])\n variants.sort(reverse=1)\n score += variants[0]\n print('Scores: ', score)\n", "<import token>\n\n\ndef win(inputfile):\n for en in inputfile['endpoints']:\n for con in en['connections']:\n con['lat'] = en['data_lat'] - con['lat']\n return inputfile\n\n\ndef read_file(path):\n with open(path, 'r') as reader:\n (count_videos, count_endpoints, count_requests, count_caches,\n storage_cache) = [int(i) for i in reader.readline().split(' ')]\n video_sizes = [int(i) for i in reader.readline().split(' ')]\n endpoints = []\n for eid in tqdm(range(count_endpoints), desc='Reading endpoints'):\n data_lat, connected_caches = [int(i) for i in reader.readline()\n .split(' ')]\n connections = []\n for cnumb in range(connected_caches):\n number_cache, lat_cache = [int(i) for i in reader.readline(\n ).split(' ')]\n connections.append({'id': number_cache, 'lat': lat_cache})\n endpoints.append({'id': eid, 'data_lat': data_lat,\n 'connections': connections, 'requests': []})\n for rid in tqdm(range(count_requests), desc='Reading requests'):\n number_video, eid, requests = [int(i) for i in reader.readline(\n ).split(' ')]\n endpoints[eid]['requests'].append({'number_video': number_video,\n 'count_requests': requests})\n return {'count_videos': count_videos, 'count_endpoints':\n count_endpoints, 'count_requests': count_requests,\n 'count_caches': count_caches, 'storage_cache': storage_cache,\n 'video_sizes': video_sizes, 'endpoints': endpoints}\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n\n\ndef win(inputfile):\n for en in inputfile['endpoints']:\n for con in en['connections']:\n con['lat'] = en['data_lat'] - con['lat']\n return inputfile\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,550
279328791eb2d58225b1e06666dca8887d7ce16f
#!/usr/bin/env python3 ## fszostak(2020) Python Code Snippets # # Split lines in blocks with limit # max number of bytes BLK_SIZE=9 # max number of bytes per block def process(string): return string.upper() def batch_process(string): block = response = "" offset = n = 0 line_size = string.find("\n") while line_size > 0: if offset+line_size > BLK_SIZE: response = response + process(block) block = "" print(f'Block {n} processed') n += 1 block = block + string[offset:offset+line_size+2] offset = offset + line_size+2 line_size = string[offset:].find("\n") block = block + string[offset:] if block != "": response = response + process(block) print(f'Block {n} processed') return response # basic test string = "01 blah blah\n02 blah blah\n03 blah blah blah\n04 blah blah\n05 blah blah\n06 blah blah blah\n07 blah blah\n08 blah blah\n09 blah blah blah\n10 blah blah\n11 blah blah\n12 blah blah blah\n" print("\nTEST 1 - INPUT:") print(string) print("\n\nOUTPUT:") print(batch_process(string)) # last line great than previous line string = "01 blah blah\n02 blah blah\n03 blah blah\n04 blah blah\n05 blah blah\n06 blah blah\n07 blah blah\n08 blah blah\n09 blah blah\n10 blah blah\n11 blah blah\n12 blah blah blah\n" print("\nTEST 2 - INPUT:") print(string) print("\n\nOUTPUT:") print(batch_process(string)) # last line less than previous line string = "01 blah blah\n02 blah blah\n03 blah blah\n04 blah blah\n05 blah blah\n06 blah blah\n07 blah blah\n08 blah blah\n09 blah blah\n10 blah blah\n11 blah blah\n12 blah\n" print("\nTEST 3 - INPUT:") print(string) print("\n\nOUTPUT:") print(batch_process(string)) # with \r\n string = "01 blah blah\r\n02 blah blah\r\n03 blah blah\r\n04 blah blah\r\n05 blah blah\r\n06 blah blah\r\n07 blah blah\r\n08 blah blah\r\n09 blah blah\r\n10 blah blah\r\n11 blah blah\r\n12 blah blah blah\r\n" print("\nTEST 4 - INPUT:") print(string) print("\n\nOUTPUT:") print(batch_process(string)) # without newline in last line string = "01 blah blah\r\n02 blah blah\r\n03 blah blah\r\n04 blah blah\r\n05 blah blah\r\n06 blah blah\r\n07 blah blah\r\n08 blah blah\r\n09 blah blah\r\n10 blah blah\r\n11 blah blah\r\n12 blah" print("\nTEST 5 - INPUT:") print(string) print("\n\nOUTPUT:") print(batch_process(string))
[ "#!/usr/bin/env python3\n\n## fszostak(2020) Python Code Snippets\n#\n# Split lines in blocks with limit\n# max number of bytes\n\nBLK_SIZE=9 # max number of bytes per block\n\ndef process(string):\n return string.upper()\n\ndef batch_process(string):\n \n block = response = \"\"\n offset = n = 0\n line_size = string.find(\"\\n\")\n\n while line_size > 0:\n\n if offset+line_size > BLK_SIZE:\n response = response + process(block)\n block = \"\"\n print(f'Block {n} processed')\n n += 1\n\n block = block + string[offset:offset+line_size+2]\n\n offset = offset + line_size+2\n line_size = string[offset:].find(\"\\n\") \n\n block = block + string[offset:]\n if block != \"\":\n response = response + process(block)\n print(f'Block {n} processed')\n\n return response\n\n\n\n# basic test\nstring = \"01 blah blah\\n02 blah blah\\n03 blah blah blah\\n04 blah blah\\n05 blah blah\\n06 blah blah blah\\n07 blah blah\\n08 blah blah\\n09 blah blah blah\\n10 blah blah\\n11 blah blah\\n12 blah blah blah\\n\"\nprint(\"\\nTEST 1 - INPUT:\")\nprint(string)\nprint(\"\\n\\nOUTPUT:\")\nprint(batch_process(string))\n\n# last line great than previous line\nstring = \"01 blah blah\\n02 blah blah\\n03 blah blah\\n04 blah blah\\n05 blah blah\\n06 blah blah\\n07 blah blah\\n08 blah blah\\n09 blah blah\\n10 blah blah\\n11 blah blah\\n12 blah blah blah\\n\"\nprint(\"\\nTEST 2 - INPUT:\")\nprint(string)\nprint(\"\\n\\nOUTPUT:\")\nprint(batch_process(string))\n\n# last line less than previous line\nstring = \"01 blah blah\\n02 blah blah\\n03 blah blah\\n04 blah blah\\n05 blah blah\\n06 blah blah\\n07 blah blah\\n08 blah blah\\n09 blah blah\\n10 blah blah\\n11 blah blah\\n12 blah\\n\"\nprint(\"\\nTEST 3 - INPUT:\")\nprint(string)\nprint(\"\\n\\nOUTPUT:\")\nprint(batch_process(string))\n\n# with \\r\\n\nstring = \"01 blah blah\\r\\n02 blah blah\\r\\n03 blah blah\\r\\n04 blah blah\\r\\n05 blah blah\\r\\n06 blah blah\\r\\n07 blah blah\\r\\n08 blah blah\\r\\n09 blah blah\\r\\n10 blah blah\\r\\n11 blah blah\\r\\n12 blah blah blah\\r\\n\"\nprint(\"\\nTEST 4 - INPUT:\")\nprint(string)\nprint(\"\\n\\nOUTPUT:\")\nprint(batch_process(string))\n\n# without newline in last line\nstring = \"01 blah blah\\r\\n02 blah blah\\r\\n03 blah blah\\r\\n04 blah blah\\r\\n05 blah blah\\r\\n06 blah blah\\r\\n07 blah blah\\r\\n08 blah blah\\r\\n09 blah blah\\r\\n10 blah blah\\r\\n11 blah blah\\r\\n12 blah\"\nprint(\"\\nTEST 5 - INPUT:\")\nprint(string)\nprint(\"\\n\\nOUTPUT:\")\nprint(batch_process(string))\n\n\n\n\n\n\n\n\n\n\n\n", "BLK_SIZE = 9\n\n\ndef process(string):\n return string.upper()\n\n\ndef batch_process(string):\n block = response = ''\n offset = n = 0\n line_size = string.find('\\n')\n while line_size > 0:\n if offset + line_size > BLK_SIZE:\n response = response + process(block)\n block = ''\n print(f'Block {n} processed')\n n += 1\n block = block + string[offset:offset + line_size + 2]\n offset = offset + line_size + 2\n line_size = string[offset:].find('\\n')\n block = block + string[offset:]\n if block != '':\n response = response + process(block)\n print(f'Block {n} processed')\n return response\n\n\nstring = \"\"\"01 blah blah\n02 blah blah\n03 blah blah blah\n04 blah blah\n05 blah blah\n06 blah blah blah\n07 blah blah\n08 blah blah\n09 blah blah blah\n10 blah blah\n11 blah blah\n12 blah blah blah\n\"\"\"\nprint('\\nTEST 1 - INPUT:')\nprint(string)\nprint('\\n\\nOUTPUT:')\nprint(batch_process(string))\nstring = \"\"\"01 blah blah\n02 blah blah\n03 blah blah\n04 blah blah\n05 blah blah\n06 blah blah\n07 blah blah\n08 blah blah\n09 blah blah\n10 blah blah\n11 blah blah\n12 blah blah blah\n\"\"\"\nprint('\\nTEST 2 - INPUT:')\nprint(string)\nprint('\\n\\nOUTPUT:')\nprint(batch_process(string))\nstring = \"\"\"01 blah blah\n02 blah blah\n03 blah blah\n04 blah blah\n05 blah blah\n06 blah blah\n07 blah blah\n08 blah blah\n09 blah blah\n10 blah blah\n11 blah blah\n12 blah\n\"\"\"\nprint('\\nTEST 3 - INPUT:')\nprint(string)\nprint('\\n\\nOUTPUT:')\nprint(batch_process(string))\nstring = (\n '01 blah blah\\r\\n02 blah blah\\r\\n03 blah blah\\r\\n04 blah blah\\r\\n05 blah blah\\r\\n06 blah blah\\r\\n07 blah blah\\r\\n08 blah blah\\r\\n09 blah blah\\r\\n10 blah blah\\r\\n11 blah blah\\r\\n12 blah blah blah\\r\\n'\n )\nprint('\\nTEST 4 - INPUT:')\nprint(string)\nprint('\\n\\nOUTPUT:')\nprint(batch_process(string))\nstring = (\n '01 blah blah\\r\\n02 blah blah\\r\\n03 blah blah\\r\\n04 blah blah\\r\\n05 blah blah\\r\\n06 blah blah\\r\\n07 blah blah\\r\\n08 blah blah\\r\\n09 blah blah\\r\\n10 blah blah\\r\\n11 blah blah\\r\\n12 blah'\n )\nprint('\\nTEST 5 - INPUT:')\nprint(string)\nprint('\\n\\nOUTPUT:')\nprint(batch_process(string))\n", "<assignment token>\n\n\ndef process(string):\n return string.upper()\n\n\ndef batch_process(string):\n block = response = ''\n offset = n = 0\n line_size = string.find('\\n')\n while line_size > 0:\n if offset + line_size > BLK_SIZE:\n response = response + process(block)\n block = ''\n print(f'Block {n} processed')\n n += 1\n block = block + string[offset:offset + line_size + 2]\n offset = offset + line_size + 2\n line_size = string[offset:].find('\\n')\n block = block + string[offset:]\n if block != '':\n response = response + process(block)\n print(f'Block {n} processed')\n return response\n\n\n<assignment token>\nprint('\\nTEST 1 - INPUT:')\nprint(string)\nprint('\\n\\nOUTPUT:')\nprint(batch_process(string))\n<assignment token>\nprint('\\nTEST 2 - INPUT:')\nprint(string)\nprint('\\n\\nOUTPUT:')\nprint(batch_process(string))\n<assignment token>\nprint('\\nTEST 3 - INPUT:')\nprint(string)\nprint('\\n\\nOUTPUT:')\nprint(batch_process(string))\n<assignment token>\nprint('\\nTEST 4 - INPUT:')\nprint(string)\nprint('\\n\\nOUTPUT:')\nprint(batch_process(string))\n<assignment token>\nprint('\\nTEST 5 - INPUT:')\nprint(string)\nprint('\\n\\nOUTPUT:')\nprint(batch_process(string))\n", "<assignment token>\n\n\ndef process(string):\n return string.upper()\n\n\ndef batch_process(string):\n block = response = ''\n offset = n = 0\n line_size = string.find('\\n')\n while line_size > 0:\n if offset + line_size > BLK_SIZE:\n response = response + process(block)\n block = ''\n print(f'Block {n} processed')\n n += 1\n block = block + string[offset:offset + line_size + 2]\n offset = offset + line_size + 2\n line_size = string[offset:].find('\\n')\n block = block + string[offset:]\n if block != '':\n response = response + process(block)\n print(f'Block {n} processed')\n return response\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<assignment token>\n\n\ndef process(string):\n return string.upper()\n\n\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n", "<assignment token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,551
5e6111cf973b8a68de971b8bf7d830433f7e6eeb
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Writer: Xinqiao Wang Organization: Global Energy Interconnection Research Institute, SGCC Date: 20210317 Objective: Import PaddlePaddle machine learning model (usually vision model) then give the evaluation of model back. ''' from collections import OrderedDict from prettytable import PrettyTable from numpy import prod def summary(main_prog, batch_size, bits_per_tensor): ''' It can summary model's PARAMS, FLOPs until now. It support common operator like conv, fc, pool, relu, sigmoid, bn etc. Args: main_prog: main program Returns: print summary on terminal ''' blocks = main_prog.blocks collected_ops_list = [] unsupported = set() block_vars = {} for block in blocks: block_vars = {**block_vars, **block.vars} block_ops = [ele for block in blocks for ele in block.ops] # block_var: learnable variable,block_op:operator # 合并blocks(ops和vars并不严格对应,需要合并保证能搜索到所有) for one_op in block_ops: op_info = OrderedDict() spf_res = _summary_model(block_vars, one_op) if spf_res is None: continue if type(spf_res) == str: unsupported.add(one_op.type) continue # TODO: get the operator name op_info['type'] = one_op.type op_info['input_shape'] = spf_res[0][1:] op_info['out_shape'] = spf_res[1][1:] op_info['PARAMs'] = spf_res[2] op_info['FLOPs'] = spf_res[3] collected_ops_list.append(op_info) summary_table, total = _format_summary(collected_ops_list, batch_size, bits_per_tensor) _print_summary(summary_table, total, unsupported) def _summary_model(block_vars, one_op): ''' Compute operator's params and flops. Args: block_vars: all vars of one block one_op: one operator to count Returns: in_data_shape: one operator's input data shape out_data_shape: one operator's output data shape params: one operator's PARAMs flops: : one operator's FLOPs ''' if one_op.type in ['conv2d', 'depthwise_conv2d']: k_arg_shape = block_vars[one_op.input("Filter")[0]].shape in_data_shape = block_vars[one_op.input("Input")[0]].shape out_data_shape = block_vars[one_op.output("Output")[0]].shape c_out, c_in, k_h, k_w = k_arg_shape _, c_out_, h_out, w_out = out_data_shape assert c_out == c_out_, 'shape error!' k_groups = one_op.attr("groups") kernel_ops = k_h * k_w * (c_in / k_groups) bias_ops = 0 if one_op.input("Bias") == [] else 1 params = c_out * (kernel_ops + bias_ops) flops = h_out * w_out * c_out * (kernel_ops + bias_ops) # base nvidia paper, include mul and add flops = 2 * flops elif one_op.type == 'pool2d': in_data_shape = block_vars[one_op.input("X")[0]].shape out_data_shape = block_vars[one_op.output("Out")[0]].shape _, c_out, h_out, w_out = out_data_shape k_size = one_op.attr("ksize") params = 0 flops = h_out * w_out * c_out * (k_size[0] * k_size[1]) elif one_op.type == 'mul': k_arg_shape = block_vars[one_op.input("Y")[0]].shape in_data_shape = block_vars[one_op.input("X")[0]].shape out_data_shape = block_vars[one_op.output("Out")[0]].shape # TODO: fc has mul ops # add attr to mul op, tell us whether it belongs to 'fc' # this's not the best way if 'fc' not in one_op.output("Out")[0]: return None k_in, k_out = k_arg_shape # bias in sum op params = k_in * k_out + 1 flops = k_in * k_out elif one_op.type in ['sigmoid', 'tanh', 'relu', 'leaky_relu', 'prelu']: # elif one_op.type in ['sigmoid', 'tanh', 'relu', 'leaky_relu', 'prelu', 'elementwise_add', 'elementwise_mul', 'elementwise_div']: in_data_shape = block_vars[one_op.input("X")[0]].shape out_data_shape = block_vars[one_op.output("Out")[0]].shape params = 0 if one_op.type == 'prelu': params = 1 flops = 1 for one_dim in in_data_shape: if one_dim != -1: # 如果不为-1 flops *= one_dim elif one_op.type == 'batch_norm': in_data_shape = block_vars[one_op.input("X")[0]].shape out_data_shape = block_vars[one_op.output("Y")[0]].shape _, c_in, h_out, w_out = in_data_shape # gamma, beta params = c_in * 2 # compute mean and std flops = h_out * w_out * c_in * 2 else: # 有些没有被计算到的type,加入unsupported_set中 # 某些操作,比如affine_channel,仅是仿射变换,不计入 return one_op.type return in_data_shape, out_data_shape, params, flops def _format_summary(collected_ops_list, batch_size, bits_per_tensor): ''' Format summary report. Args: collected_ops_list: the collected operator with summary Returns: summary_table: summary report format total: sum param and flops ''' summary_table = PrettyTable( ["No.", "TYPE", "INPUT", "OUTPUT", "PARAMs", "FLOPs"]) summary_table.align = 'r' total = {} total_params = [] total_flops = [] total_outshape = [] for i, one_op in enumerate(collected_ops_list): # notice the order table_row = [ i, one_op['type'], one_op['input_shape'], one_op['out_shape'], int(one_op['PARAMs']), int(one_op['FLOPs']), ] if i == 0: input_shape = one_op['input_shape'] summary_table.add_row(table_row) total_params.append(int(one_op['PARAMs'])) total_flops.append(int(one_op['FLOPs'])) total_outshape.append(one_op['out_shape']) total['params'] = total_params total['flops'] = total_flops total['out'] = total_outshape total['gpu'] = cal_gpu_memory(total, input_shape, batch_size, bits_per_tensor) return summary_table, total def cal_gpu_memory(total, input_shape, batch_size, bits_per_tensor): gpu_input = prod(input_shape) gpu_param = total['params'] gpu_backward_forward = sum([prod(ele) for ele in total['out']]) gpu = (gpu_input + gpu_param + gpu_backward_forward)*(batch_size*bits_per_tensor/8) # bytes计数 return gpu def _print_summary(summary_table, total, unsupported): ''' Print all the summary on terminal. Args: summary_table: summary report format total: sum param and flops ''' parmas = total['params'] flops = total['flops'] gpu = total['gpu'] print( "Notice: \n now supported ops include [Conv, DepthwiseConv, FC(mul), BatchNorm, Pool, Activation(sigmoid, tanh, relu, leaky_relu, prelu), Elementwise operations]" ) print("Unsupported operator types:", unsupported) print(summary_table) print('Total PARAMs: {}({:.4f}M)'.format( sum(parmas), sum(parmas) / (10**6))) print('Total FLOPs: {}({:.2f}G)'.format(sum(flops), sum(flops) / 10**9)) print('GPU Memory Usage: {}({:.2f}GB)'.format(sum(gpu), sum(gpu) / 10**9))
[ "# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n'''\nWriter: Xinqiao Wang\nOrganization: Global Energy Interconnection Research Institute, SGCC\nDate: 20210317\nObjective: Import PaddlePaddle machine learning model (usually vision model)\n then give the evaluation of model back.\n'''\nfrom collections import OrderedDict\nfrom prettytable import PrettyTable\nfrom numpy import prod\n\ndef summary(main_prog, batch_size, bits_per_tensor):\n '''\n It can summary model's PARAMS, FLOPs until now.\n It support common operator like conv, fc, pool, relu, sigmoid, bn etc. \n Args:\n main_prog: main program \n Returns:\n print summary on terminal\n '''\n blocks = main_prog.blocks\n collected_ops_list = []\n unsupported = set()\n block_vars = {}\n for block in blocks:\n block_vars = {**block_vars, **block.vars}\n block_ops = [ele for block in blocks for ele in block.ops]\n # block_var: learnable variable,block_op:operator\n # 合并blocks(ops和vars并不严格对应,需要合并保证能搜索到所有)\n for one_op in block_ops:\n op_info = OrderedDict()\n spf_res = _summary_model(block_vars, one_op)\n if spf_res is None:\n continue\n if type(spf_res) == str:\n unsupported.add(one_op.type)\n continue\n # TODO: get the operator name\n op_info['type'] = one_op.type\n op_info['input_shape'] = spf_res[0][1:]\n op_info['out_shape'] = spf_res[1][1:]\n op_info['PARAMs'] = spf_res[2]\n op_info['FLOPs'] = spf_res[3]\n collected_ops_list.append(op_info)\n summary_table, total = _format_summary(collected_ops_list, batch_size, bits_per_tensor)\n _print_summary(summary_table, total, unsupported)\n\n\ndef _summary_model(block_vars, one_op):\n '''\n Compute operator's params and flops.\n Args:\n block_vars: all vars of one block\n one_op: one operator to count\n Returns:\n in_data_shape: one operator's input data shape\n out_data_shape: one operator's output data shape\n params: one operator's PARAMs \n flops: : one operator's FLOPs\n '''\n if one_op.type in ['conv2d', 'depthwise_conv2d']:\n k_arg_shape = block_vars[one_op.input(\"Filter\")[0]].shape\n in_data_shape = block_vars[one_op.input(\"Input\")[0]].shape\n out_data_shape = block_vars[one_op.output(\"Output\")[0]].shape\n c_out, c_in, k_h, k_w = k_arg_shape\n _, c_out_, h_out, w_out = out_data_shape\n assert c_out == c_out_, 'shape error!'\n k_groups = one_op.attr(\"groups\")\n kernel_ops = k_h * k_w * (c_in / k_groups)\n bias_ops = 0 if one_op.input(\"Bias\") == [] else 1\n params = c_out * (kernel_ops + bias_ops)\n flops = h_out * w_out * c_out * (kernel_ops + bias_ops)\n # base nvidia paper, include mul and add\n flops = 2 * flops\n\n elif one_op.type == 'pool2d':\n in_data_shape = block_vars[one_op.input(\"X\")[0]].shape\n out_data_shape = block_vars[one_op.output(\"Out\")[0]].shape\n _, c_out, h_out, w_out = out_data_shape\n k_size = one_op.attr(\"ksize\")\n params = 0\n flops = h_out * w_out * c_out * (k_size[0] * k_size[1])\n\n elif one_op.type == 'mul':\n k_arg_shape = block_vars[one_op.input(\"Y\")[0]].shape\n in_data_shape = block_vars[one_op.input(\"X\")[0]].shape\n out_data_shape = block_vars[one_op.output(\"Out\")[0]].shape\n # TODO: fc has mul ops\n # add attr to mul op, tell us whether it belongs to 'fc'\n # this's not the best way\n if 'fc' not in one_op.output(\"Out\")[0]:\n return None\n k_in, k_out = k_arg_shape\n # bias in sum op\n params = k_in * k_out + 1\n flops = k_in * k_out\n\n elif one_op.type in ['sigmoid', 'tanh', 'relu', 'leaky_relu', 'prelu']:\n # elif one_op.type in ['sigmoid', 'tanh', 'relu', 'leaky_relu', 'prelu', 'elementwise_add', 'elementwise_mul', 'elementwise_div']:\n in_data_shape = block_vars[one_op.input(\"X\")[0]].shape\n out_data_shape = block_vars[one_op.output(\"Out\")[0]].shape\n params = 0\n if one_op.type == 'prelu':\n params = 1\n flops = 1\n for one_dim in in_data_shape:\n if one_dim != -1:\n # 如果不为-1\n flops *= one_dim\n\n elif one_op.type == 'batch_norm':\n in_data_shape = block_vars[one_op.input(\"X\")[0]].shape\n out_data_shape = block_vars[one_op.output(\"Y\")[0]].shape\n _, c_in, h_out, w_out = in_data_shape\n # gamma, beta\n params = c_in * 2\n # compute mean and std\n flops = h_out * w_out * c_in * 2\n\n else:\n # 有些没有被计算到的type,加入unsupported_set中\n # 某些操作,比如affine_channel,仅是仿射变换,不计入\n return one_op.type\n\n return in_data_shape, out_data_shape, params, flops\n\n\ndef _format_summary(collected_ops_list, batch_size, bits_per_tensor):\n '''\n Format summary report.\n Args:\n collected_ops_list: the collected operator with summary\n Returns:\n summary_table: summary report format\n total: sum param and flops\n '''\n\n summary_table = PrettyTable(\n [\"No.\", \"TYPE\", \"INPUT\", \"OUTPUT\", \"PARAMs\", \"FLOPs\"])\n summary_table.align = 'r'\n\n total = {}\n total_params = []\n total_flops = []\n total_outshape = []\n for i, one_op in enumerate(collected_ops_list):\n # notice the order\n table_row = [\n i,\n one_op['type'],\n one_op['input_shape'],\n one_op['out_shape'],\n int(one_op['PARAMs']),\n int(one_op['FLOPs']),\n ]\n if i == 0:\n input_shape = one_op['input_shape']\n summary_table.add_row(table_row)\n total_params.append(int(one_op['PARAMs']))\n total_flops.append(int(one_op['FLOPs']))\n total_outshape.append(one_op['out_shape'])\n\n total['params'] = total_params\n total['flops'] = total_flops\n total['out'] = total_outshape\n total['gpu'] = cal_gpu_memory(total, input_shape, batch_size, bits_per_tensor)\n return summary_table, total\n\ndef cal_gpu_memory(total, input_shape, batch_size, bits_per_tensor):\n gpu_input = prod(input_shape)\n gpu_param = total['params']\n gpu_backward_forward = sum([prod(ele) for ele in total['out']])\n gpu = (gpu_input + gpu_param + gpu_backward_forward)*(batch_size*bits_per_tensor/8) # bytes计数\n return gpu\n\n\ndef _print_summary(summary_table, total, unsupported):\n '''\n Print all the summary on terminal.\n Args:\n summary_table: summary report format\n total: sum param and flops\n '''\n parmas = total['params']\n flops = total['flops']\n gpu = total['gpu']\n print(\n \"Notice: \\n now supported ops include [Conv, DepthwiseConv, FC(mul), BatchNorm, Pool, Activation(sigmoid, tanh, relu, leaky_relu, prelu), Elementwise operations]\"\n )\n print(\"Unsupported operator types:\", unsupported)\n print(summary_table)\n print('Total PARAMs: {}({:.4f}M)'.format(\n sum(parmas), sum(parmas) / (10**6)))\n print('Total FLOPs: {}({:.2f}G)'.format(sum(flops), sum(flops) / 10**9))\n print('GPU Memory Usage: {}({:.2f}GB)'.format(sum(gpu), sum(gpu) / 10**9))\n", "<docstring token>\nfrom collections import OrderedDict\nfrom prettytable import PrettyTable\nfrom numpy import prod\n\n\ndef summary(main_prog, batch_size, bits_per_tensor):\n \"\"\"\n It can summary model's PARAMS, FLOPs until now.\n It support common operator like conv, fc, pool, relu, sigmoid, bn etc. \n Args:\n main_prog: main program \n Returns:\n print summary on terminal\n \"\"\"\n blocks = main_prog.blocks\n collected_ops_list = []\n unsupported = set()\n block_vars = {}\n for block in blocks:\n block_vars = {**block_vars, **block.vars}\n block_ops = [ele for block in blocks for ele in block.ops]\n for one_op in block_ops:\n op_info = OrderedDict()\n spf_res = _summary_model(block_vars, one_op)\n if spf_res is None:\n continue\n if type(spf_res) == str:\n unsupported.add(one_op.type)\n continue\n op_info['type'] = one_op.type\n op_info['input_shape'] = spf_res[0][1:]\n op_info['out_shape'] = spf_res[1][1:]\n op_info['PARAMs'] = spf_res[2]\n op_info['FLOPs'] = spf_res[3]\n collected_ops_list.append(op_info)\n summary_table, total = _format_summary(collected_ops_list, batch_size,\n bits_per_tensor)\n _print_summary(summary_table, total, unsupported)\n\n\ndef _summary_model(block_vars, one_op):\n \"\"\"\n Compute operator's params and flops.\n Args:\n block_vars: all vars of one block\n one_op: one operator to count\n Returns:\n in_data_shape: one operator's input data shape\n out_data_shape: one operator's output data shape\n params: one operator's PARAMs \n flops: : one operator's FLOPs\n \"\"\"\n if one_op.type in ['conv2d', 'depthwise_conv2d']:\n k_arg_shape = block_vars[one_op.input('Filter')[0]].shape\n in_data_shape = block_vars[one_op.input('Input')[0]].shape\n out_data_shape = block_vars[one_op.output('Output')[0]].shape\n c_out, c_in, k_h, k_w = k_arg_shape\n _, c_out_, h_out, w_out = out_data_shape\n assert c_out == c_out_, 'shape error!'\n k_groups = one_op.attr('groups')\n kernel_ops = k_h * k_w * (c_in / k_groups)\n bias_ops = 0 if one_op.input('Bias') == [] else 1\n params = c_out * (kernel_ops + bias_ops)\n flops = h_out * w_out * c_out * (kernel_ops + bias_ops)\n flops = 2 * flops\n elif one_op.type == 'pool2d':\n in_data_shape = block_vars[one_op.input('X')[0]].shape\n out_data_shape = block_vars[one_op.output('Out')[0]].shape\n _, c_out, h_out, w_out = out_data_shape\n k_size = one_op.attr('ksize')\n params = 0\n flops = h_out * w_out * c_out * (k_size[0] * k_size[1])\n elif one_op.type == 'mul':\n k_arg_shape = block_vars[one_op.input('Y')[0]].shape\n in_data_shape = block_vars[one_op.input('X')[0]].shape\n out_data_shape = block_vars[one_op.output('Out')[0]].shape\n if 'fc' not in one_op.output('Out')[0]:\n return None\n k_in, k_out = k_arg_shape\n params = k_in * k_out + 1\n flops = k_in * k_out\n elif one_op.type in ['sigmoid', 'tanh', 'relu', 'leaky_relu', 'prelu']:\n in_data_shape = block_vars[one_op.input('X')[0]].shape\n out_data_shape = block_vars[one_op.output('Out')[0]].shape\n params = 0\n if one_op.type == 'prelu':\n params = 1\n flops = 1\n for one_dim in in_data_shape:\n if one_dim != -1:\n flops *= one_dim\n elif one_op.type == 'batch_norm':\n in_data_shape = block_vars[one_op.input('X')[0]].shape\n out_data_shape = block_vars[one_op.output('Y')[0]].shape\n _, c_in, h_out, w_out = in_data_shape\n params = c_in * 2\n flops = h_out * w_out * c_in * 2\n else:\n return one_op.type\n return in_data_shape, out_data_shape, params, flops\n\n\ndef _format_summary(collected_ops_list, batch_size, bits_per_tensor):\n \"\"\"\n Format summary report.\n Args:\n collected_ops_list: the collected operator with summary\n Returns:\n summary_table: summary report format\n total: sum param and flops\n \"\"\"\n summary_table = PrettyTable(['No.', 'TYPE', 'INPUT', 'OUTPUT', 'PARAMs',\n 'FLOPs'])\n summary_table.align = 'r'\n total = {}\n total_params = []\n total_flops = []\n total_outshape = []\n for i, one_op in enumerate(collected_ops_list):\n table_row = [i, one_op['type'], one_op['input_shape'], one_op[\n 'out_shape'], int(one_op['PARAMs']), int(one_op['FLOPs'])]\n if i == 0:\n input_shape = one_op['input_shape']\n summary_table.add_row(table_row)\n total_params.append(int(one_op['PARAMs']))\n total_flops.append(int(one_op['FLOPs']))\n total_outshape.append(one_op['out_shape'])\n total['params'] = total_params\n total['flops'] = total_flops\n total['out'] = total_outshape\n total['gpu'] = cal_gpu_memory(total, input_shape, batch_size,\n bits_per_tensor)\n return summary_table, total\n\n\ndef cal_gpu_memory(total, input_shape, batch_size, bits_per_tensor):\n gpu_input = prod(input_shape)\n gpu_param = total['params']\n gpu_backward_forward = sum([prod(ele) for ele in total['out']])\n gpu = (gpu_input + gpu_param + gpu_backward_forward) * (batch_size *\n bits_per_tensor / 8)\n return gpu\n\n\ndef _print_summary(summary_table, total, unsupported):\n \"\"\"\n Print all the summary on terminal.\n Args:\n summary_table: summary report format\n total: sum param and flops\n \"\"\"\n parmas = total['params']\n flops = total['flops']\n gpu = total['gpu']\n print(\n \"\"\"Notice: \n now supported ops include [Conv, DepthwiseConv, FC(mul), BatchNorm, Pool, Activation(sigmoid, tanh, relu, leaky_relu, prelu), Elementwise operations]\"\"\"\n )\n print('Unsupported operator types:', unsupported)\n print(summary_table)\n print('Total PARAMs: {}({:.4f}M)'.format(sum(parmas), sum(parmas) / 10 **\n 6))\n print('Total FLOPs: {}({:.2f}G)'.format(sum(flops), sum(flops) / 10 ** 9))\n print('GPU Memory Usage: {}({:.2f}GB)'.format(sum(gpu), sum(gpu) / 10 ** 9)\n )\n", "<docstring token>\n<import token>\n\n\ndef summary(main_prog, batch_size, bits_per_tensor):\n \"\"\"\n It can summary model's PARAMS, FLOPs until now.\n It support common operator like conv, fc, pool, relu, sigmoid, bn etc. \n Args:\n main_prog: main program \n Returns:\n print summary on terminal\n \"\"\"\n blocks = main_prog.blocks\n collected_ops_list = []\n unsupported = set()\n block_vars = {}\n for block in blocks:\n block_vars = {**block_vars, **block.vars}\n block_ops = [ele for block in blocks for ele in block.ops]\n for one_op in block_ops:\n op_info = OrderedDict()\n spf_res = _summary_model(block_vars, one_op)\n if spf_res is None:\n continue\n if type(spf_res) == str:\n unsupported.add(one_op.type)\n continue\n op_info['type'] = one_op.type\n op_info['input_shape'] = spf_res[0][1:]\n op_info['out_shape'] = spf_res[1][1:]\n op_info['PARAMs'] = spf_res[2]\n op_info['FLOPs'] = spf_res[3]\n collected_ops_list.append(op_info)\n summary_table, total = _format_summary(collected_ops_list, batch_size,\n bits_per_tensor)\n _print_summary(summary_table, total, unsupported)\n\n\ndef _summary_model(block_vars, one_op):\n \"\"\"\n Compute operator's params and flops.\n Args:\n block_vars: all vars of one block\n one_op: one operator to count\n Returns:\n in_data_shape: one operator's input data shape\n out_data_shape: one operator's output data shape\n params: one operator's PARAMs \n flops: : one operator's FLOPs\n \"\"\"\n if one_op.type in ['conv2d', 'depthwise_conv2d']:\n k_arg_shape = block_vars[one_op.input('Filter')[0]].shape\n in_data_shape = block_vars[one_op.input('Input')[0]].shape\n out_data_shape = block_vars[one_op.output('Output')[0]].shape\n c_out, c_in, k_h, k_w = k_arg_shape\n _, c_out_, h_out, w_out = out_data_shape\n assert c_out == c_out_, 'shape error!'\n k_groups = one_op.attr('groups')\n kernel_ops = k_h * k_w * (c_in / k_groups)\n bias_ops = 0 if one_op.input('Bias') == [] else 1\n params = c_out * (kernel_ops + bias_ops)\n flops = h_out * w_out * c_out * (kernel_ops + bias_ops)\n flops = 2 * flops\n elif one_op.type == 'pool2d':\n in_data_shape = block_vars[one_op.input('X')[0]].shape\n out_data_shape = block_vars[one_op.output('Out')[0]].shape\n _, c_out, h_out, w_out = out_data_shape\n k_size = one_op.attr('ksize')\n params = 0\n flops = h_out * w_out * c_out * (k_size[0] * k_size[1])\n elif one_op.type == 'mul':\n k_arg_shape = block_vars[one_op.input('Y')[0]].shape\n in_data_shape = block_vars[one_op.input('X')[0]].shape\n out_data_shape = block_vars[one_op.output('Out')[0]].shape\n if 'fc' not in one_op.output('Out')[0]:\n return None\n k_in, k_out = k_arg_shape\n params = k_in * k_out + 1\n flops = k_in * k_out\n elif one_op.type in ['sigmoid', 'tanh', 'relu', 'leaky_relu', 'prelu']:\n in_data_shape = block_vars[one_op.input('X')[0]].shape\n out_data_shape = block_vars[one_op.output('Out')[0]].shape\n params = 0\n if one_op.type == 'prelu':\n params = 1\n flops = 1\n for one_dim in in_data_shape:\n if one_dim != -1:\n flops *= one_dim\n elif one_op.type == 'batch_norm':\n in_data_shape = block_vars[one_op.input('X')[0]].shape\n out_data_shape = block_vars[one_op.output('Y')[0]].shape\n _, c_in, h_out, w_out = in_data_shape\n params = c_in * 2\n flops = h_out * w_out * c_in * 2\n else:\n return one_op.type\n return in_data_shape, out_data_shape, params, flops\n\n\ndef _format_summary(collected_ops_list, batch_size, bits_per_tensor):\n \"\"\"\n Format summary report.\n Args:\n collected_ops_list: the collected operator with summary\n Returns:\n summary_table: summary report format\n total: sum param and flops\n \"\"\"\n summary_table = PrettyTable(['No.', 'TYPE', 'INPUT', 'OUTPUT', 'PARAMs',\n 'FLOPs'])\n summary_table.align = 'r'\n total = {}\n total_params = []\n total_flops = []\n total_outshape = []\n for i, one_op in enumerate(collected_ops_list):\n table_row = [i, one_op['type'], one_op['input_shape'], one_op[\n 'out_shape'], int(one_op['PARAMs']), int(one_op['FLOPs'])]\n if i == 0:\n input_shape = one_op['input_shape']\n summary_table.add_row(table_row)\n total_params.append(int(one_op['PARAMs']))\n total_flops.append(int(one_op['FLOPs']))\n total_outshape.append(one_op['out_shape'])\n total['params'] = total_params\n total['flops'] = total_flops\n total['out'] = total_outshape\n total['gpu'] = cal_gpu_memory(total, input_shape, batch_size,\n bits_per_tensor)\n return summary_table, total\n\n\ndef cal_gpu_memory(total, input_shape, batch_size, bits_per_tensor):\n gpu_input = prod(input_shape)\n gpu_param = total['params']\n gpu_backward_forward = sum([prod(ele) for ele in total['out']])\n gpu = (gpu_input + gpu_param + gpu_backward_forward) * (batch_size *\n bits_per_tensor / 8)\n return gpu\n\n\ndef _print_summary(summary_table, total, unsupported):\n \"\"\"\n Print all the summary on terminal.\n Args:\n summary_table: summary report format\n total: sum param and flops\n \"\"\"\n parmas = total['params']\n flops = total['flops']\n gpu = total['gpu']\n print(\n \"\"\"Notice: \n now supported ops include [Conv, DepthwiseConv, FC(mul), BatchNorm, Pool, Activation(sigmoid, tanh, relu, leaky_relu, prelu), Elementwise operations]\"\"\"\n )\n print('Unsupported operator types:', unsupported)\n print(summary_table)\n print('Total PARAMs: {}({:.4f}M)'.format(sum(parmas), sum(parmas) / 10 **\n 6))\n print('Total FLOPs: {}({:.2f}G)'.format(sum(flops), sum(flops) / 10 ** 9))\n print('GPU Memory Usage: {}({:.2f}GB)'.format(sum(gpu), sum(gpu) / 10 ** 9)\n )\n", "<docstring token>\n<import token>\n\n\ndef summary(main_prog, batch_size, bits_per_tensor):\n \"\"\"\n It can summary model's PARAMS, FLOPs until now.\n It support common operator like conv, fc, pool, relu, sigmoid, bn etc. \n Args:\n main_prog: main program \n Returns:\n print summary on terminal\n \"\"\"\n blocks = main_prog.blocks\n collected_ops_list = []\n unsupported = set()\n block_vars = {}\n for block in blocks:\n block_vars = {**block_vars, **block.vars}\n block_ops = [ele for block in blocks for ele in block.ops]\n for one_op in block_ops:\n op_info = OrderedDict()\n spf_res = _summary_model(block_vars, one_op)\n if spf_res is None:\n continue\n if type(spf_res) == str:\n unsupported.add(one_op.type)\n continue\n op_info['type'] = one_op.type\n op_info['input_shape'] = spf_res[0][1:]\n op_info['out_shape'] = spf_res[1][1:]\n op_info['PARAMs'] = spf_res[2]\n op_info['FLOPs'] = spf_res[3]\n collected_ops_list.append(op_info)\n summary_table, total = _format_summary(collected_ops_list, batch_size,\n bits_per_tensor)\n _print_summary(summary_table, total, unsupported)\n\n\n<function token>\n\n\ndef _format_summary(collected_ops_list, batch_size, bits_per_tensor):\n \"\"\"\n Format summary report.\n Args:\n collected_ops_list: the collected operator with summary\n Returns:\n summary_table: summary report format\n total: sum param and flops\n \"\"\"\n summary_table = PrettyTable(['No.', 'TYPE', 'INPUT', 'OUTPUT', 'PARAMs',\n 'FLOPs'])\n summary_table.align = 'r'\n total = {}\n total_params = []\n total_flops = []\n total_outshape = []\n for i, one_op in enumerate(collected_ops_list):\n table_row = [i, one_op['type'], one_op['input_shape'], one_op[\n 'out_shape'], int(one_op['PARAMs']), int(one_op['FLOPs'])]\n if i == 0:\n input_shape = one_op['input_shape']\n summary_table.add_row(table_row)\n total_params.append(int(one_op['PARAMs']))\n total_flops.append(int(one_op['FLOPs']))\n total_outshape.append(one_op['out_shape'])\n total['params'] = total_params\n total['flops'] = total_flops\n total['out'] = total_outshape\n total['gpu'] = cal_gpu_memory(total, input_shape, batch_size,\n bits_per_tensor)\n return summary_table, total\n\n\ndef cal_gpu_memory(total, input_shape, batch_size, bits_per_tensor):\n gpu_input = prod(input_shape)\n gpu_param = total['params']\n gpu_backward_forward = sum([prod(ele) for ele in total['out']])\n gpu = (gpu_input + gpu_param + gpu_backward_forward) * (batch_size *\n bits_per_tensor / 8)\n return gpu\n\n\ndef _print_summary(summary_table, total, unsupported):\n \"\"\"\n Print all the summary on terminal.\n Args:\n summary_table: summary report format\n total: sum param and flops\n \"\"\"\n parmas = total['params']\n flops = total['flops']\n gpu = total['gpu']\n print(\n \"\"\"Notice: \n now supported ops include [Conv, DepthwiseConv, FC(mul), BatchNorm, Pool, Activation(sigmoid, tanh, relu, leaky_relu, prelu), Elementwise operations]\"\"\"\n )\n print('Unsupported operator types:', unsupported)\n print(summary_table)\n print('Total PARAMs: {}({:.4f}M)'.format(sum(parmas), sum(parmas) / 10 **\n 6))\n print('Total FLOPs: {}({:.2f}G)'.format(sum(flops), sum(flops) / 10 ** 9))\n print('GPU Memory Usage: {}({:.2f}GB)'.format(sum(gpu), sum(gpu) / 10 ** 9)\n )\n", "<docstring token>\n<import token>\n\n\ndef summary(main_prog, batch_size, bits_per_tensor):\n \"\"\"\n It can summary model's PARAMS, FLOPs until now.\n It support common operator like conv, fc, pool, relu, sigmoid, bn etc. \n Args:\n main_prog: main program \n Returns:\n print summary on terminal\n \"\"\"\n blocks = main_prog.blocks\n collected_ops_list = []\n unsupported = set()\n block_vars = {}\n for block in blocks:\n block_vars = {**block_vars, **block.vars}\n block_ops = [ele for block in blocks for ele in block.ops]\n for one_op in block_ops:\n op_info = OrderedDict()\n spf_res = _summary_model(block_vars, one_op)\n if spf_res is None:\n continue\n if type(spf_res) == str:\n unsupported.add(one_op.type)\n continue\n op_info['type'] = one_op.type\n op_info['input_shape'] = spf_res[0][1:]\n op_info['out_shape'] = spf_res[1][1:]\n op_info['PARAMs'] = spf_res[2]\n op_info['FLOPs'] = spf_res[3]\n collected_ops_list.append(op_info)\n summary_table, total = _format_summary(collected_ops_list, batch_size,\n bits_per_tensor)\n _print_summary(summary_table, total, unsupported)\n\n\n<function token>\n<function token>\n\n\ndef cal_gpu_memory(total, input_shape, batch_size, bits_per_tensor):\n gpu_input = prod(input_shape)\n gpu_param = total['params']\n gpu_backward_forward = sum([prod(ele) for ele in total['out']])\n gpu = (gpu_input + gpu_param + gpu_backward_forward) * (batch_size *\n bits_per_tensor / 8)\n return gpu\n\n\ndef _print_summary(summary_table, total, unsupported):\n \"\"\"\n Print all the summary on terminal.\n Args:\n summary_table: summary report format\n total: sum param and flops\n \"\"\"\n parmas = total['params']\n flops = total['flops']\n gpu = total['gpu']\n print(\n \"\"\"Notice: \n now supported ops include [Conv, DepthwiseConv, FC(mul), BatchNorm, Pool, Activation(sigmoid, tanh, relu, leaky_relu, prelu), Elementwise operations]\"\"\"\n )\n print('Unsupported operator types:', unsupported)\n print(summary_table)\n print('Total PARAMs: {}({:.4f}M)'.format(sum(parmas), sum(parmas) / 10 **\n 6))\n print('Total FLOPs: {}({:.2f}G)'.format(sum(flops), sum(flops) / 10 ** 9))\n print('GPU Memory Usage: {}({:.2f}GB)'.format(sum(gpu), sum(gpu) / 10 ** 9)\n )\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef cal_gpu_memory(total, input_shape, batch_size, bits_per_tensor):\n gpu_input = prod(input_shape)\n gpu_param = total['params']\n gpu_backward_forward = sum([prod(ele) for ele in total['out']])\n gpu = (gpu_input + gpu_param + gpu_backward_forward) * (batch_size *\n bits_per_tensor / 8)\n return gpu\n\n\ndef _print_summary(summary_table, total, unsupported):\n \"\"\"\n Print all the summary on terminal.\n Args:\n summary_table: summary report format\n total: sum param and flops\n \"\"\"\n parmas = total['params']\n flops = total['flops']\n gpu = total['gpu']\n print(\n \"\"\"Notice: \n now supported ops include [Conv, DepthwiseConv, FC(mul), BatchNorm, Pool, Activation(sigmoid, tanh, relu, leaky_relu, prelu), Elementwise operations]\"\"\"\n )\n print('Unsupported operator types:', unsupported)\n print(summary_table)\n print('Total PARAMs: {}({:.4f}M)'.format(sum(parmas), sum(parmas) / 10 **\n 6))\n print('Total FLOPs: {}({:.2f}G)'.format(sum(flops), sum(flops) / 10 ** 9))\n print('GPU Memory Usage: {}({:.2f}GB)'.format(sum(gpu), sum(gpu) / 10 ** 9)\n )\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef cal_gpu_memory(total, input_shape, batch_size, bits_per_tensor):\n gpu_input = prod(input_shape)\n gpu_param = total['params']\n gpu_backward_forward = sum([prod(ele) for ele in total['out']])\n gpu = (gpu_input + gpu_param + gpu_backward_forward) * (batch_size *\n bits_per_tensor / 8)\n return gpu\n\n\n<function token>\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,552
0d1b1ad9fc12e5d78ea5f8ee838e549def01b3f0
# -*- coding: utf-8 -*- """ Created on Fri Nov 2 17:31:33 2018 @author: Wahba """ print('Enter your interval') bgn=int(input()) end=int(input()) Armsttrong_arr = [] for i in range(bgn,end+1): stri = str(i) sum = 0 for j in range (len(stri)): sum=sum+int(stri[j])**len(stri) if sum == i : Armsttrong_arr.append(i) print( Armsttrong_arr)
[ "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Fri Nov 2 17:31:33 2018\n\n@author: Wahba\n\"\"\"\n\nprint('Enter your interval')\nbgn=int(input())\nend=int(input())\nArmsttrong_arr = []\nfor i in range(bgn,end+1):\n stri = str(i)\n sum = 0\n for j in range (len(stri)):\n sum=sum+int(stri[j])**len(stri)\n if sum == i :\n Armsttrong_arr.append(i)\nprint( Armsttrong_arr)", "<docstring token>\nprint('Enter your interval')\nbgn = int(input())\nend = int(input())\nArmsttrong_arr = []\nfor i in range(bgn, end + 1):\n stri = str(i)\n sum = 0\n for j in range(len(stri)):\n sum = sum + int(stri[j]) ** len(stri)\n if sum == i:\n Armsttrong_arr.append(i)\nprint(Armsttrong_arr)\n", "<docstring token>\nprint('Enter your interval')\n<assignment token>\nfor i in range(bgn, end + 1):\n stri = str(i)\n sum = 0\n for j in range(len(stri)):\n sum = sum + int(stri[j]) ** len(stri)\n if sum == i:\n Armsttrong_arr.append(i)\nprint(Armsttrong_arr)\n", "<docstring token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,553
8db04f5ca90683c5c7eb2aff9b7b82c03d9c6110
# -*- coding: utf-8 -*- import unittest from mahjong.ai.agari import Agari from utils.tests import TestMixin class AgariTestCase(unittest.TestCase, TestMixin): def test_is_agari(self): agari = Agari() tiles = self._string_to_136_array(sou='123456789', pin='123', man='33') self.assertTrue(agari.is_agari(self._to_34_array(tiles))) tiles = self._string_to_136_array(sou='123456789', pin='11123') self.assertTrue(agari.is_agari(self._to_34_array(tiles))) tiles = self._string_to_136_array(sou='123456789', honors='11777') self.assertTrue(agari.is_agari(self._to_34_array(tiles))) tiles = self._string_to_136_array(sou='12345556778899') self.assertTrue(agari.is_agari(self._to_34_array(tiles))) tiles = self._string_to_136_array(sou='11123456788999') self.assertTrue(agari.is_agari(self._to_34_array(tiles))) tiles = self._string_to_136_array(sou='233334', pin='789', man='345', honors='55') self.assertTrue(agari.is_agari(self._to_34_array(tiles))) def test_is_not_agari(self): agari = Agari() tiles = self._string_to_136_array(sou='123456789', pin='12345') self.assertFalse(agari.is_agari(self._to_34_array(tiles))) tiles = self._string_to_136_array(sou='111222444', pin='11145') self.assertFalse(agari.is_agari(self._to_34_array(tiles))) tiles = self._string_to_136_array(sou='11122233356888') self.assertFalse(agari.is_agari(self._to_34_array(tiles))) def test_is_chitoitsu_agari(self): agari = Agari() tiles = self._string_to_136_array(sou='1133557799', pin='1199') self.assertTrue(agari.is_agari(self._to_34_array(tiles))) tiles = self._string_to_136_array(sou='2244', pin='1199', man='11', honors='2277') self.assertTrue(agari.is_agari(self._to_34_array(tiles))) tiles = self._string_to_136_array(man='11223344556677') self.assertTrue(agari.is_agari(self._to_34_array(tiles))) def test_is_kokushi_musou_agari(self): agari = Agari() tiles = self._string_to_136_array(sou='19', pin='19', man='199', honors='1234567') self.assertTrue(agari.is_agari(self._to_34_array(tiles))) tiles = self._string_to_136_array(sou='19', pin='19', man='19', honors='11234567') self.assertTrue(agari.is_agari(self._to_34_array(tiles))) tiles = self._string_to_136_array(sou='19', pin='19', man='19', honors='12345677') self.assertTrue(agari.is_agari(self._to_34_array(tiles))) tiles = self._string_to_136_array(sou='129', pin='19', man='19', honors='1234567') self.assertFalse(agari.is_agari(self._to_34_array(tiles))) tiles = self._string_to_136_array(sou='19', pin='19', man='19', honors='11134567') self.assertFalse(agari.is_agari(self._to_34_array(tiles))) def test_is_agari_and_open_hand(self): agari = Agari() tiles = self._string_to_136_array(sou='23455567', pin='222', man='345') open_sets = [self._string_to_open_34_set(man='345'), self._string_to_open_34_set(sou='555')] self.assertFalse(agari.is_agari(self._to_34_array(tiles), open_sets))
[ "# -*- coding: utf-8 -*-\nimport unittest\n\nfrom mahjong.ai.agari import Agari\nfrom utils.tests import TestMixin\n\n\nclass AgariTestCase(unittest.TestCase, TestMixin):\n\n def test_is_agari(self):\n agari = Agari()\n\n tiles = self._string_to_136_array(sou='123456789', pin='123', man='33')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n tiles = self._string_to_136_array(sou='123456789', pin='11123')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n tiles = self._string_to_136_array(sou='123456789', honors='11777')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n tiles = self._string_to_136_array(sou='12345556778899')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n tiles = self._string_to_136_array(sou='11123456788999')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n tiles = self._string_to_136_array(sou='233334', pin='789', man='345', honors='55')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_not_agari(self):\n agari = Agari()\n\n tiles = self._string_to_136_array(sou='123456789', pin='12345')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n\n tiles = self._string_to_136_array(sou='111222444', pin='11145')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n\n tiles = self._string_to_136_array(sou='11122233356888')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_chitoitsu_agari(self):\n agari = Agari()\n\n tiles = self._string_to_136_array(sou='1133557799', pin='1199')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n tiles = self._string_to_136_array(sou='2244', pin='1199', man='11', honors='2277')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n tiles = self._string_to_136_array(man='11223344556677')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_kokushi_musou_agari(self):\n agari = Agari()\n\n tiles = self._string_to_136_array(sou='19', pin='19', man='199', honors='1234567')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n tiles = self._string_to_136_array(sou='19', pin='19', man='19', honors='11234567')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n tiles = self._string_to_136_array(sou='19', pin='19', man='19', honors='12345677')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n tiles = self._string_to_136_array(sou='129', pin='19', man='19', honors='1234567')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n\n tiles = self._string_to_136_array(sou='19', pin='19', man='19', honors='11134567')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_agari_and_open_hand(self):\n agari = Agari()\n\n tiles = self._string_to_136_array(sou='23455567', pin='222', man='345')\n open_sets = [self._string_to_open_34_set(man='345'), self._string_to_open_34_set(sou='555')]\n self.assertFalse(agari.is_agari(self._to_34_array(tiles), open_sets))\n", "import unittest\nfrom mahjong.ai.agari import Agari\nfrom utils.tests import TestMixin\n\n\nclass AgariTestCase(unittest.TestCase, TestMixin):\n\n def test_is_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='123456789', pin='123', man='33')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='123456789', pin='11123')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='123456789', honors='11777')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='12345556778899')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='11123456788999')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='233334', pin='789', man=\n '345', honors='55')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_not_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='123456789', pin='12345')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='111222444', pin='11145')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='11122233356888')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_chitoitsu_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='1133557799', pin='1199')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='2244', pin='1199', man='11',\n honors='2277')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(man='11223344556677')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_kokushi_musou_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='19', pin='19', man='199',\n honors='1234567')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='19', pin='19', man='19',\n honors='11234567')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='19', pin='19', man='19',\n honors='12345677')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='129', pin='19', man='19',\n honors='1234567')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='19', pin='19', man='19',\n honors='11134567')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_agari_and_open_hand(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='23455567', pin='222', man='345')\n open_sets = [self._string_to_open_34_set(man='345'), self.\n _string_to_open_34_set(sou='555')]\n self.assertFalse(agari.is_agari(self._to_34_array(tiles), open_sets))\n", "<import token>\n\n\nclass AgariTestCase(unittest.TestCase, TestMixin):\n\n def test_is_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='123456789', pin='123', man='33')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='123456789', pin='11123')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='123456789', honors='11777')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='12345556778899')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='11123456788999')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='233334', pin='789', man=\n '345', honors='55')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_not_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='123456789', pin='12345')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='111222444', pin='11145')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='11122233356888')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_chitoitsu_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='1133557799', pin='1199')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='2244', pin='1199', man='11',\n honors='2277')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(man='11223344556677')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_kokushi_musou_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='19', pin='19', man='199',\n honors='1234567')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='19', pin='19', man='19',\n honors='11234567')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='19', pin='19', man='19',\n honors='12345677')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='129', pin='19', man='19',\n honors='1234567')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='19', pin='19', man='19',\n honors='11134567')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_agari_and_open_hand(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='23455567', pin='222', man='345')\n open_sets = [self._string_to_open_34_set(man='345'), self.\n _string_to_open_34_set(sou='555')]\n self.assertFalse(agari.is_agari(self._to_34_array(tiles), open_sets))\n", "<import token>\n\n\nclass AgariTestCase(unittest.TestCase, TestMixin):\n\n def test_is_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='123456789', pin='123', man='33')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='123456789', pin='11123')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='123456789', honors='11777')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='12345556778899')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='11123456788999')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='233334', pin='789', man=\n '345', honors='55')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_not_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='123456789', pin='12345')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='111222444', pin='11145')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='11122233356888')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_chitoitsu_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='1133557799', pin='1199')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='2244', pin='1199', man='11',\n honors='2277')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(man='11223344556677')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_kokushi_musou_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='19', pin='19', man='199',\n honors='1234567')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='19', pin='19', man='19',\n honors='11234567')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='19', pin='19', man='19',\n honors='12345677')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='129', pin='19', man='19',\n honors='1234567')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='19', pin='19', man='19',\n honors='11134567')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n <function token>\n", "<import token>\n\n\nclass AgariTestCase(unittest.TestCase, TestMixin):\n\n def test_is_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='123456789', pin='123', man='33')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='123456789', pin='11123')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='123456789', honors='11777')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='12345556778899')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='11123456788999')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='233334', pin='789', man=\n '345', honors='55')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_not_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='123456789', pin='12345')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='111222444', pin='11145')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='11122233356888')\n self.assertFalse(agari.is_agari(self._to_34_array(tiles)))\n\n def test_is_chitoitsu_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='1133557799', pin='1199')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='2244', pin='1199', man='11',\n honors='2277')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(man='11223344556677')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n <function token>\n <function token>\n", "<import token>\n\n\nclass AgariTestCase(unittest.TestCase, TestMixin):\n\n def test_is_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='123456789', pin='123', man='33')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='123456789', pin='11123')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='123456789', honors='11777')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='12345556778899')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='11123456788999')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='233334', pin='789', man=\n '345', honors='55')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n <function token>\n\n def test_is_chitoitsu_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='1133557799', pin='1199')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='2244', pin='1199', man='11',\n honors='2277')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(man='11223344556677')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n <function token>\n <function token>\n", "<import token>\n\n\nclass AgariTestCase(unittest.TestCase, TestMixin):\n <function token>\n <function token>\n\n def test_is_chitoitsu_agari(self):\n agari = Agari()\n tiles = self._string_to_136_array(sou='1133557799', pin='1199')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(sou='2244', pin='1199', man='11',\n honors='2277')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n tiles = self._string_to_136_array(man='11223344556677')\n self.assertTrue(agari.is_agari(self._to_34_array(tiles)))\n <function token>\n <function token>\n", "<import token>\n\n\nclass AgariTestCase(unittest.TestCase, TestMixin):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,554
7886ca06f8d960a6f601c10cce5a1901f2ad28be
from sklearn.datasets import load_files from keras.utils import np_utils import numpy as np from glob import glob def load_dataset(path): data = load_files(path) ship_files = np.array(data['filenames']) ship_targets = np_utils.to_categorical(np.array(data['target']), 133) return ship_files, ship_targets test_files, test_targets = load_dataset('shipImages/test') ship_names = [item[20:-1] for item in sorted(glob("shipImages/train/*/"))] from keras.preprocessing import image from tqdm import tqdm def path_to_tensor(img_path): # loads RGB image as PIL.Image.Image type img = image.load_img(img_path, target_size=(224, 224)) # convert PIL.Image.Image type to 3D tensor with shape (224, 224, 3) x = image.img_to_array(img) # convert 3D tensor to 4D tensor with shape (1, 224, 224, 3) and return 4D tensor return np.expand_dims(x, axis=0) def paths_to_tensor(img_paths): list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)] return np.vstack(list_of_tensors) from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True # pre-process the data for Keras test_tensors = paths_to_tensor(test_files).astype('float32')/255 ########################### # from keras.applications.resnet50 import ResNet50 # from keras.applications.resnet50 import preprocess_input as preprocess_input_resnet50 # def extract_Resnet50(file_paths): # tensors = paths_to_tensor(file_paths).astype('float32') # preprocessed_input = preprocess_input_resnet50(tensors) # return ResNet50(weights='imagenet', include_top=False).predict(preprocessed_input, batch_size=32) # test_resnet50 = extract_Resnet50(test_files) # print("Resnet50 shape", test_resnet50.shape[1:]) # from keras.layers.pooling import GlobalAveragePooling2D # from keras.layers.merge import Concatenate # from keras.layers import Input, Dense # from keras.layers.core import Dropout, Activation # from keras.callbacks import ModelCheckpoint # from keras.layers.normalization import BatchNormalization # from keras.models import Model # def input_branch(input_shape=None): # size = int(input_shape[2] / 4) # branch_input = Input(shape=input_shape) # branch = GlobalAveragePooling2D()(branch_input) # branch = Dense(size, use_bias=False, kernel_initializer='uniform')(branch) # branch = BatchNormalization()(branch) # branch = Activation("relu")(branch) # return branch, branch_input # resnet50_branch, resnet50_input = input_branch(input_shape=(1, 1, 2048)) # net = Dropout(0.3)(resnet50_branch) # net = Dense(640, use_bias=False, kernel_initializer='uniform')(net) # net = BatchNormalization()(net) # net = Activation("relu")(net) # net = Dropout(0.3)(net) # net = Dense(133, kernel_initializer='uniform', activation="softmax")(net) # model = Model(inputs=[resnet50_input], outputs=[net]) # model.summary() # model.compile(loss='categorical_crossentropy', optimizer="rmsprop", metrics=['accuracy']) # model.load_weights('ship_models/bestmodel.hdf5') from keras.applications.resnet50 import ResNet50 from keras.applications.resnet50 import preprocess_input as preprocess_input_resnet50 def extract_Resnet50(file_paths): tensors = paths_to_tensor(file_paths).astype('float32') preprocessed_input = preprocess_input_resnet50(tensors) return ResNet50(weights='imagenet', include_top=False).predict(preprocessed_input, batch_size=32) # ## Extract feature test_resnet50 = extract_Resnet50(test_files) print("Resnet50 shape", test_resnet50.shape[1:]) # ## Retrain the last layers for our data from keras.layers.pooling import GlobalAveragePooling2D from keras.layers.merge import Concatenate from keras.layers import Input, Dense from keras.layers.core import Dropout, Activation from keras.callbacks import ModelCheckpoint from keras.layers.normalization import BatchNormalization from keras.models import Model def input_branch(input_shape=None): size = int(input_shape[2] / 4) branch_input = Input(shape=input_shape) branch = GlobalAveragePooling2D()(branch_input) branch = Dense(size, use_bias=False, kernel_initializer='uniform')(branch) branch = BatchNormalization()(branch) branch = Activation("relu")(branch) return branch, branch_input resnet50_branch, resnet50_input = input_branch(input_shape=(1, 1, 2048)) net = Dropout(0.3)(resnet50_branch) net = Dense(640, use_bias=False, kernel_initializer='uniform')(net) net = BatchNormalization()(net) net = Activation("relu")(net) net = Dropout(0.3)(net) net = Dense(133, kernel_initializer='uniform', activation="softmax")(net) model = Model(inputs=[resnet50_input], outputs=[net]) model.summary() # ## Test the model model.load_weights('ship_models/bestmodel.hdf5') from sklearn.metrics import accuracy_score predictions = model.predict([test_resnet50]) class_predictions = [np.argmax(prediction) for prediction in predictions] class_true_labels = [np.argmax(true_label) for true_label in test_targets] print('Test accuracy: %.4f%%' % (accuracy_score(class_true_labels, class_predictions) * 100)) import shutil import pathlib import cv2 import os def save_test_results(test_files, true_path, false_path): # shutil.rmtree(true_path) # shutil.rmtree(false_path) pathlib.Path(true_path).mkdir(parents=True, exist_ok=True) pathlib.Path(false_path).mkdir(parents=True, exist_ok=True) class_encoding = {0: "Fishing", 1: "Cargo", 2: "Tanker"} for i, img in tqdm(enumerate(test_files)): try: imname = img.split('/')[-1] im = cv2.imread(img) cv2.putText(im, "Prediction: {} True: {}".format(class_encoding[class_predictions[i]], class_encoding[class_true_labels[i]]), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2) cv2.imwrite(os.path.join(true_path, imname), im) if class_predictions[i]==class_true_labels[i] else cv2.imwrite(os.path.join(false_path, imname), im) except: pass save_test_results(test_files, 'res_true', 'res_false') from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import itertools def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') plt.savefig('confusion_matrix.png') class_names = ["Fishing", "Cargo", "Tanker"] #class_names = np.unique(class_predictions) cnf_matrix = confusion_matrix(class_true_labels, class_predictions) plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title='Normalized confusion matrix')
[ "from sklearn.datasets import load_files \nfrom keras.utils import np_utils\nimport numpy as np\nfrom glob import glob\n\ndef load_dataset(path):\n data = load_files(path)\n ship_files = np.array(data['filenames'])\n ship_targets = np_utils.to_categorical(np.array(data['target']), 133)\n return ship_files, ship_targets\n\ntest_files, test_targets = load_dataset('shipImages/test')\nship_names = [item[20:-1] for item in sorted(glob(\"shipImages/train/*/\"))]\n\nfrom keras.preprocessing import image \nfrom tqdm import tqdm\n\ndef path_to_tensor(img_path):\n # loads RGB image as PIL.Image.Image type\n img = image.load_img(img_path, target_size=(224, 224))\n # convert PIL.Image.Image type to 3D tensor with shape (224, 224, 3)\n x = image.img_to_array(img)\n # convert 3D tensor to 4D tensor with shape (1, 224, 224, 3) and return 4D tensor\n return np.expand_dims(x, axis=0)\n\ndef paths_to_tensor(img_paths):\n list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)]\n return np.vstack(list_of_tensors)\n\nfrom PIL import ImageFile \nImageFile.LOAD_TRUNCATED_IMAGES = True \n\n# pre-process the data for Keras\ntest_tensors = paths_to_tensor(test_files).astype('float32')/255\n\n###########################\n# from keras.applications.resnet50 import ResNet50\n# from keras.applications.resnet50 import preprocess_input as preprocess_input_resnet50\n\n# def extract_Resnet50(file_paths):\n# tensors = paths_to_tensor(file_paths).astype('float32')\n# preprocessed_input = preprocess_input_resnet50(tensors)\n# return ResNet50(weights='imagenet', include_top=False).predict(preprocessed_input, batch_size=32)\n\n# test_resnet50 = extract_Resnet50(test_files)\n# print(\"Resnet50 shape\", test_resnet50.shape[1:])\n\n# from keras.layers.pooling import GlobalAveragePooling2D\n# from keras.layers.merge import Concatenate\n# from keras.layers import Input, Dense\n# from keras.layers.core import Dropout, Activation\n# from keras.callbacks import ModelCheckpoint\n# from keras.layers.normalization import BatchNormalization\n# from keras.models import Model\n\n# def input_branch(input_shape=None):\n \n# size = int(input_shape[2] / 4)\n \n# branch_input = Input(shape=input_shape)\n# branch = GlobalAveragePooling2D()(branch_input)\n# branch = Dense(size, use_bias=False, kernel_initializer='uniform')(branch)\n# branch = BatchNormalization()(branch)\n# branch = Activation(\"relu\")(branch)\n# return branch, branch_input\n\n# resnet50_branch, resnet50_input = input_branch(input_shape=(1, 1, 2048))\n# net = Dropout(0.3)(resnet50_branch)\n# net = Dense(640, use_bias=False, kernel_initializer='uniform')(net)\n# net = BatchNormalization()(net)\n# net = Activation(\"relu\")(net)\n# net = Dropout(0.3)(net)\n# net = Dense(133, kernel_initializer='uniform', activation=\"softmax\")(net)\n\n# model = Model(inputs=[resnet50_input], outputs=[net])\n# model.summary()\n\n# model.compile(loss='categorical_crossentropy', optimizer=\"rmsprop\", metrics=['accuracy'])\n# model.load_weights('ship_models/bestmodel.hdf5')\n\nfrom keras.applications.resnet50 import ResNet50\nfrom keras.applications.resnet50 import preprocess_input as preprocess_input_resnet50\n\ndef extract_Resnet50(file_paths):\n tensors = paths_to_tensor(file_paths).astype('float32')\n preprocessed_input = preprocess_input_resnet50(tensors)\n return ResNet50(weights='imagenet', include_top=False).predict(preprocessed_input, batch_size=32)\n\n# ## Extract feature\ntest_resnet50 = extract_Resnet50(test_files)\nprint(\"Resnet50 shape\", test_resnet50.shape[1:])\n\n# ## Retrain the last layers for our data\nfrom keras.layers.pooling import GlobalAveragePooling2D\nfrom keras.layers.merge import Concatenate\nfrom keras.layers import Input, Dense\nfrom keras.layers.core import Dropout, Activation\nfrom keras.callbacks import ModelCheckpoint\nfrom keras.layers.normalization import BatchNormalization\nfrom keras.models import Model\n\ndef input_branch(input_shape=None):\n \n size = int(input_shape[2] / 4)\n \n branch_input = Input(shape=input_shape)\n branch = GlobalAveragePooling2D()(branch_input)\n branch = Dense(size, use_bias=False, kernel_initializer='uniform')(branch)\n branch = BatchNormalization()(branch)\n branch = Activation(\"relu\")(branch)\n return branch, branch_input\n\nresnet50_branch, resnet50_input = input_branch(input_shape=(1, 1, 2048))\nnet = Dropout(0.3)(resnet50_branch)\nnet = Dense(640, use_bias=False, kernel_initializer='uniform')(net)\nnet = BatchNormalization()(net)\nnet = Activation(\"relu\")(net)\nnet = Dropout(0.3)(net)\nnet = Dense(133, kernel_initializer='uniform', activation=\"softmax\")(net)\n\nmodel = Model(inputs=[resnet50_input], outputs=[net])\nmodel.summary()\n\n# ## Test the model\nmodel.load_weights('ship_models/bestmodel.hdf5')\n\nfrom sklearn.metrics import accuracy_score\n\npredictions = model.predict([test_resnet50])\nclass_predictions = [np.argmax(prediction) for prediction in predictions]\nclass_true_labels = [np.argmax(true_label) for true_label in test_targets]\nprint('Test accuracy: %.4f%%' % (accuracy_score(class_true_labels, class_predictions) * 100))\n\nimport shutil\nimport pathlib\nimport cv2\nimport os\n\ndef save_test_results(test_files, true_path, false_path):\n # shutil.rmtree(true_path)\n # shutil.rmtree(false_path)\n pathlib.Path(true_path).mkdir(parents=True, exist_ok=True)\n pathlib.Path(false_path).mkdir(parents=True, exist_ok=True)\n class_encoding = {0: \"Fishing\", 1: \"Cargo\", 2: \"Tanker\"}\n for i, img in tqdm(enumerate(test_files)):\n try:\n imname = img.split('/')[-1]\n im = cv2.imread(img)\n cv2.putText(im, \"Prediction: {} True: {}\".format(class_encoding[class_predictions[i]], class_encoding[class_true_labels[i]]),\n (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)\n cv2.imwrite(os.path.join(true_path, imname), im) if class_predictions[i]==class_true_labels[i] else cv2.imwrite(os.path.join(false_path, imname), im)\n except:\n pass\n\nsave_test_results(test_files, 'res_true', 'res_false')\n\nfrom sklearn.metrics import confusion_matrix\nimport matplotlib.pyplot as plt\nimport itertools\n\ndef plot_confusion_matrix(cm, classes,\n normalize=False,\n title='Confusion matrix',\n cmap=plt.cm.Blues):\n \"\"\"\n This function prints and plots the confusion matrix.\n Normalization can be applied by setting `normalize=True`.\n \"\"\"\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n print(\"Normalized confusion matrix\")\n else:\n print('Confusion matrix, without normalization')\n print(cm)\n \n plt.imshow(cm, interpolation='nearest', cmap=cmap)\n plt.title(title)\n plt.colorbar()\n tick_marks = np.arange(len(classes))\n plt.xticks(tick_marks, classes, rotation=45)\n plt.yticks(tick_marks, classes)\n \n fmt = '.2f' if normalize else 'd'\n thresh = cm.max() / 2.\n for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n plt.text(j, i, format(cm[i, j], fmt),\n horizontalalignment=\"center\",\n color=\"white\" if cm[i, j] > thresh else \"black\")\n \n plt.tight_layout()\n plt.ylabel('True label')\n plt.xlabel('Predicted label')\n plt.savefig('confusion_matrix.png')\n\nclass_names = [\"Fishing\", \"Cargo\", \"Tanker\"]\n#class_names = np.unique(class_predictions)\ncnf_matrix = confusion_matrix(class_true_labels, class_predictions) \nplot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,\n title='Normalized confusion matrix')\n", "from sklearn.datasets import load_files\nfrom keras.utils import np_utils\nimport numpy as np\nfrom glob import glob\n\n\ndef load_dataset(path):\n data = load_files(path)\n ship_files = np.array(data['filenames'])\n ship_targets = np_utils.to_categorical(np.array(data['target']), 133)\n return ship_files, ship_targets\n\n\ntest_files, test_targets = load_dataset('shipImages/test')\nship_names = [item[20:-1] for item in sorted(glob('shipImages/train/*/'))]\nfrom keras.preprocessing import image\nfrom tqdm import tqdm\n\n\ndef path_to_tensor(img_path):\n img = image.load_img(img_path, target_size=(224, 224))\n x = image.img_to_array(img)\n return np.expand_dims(x, axis=0)\n\n\ndef paths_to_tensor(img_paths):\n list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)\n ]\n return np.vstack(list_of_tensors)\n\n\nfrom PIL import ImageFile\nImageFile.LOAD_TRUNCATED_IMAGES = True\ntest_tensors = paths_to_tensor(test_files).astype('float32') / 255\nfrom keras.applications.resnet50 import ResNet50\nfrom keras.applications.resnet50 import preprocess_input as preprocess_input_resnet50\n\n\ndef extract_Resnet50(file_paths):\n tensors = paths_to_tensor(file_paths).astype('float32')\n preprocessed_input = preprocess_input_resnet50(tensors)\n return ResNet50(weights='imagenet', include_top=False).predict(\n preprocessed_input, batch_size=32)\n\n\ntest_resnet50 = extract_Resnet50(test_files)\nprint('Resnet50 shape', test_resnet50.shape[1:])\nfrom keras.layers.pooling import GlobalAveragePooling2D\nfrom keras.layers.merge import Concatenate\nfrom keras.layers import Input, Dense\nfrom keras.layers.core import Dropout, Activation\nfrom keras.callbacks import ModelCheckpoint\nfrom keras.layers.normalization import BatchNormalization\nfrom keras.models import Model\n\n\ndef input_branch(input_shape=None):\n size = int(input_shape[2] / 4)\n branch_input = Input(shape=input_shape)\n branch = GlobalAveragePooling2D()(branch_input)\n branch = Dense(size, use_bias=False, kernel_initializer='uniform')(branch)\n branch = BatchNormalization()(branch)\n branch = Activation('relu')(branch)\n return branch, branch_input\n\n\nresnet50_branch, resnet50_input = input_branch(input_shape=(1, 1, 2048))\nnet = Dropout(0.3)(resnet50_branch)\nnet = Dense(640, use_bias=False, kernel_initializer='uniform')(net)\nnet = BatchNormalization()(net)\nnet = Activation('relu')(net)\nnet = Dropout(0.3)(net)\nnet = Dense(133, kernel_initializer='uniform', activation='softmax')(net)\nmodel = Model(inputs=[resnet50_input], outputs=[net])\nmodel.summary()\nmodel.load_weights('ship_models/bestmodel.hdf5')\nfrom sklearn.metrics import accuracy_score\npredictions = model.predict([test_resnet50])\nclass_predictions = [np.argmax(prediction) for prediction in predictions]\nclass_true_labels = [np.argmax(true_label) for true_label in test_targets]\nprint('Test accuracy: %.4f%%' % (accuracy_score(class_true_labels,\n class_predictions) * 100))\nimport shutil\nimport pathlib\nimport cv2\nimport os\n\n\ndef save_test_results(test_files, true_path, false_path):\n pathlib.Path(true_path).mkdir(parents=True, exist_ok=True)\n pathlib.Path(false_path).mkdir(parents=True, exist_ok=True)\n class_encoding = {(0): 'Fishing', (1): 'Cargo', (2): 'Tanker'}\n for i, img in tqdm(enumerate(test_files)):\n try:\n imname = img.split('/')[-1]\n im = cv2.imread(img)\n cv2.putText(im, 'Prediction: {} True: {}'.format(class_encoding\n [class_predictions[i]], class_encoding[class_true_labels[i]\n ]), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)\n cv2.imwrite(os.path.join(true_path, imname), im\n ) if class_predictions[i] == class_true_labels[i\n ] else cv2.imwrite(os.path.join(false_path, imname), im)\n except:\n pass\n\n\nsave_test_results(test_files, 'res_true', 'res_false')\nfrom sklearn.metrics import confusion_matrix\nimport matplotlib.pyplot as plt\nimport itertools\n\n\ndef plot_confusion_matrix(cm, classes, normalize=False, title=\n 'Confusion matrix', cmap=plt.cm.Blues):\n \"\"\"\n This function prints and plots the confusion matrix.\n Normalization can be applied by setting `normalize=True`.\n \"\"\"\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n print('Normalized confusion matrix')\n else:\n print('Confusion matrix, without normalization')\n print(cm)\n plt.imshow(cm, interpolation='nearest', cmap=cmap)\n plt.title(title)\n plt.colorbar()\n tick_marks = np.arange(len(classes))\n plt.xticks(tick_marks, classes, rotation=45)\n plt.yticks(tick_marks, classes)\n fmt = '.2f' if normalize else 'd'\n thresh = cm.max() / 2.0\n for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n plt.text(j, i, format(cm[i, j], fmt), horizontalalignment='center',\n color='white' if cm[i, j] > thresh else 'black')\n plt.tight_layout()\n plt.ylabel('True label')\n plt.xlabel('Predicted label')\n plt.savefig('confusion_matrix.png')\n\n\nclass_names = ['Fishing', 'Cargo', 'Tanker']\ncnf_matrix = confusion_matrix(class_true_labels, class_predictions)\nplot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,\n title='Normalized confusion matrix')\n", "<import token>\n\n\ndef load_dataset(path):\n data = load_files(path)\n ship_files = np.array(data['filenames'])\n ship_targets = np_utils.to_categorical(np.array(data['target']), 133)\n return ship_files, ship_targets\n\n\ntest_files, test_targets = load_dataset('shipImages/test')\nship_names = [item[20:-1] for item in sorted(glob('shipImages/train/*/'))]\n<import token>\n\n\ndef path_to_tensor(img_path):\n img = image.load_img(img_path, target_size=(224, 224))\n x = image.img_to_array(img)\n return np.expand_dims(x, axis=0)\n\n\ndef paths_to_tensor(img_paths):\n list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)\n ]\n return np.vstack(list_of_tensors)\n\n\n<import token>\nImageFile.LOAD_TRUNCATED_IMAGES = True\ntest_tensors = paths_to_tensor(test_files).astype('float32') / 255\n<import token>\n\n\ndef extract_Resnet50(file_paths):\n tensors = paths_to_tensor(file_paths).astype('float32')\n preprocessed_input = preprocess_input_resnet50(tensors)\n return ResNet50(weights='imagenet', include_top=False).predict(\n preprocessed_input, batch_size=32)\n\n\ntest_resnet50 = extract_Resnet50(test_files)\nprint('Resnet50 shape', test_resnet50.shape[1:])\n<import token>\n\n\ndef input_branch(input_shape=None):\n size = int(input_shape[2] / 4)\n branch_input = Input(shape=input_shape)\n branch = GlobalAveragePooling2D()(branch_input)\n branch = Dense(size, use_bias=False, kernel_initializer='uniform')(branch)\n branch = BatchNormalization()(branch)\n branch = Activation('relu')(branch)\n return branch, branch_input\n\n\nresnet50_branch, resnet50_input = input_branch(input_shape=(1, 1, 2048))\nnet = Dropout(0.3)(resnet50_branch)\nnet = Dense(640, use_bias=False, kernel_initializer='uniform')(net)\nnet = BatchNormalization()(net)\nnet = Activation('relu')(net)\nnet = Dropout(0.3)(net)\nnet = Dense(133, kernel_initializer='uniform', activation='softmax')(net)\nmodel = Model(inputs=[resnet50_input], outputs=[net])\nmodel.summary()\nmodel.load_weights('ship_models/bestmodel.hdf5')\n<import token>\npredictions = model.predict([test_resnet50])\nclass_predictions = [np.argmax(prediction) for prediction in predictions]\nclass_true_labels = [np.argmax(true_label) for true_label in test_targets]\nprint('Test accuracy: %.4f%%' % (accuracy_score(class_true_labels,\n class_predictions) * 100))\n<import token>\n\n\ndef save_test_results(test_files, true_path, false_path):\n pathlib.Path(true_path).mkdir(parents=True, exist_ok=True)\n pathlib.Path(false_path).mkdir(parents=True, exist_ok=True)\n class_encoding = {(0): 'Fishing', (1): 'Cargo', (2): 'Tanker'}\n for i, img in tqdm(enumerate(test_files)):\n try:\n imname = img.split('/')[-1]\n im = cv2.imread(img)\n cv2.putText(im, 'Prediction: {} True: {}'.format(class_encoding\n [class_predictions[i]], class_encoding[class_true_labels[i]\n ]), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)\n cv2.imwrite(os.path.join(true_path, imname), im\n ) if class_predictions[i] == class_true_labels[i\n ] else cv2.imwrite(os.path.join(false_path, imname), im)\n except:\n pass\n\n\nsave_test_results(test_files, 'res_true', 'res_false')\n<import token>\n\n\ndef plot_confusion_matrix(cm, classes, normalize=False, title=\n 'Confusion matrix', cmap=plt.cm.Blues):\n \"\"\"\n This function prints and plots the confusion matrix.\n Normalization can be applied by setting `normalize=True`.\n \"\"\"\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n print('Normalized confusion matrix')\n else:\n print('Confusion matrix, without normalization')\n print(cm)\n plt.imshow(cm, interpolation='nearest', cmap=cmap)\n plt.title(title)\n plt.colorbar()\n tick_marks = np.arange(len(classes))\n plt.xticks(tick_marks, classes, rotation=45)\n plt.yticks(tick_marks, classes)\n fmt = '.2f' if normalize else 'd'\n thresh = cm.max() / 2.0\n for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n plt.text(j, i, format(cm[i, j], fmt), horizontalalignment='center',\n color='white' if cm[i, j] > thresh else 'black')\n plt.tight_layout()\n plt.ylabel('True label')\n plt.xlabel('Predicted label')\n plt.savefig('confusion_matrix.png')\n\n\nclass_names = ['Fishing', 'Cargo', 'Tanker']\ncnf_matrix = confusion_matrix(class_true_labels, class_predictions)\nplot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,\n title='Normalized confusion matrix')\n", "<import token>\n\n\ndef load_dataset(path):\n data = load_files(path)\n ship_files = np.array(data['filenames'])\n ship_targets = np_utils.to_categorical(np.array(data['target']), 133)\n return ship_files, ship_targets\n\n\n<assignment token>\n<import token>\n\n\ndef path_to_tensor(img_path):\n img = image.load_img(img_path, target_size=(224, 224))\n x = image.img_to_array(img)\n return np.expand_dims(x, axis=0)\n\n\ndef paths_to_tensor(img_paths):\n list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)\n ]\n return np.vstack(list_of_tensors)\n\n\n<import token>\n<assignment token>\n<import token>\n\n\ndef extract_Resnet50(file_paths):\n tensors = paths_to_tensor(file_paths).astype('float32')\n preprocessed_input = preprocess_input_resnet50(tensors)\n return ResNet50(weights='imagenet', include_top=False).predict(\n preprocessed_input, batch_size=32)\n\n\n<assignment token>\nprint('Resnet50 shape', test_resnet50.shape[1:])\n<import token>\n\n\ndef input_branch(input_shape=None):\n size = int(input_shape[2] / 4)\n branch_input = Input(shape=input_shape)\n branch = GlobalAveragePooling2D()(branch_input)\n branch = Dense(size, use_bias=False, kernel_initializer='uniform')(branch)\n branch = BatchNormalization()(branch)\n branch = Activation('relu')(branch)\n return branch, branch_input\n\n\n<assignment token>\nmodel.summary()\nmodel.load_weights('ship_models/bestmodel.hdf5')\n<import token>\n<assignment token>\nprint('Test accuracy: %.4f%%' % (accuracy_score(class_true_labels,\n class_predictions) * 100))\n<import token>\n\n\ndef save_test_results(test_files, true_path, false_path):\n pathlib.Path(true_path).mkdir(parents=True, exist_ok=True)\n pathlib.Path(false_path).mkdir(parents=True, exist_ok=True)\n class_encoding = {(0): 'Fishing', (1): 'Cargo', (2): 'Tanker'}\n for i, img in tqdm(enumerate(test_files)):\n try:\n imname = img.split('/')[-1]\n im = cv2.imread(img)\n cv2.putText(im, 'Prediction: {} True: {}'.format(class_encoding\n [class_predictions[i]], class_encoding[class_true_labels[i]\n ]), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)\n cv2.imwrite(os.path.join(true_path, imname), im\n ) if class_predictions[i] == class_true_labels[i\n ] else cv2.imwrite(os.path.join(false_path, imname), im)\n except:\n pass\n\n\nsave_test_results(test_files, 'res_true', 'res_false')\n<import token>\n\n\ndef plot_confusion_matrix(cm, classes, normalize=False, title=\n 'Confusion matrix', cmap=plt.cm.Blues):\n \"\"\"\n This function prints and plots the confusion matrix.\n Normalization can be applied by setting `normalize=True`.\n \"\"\"\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n print('Normalized confusion matrix')\n else:\n print('Confusion matrix, without normalization')\n print(cm)\n plt.imshow(cm, interpolation='nearest', cmap=cmap)\n plt.title(title)\n plt.colorbar()\n tick_marks = np.arange(len(classes))\n plt.xticks(tick_marks, classes, rotation=45)\n plt.yticks(tick_marks, classes)\n fmt = '.2f' if normalize else 'd'\n thresh = cm.max() / 2.0\n for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n plt.text(j, i, format(cm[i, j], fmt), horizontalalignment='center',\n color='white' if cm[i, j] > thresh else 'black')\n plt.tight_layout()\n plt.ylabel('True label')\n plt.xlabel('Predicted label')\n plt.savefig('confusion_matrix.png')\n\n\n<assignment token>\nplot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,\n title='Normalized confusion matrix')\n", "<import token>\n\n\ndef load_dataset(path):\n data = load_files(path)\n ship_files = np.array(data['filenames'])\n ship_targets = np_utils.to_categorical(np.array(data['target']), 133)\n return ship_files, ship_targets\n\n\n<assignment token>\n<import token>\n\n\ndef path_to_tensor(img_path):\n img = image.load_img(img_path, target_size=(224, 224))\n x = image.img_to_array(img)\n return np.expand_dims(x, axis=0)\n\n\ndef paths_to_tensor(img_paths):\n list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)\n ]\n return np.vstack(list_of_tensors)\n\n\n<import token>\n<assignment token>\n<import token>\n\n\ndef extract_Resnet50(file_paths):\n tensors = paths_to_tensor(file_paths).astype('float32')\n preprocessed_input = preprocess_input_resnet50(tensors)\n return ResNet50(weights='imagenet', include_top=False).predict(\n preprocessed_input, batch_size=32)\n\n\n<assignment token>\n<code token>\n<import token>\n\n\ndef input_branch(input_shape=None):\n size = int(input_shape[2] / 4)\n branch_input = Input(shape=input_shape)\n branch = GlobalAveragePooling2D()(branch_input)\n branch = Dense(size, use_bias=False, kernel_initializer='uniform')(branch)\n branch = BatchNormalization()(branch)\n branch = Activation('relu')(branch)\n return branch, branch_input\n\n\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n\n\ndef save_test_results(test_files, true_path, false_path):\n pathlib.Path(true_path).mkdir(parents=True, exist_ok=True)\n pathlib.Path(false_path).mkdir(parents=True, exist_ok=True)\n class_encoding = {(0): 'Fishing', (1): 'Cargo', (2): 'Tanker'}\n for i, img in tqdm(enumerate(test_files)):\n try:\n imname = img.split('/')[-1]\n im = cv2.imread(img)\n cv2.putText(im, 'Prediction: {} True: {}'.format(class_encoding\n [class_predictions[i]], class_encoding[class_true_labels[i]\n ]), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)\n cv2.imwrite(os.path.join(true_path, imname), im\n ) if class_predictions[i] == class_true_labels[i\n ] else cv2.imwrite(os.path.join(false_path, imname), im)\n except:\n pass\n\n\n<code token>\n<import token>\n\n\ndef plot_confusion_matrix(cm, classes, normalize=False, title=\n 'Confusion matrix', cmap=plt.cm.Blues):\n \"\"\"\n This function prints and plots the confusion matrix.\n Normalization can be applied by setting `normalize=True`.\n \"\"\"\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n print('Normalized confusion matrix')\n else:\n print('Confusion matrix, without normalization')\n print(cm)\n plt.imshow(cm, interpolation='nearest', cmap=cmap)\n plt.title(title)\n plt.colorbar()\n tick_marks = np.arange(len(classes))\n plt.xticks(tick_marks, classes, rotation=45)\n plt.yticks(tick_marks, classes)\n fmt = '.2f' if normalize else 'd'\n thresh = cm.max() / 2.0\n for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n plt.text(j, i, format(cm[i, j], fmt), horizontalalignment='center',\n color='white' if cm[i, j] > thresh else 'black')\n plt.tight_layout()\n plt.ylabel('True label')\n plt.xlabel('Predicted label')\n plt.savefig('confusion_matrix.png')\n\n\n<assignment token>\n<code token>\n", "<import token>\n\n\ndef load_dataset(path):\n data = load_files(path)\n ship_files = np.array(data['filenames'])\n ship_targets = np_utils.to_categorical(np.array(data['target']), 133)\n return ship_files, ship_targets\n\n\n<assignment token>\n<import token>\n<function token>\n\n\ndef paths_to_tensor(img_paths):\n list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)\n ]\n return np.vstack(list_of_tensors)\n\n\n<import token>\n<assignment token>\n<import token>\n\n\ndef extract_Resnet50(file_paths):\n tensors = paths_to_tensor(file_paths).astype('float32')\n preprocessed_input = preprocess_input_resnet50(tensors)\n return ResNet50(weights='imagenet', include_top=False).predict(\n preprocessed_input, batch_size=32)\n\n\n<assignment token>\n<code token>\n<import token>\n\n\ndef input_branch(input_shape=None):\n size = int(input_shape[2] / 4)\n branch_input = Input(shape=input_shape)\n branch = GlobalAveragePooling2D()(branch_input)\n branch = Dense(size, use_bias=False, kernel_initializer='uniform')(branch)\n branch = BatchNormalization()(branch)\n branch = Activation('relu')(branch)\n return branch, branch_input\n\n\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n\n\ndef save_test_results(test_files, true_path, false_path):\n pathlib.Path(true_path).mkdir(parents=True, exist_ok=True)\n pathlib.Path(false_path).mkdir(parents=True, exist_ok=True)\n class_encoding = {(0): 'Fishing', (1): 'Cargo', (2): 'Tanker'}\n for i, img in tqdm(enumerate(test_files)):\n try:\n imname = img.split('/')[-1]\n im = cv2.imread(img)\n cv2.putText(im, 'Prediction: {} True: {}'.format(class_encoding\n [class_predictions[i]], class_encoding[class_true_labels[i]\n ]), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)\n cv2.imwrite(os.path.join(true_path, imname), im\n ) if class_predictions[i] == class_true_labels[i\n ] else cv2.imwrite(os.path.join(false_path, imname), im)\n except:\n pass\n\n\n<code token>\n<import token>\n\n\ndef plot_confusion_matrix(cm, classes, normalize=False, title=\n 'Confusion matrix', cmap=plt.cm.Blues):\n \"\"\"\n This function prints and plots the confusion matrix.\n Normalization can be applied by setting `normalize=True`.\n \"\"\"\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n print('Normalized confusion matrix')\n else:\n print('Confusion matrix, without normalization')\n print(cm)\n plt.imshow(cm, interpolation='nearest', cmap=cmap)\n plt.title(title)\n plt.colorbar()\n tick_marks = np.arange(len(classes))\n plt.xticks(tick_marks, classes, rotation=45)\n plt.yticks(tick_marks, classes)\n fmt = '.2f' if normalize else 'd'\n thresh = cm.max() / 2.0\n for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n plt.text(j, i, format(cm[i, j], fmt), horizontalalignment='center',\n color='white' if cm[i, j] > thresh else 'black')\n plt.tight_layout()\n plt.ylabel('True label')\n plt.xlabel('Predicted label')\n plt.savefig('confusion_matrix.png')\n\n\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<assignment token>\n<import token>\n<function token>\n\n\ndef paths_to_tensor(img_paths):\n list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)\n ]\n return np.vstack(list_of_tensors)\n\n\n<import token>\n<assignment token>\n<import token>\n\n\ndef extract_Resnet50(file_paths):\n tensors = paths_to_tensor(file_paths).astype('float32')\n preprocessed_input = preprocess_input_resnet50(tensors)\n return ResNet50(weights='imagenet', include_top=False).predict(\n preprocessed_input, batch_size=32)\n\n\n<assignment token>\n<code token>\n<import token>\n\n\ndef input_branch(input_shape=None):\n size = int(input_shape[2] / 4)\n branch_input = Input(shape=input_shape)\n branch = GlobalAveragePooling2D()(branch_input)\n branch = Dense(size, use_bias=False, kernel_initializer='uniform')(branch)\n branch = BatchNormalization()(branch)\n branch = Activation('relu')(branch)\n return branch, branch_input\n\n\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n\n\ndef save_test_results(test_files, true_path, false_path):\n pathlib.Path(true_path).mkdir(parents=True, exist_ok=True)\n pathlib.Path(false_path).mkdir(parents=True, exist_ok=True)\n class_encoding = {(0): 'Fishing', (1): 'Cargo', (2): 'Tanker'}\n for i, img in tqdm(enumerate(test_files)):\n try:\n imname = img.split('/')[-1]\n im = cv2.imread(img)\n cv2.putText(im, 'Prediction: {} True: {}'.format(class_encoding\n [class_predictions[i]], class_encoding[class_true_labels[i]\n ]), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)\n cv2.imwrite(os.path.join(true_path, imname), im\n ) if class_predictions[i] == class_true_labels[i\n ] else cv2.imwrite(os.path.join(false_path, imname), im)\n except:\n pass\n\n\n<code token>\n<import token>\n\n\ndef plot_confusion_matrix(cm, classes, normalize=False, title=\n 'Confusion matrix', cmap=plt.cm.Blues):\n \"\"\"\n This function prints and plots the confusion matrix.\n Normalization can be applied by setting `normalize=True`.\n \"\"\"\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n print('Normalized confusion matrix')\n else:\n print('Confusion matrix, without normalization')\n print(cm)\n plt.imshow(cm, interpolation='nearest', cmap=cmap)\n plt.title(title)\n plt.colorbar()\n tick_marks = np.arange(len(classes))\n plt.xticks(tick_marks, classes, rotation=45)\n plt.yticks(tick_marks, classes)\n fmt = '.2f' if normalize else 'd'\n thresh = cm.max() / 2.0\n for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n plt.text(j, i, format(cm[i, j], fmt), horizontalalignment='center',\n color='white' if cm[i, j] > thresh else 'black')\n plt.tight_layout()\n plt.ylabel('True label')\n plt.xlabel('Predicted label')\n plt.savefig('confusion_matrix.png')\n\n\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<assignment token>\n<import token>\n<function token>\n\n\ndef paths_to_tensor(img_paths):\n list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)\n ]\n return np.vstack(list_of_tensors)\n\n\n<import token>\n<assignment token>\n<import token>\n\n\ndef extract_Resnet50(file_paths):\n tensors = paths_to_tensor(file_paths).astype('float32')\n preprocessed_input = preprocess_input_resnet50(tensors)\n return ResNet50(weights='imagenet', include_top=False).predict(\n preprocessed_input, batch_size=32)\n\n\n<assignment token>\n<code token>\n<import token>\n<function token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n\n\ndef save_test_results(test_files, true_path, false_path):\n pathlib.Path(true_path).mkdir(parents=True, exist_ok=True)\n pathlib.Path(false_path).mkdir(parents=True, exist_ok=True)\n class_encoding = {(0): 'Fishing', (1): 'Cargo', (2): 'Tanker'}\n for i, img in tqdm(enumerate(test_files)):\n try:\n imname = img.split('/')[-1]\n im = cv2.imread(img)\n cv2.putText(im, 'Prediction: {} True: {}'.format(class_encoding\n [class_predictions[i]], class_encoding[class_true_labels[i]\n ]), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)\n cv2.imwrite(os.path.join(true_path, imname), im\n ) if class_predictions[i] == class_true_labels[i\n ] else cv2.imwrite(os.path.join(false_path, imname), im)\n except:\n pass\n\n\n<code token>\n<import token>\n\n\ndef plot_confusion_matrix(cm, classes, normalize=False, title=\n 'Confusion matrix', cmap=plt.cm.Blues):\n \"\"\"\n This function prints and plots the confusion matrix.\n Normalization can be applied by setting `normalize=True`.\n \"\"\"\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n print('Normalized confusion matrix')\n else:\n print('Confusion matrix, without normalization')\n print(cm)\n plt.imshow(cm, interpolation='nearest', cmap=cmap)\n plt.title(title)\n plt.colorbar()\n tick_marks = np.arange(len(classes))\n plt.xticks(tick_marks, classes, rotation=45)\n plt.yticks(tick_marks, classes)\n fmt = '.2f' if normalize else 'd'\n thresh = cm.max() / 2.0\n for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n plt.text(j, i, format(cm[i, j], fmt), horizontalalignment='center',\n color='white' if cm[i, j] > thresh else 'black')\n plt.tight_layout()\n plt.ylabel('True label')\n plt.xlabel('Predicted label')\n plt.savefig('confusion_matrix.png')\n\n\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<assignment token>\n<import token>\n<function token>\n\n\ndef paths_to_tensor(img_paths):\n list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)\n ]\n return np.vstack(list_of_tensors)\n\n\n<import token>\n<assignment token>\n<import token>\n\n\ndef extract_Resnet50(file_paths):\n tensors = paths_to_tensor(file_paths).astype('float32')\n preprocessed_input = preprocess_input_resnet50(tensors)\n return ResNet50(weights='imagenet', include_top=False).predict(\n preprocessed_input, batch_size=32)\n\n\n<assignment token>\n<code token>\n<import token>\n<function token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<function token>\n<code token>\n<import token>\n\n\ndef plot_confusion_matrix(cm, classes, normalize=False, title=\n 'Confusion matrix', cmap=plt.cm.Blues):\n \"\"\"\n This function prints and plots the confusion matrix.\n Normalization can be applied by setting `normalize=True`.\n \"\"\"\n if normalize:\n cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]\n print('Normalized confusion matrix')\n else:\n print('Confusion matrix, without normalization')\n print(cm)\n plt.imshow(cm, interpolation='nearest', cmap=cmap)\n plt.title(title)\n plt.colorbar()\n tick_marks = np.arange(len(classes))\n plt.xticks(tick_marks, classes, rotation=45)\n plt.yticks(tick_marks, classes)\n fmt = '.2f' if normalize else 'd'\n thresh = cm.max() / 2.0\n for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n plt.text(j, i, format(cm[i, j], fmt), horizontalalignment='center',\n color='white' if cm[i, j] > thresh else 'black')\n plt.tight_layout()\n plt.ylabel('True label')\n plt.xlabel('Predicted label')\n plt.savefig('confusion_matrix.png')\n\n\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<assignment token>\n<import token>\n<function token>\n\n\ndef paths_to_tensor(img_paths):\n list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)\n ]\n return np.vstack(list_of_tensors)\n\n\n<import token>\n<assignment token>\n<import token>\n\n\ndef extract_Resnet50(file_paths):\n tensors = paths_to_tensor(file_paths).astype('float32')\n preprocessed_input = preprocess_input_resnet50(tensors)\n return ResNet50(weights='imagenet', include_top=False).predict(\n preprocessed_input, batch_size=32)\n\n\n<assignment token>\n<code token>\n<import token>\n<function token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<function token>\n<code token>\n<import token>\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<assignment token>\n<import token>\n<function token>\n<function token>\n<import token>\n<assignment token>\n<import token>\n\n\ndef extract_Resnet50(file_paths):\n tensors = paths_to_tensor(file_paths).astype('float32')\n preprocessed_input = preprocess_input_resnet50(tensors)\n return ResNet50(weights='imagenet', include_top=False).predict(\n preprocessed_input, batch_size=32)\n\n\n<assignment token>\n<code token>\n<import token>\n<function token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<function token>\n<code token>\n<import token>\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<assignment token>\n<import token>\n<function token>\n<function token>\n<import token>\n<assignment token>\n<import token>\n<function token>\n<assignment token>\n<code token>\n<import token>\n<function token>\n<assignment token>\n<code token>\n<import token>\n<assignment token>\n<code token>\n<import token>\n<function token>\n<code token>\n<import token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
99,555
bb94ad5b798acb124b7a5fe223280dfa84b3b55d
#import socket library from random import randint from socket import * #set port to 12000 serverPort = 12000 #create server socket print 'Setting up TCP Socket' serverSocket = socket(AF_INET,SOCK_STREAM) #make server listen to port 12000 serverSocket.bind(('',serverPort)) serverSocket.listen(1) print 'SERVER_PORT={}'.format(serverPort) #wait for a connetion to client while 1: connectionSocket, addr = serverSocket.accept() #store client's string into a buffer sentence = connectionSocket.recv(1024) if int(sentence) == 13: r_port = randint(1420,11000) print 'Negotiation accepted, sending r_port',r_port serverPort = r_port connectionSocket.send(str(r_port)) print 'Setting up UDP socket' serverSocket2 = socket(AF_INET, SOCK_DGRAM) serverSocket2.bind(('', serverPort)) sentence, clientAddress = serverSocket2.recvfrom(2048) print 'Reversing message...' reversedMessage = sentence[::-1] #send it back to client through socket print 'Message sent.' serverSocket2.sendto(reversedMessage, clientAddress) connectionSocket.close()
[ "#import socket library\nfrom random import randint\nfrom socket import * \n#set port to 12000\nserverPort = 12000\n#create server socket \nprint 'Setting up TCP Socket'\nserverSocket = socket(AF_INET,SOCK_STREAM) \n#make server listen to port 12000\nserverSocket.bind(('',serverPort)) \nserverSocket.listen(1) \nprint 'SERVER_PORT={}'.format(serverPort)\n#wait for a connetion to client\nwhile 1: \n connectionSocket, addr = serverSocket.accept() \n #store client's string into a buffer\n sentence = connectionSocket.recv(1024)\n \n if int(sentence) == 13:\n r_port = randint(1420,11000)\n print 'Negotiation accepted, sending r_port',r_port\n serverPort = r_port\n connectionSocket.send(str(r_port))\n print 'Setting up UDP socket'\n serverSocket2 = socket(AF_INET, SOCK_DGRAM)\n serverSocket2.bind(('', serverPort))\n sentence, clientAddress = serverSocket2.recvfrom(2048) \n print 'Reversing message...'\n reversedMessage = sentence[::-1]\n #send it back to client through socket \n print 'Message sent.'\n serverSocket2.sendto(reversedMessage, clientAddress)\n connectionSocket.close() \n" ]
true
99,556
c82c2e17ce8c7d95817023cbfba5d5df7cf6b7f4
from django.contrib import admin from orders.models import Order, OrderItem, Coupon class OrderItemInline(admin.TabularInline): model = OrderItem raw_id_fields = ('product',) @admin.register(Order) class OrderAdd(admin.ModelAdmin): list_display = ('id', 'user', 'created', 'modified', 'is_paid') list_filter = ('is_paid',) inlines = (OrderItemInline,) @admin.register(Coupon) class CouponAdmin(admin.ModelAdmin): list_display = ('code', 'valid_from', 'valid_to', 'discount', 'is_active') list_filter = ('is_active', 'valid_from', 'valid_to') search_fields = ('code',)
[ "from django.contrib import admin\n\nfrom orders.models import Order, OrderItem, Coupon\n\n\nclass OrderItemInline(admin.TabularInline):\n model = OrderItem\n raw_id_fields = ('product',)\n\n\[email protected](Order)\nclass OrderAdd(admin.ModelAdmin):\n list_display = ('id', 'user', 'created', 'modified', 'is_paid')\n list_filter = ('is_paid',)\n inlines = (OrderItemInline,)\n\n\[email protected](Coupon)\nclass CouponAdmin(admin.ModelAdmin):\n list_display = ('code', 'valid_from', 'valid_to', 'discount', 'is_active')\n list_filter = ('is_active', 'valid_from', 'valid_to')\n search_fields = ('code',)\n", "from django.contrib import admin\nfrom orders.models import Order, OrderItem, Coupon\n\n\nclass OrderItemInline(admin.TabularInline):\n model = OrderItem\n raw_id_fields = 'product',\n\n\[email protected](Order)\nclass OrderAdd(admin.ModelAdmin):\n list_display = 'id', 'user', 'created', 'modified', 'is_paid'\n list_filter = 'is_paid',\n inlines = OrderItemInline,\n\n\[email protected](Coupon)\nclass CouponAdmin(admin.ModelAdmin):\n list_display = 'code', 'valid_from', 'valid_to', 'discount', 'is_active'\n list_filter = 'is_active', 'valid_from', 'valid_to'\n search_fields = 'code',\n", "<import token>\n\n\nclass OrderItemInline(admin.TabularInline):\n model = OrderItem\n raw_id_fields = 'product',\n\n\[email protected](Order)\nclass OrderAdd(admin.ModelAdmin):\n list_display = 'id', 'user', 'created', 'modified', 'is_paid'\n list_filter = 'is_paid',\n inlines = OrderItemInline,\n\n\[email protected](Coupon)\nclass CouponAdmin(admin.ModelAdmin):\n list_display = 'code', 'valid_from', 'valid_to', 'discount', 'is_active'\n list_filter = 'is_active', 'valid_from', 'valid_to'\n search_fields = 'code',\n", "<import token>\n\n\nclass OrderItemInline(admin.TabularInline):\n <assignment token>\n <assignment token>\n\n\[email protected](Order)\nclass OrderAdd(admin.ModelAdmin):\n list_display = 'id', 'user', 'created', 'modified', 'is_paid'\n list_filter = 'is_paid',\n inlines = OrderItemInline,\n\n\[email protected](Coupon)\nclass CouponAdmin(admin.ModelAdmin):\n list_display = 'code', 'valid_from', 'valid_to', 'discount', 'is_active'\n list_filter = 'is_active', 'valid_from', 'valid_to'\n search_fields = 'code',\n", "<import token>\n<class token>\n\n\[email protected](Order)\nclass OrderAdd(admin.ModelAdmin):\n list_display = 'id', 'user', 'created', 'modified', 'is_paid'\n list_filter = 'is_paid',\n inlines = OrderItemInline,\n\n\[email protected](Coupon)\nclass CouponAdmin(admin.ModelAdmin):\n list_display = 'code', 'valid_from', 'valid_to', 'discount', 'is_active'\n list_filter = 'is_active', 'valid_from', 'valid_to'\n search_fields = 'code',\n", "<import token>\n<class token>\n\n\[email protected](Order)\nclass OrderAdd(admin.ModelAdmin):\n <assignment token>\n <assignment token>\n <assignment token>\n\n\[email protected](Coupon)\nclass CouponAdmin(admin.ModelAdmin):\n list_display = 'code', 'valid_from', 'valid_to', 'discount', 'is_active'\n list_filter = 'is_active', 'valid_from', 'valid_to'\n search_fields = 'code',\n", "<import token>\n<class token>\n<class token>\n\n\[email protected](Coupon)\nclass CouponAdmin(admin.ModelAdmin):\n list_display = 'code', 'valid_from', 'valid_to', 'discount', 'is_active'\n list_filter = 'is_active', 'valid_from', 'valid_to'\n search_fields = 'code',\n", "<import token>\n<class token>\n<class token>\n\n\[email protected](Coupon)\nclass CouponAdmin(admin.ModelAdmin):\n <assignment token>\n <assignment token>\n <assignment token>\n", "<import token>\n<class token>\n<class token>\n<class token>\n" ]
false
99,557
b457d1dfd437d64dfa649007b800f4dd681565ed
import json import uuid import copy filename = '../data/rotterdam/cityjson/t.json' fin = open(filename) j = json.loads(fin.read()) j2 = copy.deepcopy(j) j2['metadata']['referenceSystem'] = 'urn:ogc:def:crs:EPSG::7415' j2['@context'] = [] j2['@context'].append("http://localhost:8080/contexts/context_imgeo.jsonld") j2['@context'].append("http://localhost:8080/contexts/context_cityjson.jsonld") uids = set() for cid in j['CityObjects']: pos = cid.rfind('_') uids.add(cid[:pos]) # print(uids) for uid in uids: j2['CityObjects'][uid + '_k']['geometry'].append(j2['CityObjects'][uid + '_s']['geometry'][0]) j2['CityObjects'][uid + '_k']['geometry'].append(j2['CityObjects'][uid + '_w']['geometry'][0]) j2['CityObjects'][uid + '_k']['type'] = 'SolitaryVegetationObject' j2['CityObjects'][uid + '_k']['attributes']['class'] = {} j2['CityObjects'][uid + '_k']['attributes']['class'] = "VegetatieObject" j2['CityObjects'][uid + '_k']['attributes']['function'] = "Boom" del j2['CityObjects'][uid + '_s'] del j2['CityObjects'][uid + '_w'] json_str = json.dumps(j2) fout = open('../data/rotterdam/cityjson/t_nl3d.json', 'w') fout.write(json_str) print('Done.')
[ "\nimport json\nimport uuid\nimport copy\n\nfilename = '../data/rotterdam/cityjson/t.json'\nfin = open(filename)\nj = json.loads(fin.read())\nj2 = copy.deepcopy(j)\n\n\n\nj2['metadata']['referenceSystem'] = 'urn:ogc:def:crs:EPSG::7415'\n\nj2['@context'] = []\nj2['@context'].append(\"http://localhost:8080/contexts/context_imgeo.jsonld\")\nj2['@context'].append(\"http://localhost:8080/contexts/context_cityjson.jsonld\")\n\nuids = set()\nfor cid in j['CityObjects']:\n pos = cid.rfind('_')\n uids.add(cid[:pos])\n# print(uids)\n\nfor uid in uids:\n j2['CityObjects'][uid + '_k']['geometry'].append(j2['CityObjects'][uid + '_s']['geometry'][0])\n j2['CityObjects'][uid + '_k']['geometry'].append(j2['CityObjects'][uid + '_w']['geometry'][0])\n j2['CityObjects'][uid + '_k']['type'] = 'SolitaryVegetationObject'\n j2['CityObjects'][uid + '_k']['attributes']['class'] = {}\n j2['CityObjects'][uid + '_k']['attributes']['class'] = \"VegetatieObject\"\n j2['CityObjects'][uid + '_k']['attributes']['function'] = \"Boom\"\n del j2['CityObjects'][uid + '_s']\n del j2['CityObjects'][uid + '_w']\n\njson_str = json.dumps(j2)\nfout = open('../data/rotterdam/cityjson/t_nl3d.json', 'w')\nfout.write(json_str)\nprint('Done.')\n\n", "import json\nimport uuid\nimport copy\nfilename = '../data/rotterdam/cityjson/t.json'\nfin = open(filename)\nj = json.loads(fin.read())\nj2 = copy.deepcopy(j)\nj2['metadata']['referenceSystem'] = 'urn:ogc:def:crs:EPSG::7415'\nj2['@context'] = []\nj2['@context'].append('http://localhost:8080/contexts/context_imgeo.jsonld')\nj2['@context'].append('http://localhost:8080/contexts/context_cityjson.jsonld')\nuids = set()\nfor cid in j['CityObjects']:\n pos = cid.rfind('_')\n uids.add(cid[:pos])\nfor uid in uids:\n j2['CityObjects'][uid + '_k']['geometry'].append(j2['CityObjects'][uid +\n '_s']['geometry'][0])\n j2['CityObjects'][uid + '_k']['geometry'].append(j2['CityObjects'][uid +\n '_w']['geometry'][0])\n j2['CityObjects'][uid + '_k']['type'] = 'SolitaryVegetationObject'\n j2['CityObjects'][uid + '_k']['attributes']['class'] = {}\n j2['CityObjects'][uid + '_k']['attributes']['class'] = 'VegetatieObject'\n j2['CityObjects'][uid + '_k']['attributes']['function'] = 'Boom'\n del j2['CityObjects'][uid + '_s']\n del j2['CityObjects'][uid + '_w']\njson_str = json.dumps(j2)\nfout = open('../data/rotterdam/cityjson/t_nl3d.json', 'w')\nfout.write(json_str)\nprint('Done.')\n", "<import token>\nfilename = '../data/rotterdam/cityjson/t.json'\nfin = open(filename)\nj = json.loads(fin.read())\nj2 = copy.deepcopy(j)\nj2['metadata']['referenceSystem'] = 'urn:ogc:def:crs:EPSG::7415'\nj2['@context'] = []\nj2['@context'].append('http://localhost:8080/contexts/context_imgeo.jsonld')\nj2['@context'].append('http://localhost:8080/contexts/context_cityjson.jsonld')\nuids = set()\nfor cid in j['CityObjects']:\n pos = cid.rfind('_')\n uids.add(cid[:pos])\nfor uid in uids:\n j2['CityObjects'][uid + '_k']['geometry'].append(j2['CityObjects'][uid +\n '_s']['geometry'][0])\n j2['CityObjects'][uid + '_k']['geometry'].append(j2['CityObjects'][uid +\n '_w']['geometry'][0])\n j2['CityObjects'][uid + '_k']['type'] = 'SolitaryVegetationObject'\n j2['CityObjects'][uid + '_k']['attributes']['class'] = {}\n j2['CityObjects'][uid + '_k']['attributes']['class'] = 'VegetatieObject'\n j2['CityObjects'][uid + '_k']['attributes']['function'] = 'Boom'\n del j2['CityObjects'][uid + '_s']\n del j2['CityObjects'][uid + '_w']\njson_str = json.dumps(j2)\nfout = open('../data/rotterdam/cityjson/t_nl3d.json', 'w')\nfout.write(json_str)\nprint('Done.')\n", "<import token>\n<assignment token>\nj2['@context'].append('http://localhost:8080/contexts/context_imgeo.jsonld')\nj2['@context'].append('http://localhost:8080/contexts/context_cityjson.jsonld')\n<assignment token>\nfor cid in j['CityObjects']:\n pos = cid.rfind('_')\n uids.add(cid[:pos])\nfor uid in uids:\n j2['CityObjects'][uid + '_k']['geometry'].append(j2['CityObjects'][uid +\n '_s']['geometry'][0])\n j2['CityObjects'][uid + '_k']['geometry'].append(j2['CityObjects'][uid +\n '_w']['geometry'][0])\n j2['CityObjects'][uid + '_k']['type'] = 'SolitaryVegetationObject'\n j2['CityObjects'][uid + '_k']['attributes']['class'] = {}\n j2['CityObjects'][uid + '_k']['attributes']['class'] = 'VegetatieObject'\n j2['CityObjects'][uid + '_k']['attributes']['function'] = 'Boom'\n del j2['CityObjects'][uid + '_s']\n del j2['CityObjects'][uid + '_w']\n<assignment token>\nfout.write(json_str)\nprint('Done.')\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,558
da4023649130fef05c6627ac6caecfb71fe316b9
#!/usr/bin/env python import numpy as np from ImageTools import cutouts from pygoods import sextractor, Ftable drz_u = '/Users/khuang/CANDELS/goodss/mosaics/vimos_u/tfit_015_025_sqr_6_bg1.fits' drz_f435w = '/Users/khuang/CANDELS/goodss/mosaics/goods_s_acs_v3/gs_presm4_all_acs_f435w_60mas_v3.0_drz.fits' drz_f606w = '/Users/khuang/CANDELS/goodss/mosaics/goods_s_acs_v3/gs_presm4_all_acs_f606w_60mas_v3.0_drz.fits' drz_f098m = '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_candels_ers_f098m_060mas_v0.5_drz.fits' drz_f105w = '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_candels_ers_udf_f105w_060mas_v0.5_drz.fits' drz_f160w = '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_candels_ers_udf_f160w_v0.5_drz.fits' seg_f160w = '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_sx_h_120604_hphotom_comb_seg_psfmatch2h.fits' images = [drz_f435w, drz_f606w, drz_f098m, drz_f105w, drz_f160w, seg_f160w] filters = ['f435w', 'f606w', 'f098m', 'f105w', 'f160w', 'seg_f160w'] catalog_udrops = '/Users/khuang/Dropbox/Research/bivariate/udrops_sample/gds_udrops_all_140313.fits' class UdropsCutouts(cutouts.Cutouts): def __init__(self, images=images, filters=filters, catalog=catalog_udrops, format='fits', objid='objid'): super(UdropsCutouts, self).__init__(images, filters) self.use_catalog(catalog, format=format, objid=objid) def use_catalog(self, catalog, objid='id', ra='ra', dec='dec', format='fits'): if format.lower() == 'fits': self.c = Ftable(catalog) self.Nc = len(self.c.d) else: self.c = sextractor(catalog) self.Nc = len(self.c) self.objid = getattr(self.c, objid) self.ra = getattr(self.c, ra) self.dec = getattr(self.c, dec) def cut_objid(self, objid, width): # Make cutouts using object ID. assert objid in self.objid, "Object ID %d not found." % objid ra = self.ra[self.objid==objid][0] dec = self.dec[self.objid==objid][0] name = 'obj%d' % objid self.cut_radec_all(ra, dec, self.filters, width, name, norm=False)
[ "#!/usr/bin/env python\n\nimport numpy as np\nfrom ImageTools import cutouts\nfrom pygoods import sextractor, Ftable\n\ndrz_u = '/Users/khuang/CANDELS/goodss/mosaics/vimos_u/tfit_015_025_sqr_6_bg1.fits'\ndrz_f435w = '/Users/khuang/CANDELS/goodss/mosaics/goods_s_acs_v3/gs_presm4_all_acs_f435w_60mas_v3.0_drz.fits'\ndrz_f606w = '/Users/khuang/CANDELS/goodss/mosaics/goods_s_acs_v3/gs_presm4_all_acs_f606w_60mas_v3.0_drz.fits'\ndrz_f098m = '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_candels_ers_f098m_060mas_v0.5_drz.fits'\ndrz_f105w = '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_candels_ers_udf_f105w_060mas_v0.5_drz.fits'\ndrz_f160w = '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_candels_ers_udf_f160w_v0.5_drz.fits'\nseg_f160w = '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_sx_h_120604_hphotom_comb_seg_psfmatch2h.fits'\nimages = [drz_f435w, drz_f606w, drz_f098m, drz_f105w, drz_f160w, seg_f160w]\nfilters = ['f435w', 'f606w', 'f098m', 'f105w', 'f160w', 'seg_f160w']\ncatalog_udrops = '/Users/khuang/Dropbox/Research/bivariate/udrops_sample/gds_udrops_all_140313.fits'\n\nclass UdropsCutouts(cutouts.Cutouts):\n def __init__(self, images=images, filters=filters, catalog=catalog_udrops, format='fits', objid='objid'):\n super(UdropsCutouts, self).__init__(images, filters)\n self.use_catalog(catalog, format=format, objid=objid)\n\n def use_catalog(self, catalog, objid='id', ra='ra', dec='dec', format='fits'):\n if format.lower() == 'fits':\n self.c = Ftable(catalog)\n self.Nc = len(self.c.d)\n else:\n self.c = sextractor(catalog)\n self.Nc = len(self.c)\n self.objid = getattr(self.c, objid)\n self.ra = getattr(self.c, ra)\n self.dec = getattr(self.c, dec)\n\n def cut_objid(self, objid, width):\n # Make cutouts using object ID.\n assert objid in self.objid, \"Object ID %d not found.\" % objid\n ra = self.ra[self.objid==objid][0]\n dec = self.dec[self.objid==objid][0]\n name = 'obj%d' % objid\n self.cut_radec_all(ra, dec, self.filters, width, name, norm=False)\n", "import numpy as np\nfrom ImageTools import cutouts\nfrom pygoods import sextractor, Ftable\ndrz_u = (\n '/Users/khuang/CANDELS/goodss/mosaics/vimos_u/tfit_015_025_sqr_6_bg1.fits')\ndrz_f435w = (\n '/Users/khuang/CANDELS/goodss/mosaics/goods_s_acs_v3/gs_presm4_all_acs_f435w_60mas_v3.0_drz.fits'\n )\ndrz_f606w = (\n '/Users/khuang/CANDELS/goodss/mosaics/goods_s_acs_v3/gs_presm4_all_acs_f606w_60mas_v3.0_drz.fits'\n )\ndrz_f098m = (\n '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_candels_ers_f098m_060mas_v0.5_drz.fits'\n )\ndrz_f105w = (\n '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_candels_ers_udf_f105w_060mas_v0.5_drz.fits'\n )\ndrz_f160w = (\n '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_candels_ers_udf_f160w_v0.5_drz.fits'\n )\nseg_f160w = (\n '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_sx_h_120604_hphotom_comb_seg_psfmatch2h.fits'\n )\nimages = [drz_f435w, drz_f606w, drz_f098m, drz_f105w, drz_f160w, seg_f160w]\nfilters = ['f435w', 'f606w', 'f098m', 'f105w', 'f160w', 'seg_f160w']\ncatalog_udrops = (\n '/Users/khuang/Dropbox/Research/bivariate/udrops_sample/gds_udrops_all_140313.fits'\n )\n\n\nclass UdropsCutouts(cutouts.Cutouts):\n\n def __init__(self, images=images, filters=filters, catalog=\n catalog_udrops, format='fits', objid='objid'):\n super(UdropsCutouts, self).__init__(images, filters)\n self.use_catalog(catalog, format=format, objid=objid)\n\n def use_catalog(self, catalog, objid='id', ra='ra', dec='dec', format=\n 'fits'):\n if format.lower() == 'fits':\n self.c = Ftable(catalog)\n self.Nc = len(self.c.d)\n else:\n self.c = sextractor(catalog)\n self.Nc = len(self.c)\n self.objid = getattr(self.c, objid)\n self.ra = getattr(self.c, ra)\n self.dec = getattr(self.c, dec)\n\n def cut_objid(self, objid, width):\n assert objid in self.objid, 'Object ID %d not found.' % objid\n ra = self.ra[self.objid == objid][0]\n dec = self.dec[self.objid == objid][0]\n name = 'obj%d' % objid\n self.cut_radec_all(ra, dec, self.filters, width, name, norm=False)\n", "<import token>\ndrz_u = (\n '/Users/khuang/CANDELS/goodss/mosaics/vimos_u/tfit_015_025_sqr_6_bg1.fits')\ndrz_f435w = (\n '/Users/khuang/CANDELS/goodss/mosaics/goods_s_acs_v3/gs_presm4_all_acs_f435w_60mas_v3.0_drz.fits'\n )\ndrz_f606w = (\n '/Users/khuang/CANDELS/goodss/mosaics/goods_s_acs_v3/gs_presm4_all_acs_f606w_60mas_v3.0_drz.fits'\n )\ndrz_f098m = (\n '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_candels_ers_f098m_060mas_v0.5_drz.fits'\n )\ndrz_f105w = (\n '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_candels_ers_udf_f105w_060mas_v0.5_drz.fits'\n )\ndrz_f160w = (\n '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_candels_ers_udf_f160w_v0.5_drz.fits'\n )\nseg_f160w = (\n '/Users/khuang/CANDELS/goodss/mosaics/all_combined_v0.5/gs_all_sx_h_120604_hphotom_comb_seg_psfmatch2h.fits'\n )\nimages = [drz_f435w, drz_f606w, drz_f098m, drz_f105w, drz_f160w, seg_f160w]\nfilters = ['f435w', 'f606w', 'f098m', 'f105w', 'f160w', 'seg_f160w']\ncatalog_udrops = (\n '/Users/khuang/Dropbox/Research/bivariate/udrops_sample/gds_udrops_all_140313.fits'\n )\n\n\nclass UdropsCutouts(cutouts.Cutouts):\n\n def __init__(self, images=images, filters=filters, catalog=\n catalog_udrops, format='fits', objid='objid'):\n super(UdropsCutouts, self).__init__(images, filters)\n self.use_catalog(catalog, format=format, objid=objid)\n\n def use_catalog(self, catalog, objid='id', ra='ra', dec='dec', format=\n 'fits'):\n if format.lower() == 'fits':\n self.c = Ftable(catalog)\n self.Nc = len(self.c.d)\n else:\n self.c = sextractor(catalog)\n self.Nc = len(self.c)\n self.objid = getattr(self.c, objid)\n self.ra = getattr(self.c, ra)\n self.dec = getattr(self.c, dec)\n\n def cut_objid(self, objid, width):\n assert objid in self.objid, 'Object ID %d not found.' % objid\n ra = self.ra[self.objid == objid][0]\n dec = self.dec[self.objid == objid][0]\n name = 'obj%d' % objid\n self.cut_radec_all(ra, dec, self.filters, width, name, norm=False)\n", "<import token>\n<assignment token>\n\n\nclass UdropsCutouts(cutouts.Cutouts):\n\n def __init__(self, images=images, filters=filters, catalog=\n catalog_udrops, format='fits', objid='objid'):\n super(UdropsCutouts, self).__init__(images, filters)\n self.use_catalog(catalog, format=format, objid=objid)\n\n def use_catalog(self, catalog, objid='id', ra='ra', dec='dec', format=\n 'fits'):\n if format.lower() == 'fits':\n self.c = Ftable(catalog)\n self.Nc = len(self.c.d)\n else:\n self.c = sextractor(catalog)\n self.Nc = len(self.c)\n self.objid = getattr(self.c, objid)\n self.ra = getattr(self.c, ra)\n self.dec = getattr(self.c, dec)\n\n def cut_objid(self, objid, width):\n assert objid in self.objid, 'Object ID %d not found.' % objid\n ra = self.ra[self.objid == objid][0]\n dec = self.dec[self.objid == objid][0]\n name = 'obj%d' % objid\n self.cut_radec_all(ra, dec, self.filters, width, name, norm=False)\n", "<import token>\n<assignment token>\n\n\nclass UdropsCutouts(cutouts.Cutouts):\n <function token>\n\n def use_catalog(self, catalog, objid='id', ra='ra', dec='dec', format=\n 'fits'):\n if format.lower() == 'fits':\n self.c = Ftable(catalog)\n self.Nc = len(self.c.d)\n else:\n self.c = sextractor(catalog)\n self.Nc = len(self.c)\n self.objid = getattr(self.c, objid)\n self.ra = getattr(self.c, ra)\n self.dec = getattr(self.c, dec)\n\n def cut_objid(self, objid, width):\n assert objid in self.objid, 'Object ID %d not found.' % objid\n ra = self.ra[self.objid == objid][0]\n dec = self.dec[self.objid == objid][0]\n name = 'obj%d' % objid\n self.cut_radec_all(ra, dec, self.filters, width, name, norm=False)\n", "<import token>\n<assignment token>\n\n\nclass UdropsCutouts(cutouts.Cutouts):\n <function token>\n <function token>\n\n def cut_objid(self, objid, width):\n assert objid in self.objid, 'Object ID %d not found.' % objid\n ra = self.ra[self.objid == objid][0]\n dec = self.dec[self.objid == objid][0]\n name = 'obj%d' % objid\n self.cut_radec_all(ra, dec, self.filters, width, name, norm=False)\n", "<import token>\n<assignment token>\n\n\nclass UdropsCutouts(cutouts.Cutouts):\n <function token>\n <function token>\n <function token>\n", "<import token>\n<assignment token>\n<class token>\n" ]
false
99,559
b4c5716ba138f7b54e42d1aba0548113cc7eda16
from flask import Flask from flaskext.mysql import MySQL app = Flask(__name__) app.config['MYSQL_DATABASE_HOST'] = 'KyrylS.mysql.pythonanywhere-services.com' app.config['MYSQL_DATABASE_USER'] = 'KyrylS' app.config['MYSQL_DATABASE_PASSWORD'] = 'Stukalov12' app.config['MYSQL_DATABASE_DB'] = 'KyrylS$hrdeb_db' mysql = MySQL() mysql.init_app(app)
[ "from flask import Flask\nfrom flaskext.mysql import MySQL\n\n\napp = Flask(__name__)\n\napp.config['MYSQL_DATABASE_HOST'] = 'KyrylS.mysql.pythonanywhere-services.com'\napp.config['MYSQL_DATABASE_USER'] = 'KyrylS'\napp.config['MYSQL_DATABASE_PASSWORD'] = 'Stukalov12'\napp.config['MYSQL_DATABASE_DB'] = 'KyrylS$hrdeb_db'\n\n\nmysql = MySQL()\nmysql.init_app(app)", "from flask import Flask\nfrom flaskext.mysql import MySQL\napp = Flask(__name__)\napp.config['MYSQL_DATABASE_HOST'] = 'KyrylS.mysql.pythonanywhere-services.com'\napp.config['MYSQL_DATABASE_USER'] = 'KyrylS'\napp.config['MYSQL_DATABASE_PASSWORD'] = 'Stukalov12'\napp.config['MYSQL_DATABASE_DB'] = 'KyrylS$hrdeb_db'\nmysql = MySQL()\nmysql.init_app(app)\n", "<import token>\napp = Flask(__name__)\napp.config['MYSQL_DATABASE_HOST'] = 'KyrylS.mysql.pythonanywhere-services.com'\napp.config['MYSQL_DATABASE_USER'] = 'KyrylS'\napp.config['MYSQL_DATABASE_PASSWORD'] = 'Stukalov12'\napp.config['MYSQL_DATABASE_DB'] = 'KyrylS$hrdeb_db'\nmysql = MySQL()\nmysql.init_app(app)\n", "<import token>\n<assignment token>\nmysql.init_app(app)\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,560
f709306bf36ddff74178e479430e85e1f28f524a
import pdb import warnings from collections import Counter import numpy as np import re import itertools as it from scipy.sparse import issparse, hstack from pandas import DataFrame from sklearn.utils import check_random_state, check_array from sklearn.base import BaseEstimator, ClassifierMixin, TransformerMixin from sklearn.utils.validation import check_is_fitted, check_array, check_X_y from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from xgboost.sklearn import XGBClassifier from custom_transformers import LabelOneHotEncoder from sklearn.preprocessing import OneHotEncoder, RobustScaler from sklearn.linear_model import LogisticRegression class FriedScaler(BaseEstimator, TransformerMixin): """FriedScaler class: Scale linear features within rule ensemble Scales linear features within a rule ensemble to have the same weighting as a rule according to Friedman et al. 2005 Section 5. Each column, $x_i$ is winsorised at `quantile` -> $x_i'$, then standardised by multiplying by $0.4 \text{std}(x_i')$ Attributes ---------- scale: numpy.ndarray scale factor for each variable lower: numpy.ndarray lower winsorisation threshold upper: numpy.ndarray upper winsorisation threshold """ def __init__(self, quantile=0.0): """ Parameters ---------- quantile: float float in [0, 0.5) signifying the quantiles at which to winsorise (`quantile` and `1-quantile`) WARNING: If data has small variance then this may need to be very small to avoid blowing up of scale factors """ self.quantile = quantile def fit(self, X, y=None): """ Fit scaler and return self Winsorise `X` at `quantile` and `1-quantile`. Scale each variable (as long as they aren't binary in which case they are already rules). Parameters ---------- X: numpy.ndarray Co-variates y: dummy arguement, optional """ self.fit_transform(X, y) return self def fit_transform(self, X, y=None): """ Fit scaler and transform input data Winsorise `X` at `quantile` and `1-quantile`. Scale each variable (as long as they aren't binary in which case they are already rules). Parameters ---------- X: numpy.ndarray Co-variates y: dummy arguement, optional """ self.scale = np.ones(X.shape[1]) self.lower = np.percentile(X, self.quantile*100, axis=0) self.upper = np.percentile(X, (1-self.quantile)*100, axis=0) # Winsorize at `self.quantile` winX = X.copy() is_lower = (winX < self.lower) is_higher = (winX > self.upper) for col in range(X.shape[1]): winX[is_lower[:, col], col] = self.lower[col] winX[is_higher[:, col], col] = self.upper[col] num_uniq = np.unique(X[:, col]).size if num_uniq > 2: # Don't scale binary vars self.scale[col] = 0.4/(1e-12 + np.std(winX[:, col])) large_scale = np.where(self.scale > 1e3)[0] if large_scale.size > 0: warnings.warn('Scales of {} are larger than 1e3!'.format(large_scale)) return winX*self.scale def transform(self, X): """ Transform input data Winsorise `X` at pre-fitted `quantile` and `1-quantile`. Scale each variable (as long as they aren't binary in which case they are already rules) accorded to the already fitted scale factors. Parameters ---------- X: numpy.ndarray Co-variates y: dummy arguement, optional """ winX = X.copy() is_lower = (winX <= self.lower) is_higher = (winX >= self.upper) for col in range(X.shape[1]): winX[is_lower[:, col], col] = self.lower[col] winX[is_higher[:, col], col] = self.upper[col] return winX*self.scale class RuleFitClassifier(BaseEstimator, ClassifierMixin): """Rule-Fit for binary classification Generate an ensemble of rules using XGBoost or a sklearn tree ensemble method, and use these (optionally with linear features) in a L1 (or other penalised) Logistic Regression to build a classifier. Attributes ---------- LR: sklearn.linear_model.LogisticRegression Regularised linear regression on ensemble of rules feature_mask_: np.ndarray Array of non-zero feature values coef_: np.ndarray LogisticRegression (`LR`) co-efficients for features in `feature_mask_` intercept_: np.ndarray LogisticRegression (`LR`) intercept features: np.ndarray of str Input feature names features_: np.ndarray of str Output feature names of rule ensembles (and linear features if `linear_features=True`) """ def __init__(self, base_estimator=XGBClassifier(), linear_features=True, linear_feature_quantile=0.025, C=1e-1, penalty='l1', n_estimators=10, max_depth=5, rand_tree_size=False, sparse_output=True, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None, ext_scaler=RobustScaler()): """ Parameters ---------- base_estimator: sklearn estimator, default: xgboost.sklearn.XGBClassifier Estimator to generate rule ensemble with linear_features: bool, default: True If `True`: Use linear features as well as rules linear_feature_quantile: float, default: 0.025 float in [0, 0.5) signifying the quantiles at which to winsorise (`quantile` and `1-quantile`). WARNING: If data has small variance then this may need to be very small to avoid blowing up of scale factors C: float, default: 0.1 Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization. penalty: {'l1', 'l2'}, default: 'l1' Norm used in the regularisation for LogisticRegression n_estimators: int, default: 10 Number of trees within `base_estimator` max_depth: int, optional Maximum tree depth of `base_estimator` rand_tree_size: bool, optional NOT YET IMPLEMENTED! If `True`, randomise `max_depth` to get rules of varying lengths. n_jobs: int, optional The number of CPUs to use. -1 means 'all CPUs'. verbose: int, optional Increasing verbosity with number. warm_start: int, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. class_weight : dict or 'balanced', default: 'balanced' Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. ext_scaler: sklearn Transformer, optional Scaling transformation to apply to linear features (before Friedman scaling) """ self.base_estimator = base_estimator self.linear_features = linear_features self.linear_feature_quantile = linear_feature_quantile self.C = C self.penalty = penalty self.n_estimators = n_estimators self.max_depth = max_depth self.rand_tree_size = rand_tree_size self.n_jobs = n_jobs self.verbose = verbose self.warm_start = warm_start self.class_weight = class_weight self.ext_scaler = ext_scaler def fit(self, X, y, sample_weight=None): """ Fit model to data X: pandas.DataFrame or numpy.ndarray Features y: pandas.Series or numpy.ndarray Target Returns ------- self """ self.fit_transform(X, y, sample_weight=sample_weight) return self def transform(self, X, y=None): """ Transform data into modified features (before being passed to penalised regression step). If `linear_features=True` then this will be scaled linear features followed by the one-hot-encoding signifying which rules are "on". Otherwise this is just the one-hot-encoding signifying which rules are "on". X: pandas.DataFrame or numpy.ndarray Features y: dummy, optional Returns ------- sparse array """ if isinstance(X, DataFrame): is_df = True # Serves no purpose X = check_array(X) # Validate input data X = self.ext_scaler.transform(X) # Scale and centre features if self.linear_features: X_scale = self._scaler.transform(X) # Scale linear features to give same a priori weight as rules return hstack([X_scale, self._one_hot_encoder.transform(self.base_estimator.apply(X).reshape(-1, self.n_estimators))]) else: return self._one_hot_encoder.transform(self.base_estimator.apply(X).reshape(-1, self.n_estimators)) def fit_transform(self, X, y, sample_weight=None): """ Fit and Transform data into modified features (before being passed to penalised regression step). If `linear_features=True` then this will be scaled linear features followed by the one-hot-encoding signifying which rules are "on". Otherwise this is just the one-hot-encoding signifying which rules are "on". Fitting process involves fitted bagged/boosted tree model to generate rules and then using these in a penalised logistic regression. X: pandas.DataFrame or numpy.ndarray Features y: pandas.Series or numpy.ndarray Target Returns ------- sparse array """ # Instantiate rule ensemble generator and set parameters if isinstance(self.base_estimator, XGBClassifier): self.base_estimator.set_params(n_estimators=self.n_estimators, silent=(self.verbose>0), max_depth=self.max_depth, n_jobs=self.n_jobs) elif isinstance(self.base_estimator, RandomForestClassifier): warnings.warn('This base_estimator implementation has not been tested in a while!') self.base_estimator.set_params(n_estimators=self.n_estimators, verbose=self.verbose, max_depth=self.max_depth, n_jobs=self.n_jobs) elif isinstance(self.base_estimator, GradientBoostingClassifier): warnings.warn('This base_estimator implementation has not been tested in a while!') self.base_estimator.set_params(n_estimators=self.n_estimators, verbose=self.verbose, max_depth=self.max_depth, n_jobs=self.n_jobs) else: raise NotImplementedError # Name features if isinstance(X, DataFrame): self.features = X.columns.values else: self.features = ['f'+str(i) for i in range(X.shape[1])] # Check input X = check_array(X) # Generate and extract rules if not self.rand_tree_size: self.base_estimator.fit(X, y, sample_weight=sample_weight) if isinstance(self.base_estimator, XGBClassifier): self._rule_dump = self.base_estimator._Booster.get_dump() else: NotImplementedError() # TODO: work out how to incrementally train XGB if self.verbose > 0: print('fitting trees') # For each tree: get leaf numbers and map them to [0, num leaves] # before one-hot encoding them n_values = "auto" leaves_l = [] for tree_i in self._rule_dump: leaves = [int(i) for i in re.findall(r'([0-9]+):leaf=', tree_i)] leaves_l.append(leaves) self._one_hot_encoder = LabelOneHotEncoder(leaves_l) if self.verbose > 0: print('setup encoding') # Scale and centre linear features X = self.ext_scaler.fit_transform(X) if self.linear_features: # Linear features must be scaled to have same weighting as an average rule self._scaler = FriedScaler(quantile=self.linear_feature_quantile) X_scale = self._scaler.fit_transform(X) X_transform = hstack([X_scale, self._one_hot_encoder.fit_transform(self.base_estimator.apply(X).reshape(-1, self.n_estimators))]) else: X_transform = self._one_hot_encoder.fit_transform(self.base_estimator.apply(X).reshape(-1, self.n_estimators)) if self.verbose > 0: print('encoded') # Fit sparse linear model to rules (and optionally linear features) self.LR = LogisticRegression(C=self.C, penalty=self.penalty, class_weight=self.class_weight, warm_start=self.warm_start, solver='saga', verbose=self.verbose) self.LR.fit(X_transform, y, sample_weight=sample_weight) if self.verbose > 0: print('fitted') # Mask features with zero co-efficients # self.feature_mask_ = np.arange(self.LR.coef_.size) self.feature_mask_ = self.LR.coef_.nonzero()[1] self.coef_ = self.LR.coef_[0, self.feature_mask_] self.intercept_ = self.LR.intercept_ self.get_feature_names() assert self.features_.size == self.feature_mask_.size return X_transform def get_feature_names(self): """ Get names of features in the model Returns ------- numpy.ndarray """ if self.linear_features: self.features_ = np.concatenate([self.features, np.array(self.extract_rules(labels=self.features))], 0)[self.feature_mask_] else: self.features_ = np.array(self.extract_rules(labels=self.features))[self.feature_mask_] return self.features_ def predict(self, X): """ Output model prediction Parameters ---------- X: pandas.DataFrame or numpy.ndarray Returns ------- np.ndarray Bool predictions """ return self.LR.predict(self.transform(X)) def predict_proba(self, X): """ Output model prediction probability Parameters ---------- X: pandas.DataFrame or numpy.ndarray Returns ------- np.ndarray Probabilistic predictions """ return self.LR.predict_proba(self.transform(X)) def __extract_xgb_dt_rules__(self, dt): """ Extract rule set from single decision tree according to `XGBClassifier` format Parameters ---------- dt: string Returns ------- list of numpy.ndarray Each array is of length three. First indicates feature number, Second indicates operator (1 if $>$ otherwise $\leq$), Third indicates threshold value """ md = self.max_depth + 1 # upper limit of max_depth? rules = [] levels = np.zeros((md, 3)) # Stores: (feature name, threshold, next node id) path = [] # Extract feature numbers and thresholds for all nodes feat_thresh_l = re.findall(r'\[f([0-9]+)<([-]?[0-9]+\.?[0-9]*)\]', dt) _id = 0 prune = -1 for line in dt.split('\n')[:-1]: # Separate node id and rest of line _id, rest = line.split(':') # Count number of tabs at start of line to get level (and then remove) level = Counter(_id)['\t'] _id = _id.lstrip() if prune > 0: # If we were last at a leaf, prune the path path = path[:-1+(level-prune)] # Add current node to path path.append(int(_id)) if 'leaf' in rest: prune = level # Store where we are so we can prune when we backtrack rules.append(levels[:level, (0, 2, 1)].copy()) # Add rules rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:]) # Convert path to geq/leq operators else: # Extract (feature name, threshold, next node id) levels[level, :] = re.findall(r'\[f([0-9]+)<([-]?[0-9]+\.?[0-9]*)\].*yes=([0-9]+)', line)[0] # Don't prune prune = -1 return rules def __extract_dt_rules__(self, dt): """ Extract rule set from single decision tree according to sklearn binary-tree format Parameters ---------- dt: string Returns ------- list of numpy.ndarray Each array is of length three. First indicates feature number, Second indicates operator (1 if $>$ otherwise $\leq$), Third indicates threshold value """ t = dt.tree_ # Get tree object rules = [] stack = [(0, -1, -1)] # (node id, parent depth, true[<=thresh]/false[>thresh] arm) path = [(0, -1, -1)] # Begin path at root while len(stack) > 0: # While nodes to visit is not empty nid, pd, op = stack.pop() # Get next node id, path depth, operator if (pd > path[-1][1]): # Going deeper path.append((nid, pd, op)) elif pd == -1: # ROOT pass else: # Back-track [path.pop() for _ in range(path[-1][1]-pd+1)] path.append((nid, pd, op)) if t.children_left[nid] > 0: # If not leaf, add children onto stack stack.append((t.children_left[nid], pd + 1, 1)) stack.append((t.children_right[nid], pd + 1, 0)) else: # If leaf append rule rules.append(np.array([(t.feature[path[i][0]], path[i+1][2], t.threshold[path[i][0]]) for i in range(len(path)-1)])) return rules def __convert_rule__(self, x, labels=None, scaler=None): """Convert rule represented by an array to readable format Parameters ---------- x: numpy.ndarray Input array where each row represents a feature in a rule. 3 columns: First indicates feature number, Second indicates operator (1 if $>$ otherwise $\leq$), Third indicates threshold value labels: list of str, optional Names of features to replace feature numbers with scaler: Scaler to reverse scaling done in fitting so interpretable feature values can be used. Returns ------- list of str List containing each stage of input rule """ strop = ['>', '<='] if scaler is None: # If no scaler, do not shift or scale nf = x[:, 0].astype(int).max()+1 scale = np.ones(nf) center = np.zeros(nf) else: scale = scaler.scale_ center = scaler.center_ if labels is None: return [(str(int(f)) + str(strop[int(op)]) + str(thresh*scale[int(f)]+center[int(f)])) for f, op, thresh in x] else: return [(labels[int(f)] + str(strop[int(op)]) + str(thresh*scale[int(f)]+center[int(f)])) for f, op, thresh in x] def extract_rules(self, labels=None): """Extract rules from `base_estimator` Parameters ---------- labels: list of str, optional Feature names Returns ------- numpy.ndarray Containing `str` representing rules in ensembles """ # Extract flat list of rules in array form if isinstance(self.base_estimator, RandomForestClassifier): rules = list(it.chain(*[self.__extract_dt_rules__(dt) for dt in self.base_estimator.estimators_])) elif isinstance(self.base_estimator, GradientBoostingClassifier): rules = list(it.chain(*[self.__extract_dt_rules(__dt) for dt in self.base_estimator.estimators_.ravel()])) elif isinstance(self.base_estimator, XGBClassifier): rules = list(it.chain(*[self.__extract_xgb_dt_rules__(dt) for dt in self._rule_dump])) # Convert each sub-rule into text, join together with '&' and then add to rules self.rules = np.array([' & '.join(self.__convert_rule__(r, labels=labels, scaler=self.ext_scaler)) for r in rules]) return self.rules
[ "import pdb\nimport warnings\n\nfrom collections import Counter\nimport numpy as np\nimport re\nimport itertools as it\nfrom scipy.sparse import issparse, hstack\nfrom pandas import DataFrame\n\nfrom sklearn.utils import check_random_state, check_array\nfrom sklearn.base import BaseEstimator, ClassifierMixin, TransformerMixin\nfrom sklearn.utils.validation import check_is_fitted, check_array, check_X_y\n\nfrom sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier\nfrom xgboost.sklearn import XGBClassifier\nfrom custom_transformers import LabelOneHotEncoder\nfrom sklearn.preprocessing import OneHotEncoder, RobustScaler\nfrom sklearn.linear_model import LogisticRegression\n\n\nclass FriedScaler(BaseEstimator, TransformerMixin):\n \"\"\"FriedScaler class: Scale linear features within rule ensemble\n \n Scales linear features within a rule ensemble\n to have the same weighting as a rule according to\n Friedman et al. 2005 Section 5.\n \n Each column, $x_i$ is winsorised at `quantile` -> $x_i'$, then \n standardised by multiplying by $0.4 \\text{std}(x_i')$\n \n Attributes\n ----------\n \n scale: numpy.ndarray \n scale factor for each variable\n \n lower: numpy.ndarray\n lower winsorisation threshold\n \n upper: numpy.ndarray\n upper winsorisation threshold\n \n \"\"\"\n \n def __init__(self, quantile=0.0):\n \"\"\"\n Parameters\n ----------\n \n quantile: float\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`)\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \"\"\"\n self.quantile = quantile\n \n def fit(self, X, y=None):\n \"\"\" Fit scaler and return self\n \n Winsorise `X` at `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules).\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n self.fit_transform(X, y)\n return self\n \n def fit_transform(self, X, y=None):\n \"\"\" Fit scaler and transform input data\n \n Winsorise `X` at `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules).\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n self.scale = np.ones(X.shape[1])\n self.lower = np.percentile(X, self.quantile*100, axis=0)\n self.upper = np.percentile(X, (1-self.quantile)*100, axis=0)\n \n # Winsorize at `self.quantile`\n winX = X.copy()\n is_lower = (winX < self.lower)\n is_higher = (winX > self.upper)\n for col in range(X.shape[1]):\n winX[is_lower[:, col], col] = self.lower[col]\n winX[is_higher[:, col], col] = self.upper[col]\n \n num_uniq = np.unique(X[:, col]).size\n if num_uniq > 2: # Don't scale binary vars\n self.scale[col] = 0.4/(1e-12 + np.std(winX[:, col]))\n \n large_scale = np.where(self.scale > 1e3)[0]\n if large_scale.size > 0:\n warnings.warn('Scales of {} are larger than 1e3!'.format(large_scale))\n \n return winX*self.scale\n \n def transform(self, X):\n \"\"\" Transform input data\n \n Winsorise `X` at pre-fitted `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules) accorded to the already\n fitted scale factors.\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n winX = X.copy()\n is_lower = (winX <= self.lower)\n is_higher = (winX >= self.upper)\n for col in range(X.shape[1]):\n winX[is_lower[:, col], col] = self.lower[col]\n winX[is_higher[:, col], col] = self.upper[col]\n return winX*self.scale\n \nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n \"\"\"Rule-Fit for binary classification\n \n Generate an ensemble of rules using XGBoost or a sklearn\n tree ensemble method, and use these (optionally with linear\n features) in a L1 (or other penalised) Logistic Regression to \n build a classifier.\n \n Attributes\n ----------\n \n LR: sklearn.linear_model.LogisticRegression\n Regularised linear regression on ensemble of rules\n \n feature_mask_: np.ndarray\n Array of non-zero feature values\n \n coef_: np.ndarray\n LogisticRegression (`LR`) co-efficients for features in `feature_mask_`\n \n intercept_: np.ndarray\n LogisticRegression (`LR`) intercept\n \n features: np.ndarray of str\n Input feature names\n \n features_: np.ndarray of str\n Output feature names of rule ensembles (and linear features if `linear_features=True`)\n \n \"\"\"\n \n def __init__(self, \n base_estimator=XGBClassifier(),\n linear_features=True,\n linear_feature_quantile=0.025,\n C=1e-1,\n penalty='l1',\n n_estimators=10,\n max_depth=5,\n rand_tree_size=False,\n sparse_output=True,\n n_jobs=1,\n random_state=None,\n verbose=0,\n warm_start=False,\n class_weight=None,\n ext_scaler=RobustScaler()):\n \"\"\"\n Parameters\n ----------\n \n base_estimator: sklearn estimator, default: xgboost.sklearn.XGBClassifier\n Estimator to generate rule ensemble with\n \n linear_features: bool, default: True\n If `True`: Use linear features as well as rules\n \n linear_feature_quantile: float, default: 0.025\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`).\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \n C: float, default: 0.1\n Inverse of regularization strength; must be a positive float.\n Like in support vector machines, smaller values specify stronger\n regularization.\n \n \n penalty: {'l1', 'l2'}, default: 'l1'\n Norm used in the regularisation for LogisticRegression\n \n n_estimators: int, default: 10\n Number of trees within `base_estimator`\n \n max_depth: int, optional\n Maximum tree depth of `base_estimator`\n \n rand_tree_size: bool, optional\n NOT YET IMPLEMENTED!\n If `True`, randomise `max_depth` to get rules of varying lengths.\n \n n_jobs: int, optional\n The number of CPUs to use. -1 means 'all CPUs'.\n \n verbose: int, optional\n Increasing verbosity with number.\n \n warm_start: int, optional\n When set to True, reuse the solution of the previous call to fit as\n initialization, otherwise, just erase the previous solution.\n \n class_weight : dict or 'balanced', default: 'balanced'\n Weights associated with classes in the form ``{class_label: weight}``.\n If not given, all classes are supposed to have weight one.\n\n The \"balanced\" mode uses the values of y to automatically adjust\n weights inversely proportional to class frequencies in the input data\n as ``n_samples / (n_classes * np.bincount(y))``.\n\n ext_scaler: sklearn Transformer, optional\n Scaling transformation to apply to linear features (before Friedman scaling)\n \n \"\"\"\n \n self.base_estimator = base_estimator\n self.linear_features = linear_features\n self.linear_feature_quantile = linear_feature_quantile\n self.C = C\n self.penalty = penalty\n self.n_estimators = n_estimators\n self.max_depth = max_depth\n self.rand_tree_size = rand_tree_size\n self.n_jobs = n_jobs\n self.verbose = verbose\n self.warm_start = warm_start\n self.class_weight = class_weight\n self.ext_scaler = ext_scaler\n \n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n \n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n \n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True # Serves no purpose \n \n X = check_array(X) # Validate input data\n \n X = self.ext_scaler.transform(X) # Scale and centre features\n if self.linear_features:\n X_scale = self._scaler.transform(X) # Scale linear features to give same a priori weight as rules\n return hstack([X_scale, self._one_hot_encoder.transform(self.base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.apply(X).reshape(-1, self.n_estimators))\n\n def fit_transform(self, X, y, sample_weight=None):\n \"\"\" Fit and Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n Fitting process involves fitted bagged/boosted tree model to generate rules\n and then using these in a penalised logistic regression.\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n sparse array\n \"\"\"\n # Instantiate rule ensemble generator and set parameters\n if isinstance(self.base_estimator, XGBClassifier):\n self.base_estimator.set_params(n_estimators=self.n_estimators, silent=(self.verbose>0),\n max_depth=self.max_depth, n_jobs=self.n_jobs)\n elif isinstance(self.base_estimator, RandomForestClassifier):\n warnings.warn('This base_estimator implementation has not been tested in a while!')\n self.base_estimator.set_params(n_estimators=self.n_estimators, verbose=self.verbose,\n max_depth=self.max_depth, n_jobs=self.n_jobs)\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n warnings.warn('This base_estimator implementation has not been tested in a while!')\n self.base_estimator.set_params(n_estimators=self.n_estimators, verbose=self.verbose,\n max_depth=self.max_depth, n_jobs=self.n_jobs)\n else:\n raise NotImplementedError\n \n # Name features\n if isinstance(X, DataFrame):\n self.features = X.columns.values\n else:\n self.features = ['f'+str(i) for i in range(X.shape[1])]\n \n # Check input\n X = check_array(X)\n \n # Generate and extract rules\n if not self.rand_tree_size:\n self.base_estimator.fit(X, y, sample_weight=sample_weight)\n if isinstance(self.base_estimator, XGBClassifier):\n self._rule_dump = self.base_estimator._Booster.get_dump()\n else:\n NotImplementedError() # TODO: work out how to incrementally train XGB\n \n if self.verbose > 0:\n print('fitting trees')\n \n # For each tree: get leaf numbers and map them to [0, num leaves]\n # before one-hot encoding them\n n_values = \"auto\"\n leaves_l = []\n for tree_i in self._rule_dump:\n leaves = [int(i) for i in re.findall(r'([0-9]+):leaf=', tree_i)]\n leaves_l.append(leaves)\n self._one_hot_encoder = LabelOneHotEncoder(leaves_l)\n \n if self.verbose > 0:\n print('setup encoding')\n \n # Scale and centre linear features\n X = self.ext_scaler.fit_transform(X)\n \n if self.linear_features:\n # Linear features must be scaled to have same weighting as an average rule\n self._scaler = FriedScaler(quantile=self.linear_feature_quantile)\n X_scale = self._scaler.fit_transform(X)\n X_transform = hstack([X_scale, self._one_hot_encoder.fit_transform(self.base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n X_transform = self._one_hot_encoder.fit_transform(self.base_estimator.apply(X).reshape(-1, self.n_estimators))\n \n if self.verbose > 0:\n print('encoded')\n \n # Fit sparse linear model to rules (and optionally linear features)\n self.LR = LogisticRegression(C=self.C, penalty=self.penalty, class_weight=self.class_weight,\n warm_start=self.warm_start, solver='saga', verbose=self.verbose)\n self.LR.fit(X_transform, y, sample_weight=sample_weight)\n \n if self.verbose > 0:\n print('fitted')\n \n # Mask features with zero co-efficients\n # self.feature_mask_ = np.arange(self.LR.coef_.size)\n self.feature_mask_ = self.LR.coef_.nonzero()[1]\n \n self.coef_ = self.LR.coef_[0, self.feature_mask_]\n self.intercept_ = self.LR.intercept_\n self.get_feature_names()\n assert self.features_.size == self.feature_mask_.size\n return X_transform\n \n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features))[self.feature_mask_]\n return self.features_\n \n def predict(self, X):\n \"\"\" Output model prediction\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Bool predictions\n \"\"\"\n \n return self.LR.predict(self.transform(X))\n \n def predict_proba(self, X):\n \"\"\" Output model prediction probability\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Probabilistic predictions\n \"\"\"\n return self.LR.predict_proba(self.transform(X))\n \n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\leq$),\n Third indicates threshold value\n \n \"\"\" \n md = self.max_depth + 1 # upper limit of max_depth?\n rules = []\n levels = np.zeros((md, 3)) # Stores: (feature name, threshold, next node id)\n path = []\n\n # Extract feature numbers and thresholds for all nodes\n feat_thresh_l = re.findall(r'\\[f([0-9]+)<([-]?[0-9]+\\.?[0-9]*)\\]', dt)\n\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n # Separate node id and rest of line\n _id, rest = line.split(':')\n\n # Count number of tabs at start of line to get level (and then remove)\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n\n if prune > 0:\n # If we were last at a leaf, prune the path\n path = path[:-1+(level-prune)]\n # Add current node to path\n path.append(int(_id))\n\n if 'leaf' in rest:\n prune = level # Store where we are so we can prune when we backtrack\n rules.append(levels[:level, (0, 2, 1)].copy()) # Add rules\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:]) # Convert path to geq/leq operators\n else:\n # Extract (feature name, threshold, next node id)\n levels[level, :] = re.findall(r'\\[f([0-9]+)<([-]?[0-9]+\\.?[0-9]*)\\].*yes=([0-9]+)', line)[0]\n # Don't prune\n prune = -1\n\n return rules\n\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\leq$),\n Third indicates threshold value\n \n \"\"\" \n t = dt.tree_ # Get tree object\n rules = []\n\n stack = [(0, -1, -1)] # (node id, parent depth, true[<=thresh]/false[>thresh] arm)\n path = [(0, -1, -1)] # Begin path at root\n while len(stack) > 0: # While nodes to visit is not empty\n nid, pd, op = stack.pop() # Get next node id, path depth, operator\n\n if (pd > path[-1][1]): # Going deeper\n path.append((nid, pd, op))\n elif pd == -1: # ROOT\n pass\n else: # Back-track\n [path.pop() for _ in range(path[-1][1]-pd+1)]\n path.append((nid, pd, op))\n\n if t.children_left[nid] > 0: # If not leaf, add children onto stack\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else: # If leaf append rule\n rules.append(np.array([(t.feature[path[i][0]], path[i+1][2], t.threshold[path[i][0]]) for i in range(len(path)-1)]))\n\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n\n if scaler is None:\n # If no scaler, do not shift or scale\n nf = x[:, 0].astype(int).max()+1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh*scale[int(f)]+center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh*scale[int(f)]+center[int(f)])) for f, op, thresh in x]\n \n def extract_rules(self, labels=None):\n \"\"\"Extract rules from `base_estimator`\n \n Parameters\n ----------\n \n labels: list of str, optional\n Feature names\n \n Returns\n -------\n \n numpy.ndarray\n Containing `str` representing rules in ensembles\n \n \"\"\"\n # Extract flat list of rules in array form\n if isinstance(self.base_estimator, RandomForestClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules__(dt) for dt in self.base_estimator.estimators_]))\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules(__dt) for dt in self.base_estimator.estimators_.ravel()]))\n elif isinstance(self.base_estimator, XGBClassifier):\n rules = list(it.chain(*[self.__extract_xgb_dt_rules__(dt) for dt in self._rule_dump]))\n \n # Convert each sub-rule into text, join together with '&' and then add to rules\n self.rules = np.array([' & '.join(self.__convert_rule__(r, labels=labels, scaler=self.ext_scaler)) for r in rules])\n \n return self.rules\n", "import pdb\nimport warnings\nfrom collections import Counter\nimport numpy as np\nimport re\nimport itertools as it\nfrom scipy.sparse import issparse, hstack\nfrom pandas import DataFrame\nfrom sklearn.utils import check_random_state, check_array\nfrom sklearn.base import BaseEstimator, ClassifierMixin, TransformerMixin\nfrom sklearn.utils.validation import check_is_fitted, check_array, check_X_y\nfrom sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier\nfrom xgboost.sklearn import XGBClassifier\nfrom custom_transformers import LabelOneHotEncoder\nfrom sklearn.preprocessing import OneHotEncoder, RobustScaler\nfrom sklearn.linear_model import LogisticRegression\n\n\nclass FriedScaler(BaseEstimator, TransformerMixin):\n \"\"\"FriedScaler class: Scale linear features within rule ensemble\n \n Scales linear features within a rule ensemble\n to have the same weighting as a rule according to\n Friedman et al. 2005 Section 5.\n \n Each column, $x_i$ is winsorised at `quantile` -> $x_i'$, then \n standardised by multiplying by $0.4 \text{std}(x_i')$\n \n Attributes\n ----------\n \n scale: numpy.ndarray \n scale factor for each variable\n \n lower: numpy.ndarray\n lower winsorisation threshold\n \n upper: numpy.ndarray\n upper winsorisation threshold\n \n \"\"\"\n\n def __init__(self, quantile=0.0):\n \"\"\"\n Parameters\n ----------\n \n quantile: float\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`)\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \"\"\"\n self.quantile = quantile\n\n def fit(self, X, y=None):\n \"\"\" Fit scaler and return self\n \n Winsorise `X` at `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules).\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n self.fit_transform(X, y)\n return self\n\n def fit_transform(self, X, y=None):\n \"\"\" Fit scaler and transform input data\n \n Winsorise `X` at `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules).\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n self.scale = np.ones(X.shape[1])\n self.lower = np.percentile(X, self.quantile * 100, axis=0)\n self.upper = np.percentile(X, (1 - self.quantile) * 100, axis=0)\n winX = X.copy()\n is_lower = winX < self.lower\n is_higher = winX > self.upper\n for col in range(X.shape[1]):\n winX[is_lower[:, col], col] = self.lower[col]\n winX[is_higher[:, col], col] = self.upper[col]\n num_uniq = np.unique(X[:, col]).size\n if num_uniq > 2:\n self.scale[col] = 0.4 / (1e-12 + np.std(winX[:, col]))\n large_scale = np.where(self.scale > 1000.0)[0]\n if large_scale.size > 0:\n warnings.warn('Scales of {} are larger than 1e3!'.format(\n large_scale))\n return winX * self.scale\n\n def transform(self, X):\n \"\"\" Transform input data\n \n Winsorise `X` at pre-fitted `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules) accorded to the already\n fitted scale factors.\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n winX = X.copy()\n is_lower = winX <= self.lower\n is_higher = winX >= self.upper\n for col in range(X.shape[1]):\n winX[is_lower[:, col], col] = self.lower[col]\n winX[is_higher[:, col], col] = self.upper[col]\n return winX * self.scale\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n \"\"\"Rule-Fit for binary classification\n \n Generate an ensemble of rules using XGBoost or a sklearn\n tree ensemble method, and use these (optionally with linear\n features) in a L1 (or other penalised) Logistic Regression to \n build a classifier.\n \n Attributes\n ----------\n \n LR: sklearn.linear_model.LogisticRegression\n Regularised linear regression on ensemble of rules\n \n feature_mask_: np.ndarray\n Array of non-zero feature values\n \n coef_: np.ndarray\n LogisticRegression (`LR`) co-efficients for features in `feature_mask_`\n \n intercept_: np.ndarray\n LogisticRegression (`LR`) intercept\n \n features: np.ndarray of str\n Input feature names\n \n features_: np.ndarray of str\n Output feature names of rule ensembles (and linear features if `linear_features=True`)\n \n \"\"\"\n\n def __init__(self, base_estimator=XGBClassifier(), linear_features=True,\n linear_feature_quantile=0.025, C=0.1, penalty='l1', n_estimators=10,\n max_depth=5, rand_tree_size=False, sparse_output=True, n_jobs=1,\n random_state=None, verbose=0, warm_start=False, class_weight=None,\n ext_scaler=RobustScaler()):\n \"\"\"\n Parameters\n ----------\n \n base_estimator: sklearn estimator, default: xgboost.sklearn.XGBClassifier\n Estimator to generate rule ensemble with\n \n linear_features: bool, default: True\n If `True`: Use linear features as well as rules\n \n linear_feature_quantile: float, default: 0.025\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`).\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \n C: float, default: 0.1\n Inverse of regularization strength; must be a positive float.\n Like in support vector machines, smaller values specify stronger\n regularization.\n \n \n penalty: {'l1', 'l2'}, default: 'l1'\n Norm used in the regularisation for LogisticRegression\n \n n_estimators: int, default: 10\n Number of trees within `base_estimator`\n \n max_depth: int, optional\n Maximum tree depth of `base_estimator`\n \n rand_tree_size: bool, optional\n NOT YET IMPLEMENTED!\n If `True`, randomise `max_depth` to get rules of varying lengths.\n \n n_jobs: int, optional\n The number of CPUs to use. -1 means 'all CPUs'.\n \n verbose: int, optional\n Increasing verbosity with number.\n \n warm_start: int, optional\n When set to True, reuse the solution of the previous call to fit as\n initialization, otherwise, just erase the previous solution.\n \n class_weight : dict or 'balanced', default: 'balanced'\n Weights associated with classes in the form ``{class_label: weight}``.\n If not given, all classes are supposed to have weight one.\n\n The \"balanced\" mode uses the values of y to automatically adjust\n weights inversely proportional to class frequencies in the input data\n as ``n_samples / (n_classes * np.bincount(y))``.\n\n ext_scaler: sklearn Transformer, optional\n Scaling transformation to apply to linear features (before Friedman scaling)\n \n \"\"\"\n self.base_estimator = base_estimator\n self.linear_features = linear_features\n self.linear_feature_quantile = linear_feature_quantile\n self.C = C\n self.penalty = penalty\n self.n_estimators = n_estimators\n self.max_depth = max_depth\n self.rand_tree_size = rand_tree_size\n self.n_jobs = n_jobs\n self.verbose = verbose\n self.warm_start = warm_start\n self.class_weight = class_weight\n self.ext_scaler = ext_scaler\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n\n def fit_transform(self, X, y, sample_weight=None):\n \"\"\" Fit and Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n Fitting process involves fitted bagged/boosted tree model to generate rules\n and then using these in a penalised logistic regression.\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(self.base_estimator, XGBClassifier):\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n silent=self.verbose > 0, max_depth=self.max_depth, n_jobs=\n self.n_jobs)\n elif isinstance(self.base_estimator, RandomForestClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n else:\n raise NotImplementedError\n if isinstance(X, DataFrame):\n self.features = X.columns.values\n else:\n self.features = [('f' + str(i)) for i in range(X.shape[1])]\n X = check_array(X)\n if not self.rand_tree_size:\n self.base_estimator.fit(X, y, sample_weight=sample_weight)\n if isinstance(self.base_estimator, XGBClassifier):\n self._rule_dump = self.base_estimator._Booster.get_dump()\n else:\n NotImplementedError()\n if self.verbose > 0:\n print('fitting trees')\n n_values = 'auto'\n leaves_l = []\n for tree_i in self._rule_dump:\n leaves = [int(i) for i in re.findall('([0-9]+):leaf=', tree_i)]\n leaves_l.append(leaves)\n self._one_hot_encoder = LabelOneHotEncoder(leaves_l)\n if self.verbose > 0:\n print('setup encoding')\n X = self.ext_scaler.fit_transform(X)\n if self.linear_features:\n self._scaler = FriedScaler(quantile=self.linear_feature_quantile)\n X_scale = self._scaler.fit_transform(X)\n X_transform = hstack([X_scale, self._one_hot_encoder.\n fit_transform(self.base_estimator.apply(X).reshape(-1, self\n .n_estimators))])\n else:\n X_transform = self._one_hot_encoder.fit_transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))\n if self.verbose > 0:\n print('encoded')\n self.LR = LogisticRegression(C=self.C, penalty=self.penalty,\n class_weight=self.class_weight, warm_start=self.warm_start,\n solver='saga', verbose=self.verbose)\n self.LR.fit(X_transform, y, sample_weight=sample_weight)\n if self.verbose > 0:\n print('fitted')\n self.feature_mask_ = self.LR.coef_.nonzero()[1]\n self.coef_ = self.LR.coef_[0, self.feature_mask_]\n self.intercept_ = self.LR.intercept_\n self.get_feature_names()\n assert self.features_.size == self.feature_mask_.size\n return X_transform\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n\n def predict(self, X):\n \"\"\" Output model prediction\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Bool predictions\n \"\"\"\n return self.LR.predict(self.transform(X))\n\n def predict_proba(self, X):\n \"\"\" Output model prediction probability\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Probabilistic predictions\n \"\"\"\n return self.LR.predict_proba(self.transform(X))\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n t = dt.tree_\n rules = []\n stack = [(0, -1, -1)]\n path = [(0, -1, -1)]\n while len(stack) > 0:\n nid, pd, op = stack.pop()\n if pd > path[-1][1]:\n path.append((nid, pd, op))\n elif pd == -1:\n pass\n else:\n [path.pop() for _ in range(path[-1][1] - pd + 1)]\n path.append((nid, pd, op))\n if t.children_left[nid] > 0:\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else:\n rules.append(np.array([(t.feature[path[i][0]], path[i + 1][\n 2], t.threshold[path[i][0]]) for i in range(len(path) -\n 1)]))\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n\n def extract_rules(self, labels=None):\n \"\"\"Extract rules from `base_estimator`\n \n Parameters\n ----------\n \n labels: list of str, optional\n Feature names\n \n Returns\n -------\n \n numpy.ndarray\n Containing `str` representing rules in ensembles\n \n \"\"\"\n if isinstance(self.base_estimator, RandomForestClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules__(dt) for dt in\n self.base_estimator.estimators_]))\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules(__dt) for dt in\n self.base_estimator.estimators_.ravel()]))\n elif isinstance(self.base_estimator, XGBClassifier):\n rules = list(it.chain(*[self.__extract_xgb_dt_rules__(dt) for\n dt in self._rule_dump]))\n self.rules = np.array([' & '.join(self.__convert_rule__(r, labels=\n labels, scaler=self.ext_scaler)) for r in rules])\n return self.rules\n", "<import token>\n\n\nclass FriedScaler(BaseEstimator, TransformerMixin):\n \"\"\"FriedScaler class: Scale linear features within rule ensemble\n \n Scales linear features within a rule ensemble\n to have the same weighting as a rule according to\n Friedman et al. 2005 Section 5.\n \n Each column, $x_i$ is winsorised at `quantile` -> $x_i'$, then \n standardised by multiplying by $0.4 \text{std}(x_i')$\n \n Attributes\n ----------\n \n scale: numpy.ndarray \n scale factor for each variable\n \n lower: numpy.ndarray\n lower winsorisation threshold\n \n upper: numpy.ndarray\n upper winsorisation threshold\n \n \"\"\"\n\n def __init__(self, quantile=0.0):\n \"\"\"\n Parameters\n ----------\n \n quantile: float\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`)\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \"\"\"\n self.quantile = quantile\n\n def fit(self, X, y=None):\n \"\"\" Fit scaler and return self\n \n Winsorise `X` at `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules).\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n self.fit_transform(X, y)\n return self\n\n def fit_transform(self, X, y=None):\n \"\"\" Fit scaler and transform input data\n \n Winsorise `X` at `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules).\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n self.scale = np.ones(X.shape[1])\n self.lower = np.percentile(X, self.quantile * 100, axis=0)\n self.upper = np.percentile(X, (1 - self.quantile) * 100, axis=0)\n winX = X.copy()\n is_lower = winX < self.lower\n is_higher = winX > self.upper\n for col in range(X.shape[1]):\n winX[is_lower[:, col], col] = self.lower[col]\n winX[is_higher[:, col], col] = self.upper[col]\n num_uniq = np.unique(X[:, col]).size\n if num_uniq > 2:\n self.scale[col] = 0.4 / (1e-12 + np.std(winX[:, col]))\n large_scale = np.where(self.scale > 1000.0)[0]\n if large_scale.size > 0:\n warnings.warn('Scales of {} are larger than 1e3!'.format(\n large_scale))\n return winX * self.scale\n\n def transform(self, X):\n \"\"\" Transform input data\n \n Winsorise `X` at pre-fitted `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules) accorded to the already\n fitted scale factors.\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n winX = X.copy()\n is_lower = winX <= self.lower\n is_higher = winX >= self.upper\n for col in range(X.shape[1]):\n winX[is_lower[:, col], col] = self.lower[col]\n winX[is_higher[:, col], col] = self.upper[col]\n return winX * self.scale\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n \"\"\"Rule-Fit for binary classification\n \n Generate an ensemble of rules using XGBoost or a sklearn\n tree ensemble method, and use these (optionally with linear\n features) in a L1 (or other penalised) Logistic Regression to \n build a classifier.\n \n Attributes\n ----------\n \n LR: sklearn.linear_model.LogisticRegression\n Regularised linear regression on ensemble of rules\n \n feature_mask_: np.ndarray\n Array of non-zero feature values\n \n coef_: np.ndarray\n LogisticRegression (`LR`) co-efficients for features in `feature_mask_`\n \n intercept_: np.ndarray\n LogisticRegression (`LR`) intercept\n \n features: np.ndarray of str\n Input feature names\n \n features_: np.ndarray of str\n Output feature names of rule ensembles (and linear features if `linear_features=True`)\n \n \"\"\"\n\n def __init__(self, base_estimator=XGBClassifier(), linear_features=True,\n linear_feature_quantile=0.025, C=0.1, penalty='l1', n_estimators=10,\n max_depth=5, rand_tree_size=False, sparse_output=True, n_jobs=1,\n random_state=None, verbose=0, warm_start=False, class_weight=None,\n ext_scaler=RobustScaler()):\n \"\"\"\n Parameters\n ----------\n \n base_estimator: sklearn estimator, default: xgboost.sklearn.XGBClassifier\n Estimator to generate rule ensemble with\n \n linear_features: bool, default: True\n If `True`: Use linear features as well as rules\n \n linear_feature_quantile: float, default: 0.025\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`).\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \n C: float, default: 0.1\n Inverse of regularization strength; must be a positive float.\n Like in support vector machines, smaller values specify stronger\n regularization.\n \n \n penalty: {'l1', 'l2'}, default: 'l1'\n Norm used in the regularisation for LogisticRegression\n \n n_estimators: int, default: 10\n Number of trees within `base_estimator`\n \n max_depth: int, optional\n Maximum tree depth of `base_estimator`\n \n rand_tree_size: bool, optional\n NOT YET IMPLEMENTED!\n If `True`, randomise `max_depth` to get rules of varying lengths.\n \n n_jobs: int, optional\n The number of CPUs to use. -1 means 'all CPUs'.\n \n verbose: int, optional\n Increasing verbosity with number.\n \n warm_start: int, optional\n When set to True, reuse the solution of the previous call to fit as\n initialization, otherwise, just erase the previous solution.\n \n class_weight : dict or 'balanced', default: 'balanced'\n Weights associated with classes in the form ``{class_label: weight}``.\n If not given, all classes are supposed to have weight one.\n\n The \"balanced\" mode uses the values of y to automatically adjust\n weights inversely proportional to class frequencies in the input data\n as ``n_samples / (n_classes * np.bincount(y))``.\n\n ext_scaler: sklearn Transformer, optional\n Scaling transformation to apply to linear features (before Friedman scaling)\n \n \"\"\"\n self.base_estimator = base_estimator\n self.linear_features = linear_features\n self.linear_feature_quantile = linear_feature_quantile\n self.C = C\n self.penalty = penalty\n self.n_estimators = n_estimators\n self.max_depth = max_depth\n self.rand_tree_size = rand_tree_size\n self.n_jobs = n_jobs\n self.verbose = verbose\n self.warm_start = warm_start\n self.class_weight = class_weight\n self.ext_scaler = ext_scaler\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n\n def fit_transform(self, X, y, sample_weight=None):\n \"\"\" Fit and Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n Fitting process involves fitted bagged/boosted tree model to generate rules\n and then using these in a penalised logistic regression.\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(self.base_estimator, XGBClassifier):\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n silent=self.verbose > 0, max_depth=self.max_depth, n_jobs=\n self.n_jobs)\n elif isinstance(self.base_estimator, RandomForestClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n else:\n raise NotImplementedError\n if isinstance(X, DataFrame):\n self.features = X.columns.values\n else:\n self.features = [('f' + str(i)) for i in range(X.shape[1])]\n X = check_array(X)\n if not self.rand_tree_size:\n self.base_estimator.fit(X, y, sample_weight=sample_weight)\n if isinstance(self.base_estimator, XGBClassifier):\n self._rule_dump = self.base_estimator._Booster.get_dump()\n else:\n NotImplementedError()\n if self.verbose > 0:\n print('fitting trees')\n n_values = 'auto'\n leaves_l = []\n for tree_i in self._rule_dump:\n leaves = [int(i) for i in re.findall('([0-9]+):leaf=', tree_i)]\n leaves_l.append(leaves)\n self._one_hot_encoder = LabelOneHotEncoder(leaves_l)\n if self.verbose > 0:\n print('setup encoding')\n X = self.ext_scaler.fit_transform(X)\n if self.linear_features:\n self._scaler = FriedScaler(quantile=self.linear_feature_quantile)\n X_scale = self._scaler.fit_transform(X)\n X_transform = hstack([X_scale, self._one_hot_encoder.\n fit_transform(self.base_estimator.apply(X).reshape(-1, self\n .n_estimators))])\n else:\n X_transform = self._one_hot_encoder.fit_transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))\n if self.verbose > 0:\n print('encoded')\n self.LR = LogisticRegression(C=self.C, penalty=self.penalty,\n class_weight=self.class_weight, warm_start=self.warm_start,\n solver='saga', verbose=self.verbose)\n self.LR.fit(X_transform, y, sample_weight=sample_weight)\n if self.verbose > 0:\n print('fitted')\n self.feature_mask_ = self.LR.coef_.nonzero()[1]\n self.coef_ = self.LR.coef_[0, self.feature_mask_]\n self.intercept_ = self.LR.intercept_\n self.get_feature_names()\n assert self.features_.size == self.feature_mask_.size\n return X_transform\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n\n def predict(self, X):\n \"\"\" Output model prediction\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Bool predictions\n \"\"\"\n return self.LR.predict(self.transform(X))\n\n def predict_proba(self, X):\n \"\"\" Output model prediction probability\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Probabilistic predictions\n \"\"\"\n return self.LR.predict_proba(self.transform(X))\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n t = dt.tree_\n rules = []\n stack = [(0, -1, -1)]\n path = [(0, -1, -1)]\n while len(stack) > 0:\n nid, pd, op = stack.pop()\n if pd > path[-1][1]:\n path.append((nid, pd, op))\n elif pd == -1:\n pass\n else:\n [path.pop() for _ in range(path[-1][1] - pd + 1)]\n path.append((nid, pd, op))\n if t.children_left[nid] > 0:\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else:\n rules.append(np.array([(t.feature[path[i][0]], path[i + 1][\n 2], t.threshold[path[i][0]]) for i in range(len(path) -\n 1)]))\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n\n def extract_rules(self, labels=None):\n \"\"\"Extract rules from `base_estimator`\n \n Parameters\n ----------\n \n labels: list of str, optional\n Feature names\n \n Returns\n -------\n \n numpy.ndarray\n Containing `str` representing rules in ensembles\n \n \"\"\"\n if isinstance(self.base_estimator, RandomForestClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules__(dt) for dt in\n self.base_estimator.estimators_]))\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules(__dt) for dt in\n self.base_estimator.estimators_.ravel()]))\n elif isinstance(self.base_estimator, XGBClassifier):\n rules = list(it.chain(*[self.__extract_xgb_dt_rules__(dt) for\n dt in self._rule_dump]))\n self.rules = np.array([' & '.join(self.__convert_rule__(r, labels=\n labels, scaler=self.ext_scaler)) for r in rules])\n return self.rules\n", "<import token>\n\n\nclass FriedScaler(BaseEstimator, TransformerMixin):\n <docstring token>\n\n def __init__(self, quantile=0.0):\n \"\"\"\n Parameters\n ----------\n \n quantile: float\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`)\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \"\"\"\n self.quantile = quantile\n\n def fit(self, X, y=None):\n \"\"\" Fit scaler and return self\n \n Winsorise `X` at `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules).\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n self.fit_transform(X, y)\n return self\n\n def fit_transform(self, X, y=None):\n \"\"\" Fit scaler and transform input data\n \n Winsorise `X` at `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules).\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n self.scale = np.ones(X.shape[1])\n self.lower = np.percentile(X, self.quantile * 100, axis=0)\n self.upper = np.percentile(X, (1 - self.quantile) * 100, axis=0)\n winX = X.copy()\n is_lower = winX < self.lower\n is_higher = winX > self.upper\n for col in range(X.shape[1]):\n winX[is_lower[:, col], col] = self.lower[col]\n winX[is_higher[:, col], col] = self.upper[col]\n num_uniq = np.unique(X[:, col]).size\n if num_uniq > 2:\n self.scale[col] = 0.4 / (1e-12 + np.std(winX[:, col]))\n large_scale = np.where(self.scale > 1000.0)[0]\n if large_scale.size > 0:\n warnings.warn('Scales of {} are larger than 1e3!'.format(\n large_scale))\n return winX * self.scale\n\n def transform(self, X):\n \"\"\" Transform input data\n \n Winsorise `X` at pre-fitted `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules) accorded to the already\n fitted scale factors.\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n winX = X.copy()\n is_lower = winX <= self.lower\n is_higher = winX >= self.upper\n for col in range(X.shape[1]):\n winX[is_lower[:, col], col] = self.lower[col]\n winX[is_higher[:, col], col] = self.upper[col]\n return winX * self.scale\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n \"\"\"Rule-Fit for binary classification\n \n Generate an ensemble of rules using XGBoost or a sklearn\n tree ensemble method, and use these (optionally with linear\n features) in a L1 (or other penalised) Logistic Regression to \n build a classifier.\n \n Attributes\n ----------\n \n LR: sklearn.linear_model.LogisticRegression\n Regularised linear regression on ensemble of rules\n \n feature_mask_: np.ndarray\n Array of non-zero feature values\n \n coef_: np.ndarray\n LogisticRegression (`LR`) co-efficients for features in `feature_mask_`\n \n intercept_: np.ndarray\n LogisticRegression (`LR`) intercept\n \n features: np.ndarray of str\n Input feature names\n \n features_: np.ndarray of str\n Output feature names of rule ensembles (and linear features if `linear_features=True`)\n \n \"\"\"\n\n def __init__(self, base_estimator=XGBClassifier(), linear_features=True,\n linear_feature_quantile=0.025, C=0.1, penalty='l1', n_estimators=10,\n max_depth=5, rand_tree_size=False, sparse_output=True, n_jobs=1,\n random_state=None, verbose=0, warm_start=False, class_weight=None,\n ext_scaler=RobustScaler()):\n \"\"\"\n Parameters\n ----------\n \n base_estimator: sklearn estimator, default: xgboost.sklearn.XGBClassifier\n Estimator to generate rule ensemble with\n \n linear_features: bool, default: True\n If `True`: Use linear features as well as rules\n \n linear_feature_quantile: float, default: 0.025\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`).\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \n C: float, default: 0.1\n Inverse of regularization strength; must be a positive float.\n Like in support vector machines, smaller values specify stronger\n regularization.\n \n \n penalty: {'l1', 'l2'}, default: 'l1'\n Norm used in the regularisation for LogisticRegression\n \n n_estimators: int, default: 10\n Number of trees within `base_estimator`\n \n max_depth: int, optional\n Maximum tree depth of `base_estimator`\n \n rand_tree_size: bool, optional\n NOT YET IMPLEMENTED!\n If `True`, randomise `max_depth` to get rules of varying lengths.\n \n n_jobs: int, optional\n The number of CPUs to use. -1 means 'all CPUs'.\n \n verbose: int, optional\n Increasing verbosity with number.\n \n warm_start: int, optional\n When set to True, reuse the solution of the previous call to fit as\n initialization, otherwise, just erase the previous solution.\n \n class_weight : dict or 'balanced', default: 'balanced'\n Weights associated with classes in the form ``{class_label: weight}``.\n If not given, all classes are supposed to have weight one.\n\n The \"balanced\" mode uses the values of y to automatically adjust\n weights inversely proportional to class frequencies in the input data\n as ``n_samples / (n_classes * np.bincount(y))``.\n\n ext_scaler: sklearn Transformer, optional\n Scaling transformation to apply to linear features (before Friedman scaling)\n \n \"\"\"\n self.base_estimator = base_estimator\n self.linear_features = linear_features\n self.linear_feature_quantile = linear_feature_quantile\n self.C = C\n self.penalty = penalty\n self.n_estimators = n_estimators\n self.max_depth = max_depth\n self.rand_tree_size = rand_tree_size\n self.n_jobs = n_jobs\n self.verbose = verbose\n self.warm_start = warm_start\n self.class_weight = class_weight\n self.ext_scaler = ext_scaler\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n\n def fit_transform(self, X, y, sample_weight=None):\n \"\"\" Fit and Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n Fitting process involves fitted bagged/boosted tree model to generate rules\n and then using these in a penalised logistic regression.\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(self.base_estimator, XGBClassifier):\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n silent=self.verbose > 0, max_depth=self.max_depth, n_jobs=\n self.n_jobs)\n elif isinstance(self.base_estimator, RandomForestClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n else:\n raise NotImplementedError\n if isinstance(X, DataFrame):\n self.features = X.columns.values\n else:\n self.features = [('f' + str(i)) for i in range(X.shape[1])]\n X = check_array(X)\n if not self.rand_tree_size:\n self.base_estimator.fit(X, y, sample_weight=sample_weight)\n if isinstance(self.base_estimator, XGBClassifier):\n self._rule_dump = self.base_estimator._Booster.get_dump()\n else:\n NotImplementedError()\n if self.verbose > 0:\n print('fitting trees')\n n_values = 'auto'\n leaves_l = []\n for tree_i in self._rule_dump:\n leaves = [int(i) for i in re.findall('([0-9]+):leaf=', tree_i)]\n leaves_l.append(leaves)\n self._one_hot_encoder = LabelOneHotEncoder(leaves_l)\n if self.verbose > 0:\n print('setup encoding')\n X = self.ext_scaler.fit_transform(X)\n if self.linear_features:\n self._scaler = FriedScaler(quantile=self.linear_feature_quantile)\n X_scale = self._scaler.fit_transform(X)\n X_transform = hstack([X_scale, self._one_hot_encoder.\n fit_transform(self.base_estimator.apply(X).reshape(-1, self\n .n_estimators))])\n else:\n X_transform = self._one_hot_encoder.fit_transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))\n if self.verbose > 0:\n print('encoded')\n self.LR = LogisticRegression(C=self.C, penalty=self.penalty,\n class_weight=self.class_weight, warm_start=self.warm_start,\n solver='saga', verbose=self.verbose)\n self.LR.fit(X_transform, y, sample_weight=sample_weight)\n if self.verbose > 0:\n print('fitted')\n self.feature_mask_ = self.LR.coef_.nonzero()[1]\n self.coef_ = self.LR.coef_[0, self.feature_mask_]\n self.intercept_ = self.LR.intercept_\n self.get_feature_names()\n assert self.features_.size == self.feature_mask_.size\n return X_transform\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n\n def predict(self, X):\n \"\"\" Output model prediction\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Bool predictions\n \"\"\"\n return self.LR.predict(self.transform(X))\n\n def predict_proba(self, X):\n \"\"\" Output model prediction probability\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Probabilistic predictions\n \"\"\"\n return self.LR.predict_proba(self.transform(X))\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n t = dt.tree_\n rules = []\n stack = [(0, -1, -1)]\n path = [(0, -1, -1)]\n while len(stack) > 0:\n nid, pd, op = stack.pop()\n if pd > path[-1][1]:\n path.append((nid, pd, op))\n elif pd == -1:\n pass\n else:\n [path.pop() for _ in range(path[-1][1] - pd + 1)]\n path.append((nid, pd, op))\n if t.children_left[nid] > 0:\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else:\n rules.append(np.array([(t.feature[path[i][0]], path[i + 1][\n 2], t.threshold[path[i][0]]) for i in range(len(path) -\n 1)]))\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n\n def extract_rules(self, labels=None):\n \"\"\"Extract rules from `base_estimator`\n \n Parameters\n ----------\n \n labels: list of str, optional\n Feature names\n \n Returns\n -------\n \n numpy.ndarray\n Containing `str` representing rules in ensembles\n \n \"\"\"\n if isinstance(self.base_estimator, RandomForestClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules__(dt) for dt in\n self.base_estimator.estimators_]))\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules(__dt) for dt in\n self.base_estimator.estimators_.ravel()]))\n elif isinstance(self.base_estimator, XGBClassifier):\n rules = list(it.chain(*[self.__extract_xgb_dt_rules__(dt) for\n dt in self._rule_dump]))\n self.rules = np.array([' & '.join(self.__convert_rule__(r, labels=\n labels, scaler=self.ext_scaler)) for r in rules])\n return self.rules\n", "<import token>\n\n\nclass FriedScaler(BaseEstimator, TransformerMixin):\n <docstring token>\n\n def __init__(self, quantile=0.0):\n \"\"\"\n Parameters\n ----------\n \n quantile: float\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`)\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \"\"\"\n self.quantile = quantile\n\n def fit(self, X, y=None):\n \"\"\" Fit scaler and return self\n \n Winsorise `X` at `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules).\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n self.fit_transform(X, y)\n return self\n\n def fit_transform(self, X, y=None):\n \"\"\" Fit scaler and transform input data\n \n Winsorise `X` at `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules).\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n self.scale = np.ones(X.shape[1])\n self.lower = np.percentile(X, self.quantile * 100, axis=0)\n self.upper = np.percentile(X, (1 - self.quantile) * 100, axis=0)\n winX = X.copy()\n is_lower = winX < self.lower\n is_higher = winX > self.upper\n for col in range(X.shape[1]):\n winX[is_lower[:, col], col] = self.lower[col]\n winX[is_higher[:, col], col] = self.upper[col]\n num_uniq = np.unique(X[:, col]).size\n if num_uniq > 2:\n self.scale[col] = 0.4 / (1e-12 + np.std(winX[:, col]))\n large_scale = np.where(self.scale > 1000.0)[0]\n if large_scale.size > 0:\n warnings.warn('Scales of {} are larger than 1e3!'.format(\n large_scale))\n return winX * self.scale\n <function token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n \"\"\"Rule-Fit for binary classification\n \n Generate an ensemble of rules using XGBoost or a sklearn\n tree ensemble method, and use these (optionally with linear\n features) in a L1 (or other penalised) Logistic Regression to \n build a classifier.\n \n Attributes\n ----------\n \n LR: sklearn.linear_model.LogisticRegression\n Regularised linear regression on ensemble of rules\n \n feature_mask_: np.ndarray\n Array of non-zero feature values\n \n coef_: np.ndarray\n LogisticRegression (`LR`) co-efficients for features in `feature_mask_`\n \n intercept_: np.ndarray\n LogisticRegression (`LR`) intercept\n \n features: np.ndarray of str\n Input feature names\n \n features_: np.ndarray of str\n Output feature names of rule ensembles (and linear features if `linear_features=True`)\n \n \"\"\"\n\n def __init__(self, base_estimator=XGBClassifier(), linear_features=True,\n linear_feature_quantile=0.025, C=0.1, penalty='l1', n_estimators=10,\n max_depth=5, rand_tree_size=False, sparse_output=True, n_jobs=1,\n random_state=None, verbose=0, warm_start=False, class_weight=None,\n ext_scaler=RobustScaler()):\n \"\"\"\n Parameters\n ----------\n \n base_estimator: sklearn estimator, default: xgboost.sklearn.XGBClassifier\n Estimator to generate rule ensemble with\n \n linear_features: bool, default: True\n If `True`: Use linear features as well as rules\n \n linear_feature_quantile: float, default: 0.025\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`).\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \n C: float, default: 0.1\n Inverse of regularization strength; must be a positive float.\n Like in support vector machines, smaller values specify stronger\n regularization.\n \n \n penalty: {'l1', 'l2'}, default: 'l1'\n Norm used in the regularisation for LogisticRegression\n \n n_estimators: int, default: 10\n Number of trees within `base_estimator`\n \n max_depth: int, optional\n Maximum tree depth of `base_estimator`\n \n rand_tree_size: bool, optional\n NOT YET IMPLEMENTED!\n If `True`, randomise `max_depth` to get rules of varying lengths.\n \n n_jobs: int, optional\n The number of CPUs to use. -1 means 'all CPUs'.\n \n verbose: int, optional\n Increasing verbosity with number.\n \n warm_start: int, optional\n When set to True, reuse the solution of the previous call to fit as\n initialization, otherwise, just erase the previous solution.\n \n class_weight : dict or 'balanced', default: 'balanced'\n Weights associated with classes in the form ``{class_label: weight}``.\n If not given, all classes are supposed to have weight one.\n\n The \"balanced\" mode uses the values of y to automatically adjust\n weights inversely proportional to class frequencies in the input data\n as ``n_samples / (n_classes * np.bincount(y))``.\n\n ext_scaler: sklearn Transformer, optional\n Scaling transformation to apply to linear features (before Friedman scaling)\n \n \"\"\"\n self.base_estimator = base_estimator\n self.linear_features = linear_features\n self.linear_feature_quantile = linear_feature_quantile\n self.C = C\n self.penalty = penalty\n self.n_estimators = n_estimators\n self.max_depth = max_depth\n self.rand_tree_size = rand_tree_size\n self.n_jobs = n_jobs\n self.verbose = verbose\n self.warm_start = warm_start\n self.class_weight = class_weight\n self.ext_scaler = ext_scaler\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n\n def fit_transform(self, X, y, sample_weight=None):\n \"\"\" Fit and Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n Fitting process involves fitted bagged/boosted tree model to generate rules\n and then using these in a penalised logistic regression.\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(self.base_estimator, XGBClassifier):\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n silent=self.verbose > 0, max_depth=self.max_depth, n_jobs=\n self.n_jobs)\n elif isinstance(self.base_estimator, RandomForestClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n else:\n raise NotImplementedError\n if isinstance(X, DataFrame):\n self.features = X.columns.values\n else:\n self.features = [('f' + str(i)) for i in range(X.shape[1])]\n X = check_array(X)\n if not self.rand_tree_size:\n self.base_estimator.fit(X, y, sample_weight=sample_weight)\n if isinstance(self.base_estimator, XGBClassifier):\n self._rule_dump = self.base_estimator._Booster.get_dump()\n else:\n NotImplementedError()\n if self.verbose > 0:\n print('fitting trees')\n n_values = 'auto'\n leaves_l = []\n for tree_i in self._rule_dump:\n leaves = [int(i) for i in re.findall('([0-9]+):leaf=', tree_i)]\n leaves_l.append(leaves)\n self._one_hot_encoder = LabelOneHotEncoder(leaves_l)\n if self.verbose > 0:\n print('setup encoding')\n X = self.ext_scaler.fit_transform(X)\n if self.linear_features:\n self._scaler = FriedScaler(quantile=self.linear_feature_quantile)\n X_scale = self._scaler.fit_transform(X)\n X_transform = hstack([X_scale, self._one_hot_encoder.\n fit_transform(self.base_estimator.apply(X).reshape(-1, self\n .n_estimators))])\n else:\n X_transform = self._one_hot_encoder.fit_transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))\n if self.verbose > 0:\n print('encoded')\n self.LR = LogisticRegression(C=self.C, penalty=self.penalty,\n class_weight=self.class_weight, warm_start=self.warm_start,\n solver='saga', verbose=self.verbose)\n self.LR.fit(X_transform, y, sample_weight=sample_weight)\n if self.verbose > 0:\n print('fitted')\n self.feature_mask_ = self.LR.coef_.nonzero()[1]\n self.coef_ = self.LR.coef_[0, self.feature_mask_]\n self.intercept_ = self.LR.intercept_\n self.get_feature_names()\n assert self.features_.size == self.feature_mask_.size\n return X_transform\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n\n def predict(self, X):\n \"\"\" Output model prediction\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Bool predictions\n \"\"\"\n return self.LR.predict(self.transform(X))\n\n def predict_proba(self, X):\n \"\"\" Output model prediction probability\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Probabilistic predictions\n \"\"\"\n return self.LR.predict_proba(self.transform(X))\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n t = dt.tree_\n rules = []\n stack = [(0, -1, -1)]\n path = [(0, -1, -1)]\n while len(stack) > 0:\n nid, pd, op = stack.pop()\n if pd > path[-1][1]:\n path.append((nid, pd, op))\n elif pd == -1:\n pass\n else:\n [path.pop() for _ in range(path[-1][1] - pd + 1)]\n path.append((nid, pd, op))\n if t.children_left[nid] > 0:\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else:\n rules.append(np.array([(t.feature[path[i][0]], path[i + 1][\n 2], t.threshold[path[i][0]]) for i in range(len(path) -\n 1)]))\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n\n def extract_rules(self, labels=None):\n \"\"\"Extract rules from `base_estimator`\n \n Parameters\n ----------\n \n labels: list of str, optional\n Feature names\n \n Returns\n -------\n \n numpy.ndarray\n Containing `str` representing rules in ensembles\n \n \"\"\"\n if isinstance(self.base_estimator, RandomForestClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules__(dt) for dt in\n self.base_estimator.estimators_]))\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules(__dt) for dt in\n self.base_estimator.estimators_.ravel()]))\n elif isinstance(self.base_estimator, XGBClassifier):\n rules = list(it.chain(*[self.__extract_xgb_dt_rules__(dt) for\n dt in self._rule_dump]))\n self.rules = np.array([' & '.join(self.__convert_rule__(r, labels=\n labels, scaler=self.ext_scaler)) for r in rules])\n return self.rules\n", "<import token>\n\n\nclass FriedScaler(BaseEstimator, TransformerMixin):\n <docstring token>\n\n def __init__(self, quantile=0.0):\n \"\"\"\n Parameters\n ----------\n \n quantile: float\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`)\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \"\"\"\n self.quantile = quantile\n <function token>\n\n def fit_transform(self, X, y=None):\n \"\"\" Fit scaler and transform input data\n \n Winsorise `X` at `quantile` and `1-quantile`.\n Scale each variable (as long as they aren't binary in\n which case they are already rules).\n \n Parameters\n ----------\n \n X: numpy.ndarray\n Co-variates\n \n y: dummy arguement, optional\n \"\"\"\n self.scale = np.ones(X.shape[1])\n self.lower = np.percentile(X, self.quantile * 100, axis=0)\n self.upper = np.percentile(X, (1 - self.quantile) * 100, axis=0)\n winX = X.copy()\n is_lower = winX < self.lower\n is_higher = winX > self.upper\n for col in range(X.shape[1]):\n winX[is_lower[:, col], col] = self.lower[col]\n winX[is_higher[:, col], col] = self.upper[col]\n num_uniq = np.unique(X[:, col]).size\n if num_uniq > 2:\n self.scale[col] = 0.4 / (1e-12 + np.std(winX[:, col]))\n large_scale = np.where(self.scale > 1000.0)[0]\n if large_scale.size > 0:\n warnings.warn('Scales of {} are larger than 1e3!'.format(\n large_scale))\n return winX * self.scale\n <function token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n \"\"\"Rule-Fit for binary classification\n \n Generate an ensemble of rules using XGBoost or a sklearn\n tree ensemble method, and use these (optionally with linear\n features) in a L1 (or other penalised) Logistic Regression to \n build a classifier.\n \n Attributes\n ----------\n \n LR: sklearn.linear_model.LogisticRegression\n Regularised linear regression on ensemble of rules\n \n feature_mask_: np.ndarray\n Array of non-zero feature values\n \n coef_: np.ndarray\n LogisticRegression (`LR`) co-efficients for features in `feature_mask_`\n \n intercept_: np.ndarray\n LogisticRegression (`LR`) intercept\n \n features: np.ndarray of str\n Input feature names\n \n features_: np.ndarray of str\n Output feature names of rule ensembles (and linear features if `linear_features=True`)\n \n \"\"\"\n\n def __init__(self, base_estimator=XGBClassifier(), linear_features=True,\n linear_feature_quantile=0.025, C=0.1, penalty='l1', n_estimators=10,\n max_depth=5, rand_tree_size=False, sparse_output=True, n_jobs=1,\n random_state=None, verbose=0, warm_start=False, class_weight=None,\n ext_scaler=RobustScaler()):\n \"\"\"\n Parameters\n ----------\n \n base_estimator: sklearn estimator, default: xgboost.sklearn.XGBClassifier\n Estimator to generate rule ensemble with\n \n linear_features: bool, default: True\n If `True`: Use linear features as well as rules\n \n linear_feature_quantile: float, default: 0.025\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`).\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \n C: float, default: 0.1\n Inverse of regularization strength; must be a positive float.\n Like in support vector machines, smaller values specify stronger\n regularization.\n \n \n penalty: {'l1', 'l2'}, default: 'l1'\n Norm used in the regularisation for LogisticRegression\n \n n_estimators: int, default: 10\n Number of trees within `base_estimator`\n \n max_depth: int, optional\n Maximum tree depth of `base_estimator`\n \n rand_tree_size: bool, optional\n NOT YET IMPLEMENTED!\n If `True`, randomise `max_depth` to get rules of varying lengths.\n \n n_jobs: int, optional\n The number of CPUs to use. -1 means 'all CPUs'.\n \n verbose: int, optional\n Increasing verbosity with number.\n \n warm_start: int, optional\n When set to True, reuse the solution of the previous call to fit as\n initialization, otherwise, just erase the previous solution.\n \n class_weight : dict or 'balanced', default: 'balanced'\n Weights associated with classes in the form ``{class_label: weight}``.\n If not given, all classes are supposed to have weight one.\n\n The \"balanced\" mode uses the values of y to automatically adjust\n weights inversely proportional to class frequencies in the input data\n as ``n_samples / (n_classes * np.bincount(y))``.\n\n ext_scaler: sklearn Transformer, optional\n Scaling transformation to apply to linear features (before Friedman scaling)\n \n \"\"\"\n self.base_estimator = base_estimator\n self.linear_features = linear_features\n self.linear_feature_quantile = linear_feature_quantile\n self.C = C\n self.penalty = penalty\n self.n_estimators = n_estimators\n self.max_depth = max_depth\n self.rand_tree_size = rand_tree_size\n self.n_jobs = n_jobs\n self.verbose = verbose\n self.warm_start = warm_start\n self.class_weight = class_weight\n self.ext_scaler = ext_scaler\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n\n def fit_transform(self, X, y, sample_weight=None):\n \"\"\" Fit and Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n Fitting process involves fitted bagged/boosted tree model to generate rules\n and then using these in a penalised logistic regression.\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(self.base_estimator, XGBClassifier):\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n silent=self.verbose > 0, max_depth=self.max_depth, n_jobs=\n self.n_jobs)\n elif isinstance(self.base_estimator, RandomForestClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n else:\n raise NotImplementedError\n if isinstance(X, DataFrame):\n self.features = X.columns.values\n else:\n self.features = [('f' + str(i)) for i in range(X.shape[1])]\n X = check_array(X)\n if not self.rand_tree_size:\n self.base_estimator.fit(X, y, sample_weight=sample_weight)\n if isinstance(self.base_estimator, XGBClassifier):\n self._rule_dump = self.base_estimator._Booster.get_dump()\n else:\n NotImplementedError()\n if self.verbose > 0:\n print('fitting trees')\n n_values = 'auto'\n leaves_l = []\n for tree_i in self._rule_dump:\n leaves = [int(i) for i in re.findall('([0-9]+):leaf=', tree_i)]\n leaves_l.append(leaves)\n self._one_hot_encoder = LabelOneHotEncoder(leaves_l)\n if self.verbose > 0:\n print('setup encoding')\n X = self.ext_scaler.fit_transform(X)\n if self.linear_features:\n self._scaler = FriedScaler(quantile=self.linear_feature_quantile)\n X_scale = self._scaler.fit_transform(X)\n X_transform = hstack([X_scale, self._one_hot_encoder.\n fit_transform(self.base_estimator.apply(X).reshape(-1, self\n .n_estimators))])\n else:\n X_transform = self._one_hot_encoder.fit_transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))\n if self.verbose > 0:\n print('encoded')\n self.LR = LogisticRegression(C=self.C, penalty=self.penalty,\n class_weight=self.class_weight, warm_start=self.warm_start,\n solver='saga', verbose=self.verbose)\n self.LR.fit(X_transform, y, sample_weight=sample_weight)\n if self.verbose > 0:\n print('fitted')\n self.feature_mask_ = self.LR.coef_.nonzero()[1]\n self.coef_ = self.LR.coef_[0, self.feature_mask_]\n self.intercept_ = self.LR.intercept_\n self.get_feature_names()\n assert self.features_.size == self.feature_mask_.size\n return X_transform\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n\n def predict(self, X):\n \"\"\" Output model prediction\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Bool predictions\n \"\"\"\n return self.LR.predict(self.transform(X))\n\n def predict_proba(self, X):\n \"\"\" Output model prediction probability\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Probabilistic predictions\n \"\"\"\n return self.LR.predict_proba(self.transform(X))\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n t = dt.tree_\n rules = []\n stack = [(0, -1, -1)]\n path = [(0, -1, -1)]\n while len(stack) > 0:\n nid, pd, op = stack.pop()\n if pd > path[-1][1]:\n path.append((nid, pd, op))\n elif pd == -1:\n pass\n else:\n [path.pop() for _ in range(path[-1][1] - pd + 1)]\n path.append((nid, pd, op))\n if t.children_left[nid] > 0:\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else:\n rules.append(np.array([(t.feature[path[i][0]], path[i + 1][\n 2], t.threshold[path[i][0]]) for i in range(len(path) -\n 1)]))\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n\n def extract_rules(self, labels=None):\n \"\"\"Extract rules from `base_estimator`\n \n Parameters\n ----------\n \n labels: list of str, optional\n Feature names\n \n Returns\n -------\n \n numpy.ndarray\n Containing `str` representing rules in ensembles\n \n \"\"\"\n if isinstance(self.base_estimator, RandomForestClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules__(dt) for dt in\n self.base_estimator.estimators_]))\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules(__dt) for dt in\n self.base_estimator.estimators_.ravel()]))\n elif isinstance(self.base_estimator, XGBClassifier):\n rules = list(it.chain(*[self.__extract_xgb_dt_rules__(dt) for\n dt in self._rule_dump]))\n self.rules = np.array([' & '.join(self.__convert_rule__(r, labels=\n labels, scaler=self.ext_scaler)) for r in rules])\n return self.rules\n", "<import token>\n\n\nclass FriedScaler(BaseEstimator, TransformerMixin):\n <docstring token>\n\n def __init__(self, quantile=0.0):\n \"\"\"\n Parameters\n ----------\n \n quantile: float\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`)\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \"\"\"\n self.quantile = quantile\n <function token>\n <function token>\n <function token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n \"\"\"Rule-Fit for binary classification\n \n Generate an ensemble of rules using XGBoost or a sklearn\n tree ensemble method, and use these (optionally with linear\n features) in a L1 (or other penalised) Logistic Regression to \n build a classifier.\n \n Attributes\n ----------\n \n LR: sklearn.linear_model.LogisticRegression\n Regularised linear regression on ensemble of rules\n \n feature_mask_: np.ndarray\n Array of non-zero feature values\n \n coef_: np.ndarray\n LogisticRegression (`LR`) co-efficients for features in `feature_mask_`\n \n intercept_: np.ndarray\n LogisticRegression (`LR`) intercept\n \n features: np.ndarray of str\n Input feature names\n \n features_: np.ndarray of str\n Output feature names of rule ensembles (and linear features if `linear_features=True`)\n \n \"\"\"\n\n def __init__(self, base_estimator=XGBClassifier(), linear_features=True,\n linear_feature_quantile=0.025, C=0.1, penalty='l1', n_estimators=10,\n max_depth=5, rand_tree_size=False, sparse_output=True, n_jobs=1,\n random_state=None, verbose=0, warm_start=False, class_weight=None,\n ext_scaler=RobustScaler()):\n \"\"\"\n Parameters\n ----------\n \n base_estimator: sklearn estimator, default: xgboost.sklearn.XGBClassifier\n Estimator to generate rule ensemble with\n \n linear_features: bool, default: True\n If `True`: Use linear features as well as rules\n \n linear_feature_quantile: float, default: 0.025\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`).\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \n C: float, default: 0.1\n Inverse of regularization strength; must be a positive float.\n Like in support vector machines, smaller values specify stronger\n regularization.\n \n \n penalty: {'l1', 'l2'}, default: 'l1'\n Norm used in the regularisation for LogisticRegression\n \n n_estimators: int, default: 10\n Number of trees within `base_estimator`\n \n max_depth: int, optional\n Maximum tree depth of `base_estimator`\n \n rand_tree_size: bool, optional\n NOT YET IMPLEMENTED!\n If `True`, randomise `max_depth` to get rules of varying lengths.\n \n n_jobs: int, optional\n The number of CPUs to use. -1 means 'all CPUs'.\n \n verbose: int, optional\n Increasing verbosity with number.\n \n warm_start: int, optional\n When set to True, reuse the solution of the previous call to fit as\n initialization, otherwise, just erase the previous solution.\n \n class_weight : dict or 'balanced', default: 'balanced'\n Weights associated with classes in the form ``{class_label: weight}``.\n If not given, all classes are supposed to have weight one.\n\n The \"balanced\" mode uses the values of y to automatically adjust\n weights inversely proportional to class frequencies in the input data\n as ``n_samples / (n_classes * np.bincount(y))``.\n\n ext_scaler: sklearn Transformer, optional\n Scaling transformation to apply to linear features (before Friedman scaling)\n \n \"\"\"\n self.base_estimator = base_estimator\n self.linear_features = linear_features\n self.linear_feature_quantile = linear_feature_quantile\n self.C = C\n self.penalty = penalty\n self.n_estimators = n_estimators\n self.max_depth = max_depth\n self.rand_tree_size = rand_tree_size\n self.n_jobs = n_jobs\n self.verbose = verbose\n self.warm_start = warm_start\n self.class_weight = class_weight\n self.ext_scaler = ext_scaler\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n\n def fit_transform(self, X, y, sample_weight=None):\n \"\"\" Fit and Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n Fitting process involves fitted bagged/boosted tree model to generate rules\n and then using these in a penalised logistic regression.\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(self.base_estimator, XGBClassifier):\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n silent=self.verbose > 0, max_depth=self.max_depth, n_jobs=\n self.n_jobs)\n elif isinstance(self.base_estimator, RandomForestClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n else:\n raise NotImplementedError\n if isinstance(X, DataFrame):\n self.features = X.columns.values\n else:\n self.features = [('f' + str(i)) for i in range(X.shape[1])]\n X = check_array(X)\n if not self.rand_tree_size:\n self.base_estimator.fit(X, y, sample_weight=sample_weight)\n if isinstance(self.base_estimator, XGBClassifier):\n self._rule_dump = self.base_estimator._Booster.get_dump()\n else:\n NotImplementedError()\n if self.verbose > 0:\n print('fitting trees')\n n_values = 'auto'\n leaves_l = []\n for tree_i in self._rule_dump:\n leaves = [int(i) for i in re.findall('([0-9]+):leaf=', tree_i)]\n leaves_l.append(leaves)\n self._one_hot_encoder = LabelOneHotEncoder(leaves_l)\n if self.verbose > 0:\n print('setup encoding')\n X = self.ext_scaler.fit_transform(X)\n if self.linear_features:\n self._scaler = FriedScaler(quantile=self.linear_feature_quantile)\n X_scale = self._scaler.fit_transform(X)\n X_transform = hstack([X_scale, self._one_hot_encoder.\n fit_transform(self.base_estimator.apply(X).reshape(-1, self\n .n_estimators))])\n else:\n X_transform = self._one_hot_encoder.fit_transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))\n if self.verbose > 0:\n print('encoded')\n self.LR = LogisticRegression(C=self.C, penalty=self.penalty,\n class_weight=self.class_weight, warm_start=self.warm_start,\n solver='saga', verbose=self.verbose)\n self.LR.fit(X_transform, y, sample_weight=sample_weight)\n if self.verbose > 0:\n print('fitted')\n self.feature_mask_ = self.LR.coef_.nonzero()[1]\n self.coef_ = self.LR.coef_[0, self.feature_mask_]\n self.intercept_ = self.LR.intercept_\n self.get_feature_names()\n assert self.features_.size == self.feature_mask_.size\n return X_transform\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n\n def predict(self, X):\n \"\"\" Output model prediction\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Bool predictions\n \"\"\"\n return self.LR.predict(self.transform(X))\n\n def predict_proba(self, X):\n \"\"\" Output model prediction probability\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Probabilistic predictions\n \"\"\"\n return self.LR.predict_proba(self.transform(X))\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n t = dt.tree_\n rules = []\n stack = [(0, -1, -1)]\n path = [(0, -1, -1)]\n while len(stack) > 0:\n nid, pd, op = stack.pop()\n if pd > path[-1][1]:\n path.append((nid, pd, op))\n elif pd == -1:\n pass\n else:\n [path.pop() for _ in range(path[-1][1] - pd + 1)]\n path.append((nid, pd, op))\n if t.children_left[nid] > 0:\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else:\n rules.append(np.array([(t.feature[path[i][0]], path[i + 1][\n 2], t.threshold[path[i][0]]) for i in range(len(path) -\n 1)]))\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n\n def extract_rules(self, labels=None):\n \"\"\"Extract rules from `base_estimator`\n \n Parameters\n ----------\n \n labels: list of str, optional\n Feature names\n \n Returns\n -------\n \n numpy.ndarray\n Containing `str` representing rules in ensembles\n \n \"\"\"\n if isinstance(self.base_estimator, RandomForestClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules__(dt) for dt in\n self.base_estimator.estimators_]))\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules(__dt) for dt in\n self.base_estimator.estimators_.ravel()]))\n elif isinstance(self.base_estimator, XGBClassifier):\n rules = list(it.chain(*[self.__extract_xgb_dt_rules__(dt) for\n dt in self._rule_dump]))\n self.rules = np.array([' & '.join(self.__convert_rule__(r, labels=\n labels, scaler=self.ext_scaler)) for r in rules])\n return self.rules\n", "<import token>\n\n\nclass FriedScaler(BaseEstimator, TransformerMixin):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n \"\"\"Rule-Fit for binary classification\n \n Generate an ensemble of rules using XGBoost or a sklearn\n tree ensemble method, and use these (optionally with linear\n features) in a L1 (or other penalised) Logistic Regression to \n build a classifier.\n \n Attributes\n ----------\n \n LR: sklearn.linear_model.LogisticRegression\n Regularised linear regression on ensemble of rules\n \n feature_mask_: np.ndarray\n Array of non-zero feature values\n \n coef_: np.ndarray\n LogisticRegression (`LR`) co-efficients for features in `feature_mask_`\n \n intercept_: np.ndarray\n LogisticRegression (`LR`) intercept\n \n features: np.ndarray of str\n Input feature names\n \n features_: np.ndarray of str\n Output feature names of rule ensembles (and linear features if `linear_features=True`)\n \n \"\"\"\n\n def __init__(self, base_estimator=XGBClassifier(), linear_features=True,\n linear_feature_quantile=0.025, C=0.1, penalty='l1', n_estimators=10,\n max_depth=5, rand_tree_size=False, sparse_output=True, n_jobs=1,\n random_state=None, verbose=0, warm_start=False, class_weight=None,\n ext_scaler=RobustScaler()):\n \"\"\"\n Parameters\n ----------\n \n base_estimator: sklearn estimator, default: xgboost.sklearn.XGBClassifier\n Estimator to generate rule ensemble with\n \n linear_features: bool, default: True\n If `True`: Use linear features as well as rules\n \n linear_feature_quantile: float, default: 0.025\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`).\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \n C: float, default: 0.1\n Inverse of regularization strength; must be a positive float.\n Like in support vector machines, smaller values specify stronger\n regularization.\n \n \n penalty: {'l1', 'l2'}, default: 'l1'\n Norm used in the regularisation for LogisticRegression\n \n n_estimators: int, default: 10\n Number of trees within `base_estimator`\n \n max_depth: int, optional\n Maximum tree depth of `base_estimator`\n \n rand_tree_size: bool, optional\n NOT YET IMPLEMENTED!\n If `True`, randomise `max_depth` to get rules of varying lengths.\n \n n_jobs: int, optional\n The number of CPUs to use. -1 means 'all CPUs'.\n \n verbose: int, optional\n Increasing verbosity with number.\n \n warm_start: int, optional\n When set to True, reuse the solution of the previous call to fit as\n initialization, otherwise, just erase the previous solution.\n \n class_weight : dict or 'balanced', default: 'balanced'\n Weights associated with classes in the form ``{class_label: weight}``.\n If not given, all classes are supposed to have weight one.\n\n The \"balanced\" mode uses the values of y to automatically adjust\n weights inversely proportional to class frequencies in the input data\n as ``n_samples / (n_classes * np.bincount(y))``.\n\n ext_scaler: sklearn Transformer, optional\n Scaling transformation to apply to linear features (before Friedman scaling)\n \n \"\"\"\n self.base_estimator = base_estimator\n self.linear_features = linear_features\n self.linear_feature_quantile = linear_feature_quantile\n self.C = C\n self.penalty = penalty\n self.n_estimators = n_estimators\n self.max_depth = max_depth\n self.rand_tree_size = rand_tree_size\n self.n_jobs = n_jobs\n self.verbose = verbose\n self.warm_start = warm_start\n self.class_weight = class_weight\n self.ext_scaler = ext_scaler\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n\n def fit_transform(self, X, y, sample_weight=None):\n \"\"\" Fit and Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n Fitting process involves fitted bagged/boosted tree model to generate rules\n and then using these in a penalised logistic regression.\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(self.base_estimator, XGBClassifier):\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n silent=self.verbose > 0, max_depth=self.max_depth, n_jobs=\n self.n_jobs)\n elif isinstance(self.base_estimator, RandomForestClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n else:\n raise NotImplementedError\n if isinstance(X, DataFrame):\n self.features = X.columns.values\n else:\n self.features = [('f' + str(i)) for i in range(X.shape[1])]\n X = check_array(X)\n if not self.rand_tree_size:\n self.base_estimator.fit(X, y, sample_weight=sample_weight)\n if isinstance(self.base_estimator, XGBClassifier):\n self._rule_dump = self.base_estimator._Booster.get_dump()\n else:\n NotImplementedError()\n if self.verbose > 0:\n print('fitting trees')\n n_values = 'auto'\n leaves_l = []\n for tree_i in self._rule_dump:\n leaves = [int(i) for i in re.findall('([0-9]+):leaf=', tree_i)]\n leaves_l.append(leaves)\n self._one_hot_encoder = LabelOneHotEncoder(leaves_l)\n if self.verbose > 0:\n print('setup encoding')\n X = self.ext_scaler.fit_transform(X)\n if self.linear_features:\n self._scaler = FriedScaler(quantile=self.linear_feature_quantile)\n X_scale = self._scaler.fit_transform(X)\n X_transform = hstack([X_scale, self._one_hot_encoder.\n fit_transform(self.base_estimator.apply(X).reshape(-1, self\n .n_estimators))])\n else:\n X_transform = self._one_hot_encoder.fit_transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))\n if self.verbose > 0:\n print('encoded')\n self.LR = LogisticRegression(C=self.C, penalty=self.penalty,\n class_weight=self.class_weight, warm_start=self.warm_start,\n solver='saga', verbose=self.verbose)\n self.LR.fit(X_transform, y, sample_weight=sample_weight)\n if self.verbose > 0:\n print('fitted')\n self.feature_mask_ = self.LR.coef_.nonzero()[1]\n self.coef_ = self.LR.coef_[0, self.feature_mask_]\n self.intercept_ = self.LR.intercept_\n self.get_feature_names()\n assert self.features_.size == self.feature_mask_.size\n return X_transform\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n\n def predict(self, X):\n \"\"\" Output model prediction\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Bool predictions\n \"\"\"\n return self.LR.predict(self.transform(X))\n\n def predict_proba(self, X):\n \"\"\" Output model prediction probability\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Probabilistic predictions\n \"\"\"\n return self.LR.predict_proba(self.transform(X))\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n t = dt.tree_\n rules = []\n stack = [(0, -1, -1)]\n path = [(0, -1, -1)]\n while len(stack) > 0:\n nid, pd, op = stack.pop()\n if pd > path[-1][1]:\n path.append((nid, pd, op))\n elif pd == -1:\n pass\n else:\n [path.pop() for _ in range(path[-1][1] - pd + 1)]\n path.append((nid, pd, op))\n if t.children_left[nid] > 0:\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else:\n rules.append(np.array([(t.feature[path[i][0]], path[i + 1][\n 2], t.threshold[path[i][0]]) for i in range(len(path) -\n 1)]))\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n\n def extract_rules(self, labels=None):\n \"\"\"Extract rules from `base_estimator`\n \n Parameters\n ----------\n \n labels: list of str, optional\n Feature names\n \n Returns\n -------\n \n numpy.ndarray\n Containing `str` representing rules in ensembles\n \n \"\"\"\n if isinstance(self.base_estimator, RandomForestClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules__(dt) for dt in\n self.base_estimator.estimators_]))\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules(__dt) for dt in\n self.base_estimator.estimators_.ravel()]))\n elif isinstance(self.base_estimator, XGBClassifier):\n rules = list(it.chain(*[self.__extract_xgb_dt_rules__(dt) for\n dt in self._rule_dump]))\n self.rules = np.array([' & '.join(self.__convert_rule__(r, labels=\n labels, scaler=self.ext_scaler)) for r in rules])\n return self.rules\n", "<import token>\n<class token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n \"\"\"Rule-Fit for binary classification\n \n Generate an ensemble of rules using XGBoost or a sklearn\n tree ensemble method, and use these (optionally with linear\n features) in a L1 (or other penalised) Logistic Regression to \n build a classifier.\n \n Attributes\n ----------\n \n LR: sklearn.linear_model.LogisticRegression\n Regularised linear regression on ensemble of rules\n \n feature_mask_: np.ndarray\n Array of non-zero feature values\n \n coef_: np.ndarray\n LogisticRegression (`LR`) co-efficients for features in `feature_mask_`\n \n intercept_: np.ndarray\n LogisticRegression (`LR`) intercept\n \n features: np.ndarray of str\n Input feature names\n \n features_: np.ndarray of str\n Output feature names of rule ensembles (and linear features if `linear_features=True`)\n \n \"\"\"\n\n def __init__(self, base_estimator=XGBClassifier(), linear_features=True,\n linear_feature_quantile=0.025, C=0.1, penalty='l1', n_estimators=10,\n max_depth=5, rand_tree_size=False, sparse_output=True, n_jobs=1,\n random_state=None, verbose=0, warm_start=False, class_weight=None,\n ext_scaler=RobustScaler()):\n \"\"\"\n Parameters\n ----------\n \n base_estimator: sklearn estimator, default: xgboost.sklearn.XGBClassifier\n Estimator to generate rule ensemble with\n \n linear_features: bool, default: True\n If `True`: Use linear features as well as rules\n \n linear_feature_quantile: float, default: 0.025\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`).\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \n C: float, default: 0.1\n Inverse of regularization strength; must be a positive float.\n Like in support vector machines, smaller values specify stronger\n regularization.\n \n \n penalty: {'l1', 'l2'}, default: 'l1'\n Norm used in the regularisation for LogisticRegression\n \n n_estimators: int, default: 10\n Number of trees within `base_estimator`\n \n max_depth: int, optional\n Maximum tree depth of `base_estimator`\n \n rand_tree_size: bool, optional\n NOT YET IMPLEMENTED!\n If `True`, randomise `max_depth` to get rules of varying lengths.\n \n n_jobs: int, optional\n The number of CPUs to use. -1 means 'all CPUs'.\n \n verbose: int, optional\n Increasing verbosity with number.\n \n warm_start: int, optional\n When set to True, reuse the solution of the previous call to fit as\n initialization, otherwise, just erase the previous solution.\n \n class_weight : dict or 'balanced', default: 'balanced'\n Weights associated with classes in the form ``{class_label: weight}``.\n If not given, all classes are supposed to have weight one.\n\n The \"balanced\" mode uses the values of y to automatically adjust\n weights inversely proportional to class frequencies in the input data\n as ``n_samples / (n_classes * np.bincount(y))``.\n\n ext_scaler: sklearn Transformer, optional\n Scaling transformation to apply to linear features (before Friedman scaling)\n \n \"\"\"\n self.base_estimator = base_estimator\n self.linear_features = linear_features\n self.linear_feature_quantile = linear_feature_quantile\n self.C = C\n self.penalty = penalty\n self.n_estimators = n_estimators\n self.max_depth = max_depth\n self.rand_tree_size = rand_tree_size\n self.n_jobs = n_jobs\n self.verbose = verbose\n self.warm_start = warm_start\n self.class_weight = class_weight\n self.ext_scaler = ext_scaler\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n\n def fit_transform(self, X, y, sample_weight=None):\n \"\"\" Fit and Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n Fitting process involves fitted bagged/boosted tree model to generate rules\n and then using these in a penalised logistic regression.\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(self.base_estimator, XGBClassifier):\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n silent=self.verbose > 0, max_depth=self.max_depth, n_jobs=\n self.n_jobs)\n elif isinstance(self.base_estimator, RandomForestClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n else:\n raise NotImplementedError\n if isinstance(X, DataFrame):\n self.features = X.columns.values\n else:\n self.features = [('f' + str(i)) for i in range(X.shape[1])]\n X = check_array(X)\n if not self.rand_tree_size:\n self.base_estimator.fit(X, y, sample_weight=sample_weight)\n if isinstance(self.base_estimator, XGBClassifier):\n self._rule_dump = self.base_estimator._Booster.get_dump()\n else:\n NotImplementedError()\n if self.verbose > 0:\n print('fitting trees')\n n_values = 'auto'\n leaves_l = []\n for tree_i in self._rule_dump:\n leaves = [int(i) for i in re.findall('([0-9]+):leaf=', tree_i)]\n leaves_l.append(leaves)\n self._one_hot_encoder = LabelOneHotEncoder(leaves_l)\n if self.verbose > 0:\n print('setup encoding')\n X = self.ext_scaler.fit_transform(X)\n if self.linear_features:\n self._scaler = FriedScaler(quantile=self.linear_feature_quantile)\n X_scale = self._scaler.fit_transform(X)\n X_transform = hstack([X_scale, self._one_hot_encoder.\n fit_transform(self.base_estimator.apply(X).reshape(-1, self\n .n_estimators))])\n else:\n X_transform = self._one_hot_encoder.fit_transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))\n if self.verbose > 0:\n print('encoded')\n self.LR = LogisticRegression(C=self.C, penalty=self.penalty,\n class_weight=self.class_weight, warm_start=self.warm_start,\n solver='saga', verbose=self.verbose)\n self.LR.fit(X_transform, y, sample_weight=sample_weight)\n if self.verbose > 0:\n print('fitted')\n self.feature_mask_ = self.LR.coef_.nonzero()[1]\n self.coef_ = self.LR.coef_[0, self.feature_mask_]\n self.intercept_ = self.LR.intercept_\n self.get_feature_names()\n assert self.features_.size == self.feature_mask_.size\n return X_transform\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n\n def predict(self, X):\n \"\"\" Output model prediction\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Bool predictions\n \"\"\"\n return self.LR.predict(self.transform(X))\n\n def predict_proba(self, X):\n \"\"\" Output model prediction probability\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Probabilistic predictions\n \"\"\"\n return self.LR.predict_proba(self.transform(X))\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n t = dt.tree_\n rules = []\n stack = [(0, -1, -1)]\n path = [(0, -1, -1)]\n while len(stack) > 0:\n nid, pd, op = stack.pop()\n if pd > path[-1][1]:\n path.append((nid, pd, op))\n elif pd == -1:\n pass\n else:\n [path.pop() for _ in range(path[-1][1] - pd + 1)]\n path.append((nid, pd, op))\n if t.children_left[nid] > 0:\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else:\n rules.append(np.array([(t.feature[path[i][0]], path[i + 1][\n 2], t.threshold[path[i][0]]) for i in range(len(path) -\n 1)]))\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n\n def extract_rules(self, labels=None):\n \"\"\"Extract rules from `base_estimator`\n \n Parameters\n ----------\n \n labels: list of str, optional\n Feature names\n \n Returns\n -------\n \n numpy.ndarray\n Containing `str` representing rules in ensembles\n \n \"\"\"\n if isinstance(self.base_estimator, RandomForestClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules__(dt) for dt in\n self.base_estimator.estimators_]))\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules(__dt) for dt in\n self.base_estimator.estimators_.ravel()]))\n elif isinstance(self.base_estimator, XGBClassifier):\n rules = list(it.chain(*[self.__extract_xgb_dt_rules__(dt) for\n dt in self._rule_dump]))\n self.rules = np.array([' & '.join(self.__convert_rule__(r, labels=\n labels, scaler=self.ext_scaler)) for r in rules])\n return self.rules\n", "<import token>\n<class token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n <docstring token>\n\n def __init__(self, base_estimator=XGBClassifier(), linear_features=True,\n linear_feature_quantile=0.025, C=0.1, penalty='l1', n_estimators=10,\n max_depth=5, rand_tree_size=False, sparse_output=True, n_jobs=1,\n random_state=None, verbose=0, warm_start=False, class_weight=None,\n ext_scaler=RobustScaler()):\n \"\"\"\n Parameters\n ----------\n \n base_estimator: sklearn estimator, default: xgboost.sklearn.XGBClassifier\n Estimator to generate rule ensemble with\n \n linear_features: bool, default: True\n If `True`: Use linear features as well as rules\n \n linear_feature_quantile: float, default: 0.025\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`).\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \n C: float, default: 0.1\n Inverse of regularization strength; must be a positive float.\n Like in support vector machines, smaller values specify stronger\n regularization.\n \n \n penalty: {'l1', 'l2'}, default: 'l1'\n Norm used in the regularisation for LogisticRegression\n \n n_estimators: int, default: 10\n Number of trees within `base_estimator`\n \n max_depth: int, optional\n Maximum tree depth of `base_estimator`\n \n rand_tree_size: bool, optional\n NOT YET IMPLEMENTED!\n If `True`, randomise `max_depth` to get rules of varying lengths.\n \n n_jobs: int, optional\n The number of CPUs to use. -1 means 'all CPUs'.\n \n verbose: int, optional\n Increasing verbosity with number.\n \n warm_start: int, optional\n When set to True, reuse the solution of the previous call to fit as\n initialization, otherwise, just erase the previous solution.\n \n class_weight : dict or 'balanced', default: 'balanced'\n Weights associated with classes in the form ``{class_label: weight}``.\n If not given, all classes are supposed to have weight one.\n\n The \"balanced\" mode uses the values of y to automatically adjust\n weights inversely proportional to class frequencies in the input data\n as ``n_samples / (n_classes * np.bincount(y))``.\n\n ext_scaler: sklearn Transformer, optional\n Scaling transformation to apply to linear features (before Friedman scaling)\n \n \"\"\"\n self.base_estimator = base_estimator\n self.linear_features = linear_features\n self.linear_feature_quantile = linear_feature_quantile\n self.C = C\n self.penalty = penalty\n self.n_estimators = n_estimators\n self.max_depth = max_depth\n self.rand_tree_size = rand_tree_size\n self.n_jobs = n_jobs\n self.verbose = verbose\n self.warm_start = warm_start\n self.class_weight = class_weight\n self.ext_scaler = ext_scaler\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n\n def fit_transform(self, X, y, sample_weight=None):\n \"\"\" Fit and Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n Fitting process involves fitted bagged/boosted tree model to generate rules\n and then using these in a penalised logistic regression.\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(self.base_estimator, XGBClassifier):\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n silent=self.verbose > 0, max_depth=self.max_depth, n_jobs=\n self.n_jobs)\n elif isinstance(self.base_estimator, RandomForestClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n else:\n raise NotImplementedError\n if isinstance(X, DataFrame):\n self.features = X.columns.values\n else:\n self.features = [('f' + str(i)) for i in range(X.shape[1])]\n X = check_array(X)\n if not self.rand_tree_size:\n self.base_estimator.fit(X, y, sample_weight=sample_weight)\n if isinstance(self.base_estimator, XGBClassifier):\n self._rule_dump = self.base_estimator._Booster.get_dump()\n else:\n NotImplementedError()\n if self.verbose > 0:\n print('fitting trees')\n n_values = 'auto'\n leaves_l = []\n for tree_i in self._rule_dump:\n leaves = [int(i) for i in re.findall('([0-9]+):leaf=', tree_i)]\n leaves_l.append(leaves)\n self._one_hot_encoder = LabelOneHotEncoder(leaves_l)\n if self.verbose > 0:\n print('setup encoding')\n X = self.ext_scaler.fit_transform(X)\n if self.linear_features:\n self._scaler = FriedScaler(quantile=self.linear_feature_quantile)\n X_scale = self._scaler.fit_transform(X)\n X_transform = hstack([X_scale, self._one_hot_encoder.\n fit_transform(self.base_estimator.apply(X).reshape(-1, self\n .n_estimators))])\n else:\n X_transform = self._one_hot_encoder.fit_transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))\n if self.verbose > 0:\n print('encoded')\n self.LR = LogisticRegression(C=self.C, penalty=self.penalty,\n class_weight=self.class_weight, warm_start=self.warm_start,\n solver='saga', verbose=self.verbose)\n self.LR.fit(X_transform, y, sample_weight=sample_weight)\n if self.verbose > 0:\n print('fitted')\n self.feature_mask_ = self.LR.coef_.nonzero()[1]\n self.coef_ = self.LR.coef_[0, self.feature_mask_]\n self.intercept_ = self.LR.intercept_\n self.get_feature_names()\n assert self.features_.size == self.feature_mask_.size\n return X_transform\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n\n def predict(self, X):\n \"\"\" Output model prediction\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Bool predictions\n \"\"\"\n return self.LR.predict(self.transform(X))\n\n def predict_proba(self, X):\n \"\"\" Output model prediction probability\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Probabilistic predictions\n \"\"\"\n return self.LR.predict_proba(self.transform(X))\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n t = dt.tree_\n rules = []\n stack = [(0, -1, -1)]\n path = [(0, -1, -1)]\n while len(stack) > 0:\n nid, pd, op = stack.pop()\n if pd > path[-1][1]:\n path.append((nid, pd, op))\n elif pd == -1:\n pass\n else:\n [path.pop() for _ in range(path[-1][1] - pd + 1)]\n path.append((nid, pd, op))\n if t.children_left[nid] > 0:\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else:\n rules.append(np.array([(t.feature[path[i][0]], path[i + 1][\n 2], t.threshold[path[i][0]]) for i in range(len(path) -\n 1)]))\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n\n def extract_rules(self, labels=None):\n \"\"\"Extract rules from `base_estimator`\n \n Parameters\n ----------\n \n labels: list of str, optional\n Feature names\n \n Returns\n -------\n \n numpy.ndarray\n Containing `str` representing rules in ensembles\n \n \"\"\"\n if isinstance(self.base_estimator, RandomForestClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules__(dt) for dt in\n self.base_estimator.estimators_]))\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n rules = list(it.chain(*[self.__extract_dt_rules(__dt) for dt in\n self.base_estimator.estimators_.ravel()]))\n elif isinstance(self.base_estimator, XGBClassifier):\n rules = list(it.chain(*[self.__extract_xgb_dt_rules__(dt) for\n dt in self._rule_dump]))\n self.rules = np.array([' & '.join(self.__convert_rule__(r, labels=\n labels, scaler=self.ext_scaler)) for r in rules])\n return self.rules\n", "<import token>\n<class token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n <docstring token>\n\n def __init__(self, base_estimator=XGBClassifier(), linear_features=True,\n linear_feature_quantile=0.025, C=0.1, penalty='l1', n_estimators=10,\n max_depth=5, rand_tree_size=False, sparse_output=True, n_jobs=1,\n random_state=None, verbose=0, warm_start=False, class_weight=None,\n ext_scaler=RobustScaler()):\n \"\"\"\n Parameters\n ----------\n \n base_estimator: sklearn estimator, default: xgboost.sklearn.XGBClassifier\n Estimator to generate rule ensemble with\n \n linear_features: bool, default: True\n If `True`: Use linear features as well as rules\n \n linear_feature_quantile: float, default: 0.025\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`).\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \n C: float, default: 0.1\n Inverse of regularization strength; must be a positive float.\n Like in support vector machines, smaller values specify stronger\n regularization.\n \n \n penalty: {'l1', 'l2'}, default: 'l1'\n Norm used in the regularisation for LogisticRegression\n \n n_estimators: int, default: 10\n Number of trees within `base_estimator`\n \n max_depth: int, optional\n Maximum tree depth of `base_estimator`\n \n rand_tree_size: bool, optional\n NOT YET IMPLEMENTED!\n If `True`, randomise `max_depth` to get rules of varying lengths.\n \n n_jobs: int, optional\n The number of CPUs to use. -1 means 'all CPUs'.\n \n verbose: int, optional\n Increasing verbosity with number.\n \n warm_start: int, optional\n When set to True, reuse the solution of the previous call to fit as\n initialization, otherwise, just erase the previous solution.\n \n class_weight : dict or 'balanced', default: 'balanced'\n Weights associated with classes in the form ``{class_label: weight}``.\n If not given, all classes are supposed to have weight one.\n\n The \"balanced\" mode uses the values of y to automatically adjust\n weights inversely proportional to class frequencies in the input data\n as ``n_samples / (n_classes * np.bincount(y))``.\n\n ext_scaler: sklearn Transformer, optional\n Scaling transformation to apply to linear features (before Friedman scaling)\n \n \"\"\"\n self.base_estimator = base_estimator\n self.linear_features = linear_features\n self.linear_feature_quantile = linear_feature_quantile\n self.C = C\n self.penalty = penalty\n self.n_estimators = n_estimators\n self.max_depth = max_depth\n self.rand_tree_size = rand_tree_size\n self.n_jobs = n_jobs\n self.verbose = verbose\n self.warm_start = warm_start\n self.class_weight = class_weight\n self.ext_scaler = ext_scaler\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n\n def fit_transform(self, X, y, sample_weight=None):\n \"\"\" Fit and Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n Fitting process involves fitted bagged/boosted tree model to generate rules\n and then using these in a penalised logistic regression.\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(self.base_estimator, XGBClassifier):\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n silent=self.verbose > 0, max_depth=self.max_depth, n_jobs=\n self.n_jobs)\n elif isinstance(self.base_estimator, RandomForestClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n else:\n raise NotImplementedError\n if isinstance(X, DataFrame):\n self.features = X.columns.values\n else:\n self.features = [('f' + str(i)) for i in range(X.shape[1])]\n X = check_array(X)\n if not self.rand_tree_size:\n self.base_estimator.fit(X, y, sample_weight=sample_weight)\n if isinstance(self.base_estimator, XGBClassifier):\n self._rule_dump = self.base_estimator._Booster.get_dump()\n else:\n NotImplementedError()\n if self.verbose > 0:\n print('fitting trees')\n n_values = 'auto'\n leaves_l = []\n for tree_i in self._rule_dump:\n leaves = [int(i) for i in re.findall('([0-9]+):leaf=', tree_i)]\n leaves_l.append(leaves)\n self._one_hot_encoder = LabelOneHotEncoder(leaves_l)\n if self.verbose > 0:\n print('setup encoding')\n X = self.ext_scaler.fit_transform(X)\n if self.linear_features:\n self._scaler = FriedScaler(quantile=self.linear_feature_quantile)\n X_scale = self._scaler.fit_transform(X)\n X_transform = hstack([X_scale, self._one_hot_encoder.\n fit_transform(self.base_estimator.apply(X).reshape(-1, self\n .n_estimators))])\n else:\n X_transform = self._one_hot_encoder.fit_transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))\n if self.verbose > 0:\n print('encoded')\n self.LR = LogisticRegression(C=self.C, penalty=self.penalty,\n class_weight=self.class_weight, warm_start=self.warm_start,\n solver='saga', verbose=self.verbose)\n self.LR.fit(X_transform, y, sample_weight=sample_weight)\n if self.verbose > 0:\n print('fitted')\n self.feature_mask_ = self.LR.coef_.nonzero()[1]\n self.coef_ = self.LR.coef_[0, self.feature_mask_]\n self.intercept_ = self.LR.intercept_\n self.get_feature_names()\n assert self.features_.size == self.feature_mask_.size\n return X_transform\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n\n def predict(self, X):\n \"\"\" Output model prediction\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Bool predictions\n \"\"\"\n return self.LR.predict(self.transform(X))\n\n def predict_proba(self, X):\n \"\"\" Output model prediction probability\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Probabilistic predictions\n \"\"\"\n return self.LR.predict_proba(self.transform(X))\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n t = dt.tree_\n rules = []\n stack = [(0, -1, -1)]\n path = [(0, -1, -1)]\n while len(stack) > 0:\n nid, pd, op = stack.pop()\n if pd > path[-1][1]:\n path.append((nid, pd, op))\n elif pd == -1:\n pass\n else:\n [path.pop() for _ in range(path[-1][1] - pd + 1)]\n path.append((nid, pd, op))\n if t.children_left[nid] > 0:\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else:\n rules.append(np.array([(t.feature[path[i][0]], path[i + 1][\n 2], t.threshold[path[i][0]]) for i in range(len(path) -\n 1)]))\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n <function token>\n", "<import token>\n<class token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n <docstring token>\n\n def __init__(self, base_estimator=XGBClassifier(), linear_features=True,\n linear_feature_quantile=0.025, C=0.1, penalty='l1', n_estimators=10,\n max_depth=5, rand_tree_size=False, sparse_output=True, n_jobs=1,\n random_state=None, verbose=0, warm_start=False, class_weight=None,\n ext_scaler=RobustScaler()):\n \"\"\"\n Parameters\n ----------\n \n base_estimator: sklearn estimator, default: xgboost.sklearn.XGBClassifier\n Estimator to generate rule ensemble with\n \n linear_features: bool, default: True\n If `True`: Use linear features as well as rules\n \n linear_feature_quantile: float, default: 0.025\n float in [0, 0.5) signifying the quantiles at which to winsorise\n (`quantile` and `1-quantile`).\n WARNING: If data has small variance then this may need to be \n very small to avoid blowing up of scale factors\n \n C: float, default: 0.1\n Inverse of regularization strength; must be a positive float.\n Like in support vector machines, smaller values specify stronger\n regularization.\n \n \n penalty: {'l1', 'l2'}, default: 'l1'\n Norm used in the regularisation for LogisticRegression\n \n n_estimators: int, default: 10\n Number of trees within `base_estimator`\n \n max_depth: int, optional\n Maximum tree depth of `base_estimator`\n \n rand_tree_size: bool, optional\n NOT YET IMPLEMENTED!\n If `True`, randomise `max_depth` to get rules of varying lengths.\n \n n_jobs: int, optional\n The number of CPUs to use. -1 means 'all CPUs'.\n \n verbose: int, optional\n Increasing verbosity with number.\n \n warm_start: int, optional\n When set to True, reuse the solution of the previous call to fit as\n initialization, otherwise, just erase the previous solution.\n \n class_weight : dict or 'balanced', default: 'balanced'\n Weights associated with classes in the form ``{class_label: weight}``.\n If not given, all classes are supposed to have weight one.\n\n The \"balanced\" mode uses the values of y to automatically adjust\n weights inversely proportional to class frequencies in the input data\n as ``n_samples / (n_classes * np.bincount(y))``.\n\n ext_scaler: sklearn Transformer, optional\n Scaling transformation to apply to linear features (before Friedman scaling)\n \n \"\"\"\n self.base_estimator = base_estimator\n self.linear_features = linear_features\n self.linear_feature_quantile = linear_feature_quantile\n self.C = C\n self.penalty = penalty\n self.n_estimators = n_estimators\n self.max_depth = max_depth\n self.rand_tree_size = rand_tree_size\n self.n_jobs = n_jobs\n self.verbose = verbose\n self.warm_start = warm_start\n self.class_weight = class_weight\n self.ext_scaler = ext_scaler\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n\n def fit_transform(self, X, y, sample_weight=None):\n \"\"\" Fit and Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n Fitting process involves fitted bagged/boosted tree model to generate rules\n and then using these in a penalised logistic regression.\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(self.base_estimator, XGBClassifier):\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n silent=self.verbose > 0, max_depth=self.max_depth, n_jobs=\n self.n_jobs)\n elif isinstance(self.base_estimator, RandomForestClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n else:\n raise NotImplementedError\n if isinstance(X, DataFrame):\n self.features = X.columns.values\n else:\n self.features = [('f' + str(i)) for i in range(X.shape[1])]\n X = check_array(X)\n if not self.rand_tree_size:\n self.base_estimator.fit(X, y, sample_weight=sample_weight)\n if isinstance(self.base_estimator, XGBClassifier):\n self._rule_dump = self.base_estimator._Booster.get_dump()\n else:\n NotImplementedError()\n if self.verbose > 0:\n print('fitting trees')\n n_values = 'auto'\n leaves_l = []\n for tree_i in self._rule_dump:\n leaves = [int(i) for i in re.findall('([0-9]+):leaf=', tree_i)]\n leaves_l.append(leaves)\n self._one_hot_encoder = LabelOneHotEncoder(leaves_l)\n if self.verbose > 0:\n print('setup encoding')\n X = self.ext_scaler.fit_transform(X)\n if self.linear_features:\n self._scaler = FriedScaler(quantile=self.linear_feature_quantile)\n X_scale = self._scaler.fit_transform(X)\n X_transform = hstack([X_scale, self._one_hot_encoder.\n fit_transform(self.base_estimator.apply(X).reshape(-1, self\n .n_estimators))])\n else:\n X_transform = self._one_hot_encoder.fit_transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))\n if self.verbose > 0:\n print('encoded')\n self.LR = LogisticRegression(C=self.C, penalty=self.penalty,\n class_weight=self.class_weight, warm_start=self.warm_start,\n solver='saga', verbose=self.verbose)\n self.LR.fit(X_transform, y, sample_weight=sample_weight)\n if self.verbose > 0:\n print('fitted')\n self.feature_mask_ = self.LR.coef_.nonzero()[1]\n self.coef_ = self.LR.coef_[0, self.feature_mask_]\n self.intercept_ = self.LR.intercept_\n self.get_feature_names()\n assert self.features_.size == self.feature_mask_.size\n return X_transform\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n\n def predict(self, X):\n \"\"\" Output model prediction\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Bool predictions\n \"\"\"\n return self.LR.predict(self.transform(X))\n <function token>\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n t = dt.tree_\n rules = []\n stack = [(0, -1, -1)]\n path = [(0, -1, -1)]\n while len(stack) > 0:\n nid, pd, op = stack.pop()\n if pd > path[-1][1]:\n path.append((nid, pd, op))\n elif pd == -1:\n pass\n else:\n [path.pop() for _ in range(path[-1][1] - pd + 1)]\n path.append((nid, pd, op))\n if t.children_left[nid] > 0:\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else:\n rules.append(np.array([(t.feature[path[i][0]], path[i + 1][\n 2], t.threshold[path[i][0]]) for i in range(len(path) -\n 1)]))\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n <function token>\n", "<import token>\n<class token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n <docstring token>\n <function token>\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n\n def fit_transform(self, X, y, sample_weight=None):\n \"\"\" Fit and Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n Fitting process involves fitted bagged/boosted tree model to generate rules\n and then using these in a penalised logistic regression.\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(self.base_estimator, XGBClassifier):\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n silent=self.verbose > 0, max_depth=self.max_depth, n_jobs=\n self.n_jobs)\n elif isinstance(self.base_estimator, RandomForestClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n elif isinstance(self.base_estimator, GradientBoostingClassifier):\n warnings.warn(\n 'This base_estimator implementation has not been tested in a while!'\n )\n self.base_estimator.set_params(n_estimators=self.n_estimators,\n verbose=self.verbose, max_depth=self.max_depth, n_jobs=self\n .n_jobs)\n else:\n raise NotImplementedError\n if isinstance(X, DataFrame):\n self.features = X.columns.values\n else:\n self.features = [('f' + str(i)) for i in range(X.shape[1])]\n X = check_array(X)\n if not self.rand_tree_size:\n self.base_estimator.fit(X, y, sample_weight=sample_weight)\n if isinstance(self.base_estimator, XGBClassifier):\n self._rule_dump = self.base_estimator._Booster.get_dump()\n else:\n NotImplementedError()\n if self.verbose > 0:\n print('fitting trees')\n n_values = 'auto'\n leaves_l = []\n for tree_i in self._rule_dump:\n leaves = [int(i) for i in re.findall('([0-9]+):leaf=', tree_i)]\n leaves_l.append(leaves)\n self._one_hot_encoder = LabelOneHotEncoder(leaves_l)\n if self.verbose > 0:\n print('setup encoding')\n X = self.ext_scaler.fit_transform(X)\n if self.linear_features:\n self._scaler = FriedScaler(quantile=self.linear_feature_quantile)\n X_scale = self._scaler.fit_transform(X)\n X_transform = hstack([X_scale, self._one_hot_encoder.\n fit_transform(self.base_estimator.apply(X).reshape(-1, self\n .n_estimators))])\n else:\n X_transform = self._one_hot_encoder.fit_transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))\n if self.verbose > 0:\n print('encoded')\n self.LR = LogisticRegression(C=self.C, penalty=self.penalty,\n class_weight=self.class_weight, warm_start=self.warm_start,\n solver='saga', verbose=self.verbose)\n self.LR.fit(X_transform, y, sample_weight=sample_weight)\n if self.verbose > 0:\n print('fitted')\n self.feature_mask_ = self.LR.coef_.nonzero()[1]\n self.coef_ = self.LR.coef_[0, self.feature_mask_]\n self.intercept_ = self.LR.intercept_\n self.get_feature_names()\n assert self.features_.size == self.feature_mask_.size\n return X_transform\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n\n def predict(self, X):\n \"\"\" Output model prediction\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Bool predictions\n \"\"\"\n return self.LR.predict(self.transform(X))\n <function token>\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n t = dt.tree_\n rules = []\n stack = [(0, -1, -1)]\n path = [(0, -1, -1)]\n while len(stack) > 0:\n nid, pd, op = stack.pop()\n if pd > path[-1][1]:\n path.append((nid, pd, op))\n elif pd == -1:\n pass\n else:\n [path.pop() for _ in range(path[-1][1] - pd + 1)]\n path.append((nid, pd, op))\n if t.children_left[nid] > 0:\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else:\n rules.append(np.array([(t.feature[path[i][0]], path[i + 1][\n 2], t.threshold[path[i][0]]) for i in range(len(path) -\n 1)]))\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n <function token>\n", "<import token>\n<class token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n <docstring token>\n <function token>\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n <function token>\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n\n def predict(self, X):\n \"\"\" Output model prediction\n \n Parameters\n ----------\n \n X: pandas.DataFrame or numpy.ndarray\n \n Returns\n -------\n \n np.ndarray\n Bool predictions\n \"\"\"\n return self.LR.predict(self.transform(X))\n <function token>\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n t = dt.tree_\n rules = []\n stack = [(0, -1, -1)]\n path = [(0, -1, -1)]\n while len(stack) > 0:\n nid, pd, op = stack.pop()\n if pd > path[-1][1]:\n path.append((nid, pd, op))\n elif pd == -1:\n pass\n else:\n [path.pop() for _ in range(path[-1][1] - pd + 1)]\n path.append((nid, pd, op))\n if t.children_left[nid] > 0:\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else:\n rules.append(np.array([(t.feature[path[i][0]], path[i + 1][\n 2], t.threshold[path[i][0]]) for i in range(len(path) -\n 1)]))\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n <function token>\n", "<import token>\n<class token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n <docstring token>\n <function token>\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n <function token>\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n <function token>\n <function token>\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n\n def __extract_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to sklearn binary-tree format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n t = dt.tree_\n rules = []\n stack = [(0, -1, -1)]\n path = [(0, -1, -1)]\n while len(stack) > 0:\n nid, pd, op = stack.pop()\n if pd > path[-1][1]:\n path.append((nid, pd, op))\n elif pd == -1:\n pass\n else:\n [path.pop() for _ in range(path[-1][1] - pd + 1)]\n path.append((nid, pd, op))\n if t.children_left[nid] > 0:\n stack.append((t.children_left[nid], pd + 1, 1))\n stack.append((t.children_right[nid], pd + 1, 0))\n else:\n rules.append(np.array([(t.feature[path[i][0]], path[i + 1][\n 2], t.threshold[path[i][0]]) for i in range(len(path) -\n 1)]))\n return rules\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n <function token>\n", "<import token>\n<class token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n <docstring token>\n <function token>\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n <function token>\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n <function token>\n <function token>\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n <function token>\n\n def __convert_rule__(self, x, labels=None, scaler=None):\n \"\"\"Convert rule represented by an array to readable format\n \n Parameters\n ----------\n \n x: numpy.ndarray\n Input array where each row represents a feature in a rule.\n 3 columns:\n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n labels: list of str, optional\n Names of features to replace feature numbers with\n \n scaler:\n Scaler to reverse scaling done in fitting so interpretable\n feature values can be used.\n \n Returns\n -------\n \n list of str\n List containing each stage of input rule\n \n \"\"\"\n strop = ['>', '<=']\n if scaler is None:\n nf = x[:, 0].astype(int).max() + 1\n scale = np.ones(nf)\n center = np.zeros(nf)\n else:\n scale = scaler.scale_\n center = scaler.center_\n if labels is None:\n return [(str(int(f)) + str(strop[int(op)]) + str(thresh * scale\n [int(f)] + center[int(f)])) for f, op, thresh in x]\n else:\n return [(labels[int(f)] + str(strop[int(op)]) + str(thresh *\n scale[int(f)] + center[int(f)])) for f, op, thresh in x]\n <function token>\n", "<import token>\n<class token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n <docstring token>\n <function token>\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n\n def transform(self, X, y=None):\n \"\"\" Transform data into modified features\n (before being passed to penalised regression step).\n If `linear_features=True` then this will be scaled linear features\n followed by the one-hot-encoding signifying which rules are \"on\".\n Otherwise this is just the one-hot-encoding signifying which rules are \"on\".\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: dummy, optional\n \n Returns\n -------\n \n sparse array\n \"\"\"\n if isinstance(X, DataFrame):\n is_df = True\n X = check_array(X)\n X = self.ext_scaler.transform(X)\n if self.linear_features:\n X_scale = self._scaler.transform(X)\n return hstack([X_scale, self._one_hot_encoder.transform(self.\n base_estimator.apply(X).reshape(-1, self.n_estimators))])\n else:\n return self._one_hot_encoder.transform(self.base_estimator.\n apply(X).reshape(-1, self.n_estimators))\n <function token>\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n <function token>\n <function token>\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n <docstring token>\n <function token>\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n <function token>\n <function token>\n\n def get_feature_names(self):\n \"\"\" Get names of features in the model\n \n Returns\n -------\n \n numpy.ndarray\n \"\"\"\n if self.linear_features:\n self.features_ = np.concatenate([self.features, np.array(self.\n extract_rules(labels=self.features))], 0)[self.feature_mask_]\n else:\n self.features_ = np.array(self.extract_rules(labels=self.features)\n )[self.feature_mask_]\n return self.features_\n <function token>\n <function token>\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n <docstring token>\n <function token>\n\n def fit(self, X, y, sample_weight=None):\n \"\"\" Fit model to data\n \n X: pandas.DataFrame or numpy.ndarray\n Features\n \n y: pandas.Series or numpy.ndarray\n Target\n \n Returns\n -------\n \n self\n \"\"\"\n self.fit_transform(X, y, sample_weight=sample_weight)\n return self\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def __extract_xgb_dt_rules__(self, dt):\n \"\"\" Extract rule set from single decision tree according\n to `XGBClassifier` format\n \n Parameters\n ----------\n \n dt: string\n \n Returns\n -------\n \n list of numpy.ndarray\n Each array is of length three. \n First indicates feature number,\n Second indicates operator (1 if $>$ otherwise $\\\\leq$),\n Third indicates threshold value\n \n \"\"\"\n md = self.max_depth + 1\n rules = []\n levels = np.zeros((md, 3))\n path = []\n feat_thresh_l = re.findall('\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\]', dt\n )\n _id = 0\n prune = -1\n for line in dt.split('\\n')[:-1]:\n _id, rest = line.split(':')\n level = Counter(_id)['\\t']\n _id = _id.lstrip()\n if prune > 0:\n path = path[:-1 + (level - prune)]\n path.append(int(_id))\n if 'leaf' in rest:\n prune = level\n rules.append(levels[:level, (0, 2, 1)].copy())\n rules[-1][:, 1] = rules[-1][:, 1] == np.array(path[1:])\n else:\n levels[level, :] = re.findall(\n '\\\\[f([0-9]+)<([-]?[0-9]+\\\\.?[0-9]*)\\\\].*yes=([0-9]+)',\n line)[0]\n prune = -1\n return rules\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n\n\nclass RuleFitClassifier(BaseEstimator, ClassifierMixin):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n<class token>\n" ]
false
99,561
46aebea7b07226530e7f54835e27258b805144c1
#Create a program that prints all the integers between 3 and 13 (3 and 13 included) multiplied by two. for x in range(3, 14): print("x is now:",x) print("x multiplied by 2:",x*2)
[ "#Create a program that prints all the integers between 3 and 13 (3 and 13 included) multiplied by two.\n\nfor x in range(3, 14):\n print(\"x is now:\",x)\n print(\"x multiplied by 2:\",x*2)\n", "for x in range(3, 14):\n print('x is now:', x)\n print('x multiplied by 2:', x * 2)\n", "<code token>\n" ]
false
99,562
d398e63ebeae2e337631e6fbdf12957f366fae72
# SPDX-License-Identifier: BSD-2-Clause """osdk-manager osdk update tests. Manage osdk and opm binary installation, and help to scaffold, release, and version Operator SDK-based Kubernetes operators. This test set validates that an update correctly installs and validates the latest version of the operator-sdk binaries, but can also be used to pin a version. """ import os from osdk_manager.util import get_logger import osdk_manager.osdk.update as osdk_update osdk_update._called_from_test = True def test_update(tmp_path): """Test updates with both latest version and a pinned version.""" _ = get_logger(verbosity=4) for osdk_version in ["latest", "1.3.1", "1.3.1"]: version = osdk_update.osdk_update(version=osdk_version, **tmp_path) file_data = osdk_update.OsdkFileData(version=version, **tmp_path) assert file_data.files_not_matching() == [] for filename in file_data.downloads: try: os.remove(file_data.downloads[filename]['dst']) except Exception: pass
[ "# SPDX-License-Identifier: BSD-2-Clause\n\"\"\"osdk-manager osdk update tests.\n\nManage osdk and opm binary installation, and help to scaffold, release, and\nversion Operator SDK-based Kubernetes operators.\n\nThis test set validates that an update correctly installs and validates the\nlatest version of the operator-sdk binaries, but can also be used to pin a\nversion.\n\"\"\"\n\nimport os\n\nfrom osdk_manager.util import get_logger\nimport osdk_manager.osdk.update as osdk_update\nosdk_update._called_from_test = True\n\n\ndef test_update(tmp_path):\n \"\"\"Test updates with both latest version and a pinned version.\"\"\"\n _ = get_logger(verbosity=4)\n for osdk_version in [\"latest\", \"1.3.1\", \"1.3.1\"]:\n version = osdk_update.osdk_update(version=osdk_version, **tmp_path)\n file_data = osdk_update.OsdkFileData(version=version, **tmp_path)\n assert file_data.files_not_matching() == []\n for filename in file_data.downloads:\n try:\n os.remove(file_data.downloads[filename]['dst'])\n except Exception:\n pass\n", "<docstring token>\nimport os\nfrom osdk_manager.util import get_logger\nimport osdk_manager.osdk.update as osdk_update\nosdk_update._called_from_test = True\n\n\ndef test_update(tmp_path):\n \"\"\"Test updates with both latest version and a pinned version.\"\"\"\n _ = get_logger(verbosity=4)\n for osdk_version in ['latest', '1.3.1', '1.3.1']:\n version = osdk_update.osdk_update(version=osdk_version, **tmp_path)\n file_data = osdk_update.OsdkFileData(version=version, **tmp_path)\n assert file_data.files_not_matching() == []\n for filename in file_data.downloads:\n try:\n os.remove(file_data.downloads[filename]['dst'])\n except Exception:\n pass\n", "<docstring token>\n<import token>\nosdk_update._called_from_test = True\n\n\ndef test_update(tmp_path):\n \"\"\"Test updates with both latest version and a pinned version.\"\"\"\n _ = get_logger(verbosity=4)\n for osdk_version in ['latest', '1.3.1', '1.3.1']:\n version = osdk_update.osdk_update(version=osdk_version, **tmp_path)\n file_data = osdk_update.OsdkFileData(version=version, **tmp_path)\n assert file_data.files_not_matching() == []\n for filename in file_data.downloads:\n try:\n os.remove(file_data.downloads[filename]['dst'])\n except Exception:\n pass\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef test_update(tmp_path):\n \"\"\"Test updates with both latest version and a pinned version.\"\"\"\n _ = get_logger(verbosity=4)\n for osdk_version in ['latest', '1.3.1', '1.3.1']:\n version = osdk_update.osdk_update(version=osdk_version, **tmp_path)\n file_data = osdk_update.OsdkFileData(version=version, **tmp_path)\n assert file_data.files_not_matching() == []\n for filename in file_data.downloads:\n try:\n os.remove(file_data.downloads[filename]['dst'])\n except Exception:\n pass\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n" ]
false
99,563
63f69591e1e8c4675c7eaf42d6373cceb59fb758
import os from flask import Flask from flask_restful import Api from flask_sqlalchemy import SQLAlchemy from flask_jwt import JWT BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) flask_app = Flask(__name__) flask_app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + BASE_DIR + '/bucket_list.db' flask_app.config['JWT_SECRET_KEY'] = 'test123' db = SQLAlchemy(flask_app) from . import views api = Api(flask_app) api.add_resource(views.UserRegistration, "/v1/auth/register") api.add_resource(views.BucketList, "/v1/bucketlists") api.add_resource(views.SingleBucketList, "/v1/bucketlists/<int:id>") api.add_resource(views.Items, "/v1/bucketlists/<int:id>/items") api.add_resource(views.ItemsUpdate, "/v1/bucketlists/<int:id>/items/<int:item_id>") jwt = JWT(flask_app, views.authenticate, views.identity)
[ "import os\nfrom flask import Flask\nfrom flask_restful import Api\nfrom flask_sqlalchemy import SQLAlchemy\nfrom flask_jwt import JWT\nBASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\n\nflask_app = Flask(__name__)\nflask_app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + BASE_DIR + '/bucket_list.db'\nflask_app.config['JWT_SECRET_KEY'] = 'test123'\n\n\ndb = SQLAlchemy(flask_app)\n\nfrom . import views\n\n\napi = Api(flask_app)\napi.add_resource(views.UserRegistration, \"/v1/auth/register\")\napi.add_resource(views.BucketList, \"/v1/bucketlists\")\napi.add_resource(views.SingleBucketList, \"/v1/bucketlists/<int:id>\")\napi.add_resource(views.Items, \"/v1/bucketlists/<int:id>/items\")\napi.add_resource(views.ItemsUpdate, \"/v1/bucketlists/<int:id>/items/<int:item_id>\")\njwt = JWT(flask_app, views.authenticate, views.identity)\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", "import os\nfrom flask import Flask\nfrom flask_restful import Api\nfrom flask_sqlalchemy import SQLAlchemy\nfrom flask_jwt import JWT\nBASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\nflask_app = Flask(__name__)\nflask_app.config['SQLALCHEMY_DATABASE_URI'\n ] = 'sqlite:///' + BASE_DIR + '/bucket_list.db'\nflask_app.config['JWT_SECRET_KEY'] = 'test123'\ndb = SQLAlchemy(flask_app)\nfrom . import views\napi = Api(flask_app)\napi.add_resource(views.UserRegistration, '/v1/auth/register')\napi.add_resource(views.BucketList, '/v1/bucketlists')\napi.add_resource(views.SingleBucketList, '/v1/bucketlists/<int:id>')\napi.add_resource(views.Items, '/v1/bucketlists/<int:id>/items')\napi.add_resource(views.ItemsUpdate,\n '/v1/bucketlists/<int:id>/items/<int:item_id>')\njwt = JWT(flask_app, views.authenticate, views.identity)\n", "<import token>\nBASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))\nflask_app = Flask(__name__)\nflask_app.config['SQLALCHEMY_DATABASE_URI'\n ] = 'sqlite:///' + BASE_DIR + '/bucket_list.db'\nflask_app.config['JWT_SECRET_KEY'] = 'test123'\ndb = SQLAlchemy(flask_app)\n<import token>\napi = Api(flask_app)\napi.add_resource(views.UserRegistration, '/v1/auth/register')\napi.add_resource(views.BucketList, '/v1/bucketlists')\napi.add_resource(views.SingleBucketList, '/v1/bucketlists/<int:id>')\napi.add_resource(views.Items, '/v1/bucketlists/<int:id>/items')\napi.add_resource(views.ItemsUpdate,\n '/v1/bucketlists/<int:id>/items/<int:item_id>')\njwt = JWT(flask_app, views.authenticate, views.identity)\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\napi.add_resource(views.UserRegistration, '/v1/auth/register')\napi.add_resource(views.BucketList, '/v1/bucketlists')\napi.add_resource(views.SingleBucketList, '/v1/bucketlists/<int:id>')\napi.add_resource(views.Items, '/v1/bucketlists/<int:id>/items')\napi.add_resource(views.ItemsUpdate,\n '/v1/bucketlists/<int:id>/items/<int:item_id>')\n<assignment token>\n", "<import token>\n<assignment token>\n<import token>\n<assignment token>\n<code token>\n<assignment token>\n" ]
false
99,564
ba15623cce2580eba159e63127917006174b7379
states = {"California": "CA", "Arizona": "AZ", "Arkansas": "AK"} for state in states: print("State: " + state + " Abbreviation: " + states[state]) store_prices = {"Cereal": 2.00, "Bread": 4.00, "fiber optic": 25.00, "lambo": 30.00 } print(store_prices["Cereal"] + store_prices["lambo"]) store_inventory = {"Cereal" : 20, "Bread": 30, "fiber optic": 40, "lambo": 2} price = str(2 * store_prices["Cereal"] + store_prices["lambo"]) print("The price of two boxes of cereal and one lambo is: " + price) store_inventory["Cereal"] -= 2 store_inventory["lambo"] -= 1 print(store_inventory["Cereal"]) print(store_inventory["lambo"]) for item in store_prices: store_prices[item] *= 1.03 for item in store_prices: print(store_prices[item])
[ "\n\nstates = {\"California\": \"CA\", \"Arizona\": \"AZ\", \"Arkansas\": \"AK\"}\n\nfor state in states:\n print(\"State: \" + state + \" Abbreviation: \" + states[state])\n\n\nstore_prices = {\"Cereal\": 2.00, \"Bread\": 4.00, \"fiber optic\": 25.00, \"lambo\": 30.00 }\n\nprint(store_prices[\"Cereal\"] + store_prices[\"lambo\"])\n\n\nstore_inventory = {\"Cereal\" : 20, \"Bread\": 30, \"fiber optic\": 40, \"lambo\": 2}\n\n\nprice = str(2 * store_prices[\"Cereal\"] + store_prices[\"lambo\"])\nprint(\"The price of two boxes of cereal and one lambo is: \" + price)\n\nstore_inventory[\"Cereal\"] -= 2\nstore_inventory[\"lambo\"] -= 1\n\nprint(store_inventory[\"Cereal\"])\nprint(store_inventory[\"lambo\"])\n\nfor item in store_prices:\n store_prices[item] *= 1.03\n\nfor item in store_prices:\n print(store_prices[item])\n", "states = {'California': 'CA', 'Arizona': 'AZ', 'Arkansas': 'AK'}\nfor state in states:\n print('State: ' + state + ' Abbreviation: ' + states[state])\nstore_prices = {'Cereal': 2.0, 'Bread': 4.0, 'fiber optic': 25.0, 'lambo': 30.0\n }\nprint(store_prices['Cereal'] + store_prices['lambo'])\nstore_inventory = {'Cereal': 20, 'Bread': 30, 'fiber optic': 40, 'lambo': 2}\nprice = str(2 * store_prices['Cereal'] + store_prices['lambo'])\nprint('The price of two boxes of cereal and one lambo is: ' + price)\nstore_inventory['Cereal'] -= 2\nstore_inventory['lambo'] -= 1\nprint(store_inventory['Cereal'])\nprint(store_inventory['lambo'])\nfor item in store_prices:\n store_prices[item] *= 1.03\nfor item in store_prices:\n print(store_prices[item])\n", "<assignment token>\nfor state in states:\n print('State: ' + state + ' Abbreviation: ' + states[state])\n<assignment token>\nprint(store_prices['Cereal'] + store_prices['lambo'])\n<assignment token>\nprint('The price of two boxes of cereal and one lambo is: ' + price)\nstore_inventory['Cereal'] -= 2\nstore_inventory['lambo'] -= 1\nprint(store_inventory['Cereal'])\nprint(store_inventory['lambo'])\nfor item in store_prices:\n store_prices[item] *= 1.03\nfor item in store_prices:\n print(store_prices[item])\n", "<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n" ]
false
99,565
39906082ee13cc41aa297719096161bada97bc20
import numpy as np from data_prep import features, targets, features_test, targets_test def sigmoid(x): """ Calculate sigmoid """ return 1 / (1 + np.exp(-x)) # TODO: We haven't provided the sigmoid_prime function like we did in # the previous lesson to encourage you to come up with a more # efficient solution. If you need a hint, check out the comments # in solution.py from the previous lecture. sigmoid_prime = sigmoid(features) * (1 - sigmoid(features)) # Use to same seed to make debugging easier np.random.seed(42) n_records, n_features = features.shape last_loss = None # Neural Network hyperparameters epochs = 1000 learnrate = 0.5 n_hidden = 2 # Initialize weights weights_input_hidden = np.random.normal(scale=1 / n_features**.5, size=( n_features, n_hidden) ) weights_hidden_output = np.random.normal(scale=1 / n_features**.5, size= n_hidden ) for e in range(epochs): del_w_input_hidden = np.zeros(weights_input_hidden.shape) del_w_hidden_output = np.zeros(weights_hidden_output.shape) for x, y in zip(features.values, targets): ## Forward Pass # TODO: Calculate the output hidden_input = np.dot(x , weights_input_hidden ) hidden_output = sigmoid( hidden_input ) output = sigmoid(np.dot(hidden_output, weights_hidden_output)) ## Backward pass ## # TODO: Calculate the network's prediction error error = y - output # TODO: Calculate the error term error_term = error * output * (1-output) ## propagate errors to hidden layer # TODO: Calculate the error term for the hidden layer hidden_error_term = np.dot(weights_hidden_output , error_term ) * \ hidden_output * ( 1 - hidden_output ) # TODO: Update the change in weights del_w_hidden_output += error_term*hidden_output del_w_input_hidden += hidden_error_term*x[:,None] # TODO: Update weights using the learning rate and the average change in weights weights_input_hidden += learnrate * del_w_input_hidden / n_records weights_hidden_output += learnrate * del_w_hidden_output / n_records # Printing out the mean square error on the training set if e % (epochs / 10) == 0: hidden_output = sigmoid(np.dot(x, weights_input_hidden)) out = sigmoid(np.dot(hidden_output, weights_hidden_output)) loss = np.mean((out - targets) ** 2) if last_loss and last_loss < loss: print("Train loss: ", loss, " WARNING - Loss Increasing") else: print("Train loss: ", loss) last_loss = loss # Calculate accuracy on test data hidden = sigmoid(np.dot(features_test, weights_input_hidden)) out = sigmoid(np.dot(hidden, weights_hidden_output)) predictions = out > 0.5 accuracy = np.mean(predictions == targets_test) print("Prediction accuracy: {:.3f}".format(accuracy)) """ Train loss: 0.22938960279764808 Train loss: 0.22202199088539817 Train loss: 0.22030177987898966 Train loss: 0.2197781809601994 Train loss: 0.21963941580650892 Train loss: 0.21965655830275446 WARNING - Loss Increasing Train loss: 0.21978971086762186 WARNING - Loss Increasing Train loss: 0.22006161406657188 WARNING - Loss Increasing Train loss: 0.22050957432577717 WARNING - Loss Increasing Train loss: 0.22116278036079903 WARNING - Loss Increasing Prediction accuracy: 0.725 """
[ "import numpy as np\nfrom data_prep import features, targets, features_test, targets_test\n\n\ndef sigmoid(x):\n \"\"\"\n Calculate sigmoid\n \"\"\"\n return 1 / (1 + np.exp(-x))\n\n# TODO: We haven't provided the sigmoid_prime function like we did in\n# the previous lesson to encourage you to come up with a more\n# efficient solution. If you need a hint, check out the comments\n# in solution.py from the previous lecture.\n\nsigmoid_prime = sigmoid(features) * (1 - sigmoid(features))\n\n# Use to same seed to make debugging easier\nnp.random.seed(42)\n\nn_records, n_features = features.shape\nlast_loss = None\n\n# Neural Network hyperparameters\nepochs = 1000\nlearnrate = 0.5\nn_hidden = 2\n\n# Initialize weights\nweights_input_hidden = np.random.normal(scale=1 / n_features**.5, size=( n_features, n_hidden) )\nweights_hidden_output = np.random.normal(scale=1 / n_features**.5, size= n_hidden )\n\n\nfor e in range(epochs):\n del_w_input_hidden = np.zeros(weights_input_hidden.shape)\n del_w_hidden_output = np.zeros(weights_hidden_output.shape)\n\n for x, y in zip(features.values, targets):\n \n ## Forward Pass\n # TODO: Calculate the output\n hidden_input = np.dot(x , weights_input_hidden )\n hidden_output = sigmoid( hidden_input )\n output = sigmoid(np.dot(hidden_output, weights_hidden_output))\n\n ## Backward pass ##\n # TODO: Calculate the network's prediction error\n error = y - output\n\n # TODO: Calculate the error term\n error_term = error * output * (1-output)\n\n ## propagate errors to hidden layer\n # TODO: Calculate the error term for the hidden layer\n hidden_error_term = np.dot(weights_hidden_output , error_term ) * \\\n hidden_output * ( 1 - hidden_output )\n\n # TODO: Update the change in weights\n del_w_hidden_output += error_term*hidden_output\n del_w_input_hidden += hidden_error_term*x[:,None]\n # TODO: Update weights using the learning rate and the average change in weights\n weights_input_hidden += learnrate * del_w_input_hidden / n_records\n weights_hidden_output += learnrate * del_w_hidden_output / n_records\n # Printing out the mean square error on the training set\n if e % (epochs / 10) == 0:\n hidden_output = sigmoid(np.dot(x, weights_input_hidden))\n out = sigmoid(np.dot(hidden_output,\n weights_hidden_output))\n loss = np.mean((out - targets) ** 2)\n\n if last_loss and last_loss < loss:\n print(\"Train loss: \", loss, \" WARNING - Loss Increasing\")\n else:\n print(\"Train loss: \", loss)\n last_loss = loss\n\n# Calculate accuracy on test data\nhidden = sigmoid(np.dot(features_test, weights_input_hidden))\nout = sigmoid(np.dot(hidden, weights_hidden_output))\npredictions = out > 0.5\naccuracy = np.mean(predictions == targets_test)\nprint(\"Prediction accuracy: {:.3f}\".format(accuracy))\n\n\n\"\"\"\nTrain loss: 0.22938960279764808\nTrain loss: 0.22202199088539817\nTrain loss: 0.22030177987898966\nTrain loss: 0.2197781809601994\nTrain loss: 0.21963941580650892\nTrain loss: 0.21965655830275446 WARNING - Loss Increasing\nTrain loss: 0.21978971086762186 WARNING - Loss Increasing\nTrain loss: 0.22006161406657188 WARNING - Loss Increasing\nTrain loss: 0.22050957432577717 WARNING - Loss Increasing\nTrain loss: 0.22116278036079903 WARNING - Loss Increasing\nPrediction accuracy: 0.725\n\"\"\"\n", "import numpy as np\nfrom data_prep import features, targets, features_test, targets_test\n\n\ndef sigmoid(x):\n \"\"\"\n Calculate sigmoid\n \"\"\"\n return 1 / (1 + np.exp(-x))\n\n\nsigmoid_prime = sigmoid(features) * (1 - sigmoid(features))\nnp.random.seed(42)\nn_records, n_features = features.shape\nlast_loss = None\nepochs = 1000\nlearnrate = 0.5\nn_hidden = 2\nweights_input_hidden = np.random.normal(scale=1 / n_features ** 0.5, size=(\n n_features, n_hidden))\nweights_hidden_output = np.random.normal(scale=1 / n_features ** 0.5, size=\n n_hidden)\nfor e in range(epochs):\n del_w_input_hidden = np.zeros(weights_input_hidden.shape)\n del_w_hidden_output = np.zeros(weights_hidden_output.shape)\n for x, y in zip(features.values, targets):\n hidden_input = np.dot(x, weights_input_hidden)\n hidden_output = sigmoid(hidden_input)\n output = sigmoid(np.dot(hidden_output, weights_hidden_output))\n error = y - output\n error_term = error * output * (1 - output)\n hidden_error_term = np.dot(weights_hidden_output, error_term\n ) * hidden_output * (1 - hidden_output)\n del_w_hidden_output += error_term * hidden_output\n del_w_input_hidden += hidden_error_term * x[:, None]\n weights_input_hidden += learnrate * del_w_input_hidden / n_records\n weights_hidden_output += learnrate * del_w_hidden_output / n_records\n if e % (epochs / 10) == 0:\n hidden_output = sigmoid(np.dot(x, weights_input_hidden))\n out = sigmoid(np.dot(hidden_output, weights_hidden_output))\n loss = np.mean((out - targets) ** 2)\n if last_loss and last_loss < loss:\n print('Train loss: ', loss, ' WARNING - Loss Increasing')\n else:\n print('Train loss: ', loss)\n last_loss = loss\nhidden = sigmoid(np.dot(features_test, weights_input_hidden))\nout = sigmoid(np.dot(hidden, weights_hidden_output))\npredictions = out > 0.5\naccuracy = np.mean(predictions == targets_test)\nprint('Prediction accuracy: {:.3f}'.format(accuracy))\n<docstring token>\n", "<import token>\n\n\ndef sigmoid(x):\n \"\"\"\n Calculate sigmoid\n \"\"\"\n return 1 / (1 + np.exp(-x))\n\n\nsigmoid_prime = sigmoid(features) * (1 - sigmoid(features))\nnp.random.seed(42)\nn_records, n_features = features.shape\nlast_loss = None\nepochs = 1000\nlearnrate = 0.5\nn_hidden = 2\nweights_input_hidden = np.random.normal(scale=1 / n_features ** 0.5, size=(\n n_features, n_hidden))\nweights_hidden_output = np.random.normal(scale=1 / n_features ** 0.5, size=\n n_hidden)\nfor e in range(epochs):\n del_w_input_hidden = np.zeros(weights_input_hidden.shape)\n del_w_hidden_output = np.zeros(weights_hidden_output.shape)\n for x, y in zip(features.values, targets):\n hidden_input = np.dot(x, weights_input_hidden)\n hidden_output = sigmoid(hidden_input)\n output = sigmoid(np.dot(hidden_output, weights_hidden_output))\n error = y - output\n error_term = error * output * (1 - output)\n hidden_error_term = np.dot(weights_hidden_output, error_term\n ) * hidden_output * (1 - hidden_output)\n del_w_hidden_output += error_term * hidden_output\n del_w_input_hidden += hidden_error_term * x[:, None]\n weights_input_hidden += learnrate * del_w_input_hidden / n_records\n weights_hidden_output += learnrate * del_w_hidden_output / n_records\n if e % (epochs / 10) == 0:\n hidden_output = sigmoid(np.dot(x, weights_input_hidden))\n out = sigmoid(np.dot(hidden_output, weights_hidden_output))\n loss = np.mean((out - targets) ** 2)\n if last_loss and last_loss < loss:\n print('Train loss: ', loss, ' WARNING - Loss Increasing')\n else:\n print('Train loss: ', loss)\n last_loss = loss\nhidden = sigmoid(np.dot(features_test, weights_input_hidden))\nout = sigmoid(np.dot(hidden, weights_hidden_output))\npredictions = out > 0.5\naccuracy = np.mean(predictions == targets_test)\nprint('Prediction accuracy: {:.3f}'.format(accuracy))\n<docstring token>\n", "<import token>\n\n\ndef sigmoid(x):\n \"\"\"\n Calculate sigmoid\n \"\"\"\n return 1 / (1 + np.exp(-x))\n\n\n<assignment token>\nnp.random.seed(42)\n<assignment token>\nfor e in range(epochs):\n del_w_input_hidden = np.zeros(weights_input_hidden.shape)\n del_w_hidden_output = np.zeros(weights_hidden_output.shape)\n for x, y in zip(features.values, targets):\n hidden_input = np.dot(x, weights_input_hidden)\n hidden_output = sigmoid(hidden_input)\n output = sigmoid(np.dot(hidden_output, weights_hidden_output))\n error = y - output\n error_term = error * output * (1 - output)\n hidden_error_term = np.dot(weights_hidden_output, error_term\n ) * hidden_output * (1 - hidden_output)\n del_w_hidden_output += error_term * hidden_output\n del_w_input_hidden += hidden_error_term * x[:, None]\n weights_input_hidden += learnrate * del_w_input_hidden / n_records\n weights_hidden_output += learnrate * del_w_hidden_output / n_records\n if e % (epochs / 10) == 0:\n hidden_output = sigmoid(np.dot(x, weights_input_hidden))\n out = sigmoid(np.dot(hidden_output, weights_hidden_output))\n loss = np.mean((out - targets) ** 2)\n if last_loss and last_loss < loss:\n print('Train loss: ', loss, ' WARNING - Loss Increasing')\n else:\n print('Train loss: ', loss)\n last_loss = loss\n<assignment token>\nprint('Prediction accuracy: {:.3f}'.format(accuracy))\n<docstring token>\n", "<import token>\n\n\ndef sigmoid(x):\n \"\"\"\n Calculate sigmoid\n \"\"\"\n return 1 / (1 + np.exp(-x))\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n", "<import token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<docstring token>\n" ]
false
99,566
970aa15862862cfb8da071303a21c13c0c1a4eb7
from plone.app.testing import PloneWithPackageLayer from plone.app.testing import IntegrationTesting from plone.app.testing import FunctionalTesting import collective.js.togetherjs COLLECTIVE_JS_TOGETHERJS = PloneWithPackageLayer( zcml_package=collective.js.togetherjs, zcml_filename='testing.zcml', gs_profile_id='collective.js.togetherjs:testing', name="COLLECTIVE_JS_TOGETHERJS") COLLECTIVE_JS_TOGETHERJS_INTEGRATION = IntegrationTesting( bases=(COLLECTIVE_JS_TOGETHERJS, ), name="COLLECTIVE_JS_TOGETHERJS_INTEGRATION") COLLECTIVE_JS_TOGETHERJS_FUNCTIONAL = FunctionalTesting( bases=(COLLECTIVE_JS_TOGETHERJS, ), name="COLLECTIVE_JS_TOGETHERJS_FUNCTIONAL")
[ "from plone.app.testing import PloneWithPackageLayer\nfrom plone.app.testing import IntegrationTesting\nfrom plone.app.testing import FunctionalTesting\n\nimport collective.js.togetherjs\n\n\nCOLLECTIVE_JS_TOGETHERJS = PloneWithPackageLayer(\n zcml_package=collective.js.togetherjs,\n zcml_filename='testing.zcml',\n gs_profile_id='collective.js.togetherjs:testing',\n name=\"COLLECTIVE_JS_TOGETHERJS\")\n\nCOLLECTIVE_JS_TOGETHERJS_INTEGRATION = IntegrationTesting(\n bases=(COLLECTIVE_JS_TOGETHERJS, ),\n name=\"COLLECTIVE_JS_TOGETHERJS_INTEGRATION\")\n\nCOLLECTIVE_JS_TOGETHERJS_FUNCTIONAL = FunctionalTesting(\n bases=(COLLECTIVE_JS_TOGETHERJS, ),\n name=\"COLLECTIVE_JS_TOGETHERJS_FUNCTIONAL\")\n", "from plone.app.testing import PloneWithPackageLayer\nfrom plone.app.testing import IntegrationTesting\nfrom plone.app.testing import FunctionalTesting\nimport collective.js.togetherjs\nCOLLECTIVE_JS_TOGETHERJS = PloneWithPackageLayer(zcml_package=collective.js\n .togetherjs, zcml_filename='testing.zcml', gs_profile_id=\n 'collective.js.togetherjs:testing', name='COLLECTIVE_JS_TOGETHERJS')\nCOLLECTIVE_JS_TOGETHERJS_INTEGRATION = IntegrationTesting(bases=(\n COLLECTIVE_JS_TOGETHERJS,), name='COLLECTIVE_JS_TOGETHERJS_INTEGRATION')\nCOLLECTIVE_JS_TOGETHERJS_FUNCTIONAL = FunctionalTesting(bases=(\n COLLECTIVE_JS_TOGETHERJS,), name='COLLECTIVE_JS_TOGETHERJS_FUNCTIONAL')\n", "<import token>\nCOLLECTIVE_JS_TOGETHERJS = PloneWithPackageLayer(zcml_package=collective.js\n .togetherjs, zcml_filename='testing.zcml', gs_profile_id=\n 'collective.js.togetherjs:testing', name='COLLECTIVE_JS_TOGETHERJS')\nCOLLECTIVE_JS_TOGETHERJS_INTEGRATION = IntegrationTesting(bases=(\n COLLECTIVE_JS_TOGETHERJS,), name='COLLECTIVE_JS_TOGETHERJS_INTEGRATION')\nCOLLECTIVE_JS_TOGETHERJS_FUNCTIONAL = FunctionalTesting(bases=(\n COLLECTIVE_JS_TOGETHERJS,), name='COLLECTIVE_JS_TOGETHERJS_FUNCTIONAL')\n", "<import token>\n<assignment token>\n" ]
false
99,567
4d79c95206b0eb63155c87b3f9345066a66c07dc
import sys import os from os.path import join as opjoin import json import gc import numpy as np from random import randint import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from torchvision.utils import save_image from tqdm import tqdm import matplotlib.pyplot as plt from dataset import ExperienceDataset from model import ReversiNet from reversi_env import ReversiEnv from rollout_factory import RolloutFactory from utils import * class Trainer(): """docstring for Trainer.""" def __init__(self, config): with open(config, 'r') as f: config = json.load(f) self.epochs = config['train']['epochs'] self.policy_epochs = config['train']['policy_epochs'] self.test_iters = config['test']['iters'] layers = config['model']['layers'] conv_size = config['model']['conv_size'] logheat = config['model']['logheat'] self.net = ReversiNet(hidden_size=conv_size, layers=layers, logheat=logheat) env_samples = config['train']['env_samples'] self.factory = RolloutFactory(self.net, env_samples) self.value_loss = nn.MSELoss() epsilon = config['train']['epsilon'] self.ppo_low_bnd = 1 - epsilon self.ppo_up_bnd = 1 + epsilon lr = config['train']['lr'] weight_decay = config['train']['weight_decay'] self.optim = optim.Adam(self.net.parameters(), lr=lr, weight_decay=weight_decay) self.plosses = [] self.vlosses = [] self.avg_wins = [] self.stand_time = [] if torch.cuda.is_available(): torch.cuda.set_device(1) self.net.cuda() self.device = torch.device("cuda") print("Using GPU") else: self.device = torch.device("cpu") print("No GPU detected") self.write_interval = config['model']['write_interval'] self.train_info_path = config['model']['trainer_save_path'] self.policy_path = config['model']['policy_save_path'].split('.pt')[0] self.graph_path = config['model']['graph_save_path'].split('.png')[0] def train(self, itr=0): acc = self.test() for i in range(self.epochs): avg_policy_loss = 0 avg_val_loss = 0 rollouts = self.factory.get_rollouts() # Update the policy experience_dataset = ExperienceDataset(rollouts) data_loader = DataLoader(experience_dataset, batch_size=256, shuffle=True, pin_memory=True) self.net.train() for _ in range(self.policy_epochs): avg_policy_loss = 0 avg_val_loss = 0 for state, aprob, value in data_loader: state = _prepare_tensor_batch(state, self.device).unsqueeze(1) aprob = _prepare_tensor_batch(aprob, self.device) value = _prepare_tensor_batch(value, self.device).unsqueeze(1) # Calculate the ratio term pdist, pval = self.net(state) policy_loss = loss_pi(aprob, pdist) val_loss = loss_v(value, pval) # For logging avg_val_loss += val_loss.item() avg_policy_loss += policy_loss.item() # Backpropagate self.optim.zero_grad() loss = policy_loss + val_loss loss.backward() self.optim.step() # Log info avg_val_loss /= len(data_loader) avg_val_loss /= self.policy_epochs avg_policy_loss /= len(data_loader) avg_policy_loss /= self.policy_epochs self.vlosses.append(avg_val_loss) self.plosses.append(avg_policy_loss) if (itr+i) % self.write_interval == 0: acc = self.test() self.avg_wins.append(acc) print( 'itr: % i, avg wins: % 6.2f, value loss: % 6.2f, policy loss: % 6.2f' \ % ((itr+i), acc, avg_val_loss, avg_policy_loss) ) self.write_out(itr+i) def test(self): self.net.eval() env = ReversiEnv() rounds = env.length()//2 tot_rew = 0 tot_wins = 0 runs = self.test_iters for _ in range(runs): state, turn = env.reset() actions = env.action_space() done = False for i in range(rounds): in_state = torch.FloatTensor(state).unsqueeze(0).unsqueeze(0).to(self.device) probs, _ = self.net(in_state) probs = probs.squeeze().cpu().detach().numpy() action = sample(probs, actions) state, turn, reward, done = env.step(action) actions = env.action_space() # print('end p1') if done: break probs = np.ones(actions.shape[0]) action = sample(probs, actions) state, turn, reward, done = env.step(action) actions = env.action_space() # print('end p2') if done: break # print(reward) tot_rew += reward if reward > 0: tot_wins += 1 # elif reward == 0: # tot_wins += 1 tot_rew /= runs # print('Avg reward over {} runs: {}'.format(runs, tot_rew)) # print('Wins: {}/{}: {}'.format(tot_wins, runs, tot_wins/runs)) return tot_wins/runs def read_in(self, itr=None): train_info = {} train_info = torch.load(self.train_info_path) if itr is None: itr = train_info['iter'] self.plosses = train_info['plosses'] self.vlosses = train_info['vlosses'] self.avg_wins = train_info['avg_wins'] self.optim = train_info['optimizer'] self.net.load_state_dict(torch.load( str(self.policy_path + '_' + str(itr) + '.pt') )) print('loaded: ' + str(self.policy_path + '_' + str(itr) + '.pt')) self.epochs += itr return itr def write_out(self, itr): train_info = {} train_info['iter'] = itr train_info['plosses'] = self.plosses train_info['vlosses'] = self.vlosses train_info['avg_wins'] = self.avg_wins train_info['optimizer'] = self.optim torch.save( train_info, self.train_info_path ) torch.save( self.net.state_dict(), str(self.policy_path + '_' + str(itr) + '.pt') ) if itr > 2: plt.plot(self.vlosses, label='value loss') plt.plot(self.plosses, label='policy loss') plt.legend() plt.xlabel('epochs') plt.ylabel('loss') plt.savefig(str(self.graph_path + '_loss.png')) plt.clf() plt.plot(self.avg_wins, label='avg wins') plt.legend() plt.xlabel('epochs') plt.ylabel('rewards') plt.savefig(str(self.graph_path + '_wins.png')) plt.clf() def run(self, cont=False): # check to see if we should continue from an existing checkpoint # otherwise start from scratch if cont: itr = self.read_in() print('continuing') self.train(itr) else: self.train() def main(): if len(sys.argv) < 2: print('Usage: ' + sys.argv[0] + ' config') exit(0) cont = False if len(sys.argv) > 2: info = sys.argv[2] if info == 'cont': cont = True config = sys.argv[1] trainer = Trainer(config) trainer.run(cont=cont) if __name__ == '__main__': main()
[ "import sys\nimport os\nfrom os.path import join as opjoin\nimport json\nimport gc\nimport numpy as np\nfrom random import randint\n\nimport torch\nimport torch.nn as nn\nimport torch.optim as optim\nfrom torch.utils.data import DataLoader\nfrom torchvision.utils import save_image\n\nfrom tqdm import tqdm\nimport matplotlib.pyplot as plt\n\nfrom dataset import ExperienceDataset\nfrom model import ReversiNet\nfrom reversi_env import ReversiEnv\nfrom rollout_factory import RolloutFactory\nfrom utils import *\n\n\nclass Trainer():\n \"\"\"docstring for Trainer.\"\"\"\n def __init__(self, config):\n with open(config, 'r') as f:\n config = json.load(f)\n\n self.epochs = config['train']['epochs']\n self.policy_epochs = config['train']['policy_epochs']\n self.test_iters = config['test']['iters']\n\n layers = config['model']['layers']\n conv_size = config['model']['conv_size']\n logheat = config['model']['logheat']\n self.net = ReversiNet(hidden_size=conv_size, layers=layers, logheat=logheat)\n\n env_samples = config['train']['env_samples']\n self.factory = RolloutFactory(self.net, env_samples)\n\n self.value_loss = nn.MSELoss()\n\n epsilon = config['train']['epsilon']\n self.ppo_low_bnd = 1 - epsilon\n self.ppo_up_bnd = 1 + epsilon\n\n lr = config['train']['lr']\n weight_decay = config['train']['weight_decay']\n self.optim = optim.Adam(self.net.parameters(), lr=lr, weight_decay=weight_decay)\n\n self.plosses = []\n self.vlosses = []\n self.avg_wins = []\n self.stand_time = []\n\n if torch.cuda.is_available():\n torch.cuda.set_device(1)\n self.net.cuda()\n self.device = torch.device(\"cuda\")\n print(\"Using GPU\")\n else:\n self.device = torch.device(\"cpu\")\n print(\"No GPU detected\")\n\n self.write_interval = config['model']['write_interval']\n self.train_info_path = config['model']['trainer_save_path']\n self.policy_path = config['model']['policy_save_path'].split('.pt')[0]\n self.graph_path = config['model']['graph_save_path'].split('.png')[0]\n\n\n def train(self, itr=0):\n acc = self.test()\n for i in range(self.epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n\n rollouts = self.factory.get_rollouts()\n\n # Update the policy\n experience_dataset = ExperienceDataset(rollouts)\n data_loader = DataLoader(experience_dataset,\n batch_size=256,\n shuffle=True,\n pin_memory=True)\n self.net.train()\n for _ in range(self.policy_epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n for state, aprob, value in data_loader:\n state = _prepare_tensor_batch(state, self.device).unsqueeze(1)\n aprob = _prepare_tensor_batch(aprob, self.device)\n value = _prepare_tensor_batch(value, self.device).unsqueeze(1)\n\n # Calculate the ratio term\n pdist, pval = self.net(state)\n policy_loss = loss_pi(aprob, pdist)\n val_loss = loss_v(value, pval)\n\n # For logging\n avg_val_loss += val_loss.item()\n avg_policy_loss += policy_loss.item()\n\n # Backpropagate\n self.optim.zero_grad()\n loss = policy_loss + val_loss\n loss.backward()\n self.optim.step()\n\n # Log info\n avg_val_loss /= len(data_loader)\n avg_val_loss /= self.policy_epochs\n avg_policy_loss /= len(data_loader)\n avg_policy_loss /= self.policy_epochs\n self.vlosses.append(avg_val_loss)\n self.plosses.append(avg_policy_loss)\n\n if (itr+i) % self.write_interval == 0:\n acc = self.test()\n self.avg_wins.append(acc)\n print(\n'itr: % i, avg wins: % 6.2f, value loss: % 6.2f, policy loss: % 6.2f' \\\n% ((itr+i), acc, avg_val_loss, avg_policy_loss) )\n self.write_out(itr+i)\n\n\n def test(self):\n self.net.eval()\n env = ReversiEnv()\n rounds = env.length()//2\n tot_rew = 0\n tot_wins = 0\n runs = self.test_iters\n\n for _ in range(runs):\n state, turn = env.reset()\n actions = env.action_space()\n done = False\n for i in range(rounds):\n in_state = torch.FloatTensor(state).unsqueeze(0).unsqueeze(0).to(self.device)\n probs, _ = self.net(in_state)\n probs = probs.squeeze().cpu().detach().numpy()\n action = sample(probs, actions)\n state, turn, reward, done = env.step(action)\n actions = env.action_space()\n # print('end p1')\n if done:\n break\n\n probs = np.ones(actions.shape[0])\n action = sample(probs, actions)\n state, turn, reward, done = env.step(action)\n actions = env.action_space()\n # print('end p2')\n if done:\n break\n\n # print(reward)\n tot_rew += reward\n if reward > 0:\n tot_wins += 1\n # elif reward == 0:\n # tot_wins += 1\n tot_rew /= runs\n # print('Avg reward over {} runs: {}'.format(runs, tot_rew))\n # print('Wins: {}/{}: {}'.format(tot_wins, runs, tot_wins/runs))\n return tot_wins/runs\n\n def read_in(self, itr=None):\n train_info = {}\n train_info = torch.load(self.train_info_path)\n if itr is None:\n itr = train_info['iter']\n self.plosses = train_info['plosses']\n self.vlosses = train_info['vlosses']\n self.avg_wins = train_info['avg_wins']\n self.optim = train_info['optimizer']\n\n self.net.load_state_dict(torch.load(\n str(self.policy_path + '_' + str(itr) + '.pt') ))\n print('loaded: ' + str(self.policy_path + '_' + str(itr) + '.pt'))\n\n self.epochs += itr\n return itr\n\n def write_out(self, itr):\n train_info = {}\n train_info['iter'] = itr\n train_info['plosses'] = self.plosses\n train_info['vlosses'] = self.vlosses\n train_info['avg_wins'] = self.avg_wins\n train_info['optimizer'] = self.optim\n torch.save( train_info, self.train_info_path )\n\n torch.save( self.net.state_dict(),\n str(self.policy_path + '_' + str(itr) + '.pt') )\n\n if itr > 2:\n plt.plot(self.vlosses, label='value loss')\n plt.plot(self.plosses, label='policy loss')\n plt.legend()\n plt.xlabel('epochs')\n plt.ylabel('loss')\n plt.savefig(str(self.graph_path + '_loss.png'))\n plt.clf()\n\n plt.plot(self.avg_wins, label='avg wins')\n plt.legend()\n plt.xlabel('epochs')\n plt.ylabel('rewards')\n plt.savefig(str(self.graph_path + '_wins.png'))\n plt.clf()\n\n\n def run(self, cont=False):\n # check to see if we should continue from an existing checkpoint\n # otherwise start from scratch\n if cont:\n itr = self.read_in()\n print('continuing')\n self.train(itr)\n else:\n self.train()\n\ndef main():\n if len(sys.argv) < 2:\n print('Usage: ' + sys.argv[0] + ' config')\n exit(0)\n\n cont = False\n if len(sys.argv) > 2:\n info = sys.argv[2]\n if info == 'cont':\n cont = True\n\n config = sys.argv[1]\n trainer = Trainer(config)\n trainer.run(cont=cont)\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport os\nfrom os.path import join as opjoin\nimport json\nimport gc\nimport numpy as np\nfrom random import randint\nimport torch\nimport torch.nn as nn\nimport torch.optim as optim\nfrom torch.utils.data import DataLoader\nfrom torchvision.utils import save_image\nfrom tqdm import tqdm\nimport matplotlib.pyplot as plt\nfrom dataset import ExperienceDataset\nfrom model import ReversiNet\nfrom reversi_env import ReversiEnv\nfrom rollout_factory import RolloutFactory\nfrom utils import *\n\n\nclass Trainer:\n \"\"\"docstring for Trainer.\"\"\"\n\n def __init__(self, config):\n with open(config, 'r') as f:\n config = json.load(f)\n self.epochs = config['train']['epochs']\n self.policy_epochs = config['train']['policy_epochs']\n self.test_iters = config['test']['iters']\n layers = config['model']['layers']\n conv_size = config['model']['conv_size']\n logheat = config['model']['logheat']\n self.net = ReversiNet(hidden_size=conv_size, layers=layers, logheat\n =logheat)\n env_samples = config['train']['env_samples']\n self.factory = RolloutFactory(self.net, env_samples)\n self.value_loss = nn.MSELoss()\n epsilon = config['train']['epsilon']\n self.ppo_low_bnd = 1 - epsilon\n self.ppo_up_bnd = 1 + epsilon\n lr = config['train']['lr']\n weight_decay = config['train']['weight_decay']\n self.optim = optim.Adam(self.net.parameters(), lr=lr, weight_decay=\n weight_decay)\n self.plosses = []\n self.vlosses = []\n self.avg_wins = []\n self.stand_time = []\n if torch.cuda.is_available():\n torch.cuda.set_device(1)\n self.net.cuda()\n self.device = torch.device('cuda')\n print('Using GPU')\n else:\n self.device = torch.device('cpu')\n print('No GPU detected')\n self.write_interval = config['model']['write_interval']\n self.train_info_path = config['model']['trainer_save_path']\n self.policy_path = config['model']['policy_save_path'].split('.pt')[0]\n self.graph_path = config['model']['graph_save_path'].split('.png')[0]\n\n def train(self, itr=0):\n acc = self.test()\n for i in range(self.epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n rollouts = self.factory.get_rollouts()\n experience_dataset = ExperienceDataset(rollouts)\n data_loader = DataLoader(experience_dataset, batch_size=256,\n shuffle=True, pin_memory=True)\n self.net.train()\n for _ in range(self.policy_epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n for state, aprob, value in data_loader:\n state = _prepare_tensor_batch(state, self.device\n ).unsqueeze(1)\n aprob = _prepare_tensor_batch(aprob, self.device)\n value = _prepare_tensor_batch(value, self.device\n ).unsqueeze(1)\n pdist, pval = self.net(state)\n policy_loss = loss_pi(aprob, pdist)\n val_loss = loss_v(value, pval)\n avg_val_loss += val_loss.item()\n avg_policy_loss += policy_loss.item()\n self.optim.zero_grad()\n loss = policy_loss + val_loss\n loss.backward()\n self.optim.step()\n avg_val_loss /= len(data_loader)\n avg_val_loss /= self.policy_epochs\n avg_policy_loss /= len(data_loader)\n avg_policy_loss /= self.policy_epochs\n self.vlosses.append(avg_val_loss)\n self.plosses.append(avg_policy_loss)\n if (itr + i) % self.write_interval == 0:\n acc = self.test()\n self.avg_wins.append(acc)\n print(\n 'itr: % i, avg wins: % 6.2f, value loss: % 6.2f, policy loss: % 6.2f'\n % (itr + i, acc, avg_val_loss, avg_policy_loss))\n self.write_out(itr + i)\n\n def test(self):\n self.net.eval()\n env = ReversiEnv()\n rounds = env.length() // 2\n tot_rew = 0\n tot_wins = 0\n runs = self.test_iters\n for _ in range(runs):\n state, turn = env.reset()\n actions = env.action_space()\n done = False\n for i in range(rounds):\n in_state = torch.FloatTensor(state).unsqueeze(0).unsqueeze(0\n ).to(self.device)\n probs, _ = self.net(in_state)\n probs = probs.squeeze().cpu().detach().numpy()\n action = sample(probs, actions)\n state, turn, reward, done = env.step(action)\n actions = env.action_space()\n if done:\n break\n probs = np.ones(actions.shape[0])\n action = sample(probs, actions)\n state, turn, reward, done = env.step(action)\n actions = env.action_space()\n if done:\n break\n tot_rew += reward\n if reward > 0:\n tot_wins += 1\n tot_rew /= runs\n return tot_wins / runs\n\n def read_in(self, itr=None):\n train_info = {}\n train_info = torch.load(self.train_info_path)\n if itr is None:\n itr = train_info['iter']\n self.plosses = train_info['plosses']\n self.vlosses = train_info['vlosses']\n self.avg_wins = train_info['avg_wins']\n self.optim = train_info['optimizer']\n self.net.load_state_dict(torch.load(str(self.policy_path + '_' +\n str(itr) + '.pt')))\n print('loaded: ' + str(self.policy_path + '_' + str(itr) + '.pt'))\n self.epochs += itr\n return itr\n\n def write_out(self, itr):\n train_info = {}\n train_info['iter'] = itr\n train_info['plosses'] = self.plosses\n train_info['vlosses'] = self.vlosses\n train_info['avg_wins'] = self.avg_wins\n train_info['optimizer'] = self.optim\n torch.save(train_info, self.train_info_path)\n torch.save(self.net.state_dict(), str(self.policy_path + '_' + str(\n itr) + '.pt'))\n if itr > 2:\n plt.plot(self.vlosses, label='value loss')\n plt.plot(self.plosses, label='policy loss')\n plt.legend()\n plt.xlabel('epochs')\n plt.ylabel('loss')\n plt.savefig(str(self.graph_path + '_loss.png'))\n plt.clf()\n plt.plot(self.avg_wins, label='avg wins')\n plt.legend()\n plt.xlabel('epochs')\n plt.ylabel('rewards')\n plt.savefig(str(self.graph_path + '_wins.png'))\n plt.clf()\n\n def run(self, cont=False):\n if cont:\n itr = self.read_in()\n print('continuing')\n self.train(itr)\n else:\n self.train()\n\n\ndef main():\n if len(sys.argv) < 2:\n print('Usage: ' + sys.argv[0] + ' config')\n exit(0)\n cont = False\n if len(sys.argv) > 2:\n info = sys.argv[2]\n if info == 'cont':\n cont = True\n config = sys.argv[1]\n trainer = Trainer(config)\n trainer.run(cont=cont)\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n\n\nclass Trainer:\n \"\"\"docstring for Trainer.\"\"\"\n\n def __init__(self, config):\n with open(config, 'r') as f:\n config = json.load(f)\n self.epochs = config['train']['epochs']\n self.policy_epochs = config['train']['policy_epochs']\n self.test_iters = config['test']['iters']\n layers = config['model']['layers']\n conv_size = config['model']['conv_size']\n logheat = config['model']['logheat']\n self.net = ReversiNet(hidden_size=conv_size, layers=layers, logheat\n =logheat)\n env_samples = config['train']['env_samples']\n self.factory = RolloutFactory(self.net, env_samples)\n self.value_loss = nn.MSELoss()\n epsilon = config['train']['epsilon']\n self.ppo_low_bnd = 1 - epsilon\n self.ppo_up_bnd = 1 + epsilon\n lr = config['train']['lr']\n weight_decay = config['train']['weight_decay']\n self.optim = optim.Adam(self.net.parameters(), lr=lr, weight_decay=\n weight_decay)\n self.plosses = []\n self.vlosses = []\n self.avg_wins = []\n self.stand_time = []\n if torch.cuda.is_available():\n torch.cuda.set_device(1)\n self.net.cuda()\n self.device = torch.device('cuda')\n print('Using GPU')\n else:\n self.device = torch.device('cpu')\n print('No GPU detected')\n self.write_interval = config['model']['write_interval']\n self.train_info_path = config['model']['trainer_save_path']\n self.policy_path = config['model']['policy_save_path'].split('.pt')[0]\n self.graph_path = config['model']['graph_save_path'].split('.png')[0]\n\n def train(self, itr=0):\n acc = self.test()\n for i in range(self.epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n rollouts = self.factory.get_rollouts()\n experience_dataset = ExperienceDataset(rollouts)\n data_loader = DataLoader(experience_dataset, batch_size=256,\n shuffle=True, pin_memory=True)\n self.net.train()\n for _ in range(self.policy_epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n for state, aprob, value in data_loader:\n state = _prepare_tensor_batch(state, self.device\n ).unsqueeze(1)\n aprob = _prepare_tensor_batch(aprob, self.device)\n value = _prepare_tensor_batch(value, self.device\n ).unsqueeze(1)\n pdist, pval = self.net(state)\n policy_loss = loss_pi(aprob, pdist)\n val_loss = loss_v(value, pval)\n avg_val_loss += val_loss.item()\n avg_policy_loss += policy_loss.item()\n self.optim.zero_grad()\n loss = policy_loss + val_loss\n loss.backward()\n self.optim.step()\n avg_val_loss /= len(data_loader)\n avg_val_loss /= self.policy_epochs\n avg_policy_loss /= len(data_loader)\n avg_policy_loss /= self.policy_epochs\n self.vlosses.append(avg_val_loss)\n self.plosses.append(avg_policy_loss)\n if (itr + i) % self.write_interval == 0:\n acc = self.test()\n self.avg_wins.append(acc)\n print(\n 'itr: % i, avg wins: % 6.2f, value loss: % 6.2f, policy loss: % 6.2f'\n % (itr + i, acc, avg_val_loss, avg_policy_loss))\n self.write_out(itr + i)\n\n def test(self):\n self.net.eval()\n env = ReversiEnv()\n rounds = env.length() // 2\n tot_rew = 0\n tot_wins = 0\n runs = self.test_iters\n for _ in range(runs):\n state, turn = env.reset()\n actions = env.action_space()\n done = False\n for i in range(rounds):\n in_state = torch.FloatTensor(state).unsqueeze(0).unsqueeze(0\n ).to(self.device)\n probs, _ = self.net(in_state)\n probs = probs.squeeze().cpu().detach().numpy()\n action = sample(probs, actions)\n state, turn, reward, done = env.step(action)\n actions = env.action_space()\n if done:\n break\n probs = np.ones(actions.shape[0])\n action = sample(probs, actions)\n state, turn, reward, done = env.step(action)\n actions = env.action_space()\n if done:\n break\n tot_rew += reward\n if reward > 0:\n tot_wins += 1\n tot_rew /= runs\n return tot_wins / runs\n\n def read_in(self, itr=None):\n train_info = {}\n train_info = torch.load(self.train_info_path)\n if itr is None:\n itr = train_info['iter']\n self.plosses = train_info['plosses']\n self.vlosses = train_info['vlosses']\n self.avg_wins = train_info['avg_wins']\n self.optim = train_info['optimizer']\n self.net.load_state_dict(torch.load(str(self.policy_path + '_' +\n str(itr) + '.pt')))\n print('loaded: ' + str(self.policy_path + '_' + str(itr) + '.pt'))\n self.epochs += itr\n return itr\n\n def write_out(self, itr):\n train_info = {}\n train_info['iter'] = itr\n train_info['plosses'] = self.plosses\n train_info['vlosses'] = self.vlosses\n train_info['avg_wins'] = self.avg_wins\n train_info['optimizer'] = self.optim\n torch.save(train_info, self.train_info_path)\n torch.save(self.net.state_dict(), str(self.policy_path + '_' + str(\n itr) + '.pt'))\n if itr > 2:\n plt.plot(self.vlosses, label='value loss')\n plt.plot(self.plosses, label='policy loss')\n plt.legend()\n plt.xlabel('epochs')\n plt.ylabel('loss')\n plt.savefig(str(self.graph_path + '_loss.png'))\n plt.clf()\n plt.plot(self.avg_wins, label='avg wins')\n plt.legend()\n plt.xlabel('epochs')\n plt.ylabel('rewards')\n plt.savefig(str(self.graph_path + '_wins.png'))\n plt.clf()\n\n def run(self, cont=False):\n if cont:\n itr = self.read_in()\n print('continuing')\n self.train(itr)\n else:\n self.train()\n\n\ndef main():\n if len(sys.argv) < 2:\n print('Usage: ' + sys.argv[0] + ' config')\n exit(0)\n cont = False\n if len(sys.argv) > 2:\n info = sys.argv[2]\n if info == 'cont':\n cont = True\n config = sys.argv[1]\n trainer = Trainer(config)\n trainer.run(cont=cont)\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n\n\nclass Trainer:\n \"\"\"docstring for Trainer.\"\"\"\n\n def __init__(self, config):\n with open(config, 'r') as f:\n config = json.load(f)\n self.epochs = config['train']['epochs']\n self.policy_epochs = config['train']['policy_epochs']\n self.test_iters = config['test']['iters']\n layers = config['model']['layers']\n conv_size = config['model']['conv_size']\n logheat = config['model']['logheat']\n self.net = ReversiNet(hidden_size=conv_size, layers=layers, logheat\n =logheat)\n env_samples = config['train']['env_samples']\n self.factory = RolloutFactory(self.net, env_samples)\n self.value_loss = nn.MSELoss()\n epsilon = config['train']['epsilon']\n self.ppo_low_bnd = 1 - epsilon\n self.ppo_up_bnd = 1 + epsilon\n lr = config['train']['lr']\n weight_decay = config['train']['weight_decay']\n self.optim = optim.Adam(self.net.parameters(), lr=lr, weight_decay=\n weight_decay)\n self.plosses = []\n self.vlosses = []\n self.avg_wins = []\n self.stand_time = []\n if torch.cuda.is_available():\n torch.cuda.set_device(1)\n self.net.cuda()\n self.device = torch.device('cuda')\n print('Using GPU')\n else:\n self.device = torch.device('cpu')\n print('No GPU detected')\n self.write_interval = config['model']['write_interval']\n self.train_info_path = config['model']['trainer_save_path']\n self.policy_path = config['model']['policy_save_path'].split('.pt')[0]\n self.graph_path = config['model']['graph_save_path'].split('.png')[0]\n\n def train(self, itr=0):\n acc = self.test()\n for i in range(self.epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n rollouts = self.factory.get_rollouts()\n experience_dataset = ExperienceDataset(rollouts)\n data_loader = DataLoader(experience_dataset, batch_size=256,\n shuffle=True, pin_memory=True)\n self.net.train()\n for _ in range(self.policy_epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n for state, aprob, value in data_loader:\n state = _prepare_tensor_batch(state, self.device\n ).unsqueeze(1)\n aprob = _prepare_tensor_batch(aprob, self.device)\n value = _prepare_tensor_batch(value, self.device\n ).unsqueeze(1)\n pdist, pval = self.net(state)\n policy_loss = loss_pi(aprob, pdist)\n val_loss = loss_v(value, pval)\n avg_val_loss += val_loss.item()\n avg_policy_loss += policy_loss.item()\n self.optim.zero_grad()\n loss = policy_loss + val_loss\n loss.backward()\n self.optim.step()\n avg_val_loss /= len(data_loader)\n avg_val_loss /= self.policy_epochs\n avg_policy_loss /= len(data_loader)\n avg_policy_loss /= self.policy_epochs\n self.vlosses.append(avg_val_loss)\n self.plosses.append(avg_policy_loss)\n if (itr + i) % self.write_interval == 0:\n acc = self.test()\n self.avg_wins.append(acc)\n print(\n 'itr: % i, avg wins: % 6.2f, value loss: % 6.2f, policy loss: % 6.2f'\n % (itr + i, acc, avg_val_loss, avg_policy_loss))\n self.write_out(itr + i)\n\n def test(self):\n self.net.eval()\n env = ReversiEnv()\n rounds = env.length() // 2\n tot_rew = 0\n tot_wins = 0\n runs = self.test_iters\n for _ in range(runs):\n state, turn = env.reset()\n actions = env.action_space()\n done = False\n for i in range(rounds):\n in_state = torch.FloatTensor(state).unsqueeze(0).unsqueeze(0\n ).to(self.device)\n probs, _ = self.net(in_state)\n probs = probs.squeeze().cpu().detach().numpy()\n action = sample(probs, actions)\n state, turn, reward, done = env.step(action)\n actions = env.action_space()\n if done:\n break\n probs = np.ones(actions.shape[0])\n action = sample(probs, actions)\n state, turn, reward, done = env.step(action)\n actions = env.action_space()\n if done:\n break\n tot_rew += reward\n if reward > 0:\n tot_wins += 1\n tot_rew /= runs\n return tot_wins / runs\n\n def read_in(self, itr=None):\n train_info = {}\n train_info = torch.load(self.train_info_path)\n if itr is None:\n itr = train_info['iter']\n self.plosses = train_info['plosses']\n self.vlosses = train_info['vlosses']\n self.avg_wins = train_info['avg_wins']\n self.optim = train_info['optimizer']\n self.net.load_state_dict(torch.load(str(self.policy_path + '_' +\n str(itr) + '.pt')))\n print('loaded: ' + str(self.policy_path + '_' + str(itr) + '.pt'))\n self.epochs += itr\n return itr\n\n def write_out(self, itr):\n train_info = {}\n train_info['iter'] = itr\n train_info['plosses'] = self.plosses\n train_info['vlosses'] = self.vlosses\n train_info['avg_wins'] = self.avg_wins\n train_info['optimizer'] = self.optim\n torch.save(train_info, self.train_info_path)\n torch.save(self.net.state_dict(), str(self.policy_path + '_' + str(\n itr) + '.pt'))\n if itr > 2:\n plt.plot(self.vlosses, label='value loss')\n plt.plot(self.plosses, label='policy loss')\n plt.legend()\n plt.xlabel('epochs')\n plt.ylabel('loss')\n plt.savefig(str(self.graph_path + '_loss.png'))\n plt.clf()\n plt.plot(self.avg_wins, label='avg wins')\n plt.legend()\n plt.xlabel('epochs')\n plt.ylabel('rewards')\n plt.savefig(str(self.graph_path + '_wins.png'))\n plt.clf()\n\n def run(self, cont=False):\n if cont:\n itr = self.read_in()\n print('continuing')\n self.train(itr)\n else:\n self.train()\n\n\ndef main():\n if len(sys.argv) < 2:\n print('Usage: ' + sys.argv[0] + ' config')\n exit(0)\n cont = False\n if len(sys.argv) > 2:\n info = sys.argv[2]\n if info == 'cont':\n cont = True\n config = sys.argv[1]\n trainer = Trainer(config)\n trainer.run(cont=cont)\n\n\n<code token>\n", "<import token>\n\n\nclass Trainer:\n \"\"\"docstring for Trainer.\"\"\"\n\n def __init__(self, config):\n with open(config, 'r') as f:\n config = json.load(f)\n self.epochs = config['train']['epochs']\n self.policy_epochs = config['train']['policy_epochs']\n self.test_iters = config['test']['iters']\n layers = config['model']['layers']\n conv_size = config['model']['conv_size']\n logheat = config['model']['logheat']\n self.net = ReversiNet(hidden_size=conv_size, layers=layers, logheat\n =logheat)\n env_samples = config['train']['env_samples']\n self.factory = RolloutFactory(self.net, env_samples)\n self.value_loss = nn.MSELoss()\n epsilon = config['train']['epsilon']\n self.ppo_low_bnd = 1 - epsilon\n self.ppo_up_bnd = 1 + epsilon\n lr = config['train']['lr']\n weight_decay = config['train']['weight_decay']\n self.optim = optim.Adam(self.net.parameters(), lr=lr, weight_decay=\n weight_decay)\n self.plosses = []\n self.vlosses = []\n self.avg_wins = []\n self.stand_time = []\n if torch.cuda.is_available():\n torch.cuda.set_device(1)\n self.net.cuda()\n self.device = torch.device('cuda')\n print('Using GPU')\n else:\n self.device = torch.device('cpu')\n print('No GPU detected')\n self.write_interval = config['model']['write_interval']\n self.train_info_path = config['model']['trainer_save_path']\n self.policy_path = config['model']['policy_save_path'].split('.pt')[0]\n self.graph_path = config['model']['graph_save_path'].split('.png')[0]\n\n def train(self, itr=0):\n acc = self.test()\n for i in range(self.epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n rollouts = self.factory.get_rollouts()\n experience_dataset = ExperienceDataset(rollouts)\n data_loader = DataLoader(experience_dataset, batch_size=256,\n shuffle=True, pin_memory=True)\n self.net.train()\n for _ in range(self.policy_epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n for state, aprob, value in data_loader:\n state = _prepare_tensor_batch(state, self.device\n ).unsqueeze(1)\n aprob = _prepare_tensor_batch(aprob, self.device)\n value = _prepare_tensor_batch(value, self.device\n ).unsqueeze(1)\n pdist, pval = self.net(state)\n policy_loss = loss_pi(aprob, pdist)\n val_loss = loss_v(value, pval)\n avg_val_loss += val_loss.item()\n avg_policy_loss += policy_loss.item()\n self.optim.zero_grad()\n loss = policy_loss + val_loss\n loss.backward()\n self.optim.step()\n avg_val_loss /= len(data_loader)\n avg_val_loss /= self.policy_epochs\n avg_policy_loss /= len(data_loader)\n avg_policy_loss /= self.policy_epochs\n self.vlosses.append(avg_val_loss)\n self.plosses.append(avg_policy_loss)\n if (itr + i) % self.write_interval == 0:\n acc = self.test()\n self.avg_wins.append(acc)\n print(\n 'itr: % i, avg wins: % 6.2f, value loss: % 6.2f, policy loss: % 6.2f'\n % (itr + i, acc, avg_val_loss, avg_policy_loss))\n self.write_out(itr + i)\n\n def test(self):\n self.net.eval()\n env = ReversiEnv()\n rounds = env.length() // 2\n tot_rew = 0\n tot_wins = 0\n runs = self.test_iters\n for _ in range(runs):\n state, turn = env.reset()\n actions = env.action_space()\n done = False\n for i in range(rounds):\n in_state = torch.FloatTensor(state).unsqueeze(0).unsqueeze(0\n ).to(self.device)\n probs, _ = self.net(in_state)\n probs = probs.squeeze().cpu().detach().numpy()\n action = sample(probs, actions)\n state, turn, reward, done = env.step(action)\n actions = env.action_space()\n if done:\n break\n probs = np.ones(actions.shape[0])\n action = sample(probs, actions)\n state, turn, reward, done = env.step(action)\n actions = env.action_space()\n if done:\n break\n tot_rew += reward\n if reward > 0:\n tot_wins += 1\n tot_rew /= runs\n return tot_wins / runs\n\n def read_in(self, itr=None):\n train_info = {}\n train_info = torch.load(self.train_info_path)\n if itr is None:\n itr = train_info['iter']\n self.plosses = train_info['plosses']\n self.vlosses = train_info['vlosses']\n self.avg_wins = train_info['avg_wins']\n self.optim = train_info['optimizer']\n self.net.load_state_dict(torch.load(str(self.policy_path + '_' +\n str(itr) + '.pt')))\n print('loaded: ' + str(self.policy_path + '_' + str(itr) + '.pt'))\n self.epochs += itr\n return itr\n\n def write_out(self, itr):\n train_info = {}\n train_info['iter'] = itr\n train_info['plosses'] = self.plosses\n train_info['vlosses'] = self.vlosses\n train_info['avg_wins'] = self.avg_wins\n train_info['optimizer'] = self.optim\n torch.save(train_info, self.train_info_path)\n torch.save(self.net.state_dict(), str(self.policy_path + '_' + str(\n itr) + '.pt'))\n if itr > 2:\n plt.plot(self.vlosses, label='value loss')\n plt.plot(self.plosses, label='policy loss')\n plt.legend()\n plt.xlabel('epochs')\n plt.ylabel('loss')\n plt.savefig(str(self.graph_path + '_loss.png'))\n plt.clf()\n plt.plot(self.avg_wins, label='avg wins')\n plt.legend()\n plt.xlabel('epochs')\n plt.ylabel('rewards')\n plt.savefig(str(self.graph_path + '_wins.png'))\n plt.clf()\n\n def run(self, cont=False):\n if cont:\n itr = self.read_in()\n print('continuing')\n self.train(itr)\n else:\n self.train()\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass Trainer:\n <docstring token>\n\n def __init__(self, config):\n with open(config, 'r') as f:\n config = json.load(f)\n self.epochs = config['train']['epochs']\n self.policy_epochs = config['train']['policy_epochs']\n self.test_iters = config['test']['iters']\n layers = config['model']['layers']\n conv_size = config['model']['conv_size']\n logheat = config['model']['logheat']\n self.net = ReversiNet(hidden_size=conv_size, layers=layers, logheat\n =logheat)\n env_samples = config['train']['env_samples']\n self.factory = RolloutFactory(self.net, env_samples)\n self.value_loss = nn.MSELoss()\n epsilon = config['train']['epsilon']\n self.ppo_low_bnd = 1 - epsilon\n self.ppo_up_bnd = 1 + epsilon\n lr = config['train']['lr']\n weight_decay = config['train']['weight_decay']\n self.optim = optim.Adam(self.net.parameters(), lr=lr, weight_decay=\n weight_decay)\n self.plosses = []\n self.vlosses = []\n self.avg_wins = []\n self.stand_time = []\n if torch.cuda.is_available():\n torch.cuda.set_device(1)\n self.net.cuda()\n self.device = torch.device('cuda')\n print('Using GPU')\n else:\n self.device = torch.device('cpu')\n print('No GPU detected')\n self.write_interval = config['model']['write_interval']\n self.train_info_path = config['model']['trainer_save_path']\n self.policy_path = config['model']['policy_save_path'].split('.pt')[0]\n self.graph_path = config['model']['graph_save_path'].split('.png')[0]\n\n def train(self, itr=0):\n acc = self.test()\n for i in range(self.epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n rollouts = self.factory.get_rollouts()\n experience_dataset = ExperienceDataset(rollouts)\n data_loader = DataLoader(experience_dataset, batch_size=256,\n shuffle=True, pin_memory=True)\n self.net.train()\n for _ in range(self.policy_epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n for state, aprob, value in data_loader:\n state = _prepare_tensor_batch(state, self.device\n ).unsqueeze(1)\n aprob = _prepare_tensor_batch(aprob, self.device)\n value = _prepare_tensor_batch(value, self.device\n ).unsqueeze(1)\n pdist, pval = self.net(state)\n policy_loss = loss_pi(aprob, pdist)\n val_loss = loss_v(value, pval)\n avg_val_loss += val_loss.item()\n avg_policy_loss += policy_loss.item()\n self.optim.zero_grad()\n loss = policy_loss + val_loss\n loss.backward()\n self.optim.step()\n avg_val_loss /= len(data_loader)\n avg_val_loss /= self.policy_epochs\n avg_policy_loss /= len(data_loader)\n avg_policy_loss /= self.policy_epochs\n self.vlosses.append(avg_val_loss)\n self.plosses.append(avg_policy_loss)\n if (itr + i) % self.write_interval == 0:\n acc = self.test()\n self.avg_wins.append(acc)\n print(\n 'itr: % i, avg wins: % 6.2f, value loss: % 6.2f, policy loss: % 6.2f'\n % (itr + i, acc, avg_val_loss, avg_policy_loss))\n self.write_out(itr + i)\n\n def test(self):\n self.net.eval()\n env = ReversiEnv()\n rounds = env.length() // 2\n tot_rew = 0\n tot_wins = 0\n runs = self.test_iters\n for _ in range(runs):\n state, turn = env.reset()\n actions = env.action_space()\n done = False\n for i in range(rounds):\n in_state = torch.FloatTensor(state).unsqueeze(0).unsqueeze(0\n ).to(self.device)\n probs, _ = self.net(in_state)\n probs = probs.squeeze().cpu().detach().numpy()\n action = sample(probs, actions)\n state, turn, reward, done = env.step(action)\n actions = env.action_space()\n if done:\n break\n probs = np.ones(actions.shape[0])\n action = sample(probs, actions)\n state, turn, reward, done = env.step(action)\n actions = env.action_space()\n if done:\n break\n tot_rew += reward\n if reward > 0:\n tot_wins += 1\n tot_rew /= runs\n return tot_wins / runs\n\n def read_in(self, itr=None):\n train_info = {}\n train_info = torch.load(self.train_info_path)\n if itr is None:\n itr = train_info['iter']\n self.plosses = train_info['plosses']\n self.vlosses = train_info['vlosses']\n self.avg_wins = train_info['avg_wins']\n self.optim = train_info['optimizer']\n self.net.load_state_dict(torch.load(str(self.policy_path + '_' +\n str(itr) + '.pt')))\n print('loaded: ' + str(self.policy_path + '_' + str(itr) + '.pt'))\n self.epochs += itr\n return itr\n\n def write_out(self, itr):\n train_info = {}\n train_info['iter'] = itr\n train_info['plosses'] = self.plosses\n train_info['vlosses'] = self.vlosses\n train_info['avg_wins'] = self.avg_wins\n train_info['optimizer'] = self.optim\n torch.save(train_info, self.train_info_path)\n torch.save(self.net.state_dict(), str(self.policy_path + '_' + str(\n itr) + '.pt'))\n if itr > 2:\n plt.plot(self.vlosses, label='value loss')\n plt.plot(self.plosses, label='policy loss')\n plt.legend()\n plt.xlabel('epochs')\n plt.ylabel('loss')\n plt.savefig(str(self.graph_path + '_loss.png'))\n plt.clf()\n plt.plot(self.avg_wins, label='avg wins')\n plt.legend()\n plt.xlabel('epochs')\n plt.ylabel('rewards')\n plt.savefig(str(self.graph_path + '_wins.png'))\n plt.clf()\n\n def run(self, cont=False):\n if cont:\n itr = self.read_in()\n print('continuing')\n self.train(itr)\n else:\n self.train()\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass Trainer:\n <docstring token>\n\n def __init__(self, config):\n with open(config, 'r') as f:\n config = json.load(f)\n self.epochs = config['train']['epochs']\n self.policy_epochs = config['train']['policy_epochs']\n self.test_iters = config['test']['iters']\n layers = config['model']['layers']\n conv_size = config['model']['conv_size']\n logheat = config['model']['logheat']\n self.net = ReversiNet(hidden_size=conv_size, layers=layers, logheat\n =logheat)\n env_samples = config['train']['env_samples']\n self.factory = RolloutFactory(self.net, env_samples)\n self.value_loss = nn.MSELoss()\n epsilon = config['train']['epsilon']\n self.ppo_low_bnd = 1 - epsilon\n self.ppo_up_bnd = 1 + epsilon\n lr = config['train']['lr']\n weight_decay = config['train']['weight_decay']\n self.optim = optim.Adam(self.net.parameters(), lr=lr, weight_decay=\n weight_decay)\n self.plosses = []\n self.vlosses = []\n self.avg_wins = []\n self.stand_time = []\n if torch.cuda.is_available():\n torch.cuda.set_device(1)\n self.net.cuda()\n self.device = torch.device('cuda')\n print('Using GPU')\n else:\n self.device = torch.device('cpu')\n print('No GPU detected')\n self.write_interval = config['model']['write_interval']\n self.train_info_path = config['model']['trainer_save_path']\n self.policy_path = config['model']['policy_save_path'].split('.pt')[0]\n self.graph_path = config['model']['graph_save_path'].split('.png')[0]\n\n def train(self, itr=0):\n acc = self.test()\n for i in range(self.epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n rollouts = self.factory.get_rollouts()\n experience_dataset = ExperienceDataset(rollouts)\n data_loader = DataLoader(experience_dataset, batch_size=256,\n shuffle=True, pin_memory=True)\n self.net.train()\n for _ in range(self.policy_epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n for state, aprob, value in data_loader:\n state = _prepare_tensor_batch(state, self.device\n ).unsqueeze(1)\n aprob = _prepare_tensor_batch(aprob, self.device)\n value = _prepare_tensor_batch(value, self.device\n ).unsqueeze(1)\n pdist, pval = self.net(state)\n policy_loss = loss_pi(aprob, pdist)\n val_loss = loss_v(value, pval)\n avg_val_loss += val_loss.item()\n avg_policy_loss += policy_loss.item()\n self.optim.zero_grad()\n loss = policy_loss + val_loss\n loss.backward()\n self.optim.step()\n avg_val_loss /= len(data_loader)\n avg_val_loss /= self.policy_epochs\n avg_policy_loss /= len(data_loader)\n avg_policy_loss /= self.policy_epochs\n self.vlosses.append(avg_val_loss)\n self.plosses.append(avg_policy_loss)\n if (itr + i) % self.write_interval == 0:\n acc = self.test()\n self.avg_wins.append(acc)\n print(\n 'itr: % i, avg wins: % 6.2f, value loss: % 6.2f, policy loss: % 6.2f'\n % (itr + i, acc, avg_val_loss, avg_policy_loss))\n self.write_out(itr + i)\n\n def test(self):\n self.net.eval()\n env = ReversiEnv()\n rounds = env.length() // 2\n tot_rew = 0\n tot_wins = 0\n runs = self.test_iters\n for _ in range(runs):\n state, turn = env.reset()\n actions = env.action_space()\n done = False\n for i in range(rounds):\n in_state = torch.FloatTensor(state).unsqueeze(0).unsqueeze(0\n ).to(self.device)\n probs, _ = self.net(in_state)\n probs = probs.squeeze().cpu().detach().numpy()\n action = sample(probs, actions)\n state, turn, reward, done = env.step(action)\n actions = env.action_space()\n if done:\n break\n probs = np.ones(actions.shape[0])\n action = sample(probs, actions)\n state, turn, reward, done = env.step(action)\n actions = env.action_space()\n if done:\n break\n tot_rew += reward\n if reward > 0:\n tot_wins += 1\n tot_rew /= runs\n return tot_wins / runs\n\n def read_in(self, itr=None):\n train_info = {}\n train_info = torch.load(self.train_info_path)\n if itr is None:\n itr = train_info['iter']\n self.plosses = train_info['plosses']\n self.vlosses = train_info['vlosses']\n self.avg_wins = train_info['avg_wins']\n self.optim = train_info['optimizer']\n self.net.load_state_dict(torch.load(str(self.policy_path + '_' +\n str(itr) + '.pt')))\n print('loaded: ' + str(self.policy_path + '_' + str(itr) + '.pt'))\n self.epochs += itr\n return itr\n <function token>\n\n def run(self, cont=False):\n if cont:\n itr = self.read_in()\n print('continuing')\n self.train(itr)\n else:\n self.train()\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass Trainer:\n <docstring token>\n\n def __init__(self, config):\n with open(config, 'r') as f:\n config = json.load(f)\n self.epochs = config['train']['epochs']\n self.policy_epochs = config['train']['policy_epochs']\n self.test_iters = config['test']['iters']\n layers = config['model']['layers']\n conv_size = config['model']['conv_size']\n logheat = config['model']['logheat']\n self.net = ReversiNet(hidden_size=conv_size, layers=layers, logheat\n =logheat)\n env_samples = config['train']['env_samples']\n self.factory = RolloutFactory(self.net, env_samples)\n self.value_loss = nn.MSELoss()\n epsilon = config['train']['epsilon']\n self.ppo_low_bnd = 1 - epsilon\n self.ppo_up_bnd = 1 + epsilon\n lr = config['train']['lr']\n weight_decay = config['train']['weight_decay']\n self.optim = optim.Adam(self.net.parameters(), lr=lr, weight_decay=\n weight_decay)\n self.plosses = []\n self.vlosses = []\n self.avg_wins = []\n self.stand_time = []\n if torch.cuda.is_available():\n torch.cuda.set_device(1)\n self.net.cuda()\n self.device = torch.device('cuda')\n print('Using GPU')\n else:\n self.device = torch.device('cpu')\n print('No GPU detected')\n self.write_interval = config['model']['write_interval']\n self.train_info_path = config['model']['trainer_save_path']\n self.policy_path = config['model']['policy_save_path'].split('.pt')[0]\n self.graph_path = config['model']['graph_save_path'].split('.png')[0]\n\n def train(self, itr=0):\n acc = self.test()\n for i in range(self.epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n rollouts = self.factory.get_rollouts()\n experience_dataset = ExperienceDataset(rollouts)\n data_loader = DataLoader(experience_dataset, batch_size=256,\n shuffle=True, pin_memory=True)\n self.net.train()\n for _ in range(self.policy_epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n for state, aprob, value in data_loader:\n state = _prepare_tensor_batch(state, self.device\n ).unsqueeze(1)\n aprob = _prepare_tensor_batch(aprob, self.device)\n value = _prepare_tensor_batch(value, self.device\n ).unsqueeze(1)\n pdist, pval = self.net(state)\n policy_loss = loss_pi(aprob, pdist)\n val_loss = loss_v(value, pval)\n avg_val_loss += val_loss.item()\n avg_policy_loss += policy_loss.item()\n self.optim.zero_grad()\n loss = policy_loss + val_loss\n loss.backward()\n self.optim.step()\n avg_val_loss /= len(data_loader)\n avg_val_loss /= self.policy_epochs\n avg_policy_loss /= len(data_loader)\n avg_policy_loss /= self.policy_epochs\n self.vlosses.append(avg_val_loss)\n self.plosses.append(avg_policy_loss)\n if (itr + i) % self.write_interval == 0:\n acc = self.test()\n self.avg_wins.append(acc)\n print(\n 'itr: % i, avg wins: % 6.2f, value loss: % 6.2f, policy loss: % 6.2f'\n % (itr + i, acc, avg_val_loss, avg_policy_loss))\n self.write_out(itr + i)\n <function token>\n\n def read_in(self, itr=None):\n train_info = {}\n train_info = torch.load(self.train_info_path)\n if itr is None:\n itr = train_info['iter']\n self.plosses = train_info['plosses']\n self.vlosses = train_info['vlosses']\n self.avg_wins = train_info['avg_wins']\n self.optim = train_info['optimizer']\n self.net.load_state_dict(torch.load(str(self.policy_path + '_' +\n str(itr) + '.pt')))\n print('loaded: ' + str(self.policy_path + '_' + str(itr) + '.pt'))\n self.epochs += itr\n return itr\n <function token>\n\n def run(self, cont=False):\n if cont:\n itr = self.read_in()\n print('continuing')\n self.train(itr)\n else:\n self.train()\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass Trainer:\n <docstring token>\n\n def __init__(self, config):\n with open(config, 'r') as f:\n config = json.load(f)\n self.epochs = config['train']['epochs']\n self.policy_epochs = config['train']['policy_epochs']\n self.test_iters = config['test']['iters']\n layers = config['model']['layers']\n conv_size = config['model']['conv_size']\n logheat = config['model']['logheat']\n self.net = ReversiNet(hidden_size=conv_size, layers=layers, logheat\n =logheat)\n env_samples = config['train']['env_samples']\n self.factory = RolloutFactory(self.net, env_samples)\n self.value_loss = nn.MSELoss()\n epsilon = config['train']['epsilon']\n self.ppo_low_bnd = 1 - epsilon\n self.ppo_up_bnd = 1 + epsilon\n lr = config['train']['lr']\n weight_decay = config['train']['weight_decay']\n self.optim = optim.Adam(self.net.parameters(), lr=lr, weight_decay=\n weight_decay)\n self.plosses = []\n self.vlosses = []\n self.avg_wins = []\n self.stand_time = []\n if torch.cuda.is_available():\n torch.cuda.set_device(1)\n self.net.cuda()\n self.device = torch.device('cuda')\n print('Using GPU')\n else:\n self.device = torch.device('cpu')\n print('No GPU detected')\n self.write_interval = config['model']['write_interval']\n self.train_info_path = config['model']['trainer_save_path']\n self.policy_path = config['model']['policy_save_path'].split('.pt')[0]\n self.graph_path = config['model']['graph_save_path'].split('.png')[0]\n\n def train(self, itr=0):\n acc = self.test()\n for i in range(self.epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n rollouts = self.factory.get_rollouts()\n experience_dataset = ExperienceDataset(rollouts)\n data_loader = DataLoader(experience_dataset, batch_size=256,\n shuffle=True, pin_memory=True)\n self.net.train()\n for _ in range(self.policy_epochs):\n avg_policy_loss = 0\n avg_val_loss = 0\n for state, aprob, value in data_loader:\n state = _prepare_tensor_batch(state, self.device\n ).unsqueeze(1)\n aprob = _prepare_tensor_batch(aprob, self.device)\n value = _prepare_tensor_batch(value, self.device\n ).unsqueeze(1)\n pdist, pval = self.net(state)\n policy_loss = loss_pi(aprob, pdist)\n val_loss = loss_v(value, pval)\n avg_val_loss += val_loss.item()\n avg_policy_loss += policy_loss.item()\n self.optim.zero_grad()\n loss = policy_loss + val_loss\n loss.backward()\n self.optim.step()\n avg_val_loss /= len(data_loader)\n avg_val_loss /= self.policy_epochs\n avg_policy_loss /= len(data_loader)\n avg_policy_loss /= self.policy_epochs\n self.vlosses.append(avg_val_loss)\n self.plosses.append(avg_policy_loss)\n if (itr + i) % self.write_interval == 0:\n acc = self.test()\n self.avg_wins.append(acc)\n print(\n 'itr: % i, avg wins: % 6.2f, value loss: % 6.2f, policy loss: % 6.2f'\n % (itr + i, acc, avg_val_loss, avg_policy_loss))\n self.write_out(itr + i)\n <function token>\n\n def read_in(self, itr=None):\n train_info = {}\n train_info = torch.load(self.train_info_path)\n if itr is None:\n itr = train_info['iter']\n self.plosses = train_info['plosses']\n self.vlosses = train_info['vlosses']\n self.avg_wins = train_info['avg_wins']\n self.optim = train_info['optimizer']\n self.net.load_state_dict(torch.load(str(self.policy_path + '_' +\n str(itr) + '.pt')))\n print('loaded: ' + str(self.policy_path + '_' + str(itr) + '.pt'))\n self.epochs += itr\n return itr\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass Trainer:\n <docstring token>\n\n def __init__(self, config):\n with open(config, 'r') as f:\n config = json.load(f)\n self.epochs = config['train']['epochs']\n self.policy_epochs = config['train']['policy_epochs']\n self.test_iters = config['test']['iters']\n layers = config['model']['layers']\n conv_size = config['model']['conv_size']\n logheat = config['model']['logheat']\n self.net = ReversiNet(hidden_size=conv_size, layers=layers, logheat\n =logheat)\n env_samples = config['train']['env_samples']\n self.factory = RolloutFactory(self.net, env_samples)\n self.value_loss = nn.MSELoss()\n epsilon = config['train']['epsilon']\n self.ppo_low_bnd = 1 - epsilon\n self.ppo_up_bnd = 1 + epsilon\n lr = config['train']['lr']\n weight_decay = config['train']['weight_decay']\n self.optim = optim.Adam(self.net.parameters(), lr=lr, weight_decay=\n weight_decay)\n self.plosses = []\n self.vlosses = []\n self.avg_wins = []\n self.stand_time = []\n if torch.cuda.is_available():\n torch.cuda.set_device(1)\n self.net.cuda()\n self.device = torch.device('cuda')\n print('Using GPU')\n else:\n self.device = torch.device('cpu')\n print('No GPU detected')\n self.write_interval = config['model']['write_interval']\n self.train_info_path = config['model']['trainer_save_path']\n self.policy_path = config['model']['policy_save_path'].split('.pt')[0]\n self.graph_path = config['model']['graph_save_path'].split('.png')[0]\n <function token>\n <function token>\n\n def read_in(self, itr=None):\n train_info = {}\n train_info = torch.load(self.train_info_path)\n if itr is None:\n itr = train_info['iter']\n self.plosses = train_info['plosses']\n self.vlosses = train_info['vlosses']\n self.avg_wins = train_info['avg_wins']\n self.optim = train_info['optimizer']\n self.net.load_state_dict(torch.load(str(self.policy_path + '_' +\n str(itr) + '.pt')))\n print('loaded: ' + str(self.policy_path + '_' + str(itr) + '.pt'))\n self.epochs += itr\n return itr\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass Trainer:\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def read_in(self, itr=None):\n train_info = {}\n train_info = torch.load(self.train_info_path)\n if itr is None:\n itr = train_info['iter']\n self.plosses = train_info['plosses']\n self.vlosses = train_info['vlosses']\n self.avg_wins = train_info['avg_wins']\n self.optim = train_info['optimizer']\n self.net.load_state_dict(torch.load(str(self.policy_path + '_' +\n str(itr) + '.pt')))\n print('loaded: ' + str(self.policy_path + '_' + str(itr) + '.pt'))\n self.epochs += itr\n return itr\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass Trainer:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n<class token>\n<function token>\n<code token>\n" ]
false
99,568
f4ac3a6ee9239f09f31e4327ba39c7ae75eeedbc
import pytest import torch from torchstruct import TensorStruct def test_struct_should_raise_if_constructed_from_invalid_data(): with pytest.raises(AssertionError): _ = TensorStruct({'a': (1, 2)}) def test_struct_should_allow_to_create_single_zeros_tensor(): t = TensorStruct.zeros((2, 3), (4, 5), dtype=torch.float64, device='cpu') assert t.shape == (4, 5, 2, 3) assert t.dtype == torch.float64 assert t.device.type == 'cpu' def test_struct_should_allow_to_create_nested_zeros_tensors(): t = TensorStruct.zeros({ 'a': 5, 'b': (10,), 'c': (3, 14), 'd': { 'e': 2, 'f': (3, 1, 4), 'g': { 'h': { 'i': (8, 2) } } } }, prefix_shape=(1,)) td = t.data() assert td['a'].shape == (1, 5) assert td['b'].shape == (1, 10) assert td['c'].shape == (1, 3, 14) assert td['d']['e'].shape == (1, 2) assert td['d']['f'].shape == (1, 3, 1, 4) assert td['d']['g']['h']['i'].shape == (1, 8, 2) def test_struct_tensors_should_return_list_of_tensors_in_struct(): t = TensorStruct({ 'a': torch.ones(5), 'b': { 'c': { 'd': torch.ones(5) * 2 } } }) ts = t.tensors() assert len(ts) == 2 assert any([torch.all(torch.ones(5).eq(t_)) for t_ in ts]) assert any([torch.all(torch.ones(5).eq(t_)) * 2 for t_ in ts]) def test_struct_common_size_should_return_size_of_first_tensor_in_dict(): t = TensorStruct({ 'a': torch.ones((10, 2)), 'b': { 'c': torch.ones((5, 2)) } }) assert t.common_size(0) in [10, 5]
[ "import pytest\r\nimport torch\r\n\r\nfrom torchstruct import TensorStruct\r\n\r\n\r\ndef test_struct_should_raise_if_constructed_from_invalid_data():\r\n with pytest.raises(AssertionError):\r\n _ = TensorStruct({'a': (1, 2)})\r\n\r\n\r\ndef test_struct_should_allow_to_create_single_zeros_tensor():\r\n t = TensorStruct.zeros((2, 3), (4, 5), dtype=torch.float64, device='cpu')\r\n assert t.shape == (4, 5, 2, 3)\r\n assert t.dtype == torch.float64\r\n assert t.device.type == 'cpu'\r\n\r\n\r\ndef test_struct_should_allow_to_create_nested_zeros_tensors():\r\n t = TensorStruct.zeros({\r\n 'a': 5,\r\n 'b': (10,),\r\n 'c': (3, 14),\r\n 'd': {\r\n 'e': 2,\r\n 'f': (3, 1, 4),\r\n 'g': {\r\n 'h': {\r\n 'i': (8, 2)\r\n }\r\n }\r\n }\r\n }, prefix_shape=(1,))\r\n td = t.data()\r\n assert td['a'].shape == (1, 5)\r\n assert td['b'].shape == (1, 10)\r\n assert td['c'].shape == (1, 3, 14)\r\n assert td['d']['e'].shape == (1, 2)\r\n assert td['d']['f'].shape == (1, 3, 1, 4)\r\n assert td['d']['g']['h']['i'].shape == (1, 8, 2)\r\n\r\n\r\ndef test_struct_tensors_should_return_list_of_tensors_in_struct():\r\n t = TensorStruct({\r\n 'a': torch.ones(5),\r\n 'b': {\r\n 'c': {\r\n 'd': torch.ones(5) * 2\r\n }\r\n }\r\n })\r\n ts = t.tensors()\r\n assert len(ts) == 2\r\n assert any([torch.all(torch.ones(5).eq(t_)) for t_ in ts])\r\n assert any([torch.all(torch.ones(5).eq(t_)) * 2 for t_ in ts])\r\n\r\n\r\ndef test_struct_common_size_should_return_size_of_first_tensor_in_dict():\r\n t = TensorStruct({\r\n 'a': torch.ones((10, 2)),\r\n 'b': {\r\n 'c': torch.ones((5, 2))\r\n }\r\n })\r\n assert t.common_size(0) in [10, 5]\r\n", "import pytest\nimport torch\nfrom torchstruct import TensorStruct\n\n\ndef test_struct_should_raise_if_constructed_from_invalid_data():\n with pytest.raises(AssertionError):\n _ = TensorStruct({'a': (1, 2)})\n\n\ndef test_struct_should_allow_to_create_single_zeros_tensor():\n t = TensorStruct.zeros((2, 3), (4, 5), dtype=torch.float64, device='cpu')\n assert t.shape == (4, 5, 2, 3)\n assert t.dtype == torch.float64\n assert t.device.type == 'cpu'\n\n\ndef test_struct_should_allow_to_create_nested_zeros_tensors():\n t = TensorStruct.zeros({'a': 5, 'b': (10,), 'c': (3, 14), 'd': {'e': 2,\n 'f': (3, 1, 4), 'g': {'h': {'i': (8, 2)}}}}, prefix_shape=(1,))\n td = t.data()\n assert td['a'].shape == (1, 5)\n assert td['b'].shape == (1, 10)\n assert td['c'].shape == (1, 3, 14)\n assert td['d']['e'].shape == (1, 2)\n assert td['d']['f'].shape == (1, 3, 1, 4)\n assert td['d']['g']['h']['i'].shape == (1, 8, 2)\n\n\ndef test_struct_tensors_should_return_list_of_tensors_in_struct():\n t = TensorStruct({'a': torch.ones(5), 'b': {'c': {'d': torch.ones(5) * 2}}}\n )\n ts = t.tensors()\n assert len(ts) == 2\n assert any([torch.all(torch.ones(5).eq(t_)) for t_ in ts])\n assert any([(torch.all(torch.ones(5).eq(t_)) * 2) for t_ in ts])\n\n\ndef test_struct_common_size_should_return_size_of_first_tensor_in_dict():\n t = TensorStruct({'a': torch.ones((10, 2)), 'b': {'c': torch.ones((5, 2))}}\n )\n assert t.common_size(0) in [10, 5]\n", "<import token>\n\n\ndef test_struct_should_raise_if_constructed_from_invalid_data():\n with pytest.raises(AssertionError):\n _ = TensorStruct({'a': (1, 2)})\n\n\ndef test_struct_should_allow_to_create_single_zeros_tensor():\n t = TensorStruct.zeros((2, 3), (4, 5), dtype=torch.float64, device='cpu')\n assert t.shape == (4, 5, 2, 3)\n assert t.dtype == torch.float64\n assert t.device.type == 'cpu'\n\n\ndef test_struct_should_allow_to_create_nested_zeros_tensors():\n t = TensorStruct.zeros({'a': 5, 'b': (10,), 'c': (3, 14), 'd': {'e': 2,\n 'f': (3, 1, 4), 'g': {'h': {'i': (8, 2)}}}}, prefix_shape=(1,))\n td = t.data()\n assert td['a'].shape == (1, 5)\n assert td['b'].shape == (1, 10)\n assert td['c'].shape == (1, 3, 14)\n assert td['d']['e'].shape == (1, 2)\n assert td['d']['f'].shape == (1, 3, 1, 4)\n assert td['d']['g']['h']['i'].shape == (1, 8, 2)\n\n\ndef test_struct_tensors_should_return_list_of_tensors_in_struct():\n t = TensorStruct({'a': torch.ones(5), 'b': {'c': {'d': torch.ones(5) * 2}}}\n )\n ts = t.tensors()\n assert len(ts) == 2\n assert any([torch.all(torch.ones(5).eq(t_)) for t_ in ts])\n assert any([(torch.all(torch.ones(5).eq(t_)) * 2) for t_ in ts])\n\n\ndef test_struct_common_size_should_return_size_of_first_tensor_in_dict():\n t = TensorStruct({'a': torch.ones((10, 2)), 'b': {'c': torch.ones((5, 2))}}\n )\n assert t.common_size(0) in [10, 5]\n", "<import token>\n\n\ndef test_struct_should_raise_if_constructed_from_invalid_data():\n with pytest.raises(AssertionError):\n _ = TensorStruct({'a': (1, 2)})\n\n\ndef test_struct_should_allow_to_create_single_zeros_tensor():\n t = TensorStruct.zeros((2, 3), (4, 5), dtype=torch.float64, device='cpu')\n assert t.shape == (4, 5, 2, 3)\n assert t.dtype == torch.float64\n assert t.device.type == 'cpu'\n\n\ndef test_struct_should_allow_to_create_nested_zeros_tensors():\n t = TensorStruct.zeros({'a': 5, 'b': (10,), 'c': (3, 14), 'd': {'e': 2,\n 'f': (3, 1, 4), 'g': {'h': {'i': (8, 2)}}}}, prefix_shape=(1,))\n td = t.data()\n assert td['a'].shape == (1, 5)\n assert td['b'].shape == (1, 10)\n assert td['c'].shape == (1, 3, 14)\n assert td['d']['e'].shape == (1, 2)\n assert td['d']['f'].shape == (1, 3, 1, 4)\n assert td['d']['g']['h']['i'].shape == (1, 8, 2)\n\n\ndef test_struct_tensors_should_return_list_of_tensors_in_struct():\n t = TensorStruct({'a': torch.ones(5), 'b': {'c': {'d': torch.ones(5) * 2}}}\n )\n ts = t.tensors()\n assert len(ts) == 2\n assert any([torch.all(torch.ones(5).eq(t_)) for t_ in ts])\n assert any([(torch.all(torch.ones(5).eq(t_)) * 2) for t_ in ts])\n\n\n<function token>\n", "<import token>\n<function token>\n\n\ndef test_struct_should_allow_to_create_single_zeros_tensor():\n t = TensorStruct.zeros((2, 3), (4, 5), dtype=torch.float64, device='cpu')\n assert t.shape == (4, 5, 2, 3)\n assert t.dtype == torch.float64\n assert t.device.type == 'cpu'\n\n\ndef test_struct_should_allow_to_create_nested_zeros_tensors():\n t = TensorStruct.zeros({'a': 5, 'b': (10,), 'c': (3, 14), 'd': {'e': 2,\n 'f': (3, 1, 4), 'g': {'h': {'i': (8, 2)}}}}, prefix_shape=(1,))\n td = t.data()\n assert td['a'].shape == (1, 5)\n assert td['b'].shape == (1, 10)\n assert td['c'].shape == (1, 3, 14)\n assert td['d']['e'].shape == (1, 2)\n assert td['d']['f'].shape == (1, 3, 1, 4)\n assert td['d']['g']['h']['i'].shape == (1, 8, 2)\n\n\ndef test_struct_tensors_should_return_list_of_tensors_in_struct():\n t = TensorStruct({'a': torch.ones(5), 'b': {'c': {'d': torch.ones(5) * 2}}}\n )\n ts = t.tensors()\n assert len(ts) == 2\n assert any([torch.all(torch.ones(5).eq(t_)) for t_ in ts])\n assert any([(torch.all(torch.ones(5).eq(t_)) * 2) for t_ in ts])\n\n\n<function token>\n", "<import token>\n<function token>\n<function token>\n\n\ndef test_struct_should_allow_to_create_nested_zeros_tensors():\n t = TensorStruct.zeros({'a': 5, 'b': (10,), 'c': (3, 14), 'd': {'e': 2,\n 'f': (3, 1, 4), 'g': {'h': {'i': (8, 2)}}}}, prefix_shape=(1,))\n td = t.data()\n assert td['a'].shape == (1, 5)\n assert td['b'].shape == (1, 10)\n assert td['c'].shape == (1, 3, 14)\n assert td['d']['e'].shape == (1, 2)\n assert td['d']['f'].shape == (1, 3, 1, 4)\n assert td['d']['g']['h']['i'].shape == (1, 8, 2)\n\n\ndef test_struct_tensors_should_return_list_of_tensors_in_struct():\n t = TensorStruct({'a': torch.ones(5), 'b': {'c': {'d': torch.ones(5) * 2}}}\n )\n ts = t.tensors()\n assert len(ts) == 2\n assert any([torch.all(torch.ones(5).eq(t_)) for t_ in ts])\n assert any([(torch.all(torch.ones(5).eq(t_)) * 2) for t_ in ts])\n\n\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n\n\ndef test_struct_tensors_should_return_list_of_tensors_in_struct():\n t = TensorStruct({'a': torch.ones(5), 'b': {'c': {'d': torch.ones(5) * 2}}}\n )\n ts = t.tensors()\n assert len(ts) == 2\n assert any([torch.all(torch.ones(5).eq(t_)) for t_ in ts])\n assert any([(torch.all(torch.ones(5).eq(t_)) * 2) for t_ in ts])\n\n\n<function token>\n", "<import token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,569
45c6fb4f5e873a42497044a8275c12e98c4dfb8e
''' Most of the recent big-budget science fiction movies can also be classified as action movies. You are given a table of science fiction movies called scifi_movies and another table of action movies called action_movies. Your goal is to find which movies are considered only science fiction movies. Once you have this table, you can merge the movies table in to see the movie names. Since this exercise is related to science fiction movies, use a right join as your superhero power to solve this problem. The movies, scifi_movies, and action_movies tables have been loaded for you. ''' # Merge action_movies to the scifi_movies with right join action_scifi = action_movies.merge(scifi_movies, on='movie_id', how='right', suffixes=('_act','_sci')) # From action_scifi, select only the rows where the genre_act column is null scifi_only = action_scifi[action_scifi['genre_act'].isnull()] # Merge the movies and scifi_only tables with an inner join movies_and_scifi_only = movies.merge(scifi_only, left_on='id', right_on='movie_id') # Print the first few rows and shape of movies_and_scifi_only print(movies_and_scifi_only.head()) print(movies_and_scifi_only.shape)
[ "'''\nMost of the recent big-budget science fiction movies can also be classified as action movies. You are given a table of science fiction movies called scifi_movies and another table of action movies called action_movies. Your goal is to find which movies are considered only science fiction movies. Once you have this table, you can merge the movies table in to see the movie names. Since this exercise is related to science fiction movies, use a right join as your superhero power to solve this problem.\n\nThe movies, scifi_movies, and action_movies tables have been loaded for you.\n'''\n# Merge action_movies to the scifi_movies with right join\naction_scifi = action_movies.merge(scifi_movies, on='movie_id', how='right',\n suffixes=('_act','_sci'))\n\n# From action_scifi, select only the rows where the genre_act column is null\nscifi_only = action_scifi[action_scifi['genre_act'].isnull()]\n\n# Merge the movies and scifi_only tables with an inner join\nmovies_and_scifi_only = movies.merge(scifi_only, left_on='id', right_on='movie_id')\n\n# Print the first few rows and shape of movies_and_scifi_only\nprint(movies_and_scifi_only.head())\nprint(movies_and_scifi_only.shape)", "<docstring token>\naction_scifi = action_movies.merge(scifi_movies, on='movie_id', how='right',\n suffixes=('_act', '_sci'))\nscifi_only = action_scifi[action_scifi['genre_act'].isnull()]\nmovies_and_scifi_only = movies.merge(scifi_only, left_on='id', right_on=\n 'movie_id')\nprint(movies_and_scifi_only.head())\nprint(movies_and_scifi_only.shape)\n", "<docstring token>\n<assignment token>\nprint(movies_and_scifi_only.head())\nprint(movies_and_scifi_only.shape)\n", "<docstring token>\n<assignment token>\n<code token>\n" ]
false
99,570
943edb3dd10a5af03e6b8716683498d0685b622e
""" Copyright 2013 Steven Diamond Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numbers import numpy as np import scipy.sparse as sp from cvxpy.interface import numpy_interface as np_intf # A mapping of class to interface. INTERFACES = {np.ndarray: np_intf.NDArrayInterface(), np.matrix: np_intf.MatrixInterface(), sp.csc_matrix: np_intf.SparseMatrixInterface(), } # Default Numpy interface. DEFAULT_NP_INTF = INTERFACES[np.ndarray] # Default dense and sparse matrix interfaces. DEFAULT_INTF = INTERFACES[np.ndarray] DEFAULT_SPARSE_INTF = INTERFACES[sp.csc_matrix] # Returns the interface for interacting with the target matrix class. def get_matrix_interface(target_class): return INTERFACES[target_class] def get_cvxopt_dense_intf(): """Dynamic import of CVXOPT dense interface. """ import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi return dmi.DenseMatrixInterface() def get_cvxopt_sparse_intf(): """Dynamic import of CVXOPT sparse interface. """ import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi return smi.SparseMatrixInterface() # Tools for handling CVXOPT matrices. def sparse2cvxopt(value): """Converts a SciPy sparse matrix to a CVXOPT sparse matrix. Parameters ---------- sparse_mat : SciPy sparse matrix The matrix to convert. Returns ------- CVXOPT spmatrix The converted matrix. """ import cvxopt if isinstance(value, (np.ndarray, np.matrix)): return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d') # Convert scipy sparse matrices to coo form first. elif sp.issparse(value): value = value.tocoo() return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(), value.col.tolist(), size=value.shape, tc='d') def dense2cvxopt(value): """Converts a NumPy matrix to a CVXOPT matrix. Parameters ---------- value : NumPy matrix/ndarray The matrix to convert. Returns ------- CVXOPT matrix The converted matrix. """ import cvxopt return cvxopt.matrix(value, tc='d') def cvxopt2dense(value): """Converts a CVXOPT matrix to a NumPy ndarray. Parameters ---------- value : CVXOPT matrix The matrix to convert. Returns ------- NumPy ndarray The converted matrix. """ return np.array(value) def is_sparse(constant) -> bool: """Is the constant a sparse matrix? """ return sp.issparse(constant) # Get the dimensions of the constant. def shape(constant): if isinstance(constant, numbers.Number) or np.isscalar(constant): return tuple() elif isinstance(constant, list): if len(constant) == 0: return (0,) elif isinstance(constant[0], numbers.Number): # Vector return (len(constant),) else: # Matrix return (len(constant[0]), len(constant)) elif constant.__class__ in INTERFACES: return INTERFACES[constant.__class__].shape(constant) # Direct all sparse matrices to CSC interface. elif is_sparse(constant): return INTERFACES[sp.csc_matrix].shape(constant) else: raise TypeError("%s is not a valid type for a Constant value." % type(constant)) # Is the constant a column vector? def is_vector(constant) -> bool: return shape(constant)[1] == 1 # Is the constant a scalar? def is_scalar(constant) -> bool: return shape(constant) == (1, 1) def from_2D_to_1D(constant): """Convert 2D Numpy matrices or arrays to 1D. """ if isinstance(constant, np.ndarray) and constant.ndim == 2: return np.asarray(constant)[:, 0] else: return constant def from_1D_to_2D(constant): """Convert 1D Numpy arrays to matrices. """ if isinstance(constant, np.ndarray) and constant.ndim == 1: return np.mat(constant).T else: return constant def convert(constant, sparse: bool = False, convert_scalars: bool = False): """Convert to appropriate type. """ if isinstance(constant, (list, np.matrix)): return DEFAULT_INTF.const_to_matrix(constant, convert_scalars=convert_scalars) elif sparse: return DEFAULT_SPARSE_INTF.const_to_matrix(constant, convert_scalars=convert_scalars) else: return constant # Get the value of the passed constant, interpreted as a scalar. def scalar_value(constant): if isinstance(constant, numbers.Number) or np.isscalar(constant): return constant elif isinstance(constant, list): return constant[0] elif constant.__class__ in INTERFACES: return INTERFACES[constant.__class__].scalar_value(constant) # Direct all sparse matrices to CSC interface. elif is_sparse(constant): return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc()) else: raise TypeError("%s is not a valid type for a Constant value." % type(constant)) # Return the collective sign of the matrix entries. def sign(constant): """Return (is positive, is negative). Parameters ---------- constant : numeric type The numeric value to evaluate the sign of. Returns ------- tuple The sign of the constant. """ if isinstance(constant, numbers.Number): max_val = constant min_val = constant elif sp.issparse(constant): max_val = constant.max() min_val = constant.min() else: # Convert to Numpy array. mat = INTERFACES[np.ndarray].const_to_matrix(constant) max_val = mat.max() min_val = mat.min() return (min_val >= 0, max_val <= 0) def is_complex(constant, tol: float = 1e-5) -> bool: """Return (is real, is imaginary). Parameters ---------- constant : numeric type The numeric value to evaluate the sign of. tol : float, optional The largest magnitude considered nonzero. Returns ------- tuple The sign of the constant. """ complex_type = np.iscomplexobj(constant) if not complex_type: return True, False if isinstance(constant, numbers.Number): real_max = np.abs(np.real(constant)) imag_max = np.abs(np.imag(constant)) elif sp.issparse(constant): real_max = np.abs(constant.real).max() imag_max = np.abs(constant.imag).max() else: # Convert to Numpy array. constant = INTERFACES[np.ndarray].const_to_matrix(constant) real_max = np.abs(constant.real).max() imag_max = np.abs(constant.imag).max() return (real_max >= tol, imag_max >= tol) # Get the value at the given index. def index(constant, key): if is_scalar(constant): return constant elif constant.__class__ in INTERFACES: return INTERFACES[constant.__class__].index(constant, key) # Use CSC interface for all sparse matrices. elif is_sparse(constant): interface = INTERFACES[sp.csc_matrix] constant = interface.const_to_matrix(constant) return interface.index(constant, key) def is_hermitian(constant) -> bool: """Check if a matrix is Hermitian and/or symmetric. """ complex_type = np.iscomplexobj(constant) if complex_type: # TODO catch complex symmetric but not Hermitian? is_symm = False if sp.issparse(constant): is_herm = is_sparse_symmetric(constant, complex=True) else: is_herm = np.allclose(constant, np.conj(constant.T)) else: if sp.issparse(constant): is_symm = is_sparse_symmetric(constant, complex=False) else: is_symm = np.allclose(constant, constant.T) is_herm = is_symm return is_symm, is_herm def is_sparse_symmetric(m, complex: bool = False) -> bool: """Check if a sparse matrix is symmetric Parameters ---------- m : array or sparse matrix A square matrix. Returns ------- check : bool The check result. """ # https://mail.scipy.org/pipermail/scipy-dev/2014-October/020101.html if m.shape[0] != m.shape[1]: raise ValueError('m must be a square matrix') if not isinstance(m, sp.coo_matrix): m = sp.coo_matrix(m) r, c, v = m.row, m.col, m.data tril_no_diag = r > c triu_no_diag = c > r if triu_no_diag.sum() != tril_no_diag.sum(): return False rl = r[tril_no_diag] cl = c[tril_no_diag] vl = v[tril_no_diag] ru = r[triu_no_diag] cu = c[triu_no_diag] vu = v[triu_no_diag] sortl = np.lexsort((cl, rl)) sortu = np.lexsort((ru, cu)) vl = vl[sortl] vu = vu[sortu] if complex: check = np.allclose(vl, np.conj(vu)) else: check = np.allclose(vl, vu) return check
[ "\"\"\"\nCopyright 2013 Steven Diamond\n\nLicensed under the Apache License, Version 2.0 (the \"License\");\nyou may not use this file except in compliance with the License.\nYou may obtain a copy of the License at\n\n http://www.apache.org/licenses/LICENSE-2.0\n\nUnless required by applicable law or agreed to in writing, software\ndistributed under the License is distributed on an \"AS IS\" BASIS,\nWITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\nSee the License for the specific language governing permissions and\nlimitations under the License.\n\"\"\"\n\nimport numbers\n\nimport numpy as np\nimport scipy.sparse as sp\n\nfrom cvxpy.interface import numpy_interface as np_intf\n\n# A mapping of class to interface.\nINTERFACES = {np.ndarray: np_intf.NDArrayInterface(),\n np.matrix: np_intf.MatrixInterface(),\n sp.csc_matrix: np_intf.SparseMatrixInterface(),\n }\n# Default Numpy interface.\nDEFAULT_NP_INTF = INTERFACES[np.ndarray]\n# Default dense and sparse matrix interfaces.\nDEFAULT_INTF = INTERFACES[np.ndarray]\nDEFAULT_SPARSE_INTF = INTERFACES[sp.csc_matrix]\n\n\n# Returns the interface for interacting with the target matrix class.\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n# Tools for handling CVXOPT matrices.\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n # Convert scipy sparse matrices to coo form first.\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\ndef dense2cvxopt(value):\n \"\"\"Converts a NumPy matrix to a CVXOPT matrix.\n\n Parameters\n ----------\n value : NumPy matrix/ndarray\n The matrix to convert.\n\n Returns\n -------\n CVXOPT matrix\n The converted matrix.\n \"\"\"\n import cvxopt\n return cvxopt.matrix(value, tc='d')\n\n\ndef cvxopt2dense(value):\n \"\"\"Converts a CVXOPT matrix to a NumPy ndarray.\n\n Parameters\n ----------\n value : CVXOPT matrix\n The matrix to convert.\n\n Returns\n -------\n NumPy ndarray\n The converted matrix.\n \"\"\"\n return np.array(value)\n\n\ndef is_sparse(constant) -> bool:\n \"\"\"Is the constant a sparse matrix?\n \"\"\"\n return sp.issparse(constant)\n\n# Get the dimensions of the constant.\n\n\ndef shape(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return tuple()\n elif isinstance(constant, list):\n if len(constant) == 0:\n return (0,)\n elif isinstance(constant[0], numbers.Number): # Vector\n return (len(constant),)\n else: # Matrix\n return (len(constant[0]), len(constant))\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].shape(constant)\n # Direct all sparse matrices to CSC interface.\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].shape(constant)\n else:\n raise TypeError(\"%s is not a valid type for a Constant value.\" % type(constant))\n\n# Is the constant a column vector?\n\n\ndef is_vector(constant) -> bool:\n return shape(constant)[1] == 1\n\n# Is the constant a scalar?\n\n\ndef is_scalar(constant) -> bool:\n return shape(constant) == (1, 1)\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\ndef from_1D_to_2D(constant):\n \"\"\"Convert 1D Numpy arrays to matrices.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 1:\n return np.mat(constant).T\n else:\n return constant\n\n\ndef convert(constant, sparse: bool = False, convert_scalars: bool = False):\n \"\"\"Convert to appropriate type.\n \"\"\"\n if isinstance(constant, (list, np.matrix)):\n return DEFAULT_INTF.const_to_matrix(constant,\n convert_scalars=convert_scalars)\n elif sparse:\n return DEFAULT_SPARSE_INTF.const_to_matrix(constant,\n convert_scalars=convert_scalars)\n else:\n return constant\n\n# Get the value of the passed constant, interpreted as a scalar.\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n # Direct all sparse matrices to CSC interface.\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError(\"%s is not a valid type for a Constant value.\" % type(constant))\n\n# Return the collective sign of the matrix entries.\n\n\ndef sign(constant):\n \"\"\"Return (is positive, is negative).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n if isinstance(constant, numbers.Number):\n max_val = constant\n min_val = constant\n elif sp.issparse(constant):\n max_val = constant.max()\n min_val = constant.min()\n else: # Convert to Numpy array.\n mat = INTERFACES[np.ndarray].const_to_matrix(constant)\n max_val = mat.max()\n min_val = mat.min()\n return (min_val >= 0, max_val <= 0)\n\n\ndef is_complex(constant, tol: float = 1e-5) -> bool:\n \"\"\"Return (is real, is imaginary).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n tol : float, optional\n The largest magnitude considered nonzero.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if not complex_type:\n return True, False\n if isinstance(constant, numbers.Number):\n real_max = np.abs(np.real(constant))\n imag_max = np.abs(np.imag(constant))\n elif sp.issparse(constant):\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n else: # Convert to Numpy array.\n constant = INTERFACES[np.ndarray].const_to_matrix(constant)\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n return (real_max >= tol, imag_max >= tol)\n\n# Get the value at the given index.\n\n\ndef index(constant, key):\n if is_scalar(constant):\n return constant\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].index(constant, key)\n # Use CSC interface for all sparse matrices.\n elif is_sparse(constant):\n interface = INTERFACES[sp.csc_matrix]\n constant = interface.const_to_matrix(constant)\n return interface.index(constant, key)\n\n\ndef is_hermitian(constant) -> bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n # TODO catch complex symmetric but not Hermitian?\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\ndef is_sparse_symmetric(m, complex: bool = False) -> bool:\n \"\"\"Check if a sparse matrix is symmetric\n\n Parameters\n ----------\n m : array or sparse matrix\n A square matrix.\n\n Returns\n -------\n check : bool\n The check result.\n\n \"\"\"\n # https://mail.scipy.org/pipermail/scipy-dev/2014-October/020101.html\n if m.shape[0] != m.shape[1]:\n raise ValueError('m must be a square matrix')\n\n if not isinstance(m, sp.coo_matrix):\n m = sp.coo_matrix(m)\n\n r, c, v = m.row, m.col, m.data\n tril_no_diag = r > c\n triu_no_diag = c > r\n\n if triu_no_diag.sum() != tril_no_diag.sum():\n return False\n\n rl = r[tril_no_diag]\n cl = c[tril_no_diag]\n vl = v[tril_no_diag]\n ru = r[triu_no_diag]\n cu = c[triu_no_diag]\n vu = v[triu_no_diag]\n\n sortl = np.lexsort((cl, rl))\n sortu = np.lexsort((ru, cu))\n vl = vl[sortl]\n vu = vu[sortu]\n\n if complex:\n check = np.allclose(vl, np.conj(vu))\n else:\n check = np.allclose(vl, vu)\n\n return check\n", "<docstring token>\nimport numbers\nimport numpy as np\nimport scipy.sparse as sp\nfrom cvxpy.interface import numpy_interface as np_intf\nINTERFACES = {np.ndarray: np_intf.NDArrayInterface(), np.matrix: np_intf.\n MatrixInterface(), sp.csc_matrix: np_intf.SparseMatrixInterface()}\nDEFAULT_NP_INTF = INTERFACES[np.ndarray]\nDEFAULT_INTF = INTERFACES[np.ndarray]\nDEFAULT_SPARSE_INTF = INTERFACES[sp.csc_matrix]\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\ndef dense2cvxopt(value):\n \"\"\"Converts a NumPy matrix to a CVXOPT matrix.\n\n Parameters\n ----------\n value : NumPy matrix/ndarray\n The matrix to convert.\n\n Returns\n -------\n CVXOPT matrix\n The converted matrix.\n \"\"\"\n import cvxopt\n return cvxopt.matrix(value, tc='d')\n\n\ndef cvxopt2dense(value):\n \"\"\"Converts a CVXOPT matrix to a NumPy ndarray.\n\n Parameters\n ----------\n value : CVXOPT matrix\n The matrix to convert.\n\n Returns\n -------\n NumPy ndarray\n The converted matrix.\n \"\"\"\n return np.array(value)\n\n\ndef is_sparse(constant) ->bool:\n \"\"\"Is the constant a sparse matrix?\n \"\"\"\n return sp.issparse(constant)\n\n\ndef shape(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return tuple()\n elif isinstance(constant, list):\n if len(constant) == 0:\n return 0,\n elif isinstance(constant[0], numbers.Number):\n return len(constant),\n else:\n return len(constant[0]), len(constant)\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].shape(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].shape(constant)\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\ndef is_scalar(constant) ->bool:\n return shape(constant) == (1, 1)\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\ndef from_1D_to_2D(constant):\n \"\"\"Convert 1D Numpy arrays to matrices.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 1:\n return np.mat(constant).T\n else:\n return constant\n\n\ndef convert(constant, sparse: bool=False, convert_scalars: bool=False):\n \"\"\"Convert to appropriate type.\n \"\"\"\n if isinstance(constant, (list, np.matrix)):\n return DEFAULT_INTF.const_to_matrix(constant, convert_scalars=\n convert_scalars)\n elif sparse:\n return DEFAULT_SPARSE_INTF.const_to_matrix(constant,\n convert_scalars=convert_scalars)\n else:\n return constant\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef sign(constant):\n \"\"\"Return (is positive, is negative).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n if isinstance(constant, numbers.Number):\n max_val = constant\n min_val = constant\n elif sp.issparse(constant):\n max_val = constant.max()\n min_val = constant.min()\n else:\n mat = INTERFACES[np.ndarray].const_to_matrix(constant)\n max_val = mat.max()\n min_val = mat.min()\n return min_val >= 0, max_val <= 0\n\n\ndef is_complex(constant, tol: float=1e-05) ->bool:\n \"\"\"Return (is real, is imaginary).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n tol : float, optional\n The largest magnitude considered nonzero.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if not complex_type:\n return True, False\n if isinstance(constant, numbers.Number):\n real_max = np.abs(np.real(constant))\n imag_max = np.abs(np.imag(constant))\n elif sp.issparse(constant):\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n else:\n constant = INTERFACES[np.ndarray].const_to_matrix(constant)\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n return real_max >= tol, imag_max >= tol\n\n\ndef index(constant, key):\n if is_scalar(constant):\n return constant\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].index(constant, key)\n elif is_sparse(constant):\n interface = INTERFACES[sp.csc_matrix]\n constant = interface.const_to_matrix(constant)\n return interface.index(constant, key)\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\ndef is_sparse_symmetric(m, complex: bool=False) ->bool:\n \"\"\"Check if a sparse matrix is symmetric\n\n Parameters\n ----------\n m : array or sparse matrix\n A square matrix.\n\n Returns\n -------\n check : bool\n The check result.\n\n \"\"\"\n if m.shape[0] != m.shape[1]:\n raise ValueError('m must be a square matrix')\n if not isinstance(m, sp.coo_matrix):\n m = sp.coo_matrix(m)\n r, c, v = m.row, m.col, m.data\n tril_no_diag = r > c\n triu_no_diag = c > r\n if triu_no_diag.sum() != tril_no_diag.sum():\n return False\n rl = r[tril_no_diag]\n cl = c[tril_no_diag]\n vl = v[tril_no_diag]\n ru = r[triu_no_diag]\n cu = c[triu_no_diag]\n vu = v[triu_no_diag]\n sortl = np.lexsort((cl, rl))\n sortu = np.lexsort((ru, cu))\n vl = vl[sortl]\n vu = vu[sortu]\n if complex:\n check = np.allclose(vl, np.conj(vu))\n else:\n check = np.allclose(vl, vu)\n return check\n", "<docstring token>\n<import token>\nINTERFACES = {np.ndarray: np_intf.NDArrayInterface(), np.matrix: np_intf.\n MatrixInterface(), sp.csc_matrix: np_intf.SparseMatrixInterface()}\nDEFAULT_NP_INTF = INTERFACES[np.ndarray]\nDEFAULT_INTF = INTERFACES[np.ndarray]\nDEFAULT_SPARSE_INTF = INTERFACES[sp.csc_matrix]\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\ndef dense2cvxopt(value):\n \"\"\"Converts a NumPy matrix to a CVXOPT matrix.\n\n Parameters\n ----------\n value : NumPy matrix/ndarray\n The matrix to convert.\n\n Returns\n -------\n CVXOPT matrix\n The converted matrix.\n \"\"\"\n import cvxopt\n return cvxopt.matrix(value, tc='d')\n\n\ndef cvxopt2dense(value):\n \"\"\"Converts a CVXOPT matrix to a NumPy ndarray.\n\n Parameters\n ----------\n value : CVXOPT matrix\n The matrix to convert.\n\n Returns\n -------\n NumPy ndarray\n The converted matrix.\n \"\"\"\n return np.array(value)\n\n\ndef is_sparse(constant) ->bool:\n \"\"\"Is the constant a sparse matrix?\n \"\"\"\n return sp.issparse(constant)\n\n\ndef shape(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return tuple()\n elif isinstance(constant, list):\n if len(constant) == 0:\n return 0,\n elif isinstance(constant[0], numbers.Number):\n return len(constant),\n else:\n return len(constant[0]), len(constant)\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].shape(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].shape(constant)\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\ndef is_scalar(constant) ->bool:\n return shape(constant) == (1, 1)\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\ndef from_1D_to_2D(constant):\n \"\"\"Convert 1D Numpy arrays to matrices.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 1:\n return np.mat(constant).T\n else:\n return constant\n\n\ndef convert(constant, sparse: bool=False, convert_scalars: bool=False):\n \"\"\"Convert to appropriate type.\n \"\"\"\n if isinstance(constant, (list, np.matrix)):\n return DEFAULT_INTF.const_to_matrix(constant, convert_scalars=\n convert_scalars)\n elif sparse:\n return DEFAULT_SPARSE_INTF.const_to_matrix(constant,\n convert_scalars=convert_scalars)\n else:\n return constant\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef sign(constant):\n \"\"\"Return (is positive, is negative).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n if isinstance(constant, numbers.Number):\n max_val = constant\n min_val = constant\n elif sp.issparse(constant):\n max_val = constant.max()\n min_val = constant.min()\n else:\n mat = INTERFACES[np.ndarray].const_to_matrix(constant)\n max_val = mat.max()\n min_val = mat.min()\n return min_val >= 0, max_val <= 0\n\n\ndef is_complex(constant, tol: float=1e-05) ->bool:\n \"\"\"Return (is real, is imaginary).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n tol : float, optional\n The largest magnitude considered nonzero.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if not complex_type:\n return True, False\n if isinstance(constant, numbers.Number):\n real_max = np.abs(np.real(constant))\n imag_max = np.abs(np.imag(constant))\n elif sp.issparse(constant):\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n else:\n constant = INTERFACES[np.ndarray].const_to_matrix(constant)\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n return real_max >= tol, imag_max >= tol\n\n\ndef index(constant, key):\n if is_scalar(constant):\n return constant\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].index(constant, key)\n elif is_sparse(constant):\n interface = INTERFACES[sp.csc_matrix]\n constant = interface.const_to_matrix(constant)\n return interface.index(constant, key)\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\ndef is_sparse_symmetric(m, complex: bool=False) ->bool:\n \"\"\"Check if a sparse matrix is symmetric\n\n Parameters\n ----------\n m : array or sparse matrix\n A square matrix.\n\n Returns\n -------\n check : bool\n The check result.\n\n \"\"\"\n if m.shape[0] != m.shape[1]:\n raise ValueError('m must be a square matrix')\n if not isinstance(m, sp.coo_matrix):\n m = sp.coo_matrix(m)\n r, c, v = m.row, m.col, m.data\n tril_no_diag = r > c\n triu_no_diag = c > r\n if triu_no_diag.sum() != tril_no_diag.sum():\n return False\n rl = r[tril_no_diag]\n cl = c[tril_no_diag]\n vl = v[tril_no_diag]\n ru = r[triu_no_diag]\n cu = c[triu_no_diag]\n vu = v[triu_no_diag]\n sortl = np.lexsort((cl, rl))\n sortu = np.lexsort((ru, cu))\n vl = vl[sortl]\n vu = vu[sortu]\n if complex:\n check = np.allclose(vl, np.conj(vu))\n else:\n check = np.allclose(vl, vu)\n return check\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\ndef dense2cvxopt(value):\n \"\"\"Converts a NumPy matrix to a CVXOPT matrix.\n\n Parameters\n ----------\n value : NumPy matrix/ndarray\n The matrix to convert.\n\n Returns\n -------\n CVXOPT matrix\n The converted matrix.\n \"\"\"\n import cvxopt\n return cvxopt.matrix(value, tc='d')\n\n\ndef cvxopt2dense(value):\n \"\"\"Converts a CVXOPT matrix to a NumPy ndarray.\n\n Parameters\n ----------\n value : CVXOPT matrix\n The matrix to convert.\n\n Returns\n -------\n NumPy ndarray\n The converted matrix.\n \"\"\"\n return np.array(value)\n\n\ndef is_sparse(constant) ->bool:\n \"\"\"Is the constant a sparse matrix?\n \"\"\"\n return sp.issparse(constant)\n\n\ndef shape(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return tuple()\n elif isinstance(constant, list):\n if len(constant) == 0:\n return 0,\n elif isinstance(constant[0], numbers.Number):\n return len(constant),\n else:\n return len(constant[0]), len(constant)\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].shape(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].shape(constant)\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\ndef is_scalar(constant) ->bool:\n return shape(constant) == (1, 1)\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\ndef from_1D_to_2D(constant):\n \"\"\"Convert 1D Numpy arrays to matrices.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 1:\n return np.mat(constant).T\n else:\n return constant\n\n\ndef convert(constant, sparse: bool=False, convert_scalars: bool=False):\n \"\"\"Convert to appropriate type.\n \"\"\"\n if isinstance(constant, (list, np.matrix)):\n return DEFAULT_INTF.const_to_matrix(constant, convert_scalars=\n convert_scalars)\n elif sparse:\n return DEFAULT_SPARSE_INTF.const_to_matrix(constant,\n convert_scalars=convert_scalars)\n else:\n return constant\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef sign(constant):\n \"\"\"Return (is positive, is negative).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n if isinstance(constant, numbers.Number):\n max_val = constant\n min_val = constant\n elif sp.issparse(constant):\n max_val = constant.max()\n min_val = constant.min()\n else:\n mat = INTERFACES[np.ndarray].const_to_matrix(constant)\n max_val = mat.max()\n min_val = mat.min()\n return min_val >= 0, max_val <= 0\n\n\ndef is_complex(constant, tol: float=1e-05) ->bool:\n \"\"\"Return (is real, is imaginary).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n tol : float, optional\n The largest magnitude considered nonzero.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if not complex_type:\n return True, False\n if isinstance(constant, numbers.Number):\n real_max = np.abs(np.real(constant))\n imag_max = np.abs(np.imag(constant))\n elif sp.issparse(constant):\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n else:\n constant = INTERFACES[np.ndarray].const_to_matrix(constant)\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n return real_max >= tol, imag_max >= tol\n\n\ndef index(constant, key):\n if is_scalar(constant):\n return constant\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].index(constant, key)\n elif is_sparse(constant):\n interface = INTERFACES[sp.csc_matrix]\n constant = interface.const_to_matrix(constant)\n return interface.index(constant, key)\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\ndef is_sparse_symmetric(m, complex: bool=False) ->bool:\n \"\"\"Check if a sparse matrix is symmetric\n\n Parameters\n ----------\n m : array or sparse matrix\n A square matrix.\n\n Returns\n -------\n check : bool\n The check result.\n\n \"\"\"\n if m.shape[0] != m.shape[1]:\n raise ValueError('m must be a square matrix')\n if not isinstance(m, sp.coo_matrix):\n m = sp.coo_matrix(m)\n r, c, v = m.row, m.col, m.data\n tril_no_diag = r > c\n triu_no_diag = c > r\n if triu_no_diag.sum() != tril_no_diag.sum():\n return False\n rl = r[tril_no_diag]\n cl = c[tril_no_diag]\n vl = v[tril_no_diag]\n ru = r[triu_no_diag]\n cu = c[triu_no_diag]\n vu = v[triu_no_diag]\n sortl = np.lexsort((cl, rl))\n sortu = np.lexsort((ru, cu))\n vl = vl[sortl]\n vu = vu[sortu]\n if complex:\n check = np.allclose(vl, np.conj(vu))\n else:\n check = np.allclose(vl, vu)\n return check\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\ndef dense2cvxopt(value):\n \"\"\"Converts a NumPy matrix to a CVXOPT matrix.\n\n Parameters\n ----------\n value : NumPy matrix/ndarray\n The matrix to convert.\n\n Returns\n -------\n CVXOPT matrix\n The converted matrix.\n \"\"\"\n import cvxopt\n return cvxopt.matrix(value, tc='d')\n\n\ndef cvxopt2dense(value):\n \"\"\"Converts a CVXOPT matrix to a NumPy ndarray.\n\n Parameters\n ----------\n value : CVXOPT matrix\n The matrix to convert.\n\n Returns\n -------\n NumPy ndarray\n The converted matrix.\n \"\"\"\n return np.array(value)\n\n\ndef is_sparse(constant) ->bool:\n \"\"\"Is the constant a sparse matrix?\n \"\"\"\n return sp.issparse(constant)\n\n\ndef shape(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return tuple()\n elif isinstance(constant, list):\n if len(constant) == 0:\n return 0,\n elif isinstance(constant[0], numbers.Number):\n return len(constant),\n else:\n return len(constant[0]), len(constant)\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].shape(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].shape(constant)\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\ndef is_scalar(constant) ->bool:\n return shape(constant) == (1, 1)\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\ndef from_1D_to_2D(constant):\n \"\"\"Convert 1D Numpy arrays to matrices.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 1:\n return np.mat(constant).T\n else:\n return constant\n\n\ndef convert(constant, sparse: bool=False, convert_scalars: bool=False):\n \"\"\"Convert to appropriate type.\n \"\"\"\n if isinstance(constant, (list, np.matrix)):\n return DEFAULT_INTF.const_to_matrix(constant, convert_scalars=\n convert_scalars)\n elif sparse:\n return DEFAULT_SPARSE_INTF.const_to_matrix(constant,\n convert_scalars=convert_scalars)\n else:\n return constant\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef sign(constant):\n \"\"\"Return (is positive, is negative).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n if isinstance(constant, numbers.Number):\n max_val = constant\n min_val = constant\n elif sp.issparse(constant):\n max_val = constant.max()\n min_val = constant.min()\n else:\n mat = INTERFACES[np.ndarray].const_to_matrix(constant)\n max_val = mat.max()\n min_val = mat.min()\n return min_val >= 0, max_val <= 0\n\n\ndef is_complex(constant, tol: float=1e-05) ->bool:\n \"\"\"Return (is real, is imaginary).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n tol : float, optional\n The largest magnitude considered nonzero.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if not complex_type:\n return True, False\n if isinstance(constant, numbers.Number):\n real_max = np.abs(np.real(constant))\n imag_max = np.abs(np.imag(constant))\n elif sp.issparse(constant):\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n else:\n constant = INTERFACES[np.ndarray].const_to_matrix(constant)\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n return real_max >= tol, imag_max >= tol\n\n\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\ndef is_sparse_symmetric(m, complex: bool=False) ->bool:\n \"\"\"Check if a sparse matrix is symmetric\n\n Parameters\n ----------\n m : array or sparse matrix\n A square matrix.\n\n Returns\n -------\n check : bool\n The check result.\n\n \"\"\"\n if m.shape[0] != m.shape[1]:\n raise ValueError('m must be a square matrix')\n if not isinstance(m, sp.coo_matrix):\n m = sp.coo_matrix(m)\n r, c, v = m.row, m.col, m.data\n tril_no_diag = r > c\n triu_no_diag = c > r\n if triu_no_diag.sum() != tril_no_diag.sum():\n return False\n rl = r[tril_no_diag]\n cl = c[tril_no_diag]\n vl = v[tril_no_diag]\n ru = r[triu_no_diag]\n cu = c[triu_no_diag]\n vu = v[triu_no_diag]\n sortl = np.lexsort((cl, rl))\n sortu = np.lexsort((ru, cu))\n vl = vl[sortl]\n vu = vu[sortu]\n if complex:\n check = np.allclose(vl, np.conj(vu))\n else:\n check = np.allclose(vl, vu)\n return check\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\ndef dense2cvxopt(value):\n \"\"\"Converts a NumPy matrix to a CVXOPT matrix.\n\n Parameters\n ----------\n value : NumPy matrix/ndarray\n The matrix to convert.\n\n Returns\n -------\n CVXOPT matrix\n The converted matrix.\n \"\"\"\n import cvxopt\n return cvxopt.matrix(value, tc='d')\n\n\n<function token>\n\n\ndef is_sparse(constant) ->bool:\n \"\"\"Is the constant a sparse matrix?\n \"\"\"\n return sp.issparse(constant)\n\n\ndef shape(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return tuple()\n elif isinstance(constant, list):\n if len(constant) == 0:\n return 0,\n elif isinstance(constant[0], numbers.Number):\n return len(constant),\n else:\n return len(constant[0]), len(constant)\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].shape(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].shape(constant)\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\ndef is_scalar(constant) ->bool:\n return shape(constant) == (1, 1)\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\ndef from_1D_to_2D(constant):\n \"\"\"Convert 1D Numpy arrays to matrices.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 1:\n return np.mat(constant).T\n else:\n return constant\n\n\ndef convert(constant, sparse: bool=False, convert_scalars: bool=False):\n \"\"\"Convert to appropriate type.\n \"\"\"\n if isinstance(constant, (list, np.matrix)):\n return DEFAULT_INTF.const_to_matrix(constant, convert_scalars=\n convert_scalars)\n elif sparse:\n return DEFAULT_SPARSE_INTF.const_to_matrix(constant,\n convert_scalars=convert_scalars)\n else:\n return constant\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef sign(constant):\n \"\"\"Return (is positive, is negative).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n if isinstance(constant, numbers.Number):\n max_val = constant\n min_val = constant\n elif sp.issparse(constant):\n max_val = constant.max()\n min_val = constant.min()\n else:\n mat = INTERFACES[np.ndarray].const_to_matrix(constant)\n max_val = mat.max()\n min_val = mat.min()\n return min_val >= 0, max_val <= 0\n\n\ndef is_complex(constant, tol: float=1e-05) ->bool:\n \"\"\"Return (is real, is imaginary).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n tol : float, optional\n The largest magnitude considered nonzero.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if not complex_type:\n return True, False\n if isinstance(constant, numbers.Number):\n real_max = np.abs(np.real(constant))\n imag_max = np.abs(np.imag(constant))\n elif sp.issparse(constant):\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n else:\n constant = INTERFACES[np.ndarray].const_to_matrix(constant)\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n return real_max >= tol, imag_max >= tol\n\n\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\ndef is_sparse_symmetric(m, complex: bool=False) ->bool:\n \"\"\"Check if a sparse matrix is symmetric\n\n Parameters\n ----------\n m : array or sparse matrix\n A square matrix.\n\n Returns\n -------\n check : bool\n The check result.\n\n \"\"\"\n if m.shape[0] != m.shape[1]:\n raise ValueError('m must be a square matrix')\n if not isinstance(m, sp.coo_matrix):\n m = sp.coo_matrix(m)\n r, c, v = m.row, m.col, m.data\n tril_no_diag = r > c\n triu_no_diag = c > r\n if triu_no_diag.sum() != tril_no_diag.sum():\n return False\n rl = r[tril_no_diag]\n cl = c[tril_no_diag]\n vl = v[tril_no_diag]\n ru = r[triu_no_diag]\n cu = c[triu_no_diag]\n vu = v[triu_no_diag]\n sortl = np.lexsort((cl, rl))\n sortu = np.lexsort((ru, cu))\n vl = vl[sortl]\n vu = vu[sortu]\n if complex:\n check = np.allclose(vl, np.conj(vu))\n else:\n check = np.allclose(vl, vu)\n return check\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\ndef dense2cvxopt(value):\n \"\"\"Converts a NumPy matrix to a CVXOPT matrix.\n\n Parameters\n ----------\n value : NumPy matrix/ndarray\n The matrix to convert.\n\n Returns\n -------\n CVXOPT matrix\n The converted matrix.\n \"\"\"\n import cvxopt\n return cvxopt.matrix(value, tc='d')\n\n\n<function token>\n\n\ndef is_sparse(constant) ->bool:\n \"\"\"Is the constant a sparse matrix?\n \"\"\"\n return sp.issparse(constant)\n\n\ndef shape(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return tuple()\n elif isinstance(constant, list):\n if len(constant) == 0:\n return 0,\n elif isinstance(constant[0], numbers.Number):\n return len(constant),\n else:\n return len(constant[0]), len(constant)\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].shape(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].shape(constant)\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\ndef is_scalar(constant) ->bool:\n return shape(constant) == (1, 1)\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\n<function token>\n\n\ndef convert(constant, sparse: bool=False, convert_scalars: bool=False):\n \"\"\"Convert to appropriate type.\n \"\"\"\n if isinstance(constant, (list, np.matrix)):\n return DEFAULT_INTF.const_to_matrix(constant, convert_scalars=\n convert_scalars)\n elif sparse:\n return DEFAULT_SPARSE_INTF.const_to_matrix(constant,\n convert_scalars=convert_scalars)\n else:\n return constant\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef sign(constant):\n \"\"\"Return (is positive, is negative).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n if isinstance(constant, numbers.Number):\n max_val = constant\n min_val = constant\n elif sp.issparse(constant):\n max_val = constant.max()\n min_val = constant.min()\n else:\n mat = INTERFACES[np.ndarray].const_to_matrix(constant)\n max_val = mat.max()\n min_val = mat.min()\n return min_val >= 0, max_val <= 0\n\n\ndef is_complex(constant, tol: float=1e-05) ->bool:\n \"\"\"Return (is real, is imaginary).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n tol : float, optional\n The largest magnitude considered nonzero.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if not complex_type:\n return True, False\n if isinstance(constant, numbers.Number):\n real_max = np.abs(np.real(constant))\n imag_max = np.abs(np.imag(constant))\n elif sp.issparse(constant):\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n else:\n constant = INTERFACES[np.ndarray].const_to_matrix(constant)\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n return real_max >= tol, imag_max >= tol\n\n\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\ndef is_sparse_symmetric(m, complex: bool=False) ->bool:\n \"\"\"Check if a sparse matrix is symmetric\n\n Parameters\n ----------\n m : array or sparse matrix\n A square matrix.\n\n Returns\n -------\n check : bool\n The check result.\n\n \"\"\"\n if m.shape[0] != m.shape[1]:\n raise ValueError('m must be a square matrix')\n if not isinstance(m, sp.coo_matrix):\n m = sp.coo_matrix(m)\n r, c, v = m.row, m.col, m.data\n tril_no_diag = r > c\n triu_no_diag = c > r\n if triu_no_diag.sum() != tril_no_diag.sum():\n return False\n rl = r[tril_no_diag]\n cl = c[tril_no_diag]\n vl = v[tril_no_diag]\n ru = r[triu_no_diag]\n cu = c[triu_no_diag]\n vu = v[triu_no_diag]\n sortl = np.lexsort((cl, rl))\n sortu = np.lexsort((ru, cu))\n vl = vl[sortl]\n vu = vu[sortu]\n if complex:\n check = np.allclose(vl, np.conj(vu))\n else:\n check = np.allclose(vl, vu)\n return check\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n\n\ndef is_sparse(constant) ->bool:\n \"\"\"Is the constant a sparse matrix?\n \"\"\"\n return sp.issparse(constant)\n\n\ndef shape(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return tuple()\n elif isinstance(constant, list):\n if len(constant) == 0:\n return 0,\n elif isinstance(constant[0], numbers.Number):\n return len(constant),\n else:\n return len(constant[0]), len(constant)\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].shape(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].shape(constant)\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\ndef is_scalar(constant) ->bool:\n return shape(constant) == (1, 1)\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\n<function token>\n\n\ndef convert(constant, sparse: bool=False, convert_scalars: bool=False):\n \"\"\"Convert to appropriate type.\n \"\"\"\n if isinstance(constant, (list, np.matrix)):\n return DEFAULT_INTF.const_to_matrix(constant, convert_scalars=\n convert_scalars)\n elif sparse:\n return DEFAULT_SPARSE_INTF.const_to_matrix(constant,\n convert_scalars=convert_scalars)\n else:\n return constant\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef sign(constant):\n \"\"\"Return (is positive, is negative).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n if isinstance(constant, numbers.Number):\n max_val = constant\n min_val = constant\n elif sp.issparse(constant):\n max_val = constant.max()\n min_val = constant.min()\n else:\n mat = INTERFACES[np.ndarray].const_to_matrix(constant)\n max_val = mat.max()\n min_val = mat.min()\n return min_val >= 0, max_val <= 0\n\n\ndef is_complex(constant, tol: float=1e-05) ->bool:\n \"\"\"Return (is real, is imaginary).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n tol : float, optional\n The largest magnitude considered nonzero.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if not complex_type:\n return True, False\n if isinstance(constant, numbers.Number):\n real_max = np.abs(np.real(constant))\n imag_max = np.abs(np.imag(constant))\n elif sp.issparse(constant):\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n else:\n constant = INTERFACES[np.ndarray].const_to_matrix(constant)\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n return real_max >= tol, imag_max >= tol\n\n\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\ndef is_sparse_symmetric(m, complex: bool=False) ->bool:\n \"\"\"Check if a sparse matrix is symmetric\n\n Parameters\n ----------\n m : array or sparse matrix\n A square matrix.\n\n Returns\n -------\n check : bool\n The check result.\n\n \"\"\"\n if m.shape[0] != m.shape[1]:\n raise ValueError('m must be a square matrix')\n if not isinstance(m, sp.coo_matrix):\n m = sp.coo_matrix(m)\n r, c, v = m.row, m.col, m.data\n tril_no_diag = r > c\n triu_no_diag = c > r\n if triu_no_diag.sum() != tril_no_diag.sum():\n return False\n rl = r[tril_no_diag]\n cl = c[tril_no_diag]\n vl = v[tril_no_diag]\n ru = r[triu_no_diag]\n cu = c[triu_no_diag]\n vu = v[triu_no_diag]\n sortl = np.lexsort((cl, rl))\n sortu = np.lexsort((ru, cu))\n vl = vl[sortl]\n vu = vu[sortu]\n if complex:\n check = np.allclose(vl, np.conj(vu))\n else:\n check = np.allclose(vl, vu)\n return check\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n\n\ndef is_sparse(constant) ->bool:\n \"\"\"Is the constant a sparse matrix?\n \"\"\"\n return sp.issparse(constant)\n\n\ndef shape(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return tuple()\n elif isinstance(constant, list):\n if len(constant) == 0:\n return 0,\n elif isinstance(constant[0], numbers.Number):\n return len(constant),\n else:\n return len(constant[0]), len(constant)\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].shape(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].shape(constant)\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\ndef is_scalar(constant) ->bool:\n return shape(constant) == (1, 1)\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\n<function token>\n\n\ndef convert(constant, sparse: bool=False, convert_scalars: bool=False):\n \"\"\"Convert to appropriate type.\n \"\"\"\n if isinstance(constant, (list, np.matrix)):\n return DEFAULT_INTF.const_to_matrix(constant, convert_scalars=\n convert_scalars)\n elif sparse:\n return DEFAULT_SPARSE_INTF.const_to_matrix(constant,\n convert_scalars=convert_scalars)\n else:\n return constant\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef sign(constant):\n \"\"\"Return (is positive, is negative).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n if isinstance(constant, numbers.Number):\n max_val = constant\n min_val = constant\n elif sp.issparse(constant):\n max_val = constant.max()\n min_val = constant.min()\n else:\n mat = INTERFACES[np.ndarray].const_to_matrix(constant)\n max_val = mat.max()\n min_val = mat.min()\n return min_val >= 0, max_val <= 0\n\n\ndef is_complex(constant, tol: float=1e-05) ->bool:\n \"\"\"Return (is real, is imaginary).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n tol : float, optional\n The largest magnitude considered nonzero.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if not complex_type:\n return True, False\n if isinstance(constant, numbers.Number):\n real_max = np.abs(np.real(constant))\n imag_max = np.abs(np.imag(constant))\n elif sp.issparse(constant):\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n else:\n constant = INTERFACES[np.ndarray].const_to_matrix(constant)\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n return real_max >= tol, imag_max >= tol\n\n\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\n<function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n\n\ndef is_sparse(constant) ->bool:\n \"\"\"Is the constant a sparse matrix?\n \"\"\"\n return sp.issparse(constant)\n\n\ndef shape(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return tuple()\n elif isinstance(constant, list):\n if len(constant) == 0:\n return 0,\n elif isinstance(constant[0], numbers.Number):\n return len(constant),\n else:\n return len(constant[0]), len(constant)\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].shape(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].shape(constant)\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\ndef is_scalar(constant) ->bool:\n return shape(constant) == (1, 1)\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\n<function token>\n\n\ndef convert(constant, sparse: bool=False, convert_scalars: bool=False):\n \"\"\"Convert to appropriate type.\n \"\"\"\n if isinstance(constant, (list, np.matrix)):\n return DEFAULT_INTF.const_to_matrix(constant, convert_scalars=\n convert_scalars)\n elif sparse:\n return DEFAULT_SPARSE_INTF.const_to_matrix(constant,\n convert_scalars=convert_scalars)\n else:\n return constant\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\n<function token>\n\n\ndef is_complex(constant, tol: float=1e-05) ->bool:\n \"\"\"Return (is real, is imaginary).\n\n Parameters\n ----------\n constant : numeric type\n The numeric value to evaluate the sign of.\n tol : float, optional\n The largest magnitude considered nonzero.\n\n Returns\n -------\n tuple\n The sign of the constant.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if not complex_type:\n return True, False\n if isinstance(constant, numbers.Number):\n real_max = np.abs(np.real(constant))\n imag_max = np.abs(np.imag(constant))\n elif sp.issparse(constant):\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n else:\n constant = INTERFACES[np.ndarray].const_to_matrix(constant)\n real_max = np.abs(constant.real).max()\n imag_max = np.abs(constant.imag).max()\n return real_max >= tol, imag_max >= tol\n\n\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\n<function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n\n\ndef is_sparse(constant) ->bool:\n \"\"\"Is the constant a sparse matrix?\n \"\"\"\n return sp.issparse(constant)\n\n\ndef shape(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return tuple()\n elif isinstance(constant, list):\n if len(constant) == 0:\n return 0,\n elif isinstance(constant[0], numbers.Number):\n return len(constant),\n else:\n return len(constant[0]), len(constant)\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].shape(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].shape(constant)\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\ndef is_scalar(constant) ->bool:\n return shape(constant) == (1, 1)\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\n<function token>\n\n\ndef convert(constant, sparse: bool=False, convert_scalars: bool=False):\n \"\"\"Convert to appropriate type.\n \"\"\"\n if isinstance(constant, (list, np.matrix)):\n return DEFAULT_INTF.const_to_matrix(constant, convert_scalars=\n convert_scalars)\n elif sparse:\n return DEFAULT_SPARSE_INTF.const_to_matrix(constant,\n convert_scalars=convert_scalars)\n else:\n return constant\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\n<function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n\n\ndef is_sparse(constant) ->bool:\n \"\"\"Is the constant a sparse matrix?\n \"\"\"\n return sp.issparse(constant)\n\n\ndef shape(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return tuple()\n elif isinstance(constant, list):\n if len(constant) == 0:\n return 0,\n elif isinstance(constant[0], numbers.Number):\n return len(constant),\n else:\n return len(constant[0]), len(constant)\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].shape(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].shape(constant)\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\ndef is_scalar(constant) ->bool:\n return shape(constant) == (1, 1)\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\n<function token>\n<function token>\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\n<function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n\n\ndef is_sparse(constant) ->bool:\n \"\"\"Is the constant a sparse matrix?\n \"\"\"\n return sp.issparse(constant)\n\n\ndef shape(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return tuple()\n elif isinstance(constant, list):\n if len(constant) == 0:\n return 0,\n elif isinstance(constant[0], numbers.Number):\n return len(constant),\n else:\n return len(constant[0]), len(constant)\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].shape(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].shape(constant)\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\n<function token>\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\n<function token>\n<function token>\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\n<function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n\n\ndef is_sparse(constant) ->bool:\n \"\"\"Is the constant a sparse matrix?\n \"\"\"\n return sp.issparse(constant)\n\n\n<function token>\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\n<function token>\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\n<function token>\n<function token>\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\n<function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\ndef get_cvxopt_dense_intf():\n \"\"\"Dynamic import of CVXOPT dense interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.valuerix_interface as dmi\n return dmi.DenseMatrixInterface()\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\n<function token>\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\n<function token>\n<function token>\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\n<function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\n<function token>\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\n<function token>\n\n\ndef from_2D_to_1D(constant):\n \"\"\"Convert 2D Numpy matrices or arrays to 1D.\n \"\"\"\n if isinstance(constant, np.ndarray) and constant.ndim == 2:\n return np.asarray(constant)[:, 0]\n else:\n return constant\n\n\n<function token>\n<function token>\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\n<function token>\n", "<docstring token>\n<import token>\n<assignment token>\n\n\ndef get_matrix_interface(target_class):\n return INTERFACES[target_class]\n\n\n<function token>\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\n<function token>\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n\n\ndef get_cvxopt_sparse_intf():\n \"\"\"Dynamic import of CVXOPT sparse interface.\n \"\"\"\n import cvxpy.interface.cvxopt_interface.sparse_matrix_interface as smi\n return smi.SparseMatrixInterface()\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\n<function token>\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef scalar_value(constant):\n if isinstance(constant, numbers.Number) or np.isscalar(constant):\n return constant\n elif isinstance(constant, list):\n return constant[0]\n elif constant.__class__ in INTERFACES:\n return INTERFACES[constant.__class__].scalar_value(constant)\n elif is_sparse(constant):\n return INTERFACES[sp.csc_matrix].scalar_value(constant.tocsc())\n else:\n raise TypeError('%s is not a valid type for a Constant value.' %\n type(constant))\n\n\n<function token>\n<function token>\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\n<function token>\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef is_vector(constant) ->bool:\n return shape(constant)[1] == 1\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\n<function token>\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n\n\ndef is_hermitian(constant) ->bool:\n \"\"\"Check if a matrix is Hermitian and/or symmetric.\n \"\"\"\n complex_type = np.iscomplexobj(constant)\n if complex_type:\n is_symm = False\n if sp.issparse(constant):\n is_herm = is_sparse_symmetric(constant, complex=True)\n else:\n is_herm = np.allclose(constant, np.conj(constant.T))\n else:\n if sp.issparse(constant):\n is_symm = is_sparse_symmetric(constant, complex=False)\n else:\n is_symm = np.allclose(constant, constant.T)\n is_herm = is_symm\n return is_symm, is_herm\n\n\n<function token>\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n\n\ndef sparse2cvxopt(value):\n \"\"\"Converts a SciPy sparse matrix to a CVXOPT sparse matrix.\n\n Parameters\n ----------\n sparse_mat : SciPy sparse matrix\n The matrix to convert.\n\n Returns\n -------\n CVXOPT spmatrix\n The converted matrix.\n \"\"\"\n import cvxopt\n if isinstance(value, (np.ndarray, np.matrix)):\n return cvxopt.sparse(cvxopt.matrix(value.astype('float64')), tc='d')\n elif sp.issparse(value):\n value = value.tocoo()\n return cvxopt.spmatrix(value.data.tolist(), value.row.tolist(),\n value.col.tolist(), size=value.shape, tc='d')\n\n\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<assignment token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,571
f15ea2e50ab65b574465167b77c67d2b5cf8a81b
class Solution: def xorOperation(self, n: int, start: int) -> int: res = 0 for i in range(n): res ^= start + 2*i return res s = Solution() n = 10 start = 5 print(s.xorOperation(n,start))
[ "class Solution:\n def xorOperation(self, n: int, start: int) -> int:\n res = 0\n for i in range(n):\n res ^= start + 2*i\n return res\ns = Solution()\nn = 10\nstart = 5\nprint(s.xorOperation(n,start))", "class Solution:\n\n def xorOperation(self, n: int, start: int) ->int:\n res = 0\n for i in range(n):\n res ^= start + 2 * i\n return res\n\n\ns = Solution()\nn = 10\nstart = 5\nprint(s.xorOperation(n, start))\n", "class Solution:\n\n def xorOperation(self, n: int, start: int) ->int:\n res = 0\n for i in range(n):\n res ^= start + 2 * i\n return res\n\n\n<assignment token>\nprint(s.xorOperation(n, start))\n", "class Solution:\n\n def xorOperation(self, n: int, start: int) ->int:\n res = 0\n for i in range(n):\n res ^= start + 2 * i\n return res\n\n\n<assignment token>\n<code token>\n", "class Solution:\n <function token>\n\n\n<assignment token>\n<code token>\n", "<class token>\n<assignment token>\n<code token>\n" ]
false
99,572
a77c2a10c7966568e9c69c4997951fec2f91b06d
""" It seems that prime number generation is a frequently reoccurring subtask when solving Project Euler problems... I've been using the Sieve of Erastosthenes, which is relatively efficient O(N * log (log N)), but I just read that the Sieve of Atkin can perform faster, in O(N) time. So I'm going to take the algorithm from the wikipedia page - "https://en.wikipedia.org/wiki/Sieve_of_Atkin" """ import math import time import sys import json import os import numpy as np def sieve_atkin(limit): P = [2,3] sieve=[False]*(limit+1) for x in range(1,int(math.sqrt(limit))+1): for y in range(1,int(math.sqrt(limit))+1): n = 4*x**2 + y**2 if n<=limit and (n%12==1 or n%12==5) : sieve[n] = not sieve[n] n = 3*x**2+y**2 if n<= limit and n%12==7 : sieve[n] = not sieve[n] n = 3*x**2 - y**2 if x>y and n<=limit and n%12==11 : sieve[n] = not sieve[n] for x in range(5,int(math.sqrt(limit))): if sieve[x]: for y in range(x**2,limit+1,x**2): sieve[y] = False for p in range(5,limit): if sieve[p] : P.append(p) return P def sieve_atkin_nump(limit): pass if __name__ == '__main__': startTime = time.perf_counter() limit = int(sys.argv[1]) if len(sys.argv) == 3: target_dir = sys.argv[2] else: target_dir = '.' primes = np.array(sieve_atkin(limit)) filename = 'primes' + '1e' + str(len(str(limit))) + '.npy' with open(os.path.join(target_dir,filename),'wb') as f: np.save(f,primes) endTime = time.perf_counter() print("Time elapsed:", '{:0.6f}'.format(endTime - startTime), "seconds.")
[ "\"\"\"\nIt seems that prime number generation is a frequently reoccurring subtask when solving Project Euler problems...\nI've been using the Sieve of Erastosthenes, which is relatively efficient O(N * log (log N)), but I just read that the Sieve of Atkin\ncan perform faster, in O(N) time. So I'm going to take the algorithm from the wikipedia page -\n\n \"https://en.wikipedia.org/wiki/Sieve_of_Atkin\"\n\"\"\"\n\n\n\nimport math\nimport time\nimport sys\nimport json\nimport os\nimport numpy as np\n\ndef sieve_atkin(limit):\n P = [2,3]\n sieve=[False]*(limit+1)\n for x in range(1,int(math.sqrt(limit))+1):\n for y in range(1,int(math.sqrt(limit))+1):\n n = 4*x**2 + y**2\n if n<=limit and (n%12==1 or n%12==5) : sieve[n] = not sieve[n]\n n = 3*x**2+y**2\n if n<= limit and n%12==7 : sieve[n] = not sieve[n]\n n = 3*x**2 - y**2\n if x>y and n<=limit and n%12==11 : sieve[n] = not sieve[n]\n for x in range(5,int(math.sqrt(limit))):\n if sieve[x]:\n for y in range(x**2,limit+1,x**2):\n sieve[y] = False\n for p in range(5,limit):\n if sieve[p] : P.append(p)\n return P\n\ndef sieve_atkin_nump(limit):\n pass \n\n\nif __name__ == '__main__':\n startTime = time.perf_counter()\n \n limit = int(sys.argv[1]) \n\n if len(sys.argv) == 3:\n target_dir = sys.argv[2]\n else:\n target_dir = '.'\n\n\n primes = np.array(sieve_atkin(limit))\n filename = 'primes' + '1e' + str(len(str(limit))) + '.npy'\n\n with open(os.path.join(target_dir,filename),'wb') as f:\n np.save(f,primes)\n endTime = time.perf_counter()\n print(\"Time elapsed:\", '{:0.6f}'.format(endTime - startTime), \"seconds.\")\n\n\n\n\n", "<docstring token>\nimport math\nimport time\nimport sys\nimport json\nimport os\nimport numpy as np\n\n\ndef sieve_atkin(limit):\n P = [2, 3]\n sieve = [False] * (limit + 1)\n for x in range(1, int(math.sqrt(limit)) + 1):\n for y in range(1, int(math.sqrt(limit)) + 1):\n n = 4 * x ** 2 + y ** 2\n if n <= limit and (n % 12 == 1 or n % 12 == 5):\n sieve[n] = not sieve[n]\n n = 3 * x ** 2 + y ** 2\n if n <= limit and n % 12 == 7:\n sieve[n] = not sieve[n]\n n = 3 * x ** 2 - y ** 2\n if x > y and n <= limit and n % 12 == 11:\n sieve[n] = not sieve[n]\n for x in range(5, int(math.sqrt(limit))):\n if sieve[x]:\n for y in range(x ** 2, limit + 1, x ** 2):\n sieve[y] = False\n for p in range(5, limit):\n if sieve[p]:\n P.append(p)\n return P\n\n\ndef sieve_atkin_nump(limit):\n pass\n\n\nif __name__ == '__main__':\n startTime = time.perf_counter()\n limit = int(sys.argv[1])\n if len(sys.argv) == 3:\n target_dir = sys.argv[2]\n else:\n target_dir = '.'\n primes = np.array(sieve_atkin(limit))\n filename = 'primes' + '1e' + str(len(str(limit))) + '.npy'\n with open(os.path.join(target_dir, filename), 'wb') as f:\n np.save(f, primes)\n endTime = time.perf_counter()\n print('Time elapsed:', '{:0.6f}'.format(endTime - startTime), 'seconds.')\n", "<docstring token>\n<import token>\n\n\ndef sieve_atkin(limit):\n P = [2, 3]\n sieve = [False] * (limit + 1)\n for x in range(1, int(math.sqrt(limit)) + 1):\n for y in range(1, int(math.sqrt(limit)) + 1):\n n = 4 * x ** 2 + y ** 2\n if n <= limit and (n % 12 == 1 or n % 12 == 5):\n sieve[n] = not sieve[n]\n n = 3 * x ** 2 + y ** 2\n if n <= limit and n % 12 == 7:\n sieve[n] = not sieve[n]\n n = 3 * x ** 2 - y ** 2\n if x > y and n <= limit and n % 12 == 11:\n sieve[n] = not sieve[n]\n for x in range(5, int(math.sqrt(limit))):\n if sieve[x]:\n for y in range(x ** 2, limit + 1, x ** 2):\n sieve[y] = False\n for p in range(5, limit):\n if sieve[p]:\n P.append(p)\n return P\n\n\ndef sieve_atkin_nump(limit):\n pass\n\n\nif __name__ == '__main__':\n startTime = time.perf_counter()\n limit = int(sys.argv[1])\n if len(sys.argv) == 3:\n target_dir = sys.argv[2]\n else:\n target_dir = '.'\n primes = np.array(sieve_atkin(limit))\n filename = 'primes' + '1e' + str(len(str(limit))) + '.npy'\n with open(os.path.join(target_dir, filename), 'wb') as f:\n np.save(f, primes)\n endTime = time.perf_counter()\n print('Time elapsed:', '{:0.6f}'.format(endTime - startTime), 'seconds.')\n", "<docstring token>\n<import token>\n\n\ndef sieve_atkin(limit):\n P = [2, 3]\n sieve = [False] * (limit + 1)\n for x in range(1, int(math.sqrt(limit)) + 1):\n for y in range(1, int(math.sqrt(limit)) + 1):\n n = 4 * x ** 2 + y ** 2\n if n <= limit and (n % 12 == 1 or n % 12 == 5):\n sieve[n] = not sieve[n]\n n = 3 * x ** 2 + y ** 2\n if n <= limit and n % 12 == 7:\n sieve[n] = not sieve[n]\n n = 3 * x ** 2 - y ** 2\n if x > y and n <= limit and n % 12 == 11:\n sieve[n] = not sieve[n]\n for x in range(5, int(math.sqrt(limit))):\n if sieve[x]:\n for y in range(x ** 2, limit + 1, x ** 2):\n sieve[y] = False\n for p in range(5, limit):\n if sieve[p]:\n P.append(p)\n return P\n\n\ndef sieve_atkin_nump(limit):\n pass\n\n\n<code token>\n", "<docstring token>\n<import token>\n\n\ndef sieve_atkin(limit):\n P = [2, 3]\n sieve = [False] * (limit + 1)\n for x in range(1, int(math.sqrt(limit)) + 1):\n for y in range(1, int(math.sqrt(limit)) + 1):\n n = 4 * x ** 2 + y ** 2\n if n <= limit and (n % 12 == 1 or n % 12 == 5):\n sieve[n] = not sieve[n]\n n = 3 * x ** 2 + y ** 2\n if n <= limit and n % 12 == 7:\n sieve[n] = not sieve[n]\n n = 3 * x ** 2 - y ** 2\n if x > y and n <= limit and n % 12 == 11:\n sieve[n] = not sieve[n]\n for x in range(5, int(math.sqrt(limit))):\n if sieve[x]:\n for y in range(x ** 2, limit + 1, x ** 2):\n sieve[y] = False\n for p in range(5, limit):\n if sieve[p]:\n P.append(p)\n return P\n\n\n<function token>\n<code token>\n", "<docstring token>\n<import token>\n<function token>\n<function token>\n<code token>\n" ]
false
99,573
55fbae4517d8f8e6d2f9f426a56aaf18c9620a4b
#!/usr/bin/env python2 # written by Moses Arocha # Created in Python, with the help of TJ O'Connor's book "Violent Python". from scapy.all import * import sys import os interface = 'mon0' # Uses the wireless NIC called mon0, must put Network Card in Monitor mode with name of mon0 HiddenNetworks = [] ShownNetworks = [] def SniffNetwork(p): if p.haslayer(Dot11ProbeResp): MACAddr = p.getlayer(Dot11).addr2 # Grabs the MAC Address of the wireless connection if (MACAddr in HiddenNetworks) & (MACAddr not in ShownNetworks): # Checks to see if MAC Address is in wireless netName = p.getlayer(Dot11ProbeResp).info print '\t[Success] Decloacked Hidden SSID ' + netName + ' for MAC: ' + MACAddr ShownNetworks.append(MACAddr) if p.haslayer(Dot11Beacon): # Function that detects the hidden networks Beacon signals if p.getlayer(Dot11Beacon).info == '': MACAddr = p.getlayer(Dot11).MACAddr if MACAddr not in HiddenNetworks: print '\t[Attempt] Detected Hidden SSID with MAC: ' + MACAddr HiddenNetworks.append(MACAddr) if not os.geteuid() == 0: sys.exit('\t Please Run As Root!!') # Checks to see if the user is root, this code can only be run in root os.system('airmon-ng start wlan0') # Interacts with terminal to put the wireless NIC in monitor mode. print " \t The Sniffing Has Begun... Please Wait... \n" sniff(iface=interface, prn=SniffNetwork) # Must be placed last so monitor mode can be enabled.
[ "#!/usr/bin/env python2\n# written by Moses Arocha\n# Created in Python, with the help of TJ O'Connor's book \"Violent Python\".\n\n\nfrom scapy.all import *\n\nimport sys\nimport os\n\ninterface = 'mon0'\t\t\t\t# Uses the wireless NIC called mon0, must put Network Card in Monitor mode with name of mon0\nHiddenNetworks = []\nShownNetworks = []\n\ndef SniffNetwork(p):\n if p.haslayer(Dot11ProbeResp):\n MACAddr = p.getlayer(Dot11).addr2\t\t\t\t\t# Grabs the MAC Address of the wireless connection\n\tif (MACAddr in HiddenNetworks) & (MACAddr not in ShownNetworks):\t# Checks to see if MAC Address is in wireless \n\t netName = p.getlayer(Dot11ProbeResp).info\n\t print '\\t[Success] Decloacked Hidden SSID ' + netName + ' for MAC: ' + MACAddr\t\n\t ShownNetworks.append(MACAddr)\nif p.haslayer(Dot11Beacon): \t\t\t\t# Function that detects the hidden networks Beacon signals\n if p.getlayer(Dot11Beacon).info == '':\n MACAddr = p.getlayer(Dot11).MACAddr\n\tif MACAddr not in HiddenNetworks:\n\t print '\\t[Attempt] Detected Hidden SSID with MAC: ' + MACAddr\t\n\t HiddenNetworks.append(MACAddr)\n\nif not os.geteuid() == 0:\n sys.exit('\\t Please Run As Root!!')\t\t# Checks to see if the user is root, this code can only be run in root\nos.system('airmon-ng start wlan0')\t\t# Interacts with terminal to put the wireless NIC in monitor mode.\nprint \" \\t The Sniffing Has Begun... Please Wait... \\n\"\nsniff(iface=interface, prn=SniffNetwork)\t# Must be placed last so monitor mode can be enabled.\n\n\n\n" ]
true
99,574
f65b9045447d228ee789273d06cefc89ccc50e7a
import pandas as pd import numpy as np import pickle ''' Parse 1976-2016 house data from https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IG0UN2 @relFilePath : file path of house results data, relative to python notebook @return: dataframe indexed by (year, state, district) ''' def load_data(relFilePath, minYear=2010): ''' Keep only the winner and 2nd place candidates within each state's district for every year. arguments: relFilePath -- path to the data file (csv) minYear -- only records for all years from and after the min year will be kept (int) returns: dataframe with only the winners (pandas.dataframe) dataframe with only the 2nd place candidates (pandas.dataframe) ''' data_df = pd.read_csv(relFilePath) winners_df = pd.DataFrame() winners2_df = pd.DataFrame() for key, shard in data_df.groupby(['year', 'state_po', 'district']): if int(key[0]) >= minYear: #convention: 2nd winner = 1st winner if only 1 player winners_df = winners_df.append(shard.loc[shard['candidatevotes'].idxmax()]) sortedIndices = (shard['candidatevotes'].values.argsort()[::-1]) if len(sortedIndices) > 1: winners2_df = winners2_df.append(shard.iloc[sortedIndices[1]]) else: winners2_df = winners2_df.append(shard.iloc[sortedIndices[0]]) return winners_df, winners2_df def clean_index(df, clean_before_build=True): '''Performs general clean up tasks on the key columns. Generates the master key. arguments: df -- dataframe to clean up, should contain the columns 'district', 'state_po' and 'year' (pandas.dataframe) returns: dataframe with cleaned key columns and index (pandas.dataframe) ''' if clean_before_build: # drop default index df = df.reset_index().drop(['index','state'], axis=1) # rename state code df = df.rename(columns={'state_po' : 'state'}) #format year and district columns as ints df = df.astype({'year': int, 'district': int}) #make sure all districts start with 1 df.loc[df['district']==0, 'district'] = 1 # glue together the columns to get a more descriptive index df.index = ['{0}_{1:02d}_{2}'.format(row['state'],row['district'],row['year']) for _,row in df.iterrows()] return df def fetch_index(df, df2, save=False, load=False): '''Helper function for generating/loading master index for syncing between data sources. arguments: df -- dataframe to parse index from, MUST CONTAIN FULL COPIES OF THE 'district', 'state_po', 'year' COLUMNS (pandas.dataframe) returns: dataframe with master index for syncing between data sources. ''' if not load: # Make a dummy dataframe so everyone else can make complete dataframes tmp1 = df[['district', 'state', 'year']] tmp2 = df2[['district', 'state', 'year']] master_index = pd.concat([tmp1, tmp2]) if save: pickle.dump(master_index, open('Datasets/master_index.p', 'wb')) return master_index else: master_index = pickle.load(open('Datasets/master_index.p', 'rb')) return master_index def fetch_trimmed_data(df1, df2, minYear=2012): '''Compile training data. Additional cleaning and processing to generate additional features. arguments: df1 -- dataframe to compile training data from, should be loaded through load_data() and cleaned with clean_index() df2 -- dataframe with 2nd place candidates for each race minYear -- only records for all years from and after the min year will be kept (int) returns: dataframe containing training data. ''' df1 = df1[['district', 'state', 'year', 'party', 'candidatevotes', 'totalvotes', 'candidate']] df2 = df2[['district', 'state', 'year', 'party', 'candidatevotes', 'totalvotes', 'candidate']] ########################################## ADDITIONAL CLEANING RELATED TO PARTY ########################################## #democratic-farmer-labor -> democratic party (one entry in 2012) df1.loc[df1['party'] == 'democratic-farmer-labor', 'party'] = 'democrat' #tax revolt -> republican party (one entry in 2012) df1.loc[df1['party'] == 'tax revolt', 'party'] = 'republican' #no clear indication which was to cast it, go by candidates closest affiliation between democrat/republican #independent -> democrat (one entry in 2004 -- bernard sanders) df1.loc[df1['party'] == 'independent', 'party'] = 'democrat' #reform -> republican (two entires in 2002, 2004 -- henry e. brown jr., 2002 -- barbara dale washer) df1.loc[df1['party'] == 'reform', 'party'] = 'republican' #republican/democrat -> republican (one entry in 2002) -- Don Sherwood df1.loc[df1['party'] == 'republican/democrat', 'party'] = 'republican' #KS 1.0: republican (tea party) -- might be nan because he ran under republican party ticket but he's actually from tea party? #KS 2.0: republican (tea party) #KS 3.0: republican (?) #KS 4.0: republican (tea party) #LA 1.0: republican (it's complicated) #LA 2.0: democrat (?) #LA 3.0: republican #if there is a run off election, we don't include it in the data. so vote counts could be iffy (e.g. see issues with verifying LA 3.0 vote counts) #winner may be in correct then if the votes are not from the run-off election, like they should be! in this case.. #LA 4.0: republican (tea party? maybe...) #LA 5.0: republican (tea party caucus) #LA 6.0: republican (tea party) #MS 1.0: republican #MS 2.0: democrat (??) #MS 3.0: republican #MS 4.0: republican #ND 0.0: republican #WY 0.0: republican df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'KS') & (df1['district'] == 1.0), 'party'] = 'republican' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'KS') & (df1['district'] == 2.0), 'party'] = 'republican' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'KS') & (df1['district'] == 3.0), 'party'] = 'republican' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'KS') & (df1['district'] == 4.0), 'party'] = 'republican' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'LA') & (df1['district'] == 1.0), 'party'] = 'republican' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'LA') & (df1['district'] == 2.0), 'party'] = 'democrat' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'LA') & (df1['district'] == 3.0), 'party'] = 'republican' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'LA') & (df1['district'] == 4.0), 'party'] = 'republican' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'LA') & (df1['district'] == 5.0), 'party'] = 'republican' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'LA') & (df1['district'] == 6.0), 'party'] = 'republican' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'MS') & (df1['district'] == 1.0), 'party'] = 'republican' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'MS') & (df1['district'] == 2.0), 'party'] = 'democrat' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'MS') & (df1['district'] == 3.0), 'party'] = 'republican' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'MS') & (df1['district'] == 4.0), 'party'] = 'republican' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'ND') & (df1['district'] == 1.0), 'party'] = 'republican' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'WY') & (df1['district'] == 1.0), 'party'] = 'republican' df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'CO') & (df1['district'] == 6.0), 'party'] = 'republican' #democratic-farmer-labor -> democratic party (one entry in 2012) df2.loc[df2['party'] == 'democratic-farmer-labor', 'party'] = 'democrat' #tax revolt -> republican party (one entry in 2012) df2.loc[df2['party'] == 'tax revolt', 'party'] = 'republican' #no clear indication which was to cast it, go by candidates closest affiliation between democrat/republican #independent -> democrat (one entry in 2004 -- bernard sanders) df2.loc[df2['party'] == 'independent', 'party'] = 'democrat' #reform -> republican (two entires in 2002, 2004 -- henry e. brown jr., 2002 -- barbara dale washer) df2.loc[df2['party'] == 'reform', 'party'] = 'republican' #republican/democrat -> republican (one entry in 2002) -- Don Sherwood df2.loc[df2['party'] == 'republican/democrat', 'party'] = 'republican' #KS 1.0: republican (tea party) -- might be nan because he ran under republican party ticket but he's actually from tea party? #KS 2.0: republican (tea party) #KS 3.0: republican (?) #KS 4.0: republican (tea party) #LA 1.0: republican (it's complicated) #LA 2.0: democrat (?) #LA 3.0: republican #if there is a run off election, we don't include it in the data. so vote counts could be iffy (e.g. see issues with verifying LA 3.0 vote counts) #winner may be in correct then if the votes are not from the run-off election, like they should be! in this case.. #LA 4.0: republican (tea party? maybe...) #LA 5.0: republican (tea party caucus) #LA 6.0: republican (tea party) #MS 1.0: republican #MS 2.0: democrat (??) #MS 3.0: republican #MS 4.0: republican #ND 0.0: republican #WY 0.0: republican df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'KS') & (df2['district'] == 1.0), 'party'] = 'republican' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'KS') & (df2['district'] == 2.0), 'party'] = 'republican' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'KS') & (df2['district'] == 3.0), 'party'] = 'republican' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'KS') & (df2['district'] == 4.0), 'party'] = 'republican' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'LA') & (df2['district'] == 1.0), 'party'] = 'republican' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'LA') & (df2['district'] == 2.0), 'party'] = 'democrat' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'LA') & (df2['district'] == 3.0), 'party'] = 'republican' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'LA') & (df2['district'] == 4.0), 'party'] = 'republican' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'LA') & (df2['district'] == 5.0), 'party'] = 'republican' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'LA') & (df2['district'] == 6.0), 'party'] = 'republican' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'MS') & (df2['district'] == 1.0), 'party'] = 'republican' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'MS') & (df2['district'] == 2.0), 'party'] = 'democrat' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'MS') & (df2['district'] == 3.0), 'party'] = 'republican' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'MS') & (df2['district'] == 4.0), 'party'] = 'republican' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'ND') & (df2['district'] == 1.0), 'party'] = 'republican' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'WY') & (df2['district'] == 1.0), 'party'] = 'republican' df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'CO') & (df2['district'] == 6.0), 'party'] = 'republican' ########################################## ADDITIONAL PROCESSING W. ASSUMPTIONS ########################################## poll = pickle.load(open('Datasets/national_poll.p', 'rb')) for year in range(minYear, int(max(df1['year'].values))+1, 2): #convention: t-> current election, t-2 (tm2) -> previous election for index_t, row in df1.iterrows(): if row['year'] == year: index_tm2 = index_t.replace(str(year), str(year-2)) if index_tm2 in df1.index: #a district is dropped if it does not exist in all years being processed (implictly assuming districts are the same shape across all years) #################### POLLING FEATURES #################### poll_t = poll.loc[poll.index == index_t, 'national_poll'].values[0] poll_tm2 = poll.loc[poll.index == index_tm2, 'national_poll'].values[0] df1.loc[df1.index == index_t, 'national_poll'] = poll_t df1.loc[df1.index == index_t, 'national_poll_prev'] = poll_tm2 df1.loc[df1.index == index_t, 'national_poll_delta_subtract'] = poll_t - poll_tm2 df1.loc[df1.index == index_t, 'national_poll_delta_divide'] = poll_t/poll_tm2 #################### POLLING FEATURES #################### #################### PREVIOUS WINNERS #################### df1.loc[df1.index == index_t, 'previous_party'] = df1.loc[df1.index == index_tm2, 'party'].values[0] #################### PREVIOUS WINNERS #################### #################### MARGIN FEATURES #################### #convention: when signed, always defined as dem +ve and rep -ve winner_totalvotes = df1.loc[df1.index == index_tm2, 'totalvotes'].values[0] loser_totalvotes = df2.loc[df2.index == index_tm2, 'totalvotes'].values[0] if winner_totalvotes == 0: winner_margin = 1 else: winner_margin = (df1.loc[df1.index == index_tm2, 'candidatevotes'].values[0])/(winner_totalvotes) if loser_totalvotes == 0: loser_margin = 1 else: loser_margin = (df2.loc[df2.index == index_tm2, 'candidatevotes'].values[0])/(loser_totalvotes) if winner_margin == loser_margin: #only 1 player loser_margin = 1e-10 else: loser_margin = (df2.loc[df2.index == index_tm2, 'candidatevotes'].values[0])/(df2.loc[df2.index == index_tm2, 'totalvotes'].values[0]) ### see convention for 2nd winner when only 1 player ### label_dem = 'dem_win_margin_prev' label_rep = 'rep_win_margin_prev' label_sm = 'margin_signed_minus_prev' label_um = 'margin_unsigned_minus_prev' label_sd = 'margin_signed_divide_prev' label_ud = 'margin_unsigned_divide_prev' if df1.loc[df1.index == index_tm2, 'party'].values[0] == 'democrat': df1.loc[df1.index == index_t, label_dem] = winner_margin df1.loc[df1.index == index_t, label_rep] = loser_margin df1.loc[df1.index == index_t, label_sm] = winner_margin - loser_margin if loser_margin != 0: df1.loc[df1.index == index_t, label_sd] = winner_margin/loser_margin else: df1.loc[df1.index == index_t, label_sd] = winner_margin/(1e-10) elif df1.loc[df1.index == index_tm2, 'party'].values[0] == 'republican': df1.loc[df1.index == index_t, label_dem] = loser_margin df1.loc[df1.index == index_t, label_rep] = winner_margin df1.loc[df1.index == index_t, label_sm] = loser_margin - winner_margin if winner_margin != 0: df1.loc[df1.index == index_t, label_sd] = loser_margin/winner_margin else: df1.loc[df1.index == index_t, label_sd] = loser_margin/(1e-10) df1.loc[df1.index == index_t, label_um] = winner_margin - loser_margin if loser_margin != 0: df1.loc[df1.index == index_t, label_ud] = winner_margin/loser_margin else: df1.loc[df1.index == index_t, label_ud] = winner_margin/(1e-10) #if previous winner was democrat #################### MARGIN FEATURES #################### # to-do features # incumbent? name check # summary statistics for winning margins changing over time else: df1 = df1[df1.index != index_t] #trim df1 down to only 1 election before minyear df1 = df1[df1['year'] != minYear - 2] #################### PREVIOUS WINNER FEATURES #################### df1.loc[df1['previous_party'] == 'democrat', 'dem_win_prev'] = 1 df1.loc[df1['previous_party'] != 'democrat', 'dem_win_prev'] = 0 df1.loc[df1['previous_party'] == 'republican', 'rep_win_prev'] = 1 df1.loc[df1['previous_party'] != 'republican', 'rep_win_prev'] = 0 #################### PREVIOUS WINNER FEATURES #################### #################### OBSERVED WINNER #################### df1.loc[df1['party'] == 'democrat', 'dem_win'] = 1 df1.loc[df1['party'] != 'democrat', 'dem_win'] = 0 df1.loc[df1['party'] == 'republican', 'rep_win'] = 1 df1.loc[df1['party'] != 'republican', 'rep_win'] = 0 #################### OBSERVED WINNER #################### return df1
[ "import pandas as pd\nimport numpy as np\nimport pickle\n'''\nParse 1976-2016 house data from https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IG0UN2\n\n@relFilePath : file path of house results data, relative to python notebook\n\n@return: dataframe indexed by (year, state, district)\n'''\n\ndef load_data(relFilePath, minYear=2010):\n ''' Keep only the winner and 2nd place candidates within each state's district for every year.\n arguments:\n relFilePath -- path to the data file (csv)\n minYear -- only records for all years from and after the min year will be kept (int)\n returns:\n dataframe with only the winners (pandas.dataframe)\n dataframe with only the 2nd place candidates (pandas.dataframe)\n '''\n\n data_df = pd.read_csv(relFilePath)\n\n winners_df = pd.DataFrame()\n winners2_df = pd.DataFrame()\n for key, shard in data_df.groupby(['year', 'state_po', 'district']): \n if int(key[0]) >= minYear:\n #convention: 2nd winner = 1st winner if only 1 player\n winners_df = winners_df.append(shard.loc[shard['candidatevotes'].idxmax()])\n sortedIndices = (shard['candidatevotes'].values.argsort()[::-1])\n if len(sortedIndices) > 1:\n winners2_df = winners2_df.append(shard.iloc[sortedIndices[1]])\n else:\n winners2_df = winners2_df.append(shard.iloc[sortedIndices[0]])\n return winners_df, winners2_df\n\ndef clean_index(df, clean_before_build=True):\n '''Performs general clean up tasks on the key columns. Generates the master key.\n arguments:\n df -- dataframe to clean up, should contain the columns 'district', 'state_po' and 'year' (pandas.dataframe)\n returns:\n dataframe with cleaned key columns and index (pandas.dataframe)\n '''\n if clean_before_build:\n # drop default index\n df = df.reset_index().drop(['index','state'], axis=1)\n # rename state code\n df = df.rename(columns={'state_po' : 'state'})\n #format year and district columns as ints\n df = df.astype({'year': int, 'district': int})\n #make sure all districts start with 1\n df.loc[df['district']==0, 'district'] = 1\n\n # glue together the columns to get a more descriptive index \n df.index = ['{0}_{1:02d}_{2}'.format(row['state'],row['district'],row['year']) for _,row in df.iterrows()]\n\n return df\n\ndef fetch_index(df, df2, save=False, load=False):\n '''Helper function for generating/loading master index for syncing between data sources.\n arguments:\n df -- dataframe to parse index from, MUST CONTAIN FULL COPIES OF THE 'district', 'state_po', 'year' COLUMNS (pandas.dataframe)\n returns:\n dataframe with master index for syncing between data sources.\n '''\n\n if not load:\n # Make a dummy dataframe so everyone else can make complete dataframes\n tmp1 = df[['district', 'state', 'year']]\n tmp2 = df2[['district', 'state', 'year']]\n master_index = pd.concat([tmp1, tmp2])\n\n if save:\n pickle.dump(master_index, open('Datasets/master_index.p', 'wb'))\n return master_index\n\n else:\n master_index = pickle.load(open('Datasets/master_index.p', 'rb'))\n return master_index \n\ndef fetch_trimmed_data(df1, df2, minYear=2012):\n '''Compile training data. Additional cleaning and processing to generate additional features.\n arguments:\n df1 -- dataframe to compile training data from, should be loaded through load_data() and cleaned with clean_index()\n df2 -- dataframe with 2nd place candidates for each race\n minYear -- only records for all years from and after the min year will be kept (int)\n returns:\n dataframe containing training data.\n '''\n\n df1 = df1[['district', 'state', 'year', 'party', 'candidatevotes', 'totalvotes', 'candidate']]\n df2 = df2[['district', 'state', 'year', 'party', 'candidatevotes', 'totalvotes', 'candidate']]\n\n ########################################## ADDITIONAL CLEANING RELATED TO PARTY ##########################################\n\n #democratic-farmer-labor -> democratic party (one entry in 2012)\n df1.loc[df1['party'] == 'democratic-farmer-labor', 'party'] = 'democrat'\n #tax revolt -> republican party (one entry in 2012)\n df1.loc[df1['party'] == 'tax revolt', 'party'] = 'republican'\n\n #no clear indication which was to cast it, go by candidates closest affiliation between democrat/republican \n #independent -> democrat (one entry in 2004 -- bernard sanders)\n df1.loc[df1['party'] == 'independent', 'party'] = 'democrat' \n #reform -> republican (two entires in 2002, 2004 -- henry e. brown jr., 2002 -- barbara dale washer)\n df1.loc[df1['party'] == 'reform', 'party'] = 'republican'\n #republican/democrat -> republican (one entry in 2002) -- Don Sherwood\n df1.loc[df1['party'] == 'republican/democrat', 'party'] = 'republican'\n \n #KS 1.0: republican (tea party) -- might be nan because he ran under republican party ticket but he's actually from tea party?\n #KS 2.0: republican (tea party)\n #KS 3.0: republican (?)\n #KS 4.0: republican (tea party)\n #LA 1.0: republican (it's complicated)\n #LA 2.0: democrat (?)\n #LA 3.0: republican\n #if there is a run off election, we don't include it in the data. so vote counts could be iffy (e.g. see issues with verifying LA 3.0 vote counts)\n #winner may be in correct then if the votes are not from the run-off election, like they should be! in this case..\n #LA 4.0: republican (tea party? maybe...)\n #LA 5.0: republican (tea party caucus)\n #LA 6.0: republican (tea party)\n #MS 1.0: republican\n #MS 2.0: democrat (??)\n #MS 3.0: republican\n #MS 4.0: republican\n #ND 0.0: republican\n #WY 0.0: republican\n\n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'KS') & (df1['district'] == 1.0), 'party'] = 'republican'\n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'KS') & (df1['district'] == 2.0), 'party'] = 'republican'\n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'KS') & (df1['district'] == 3.0), 'party'] = 'republican'\n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'KS') & (df1['district'] == 4.0), 'party'] = 'republican'\n \n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'LA') & (df1['district'] == 1.0), 'party'] = 'republican'\n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'LA') & (df1['district'] == 2.0), 'party'] = 'democrat'\n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'LA') & (df1['district'] == 3.0), 'party'] = 'republican'\n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'LA') & (df1['district'] == 4.0), 'party'] = 'republican'\n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'LA') & (df1['district'] == 5.0), 'party'] = 'republican'\n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'LA') & (df1['district'] == 6.0), 'party'] = 'republican'\n \n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'MS') & (df1['district'] == 1.0), 'party'] = 'republican'\n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'MS') & (df1['district'] == 2.0), 'party'] = 'democrat'\n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'MS') & (df1['district'] == 3.0), 'party'] = 'republican'\n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'MS') & (df1['district'] == 4.0), 'party'] = 'republican'\n \n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'ND') & (df1['district'] == 1.0), 'party'] = 'republican'\n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'WY') & (df1['district'] == 1.0), 'party'] = 'republican'\n\n df1.loc[(pd.isnull(df1['party'])) & (df1['state'] == 'CO') & (df1['district'] == 6.0), 'party'] = 'republican'\n\n #democratic-farmer-labor -> democratic party (one entry in 2012)\n df2.loc[df2['party'] == 'democratic-farmer-labor', 'party'] = 'democrat'\n #tax revolt -> republican party (one entry in 2012)\n df2.loc[df2['party'] == 'tax revolt', 'party'] = 'republican' \n \n #no clear indication which was to cast it, go by candidates closest affiliation between democrat/republican \n #independent -> democrat (one entry in 2004 -- bernard sanders)\n df2.loc[df2['party'] == 'independent', 'party'] = 'democrat' \n #reform -> republican (two entires in 2002, 2004 -- henry e. brown jr., 2002 -- barbara dale washer)\n df2.loc[df2['party'] == 'reform', 'party'] = 'republican'\n #republican/democrat -> republican (one entry in 2002) -- Don Sherwood\n df2.loc[df2['party'] == 'republican/democrat', 'party'] = 'republican'\n \n #KS 1.0: republican (tea party) -- might be nan because he ran under republican party ticket but he's actually from tea party?\n #KS 2.0: republican (tea party)\n #KS 3.0: republican (?)\n #KS 4.0: republican (tea party)\n #LA 1.0: republican (it's complicated)\n #LA 2.0: democrat (?)\n #LA 3.0: republican\n #if there is a run off election, we don't include it in the data. so vote counts could be iffy (e.g. see issues with verifying LA 3.0 vote counts)\n #winner may be in correct then if the votes are not from the run-off election, like they should be! in this case..\n #LA 4.0: republican (tea party? maybe...)\n #LA 5.0: republican (tea party caucus)\n #LA 6.0: republican (tea party)\n #MS 1.0: republican\n #MS 2.0: democrat (??)\n #MS 3.0: republican\n #MS 4.0: republican\n #ND 0.0: republican\n #WY 0.0: republican\n\n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'KS') & (df2['district'] == 1.0), 'party'] = 'republican'\n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'KS') & (df2['district'] == 2.0), 'party'] = 'republican'\n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'KS') & (df2['district'] == 3.0), 'party'] = 'republican'\n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'KS') & (df2['district'] == 4.0), 'party'] = 'republican'\n \n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'LA') & (df2['district'] == 1.0), 'party'] = 'republican'\n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'LA') & (df2['district'] == 2.0), 'party'] = 'democrat'\n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'LA') & (df2['district'] == 3.0), 'party'] = 'republican'\n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'LA') & (df2['district'] == 4.0), 'party'] = 'republican'\n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'LA') & (df2['district'] == 5.0), 'party'] = 'republican'\n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'LA') & (df2['district'] == 6.0), 'party'] = 'republican'\n \n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'MS') & (df2['district'] == 1.0), 'party'] = 'republican'\n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'MS') & (df2['district'] == 2.0), 'party'] = 'democrat'\n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'MS') & (df2['district'] == 3.0), 'party'] = 'republican'\n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'MS') & (df2['district'] == 4.0), 'party'] = 'republican'\n \n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'ND') & (df2['district'] == 1.0), 'party'] = 'republican'\n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'WY') & (df2['district'] == 1.0), 'party'] = 'republican'\n\n df2.loc[(pd.isnull(df2['party'])) & (df2['state'] == 'CO') & (df2['district'] == 6.0), 'party'] = 'republican'\n\n \n ########################################## ADDITIONAL PROCESSING W. ASSUMPTIONS ##########################################\n \n\n poll = pickle.load(open('Datasets/national_poll.p', 'rb'))\n for year in range(minYear, int(max(df1['year'].values))+1, 2):\n #convention: t-> current election, t-2 (tm2) -> previous election\n for index_t, row in df1.iterrows():\n if row['year'] == year:\n index_tm2 = index_t.replace(str(year), str(year-2))\n if index_tm2 in df1.index:\n #a district is dropped if it does not exist in all years being processed (implictly assuming districts are the same shape across all years)\n\n #################### POLLING FEATURES ####################\n poll_t = poll.loc[poll.index == index_t, 'national_poll'].values[0]\n poll_tm2 = poll.loc[poll.index == index_tm2, 'national_poll'].values[0]\n df1.loc[df1.index == index_t, 'national_poll'] = poll_t\n df1.loc[df1.index == index_t, 'national_poll_prev'] = poll_tm2\n df1.loc[df1.index == index_t, 'national_poll_delta_subtract'] = poll_t - poll_tm2\n df1.loc[df1.index == index_t, 'national_poll_delta_divide'] = poll_t/poll_tm2\n #################### POLLING FEATURES ####################\n\n #################### PREVIOUS WINNERS ####################\n df1.loc[df1.index == index_t, 'previous_party'] = df1.loc[df1.index == index_tm2, 'party'].values[0]\n #################### PREVIOUS WINNERS ####################\n\n \n #################### MARGIN FEATURES ####################\n #convention: when signed, always defined as dem +ve and rep -ve\n winner_totalvotes = df1.loc[df1.index == index_tm2, 'totalvotes'].values[0]\n loser_totalvotes = df2.loc[df2.index == index_tm2, 'totalvotes'].values[0]\n if winner_totalvotes == 0:\n winner_margin = 1\n else:\n winner_margin = (df1.loc[df1.index == index_tm2, 'candidatevotes'].values[0])/(winner_totalvotes)\n if loser_totalvotes == 0:\n loser_margin = 1\n else:\n loser_margin = (df2.loc[df2.index == index_tm2, 'candidatevotes'].values[0])/(loser_totalvotes)\n\n if winner_margin == loser_margin:\n #only 1 player\n loser_margin = 1e-10\n else:\n loser_margin = (df2.loc[df2.index == index_tm2, 'candidatevotes'].values[0])/(df2.loc[df2.index == index_tm2, 'totalvotes'].values[0]) \n ### see convention for 2nd winner when only 1 player ###\n\n label_dem = 'dem_win_margin_prev'\n label_rep = 'rep_win_margin_prev'\n label_sm = 'margin_signed_minus_prev'\n label_um = 'margin_unsigned_minus_prev'\n label_sd = 'margin_signed_divide_prev'\n label_ud = 'margin_unsigned_divide_prev'\n\n if df1.loc[df1.index == index_tm2, 'party'].values[0] == 'democrat':\n\n df1.loc[df1.index == index_t, label_dem] = winner_margin\n df1.loc[df1.index == index_t, label_rep] = loser_margin\n\n df1.loc[df1.index == index_t, label_sm] = winner_margin - loser_margin\n if loser_margin != 0:\n df1.loc[df1.index == index_t, label_sd] = winner_margin/loser_margin\n else:\n df1.loc[df1.index == index_t, label_sd] = winner_margin/(1e-10)\n\n elif df1.loc[df1.index == index_tm2, 'party'].values[0] == 'republican':\n\n df1.loc[df1.index == index_t, label_dem] = loser_margin\n df1.loc[df1.index == index_t, label_rep] = winner_margin\n\n df1.loc[df1.index == index_t, label_sm] = loser_margin - winner_margin\n if winner_margin != 0:\n df1.loc[df1.index == index_t, label_sd] = loser_margin/winner_margin\n else:\n df1.loc[df1.index == index_t, label_sd] = loser_margin/(1e-10)\n\n df1.loc[df1.index == index_t, label_um] = winner_margin - loser_margin\n if loser_margin != 0:\n df1.loc[df1.index == index_t, label_ud] = winner_margin/loser_margin\n else:\n df1.loc[df1.index == index_t, label_ud] = winner_margin/(1e-10)\n \n #if previous winner was democrat\n\n #################### MARGIN FEATURES ####################\n\n # to-do features\n # incumbent? name check\n # summary statistics for winning margins changing over time\n\n else:\n df1 = df1[df1.index != index_t]\n\n #trim df1 down to only 1 election before minyear\n df1 = df1[df1['year'] != minYear - 2]\n\n #################### PREVIOUS WINNER FEATURES ####################\n df1.loc[df1['previous_party'] == 'democrat', 'dem_win_prev'] = 1\n df1.loc[df1['previous_party'] != 'democrat', 'dem_win_prev'] = 0\n\n df1.loc[df1['previous_party'] == 'republican', 'rep_win_prev'] = 1\n df1.loc[df1['previous_party'] != 'republican', 'rep_win_prev'] = 0\n #################### PREVIOUS WINNER FEATURES ####################\n\n\n #################### OBSERVED WINNER ####################\n df1.loc[df1['party'] == 'democrat', 'dem_win'] = 1\n df1.loc[df1['party'] != 'democrat', 'dem_win'] = 0\n\n df1.loc[df1['party'] == 'republican', 'rep_win'] = 1\n df1.loc[df1['party'] != 'republican', 'rep_win'] = 0\n #################### OBSERVED WINNER ####################\n return df1 ", "import pandas as pd\nimport numpy as np\nimport pickle\n<docstring token>\n\n\ndef load_data(relFilePath, minYear=2010):\n \"\"\" Keep only the winner and 2nd place candidates within each state's district for every year.\n arguments:\n relFilePath -- path to the data file (csv)\n minYear -- only records for all years from and after the min year will be kept (int)\n returns:\n dataframe with only the winners (pandas.dataframe)\n dataframe with only the 2nd place candidates (pandas.dataframe)\n \"\"\"\n data_df = pd.read_csv(relFilePath)\n winners_df = pd.DataFrame()\n winners2_df = pd.DataFrame()\n for key, shard in data_df.groupby(['year', 'state_po', 'district']):\n if int(key[0]) >= minYear:\n winners_df = winners_df.append(shard.loc[shard['candidatevotes'\n ].idxmax()])\n sortedIndices = shard['candidatevotes'].values.argsort()[::-1]\n if len(sortedIndices) > 1:\n winners2_df = winners2_df.append(shard.iloc[sortedIndices[1]])\n else:\n winners2_df = winners2_df.append(shard.iloc[sortedIndices[0]])\n return winners_df, winners2_df\n\n\ndef clean_index(df, clean_before_build=True):\n \"\"\"Performs general clean up tasks on the key columns. Generates the master key.\n arguments:\n df -- dataframe to clean up, should contain the columns 'district', 'state_po' and 'year' (pandas.dataframe)\n returns:\n dataframe with cleaned key columns and index (pandas.dataframe)\n \"\"\"\n if clean_before_build:\n df = df.reset_index().drop(['index', 'state'], axis=1)\n df = df.rename(columns={'state_po': 'state'})\n df = df.astype({'year': int, 'district': int})\n df.loc[df['district'] == 0, 'district'] = 1\n df.index = ['{0}_{1:02d}_{2}'.format(row['state'], row['district'], row\n ['year']) for _, row in df.iterrows()]\n return df\n\n\ndef fetch_index(df, df2, save=False, load=False):\n \"\"\"Helper function for generating/loading master index for syncing between data sources.\n arguments:\n df -- dataframe to parse index from, MUST CONTAIN FULL COPIES OF THE 'district', 'state_po', 'year' COLUMNS (pandas.dataframe)\n returns:\n dataframe with master index for syncing between data sources.\n \"\"\"\n if not load:\n tmp1 = df[['district', 'state', 'year']]\n tmp2 = df2[['district', 'state', 'year']]\n master_index = pd.concat([tmp1, tmp2])\n if save:\n pickle.dump(master_index, open('Datasets/master_index.p', 'wb'))\n return master_index\n else:\n master_index = pickle.load(open('Datasets/master_index.p', 'rb'))\n return master_index\n\n\ndef fetch_trimmed_data(df1, df2, minYear=2012):\n \"\"\"Compile training data. Additional cleaning and processing to generate additional features.\n arguments:\n df1 -- dataframe to compile training data from, should be loaded through load_data() and cleaned with clean_index()\n df2 -- dataframe with 2nd place candidates for each race\n minYear -- only records for all years from and after the min year will be kept (int)\n returns:\n dataframe containing training data.\n \"\"\"\n df1 = df1[['district', 'state', 'year', 'party', 'candidatevotes',\n 'totalvotes', 'candidate']]\n df2 = df2[['district', 'state', 'year', 'party', 'candidatevotes',\n 'totalvotes', 'candidate']]\n df1.loc[df1['party'] == 'democratic-farmer-labor', 'party'] = 'democrat'\n df1.loc[df1['party'] == 'tax revolt', 'party'] = 'republican'\n df1.loc[df1['party'] == 'independent', 'party'] = 'democrat'\n df1.loc[df1['party'] == 'reform', 'party'] = 'republican'\n df1.loc[df1['party'] == 'republican/democrat', 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 2.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 3.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 4.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 2.0), 'party'] = 'democrat'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 3.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 4.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 5.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 6.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 2.0), 'party'] = 'democrat'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 3.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 4.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'ND') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'WY') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'CO') & (df1[\n 'district'] == 6.0), 'party'] = 'republican'\n df2.loc[df2['party'] == 'democratic-farmer-labor', 'party'] = 'democrat'\n df2.loc[df2['party'] == 'tax revolt', 'party'] = 'republican'\n df2.loc[df2['party'] == 'independent', 'party'] = 'democrat'\n df2.loc[df2['party'] == 'reform', 'party'] = 'republican'\n df2.loc[df2['party'] == 'republican/democrat', 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 2.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 3.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 4.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 2.0), 'party'] = 'democrat'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 3.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 4.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 5.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 6.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 2.0), 'party'] = 'democrat'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 3.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 4.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'ND') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'WY') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'CO') & (df2[\n 'district'] == 6.0), 'party'] = 'republican'\n poll = pickle.load(open('Datasets/national_poll.p', 'rb'))\n for year in range(minYear, int(max(df1['year'].values)) + 1, 2):\n for index_t, row in df1.iterrows():\n if row['year'] == year:\n index_tm2 = index_t.replace(str(year), str(year - 2))\n if index_tm2 in df1.index:\n poll_t = poll.loc[poll.index == index_t, 'national_poll'\n ].values[0]\n poll_tm2 = poll.loc[poll.index == index_tm2,\n 'national_poll'].values[0]\n df1.loc[df1.index == index_t, 'national_poll'] = poll_t\n df1.loc[df1.index == index_t, 'national_poll_prev'\n ] = poll_tm2\n df1.loc[df1.index == index_t,\n 'national_poll_delta_subtract'] = poll_t - poll_tm2\n df1.loc[df1.index == index_t, 'national_poll_delta_divide'\n ] = poll_t / poll_tm2\n df1.loc[df1.index == index_t, 'previous_party'] = df1.loc[\n df1.index == index_tm2, 'party'].values[0]\n winner_totalvotes = df1.loc[df1.index == index_tm2,\n 'totalvotes'].values[0]\n loser_totalvotes = df2.loc[df2.index == index_tm2,\n 'totalvotes'].values[0]\n if winner_totalvotes == 0:\n winner_margin = 1\n else:\n winner_margin = df1.loc[df1.index == index_tm2,\n 'candidatevotes'].values[0] / winner_totalvotes\n if loser_totalvotes == 0:\n loser_margin = 1\n else:\n loser_margin = df2.loc[df2.index == index_tm2,\n 'candidatevotes'].values[0] / loser_totalvotes\n if winner_margin == loser_margin:\n loser_margin = 1e-10\n else:\n loser_margin = df2.loc[df2.index == index_tm2,\n 'candidatevotes'].values[0] / df2.loc[df2.index ==\n index_tm2, 'totalvotes'].values[0]\n label_dem = 'dem_win_margin_prev'\n label_rep = 'rep_win_margin_prev'\n label_sm = 'margin_signed_minus_prev'\n label_um = 'margin_unsigned_minus_prev'\n label_sd = 'margin_signed_divide_prev'\n label_ud = 'margin_unsigned_divide_prev'\n if df1.loc[df1.index == index_tm2, 'party'].values[0\n ] == 'democrat':\n df1.loc[df1.index == index_t, label_dem\n ] = winner_margin\n df1.loc[df1.index == index_t, label_rep] = loser_margin\n df1.loc[df1.index == index_t, label_sm\n ] = winner_margin - loser_margin\n if loser_margin != 0:\n df1.loc[df1.index == index_t, label_sd\n ] = winner_margin / loser_margin\n else:\n df1.loc[df1.index == index_t, label_sd\n ] = winner_margin / 1e-10\n elif df1.loc[df1.index == index_tm2, 'party'].values[0\n ] == 'republican':\n df1.loc[df1.index == index_t, label_dem] = loser_margin\n df1.loc[df1.index == index_t, label_rep\n ] = winner_margin\n df1.loc[df1.index == index_t, label_sm\n ] = loser_margin - winner_margin\n if winner_margin != 0:\n df1.loc[df1.index == index_t, label_sd\n ] = loser_margin / winner_margin\n else:\n df1.loc[df1.index == index_t, label_sd\n ] = loser_margin / 1e-10\n df1.loc[df1.index == index_t, label_um\n ] = winner_margin - loser_margin\n if loser_margin != 0:\n df1.loc[df1.index == index_t, label_ud\n ] = winner_margin / loser_margin\n else:\n df1.loc[df1.index == index_t, label_ud\n ] = winner_margin / 1e-10\n else:\n df1 = df1[df1.index != index_t]\n df1 = df1[df1['year'] != minYear - 2]\n df1.loc[df1['previous_party'] == 'democrat', 'dem_win_prev'] = 1\n df1.loc[df1['previous_party'] != 'democrat', 'dem_win_prev'] = 0\n df1.loc[df1['previous_party'] == 'republican', 'rep_win_prev'] = 1\n df1.loc[df1['previous_party'] != 'republican', 'rep_win_prev'] = 0\n df1.loc[df1['party'] == 'democrat', 'dem_win'] = 1\n df1.loc[df1['party'] != 'democrat', 'dem_win'] = 0\n df1.loc[df1['party'] == 'republican', 'rep_win'] = 1\n df1.loc[df1['party'] != 'republican', 'rep_win'] = 0\n return df1\n", "<import token>\n<docstring token>\n\n\ndef load_data(relFilePath, minYear=2010):\n \"\"\" Keep only the winner and 2nd place candidates within each state's district for every year.\n arguments:\n relFilePath -- path to the data file (csv)\n minYear -- only records for all years from and after the min year will be kept (int)\n returns:\n dataframe with only the winners (pandas.dataframe)\n dataframe with only the 2nd place candidates (pandas.dataframe)\n \"\"\"\n data_df = pd.read_csv(relFilePath)\n winners_df = pd.DataFrame()\n winners2_df = pd.DataFrame()\n for key, shard in data_df.groupby(['year', 'state_po', 'district']):\n if int(key[0]) >= minYear:\n winners_df = winners_df.append(shard.loc[shard['candidatevotes'\n ].idxmax()])\n sortedIndices = shard['candidatevotes'].values.argsort()[::-1]\n if len(sortedIndices) > 1:\n winners2_df = winners2_df.append(shard.iloc[sortedIndices[1]])\n else:\n winners2_df = winners2_df.append(shard.iloc[sortedIndices[0]])\n return winners_df, winners2_df\n\n\ndef clean_index(df, clean_before_build=True):\n \"\"\"Performs general clean up tasks on the key columns. Generates the master key.\n arguments:\n df -- dataframe to clean up, should contain the columns 'district', 'state_po' and 'year' (pandas.dataframe)\n returns:\n dataframe with cleaned key columns and index (pandas.dataframe)\n \"\"\"\n if clean_before_build:\n df = df.reset_index().drop(['index', 'state'], axis=1)\n df = df.rename(columns={'state_po': 'state'})\n df = df.astype({'year': int, 'district': int})\n df.loc[df['district'] == 0, 'district'] = 1\n df.index = ['{0}_{1:02d}_{2}'.format(row['state'], row['district'], row\n ['year']) for _, row in df.iterrows()]\n return df\n\n\ndef fetch_index(df, df2, save=False, load=False):\n \"\"\"Helper function for generating/loading master index for syncing between data sources.\n arguments:\n df -- dataframe to parse index from, MUST CONTAIN FULL COPIES OF THE 'district', 'state_po', 'year' COLUMNS (pandas.dataframe)\n returns:\n dataframe with master index for syncing between data sources.\n \"\"\"\n if not load:\n tmp1 = df[['district', 'state', 'year']]\n tmp2 = df2[['district', 'state', 'year']]\n master_index = pd.concat([tmp1, tmp2])\n if save:\n pickle.dump(master_index, open('Datasets/master_index.p', 'wb'))\n return master_index\n else:\n master_index = pickle.load(open('Datasets/master_index.p', 'rb'))\n return master_index\n\n\ndef fetch_trimmed_data(df1, df2, minYear=2012):\n \"\"\"Compile training data. Additional cleaning and processing to generate additional features.\n arguments:\n df1 -- dataframe to compile training data from, should be loaded through load_data() and cleaned with clean_index()\n df2 -- dataframe with 2nd place candidates for each race\n minYear -- only records for all years from and after the min year will be kept (int)\n returns:\n dataframe containing training data.\n \"\"\"\n df1 = df1[['district', 'state', 'year', 'party', 'candidatevotes',\n 'totalvotes', 'candidate']]\n df2 = df2[['district', 'state', 'year', 'party', 'candidatevotes',\n 'totalvotes', 'candidate']]\n df1.loc[df1['party'] == 'democratic-farmer-labor', 'party'] = 'democrat'\n df1.loc[df1['party'] == 'tax revolt', 'party'] = 'republican'\n df1.loc[df1['party'] == 'independent', 'party'] = 'democrat'\n df1.loc[df1['party'] == 'reform', 'party'] = 'republican'\n df1.loc[df1['party'] == 'republican/democrat', 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 2.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 3.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 4.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 2.0), 'party'] = 'democrat'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 3.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 4.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 5.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 6.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 2.0), 'party'] = 'democrat'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 3.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 4.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'ND') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'WY') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'CO') & (df1[\n 'district'] == 6.0), 'party'] = 'republican'\n df2.loc[df2['party'] == 'democratic-farmer-labor', 'party'] = 'democrat'\n df2.loc[df2['party'] == 'tax revolt', 'party'] = 'republican'\n df2.loc[df2['party'] == 'independent', 'party'] = 'democrat'\n df2.loc[df2['party'] == 'reform', 'party'] = 'republican'\n df2.loc[df2['party'] == 'republican/democrat', 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 2.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 3.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 4.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 2.0), 'party'] = 'democrat'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 3.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 4.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 5.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 6.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 2.0), 'party'] = 'democrat'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 3.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 4.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'ND') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'WY') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'CO') & (df2[\n 'district'] == 6.0), 'party'] = 'republican'\n poll = pickle.load(open('Datasets/national_poll.p', 'rb'))\n for year in range(minYear, int(max(df1['year'].values)) + 1, 2):\n for index_t, row in df1.iterrows():\n if row['year'] == year:\n index_tm2 = index_t.replace(str(year), str(year - 2))\n if index_tm2 in df1.index:\n poll_t = poll.loc[poll.index == index_t, 'national_poll'\n ].values[0]\n poll_tm2 = poll.loc[poll.index == index_tm2,\n 'national_poll'].values[0]\n df1.loc[df1.index == index_t, 'national_poll'] = poll_t\n df1.loc[df1.index == index_t, 'national_poll_prev'\n ] = poll_tm2\n df1.loc[df1.index == index_t,\n 'national_poll_delta_subtract'] = poll_t - poll_tm2\n df1.loc[df1.index == index_t, 'national_poll_delta_divide'\n ] = poll_t / poll_tm2\n df1.loc[df1.index == index_t, 'previous_party'] = df1.loc[\n df1.index == index_tm2, 'party'].values[0]\n winner_totalvotes = df1.loc[df1.index == index_tm2,\n 'totalvotes'].values[0]\n loser_totalvotes = df2.loc[df2.index == index_tm2,\n 'totalvotes'].values[0]\n if winner_totalvotes == 0:\n winner_margin = 1\n else:\n winner_margin = df1.loc[df1.index == index_tm2,\n 'candidatevotes'].values[0] / winner_totalvotes\n if loser_totalvotes == 0:\n loser_margin = 1\n else:\n loser_margin = df2.loc[df2.index == index_tm2,\n 'candidatevotes'].values[0] / loser_totalvotes\n if winner_margin == loser_margin:\n loser_margin = 1e-10\n else:\n loser_margin = df2.loc[df2.index == index_tm2,\n 'candidatevotes'].values[0] / df2.loc[df2.index ==\n index_tm2, 'totalvotes'].values[0]\n label_dem = 'dem_win_margin_prev'\n label_rep = 'rep_win_margin_prev'\n label_sm = 'margin_signed_minus_prev'\n label_um = 'margin_unsigned_minus_prev'\n label_sd = 'margin_signed_divide_prev'\n label_ud = 'margin_unsigned_divide_prev'\n if df1.loc[df1.index == index_tm2, 'party'].values[0\n ] == 'democrat':\n df1.loc[df1.index == index_t, label_dem\n ] = winner_margin\n df1.loc[df1.index == index_t, label_rep] = loser_margin\n df1.loc[df1.index == index_t, label_sm\n ] = winner_margin - loser_margin\n if loser_margin != 0:\n df1.loc[df1.index == index_t, label_sd\n ] = winner_margin / loser_margin\n else:\n df1.loc[df1.index == index_t, label_sd\n ] = winner_margin / 1e-10\n elif df1.loc[df1.index == index_tm2, 'party'].values[0\n ] == 'republican':\n df1.loc[df1.index == index_t, label_dem] = loser_margin\n df1.loc[df1.index == index_t, label_rep\n ] = winner_margin\n df1.loc[df1.index == index_t, label_sm\n ] = loser_margin - winner_margin\n if winner_margin != 0:\n df1.loc[df1.index == index_t, label_sd\n ] = loser_margin / winner_margin\n else:\n df1.loc[df1.index == index_t, label_sd\n ] = loser_margin / 1e-10\n df1.loc[df1.index == index_t, label_um\n ] = winner_margin - loser_margin\n if loser_margin != 0:\n df1.loc[df1.index == index_t, label_ud\n ] = winner_margin / loser_margin\n else:\n df1.loc[df1.index == index_t, label_ud\n ] = winner_margin / 1e-10\n else:\n df1 = df1[df1.index != index_t]\n df1 = df1[df1['year'] != minYear - 2]\n df1.loc[df1['previous_party'] == 'democrat', 'dem_win_prev'] = 1\n df1.loc[df1['previous_party'] != 'democrat', 'dem_win_prev'] = 0\n df1.loc[df1['previous_party'] == 'republican', 'rep_win_prev'] = 1\n df1.loc[df1['previous_party'] != 'republican', 'rep_win_prev'] = 0\n df1.loc[df1['party'] == 'democrat', 'dem_win'] = 1\n df1.loc[df1['party'] != 'democrat', 'dem_win'] = 0\n df1.loc[df1['party'] == 'republican', 'rep_win'] = 1\n df1.loc[df1['party'] != 'republican', 'rep_win'] = 0\n return df1\n", "<import token>\n<docstring token>\n\n\ndef load_data(relFilePath, minYear=2010):\n \"\"\" Keep only the winner and 2nd place candidates within each state's district for every year.\n arguments:\n relFilePath -- path to the data file (csv)\n minYear -- only records for all years from and after the min year will be kept (int)\n returns:\n dataframe with only the winners (pandas.dataframe)\n dataframe with only the 2nd place candidates (pandas.dataframe)\n \"\"\"\n data_df = pd.read_csv(relFilePath)\n winners_df = pd.DataFrame()\n winners2_df = pd.DataFrame()\n for key, shard in data_df.groupby(['year', 'state_po', 'district']):\n if int(key[0]) >= minYear:\n winners_df = winners_df.append(shard.loc[shard['candidatevotes'\n ].idxmax()])\n sortedIndices = shard['candidatevotes'].values.argsort()[::-1]\n if len(sortedIndices) > 1:\n winners2_df = winners2_df.append(shard.iloc[sortedIndices[1]])\n else:\n winners2_df = winners2_df.append(shard.iloc[sortedIndices[0]])\n return winners_df, winners2_df\n\n\n<function token>\n\n\ndef fetch_index(df, df2, save=False, load=False):\n \"\"\"Helper function for generating/loading master index for syncing between data sources.\n arguments:\n df -- dataframe to parse index from, MUST CONTAIN FULL COPIES OF THE 'district', 'state_po', 'year' COLUMNS (pandas.dataframe)\n returns:\n dataframe with master index for syncing between data sources.\n \"\"\"\n if not load:\n tmp1 = df[['district', 'state', 'year']]\n tmp2 = df2[['district', 'state', 'year']]\n master_index = pd.concat([tmp1, tmp2])\n if save:\n pickle.dump(master_index, open('Datasets/master_index.p', 'wb'))\n return master_index\n else:\n master_index = pickle.load(open('Datasets/master_index.p', 'rb'))\n return master_index\n\n\ndef fetch_trimmed_data(df1, df2, minYear=2012):\n \"\"\"Compile training data. Additional cleaning and processing to generate additional features.\n arguments:\n df1 -- dataframe to compile training data from, should be loaded through load_data() and cleaned with clean_index()\n df2 -- dataframe with 2nd place candidates for each race\n minYear -- only records for all years from and after the min year will be kept (int)\n returns:\n dataframe containing training data.\n \"\"\"\n df1 = df1[['district', 'state', 'year', 'party', 'candidatevotes',\n 'totalvotes', 'candidate']]\n df2 = df2[['district', 'state', 'year', 'party', 'candidatevotes',\n 'totalvotes', 'candidate']]\n df1.loc[df1['party'] == 'democratic-farmer-labor', 'party'] = 'democrat'\n df1.loc[df1['party'] == 'tax revolt', 'party'] = 'republican'\n df1.loc[df1['party'] == 'independent', 'party'] = 'democrat'\n df1.loc[df1['party'] == 'reform', 'party'] = 'republican'\n df1.loc[df1['party'] == 'republican/democrat', 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 2.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 3.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 4.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 2.0), 'party'] = 'democrat'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 3.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 4.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 5.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 6.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 2.0), 'party'] = 'democrat'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 3.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 4.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'ND') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'WY') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'CO') & (df1[\n 'district'] == 6.0), 'party'] = 'republican'\n df2.loc[df2['party'] == 'democratic-farmer-labor', 'party'] = 'democrat'\n df2.loc[df2['party'] == 'tax revolt', 'party'] = 'republican'\n df2.loc[df2['party'] == 'independent', 'party'] = 'democrat'\n df2.loc[df2['party'] == 'reform', 'party'] = 'republican'\n df2.loc[df2['party'] == 'republican/democrat', 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 2.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 3.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 4.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 2.0), 'party'] = 'democrat'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 3.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 4.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 5.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 6.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 2.0), 'party'] = 'democrat'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 3.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 4.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'ND') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'WY') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'CO') & (df2[\n 'district'] == 6.0), 'party'] = 'republican'\n poll = pickle.load(open('Datasets/national_poll.p', 'rb'))\n for year in range(minYear, int(max(df1['year'].values)) + 1, 2):\n for index_t, row in df1.iterrows():\n if row['year'] == year:\n index_tm2 = index_t.replace(str(year), str(year - 2))\n if index_tm2 in df1.index:\n poll_t = poll.loc[poll.index == index_t, 'national_poll'\n ].values[0]\n poll_tm2 = poll.loc[poll.index == index_tm2,\n 'national_poll'].values[0]\n df1.loc[df1.index == index_t, 'national_poll'] = poll_t\n df1.loc[df1.index == index_t, 'national_poll_prev'\n ] = poll_tm2\n df1.loc[df1.index == index_t,\n 'national_poll_delta_subtract'] = poll_t - poll_tm2\n df1.loc[df1.index == index_t, 'national_poll_delta_divide'\n ] = poll_t / poll_tm2\n df1.loc[df1.index == index_t, 'previous_party'] = df1.loc[\n df1.index == index_tm2, 'party'].values[0]\n winner_totalvotes = df1.loc[df1.index == index_tm2,\n 'totalvotes'].values[0]\n loser_totalvotes = df2.loc[df2.index == index_tm2,\n 'totalvotes'].values[0]\n if winner_totalvotes == 0:\n winner_margin = 1\n else:\n winner_margin = df1.loc[df1.index == index_tm2,\n 'candidatevotes'].values[0] / winner_totalvotes\n if loser_totalvotes == 0:\n loser_margin = 1\n else:\n loser_margin = df2.loc[df2.index == index_tm2,\n 'candidatevotes'].values[0] / loser_totalvotes\n if winner_margin == loser_margin:\n loser_margin = 1e-10\n else:\n loser_margin = df2.loc[df2.index == index_tm2,\n 'candidatevotes'].values[0] / df2.loc[df2.index ==\n index_tm2, 'totalvotes'].values[0]\n label_dem = 'dem_win_margin_prev'\n label_rep = 'rep_win_margin_prev'\n label_sm = 'margin_signed_minus_prev'\n label_um = 'margin_unsigned_minus_prev'\n label_sd = 'margin_signed_divide_prev'\n label_ud = 'margin_unsigned_divide_prev'\n if df1.loc[df1.index == index_tm2, 'party'].values[0\n ] == 'democrat':\n df1.loc[df1.index == index_t, label_dem\n ] = winner_margin\n df1.loc[df1.index == index_t, label_rep] = loser_margin\n df1.loc[df1.index == index_t, label_sm\n ] = winner_margin - loser_margin\n if loser_margin != 0:\n df1.loc[df1.index == index_t, label_sd\n ] = winner_margin / loser_margin\n else:\n df1.loc[df1.index == index_t, label_sd\n ] = winner_margin / 1e-10\n elif df1.loc[df1.index == index_tm2, 'party'].values[0\n ] == 'republican':\n df1.loc[df1.index == index_t, label_dem] = loser_margin\n df1.loc[df1.index == index_t, label_rep\n ] = winner_margin\n df1.loc[df1.index == index_t, label_sm\n ] = loser_margin - winner_margin\n if winner_margin != 0:\n df1.loc[df1.index == index_t, label_sd\n ] = loser_margin / winner_margin\n else:\n df1.loc[df1.index == index_t, label_sd\n ] = loser_margin / 1e-10\n df1.loc[df1.index == index_t, label_um\n ] = winner_margin - loser_margin\n if loser_margin != 0:\n df1.loc[df1.index == index_t, label_ud\n ] = winner_margin / loser_margin\n else:\n df1.loc[df1.index == index_t, label_ud\n ] = winner_margin / 1e-10\n else:\n df1 = df1[df1.index != index_t]\n df1 = df1[df1['year'] != minYear - 2]\n df1.loc[df1['previous_party'] == 'democrat', 'dem_win_prev'] = 1\n df1.loc[df1['previous_party'] != 'democrat', 'dem_win_prev'] = 0\n df1.loc[df1['previous_party'] == 'republican', 'rep_win_prev'] = 1\n df1.loc[df1['previous_party'] != 'republican', 'rep_win_prev'] = 0\n df1.loc[df1['party'] == 'democrat', 'dem_win'] = 1\n df1.loc[df1['party'] != 'democrat', 'dem_win'] = 0\n df1.loc[df1['party'] == 'republican', 'rep_win'] = 1\n df1.loc[df1['party'] != 'republican', 'rep_win'] = 0\n return df1\n", "<import token>\n<docstring token>\n\n\ndef load_data(relFilePath, minYear=2010):\n \"\"\" Keep only the winner and 2nd place candidates within each state's district for every year.\n arguments:\n relFilePath -- path to the data file (csv)\n minYear -- only records for all years from and after the min year will be kept (int)\n returns:\n dataframe with only the winners (pandas.dataframe)\n dataframe with only the 2nd place candidates (pandas.dataframe)\n \"\"\"\n data_df = pd.read_csv(relFilePath)\n winners_df = pd.DataFrame()\n winners2_df = pd.DataFrame()\n for key, shard in data_df.groupby(['year', 'state_po', 'district']):\n if int(key[0]) >= minYear:\n winners_df = winners_df.append(shard.loc[shard['candidatevotes'\n ].idxmax()])\n sortedIndices = shard['candidatevotes'].values.argsort()[::-1]\n if len(sortedIndices) > 1:\n winners2_df = winners2_df.append(shard.iloc[sortedIndices[1]])\n else:\n winners2_df = winners2_df.append(shard.iloc[sortedIndices[0]])\n return winners_df, winners2_df\n\n\n<function token>\n<function token>\n\n\ndef fetch_trimmed_data(df1, df2, minYear=2012):\n \"\"\"Compile training data. Additional cleaning and processing to generate additional features.\n arguments:\n df1 -- dataframe to compile training data from, should be loaded through load_data() and cleaned with clean_index()\n df2 -- dataframe with 2nd place candidates for each race\n minYear -- only records for all years from and after the min year will be kept (int)\n returns:\n dataframe containing training data.\n \"\"\"\n df1 = df1[['district', 'state', 'year', 'party', 'candidatevotes',\n 'totalvotes', 'candidate']]\n df2 = df2[['district', 'state', 'year', 'party', 'candidatevotes',\n 'totalvotes', 'candidate']]\n df1.loc[df1['party'] == 'democratic-farmer-labor', 'party'] = 'democrat'\n df1.loc[df1['party'] == 'tax revolt', 'party'] = 'republican'\n df1.loc[df1['party'] == 'independent', 'party'] = 'democrat'\n df1.loc[df1['party'] == 'reform', 'party'] = 'republican'\n df1.loc[df1['party'] == 'republican/democrat', 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 2.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 3.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'KS') & (df1[\n 'district'] == 4.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 2.0), 'party'] = 'democrat'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 3.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 4.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 5.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'LA') & (df1[\n 'district'] == 6.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 2.0), 'party'] = 'democrat'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 3.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'MS') & (df1[\n 'district'] == 4.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'ND') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'WY') & (df1[\n 'district'] == 1.0), 'party'] = 'republican'\n df1.loc[pd.isnull(df1['party']) & (df1['state'] == 'CO') & (df1[\n 'district'] == 6.0), 'party'] = 'republican'\n df2.loc[df2['party'] == 'democratic-farmer-labor', 'party'] = 'democrat'\n df2.loc[df2['party'] == 'tax revolt', 'party'] = 'republican'\n df2.loc[df2['party'] == 'independent', 'party'] = 'democrat'\n df2.loc[df2['party'] == 'reform', 'party'] = 'republican'\n df2.loc[df2['party'] == 'republican/democrat', 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 2.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 3.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'KS') & (df2[\n 'district'] == 4.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 2.0), 'party'] = 'democrat'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 3.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 4.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 5.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'LA') & (df2[\n 'district'] == 6.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 2.0), 'party'] = 'democrat'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 3.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'MS') & (df2[\n 'district'] == 4.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'ND') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'WY') & (df2[\n 'district'] == 1.0), 'party'] = 'republican'\n df2.loc[pd.isnull(df2['party']) & (df2['state'] == 'CO') & (df2[\n 'district'] == 6.0), 'party'] = 'republican'\n poll = pickle.load(open('Datasets/national_poll.p', 'rb'))\n for year in range(minYear, int(max(df1['year'].values)) + 1, 2):\n for index_t, row in df1.iterrows():\n if row['year'] == year:\n index_tm2 = index_t.replace(str(year), str(year - 2))\n if index_tm2 in df1.index:\n poll_t = poll.loc[poll.index == index_t, 'national_poll'\n ].values[0]\n poll_tm2 = poll.loc[poll.index == index_tm2,\n 'national_poll'].values[0]\n df1.loc[df1.index == index_t, 'national_poll'] = poll_t\n df1.loc[df1.index == index_t, 'national_poll_prev'\n ] = poll_tm2\n df1.loc[df1.index == index_t,\n 'national_poll_delta_subtract'] = poll_t - poll_tm2\n df1.loc[df1.index == index_t, 'national_poll_delta_divide'\n ] = poll_t / poll_tm2\n df1.loc[df1.index == index_t, 'previous_party'] = df1.loc[\n df1.index == index_tm2, 'party'].values[0]\n winner_totalvotes = df1.loc[df1.index == index_tm2,\n 'totalvotes'].values[0]\n loser_totalvotes = df2.loc[df2.index == index_tm2,\n 'totalvotes'].values[0]\n if winner_totalvotes == 0:\n winner_margin = 1\n else:\n winner_margin = df1.loc[df1.index == index_tm2,\n 'candidatevotes'].values[0] / winner_totalvotes\n if loser_totalvotes == 0:\n loser_margin = 1\n else:\n loser_margin = df2.loc[df2.index == index_tm2,\n 'candidatevotes'].values[0] / loser_totalvotes\n if winner_margin == loser_margin:\n loser_margin = 1e-10\n else:\n loser_margin = df2.loc[df2.index == index_tm2,\n 'candidatevotes'].values[0] / df2.loc[df2.index ==\n index_tm2, 'totalvotes'].values[0]\n label_dem = 'dem_win_margin_prev'\n label_rep = 'rep_win_margin_prev'\n label_sm = 'margin_signed_minus_prev'\n label_um = 'margin_unsigned_minus_prev'\n label_sd = 'margin_signed_divide_prev'\n label_ud = 'margin_unsigned_divide_prev'\n if df1.loc[df1.index == index_tm2, 'party'].values[0\n ] == 'democrat':\n df1.loc[df1.index == index_t, label_dem\n ] = winner_margin\n df1.loc[df1.index == index_t, label_rep] = loser_margin\n df1.loc[df1.index == index_t, label_sm\n ] = winner_margin - loser_margin\n if loser_margin != 0:\n df1.loc[df1.index == index_t, label_sd\n ] = winner_margin / loser_margin\n else:\n df1.loc[df1.index == index_t, label_sd\n ] = winner_margin / 1e-10\n elif df1.loc[df1.index == index_tm2, 'party'].values[0\n ] == 'republican':\n df1.loc[df1.index == index_t, label_dem] = loser_margin\n df1.loc[df1.index == index_t, label_rep\n ] = winner_margin\n df1.loc[df1.index == index_t, label_sm\n ] = loser_margin - winner_margin\n if winner_margin != 0:\n df1.loc[df1.index == index_t, label_sd\n ] = loser_margin / winner_margin\n else:\n df1.loc[df1.index == index_t, label_sd\n ] = loser_margin / 1e-10\n df1.loc[df1.index == index_t, label_um\n ] = winner_margin - loser_margin\n if loser_margin != 0:\n df1.loc[df1.index == index_t, label_ud\n ] = winner_margin / loser_margin\n else:\n df1.loc[df1.index == index_t, label_ud\n ] = winner_margin / 1e-10\n else:\n df1 = df1[df1.index != index_t]\n df1 = df1[df1['year'] != minYear - 2]\n df1.loc[df1['previous_party'] == 'democrat', 'dem_win_prev'] = 1\n df1.loc[df1['previous_party'] != 'democrat', 'dem_win_prev'] = 0\n df1.loc[df1['previous_party'] == 'republican', 'rep_win_prev'] = 1\n df1.loc[df1['previous_party'] != 'republican', 'rep_win_prev'] = 0\n df1.loc[df1['party'] == 'democrat', 'dem_win'] = 1\n df1.loc[df1['party'] != 'democrat', 'dem_win'] = 0\n df1.loc[df1['party'] == 'republican', 'rep_win'] = 1\n df1.loc[df1['party'] != 'republican', 'rep_win'] = 0\n return df1\n", "<import token>\n<docstring token>\n\n\ndef load_data(relFilePath, minYear=2010):\n \"\"\" Keep only the winner and 2nd place candidates within each state's district for every year.\n arguments:\n relFilePath -- path to the data file (csv)\n minYear -- only records for all years from and after the min year will be kept (int)\n returns:\n dataframe with only the winners (pandas.dataframe)\n dataframe with only the 2nd place candidates (pandas.dataframe)\n \"\"\"\n data_df = pd.read_csv(relFilePath)\n winners_df = pd.DataFrame()\n winners2_df = pd.DataFrame()\n for key, shard in data_df.groupby(['year', 'state_po', 'district']):\n if int(key[0]) >= minYear:\n winners_df = winners_df.append(shard.loc[shard['candidatevotes'\n ].idxmax()])\n sortedIndices = shard['candidatevotes'].values.argsort()[::-1]\n if len(sortedIndices) > 1:\n winners2_df = winners2_df.append(shard.iloc[sortedIndices[1]])\n else:\n winners2_df = winners2_df.append(shard.iloc[sortedIndices[0]])\n return winners_df, winners2_df\n\n\n<function token>\n<function token>\n<function token>\n", "<import token>\n<docstring token>\n<function token>\n<function token>\n<function token>\n<function token>\n" ]
false
99,575
20baf2925451fdcaeb74e96728952070dd85e709
import requests latest_release = requests.get('https://api.github.com/repos/TryGhost/Ghost/releases/latest').json() latest_version = latest_release['tag_name'] print(latest_version)
[ "import requests\n\nlatest_release = requests.get('https://api.github.com/repos/TryGhost/Ghost/releases/latest').json()\nlatest_version = latest_release['tag_name']\n\nprint(latest_version)\n", "import requests\nlatest_release = requests.get(\n 'https://api.github.com/repos/TryGhost/Ghost/releases/latest').json()\nlatest_version = latest_release['tag_name']\nprint(latest_version)\n", "<import token>\nlatest_release = requests.get(\n 'https://api.github.com/repos/TryGhost/Ghost/releases/latest').json()\nlatest_version = latest_release['tag_name']\nprint(latest_version)\n", "<import token>\n<assignment token>\nprint(latest_version)\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,576
989eaf806111c5cd1b3b7208fa4e32a6df6ffdd0
import re import pprint m = {} ggg = [] s = set() wp = [] conf = '$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent"' regex = ''.join( '(?P<' + g + '>.*?)' if g else re.escape(c) for g, c in re.findall(r'\$(\w+)|(.)', conf)) with open('log.txt', 'r') as log_file: for line in log_file.readlines(): m = re.match(regex, line) ggg.append(m.groupdict()) for i in ggg: s.add(i['status']) for i in ggg: if i['status'] == '403': wp.append(i) print (s) pprint.pprint(wp)
[ "import re\r\nimport pprint\r\n\r\nm = {}\r\nggg = []\r\ns = set()\r\nwp = []\r\n\r\nconf = '$remote_addr - $remote_user [$time_local] \"$request\" $status $body_bytes_sent \"$http_referer\" \"$http_user_agent\"'\r\nregex = ''.join(\r\n '(?P<' + g + '>.*?)' if g else re.escape(c)\r\n for g, c in re.findall(r'\\$(\\w+)|(.)', conf))\r\n\r\nwith open('log.txt', 'r') as log_file:\r\n for line in log_file.readlines():\r\n m = re.match(regex, line)\r\n ggg.append(m.groupdict())\r\n\r\nfor i in ggg:\r\n s.add(i['status'])\r\n\r\nfor i in ggg:\r\n if i['status'] == '403':\r\n wp.append(i)\r\n\r\n\r\nprint (s)\r\npprint.pprint(wp)", "import re\nimport pprint\nm = {}\nggg = []\ns = set()\nwp = []\nconf = (\n '$remote_addr - $remote_user [$time_local] \"$request\" $status $body_bytes_sent \"$http_referer\" \"$http_user_agent\"'\n )\nregex = ''.join('(?P<' + g + '>.*?)' if g else re.escape(c) for g, c in re.\n findall('\\\\$(\\\\w+)|(.)', conf))\nwith open('log.txt', 'r') as log_file:\n for line in log_file.readlines():\n m = re.match(regex, line)\n ggg.append(m.groupdict())\nfor i in ggg:\n s.add(i['status'])\nfor i in ggg:\n if i['status'] == '403':\n wp.append(i)\nprint(s)\npprint.pprint(wp)\n", "<import token>\nm = {}\nggg = []\ns = set()\nwp = []\nconf = (\n '$remote_addr - $remote_user [$time_local] \"$request\" $status $body_bytes_sent \"$http_referer\" \"$http_user_agent\"'\n )\nregex = ''.join('(?P<' + g + '>.*?)' if g else re.escape(c) for g, c in re.\n findall('\\\\$(\\\\w+)|(.)', conf))\nwith open('log.txt', 'r') as log_file:\n for line in log_file.readlines():\n m = re.match(regex, line)\n ggg.append(m.groupdict())\nfor i in ggg:\n s.add(i['status'])\nfor i in ggg:\n if i['status'] == '403':\n wp.append(i)\nprint(s)\npprint.pprint(wp)\n", "<import token>\n<assignment token>\nwith open('log.txt', 'r') as log_file:\n for line in log_file.readlines():\n m = re.match(regex, line)\n ggg.append(m.groupdict())\nfor i in ggg:\n s.add(i['status'])\nfor i in ggg:\n if i['status'] == '403':\n wp.append(i)\nprint(s)\npprint.pprint(wp)\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,577
0e16d587a7eea2845145a1bf97d90795b7aff08c
from oauth import * class FavoriteListener(StreamListener): def on_status(self, status): f = open(os.path.abspath(os.path.dirname(__file__)) + '/../data/id.txt', 'r') userList = f.readlines() for i in range(len(userList)): userList[i] = userList[i].replace('\n', '') if(status.author.screen_name in userList): API(getOauth()).create_favorite(status.id) return True def on_error(self, status_code): print('Got an error with status code: ' + str(status_code)) return True def on_timeout(self): print('Timeout...') return True def main(): listener = FavoriteListener() stream = Stream(getOauth(), listener) stream.userstream() if __name__ == '__main__': main()
[ "from oauth import *\n\nclass FavoriteListener(StreamListener):\n\n def on_status(self, status):\n f = open(os.path.abspath(os.path.dirname(__file__)) + '/../data/id.txt', 'r')\n userList = f.readlines()\n for i in range(len(userList)):\n userList[i] = userList[i].replace('\\n', '')\n \n if(status.author.screen_name in userList):\n API(getOauth()).create_favorite(status.id)\n return True\n\n def on_error(self, status_code):\n print('Got an error with status code: ' + str(status_code))\n return True\n\n def on_timeout(self):\n print('Timeout...')\n return True\n\ndef main():\n listener = FavoriteListener()\n stream = Stream(getOauth(), listener)\n stream.userstream()\n\nif __name__ == '__main__':\n main()\n", "from oauth import *\n\n\nclass FavoriteListener(StreamListener):\n\n def on_status(self, status):\n f = open(os.path.abspath(os.path.dirname(__file__)) +\n '/../data/id.txt', 'r')\n userList = f.readlines()\n for i in range(len(userList)):\n userList[i] = userList[i].replace('\\n', '')\n if status.author.screen_name in userList:\n API(getOauth()).create_favorite(status.id)\n return True\n\n def on_error(self, status_code):\n print('Got an error with status code: ' + str(status_code))\n return True\n\n def on_timeout(self):\n print('Timeout...')\n return True\n\n\ndef main():\n listener = FavoriteListener()\n stream = Stream(getOauth(), listener)\n stream.userstream()\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n\n\nclass FavoriteListener(StreamListener):\n\n def on_status(self, status):\n f = open(os.path.abspath(os.path.dirname(__file__)) +\n '/../data/id.txt', 'r')\n userList = f.readlines()\n for i in range(len(userList)):\n userList[i] = userList[i].replace('\\n', '')\n if status.author.screen_name in userList:\n API(getOauth()).create_favorite(status.id)\n return True\n\n def on_error(self, status_code):\n print('Got an error with status code: ' + str(status_code))\n return True\n\n def on_timeout(self):\n print('Timeout...')\n return True\n\n\ndef main():\n listener = FavoriteListener()\n stream = Stream(getOauth(), listener)\n stream.userstream()\n\n\nif __name__ == '__main__':\n main()\n", "<import token>\n\n\nclass FavoriteListener(StreamListener):\n\n def on_status(self, status):\n f = open(os.path.abspath(os.path.dirname(__file__)) +\n '/../data/id.txt', 'r')\n userList = f.readlines()\n for i in range(len(userList)):\n userList[i] = userList[i].replace('\\n', '')\n if status.author.screen_name in userList:\n API(getOauth()).create_favorite(status.id)\n return True\n\n def on_error(self, status_code):\n print('Got an error with status code: ' + str(status_code))\n return True\n\n def on_timeout(self):\n print('Timeout...')\n return True\n\n\ndef main():\n listener = FavoriteListener()\n stream = Stream(getOauth(), listener)\n stream.userstream()\n\n\n<code token>\n", "<import token>\n\n\nclass FavoriteListener(StreamListener):\n\n def on_status(self, status):\n f = open(os.path.abspath(os.path.dirname(__file__)) +\n '/../data/id.txt', 'r')\n userList = f.readlines()\n for i in range(len(userList)):\n userList[i] = userList[i].replace('\\n', '')\n if status.author.screen_name in userList:\n API(getOauth()).create_favorite(status.id)\n return True\n\n def on_error(self, status_code):\n print('Got an error with status code: ' + str(status_code))\n return True\n\n def on_timeout(self):\n print('Timeout...')\n return True\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass FavoriteListener(StreamListener):\n\n def on_status(self, status):\n f = open(os.path.abspath(os.path.dirname(__file__)) +\n '/../data/id.txt', 'r')\n userList = f.readlines()\n for i in range(len(userList)):\n userList[i] = userList[i].replace('\\n', '')\n if status.author.screen_name in userList:\n API(getOauth()).create_favorite(status.id)\n return True\n\n def on_error(self, status_code):\n print('Got an error with status code: ' + str(status_code))\n return True\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass FavoriteListener(StreamListener):\n\n def on_status(self, status):\n f = open(os.path.abspath(os.path.dirname(__file__)) +\n '/../data/id.txt', 'r')\n userList = f.readlines()\n for i in range(len(userList)):\n userList[i] = userList[i].replace('\\n', '')\n if status.author.screen_name in userList:\n API(getOauth()).create_favorite(status.id)\n return True\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n\n\nclass FavoriteListener(StreamListener):\n <function token>\n <function token>\n <function token>\n\n\n<function token>\n<code token>\n", "<import token>\n<class token>\n<function token>\n<code token>\n" ]
false
99,578
13558a4c9677778248ba35096283a0a5fd24e7ff
# coding=utf8 ''' hackerrank''' ''' python version 2.7 ''' ''' @author: Michael Wan @since: 2014-12-31 @requires: xhtml2pdf https://pypi.python.org/pypi/xhtml2pdf/, reportlab, html5lib, PyPDF(optional) ''' from newspdf.xhtml2pdf import pisa data = open('test.html').read() result = file('test.pdf','wb') pdf = pisa.CreatePDF(data, result) result.close() pisa.startViewer('test.pdf')
[ "# coding=utf8\r\n\r\n''' hackerrank'''\r\n''' python version 2.7 '''\r\n'''\r\n@author: Michael Wan\r\n@since: 2014-12-31\r\n@requires: xhtml2pdf https://pypi.python.org/pypi/xhtml2pdf/, reportlab, html5lib, PyPDF(optional)\r\n'''\r\n\r\nfrom newspdf.xhtml2pdf import pisa\r\n\r\n\r\ndata = open('test.html').read()\r\nresult = file('test.pdf','wb')\r\npdf = pisa.CreatePDF(data, result)\r\nresult.close()\r\npisa.startViewer('test.pdf')", "<docstring token>\nfrom newspdf.xhtml2pdf import pisa\ndata = open('test.html').read()\nresult = file('test.pdf', 'wb')\npdf = pisa.CreatePDF(data, result)\nresult.close()\npisa.startViewer('test.pdf')\n", "<docstring token>\n<import token>\ndata = open('test.html').read()\nresult = file('test.pdf', 'wb')\npdf = pisa.CreatePDF(data, result)\nresult.close()\npisa.startViewer('test.pdf')\n", "<docstring token>\n<import token>\n<assignment token>\nresult.close()\npisa.startViewer('test.pdf')\n", "<docstring token>\n<import token>\n<assignment token>\n<code token>\n" ]
false
99,579
e58b8c711543684b756877fba4dcefc5b54304b8
n=int(input()) l=[int(i) for i in input().split()] for i in l: if i==0: l.remove(i) l.append(i) print(*l)
[ "n=int(input())\nl=[int(i) for i in input().split()]\nfor i in l:\n\tif i==0:\n\t\tl.remove(i)\n\t\tl.append(i)\nprint(*l)\n", "n = int(input())\nl = [int(i) for i in input().split()]\nfor i in l:\n if i == 0:\n l.remove(i)\n l.append(i)\nprint(*l)\n", "<assignment token>\nfor i in l:\n if i == 0:\n l.remove(i)\n l.append(i)\nprint(*l)\n", "<assignment token>\n<code token>\n" ]
false
99,580
cea22242cb3ff9d26204be009c0e07a1666efc91
from unittest import TestCase class simpleTest(TestCase): def setUp(self): pass def tearDown(self): pass def testExample(self): self.assertEqual(1, 1) def testOther(self): self.assertNotEqual(0, 1) if '__main__' == __name__: import unittest unittest.main() # vim: set ts=4 sw=4 expandtab enc=utf-8 :
[ "\nfrom unittest import TestCase\n\nclass simpleTest(TestCase):\n def setUp(self):\n pass\n\n def tearDown(self):\n pass\n\n def testExample(self):\n self.assertEqual(1, 1)\n\n def testOther(self):\n self.assertNotEqual(0, 1)\n\nif '__main__' == __name__:\n import unittest\n unittest.main()\n\n# vim: set ts=4 sw=4 expandtab enc=utf-8 :\n\n", "from unittest import TestCase\n\n\nclass simpleTest(TestCase):\n\n def setUp(self):\n pass\n\n def tearDown(self):\n pass\n\n def testExample(self):\n self.assertEqual(1, 1)\n\n def testOther(self):\n self.assertNotEqual(0, 1)\n\n\nif '__main__' == __name__:\n import unittest\n unittest.main()\n", "<import token>\n\n\nclass simpleTest(TestCase):\n\n def setUp(self):\n pass\n\n def tearDown(self):\n pass\n\n def testExample(self):\n self.assertEqual(1, 1)\n\n def testOther(self):\n self.assertNotEqual(0, 1)\n\n\nif '__main__' == __name__:\n import unittest\n unittest.main()\n", "<import token>\n\n\nclass simpleTest(TestCase):\n\n def setUp(self):\n pass\n\n def tearDown(self):\n pass\n\n def testExample(self):\n self.assertEqual(1, 1)\n\n def testOther(self):\n self.assertNotEqual(0, 1)\n\n\n<code token>\n", "<import token>\n\n\nclass simpleTest(TestCase):\n\n def setUp(self):\n pass\n <function token>\n\n def testExample(self):\n self.assertEqual(1, 1)\n\n def testOther(self):\n self.assertNotEqual(0, 1)\n\n\n<code token>\n", "<import token>\n\n\nclass simpleTest(TestCase):\n <function token>\n <function token>\n\n def testExample(self):\n self.assertEqual(1, 1)\n\n def testOther(self):\n self.assertNotEqual(0, 1)\n\n\n<code token>\n", "<import token>\n\n\nclass simpleTest(TestCase):\n <function token>\n <function token>\n\n def testExample(self):\n self.assertEqual(1, 1)\n <function token>\n\n\n<code token>\n", "<import token>\n\n\nclass simpleTest(TestCase):\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n<class token>\n<code token>\n" ]
false
99,581
ff770bca22acd53dd310716c518c82087482d025
# -*- coding: utf-8 -*- import numpy as np from matplotlib import pyplot as plt from keras.models import Sequential from keras.layers.core import Activation,Dense,Dropout from keras.layers import Conv2D,MaxPooling2D,Flatten from keras.optimizers import SGD,Adam from keras.datasets import mnist from keras.utils import np_utils from keras import initializers from keras.utils.vis_utils import plot_model # def init_weights(shape,name=None):#是否要做 # return initializers.normal(shape,scale=0.01,name=name) #Using TensorFlow backend. def load_data(): #载入数据 (x_train,y_train),(x_test,y_test)=mnist.load_data() print('X_train original shape:', x_train.shape) # plt.imshow(x_train[0]) number=10000 #数据处理 x_train=x_train[0:number] y_train=y_train[0:number] x_train=x_train.reshape(number,28*28) x_test=x_test.reshape(x_test.shape[0],28*28) x_train = x_train.astype('float32') x_test = x_test.astype('float32') print('X_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') y_train=np_utils.to_categorical(y_train,10) y_test=np_utils.to_categorical(y_test,10) x_train=x_train x_test=x_test x_train=x_train/255 x_test=x_test/255 return (x_train,y_train),(x_test,y_test) (x_train,y_train),(x_test,y_test)=load_data() #建立模型 model=Sequential() model.add(Dense(input_dim=28*28,units=500,activation='relu')) # model.add(Dense(input_dim=28*28,output_dim=500)) #输入层28*28,也就是图片,第一个输出层500个神经元 # model.add(Activation('sigmoid'))#激活函数 model.add(Dense(units=500,activation='relu')) # model.add(Dense(output_dim=500))#第二个输出层,500个神经元 # model.add(Activation('sigmoid')) model.add(Dense(units=10,activation='softmax')) # model.add(Dense(output_dim=10))#最后输出层,10维 # model.add(Activation('softmax')) model.summary() model.compile(loss='categorical_crossentropy',#损失函数进行评估 optimizer='adam',metrics=['accuracy'])#优化函数 model.fit(x_train,y_train,batch_size=16,nb_epoch=20)#Image,label,100个eample放在batch,每个batch重复20次 #testing data score=model.evaluate(x_test,y_test) print('Total loss on Testing Set:',score[0]) print('Accuracy of Testing Set: ',score[1]) result=model.predict(x_test)
[ "# -*- coding: utf-8 -*-\nimport numpy as np\nfrom matplotlib import pyplot as plt\nfrom keras.models import Sequential\nfrom keras.layers.core import Activation,Dense,Dropout\nfrom keras.layers import Conv2D,MaxPooling2D,Flatten\nfrom keras.optimizers import SGD,Adam\nfrom keras.datasets import mnist\nfrom keras.utils import np_utils\nfrom keras import initializers\nfrom keras.utils.vis_utils import plot_model\n# def init_weights(shape,name=None):#是否要做\n# return initializers.normal(shape,scale=0.01,name=name)\n#Using TensorFlow backend.\ndef load_data():\n #载入数据\n (x_train,y_train),(x_test,y_test)=mnist.load_data()\n print('X_train original shape:', x_train.shape)\n # plt.imshow(x_train[0])\n number=10000\n #数据处理\n x_train=x_train[0:number]\n y_train=y_train[0:number]\n x_train=x_train.reshape(number,28*28)\n x_test=x_test.reshape(x_test.shape[0],28*28)\n x_train = x_train.astype('float32')\n x_test = x_test.astype('float32')\n print('X_train shape:', x_train.shape)\n print(x_train.shape[0], 'train samples')\n print(x_test.shape[0], 'test samples')\n y_train=np_utils.to_categorical(y_train,10)\n y_test=np_utils.to_categorical(y_test,10)\n x_train=x_train\n x_test=x_test\n\n x_train=x_train/255\n x_test=x_test/255\n return (x_train,y_train),(x_test,y_test)\n\n(x_train,y_train),(x_test,y_test)=load_data()\n#建立模型\nmodel=Sequential()\n\nmodel.add(Dense(input_dim=28*28,units=500,activation='relu'))\n# model.add(Dense(input_dim=28*28,output_dim=500)) #输入层28*28,也就是图片,第一个输出层500个神经元\n# model.add(Activation('sigmoid'))#激活函数\n\nmodel.add(Dense(units=500,activation='relu'))\n# model.add(Dense(output_dim=500))#第二个输出层,500个神经元\n# model.add(Activation('sigmoid'))\n\nmodel.add(Dense(units=10,activation='softmax'))\n# model.add(Dense(output_dim=10))#最后输出层,10维\n# model.add(Activation('softmax'))\n\n\nmodel.summary()\n\nmodel.compile(loss='categorical_crossentropy',#损失函数进行评估\n optimizer='adam',metrics=['accuracy'])#优化函数\n\nmodel.fit(x_train,y_train,batch_size=16,nb_epoch=20)#Image,label,100个eample放在batch,每个batch重复20次\n\n#testing data\nscore=model.evaluate(x_test,y_test)\nprint('Total loss on Testing Set:',score[0])\nprint('Accuracy of Testing Set: ',score[1])\n\nresult=model.predict(x_test)\n\n\n\n", "import numpy as np\nfrom matplotlib import pyplot as plt\nfrom keras.models import Sequential\nfrom keras.layers.core import Activation, Dense, Dropout\nfrom keras.layers import Conv2D, MaxPooling2D, Flatten\nfrom keras.optimizers import SGD, Adam\nfrom keras.datasets import mnist\nfrom keras.utils import np_utils\nfrom keras import initializers\nfrom keras.utils.vis_utils import plot_model\n\n\ndef load_data():\n (x_train, y_train), (x_test, y_test) = mnist.load_data()\n print('X_train original shape:', x_train.shape)\n number = 10000\n x_train = x_train[0:number]\n y_train = y_train[0:number]\n x_train = x_train.reshape(number, 28 * 28)\n x_test = x_test.reshape(x_test.shape[0], 28 * 28)\n x_train = x_train.astype('float32')\n x_test = x_test.astype('float32')\n print('X_train shape:', x_train.shape)\n print(x_train.shape[0], 'train samples')\n print(x_test.shape[0], 'test samples')\n y_train = np_utils.to_categorical(y_train, 10)\n y_test = np_utils.to_categorical(y_test, 10)\n x_train = x_train\n x_test = x_test\n x_train = x_train / 255\n x_test = x_test / 255\n return (x_train, y_train), (x_test, y_test)\n\n\n(x_train, y_train), (x_test, y_test) = load_data()\nmodel = Sequential()\nmodel.add(Dense(input_dim=28 * 28, units=500, activation='relu'))\nmodel.add(Dense(units=500, activation='relu'))\nmodel.add(Dense(units=10, activation='softmax'))\nmodel.summary()\nmodel.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[\n 'accuracy'])\nmodel.fit(x_train, y_train, batch_size=16, nb_epoch=20)\nscore = model.evaluate(x_test, y_test)\nprint('Total loss on Testing Set:', score[0])\nprint('Accuracy of Testing Set: ', score[1])\nresult = model.predict(x_test)\n", "<import token>\n\n\ndef load_data():\n (x_train, y_train), (x_test, y_test) = mnist.load_data()\n print('X_train original shape:', x_train.shape)\n number = 10000\n x_train = x_train[0:number]\n y_train = y_train[0:number]\n x_train = x_train.reshape(number, 28 * 28)\n x_test = x_test.reshape(x_test.shape[0], 28 * 28)\n x_train = x_train.astype('float32')\n x_test = x_test.astype('float32')\n print('X_train shape:', x_train.shape)\n print(x_train.shape[0], 'train samples')\n print(x_test.shape[0], 'test samples')\n y_train = np_utils.to_categorical(y_train, 10)\n y_test = np_utils.to_categorical(y_test, 10)\n x_train = x_train\n x_test = x_test\n x_train = x_train / 255\n x_test = x_test / 255\n return (x_train, y_train), (x_test, y_test)\n\n\n(x_train, y_train), (x_test, y_test) = load_data()\nmodel = Sequential()\nmodel.add(Dense(input_dim=28 * 28, units=500, activation='relu'))\nmodel.add(Dense(units=500, activation='relu'))\nmodel.add(Dense(units=10, activation='softmax'))\nmodel.summary()\nmodel.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[\n 'accuracy'])\nmodel.fit(x_train, y_train, batch_size=16, nb_epoch=20)\nscore = model.evaluate(x_test, y_test)\nprint('Total loss on Testing Set:', score[0])\nprint('Accuracy of Testing Set: ', score[1])\nresult = model.predict(x_test)\n", "<import token>\n\n\ndef load_data():\n (x_train, y_train), (x_test, y_test) = mnist.load_data()\n print('X_train original shape:', x_train.shape)\n number = 10000\n x_train = x_train[0:number]\n y_train = y_train[0:number]\n x_train = x_train.reshape(number, 28 * 28)\n x_test = x_test.reshape(x_test.shape[0], 28 * 28)\n x_train = x_train.astype('float32')\n x_test = x_test.astype('float32')\n print('X_train shape:', x_train.shape)\n print(x_train.shape[0], 'train samples')\n print(x_test.shape[0], 'test samples')\n y_train = np_utils.to_categorical(y_train, 10)\n y_test = np_utils.to_categorical(y_test, 10)\n x_train = x_train\n x_test = x_test\n x_train = x_train / 255\n x_test = x_test / 255\n return (x_train, y_train), (x_test, y_test)\n\n\n<assignment token>\nmodel.add(Dense(input_dim=28 * 28, units=500, activation='relu'))\nmodel.add(Dense(units=500, activation='relu'))\nmodel.add(Dense(units=10, activation='softmax'))\nmodel.summary()\nmodel.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[\n 'accuracy'])\nmodel.fit(x_train, y_train, batch_size=16, nb_epoch=20)\n<assignment token>\nprint('Total loss on Testing Set:', score[0])\nprint('Accuracy of Testing Set: ', score[1])\n<assignment token>\n", "<import token>\n\n\ndef load_data():\n (x_train, y_train), (x_test, y_test) = mnist.load_data()\n print('X_train original shape:', x_train.shape)\n number = 10000\n x_train = x_train[0:number]\n y_train = y_train[0:number]\n x_train = x_train.reshape(number, 28 * 28)\n x_test = x_test.reshape(x_test.shape[0], 28 * 28)\n x_train = x_train.astype('float32')\n x_test = x_test.astype('float32')\n print('X_train shape:', x_train.shape)\n print(x_train.shape[0], 'train samples')\n print(x_test.shape[0], 'test samples')\n y_train = np_utils.to_categorical(y_train, 10)\n y_test = np_utils.to_categorical(y_test, 10)\n x_train = x_train\n x_test = x_test\n x_train = x_train / 255\n x_test = x_test / 255\n return (x_train, y_train), (x_test, y_test)\n\n\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n", "<import token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n" ]
false
99,582
36bc57389ba8dbc00c720071f7807b58393ee3d1
#!/usr/bin/python3 import asyncio @asyncio.coroutine def my_coroutine(future, task_name, seconds_to_sleep=3): print('{0} my_coroutine sleeping for : {1} seconds'.format(task_name, seconds_to_sleep)) yield from asyncio.sleep(seconds_to_sleep) future.set_result('{} is finished'.format(task_name)) def got_result(future): print(future.result()) loop = asyncio.get_event_loop() future1 = asyncio.Future() future2 = asyncio.Future() tasks = [ my_coroutine(future1, 'task1', 4), my_coroutine(future2, 'task3', 2), ] future1.add_done_callback(got_result) future2.add_done_callback(got_result) loop.run_until_complete(asyncio.wait(tasks)) loop.close()
[ "#!/usr/bin/python3\n\nimport asyncio\n\[email protected]\ndef my_coroutine(future, task_name, seconds_to_sleep=3):\n print('{0} my_coroutine sleeping for : {1} seconds'.format(task_name, seconds_to_sleep))\n yield from asyncio.sleep(seconds_to_sleep)\n future.set_result('{} is finished'.format(task_name))\n\n\ndef got_result(future):\n print(future.result())\n\nloop = asyncio.get_event_loop()\nfuture1 = asyncio.Future()\nfuture2 = asyncio.Future()\n\ntasks = [\n my_coroutine(future1, 'task1', 4),\n my_coroutine(future2, 'task3', 2),\n]\n\nfuture1.add_done_callback(got_result)\nfuture2.add_done_callback(got_result)\n\nloop.run_until_complete(asyncio.wait(tasks))\nloop.close()", "import asyncio\n\n\[email protected]\ndef my_coroutine(future, task_name, seconds_to_sleep=3):\n print('{0} my_coroutine sleeping for : {1} seconds'.format(task_name,\n seconds_to_sleep))\n yield from asyncio.sleep(seconds_to_sleep)\n future.set_result('{} is finished'.format(task_name))\n\n\ndef got_result(future):\n print(future.result())\n\n\nloop = asyncio.get_event_loop()\nfuture1 = asyncio.Future()\nfuture2 = asyncio.Future()\ntasks = [my_coroutine(future1, 'task1', 4), my_coroutine(future2, 'task3', 2)]\nfuture1.add_done_callback(got_result)\nfuture2.add_done_callback(got_result)\nloop.run_until_complete(asyncio.wait(tasks))\nloop.close()\n", "<import token>\n\n\[email protected]\ndef my_coroutine(future, task_name, seconds_to_sleep=3):\n print('{0} my_coroutine sleeping for : {1} seconds'.format(task_name,\n seconds_to_sleep))\n yield from asyncio.sleep(seconds_to_sleep)\n future.set_result('{} is finished'.format(task_name))\n\n\ndef got_result(future):\n print(future.result())\n\n\nloop = asyncio.get_event_loop()\nfuture1 = asyncio.Future()\nfuture2 = asyncio.Future()\ntasks = [my_coroutine(future1, 'task1', 4), my_coroutine(future2, 'task3', 2)]\nfuture1.add_done_callback(got_result)\nfuture2.add_done_callback(got_result)\nloop.run_until_complete(asyncio.wait(tasks))\nloop.close()\n", "<import token>\n\n\[email protected]\ndef my_coroutine(future, task_name, seconds_to_sleep=3):\n print('{0} my_coroutine sleeping for : {1} seconds'.format(task_name,\n seconds_to_sleep))\n yield from asyncio.sleep(seconds_to_sleep)\n future.set_result('{} is finished'.format(task_name))\n\n\ndef got_result(future):\n print(future.result())\n\n\n<assignment token>\nfuture1.add_done_callback(got_result)\nfuture2.add_done_callback(got_result)\nloop.run_until_complete(asyncio.wait(tasks))\nloop.close()\n", "<import token>\n\n\[email protected]\ndef my_coroutine(future, task_name, seconds_to_sleep=3):\n print('{0} my_coroutine sleeping for : {1} seconds'.format(task_name,\n seconds_to_sleep))\n yield from asyncio.sleep(seconds_to_sleep)\n future.set_result('{} is finished'.format(task_name))\n\n\ndef got_result(future):\n print(future.result())\n\n\n<assignment token>\n<code token>\n", "<import token>\n\n\[email protected]\ndef my_coroutine(future, task_name, seconds_to_sleep=3):\n print('{0} my_coroutine sleeping for : {1} seconds'.format(task_name,\n seconds_to_sleep))\n yield from asyncio.sleep(seconds_to_sleep)\n future.set_result('{} is finished'.format(task_name))\n\n\n<function token>\n<assignment token>\n<code token>\n", "<import token>\n<function token>\n<function token>\n<assignment token>\n<code token>\n" ]
false
99,583
92f89425cded169f90d24fccc60662a365e08b67
import sys import os sys.path.insert(1, os.path.join(sys.path[0], '..')) import unittest import numpy as np from base.SO3 import SO3 from base.utility import test_matrix_equal default_tol_place = 2 class TestSO3(unittest.TestCase): def setUp(self): pass def test_default_constructor(self): rot = SO3() result = test_matrix_equal(rot.get_matrix(), np.eye(3)) self.assertTrue(result, "Default is not identity!") def test_euler_constructor(self): roll, pitch, yaw = (0.1, -0.2, 0.3) rot = SO3.from_euler(roll, pitch, yaw) self.assertAlmostEqual(rot.get_roll(), roll, places=default_tol_place) self.assertAlmostEqual(rot.get_pitch(), pitch, places=default_tol_place) self.assertAlmostEqual(rot.get_yaw(), yaw, places=default_tol_place) def test_two_directions_constructor_opposite(self): d_f = np.array([ -9.41427684e-03, -7.26582309e-03, 9.78452150e+00], dtype=np.float) d_t = np.array([0, 0, -9.81], dtype=np.float) R = SO3.from_two_directions(d_f, d_t) sum_error = 0 for (x1, x2) in zip(d_t, R * d_f): sum_error += np.sqrt((x1 - x2)**2) d_t_recovered = R * d_f sin_theta = np.cross(d_t, d_t_recovered) / np.linalg.norm(d_t) / np.linalg.norm(d_t_recovered) sin_theta = np.linalg.norm(sin_theta) self.assertAlmostEqual(sin_theta, 0, default_tol_place) # test if determinant is 1 det = np.linalg.det(R.get_matrix()) self.assertAlmostEqual(det, 1, default_tol_place) def test_inverse(self): rot = SO3.from_euler(0.1, -0.2, 0.3) tmp = np.dot(rot.get_matrix(), rot.inverse().get_matrix()) result = test_matrix_equal(tmp, np.eye(3)) self.assertTrue(result, "Inverse not correct!") def test_exp_ln(self): rot = SO3() so3 = rot.ln() result = test_matrix_equal(so3, np.zeros_like(so3)) self.assertTrue(result, "Log not correct!") rot = SO3.from_euler(0.1, -0.2, 0.3) so3 = rot.ln() result = test_matrix_equal(rot.get_matrix(), SO3.exp(so3).get_matrix()) self.assertTrue(result) if (__name__ == "__main__"): unittest.main()
[ "import sys\nimport os\nsys.path.insert(1, os.path.join(sys.path[0], '..'))\n\nimport unittest\nimport numpy as np\n\nfrom base.SO3 import SO3\nfrom base.utility import test_matrix_equal\n\ndefault_tol_place = 2\n\n\n\nclass TestSO3(unittest.TestCase):\n def setUp(self):\n pass\n\n def test_default_constructor(self):\n rot = SO3()\n result = test_matrix_equal(rot.get_matrix(), np.eye(3))\n self.assertTrue(result, \"Default is not identity!\")\n\n def test_euler_constructor(self):\n roll, pitch, yaw = (0.1, -0.2, 0.3)\n rot = SO3.from_euler(roll, pitch, yaw)\n\n self.assertAlmostEqual(rot.get_roll(), roll, places=default_tol_place)\n self.assertAlmostEqual(rot.get_pitch(), pitch, places=default_tol_place)\n self.assertAlmostEqual(rot.get_yaw(), yaw, places=default_tol_place)\n\n def test_two_directions_constructor_opposite(self):\n d_f = np.array([ -9.41427684e-03, -7.26582309e-03, 9.78452150e+00], dtype=np.float)\n d_t = np.array([0, 0, -9.81], dtype=np.float)\n\n R = SO3.from_two_directions(d_f, d_t)\n\n sum_error = 0\n for (x1, x2) in zip(d_t, R * d_f):\n sum_error += np.sqrt((x1 - x2)**2)\n\n d_t_recovered = R * d_f\n\n sin_theta = np.cross(d_t, d_t_recovered) / np.linalg.norm(d_t) / np.linalg.norm(d_t_recovered)\n sin_theta = np.linalg.norm(sin_theta)\n self.assertAlmostEqual(sin_theta, 0, default_tol_place)\n\n # test if determinant is 1\n det = np.linalg.det(R.get_matrix())\n self.assertAlmostEqual(det, 1, default_tol_place)\n\n def test_inverse(self):\n rot = SO3.from_euler(0.1, -0.2, 0.3)\n tmp = np.dot(rot.get_matrix(), rot.inverse().get_matrix())\n result = test_matrix_equal(tmp, np.eye(3))\n\n self.assertTrue(result, \"Inverse not correct!\")\n\n def test_exp_ln(self):\n rot = SO3()\n so3 = rot.ln()\n result = test_matrix_equal(so3, np.zeros_like(so3))\n\n self.assertTrue(result, \"Log not correct!\")\n\n rot = SO3.from_euler(0.1, -0.2, 0.3)\n so3 = rot.ln()\n result = test_matrix_equal(rot.get_matrix(), SO3.exp(so3).get_matrix())\n\n self.assertTrue(result)\n\nif (__name__ == \"__main__\"):\n unittest.main()\n", "import sys\nimport os\nsys.path.insert(1, os.path.join(sys.path[0], '..'))\nimport unittest\nimport numpy as np\nfrom base.SO3 import SO3\nfrom base.utility import test_matrix_equal\ndefault_tol_place = 2\n\n\nclass TestSO3(unittest.TestCase):\n\n def setUp(self):\n pass\n\n def test_default_constructor(self):\n rot = SO3()\n result = test_matrix_equal(rot.get_matrix(), np.eye(3))\n self.assertTrue(result, 'Default is not identity!')\n\n def test_euler_constructor(self):\n roll, pitch, yaw = 0.1, -0.2, 0.3\n rot = SO3.from_euler(roll, pitch, yaw)\n self.assertAlmostEqual(rot.get_roll(), roll, places=default_tol_place)\n self.assertAlmostEqual(rot.get_pitch(), pitch, places=default_tol_place\n )\n self.assertAlmostEqual(rot.get_yaw(), yaw, places=default_tol_place)\n\n def test_two_directions_constructor_opposite(self):\n d_f = np.array([-0.00941427684, -0.00726582309, 9.7845215], dtype=\n np.float)\n d_t = np.array([0, 0, -9.81], dtype=np.float)\n R = SO3.from_two_directions(d_f, d_t)\n sum_error = 0\n for x1, x2 in zip(d_t, R * d_f):\n sum_error += np.sqrt((x1 - x2) ** 2)\n d_t_recovered = R * d_f\n sin_theta = np.cross(d_t, d_t_recovered) / np.linalg.norm(d_t\n ) / np.linalg.norm(d_t_recovered)\n sin_theta = np.linalg.norm(sin_theta)\n self.assertAlmostEqual(sin_theta, 0, default_tol_place)\n det = np.linalg.det(R.get_matrix())\n self.assertAlmostEqual(det, 1, default_tol_place)\n\n def test_inverse(self):\n rot = SO3.from_euler(0.1, -0.2, 0.3)\n tmp = np.dot(rot.get_matrix(), rot.inverse().get_matrix())\n result = test_matrix_equal(tmp, np.eye(3))\n self.assertTrue(result, 'Inverse not correct!')\n\n def test_exp_ln(self):\n rot = SO3()\n so3 = rot.ln()\n result = test_matrix_equal(so3, np.zeros_like(so3))\n self.assertTrue(result, 'Log not correct!')\n rot = SO3.from_euler(0.1, -0.2, 0.3)\n so3 = rot.ln()\n result = test_matrix_equal(rot.get_matrix(), SO3.exp(so3).get_matrix())\n self.assertTrue(result)\n\n\nif __name__ == '__main__':\n unittest.main()\n", "<import token>\nsys.path.insert(1, os.path.join(sys.path[0], '..'))\n<import token>\ndefault_tol_place = 2\n\n\nclass TestSO3(unittest.TestCase):\n\n def setUp(self):\n pass\n\n def test_default_constructor(self):\n rot = SO3()\n result = test_matrix_equal(rot.get_matrix(), np.eye(3))\n self.assertTrue(result, 'Default is not identity!')\n\n def test_euler_constructor(self):\n roll, pitch, yaw = 0.1, -0.2, 0.3\n rot = SO3.from_euler(roll, pitch, yaw)\n self.assertAlmostEqual(rot.get_roll(), roll, places=default_tol_place)\n self.assertAlmostEqual(rot.get_pitch(), pitch, places=default_tol_place\n )\n self.assertAlmostEqual(rot.get_yaw(), yaw, places=default_tol_place)\n\n def test_two_directions_constructor_opposite(self):\n d_f = np.array([-0.00941427684, -0.00726582309, 9.7845215], dtype=\n np.float)\n d_t = np.array([0, 0, -9.81], dtype=np.float)\n R = SO3.from_two_directions(d_f, d_t)\n sum_error = 0\n for x1, x2 in zip(d_t, R * d_f):\n sum_error += np.sqrt((x1 - x2) ** 2)\n d_t_recovered = R * d_f\n sin_theta = np.cross(d_t, d_t_recovered) / np.linalg.norm(d_t\n ) / np.linalg.norm(d_t_recovered)\n sin_theta = np.linalg.norm(sin_theta)\n self.assertAlmostEqual(sin_theta, 0, default_tol_place)\n det = np.linalg.det(R.get_matrix())\n self.assertAlmostEqual(det, 1, default_tol_place)\n\n def test_inverse(self):\n rot = SO3.from_euler(0.1, -0.2, 0.3)\n tmp = np.dot(rot.get_matrix(), rot.inverse().get_matrix())\n result = test_matrix_equal(tmp, np.eye(3))\n self.assertTrue(result, 'Inverse not correct!')\n\n def test_exp_ln(self):\n rot = SO3()\n so3 = rot.ln()\n result = test_matrix_equal(so3, np.zeros_like(so3))\n self.assertTrue(result, 'Log not correct!')\n rot = SO3.from_euler(0.1, -0.2, 0.3)\n so3 = rot.ln()\n result = test_matrix_equal(rot.get_matrix(), SO3.exp(so3).get_matrix())\n self.assertTrue(result)\n\n\nif __name__ == '__main__':\n unittest.main()\n", "<import token>\nsys.path.insert(1, os.path.join(sys.path[0], '..'))\n<import token>\n<assignment token>\n\n\nclass TestSO3(unittest.TestCase):\n\n def setUp(self):\n pass\n\n def test_default_constructor(self):\n rot = SO3()\n result = test_matrix_equal(rot.get_matrix(), np.eye(3))\n self.assertTrue(result, 'Default is not identity!')\n\n def test_euler_constructor(self):\n roll, pitch, yaw = 0.1, -0.2, 0.3\n rot = SO3.from_euler(roll, pitch, yaw)\n self.assertAlmostEqual(rot.get_roll(), roll, places=default_tol_place)\n self.assertAlmostEqual(rot.get_pitch(), pitch, places=default_tol_place\n )\n self.assertAlmostEqual(rot.get_yaw(), yaw, places=default_tol_place)\n\n def test_two_directions_constructor_opposite(self):\n d_f = np.array([-0.00941427684, -0.00726582309, 9.7845215], dtype=\n np.float)\n d_t = np.array([0, 0, -9.81], dtype=np.float)\n R = SO3.from_two_directions(d_f, d_t)\n sum_error = 0\n for x1, x2 in zip(d_t, R * d_f):\n sum_error += np.sqrt((x1 - x2) ** 2)\n d_t_recovered = R * d_f\n sin_theta = np.cross(d_t, d_t_recovered) / np.linalg.norm(d_t\n ) / np.linalg.norm(d_t_recovered)\n sin_theta = np.linalg.norm(sin_theta)\n self.assertAlmostEqual(sin_theta, 0, default_tol_place)\n det = np.linalg.det(R.get_matrix())\n self.assertAlmostEqual(det, 1, default_tol_place)\n\n def test_inverse(self):\n rot = SO3.from_euler(0.1, -0.2, 0.3)\n tmp = np.dot(rot.get_matrix(), rot.inverse().get_matrix())\n result = test_matrix_equal(tmp, np.eye(3))\n self.assertTrue(result, 'Inverse not correct!')\n\n def test_exp_ln(self):\n rot = SO3()\n so3 = rot.ln()\n result = test_matrix_equal(so3, np.zeros_like(so3))\n self.assertTrue(result, 'Log not correct!')\n rot = SO3.from_euler(0.1, -0.2, 0.3)\n so3 = rot.ln()\n result = test_matrix_equal(rot.get_matrix(), SO3.exp(so3).get_matrix())\n self.assertTrue(result)\n\n\nif __name__ == '__main__':\n unittest.main()\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass TestSO3(unittest.TestCase):\n\n def setUp(self):\n pass\n\n def test_default_constructor(self):\n rot = SO3()\n result = test_matrix_equal(rot.get_matrix(), np.eye(3))\n self.assertTrue(result, 'Default is not identity!')\n\n def test_euler_constructor(self):\n roll, pitch, yaw = 0.1, -0.2, 0.3\n rot = SO3.from_euler(roll, pitch, yaw)\n self.assertAlmostEqual(rot.get_roll(), roll, places=default_tol_place)\n self.assertAlmostEqual(rot.get_pitch(), pitch, places=default_tol_place\n )\n self.assertAlmostEqual(rot.get_yaw(), yaw, places=default_tol_place)\n\n def test_two_directions_constructor_opposite(self):\n d_f = np.array([-0.00941427684, -0.00726582309, 9.7845215], dtype=\n np.float)\n d_t = np.array([0, 0, -9.81], dtype=np.float)\n R = SO3.from_two_directions(d_f, d_t)\n sum_error = 0\n for x1, x2 in zip(d_t, R * d_f):\n sum_error += np.sqrt((x1 - x2) ** 2)\n d_t_recovered = R * d_f\n sin_theta = np.cross(d_t, d_t_recovered) / np.linalg.norm(d_t\n ) / np.linalg.norm(d_t_recovered)\n sin_theta = np.linalg.norm(sin_theta)\n self.assertAlmostEqual(sin_theta, 0, default_tol_place)\n det = np.linalg.det(R.get_matrix())\n self.assertAlmostEqual(det, 1, default_tol_place)\n\n def test_inverse(self):\n rot = SO3.from_euler(0.1, -0.2, 0.3)\n tmp = np.dot(rot.get_matrix(), rot.inverse().get_matrix())\n result = test_matrix_equal(tmp, np.eye(3))\n self.assertTrue(result, 'Inverse not correct!')\n\n def test_exp_ln(self):\n rot = SO3()\n so3 = rot.ln()\n result = test_matrix_equal(so3, np.zeros_like(so3))\n self.assertTrue(result, 'Log not correct!')\n rot = SO3.from_euler(0.1, -0.2, 0.3)\n so3 = rot.ln()\n result = test_matrix_equal(rot.get_matrix(), SO3.exp(so3).get_matrix())\n self.assertTrue(result)\n\n\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass TestSO3(unittest.TestCase):\n\n def setUp(self):\n pass\n <function token>\n\n def test_euler_constructor(self):\n roll, pitch, yaw = 0.1, -0.2, 0.3\n rot = SO3.from_euler(roll, pitch, yaw)\n self.assertAlmostEqual(rot.get_roll(), roll, places=default_tol_place)\n self.assertAlmostEqual(rot.get_pitch(), pitch, places=default_tol_place\n )\n self.assertAlmostEqual(rot.get_yaw(), yaw, places=default_tol_place)\n\n def test_two_directions_constructor_opposite(self):\n d_f = np.array([-0.00941427684, -0.00726582309, 9.7845215], dtype=\n np.float)\n d_t = np.array([0, 0, -9.81], dtype=np.float)\n R = SO3.from_two_directions(d_f, d_t)\n sum_error = 0\n for x1, x2 in zip(d_t, R * d_f):\n sum_error += np.sqrt((x1 - x2) ** 2)\n d_t_recovered = R * d_f\n sin_theta = np.cross(d_t, d_t_recovered) / np.linalg.norm(d_t\n ) / np.linalg.norm(d_t_recovered)\n sin_theta = np.linalg.norm(sin_theta)\n self.assertAlmostEqual(sin_theta, 0, default_tol_place)\n det = np.linalg.det(R.get_matrix())\n self.assertAlmostEqual(det, 1, default_tol_place)\n\n def test_inverse(self):\n rot = SO3.from_euler(0.1, -0.2, 0.3)\n tmp = np.dot(rot.get_matrix(), rot.inverse().get_matrix())\n result = test_matrix_equal(tmp, np.eye(3))\n self.assertTrue(result, 'Inverse not correct!')\n\n def test_exp_ln(self):\n rot = SO3()\n so3 = rot.ln()\n result = test_matrix_equal(so3, np.zeros_like(so3))\n self.assertTrue(result, 'Log not correct!')\n rot = SO3.from_euler(0.1, -0.2, 0.3)\n so3 = rot.ln()\n result = test_matrix_equal(rot.get_matrix(), SO3.exp(so3).get_matrix())\n self.assertTrue(result)\n\n\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass TestSO3(unittest.TestCase):\n\n def setUp(self):\n pass\n <function token>\n\n def test_euler_constructor(self):\n roll, pitch, yaw = 0.1, -0.2, 0.3\n rot = SO3.from_euler(roll, pitch, yaw)\n self.assertAlmostEqual(rot.get_roll(), roll, places=default_tol_place)\n self.assertAlmostEqual(rot.get_pitch(), pitch, places=default_tol_place\n )\n self.assertAlmostEqual(rot.get_yaw(), yaw, places=default_tol_place)\n\n def test_two_directions_constructor_opposite(self):\n d_f = np.array([-0.00941427684, -0.00726582309, 9.7845215], dtype=\n np.float)\n d_t = np.array([0, 0, -9.81], dtype=np.float)\n R = SO3.from_two_directions(d_f, d_t)\n sum_error = 0\n for x1, x2 in zip(d_t, R * d_f):\n sum_error += np.sqrt((x1 - x2) ** 2)\n d_t_recovered = R * d_f\n sin_theta = np.cross(d_t, d_t_recovered) / np.linalg.norm(d_t\n ) / np.linalg.norm(d_t_recovered)\n sin_theta = np.linalg.norm(sin_theta)\n self.assertAlmostEqual(sin_theta, 0, default_tol_place)\n det = np.linalg.det(R.get_matrix())\n self.assertAlmostEqual(det, 1, default_tol_place)\n <function token>\n\n def test_exp_ln(self):\n rot = SO3()\n so3 = rot.ln()\n result = test_matrix_equal(so3, np.zeros_like(so3))\n self.assertTrue(result, 'Log not correct!')\n rot = SO3.from_euler(0.1, -0.2, 0.3)\n so3 = rot.ln()\n result = test_matrix_equal(rot.get_matrix(), SO3.exp(so3).get_matrix())\n self.assertTrue(result)\n\n\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass TestSO3(unittest.TestCase):\n\n def setUp(self):\n pass\n <function token>\n\n def test_euler_constructor(self):\n roll, pitch, yaw = 0.1, -0.2, 0.3\n rot = SO3.from_euler(roll, pitch, yaw)\n self.assertAlmostEqual(rot.get_roll(), roll, places=default_tol_place)\n self.assertAlmostEqual(rot.get_pitch(), pitch, places=default_tol_place\n )\n self.assertAlmostEqual(rot.get_yaw(), yaw, places=default_tol_place)\n\n def test_two_directions_constructor_opposite(self):\n d_f = np.array([-0.00941427684, -0.00726582309, 9.7845215], dtype=\n np.float)\n d_t = np.array([0, 0, -9.81], dtype=np.float)\n R = SO3.from_two_directions(d_f, d_t)\n sum_error = 0\n for x1, x2 in zip(d_t, R * d_f):\n sum_error += np.sqrt((x1 - x2) ** 2)\n d_t_recovered = R * d_f\n sin_theta = np.cross(d_t, d_t_recovered) / np.linalg.norm(d_t\n ) / np.linalg.norm(d_t_recovered)\n sin_theta = np.linalg.norm(sin_theta)\n self.assertAlmostEqual(sin_theta, 0, default_tol_place)\n det = np.linalg.det(R.get_matrix())\n self.assertAlmostEqual(det, 1, default_tol_place)\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass TestSO3(unittest.TestCase):\n <function token>\n <function token>\n\n def test_euler_constructor(self):\n roll, pitch, yaw = 0.1, -0.2, 0.3\n rot = SO3.from_euler(roll, pitch, yaw)\n self.assertAlmostEqual(rot.get_roll(), roll, places=default_tol_place)\n self.assertAlmostEqual(rot.get_pitch(), pitch, places=default_tol_place\n )\n self.assertAlmostEqual(rot.get_yaw(), yaw, places=default_tol_place)\n\n def test_two_directions_constructor_opposite(self):\n d_f = np.array([-0.00941427684, -0.00726582309, 9.7845215], dtype=\n np.float)\n d_t = np.array([0, 0, -9.81], dtype=np.float)\n R = SO3.from_two_directions(d_f, d_t)\n sum_error = 0\n for x1, x2 in zip(d_t, R * d_f):\n sum_error += np.sqrt((x1 - x2) ** 2)\n d_t_recovered = R * d_f\n sin_theta = np.cross(d_t, d_t_recovered) / np.linalg.norm(d_t\n ) / np.linalg.norm(d_t_recovered)\n sin_theta = np.linalg.norm(sin_theta)\n self.assertAlmostEqual(sin_theta, 0, default_tol_place)\n det = np.linalg.det(R.get_matrix())\n self.assertAlmostEqual(det, 1, default_tol_place)\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass TestSO3(unittest.TestCase):\n <function token>\n <function token>\n <function token>\n\n def test_two_directions_constructor_opposite(self):\n d_f = np.array([-0.00941427684, -0.00726582309, 9.7845215], dtype=\n np.float)\n d_t = np.array([0, 0, -9.81], dtype=np.float)\n R = SO3.from_two_directions(d_f, d_t)\n sum_error = 0\n for x1, x2 in zip(d_t, R * d_f):\n sum_error += np.sqrt((x1 - x2) ** 2)\n d_t_recovered = R * d_f\n sin_theta = np.cross(d_t, d_t_recovered) / np.linalg.norm(d_t\n ) / np.linalg.norm(d_t_recovered)\n sin_theta = np.linalg.norm(sin_theta)\n self.assertAlmostEqual(sin_theta, 0, default_tol_place)\n det = np.linalg.det(R.get_matrix())\n self.assertAlmostEqual(det, 1, default_tol_place)\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n\n\nclass TestSO3(unittest.TestCase):\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n<code token>\n<import token>\n<assignment token>\n<class token>\n<code token>\n" ]
false
99,584
908fb261ef22954fb1093fc6bf1bb09f816a8d30
from SPARQLWrapper import SPARQLWrapper, JSON from urllib2 import URLError import os, sys, json, time map = {'ulan':"http://vocab.getty.edu/sparql", 'aac':"http://data.americanartcollaborative.org/sparql"} files = os.listdir( os.path.join(os.path.dirname(os.path.realpath(__file__)),'sparql')) if not os.path.exists('dataset'): os.makedirs('dataset') # Iterate over all SPARQL files for f in files: # Extract museum name base = f[:f.index('.')] # ulan, npg etc. f_in = open(os.path.join('sparql',f), 'r') if len(sys.argv) > 1 and base not in sys.argv[1].split(): continue # Send SPARQL query if 'ulan' in base: sparql = SPARQLWrapper(map['ulan']) else: sparql = SPARQLWrapper(map['aac']) sparql.setQuery(f_in.read()) sparql.setReturnFormat(JSON) sparql.setTimeout(360) while True: print "Downloading ",base," dataset" try: results = sparql.query().convert() break except URLError: print("Connection to Sparql server failed! Trying again in five seconds!") time.sleep(5) f_in.close() # Save the results out = open(os.path.join('dataset',base+'.json'),'w') for entity in results["results"]["bindings"]: out.write(json.dumps(entity)) out.write("\n") out.close() time.sleep(10)
[ "from SPARQLWrapper import SPARQLWrapper, JSON\nfrom urllib2 import URLError\nimport os, sys, json, time\n\nmap = {'ulan':\"http://vocab.getty.edu/sparql\",\n 'aac':\"http://data.americanartcollaborative.org/sparql\"}\n\nfiles = os.listdir( os.path.join(os.path.dirname(os.path.realpath(__file__)),'sparql'))\n\nif not os.path.exists('dataset'):\n os.makedirs('dataset')\n\n# Iterate over all SPARQL files\nfor f in files:\n # Extract museum name\n base = f[:f.index('.')] # ulan, npg etc.\n f_in = open(os.path.join('sparql',f), 'r')\n \n if len(sys.argv) > 1 and base not in sys.argv[1].split():\n continue\n \n # Send SPARQL query\n if 'ulan' in base:\n sparql = SPARQLWrapper(map['ulan'])\n else:\n sparql = SPARQLWrapper(map['aac'])\n \n sparql.setQuery(f_in.read())\n sparql.setReturnFormat(JSON)\n sparql.setTimeout(360)\n while True:\n print \"Downloading \",base,\" dataset\"\n try:\n results = sparql.query().convert()\n break\n except URLError:\n print(\"Connection to Sparql server failed! Trying again in five seconds!\")\n time.sleep(5)\n \n f_in.close()\n \n # Save the results\n out = open(os.path.join('dataset',base+'.json'),'w')\n for entity in results[\"results\"][\"bindings\"]:\n out.write(json.dumps(entity))\n out.write(\"\\n\")\n out.close()\n \n time.sleep(10)" ]
true
99,585
1b16f580c4b118379b070d4e7accb310ddbf50ca
import numpy as np import pandas as pd import sys import csv import matplotlib.pyplot as plt fname = sys.argv[1] df = pd.read_csv(sys.argv[1], index_col = None, header = None, delim_whitespace = True, comment = "#") data = df.as_matrix()[:, :] time = data[:, 1] efield = data[:, 3] newt = np.linspace(time[0], (time[1] - time[0]) * len(time) * 11, len(time) * 11) efield = np.concatenate([efield, np.zeros(10 * len(time))]) freq = np.fft.fftfreq(len(newt), time[1] - time[0]) fft = np.fft.fft(efield) df2 = pd.DataFrame(np.array([np.abs(freq), np.abs(fft), np.real(fft), np.imag(fft), (np.abs(fft))**2]).T) df2.to_csv("fft.txt", index=None, header=None, sep="\t", float_format="%20.10E", quoting=csv.QUOTE_NONE, #quotechar=' ', #quotechar='"', #quotechar="'", #escapechar=" ", escapechar="" ) <<<<<<< HEAD ======= print("what is going on") print("calc-divide") >>>>>>> calc-divide
[ "import numpy as np\nimport pandas as pd\nimport sys\nimport csv\nimport matplotlib.pyplot as plt\n\nfname = sys.argv[1]\ndf = pd.read_csv(sys.argv[1], index_col = None, header = None, delim_whitespace = True, comment = \"#\")\ndata = df.as_matrix()[:, :]\ntime = data[:, 1]\nefield = data[:, 3]\n\n\nnewt = np.linspace(time[0], (time[1] - time[0]) * len(time) * 11, len(time) * 11)\nefield = np.concatenate([efield, np.zeros(10 * len(time))])\nfreq = np.fft.fftfreq(len(newt), time[1] - time[0])\nfft = np.fft.fft(efield)\n\n\ndf2 = pd.DataFrame(np.array([np.abs(freq), np.abs(fft), np.real(fft), np.imag(fft), (np.abs(fft))**2]).T)\n\ndf2.to_csv(\"fft.txt\", index=None, header=None,\n sep=\"\\t\",\n float_format=\"%20.10E\",\n quoting=csv.QUOTE_NONE,\n #quotechar=' ',\n #quotechar='\"',\n #quotechar=\"'\",\n #escapechar=\" \",\n escapechar=\"\"\n )\n<<<<<<< HEAD\n=======\n\nprint(\"what is going on\")\nprint(\"calc-divide\")\n>>>>>>> calc-divide\n" ]
true
99,586
2ff982a58660473248830662c6b450509290b36b
# encoding:utf-8 import sys __author__ = 'zhaoxiaojun' reload(sys) sys.setdefaultencoding('utf-8') class Solution(object): def findComplement(self, num): """ :type num: int :rtype: int """ res = 0 count = 0 while num > 0: flag = num & 1 if flag == 0: res += pow(2, count) count += 1 num >>= 1 return res def reverseWords(self, s): """ :type s: str :rtype: str """ start = 0 str_list = list(s) for ind in range(len(s)): if not str(s[ind]).strip() or ind == len(s) - 1: end = ind - 1 if ind == len(s) - 1: end = ind while start < end: tmp = s[start] str_list[start] = s[end] str_list[end] = tmp start += 1 end -= 1 start = ind + 1 return ''.join(str_list) def findWords(self, words): """ :type words: List[str] :rtype: List[str] """ s1 = set('qwertyuiop') s2 = set('asdfghjkl') s3 = set('zxcvbnm') res_list = [] for word in words: ws = set(str(word).lower()) if ws.issubset(s1) or ws.issubset(s2) or ws.issubset(s3): res_list.append(word) return res_list def calPoints(self, ops): """ :type ops: List[str] :rtype: int """ stack = [] total = 0 for ind in range(len(ops)): if str(ops[ind]).upper() == 'D': last_valid_score = stack.pop() current_score = last_valid_score * 2 stack.append(last_valid_score) stack.append(current_score) total += current_score elif str(ops[ind]).upper() == 'C': invalid_score = stack.pop() total -= invalid_score elif str(ops[ind]).upper() == '+': last_valid_score1 = stack.pop() last_valid_score2 = stack.pop() current_score = last_valid_score1 + last_valid_score2 stack.append(last_valid_score2) stack.append(last_valid_score1) stack.append(current_score) total += current_score else: total += int(ops[ind]) stack.append(int(ops[ind])) return total def distributeCandies(self, candies): """ :type candies: List[int] :rtype: int """ sis_set = set() max_len = len(candies) / 2 for num in candies: if num not in sis_set and len(sis_set) < max_len: sis_set.update([num]) return len(sis_set) def fizzBuzz(self, n): """ :type n: int :rtype: List[str] """ res_list = [] for ind in range(1, n + 1): cur_val = '' if ind % 3 == 0: cur_val = 'Fizz' if ind % 5 == 0: cur_val = '%s%s' % (cur_val, 'Buzz') if cur_val == '': cur_val = ind res_list.append(cur_val) return res_list def matrixReshape(self, nums, r, c): """ :type nums: List[List[int]] :type r: int :type c: int :rtype: List[List[int]] """ flat_list = [] for nu_list in nums: flat_list += nu_list if r * c > len(flat_list): return nums else: res_list = [] for count in range(r): res_list.append(flat_list[c * count:(count + 1) * c]) return res_list if __name__ == '__main__': so = Solution() print so.findComplement(5) print so.reverseWords("Let's take") print so.findWords(["Hello", "Alaska", "Dad", "Peace"]) print so.calPoints(["5", "-2", "4", "C", "D", "9", "+", "+"]) print so.distributeCandies([1, 1, 2, 2, 3, 3]) print so.fizzBuzz(15) print so.matrixReshape([[1, 2], [3, 4]], 1, 4)
[ "# encoding:utf-8\nimport sys\n\n__author__ = 'zhaoxiaojun'\n\nreload(sys)\nsys.setdefaultencoding('utf-8')\n\n\nclass Solution(object):\n def findComplement(self, num):\n \"\"\"\n :type num: int\n :rtype: int\n \"\"\"\n res = 0\n count = 0\n while num > 0:\n flag = num & 1\n if flag == 0:\n res += pow(2, count)\n count += 1\n num >>= 1\n return res\n\n def reverseWords(self, s):\n \"\"\"\n :type s: str\n :rtype: str\n \"\"\"\n start = 0\n str_list = list(s)\n for ind in range(len(s)):\n if not str(s[ind]).strip() or ind == len(s) - 1:\n end = ind - 1\n if ind == len(s) - 1:\n end = ind\n while start < end:\n tmp = s[start]\n str_list[start] = s[end]\n str_list[end] = tmp\n start += 1\n end -= 1\n start = ind + 1\n return ''.join(str_list)\n\n def findWords(self, words):\n \"\"\"\n :type words: List[str]\n :rtype: List[str]\n \"\"\"\n s1 = set('qwertyuiop')\n s2 = set('asdfghjkl')\n s3 = set('zxcvbnm')\n res_list = []\n for word in words:\n ws = set(str(word).lower())\n if ws.issubset(s1) or ws.issubset(s2) or ws.issubset(s3):\n res_list.append(word)\n return res_list\n\n def calPoints(self, ops):\n \"\"\"\n :type ops: List[str]\n :rtype: int\n \"\"\"\n stack = []\n total = 0\n for ind in range(len(ops)):\n if str(ops[ind]).upper() == 'D':\n last_valid_score = stack.pop()\n current_score = last_valid_score * 2\n stack.append(last_valid_score)\n stack.append(current_score)\n total += current_score\n elif str(ops[ind]).upper() == 'C':\n invalid_score = stack.pop()\n total -= invalid_score\n elif str(ops[ind]).upper() == '+':\n last_valid_score1 = stack.pop()\n last_valid_score2 = stack.pop()\n current_score = last_valid_score1 + last_valid_score2\n stack.append(last_valid_score2)\n stack.append(last_valid_score1)\n stack.append(current_score)\n total += current_score\n else:\n total += int(ops[ind])\n stack.append(int(ops[ind]))\n return total\n\n def distributeCandies(self, candies):\n \"\"\"\n :type candies: List[int]\n :rtype: int\n \"\"\"\n sis_set = set()\n max_len = len(candies) / 2\n for num in candies:\n if num not in sis_set and len(sis_set) < max_len:\n sis_set.update([num])\n return len(sis_set)\n\n def fizzBuzz(self, n):\n \"\"\"\n :type n: int\n :rtype: List[str]\n \"\"\"\n res_list = []\n for ind in range(1, n + 1):\n cur_val = ''\n if ind % 3 == 0:\n cur_val = 'Fizz'\n if ind % 5 == 0:\n cur_val = '%s%s' % (cur_val, 'Buzz')\n if cur_val == '':\n cur_val = ind\n res_list.append(cur_val)\n return res_list\n\n def matrixReshape(self, nums, r, c):\n \"\"\"\n :type nums: List[List[int]]\n :type r: int\n :type c: int\n :rtype: List[List[int]]\n \"\"\"\n flat_list = []\n for nu_list in nums:\n flat_list += nu_list\n if r * c > len(flat_list):\n return nums\n else:\n res_list = []\n for count in range(r):\n res_list.append(flat_list[c * count:(count + 1) * c])\n return res_list\n\n\nif __name__ == '__main__':\n so = Solution()\n print so.findComplement(5)\n print so.reverseWords(\"Let's take\")\n print so.findWords([\"Hello\", \"Alaska\", \"Dad\", \"Peace\"])\n print so.calPoints([\"5\", \"-2\", \"4\", \"C\", \"D\", \"9\", \"+\", \"+\"])\n print so.distributeCandies([1, 1, 2, 2, 3, 3])\n print so.fizzBuzz(15)\n print so.matrixReshape([[1, 2], [3, 4]], 1, 4)\n" ]
true
99,587
8b77411d2fcabd919a2cd03259efb8aa27f271a6
import sys import json import argparse from Data.stock_choices import list_of_stocks from Make_Prediction.ARIMA import ARIMA_implementation class training_parser(): ''' The job of this class is to take the user's arguments as input and decide what should happen next ''' def __init__(self): #Gets the list of stock names self.list_of_stocks = list_of_stocks def create_parser(self): ''' The goal of this function is to create the parser ''' self.training_parser = argparse.ArgumentParser() self.add_arguments() def add_arguments(self): ''' The goal of this function is to add all necessary arguments to the parser ''' #Allow user to choose what stock to train for self.training_parser.add_argument('--choice') #Allow the user to see a list of all available self.training_parser.add_argument('--list') #Allow the user to see what stocks already have optimal parameters trained for self.training_parser.add_argument('--trained') self.args = self.training_parser.parse_args() self.check_arguments() def check_arguments(self): ''' The goal of this function is to take the users input and decide what the output should be. This is where the logic is held ''' #Check to see if the stock was an acceptable input length = len(list_of_stocks) for i in list_of_stocks: if self.args.choice == i: self.stock_choice = i #If the stock was acceptable, break the loop break length -= 1 if length == 0 and self.args.choice is not None: #This only happens when the stock was not a valid name print("") print("Enter a valid stock!") sys.exit(0) #This will show the list of stocks that are acceptable to train for if self.args.list == "show": print("") print("The list of stocks are: ") print("") print(list_of_stocks) sys.exit(0) #This wlil show the user the stocks that already have optimal variabels if self.args.trained == "show": with open('C:\Programming\Projects\Current GitHub Project\-MAKE-A-NAME-\Data/best_parameters.json') as file_save: try: current_dictionary = json.load(file_save) except json.decoderself.JSONDecodeError: current_dictionary = {} print("") print("Stocks that are already trainined for are:") print("") print('%s'%(current_dictionary)) sys.exit() try: #Start the training self.start_training(self.stock_choice) except AttributeError: #This only happens when the user did not provide any arguments print("") print("""Use a command: [--list show] prints off the list of available stocks [--trained show] prints the stocks that already have been trainined for [--choice *STOCK NAME*] allows you to train the model for a particular stock""") sys.exit(0) def start_training(self, stock_choice): ''' The goal of this function is to start the training ''' # Self.stock_choice is repeated because the visualize operation can call to train the stock, this allows the # Training process to know what stock to train for without adding additional functions self.stock_choice = stock_choice ARIMA = ARIMA_implementation(self.stock_choice) self.best_order = ARIMA.main() self.save_order() def save_order(self): ''' The goal of this function is to save the optimal (p,d,q) values for future use ''' #Saves the order to a JSON file with open('C:\Programming\Projects\Current GitHub Project\-MAKE-A-NAME-\Data/best_parameters.json') as file_save: try: current_dictionary = json.load(file_save) except json.decoderself.JSONDecodeError: #This gets called if the JSON file is empty current_dictionary = {} with open('C:\Programming\Projects\Current GitHub Project\-MAKE-A-NAME-\Data/best_parameters.json', 'w') as file_save: #Saves the values current_dictionary[str(self.stock_choice)] = str(self.best_order) json.dump(current_dictionary, file_save) def main(self): ''' The goal of this function is to start the whole process ''' self.create_parser() if __name__ == "__main__": train = training_parser() train.main()
[ "import sys\r\nimport json\r\nimport argparse\r\n\r\nfrom Data.stock_choices import list_of_stocks\r\nfrom Make_Prediction.ARIMA import ARIMA_implementation\r\n\r\nclass training_parser():\r\n '''\r\n The job of this class is to take the user's arguments as input and decide what\r\n should happen next\r\n '''\r\n\r\n def __init__(self):\r\n #Gets the list of stock names\r\n self.list_of_stocks = list_of_stocks\r\n\r\n def create_parser(self):\r\n '''\r\n The goal of this function is to create the parser\r\n '''\r\n self.training_parser = argparse.ArgumentParser()\r\n self.add_arguments()\r\n\r\n def add_arguments(self):\r\n '''\r\n The goal of this function is to add all necessary arguments to the parser\r\n '''\r\n #Allow user to choose what stock to train for\r\n self.training_parser.add_argument('--choice')\r\n\r\n #Allow the user to see a list of all available\r\n self.training_parser.add_argument('--list')\r\n\r\n #Allow the user to see what stocks already have optimal parameters trained for\r\n self.training_parser.add_argument('--trained')\r\n\r\n self.args = self.training_parser.parse_args()\r\n self.check_arguments()\r\n\r\n def check_arguments(self):\r\n '''\r\n The goal of this function is to take the users input and decide what the\r\n output should be. This is where the logic is held\r\n '''\r\n #Check to see if the stock was an acceptable input\r\n length = len(list_of_stocks)\r\n for i in list_of_stocks:\r\n if self.args.choice == i:\r\n self.stock_choice = i\r\n #If the stock was acceptable, break the loop\r\n break\r\n length -= 1\r\n\r\n if length == 0 and self.args.choice is not None:\r\n #This only happens when the stock was not a valid name\r\n print(\"\")\r\n print(\"Enter a valid stock!\")\r\n sys.exit(0)\r\n\r\n #This will show the list of stocks that are acceptable to train for\r\n if self.args.list == \"show\":\r\n print(\"\")\r\n print(\"The list of stocks are: \")\r\n print(\"\")\r\n print(list_of_stocks)\r\n sys.exit(0)\r\n\r\n #This wlil show the user the stocks that already have optimal variabels\r\n if self.args.trained == \"show\":\r\n with open('C:\\Programming\\Projects\\Current GitHub Project\\-MAKE-A-NAME-\\Data/best_parameters.json') as file_save:\r\n try:\r\n current_dictionary = json.load(file_save)\r\n except json.decoderself.JSONDecodeError:\r\n current_dictionary = {}\r\n print(\"\")\r\n print(\"Stocks that are already trainined for are:\")\r\n print(\"\")\r\n print('%s'%(current_dictionary))\r\n sys.exit()\r\n\r\n try:\r\n #Start the training\r\n self.start_training(self.stock_choice)\r\n except AttributeError:\r\n #This only happens when the user did not provide any arguments\r\n print(\"\")\r\n print(\"\"\"Use a command:\r\n [--list show] prints off the list of available stocks\r\n [--trained show] prints the stocks that already have been trainined for\r\n [--choice *STOCK NAME*] allows you to train the model for a particular stock\"\"\")\r\n sys.exit(0)\r\n\r\n def start_training(self, stock_choice):\r\n '''\r\n The goal of this function is to start the training\r\n '''\r\n # Self.stock_choice is repeated because the visualize operation can call to train the stock, this allows the\r\n # Training process to know what stock to train for without adding additional functions\r\n self.stock_choice = stock_choice\r\n ARIMA = ARIMA_implementation(self.stock_choice)\r\n self.best_order = ARIMA.main()\r\n\r\n self.save_order()\r\n\r\n def save_order(self):\r\n '''\r\n The goal of this function is to save the optimal (p,d,q) values for future use\r\n '''\r\n #Saves the order to a JSON file\r\n with open('C:\\Programming\\Projects\\Current GitHub Project\\-MAKE-A-NAME-\\Data/best_parameters.json') as file_save:\r\n try:\r\n current_dictionary = json.load(file_save)\r\n except json.decoderself.JSONDecodeError:\r\n #This gets called if the JSON file is empty\r\n current_dictionary = {}\r\n\r\n with open('C:\\Programming\\Projects\\Current GitHub Project\\-MAKE-A-NAME-\\Data/best_parameters.json', 'w') as file_save:\r\n #Saves the values\r\n current_dictionary[str(self.stock_choice)] = str(self.best_order)\r\n json.dump(current_dictionary, file_save)\r\n\r\n def main(self):\r\n '''\r\n The goal of this function is to start the whole process\r\n '''\r\n self.create_parser()\r\n\r\nif __name__ == \"__main__\":\r\n train = training_parser()\r\n train.main()\r\n", "import sys\nimport json\nimport argparse\nfrom Data.stock_choices import list_of_stocks\nfrom Make_Prediction.ARIMA import ARIMA_implementation\n\n\nclass training_parser:\n \"\"\"\n The job of this class is to take the user's arguments as input and decide what\n should happen next\n \"\"\"\n\n def __init__(self):\n self.list_of_stocks = list_of_stocks\n\n def create_parser(self):\n \"\"\"\n The goal of this function is to create the parser\n \"\"\"\n self.training_parser = argparse.ArgumentParser()\n self.add_arguments()\n\n def add_arguments(self):\n \"\"\"\n The goal of this function is to add all necessary arguments to the parser\n \"\"\"\n self.training_parser.add_argument('--choice')\n self.training_parser.add_argument('--list')\n self.training_parser.add_argument('--trained')\n self.args = self.training_parser.parse_args()\n self.check_arguments()\n\n def check_arguments(self):\n \"\"\"\n The goal of this function is to take the users input and decide what the\n output should be. This is where the logic is held\n \"\"\"\n length = len(list_of_stocks)\n for i in list_of_stocks:\n if self.args.choice == i:\n self.stock_choice = i\n break\n length -= 1\n if length == 0 and self.args.choice is not None:\n print('')\n print('Enter a valid stock!')\n sys.exit(0)\n if self.args.list == 'show':\n print('')\n print('The list of stocks are: ')\n print('')\n print(list_of_stocks)\n sys.exit(0)\n if self.args.trained == 'show':\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n ) as file_save:\n try:\n current_dictionary = json.load(file_save)\n except json.decoderself.JSONDecodeError:\n current_dictionary = {}\n print('')\n print('Stocks that are already trainined for are:')\n print('')\n print('%s' % current_dictionary)\n sys.exit()\n try:\n self.start_training(self.stock_choice)\n except AttributeError:\n print('')\n print(\n \"\"\"Use a command:\n [--list show] prints off the list of available stocks\n [--trained show] prints the stocks that already have been trainined for\n [--choice *STOCK NAME*] allows you to train the model for a particular stock\"\"\"\n )\n sys.exit(0)\n\n def start_training(self, stock_choice):\n \"\"\"\n The goal of this function is to start the training\n \"\"\"\n self.stock_choice = stock_choice\n ARIMA = ARIMA_implementation(self.stock_choice)\n self.best_order = ARIMA.main()\n self.save_order()\n\n def save_order(self):\n \"\"\"\n The goal of this function is to save the optimal (p,d,q) values for future use\n \"\"\"\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n ) as file_save:\n try:\n current_dictionary = json.load(file_save)\n except json.decoderself.JSONDecodeError:\n current_dictionary = {}\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n , 'w') as file_save:\n current_dictionary[str(self.stock_choice)] = str(self.best_order)\n json.dump(current_dictionary, file_save)\n\n def main(self):\n \"\"\"\n The goal of this function is to start the whole process\n \"\"\"\n self.create_parser()\n\n\nif __name__ == '__main__':\n train = training_parser()\n train.main()\n", "<import token>\n\n\nclass training_parser:\n \"\"\"\n The job of this class is to take the user's arguments as input and decide what\n should happen next\n \"\"\"\n\n def __init__(self):\n self.list_of_stocks = list_of_stocks\n\n def create_parser(self):\n \"\"\"\n The goal of this function is to create the parser\n \"\"\"\n self.training_parser = argparse.ArgumentParser()\n self.add_arguments()\n\n def add_arguments(self):\n \"\"\"\n The goal of this function is to add all necessary arguments to the parser\n \"\"\"\n self.training_parser.add_argument('--choice')\n self.training_parser.add_argument('--list')\n self.training_parser.add_argument('--trained')\n self.args = self.training_parser.parse_args()\n self.check_arguments()\n\n def check_arguments(self):\n \"\"\"\n The goal of this function is to take the users input and decide what the\n output should be. This is where the logic is held\n \"\"\"\n length = len(list_of_stocks)\n for i in list_of_stocks:\n if self.args.choice == i:\n self.stock_choice = i\n break\n length -= 1\n if length == 0 and self.args.choice is not None:\n print('')\n print('Enter a valid stock!')\n sys.exit(0)\n if self.args.list == 'show':\n print('')\n print('The list of stocks are: ')\n print('')\n print(list_of_stocks)\n sys.exit(0)\n if self.args.trained == 'show':\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n ) as file_save:\n try:\n current_dictionary = json.load(file_save)\n except json.decoderself.JSONDecodeError:\n current_dictionary = {}\n print('')\n print('Stocks that are already trainined for are:')\n print('')\n print('%s' % current_dictionary)\n sys.exit()\n try:\n self.start_training(self.stock_choice)\n except AttributeError:\n print('')\n print(\n \"\"\"Use a command:\n [--list show] prints off the list of available stocks\n [--trained show] prints the stocks that already have been trainined for\n [--choice *STOCK NAME*] allows you to train the model for a particular stock\"\"\"\n )\n sys.exit(0)\n\n def start_training(self, stock_choice):\n \"\"\"\n The goal of this function is to start the training\n \"\"\"\n self.stock_choice = stock_choice\n ARIMA = ARIMA_implementation(self.stock_choice)\n self.best_order = ARIMA.main()\n self.save_order()\n\n def save_order(self):\n \"\"\"\n The goal of this function is to save the optimal (p,d,q) values for future use\n \"\"\"\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n ) as file_save:\n try:\n current_dictionary = json.load(file_save)\n except json.decoderself.JSONDecodeError:\n current_dictionary = {}\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n , 'w') as file_save:\n current_dictionary[str(self.stock_choice)] = str(self.best_order)\n json.dump(current_dictionary, file_save)\n\n def main(self):\n \"\"\"\n The goal of this function is to start the whole process\n \"\"\"\n self.create_parser()\n\n\nif __name__ == '__main__':\n train = training_parser()\n train.main()\n", "<import token>\n\n\nclass training_parser:\n \"\"\"\n The job of this class is to take the user's arguments as input and decide what\n should happen next\n \"\"\"\n\n def __init__(self):\n self.list_of_stocks = list_of_stocks\n\n def create_parser(self):\n \"\"\"\n The goal of this function is to create the parser\n \"\"\"\n self.training_parser = argparse.ArgumentParser()\n self.add_arguments()\n\n def add_arguments(self):\n \"\"\"\n The goal of this function is to add all necessary arguments to the parser\n \"\"\"\n self.training_parser.add_argument('--choice')\n self.training_parser.add_argument('--list')\n self.training_parser.add_argument('--trained')\n self.args = self.training_parser.parse_args()\n self.check_arguments()\n\n def check_arguments(self):\n \"\"\"\n The goal of this function is to take the users input and decide what the\n output should be. This is where the logic is held\n \"\"\"\n length = len(list_of_stocks)\n for i in list_of_stocks:\n if self.args.choice == i:\n self.stock_choice = i\n break\n length -= 1\n if length == 0 and self.args.choice is not None:\n print('')\n print('Enter a valid stock!')\n sys.exit(0)\n if self.args.list == 'show':\n print('')\n print('The list of stocks are: ')\n print('')\n print(list_of_stocks)\n sys.exit(0)\n if self.args.trained == 'show':\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n ) as file_save:\n try:\n current_dictionary = json.load(file_save)\n except json.decoderself.JSONDecodeError:\n current_dictionary = {}\n print('')\n print('Stocks that are already trainined for are:')\n print('')\n print('%s' % current_dictionary)\n sys.exit()\n try:\n self.start_training(self.stock_choice)\n except AttributeError:\n print('')\n print(\n \"\"\"Use a command:\n [--list show] prints off the list of available stocks\n [--trained show] prints the stocks that already have been trainined for\n [--choice *STOCK NAME*] allows you to train the model for a particular stock\"\"\"\n )\n sys.exit(0)\n\n def start_training(self, stock_choice):\n \"\"\"\n The goal of this function is to start the training\n \"\"\"\n self.stock_choice = stock_choice\n ARIMA = ARIMA_implementation(self.stock_choice)\n self.best_order = ARIMA.main()\n self.save_order()\n\n def save_order(self):\n \"\"\"\n The goal of this function is to save the optimal (p,d,q) values for future use\n \"\"\"\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n ) as file_save:\n try:\n current_dictionary = json.load(file_save)\n except json.decoderself.JSONDecodeError:\n current_dictionary = {}\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n , 'w') as file_save:\n current_dictionary[str(self.stock_choice)] = str(self.best_order)\n json.dump(current_dictionary, file_save)\n\n def main(self):\n \"\"\"\n The goal of this function is to start the whole process\n \"\"\"\n self.create_parser()\n\n\n<code token>\n", "<import token>\n\n\nclass training_parser:\n <docstring token>\n\n def __init__(self):\n self.list_of_stocks = list_of_stocks\n\n def create_parser(self):\n \"\"\"\n The goal of this function is to create the parser\n \"\"\"\n self.training_parser = argparse.ArgumentParser()\n self.add_arguments()\n\n def add_arguments(self):\n \"\"\"\n The goal of this function is to add all necessary arguments to the parser\n \"\"\"\n self.training_parser.add_argument('--choice')\n self.training_parser.add_argument('--list')\n self.training_parser.add_argument('--trained')\n self.args = self.training_parser.parse_args()\n self.check_arguments()\n\n def check_arguments(self):\n \"\"\"\n The goal of this function is to take the users input and decide what the\n output should be. This is where the logic is held\n \"\"\"\n length = len(list_of_stocks)\n for i in list_of_stocks:\n if self.args.choice == i:\n self.stock_choice = i\n break\n length -= 1\n if length == 0 and self.args.choice is not None:\n print('')\n print('Enter a valid stock!')\n sys.exit(0)\n if self.args.list == 'show':\n print('')\n print('The list of stocks are: ')\n print('')\n print(list_of_stocks)\n sys.exit(0)\n if self.args.trained == 'show':\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n ) as file_save:\n try:\n current_dictionary = json.load(file_save)\n except json.decoderself.JSONDecodeError:\n current_dictionary = {}\n print('')\n print('Stocks that are already trainined for are:')\n print('')\n print('%s' % current_dictionary)\n sys.exit()\n try:\n self.start_training(self.stock_choice)\n except AttributeError:\n print('')\n print(\n \"\"\"Use a command:\n [--list show] prints off the list of available stocks\n [--trained show] prints the stocks that already have been trainined for\n [--choice *STOCK NAME*] allows you to train the model for a particular stock\"\"\"\n )\n sys.exit(0)\n\n def start_training(self, stock_choice):\n \"\"\"\n The goal of this function is to start the training\n \"\"\"\n self.stock_choice = stock_choice\n ARIMA = ARIMA_implementation(self.stock_choice)\n self.best_order = ARIMA.main()\n self.save_order()\n\n def save_order(self):\n \"\"\"\n The goal of this function is to save the optimal (p,d,q) values for future use\n \"\"\"\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n ) as file_save:\n try:\n current_dictionary = json.load(file_save)\n except json.decoderself.JSONDecodeError:\n current_dictionary = {}\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n , 'w') as file_save:\n current_dictionary[str(self.stock_choice)] = str(self.best_order)\n json.dump(current_dictionary, file_save)\n\n def main(self):\n \"\"\"\n The goal of this function is to start the whole process\n \"\"\"\n self.create_parser()\n\n\n<code token>\n", "<import token>\n\n\nclass training_parser:\n <docstring token>\n\n def __init__(self):\n self.list_of_stocks = list_of_stocks\n <function token>\n\n def add_arguments(self):\n \"\"\"\n The goal of this function is to add all necessary arguments to the parser\n \"\"\"\n self.training_parser.add_argument('--choice')\n self.training_parser.add_argument('--list')\n self.training_parser.add_argument('--trained')\n self.args = self.training_parser.parse_args()\n self.check_arguments()\n\n def check_arguments(self):\n \"\"\"\n The goal of this function is to take the users input and decide what the\n output should be. This is where the logic is held\n \"\"\"\n length = len(list_of_stocks)\n for i in list_of_stocks:\n if self.args.choice == i:\n self.stock_choice = i\n break\n length -= 1\n if length == 0 and self.args.choice is not None:\n print('')\n print('Enter a valid stock!')\n sys.exit(0)\n if self.args.list == 'show':\n print('')\n print('The list of stocks are: ')\n print('')\n print(list_of_stocks)\n sys.exit(0)\n if self.args.trained == 'show':\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n ) as file_save:\n try:\n current_dictionary = json.load(file_save)\n except json.decoderself.JSONDecodeError:\n current_dictionary = {}\n print('')\n print('Stocks that are already trainined for are:')\n print('')\n print('%s' % current_dictionary)\n sys.exit()\n try:\n self.start_training(self.stock_choice)\n except AttributeError:\n print('')\n print(\n \"\"\"Use a command:\n [--list show] prints off the list of available stocks\n [--trained show] prints the stocks that already have been trainined for\n [--choice *STOCK NAME*] allows you to train the model for a particular stock\"\"\"\n )\n sys.exit(0)\n\n def start_training(self, stock_choice):\n \"\"\"\n The goal of this function is to start the training\n \"\"\"\n self.stock_choice = stock_choice\n ARIMA = ARIMA_implementation(self.stock_choice)\n self.best_order = ARIMA.main()\n self.save_order()\n\n def save_order(self):\n \"\"\"\n The goal of this function is to save the optimal (p,d,q) values for future use\n \"\"\"\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n ) as file_save:\n try:\n current_dictionary = json.load(file_save)\n except json.decoderself.JSONDecodeError:\n current_dictionary = {}\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n , 'w') as file_save:\n current_dictionary[str(self.stock_choice)] = str(self.best_order)\n json.dump(current_dictionary, file_save)\n\n def main(self):\n \"\"\"\n The goal of this function is to start the whole process\n \"\"\"\n self.create_parser()\n\n\n<code token>\n", "<import token>\n\n\nclass training_parser:\n <docstring token>\n\n def __init__(self):\n self.list_of_stocks = list_of_stocks\n <function token>\n\n def add_arguments(self):\n \"\"\"\n The goal of this function is to add all necessary arguments to the parser\n \"\"\"\n self.training_parser.add_argument('--choice')\n self.training_parser.add_argument('--list')\n self.training_parser.add_argument('--trained')\n self.args = self.training_parser.parse_args()\n self.check_arguments()\n\n def check_arguments(self):\n \"\"\"\n The goal of this function is to take the users input and decide what the\n output should be. This is where the logic is held\n \"\"\"\n length = len(list_of_stocks)\n for i in list_of_stocks:\n if self.args.choice == i:\n self.stock_choice = i\n break\n length -= 1\n if length == 0 and self.args.choice is not None:\n print('')\n print('Enter a valid stock!')\n sys.exit(0)\n if self.args.list == 'show':\n print('')\n print('The list of stocks are: ')\n print('')\n print(list_of_stocks)\n sys.exit(0)\n if self.args.trained == 'show':\n with open(\n 'C:\\\\Programming\\\\Projects\\\\Current GitHub Project\\\\-MAKE-A-NAME-\\\\Data/best_parameters.json'\n ) as file_save:\n try:\n current_dictionary = json.load(file_save)\n except json.decoderself.JSONDecodeError:\n current_dictionary = {}\n print('')\n print('Stocks that are already trainined for are:')\n print('')\n print('%s' % current_dictionary)\n sys.exit()\n try:\n self.start_training(self.stock_choice)\n except AttributeError:\n print('')\n print(\n \"\"\"Use a command:\n [--list show] prints off the list of available stocks\n [--trained show] prints the stocks that already have been trainined for\n [--choice *STOCK NAME*] allows you to train the model for a particular stock\"\"\"\n )\n sys.exit(0)\n\n def start_training(self, stock_choice):\n \"\"\"\n The goal of this function is to start the training\n \"\"\"\n self.stock_choice = stock_choice\n ARIMA = ARIMA_implementation(self.stock_choice)\n self.best_order = ARIMA.main()\n self.save_order()\n <function token>\n\n def main(self):\n \"\"\"\n The goal of this function is to start the whole process\n \"\"\"\n self.create_parser()\n\n\n<code token>\n", "<import token>\n\n\nclass training_parser:\n <docstring token>\n\n def __init__(self):\n self.list_of_stocks = list_of_stocks\n <function token>\n\n def add_arguments(self):\n \"\"\"\n The goal of this function is to add all necessary arguments to the parser\n \"\"\"\n self.training_parser.add_argument('--choice')\n self.training_parser.add_argument('--list')\n self.training_parser.add_argument('--trained')\n self.args = self.training_parser.parse_args()\n self.check_arguments()\n <function token>\n\n def start_training(self, stock_choice):\n \"\"\"\n The goal of this function is to start the training\n \"\"\"\n self.stock_choice = stock_choice\n ARIMA = ARIMA_implementation(self.stock_choice)\n self.best_order = ARIMA.main()\n self.save_order()\n <function token>\n\n def main(self):\n \"\"\"\n The goal of this function is to start the whole process\n \"\"\"\n self.create_parser()\n\n\n<code token>\n", "<import token>\n\n\nclass training_parser:\n <docstring token>\n\n def __init__(self):\n self.list_of_stocks = list_of_stocks\n <function token>\n\n def add_arguments(self):\n \"\"\"\n The goal of this function is to add all necessary arguments to the parser\n \"\"\"\n self.training_parser.add_argument('--choice')\n self.training_parser.add_argument('--list')\n self.training_parser.add_argument('--trained')\n self.args = self.training_parser.parse_args()\n self.check_arguments()\n <function token>\n <function token>\n <function token>\n\n def main(self):\n \"\"\"\n The goal of this function is to start the whole process\n \"\"\"\n self.create_parser()\n\n\n<code token>\n", "<import token>\n\n\nclass training_parser:\n <docstring token>\n\n def __init__(self):\n self.list_of_stocks = list_of_stocks\n <function token>\n\n def add_arguments(self):\n \"\"\"\n The goal of this function is to add all necessary arguments to the parser\n \"\"\"\n self.training_parser.add_argument('--choice')\n self.training_parser.add_argument('--list')\n self.training_parser.add_argument('--trained')\n self.args = self.training_parser.parse_args()\n self.check_arguments()\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n\n\nclass training_parser:\n <docstring token>\n <function token>\n <function token>\n\n def add_arguments(self):\n \"\"\"\n The goal of this function is to add all necessary arguments to the parser\n \"\"\"\n self.training_parser.add_argument('--choice')\n self.training_parser.add_argument('--list')\n self.training_parser.add_argument('--trained')\n self.args = self.training_parser.parse_args()\n self.check_arguments()\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n\n\nclass training_parser:\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<code token>\n", "<import token>\n<class token>\n<code token>\n" ]
false
99,588
913d3c06947e1b19aa4c4ad8a8886fa73d764835
import itertools from mdp import * actions = ["up", "down", "left", "right", "do challenge"] locations = ["loc" + str(i) for i in range(1,10)] locations_to_map = {} for l in locations: locations_to_map[l] = l locations_to_map["loc1"] = "station_3" locations_to_map["loc2"] = "home" locations_to_map["loc5"] = "corridor" locations_to_map["loc6"] = "recharging_terminal" locations_to_map["loc7"] = "station_2" locations_to_map["loc9"] = "station_1" # 0 represents challenge not done, 1 otherwise # challenge 1 - 5 init = ("loc2", tuple(list("00000"))) terminals = [] for l in locations: terminals.append((l, tuple(list("11111")))) # maps challenge number (1-5) to location? challenge_locations = {} challenge_locations[1] = "loc9" #mcts challenge_locations[2] = "loc7" #reachability challenge_locations[3] = "loc1" #vision1 challenge_locations[4] = "loc1" #vision2 challenge_locations[5] = "loc1" #vision3 # get all possible challenge states challenge_states = [tuple(list("00000")), tuple(list("11111"))] for i in itertools.permutations(list("10000")): if i not in challenge_states: challenge_states.append(tuple(list(i))) for i in itertools.permutations(list("11000")): if i not in challenge_states: challenge_states.append(tuple(list(i))) for i in itertools.permutations(list("11100")): if i not in challenge_states: challenge_states.append(tuple(list(i))) for i in itertools.permutations(list("11110")): if i not in challenge_states: challenge_states.append(tuple(list(i))) all_states = [] for loc in locations: for c in challenge_states: all_states.append((loc, c)) # MDP TRANSITIONS transitions = {} prob_succeed_challenge = 0.8 prob_fail_challenge = 1.0 - prob_succeed_challenge # challenge location transitions for num, loc in challenge_locations.iteritems(): #print "num", num, "loc", loc # for every challenge state that has a 0 at index num-1, transition to 1 at index num-1 # i.e. if challenge 1, every state with 0xxxx --> 1xxxx # assuming we don't allow robot to do the challenge again if it has already succeeded? for s in challenge_states: if s[num-1] == "0": current_state = (loc, s) new_state = list(s)[:] new_state[num-1] = "1" new_state = (loc, tuple(new_state)) # state, action, new state, prob key = (current_state, "do challenge") if key not in transitions: transitions[key] = {} transitions[key][new_state] = prob_succeed_challenge transitions[key][current_state] = prob_fail_challenge #print current_state, new_state, "do challenge" # print current_state do challenge, current_state, prob of failing challenge # moving transitions prob_action_succeed = 0.8 prob_action_fail = 1.0 - prob_action_succeed # action up for i in [1, 4, 5, 3]: for c in challenge_states: current_state = ("loc" + str(i), c) new_state = ("loc" + str(i+3), c) key = (current_state, "up") if key not in transitions: transitions[key] = {} transitions[key][new_state] = prob_action_succeed transitions[key][current_state] = prob_action_fail #print current_state, new_state, "up" # action down for i in [7, 8, 4, 6]: for c in challenge_states: current_state = ("loc" + str(i), c) new_state = ("loc" + str(i-3), c) key = (current_state, "down") if key not in transitions: transitions[key] = {} transitions[key][new_state] = prob_action_succeed transitions[key][current_state] = prob_action_fail # action right for i in [4, 5, 8, 2]: for c in challenge_states: current_state = ("loc" + str(i), c) new_state = ("loc" + str(i+1), c) key = (current_state, "right") if key not in transitions: transitions[key] = {} transitions[key][new_state] = prob_action_succeed transitions[key][current_state] = prob_action_fail # action left for i in [9, 5, 6, 3]: for c in challenge_states: current_state = ("loc" + str(i), c) new_state = ("loc" + str(i-1), c) key = (current_state, "left") if key not in transitions: transitions[key] = {} transitions[key][new_state] = prob_action_succeed transitions[key][current_state] = prob_action_fail # MDP REWARDS?? rewards={} for state in all_states: if state is not ('loc9', ('1', '1', '1', '1', '1')): if state not in rewards: rewards[state] = {} rewards[state] = 0 rewards[('loc9', ('1', '1', '1', '1', '1'))] = 100 rewards[('loc7', ('1', '1', '1', '1', '1'))] = 100 rewards[('loc1', ('1', '1', '1', '1', '1'))] = 100 #mdp.terminals = ('loc9', ('1', '1', '1')) #print rewards #rewards = {('loc9', ('1', '1', '1')): 100} # {'station_2': 1.0, 'station_3': -0.4, 'station_4': -0.4, 'station_5': -0.4, 'station_7': -0.4, 'station_8': -0.4, 'station_9': -0.4} gamma = 0.9 mdp = MDP(all_states, actions, init, rewards, transitions, terminals, gamma) #print len(all_states) #print all_states #print actions #print init #s1 (('0', '0', '0'), ('1', '0', '0')) p 0.8 s ('loc7', ('0', '0', '0')) a do challenge
[ "import itertools\nfrom mdp import *\n\nactions = [\"up\", \"down\", \"left\", \"right\", \"do challenge\"]\nlocations = [\"loc\" + str(i) for i in range(1,10)]\n\nlocations_to_map = {}\nfor l in locations:\n locations_to_map[l] = l\nlocations_to_map[\"loc1\"] = \"station_3\"\nlocations_to_map[\"loc2\"] = \"home\"\nlocations_to_map[\"loc5\"] = \"corridor\"\nlocations_to_map[\"loc6\"] = \"recharging_terminal\"\nlocations_to_map[\"loc7\"] = \"station_2\"\nlocations_to_map[\"loc9\"] = \"station_1\"\n\n# 0 represents challenge not done, 1 otherwise\n# challenge 1 - 5\ninit = (\"loc2\", tuple(list(\"00000\")))\nterminals = []\nfor l in locations:\n terminals.append((l, tuple(list(\"11111\"))))\n\n# maps challenge number (1-5) to location?\nchallenge_locations = {}\nchallenge_locations[1] = \"loc9\" #mcts\nchallenge_locations[2] = \"loc7\" #reachability\nchallenge_locations[3] = \"loc1\" #vision1\nchallenge_locations[4] = \"loc1\" #vision2\nchallenge_locations[5] = \"loc1\" #vision3\n\n# get all possible challenge states\nchallenge_states = [tuple(list(\"00000\")), tuple(list(\"11111\"))]\nfor i in itertools.permutations(list(\"10000\")):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\n\nfor i in itertools.permutations(list(\"11000\")):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\n\nfor i in itertools.permutations(list(\"11100\")):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\n\nfor i in itertools.permutations(list(\"11110\")):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\n\nall_states = []\nfor loc in locations:\n for c in challenge_states:\n all_states.append((loc, c))\n\n# MDP TRANSITIONS\ntransitions = {}\nprob_succeed_challenge = 0.8\nprob_fail_challenge = 1.0 - prob_succeed_challenge\n\n# challenge location transitions\nfor num, loc in challenge_locations.iteritems():\n #print \"num\", num, \"loc\", loc\n # for every challenge state that has a 0 at index num-1, transition to 1 at index num-1\n # i.e. if challenge 1, every state with 0xxxx --> 1xxxx\n # assuming we don't allow robot to do the challenge again if it has already succeeded?\n for s in challenge_states:\n if s[num-1] == \"0\":\n current_state = (loc, s)\n new_state = list(s)[:]\n new_state[num-1] = \"1\"\n new_state = (loc, tuple(new_state))\n # state, action, new state, prob\n key = (current_state, \"do challenge\")\n if key not in transitions:\n transitions[key] = {}\n\n transitions[key][new_state] = prob_succeed_challenge\n transitions[key][current_state] = prob_fail_challenge\n #print current_state, new_state, \"do challenge\"\n # print current_state do challenge, current_state, prob of failing challenge\n\n# moving transitions\nprob_action_succeed = 0.8\nprob_action_fail = 1.0 - prob_action_succeed\n\n# action up\nfor i in [1, 4, 5, 3]:\n for c in challenge_states:\n current_state = (\"loc\" + str(i), c)\n new_state = (\"loc\" + str(i+3), c)\n\n key = (current_state, \"up\")\n if key not in transitions:\n transitions[key] = {}\n\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\n #print current_state, new_state, \"up\"\n\n# action down\nfor i in [7, 8, 4, 6]:\n for c in challenge_states:\n current_state = (\"loc\" + str(i), c)\n new_state = (\"loc\" + str(i-3), c)\n\n key = (current_state, \"down\")\n if key not in transitions:\n transitions[key] = {}\n\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\n\n\n# action right\nfor i in [4, 5, 8, 2]:\n for c in challenge_states:\n current_state = (\"loc\" + str(i), c)\n new_state = (\"loc\" + str(i+1), c)\n \n key = (current_state, \"right\")\n if key not in transitions:\n transitions[key] = {}\n \n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\n\n\n# action left\nfor i in [9, 5, 6, 3]:\n for c in challenge_states:\n current_state = (\"loc\" + str(i), c)\n new_state = (\"loc\" + str(i-1), c)\n\n key = (current_state, \"left\")\n if key not in transitions:\n transitions[key] = {}\n\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\n\n\n# MDP REWARDS??\nrewards={}\nfor state in all_states:\n if state is not ('loc9', ('1', '1', '1', '1', '1')):\n if state not in rewards:\n rewards[state] = {}\n rewards[state] = 0\nrewards[('loc9', ('1', '1', '1', '1', '1'))] = 100\nrewards[('loc7', ('1', '1', '1', '1', '1'))] = 100\nrewards[('loc1', ('1', '1', '1', '1', '1'))] = 100\n\n#mdp.terminals = ('loc9', ('1', '1', '1'))\n \n#print rewards\n#rewards = {('loc9', ('1', '1', '1')): 100}\n# {'station_2': 1.0, 'station_3': -0.4, 'station_4': -0.4, 'station_5': -0.4, 'station_7': -0.4, 'station_8': -0.4, 'station_9': -0.4}\n\ngamma = 0.9\nmdp = MDP(all_states, actions, init, rewards, transitions, terminals, gamma)\n\n#print len(all_states)\n#print all_states\n#print actions\n#print init\n#s1 (('0', '0', '0'), ('1', '0', '0')) p 0.8 s ('loc7', ('0', '0', '0')) a do challenge\n\n", "import itertools\nfrom mdp import *\nactions = ['up', 'down', 'left', 'right', 'do challenge']\nlocations = [('loc' + str(i)) for i in range(1, 10)]\nlocations_to_map = {}\nfor l in locations:\n locations_to_map[l] = l\nlocations_to_map['loc1'] = 'station_3'\nlocations_to_map['loc2'] = 'home'\nlocations_to_map['loc5'] = 'corridor'\nlocations_to_map['loc6'] = 'recharging_terminal'\nlocations_to_map['loc7'] = 'station_2'\nlocations_to_map['loc9'] = 'station_1'\ninit = 'loc2', tuple(list('00000'))\nterminals = []\nfor l in locations:\n terminals.append((l, tuple(list('11111'))))\nchallenge_locations = {}\nchallenge_locations[1] = 'loc9'\nchallenge_locations[2] = 'loc7'\nchallenge_locations[3] = 'loc1'\nchallenge_locations[4] = 'loc1'\nchallenge_locations[5] = 'loc1'\nchallenge_states = [tuple(list('00000')), tuple(list('11111'))]\nfor i in itertools.permutations(list('10000')):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\nfor i in itertools.permutations(list('11000')):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\nfor i in itertools.permutations(list('11100')):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\nfor i in itertools.permutations(list('11110')):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\nall_states = []\nfor loc in locations:\n for c in challenge_states:\n all_states.append((loc, c))\ntransitions = {}\nprob_succeed_challenge = 0.8\nprob_fail_challenge = 1.0 - prob_succeed_challenge\nfor num, loc in challenge_locations.iteritems():\n for s in challenge_states:\n if s[num - 1] == '0':\n current_state = loc, s\n new_state = list(s)[:]\n new_state[num - 1] = '1'\n new_state = loc, tuple(new_state)\n key = current_state, 'do challenge'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_succeed_challenge\n transitions[key][current_state] = prob_fail_challenge\nprob_action_succeed = 0.8\nprob_action_fail = 1.0 - prob_action_succeed\nfor i in [1, 4, 5, 3]:\n for c in challenge_states:\n current_state = 'loc' + str(i), c\n new_state = 'loc' + str(i + 3), c\n key = current_state, 'up'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\nfor i in [7, 8, 4, 6]:\n for c in challenge_states:\n current_state = 'loc' + str(i), c\n new_state = 'loc' + str(i - 3), c\n key = current_state, 'down'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\nfor i in [4, 5, 8, 2]:\n for c in challenge_states:\n current_state = 'loc' + str(i), c\n new_state = 'loc' + str(i + 1), c\n key = current_state, 'right'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\nfor i in [9, 5, 6, 3]:\n for c in challenge_states:\n current_state = 'loc' + str(i), c\n new_state = 'loc' + str(i - 1), c\n key = current_state, 'left'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\nrewards = {}\nfor state in all_states:\n if state is not ('loc9', ('1', '1', '1', '1', '1')):\n if state not in rewards:\n rewards[state] = {}\n rewards[state] = 0\nrewards['loc9', ('1', '1', '1', '1', '1')] = 100\nrewards['loc7', ('1', '1', '1', '1', '1')] = 100\nrewards['loc1', ('1', '1', '1', '1', '1')] = 100\ngamma = 0.9\nmdp = MDP(all_states, actions, init, rewards, transitions, terminals, gamma)\n", "<import token>\nactions = ['up', 'down', 'left', 'right', 'do challenge']\nlocations = [('loc' + str(i)) for i in range(1, 10)]\nlocations_to_map = {}\nfor l in locations:\n locations_to_map[l] = l\nlocations_to_map['loc1'] = 'station_3'\nlocations_to_map['loc2'] = 'home'\nlocations_to_map['loc5'] = 'corridor'\nlocations_to_map['loc6'] = 'recharging_terminal'\nlocations_to_map['loc7'] = 'station_2'\nlocations_to_map['loc9'] = 'station_1'\ninit = 'loc2', tuple(list('00000'))\nterminals = []\nfor l in locations:\n terminals.append((l, tuple(list('11111'))))\nchallenge_locations = {}\nchallenge_locations[1] = 'loc9'\nchallenge_locations[2] = 'loc7'\nchallenge_locations[3] = 'loc1'\nchallenge_locations[4] = 'loc1'\nchallenge_locations[5] = 'loc1'\nchallenge_states = [tuple(list('00000')), tuple(list('11111'))]\nfor i in itertools.permutations(list('10000')):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\nfor i in itertools.permutations(list('11000')):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\nfor i in itertools.permutations(list('11100')):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\nfor i in itertools.permutations(list('11110')):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\nall_states = []\nfor loc in locations:\n for c in challenge_states:\n all_states.append((loc, c))\ntransitions = {}\nprob_succeed_challenge = 0.8\nprob_fail_challenge = 1.0 - prob_succeed_challenge\nfor num, loc in challenge_locations.iteritems():\n for s in challenge_states:\n if s[num - 1] == '0':\n current_state = loc, s\n new_state = list(s)[:]\n new_state[num - 1] = '1'\n new_state = loc, tuple(new_state)\n key = current_state, 'do challenge'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_succeed_challenge\n transitions[key][current_state] = prob_fail_challenge\nprob_action_succeed = 0.8\nprob_action_fail = 1.0 - prob_action_succeed\nfor i in [1, 4, 5, 3]:\n for c in challenge_states:\n current_state = 'loc' + str(i), c\n new_state = 'loc' + str(i + 3), c\n key = current_state, 'up'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\nfor i in [7, 8, 4, 6]:\n for c in challenge_states:\n current_state = 'loc' + str(i), c\n new_state = 'loc' + str(i - 3), c\n key = current_state, 'down'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\nfor i in [4, 5, 8, 2]:\n for c in challenge_states:\n current_state = 'loc' + str(i), c\n new_state = 'loc' + str(i + 1), c\n key = current_state, 'right'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\nfor i in [9, 5, 6, 3]:\n for c in challenge_states:\n current_state = 'loc' + str(i), c\n new_state = 'loc' + str(i - 1), c\n key = current_state, 'left'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\nrewards = {}\nfor state in all_states:\n if state is not ('loc9', ('1', '1', '1', '1', '1')):\n if state not in rewards:\n rewards[state] = {}\n rewards[state] = 0\nrewards['loc9', ('1', '1', '1', '1', '1')] = 100\nrewards['loc7', ('1', '1', '1', '1', '1')] = 100\nrewards['loc1', ('1', '1', '1', '1', '1')] = 100\ngamma = 0.9\nmdp = MDP(all_states, actions, init, rewards, transitions, terminals, gamma)\n", "<import token>\n<assignment token>\nfor l in locations:\n locations_to_map[l] = l\n<assignment token>\nfor l in locations:\n terminals.append((l, tuple(list('11111'))))\n<assignment token>\nfor i in itertools.permutations(list('10000')):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\nfor i in itertools.permutations(list('11000')):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\nfor i in itertools.permutations(list('11100')):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\nfor i in itertools.permutations(list('11110')):\n if i not in challenge_states:\n challenge_states.append(tuple(list(i)))\n<assignment token>\nfor loc in locations:\n for c in challenge_states:\n all_states.append((loc, c))\n<assignment token>\nfor num, loc in challenge_locations.iteritems():\n for s in challenge_states:\n if s[num - 1] == '0':\n current_state = loc, s\n new_state = list(s)[:]\n new_state[num - 1] = '1'\n new_state = loc, tuple(new_state)\n key = current_state, 'do challenge'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_succeed_challenge\n transitions[key][current_state] = prob_fail_challenge\n<assignment token>\nfor i in [1, 4, 5, 3]:\n for c in challenge_states:\n current_state = 'loc' + str(i), c\n new_state = 'loc' + str(i + 3), c\n key = current_state, 'up'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\nfor i in [7, 8, 4, 6]:\n for c in challenge_states:\n current_state = 'loc' + str(i), c\n new_state = 'loc' + str(i - 3), c\n key = current_state, 'down'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\nfor i in [4, 5, 8, 2]:\n for c in challenge_states:\n current_state = 'loc' + str(i), c\n new_state = 'loc' + str(i + 1), c\n key = current_state, 'right'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\nfor i in [9, 5, 6, 3]:\n for c in challenge_states:\n current_state = 'loc' + str(i), c\n new_state = 'loc' + str(i - 1), c\n key = current_state, 'left'\n if key not in transitions:\n transitions[key] = {}\n transitions[key][new_state] = prob_action_succeed\n transitions[key][current_state] = prob_action_fail\n<assignment token>\nfor state in all_states:\n if state is not ('loc9', ('1', '1', '1', '1', '1')):\n if state not in rewards:\n rewards[state] = {}\n rewards[state] = 0\n<assignment token>\n", "<import token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n<code token>\n<assignment token>\n" ]
false
99,589
7193ad57a1f261fa45d456117e70c3efa66210be
from collections import OrderedDict from datetime import datetime import cv2 as cv import numpy as np from scipy.spatial import distance class CentroidAlgorithm: def __init__(self, maxNumberOfDisapper=30): self.nextObject = 0 self.objects = OrderedDict() self.disappeared = OrderedDict() self.maxNumberOfDisapper = maxNumberOfDisapper def __del__(self): del self.objects del self.disappeared print("all objects deregisterd") def register(self, centroidValues): self.registerEvent(centroidValues, None) def registerEvent(self, centroidValues, EntryTime): print("object registered at ",self.nextObject, ": ", centroidValues) self.objects[self.nextObject] = {"centroid":centroidValues, "entrytime": EntryTime, "isUpdated": False} self.disappeared[self.nextObject] = 0 self.nextObject += 1 def deregister(self, objectID): print("object deregistered at ", objectID,": ", self.objects[objectID]) del self.objects[objectID] del self.disappeared[objectID] def update(self, rectange, EntryTime): # check if length of box is 0 if this then count number of occurence # this disappearence and count disappearence to deregister the object if len(rectange) == 0: # get every object for objectId in list(self.objects.keys()): self.disappeared[objectId] += 1 # check agains the maxdisappearence of the objects # if so deregister that object if self.disappeared[objectId] > self.maxNumberOfDisapper: self.deregister(objectId) # return the objects return self.objects # if not that case get the rectange calculate the distance from previes # first store the number of centroids in CurrentCentroids # make its shape of rectange currentCentroids = np.zeros((len(rectange), 2), dtype="int") # get coordinates of the box for (i, (startX, startY, height, width)) in enumerate(rectange): # calculate centroid of the box frame X_centroid = int((2 * startX + height) / 2.0) Y_centroid = int((2 * startY + width) / 2.0) # push into currentCentroids for further use currentCentroids[i] = (X_centroid, Y_centroid) # initial condition check againts the updated centroid array # register the objects upto how many box we have if len(self.objects) == 0: for i in range(0, len(currentCentroids)): self.register(currentCentroids[i]) if self.objects[self.nextObject-1]["isUpdated"] == False: self.objects[self.nextObject-1]["entrytime"] = EntryTime self.objects[self.nextObject-1]["isUpdated"] = True # if not get the eculidean distance between the previous centroid of frame from objects[objectID] to currentCentroids else: objectIDs = list(self.objects.keys()) objectsValue = list(self.objects.values()) # print(objectsValue) objectCentroids = [list(value["centroid"]) for value in objectsValue] # print(objectCentroids) # find eculidean distance between previous frame centroid to current frame centroid eculideanDistance = distance.cdist(np.array(objectCentroids), currentCentroids) # get the minimum distance between two centeroids # now eculideanDistance is of the size len(currentCentroids) X len(currentCentroids) # so in this every ith row is first input's ith array # and column represents second input's ith array # axis=1 for rowise check # first find overall minimum rows = eculideanDistance.min(axis=1).argsort() # since we get row we want to find column to get perticular index cols = eculideanDistance.argmin(axis=1)[rows] # keep tack of which of the column we examined usedRows = set() #as set doesn't duplicate usedCols = set() for (row, col) in zip(rows, cols): # if alredy examined do nothing if row in usedRows or col in usedCols: continue # else update the centroid objectID = objectIDs[row] # since objectCentroids is first row argument self.objects[objectID]["centroid"] = currentCentroids[col] # since currentCentroids is column row argument self.disappeared[objectID] = 0 # update this row and column to indicate we examined usedRows.add(row) usedCols.add(col) # there are may be some unused rows and columns unusedRows = set(range(0, eculideanDistance.shape[0])).difference(usedRows) unusedCols = set(range(0, eculideanDistance.shape[1])).difference(usedCols) # check the number of object centroid and current centroid # if it is greater than or equal to current centroid # we need to check and see some of the object disapperead if len(np.array(objectCentroids)) >= len(currentCentroids): # check in unused rows for row in unusedRows: # get the objectId and increment the disappreance objectID = objectIDs[row] self.disappeared[objectID] += 1 # check for maximum to deregsiter the object if self.disappeared[objectID] > self.maxNumberOfDisapper: self.deregister(objectID) # if object centroid is less than currentcentroid then new object has # arrieved register the object else: for col in unusedCols: self.register(currentCentroids[col]) if self.objects[self.nextObject - 1]["isUpdated"] == False: self.objects[self.nextObject-1]["entrytime"] = EntryTime self.objects[self.nextObject-1]["isUpdated"] = True return self.objects class EventCapture: def __init__(self): self.starttimer = None def startTimer(self): self.starttimer = datetime.now() def event(self): return (datetime.now() - self.starttimer) # Set the model model = "../ssd_mobilenet_v3_large_coco_2020_01_14/frozen_inference_graph.pb" config = "../config_file/ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt" DL_model = cv.dnn_DetectionModel(model, config) # Set the labels labels = [] with open("../labels.txt") as labelFile: labels = labelFile.read().split("\n") labels.pop() DL_model.setInputSize(320, 320) DL_model.setInputScale(1.0/127.0) DL_model.setInputMean((127.5, 127.5, 127.5)) DL_model.setInputSwapRB(True) def resizeScaleFrame(frame, scale=0.25): height = frame.shape[0] width = frame.shape[1] scale_dimenstion = (int(width * scale), int(height * scale)) model_dimenstion = (320, 320) scale_img = cv.resize(frame, scale_dimenstion, interpolation=cv.INTER_CUBIC) model_img = cv.resize(frame, model_dimenstion, interpolation=cv.INTER_CUBIC) return [scale_img, model_img] # capture the video capture_video = cv.VideoCapture(0) timer = EventCapture() timer.startTimer() centroidAlgo = CentroidAlgorithm() def detectTheObject(frame): class_indexes, confidence_levels, border_boxes = DL_model.detect(frame) rectange = [] if len(class_indexes) > 0: for class_index, confidence, border_box in zip(class_indexes.flatten(), confidence_levels.flatten(), border_boxes): #check only persons and make border for them if confidence > 0.61: if class_index != 1: continue print("{}, {}, {}".format(class_indexes[:,0], border_boxes[:], confidence_levels[:])) rectange.append(border_box.astype("int")) cv.rectangle(frame, border_box, (255,0, 0), 2) cv.putText(frame, labels[class_index - 1], (border_box[0], border_box[1]), cv.FONT_HERSHEY_COMPLEX_SMALL, 1, color=(0,255,255),thickness=1) objects = centroidAlgo.update(rectange, EntryTime=timer.event()) for (ObjectID, info) in objects.items(): # print(info["entrytime"]) text = "ID {}, st {}, T {}".format(ObjectID, timer.starttimer.strftime("%S.%f"), str(info["entrytime"]).split(":")[2]) cv.putText(frame, text, (info["centroid"][0], info["centroid"][1]), cv.FONT_HERSHEY_COMPLEX_SMALL, 1, color=(0,255,255),thickness=1) cv.circle(frame,(info["centroid"][0], info["centroid"][1]), 4, (255,0,0), -1) return frame while True: isTrue, frame = capture_video.read() if not isTrue: print("Error!! unable to read the frame") break #resize the frame and show as video # new_frame = resizeScaleFrame(frame) # scaled_frame = detectTheObject(new_frame[0]) # cv.imshow("test", new_frame[0]) mapped_frame = detectTheObject(frame) # cv.imshow("scaled_video", scaled_frame) cv.imshow("mapped_video", mapped_frame) if cv.waitKey(20) & 0xFF == ord("s"): break capture_video.release() cv.destroyAllWindows() cv.waitKey(0)
[ "from collections import OrderedDict\nfrom datetime import datetime\nimport cv2 as cv\nimport numpy as np\nfrom scipy.spatial import distance\n\nclass CentroidAlgorithm:\n def __init__(self, maxNumberOfDisapper=30):\n self.nextObject = 0\n self.objects = OrderedDict()\n self.disappeared = OrderedDict()\n self.maxNumberOfDisapper = maxNumberOfDisapper\n \n def __del__(self):\n del self.objects\n del self.disappeared\n print(\"all objects deregisterd\")\n \n def register(self, centroidValues):\n self.registerEvent(centroidValues, None) \n\n def registerEvent(self, centroidValues, EntryTime):\n print(\"object registered at \",self.nextObject, \": \", centroidValues)\n self.objects[self.nextObject] = {\"centroid\":centroidValues, \"entrytime\": EntryTime, \"isUpdated\": False}\n\n self.disappeared[self.nextObject] = 0\n self.nextObject += 1\n \n\n def deregister(self, objectID):\n print(\"object deregistered at \", objectID,\": \", self.objects[objectID])\n del self.objects[objectID]\n del self.disappeared[objectID]\n\n def update(self, rectange, EntryTime):\n # check if length of box is 0 if this then count number of occurence\n # this disappearence and count disappearence to deregister the object\n if len(rectange) == 0:\n # get every object \n for objectId in list(self.objects.keys()):\n self.disappeared[objectId] += 1\n # check agains the maxdisappearence of the objects\n # if so deregister that object\n if self.disappeared[objectId] > self.maxNumberOfDisapper:\n self.deregister(objectId)\n \n # return the objects\n return self.objects\n\n\n # if not that case get the rectange calculate the distance from previes \n # first store the number of centroids in CurrentCentroids\n # make its shape of rectange\n currentCentroids = np.zeros((len(rectange), 2), dtype=\"int\")\n # get coordinates of the box\n for (i, (startX, startY, height, width)) in enumerate(rectange):\n # calculate centroid of the box frame\n X_centroid = int((2 * startX + height) / 2.0)\n Y_centroid = int((2 * startY + width) / 2.0)\n # push into currentCentroids for further use\n currentCentroids[i] = (X_centroid, Y_centroid)\n\n # initial condition check againts the updated centroid array \n # register the objects upto how many box we have\n if len(self.objects) == 0:\n for i in range(0, len(currentCentroids)):\n self.register(currentCentroids[i])\n if self.objects[self.nextObject-1][\"isUpdated\"] == False:\n self.objects[self.nextObject-1][\"entrytime\"] = EntryTime\n self.objects[self.nextObject-1][\"isUpdated\"] = True\n \n # if not get the eculidean distance between the previous centroid of frame from objects[objectID] to currentCentroids\n else:\n objectIDs = list(self.objects.keys())\n objectsValue = list(self.objects.values())\n # print(objectsValue)\n objectCentroids = [list(value[\"centroid\"]) for value in objectsValue]\n # print(objectCentroids)\n # find eculidean distance between previous frame centroid to current frame centroid\n eculideanDistance = distance.cdist(np.array(objectCentroids), currentCentroids)\n # get the minimum distance between two centeroids\n # now eculideanDistance is of the size len(currentCentroids) X len(currentCentroids)\n # so in this every ith row is first input's ith array\n # and column represents second input's ith array\n # axis=1 for rowise check\n\n # first find overall minimum\n rows = eculideanDistance.min(axis=1).argsort()\n # since we get row we want to find column to get perticular index\n cols = eculideanDistance.argmin(axis=1)[rows]\n\n # keep tack of which of the column we examined\n usedRows = set() #as set doesn't duplicate\n usedCols = set()\n\n for (row, col) in zip(rows, cols):\n # if alredy examined do nothing\n if row in usedRows or col in usedCols:\n continue\n \n # else update the centroid\n objectID = objectIDs[row] # since objectCentroids is first row argument\n self.objects[objectID][\"centroid\"] = currentCentroids[col] # since currentCentroids is column row argument\n self.disappeared[objectID] = 0\n \n # update this row and column to indicate we examined\n usedRows.add(row)\n usedCols.add(col)\n \n # there are may be some unused rows and columns\n unusedRows = set(range(0, eculideanDistance.shape[0])).difference(usedRows)\n unusedCols = set(range(0, eculideanDistance.shape[1])).difference(usedCols)\n\n # check the number of object centroid and current centroid\n # if it is greater than or equal to current centroid \n # we need to check and see some of the object disapperead\n if len(np.array(objectCentroids)) >= len(currentCentroids):\n # check in unused rows \n for row in unusedRows:\n # get the objectId and increment the disappreance\n objectID = objectIDs[row]\n self.disappeared[objectID] += 1\n\n # check for maximum to deregsiter the object\n if self.disappeared[objectID] > self.maxNumberOfDisapper:\n self.deregister(objectID)\n\n # if object centroid is less than currentcentroid then new object has \n # arrieved register the object\n else:\n for col in unusedCols:\n self.register(currentCentroids[col])\n if self.objects[self.nextObject - 1][\"isUpdated\"] == False:\n self.objects[self.nextObject-1][\"entrytime\"] = EntryTime \n self.objects[self.nextObject-1][\"isUpdated\"] = True\n \n return self.objects \n \nclass EventCapture:\n def __init__(self):\n self.starttimer = None\n \n def startTimer(self):\n self.starttimer = datetime.now()\n \n \n def event(self):\n return (datetime.now() - self.starttimer)\n\n\n# Set the model\nmodel = \"../ssd_mobilenet_v3_large_coco_2020_01_14/frozen_inference_graph.pb\"\nconfig = \"../config_file/ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt\"\nDL_model = cv.dnn_DetectionModel(model, config)\n\n# Set the labels\nlabels = []\nwith open(\"../labels.txt\") as labelFile:\n labels = labelFile.read().split(\"\\n\")\nlabels.pop()\n\nDL_model.setInputSize(320, 320)\nDL_model.setInputScale(1.0/127.0)\nDL_model.setInputMean((127.5, 127.5, 127.5))\nDL_model.setInputSwapRB(True)\n\ndef resizeScaleFrame(frame, scale=0.25):\n height = frame.shape[0]\n width = frame.shape[1]\n \n scale_dimenstion = (int(width * scale), int(height * scale))\n model_dimenstion = (320, 320)\n scale_img = cv.resize(frame, scale_dimenstion, interpolation=cv.INTER_CUBIC)\n model_img = cv.resize(frame, model_dimenstion, interpolation=cv.INTER_CUBIC)\n return [scale_img, model_img]\n\n\n\n# capture the video\ncapture_video = cv.VideoCapture(0)\ntimer = EventCapture()\ntimer.startTimer()\ncentroidAlgo = CentroidAlgorithm()\n\ndef detectTheObject(frame):\n class_indexes, confidence_levels, border_boxes = DL_model.detect(frame)\n rectange = []\n if len(class_indexes) > 0:\n for class_index, confidence, border_box in zip(class_indexes.flatten(), confidence_levels.flatten(), border_boxes):\n \n #check only persons and make border for them\n if confidence > 0.61:\n if class_index != 1:\n continue\n print(\"{}, {}, {}\".format(class_indexes[:,0], border_boxes[:], confidence_levels[:]))\n rectange.append(border_box.astype(\"int\"))\n cv.rectangle(frame, border_box, (255,0, 0), 2)\n cv.putText(frame, labels[class_index - 1], (border_box[0], border_box[1]), cv.FONT_HERSHEY_COMPLEX_SMALL, 1, color=(0,255,255),thickness=1)\n\n \n objects = centroidAlgo.update(rectange, EntryTime=timer.event())\n for (ObjectID, info) in objects.items():\n # print(info[\"entrytime\"])\n text = \"ID {}, st {}, T {}\".format(ObjectID, timer.starttimer.strftime(\"%S.%f\"), str(info[\"entrytime\"]).split(\":\")[2])\n cv.putText(frame, text, (info[\"centroid\"][0], info[\"centroid\"][1]), cv.FONT_HERSHEY_COMPLEX_SMALL, 1, color=(0,255,255),thickness=1)\n cv.circle(frame,(info[\"centroid\"][0], info[\"centroid\"][1]), 4, (255,0,0), -1)\n return frame\n\nwhile True:\n isTrue, frame = capture_video.read()\n\n if not isTrue:\n print(\"Error!! unable to read the frame\")\n break\n \n #resize the frame and show as video\n # new_frame = resizeScaleFrame(frame)\n # scaled_frame = detectTheObject(new_frame[0])\n # cv.imshow(\"test\", new_frame[0])\n mapped_frame = detectTheObject(frame)\n # cv.imshow(\"scaled_video\", scaled_frame)\n cv.imshow(\"mapped_video\", mapped_frame)\n\n if cv.waitKey(20) & 0xFF == ord(\"s\"):\n break\n\ncapture_video.release()\ncv.destroyAllWindows()\n\ncv.waitKey(0)", "from collections import OrderedDict\nfrom datetime import datetime\nimport cv2 as cv\nimport numpy as np\nfrom scipy.spatial import distance\n\n\nclass CentroidAlgorithm:\n\n def __init__(self, maxNumberOfDisapper=30):\n self.nextObject = 0\n self.objects = OrderedDict()\n self.disappeared = OrderedDict()\n self.maxNumberOfDisapper = maxNumberOfDisapper\n\n def __del__(self):\n del self.objects\n del self.disappeared\n print('all objects deregisterd')\n\n def register(self, centroidValues):\n self.registerEvent(centroidValues, None)\n\n def registerEvent(self, centroidValues, EntryTime):\n print('object registered at ', self.nextObject, ': ', centroidValues)\n self.objects[self.nextObject] = {'centroid': centroidValues,\n 'entrytime': EntryTime, 'isUpdated': False}\n self.disappeared[self.nextObject] = 0\n self.nextObject += 1\n\n def deregister(self, objectID):\n print('object deregistered at ', objectID, ': ', self.objects[objectID]\n )\n del self.objects[objectID]\n del self.disappeared[objectID]\n\n def update(self, rectange, EntryTime):\n if len(rectange) == 0:\n for objectId in list(self.objects.keys()):\n self.disappeared[objectId] += 1\n if self.disappeared[objectId] > self.maxNumberOfDisapper:\n self.deregister(objectId)\n return self.objects\n currentCentroids = np.zeros((len(rectange), 2), dtype='int')\n for i, (startX, startY, height, width) in enumerate(rectange):\n X_centroid = int((2 * startX + height) / 2.0)\n Y_centroid = int((2 * startY + width) / 2.0)\n currentCentroids[i] = X_centroid, Y_centroid\n if len(self.objects) == 0:\n for i in range(0, len(currentCentroids)):\n self.register(currentCentroids[i])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n else:\n objectIDs = list(self.objects.keys())\n objectsValue = list(self.objects.values())\n objectCentroids = [list(value['centroid']) for value in\n objectsValue]\n eculideanDistance = distance.cdist(np.array(objectCentroids),\n currentCentroids)\n rows = eculideanDistance.min(axis=1).argsort()\n cols = eculideanDistance.argmin(axis=1)[rows]\n usedRows = set()\n usedCols = set()\n for row, col in zip(rows, cols):\n if row in usedRows or col in usedCols:\n continue\n objectID = objectIDs[row]\n self.objects[objectID]['centroid'] = currentCentroids[col]\n self.disappeared[objectID] = 0\n usedRows.add(row)\n usedCols.add(col)\n unusedRows = set(range(0, eculideanDistance.shape[0])).difference(\n usedRows)\n unusedCols = set(range(0, eculideanDistance.shape[1])).difference(\n usedCols)\n if len(np.array(objectCentroids)) >= len(currentCentroids):\n for row in unusedRows:\n objectID = objectIDs[row]\n self.disappeared[objectID] += 1\n if self.disappeared[objectID] > self.maxNumberOfDisapper:\n self.deregister(objectID)\n else:\n for col in unusedCols:\n self.register(currentCentroids[col])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'\n ] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n return self.objects\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n\n def startTimer(self):\n self.starttimer = datetime.now()\n\n def event(self):\n return datetime.now() - self.starttimer\n\n\nmodel = '../ssd_mobilenet_v3_large_coco_2020_01_14/frozen_inference_graph.pb'\nconfig = '../config_file/ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'\nDL_model = cv.dnn_DetectionModel(model, config)\nlabels = []\nwith open('../labels.txt') as labelFile:\n labels = labelFile.read().split('\\n')\nlabels.pop()\nDL_model.setInputSize(320, 320)\nDL_model.setInputScale(1.0 / 127.0)\nDL_model.setInputMean((127.5, 127.5, 127.5))\nDL_model.setInputSwapRB(True)\n\n\ndef resizeScaleFrame(frame, scale=0.25):\n height = frame.shape[0]\n width = frame.shape[1]\n scale_dimenstion = int(width * scale), int(height * scale)\n model_dimenstion = 320, 320\n scale_img = cv.resize(frame, scale_dimenstion, interpolation=cv.INTER_CUBIC\n )\n model_img = cv.resize(frame, model_dimenstion, interpolation=cv.INTER_CUBIC\n )\n return [scale_img, model_img]\n\n\ncapture_video = cv.VideoCapture(0)\ntimer = EventCapture()\ntimer.startTimer()\ncentroidAlgo = CentroidAlgorithm()\n\n\ndef detectTheObject(frame):\n class_indexes, confidence_levels, border_boxes = DL_model.detect(frame)\n rectange = []\n if len(class_indexes) > 0:\n for class_index, confidence, border_box in zip(class_indexes.\n flatten(), confidence_levels.flatten(), border_boxes):\n if confidence > 0.61:\n if class_index != 1:\n continue\n print('{}, {}, {}'.format(class_indexes[:, 0], border_boxes\n [:], confidence_levels[:]))\n rectange.append(border_box.astype('int'))\n cv.rectangle(frame, border_box, (255, 0, 0), 2)\n cv.putText(frame, labels[class_index - 1], (border_box[0],\n border_box[1]), cv.FONT_HERSHEY_COMPLEX_SMALL, 1, color\n =(0, 255, 255), thickness=1)\n objects = centroidAlgo.update(rectange, EntryTime=timer.event())\n for ObjectID, info in objects.items():\n text = 'ID {}, st {}, T {}'.format(ObjectID, timer.starttimer.\n strftime('%S.%f'), str(info['entrytime']).split(':')[2])\n cv.putText(frame, text, (info['centroid'][0], info['centroid'][\n 1]), cv.FONT_HERSHEY_COMPLEX_SMALL, 1, color=(0, 255, 255),\n thickness=1)\n cv.circle(frame, (info['centroid'][0], info['centroid'][1]), 4,\n (255, 0, 0), -1)\n return frame\n\n\nwhile True:\n isTrue, frame = capture_video.read()\n if not isTrue:\n print('Error!! unable to read the frame')\n break\n mapped_frame = detectTheObject(frame)\n cv.imshow('mapped_video', mapped_frame)\n if cv.waitKey(20) & 255 == ord('s'):\n break\ncapture_video.release()\ncv.destroyAllWindows()\ncv.waitKey(0)\n", "<import token>\n\n\nclass CentroidAlgorithm:\n\n def __init__(self, maxNumberOfDisapper=30):\n self.nextObject = 0\n self.objects = OrderedDict()\n self.disappeared = OrderedDict()\n self.maxNumberOfDisapper = maxNumberOfDisapper\n\n def __del__(self):\n del self.objects\n del self.disappeared\n print('all objects deregisterd')\n\n def register(self, centroidValues):\n self.registerEvent(centroidValues, None)\n\n def registerEvent(self, centroidValues, EntryTime):\n print('object registered at ', self.nextObject, ': ', centroidValues)\n self.objects[self.nextObject] = {'centroid': centroidValues,\n 'entrytime': EntryTime, 'isUpdated': False}\n self.disappeared[self.nextObject] = 0\n self.nextObject += 1\n\n def deregister(self, objectID):\n print('object deregistered at ', objectID, ': ', self.objects[objectID]\n )\n del self.objects[objectID]\n del self.disappeared[objectID]\n\n def update(self, rectange, EntryTime):\n if len(rectange) == 0:\n for objectId in list(self.objects.keys()):\n self.disappeared[objectId] += 1\n if self.disappeared[objectId] > self.maxNumberOfDisapper:\n self.deregister(objectId)\n return self.objects\n currentCentroids = np.zeros((len(rectange), 2), dtype='int')\n for i, (startX, startY, height, width) in enumerate(rectange):\n X_centroid = int((2 * startX + height) / 2.0)\n Y_centroid = int((2 * startY + width) / 2.0)\n currentCentroids[i] = X_centroid, Y_centroid\n if len(self.objects) == 0:\n for i in range(0, len(currentCentroids)):\n self.register(currentCentroids[i])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n else:\n objectIDs = list(self.objects.keys())\n objectsValue = list(self.objects.values())\n objectCentroids = [list(value['centroid']) for value in\n objectsValue]\n eculideanDistance = distance.cdist(np.array(objectCentroids),\n currentCentroids)\n rows = eculideanDistance.min(axis=1).argsort()\n cols = eculideanDistance.argmin(axis=1)[rows]\n usedRows = set()\n usedCols = set()\n for row, col in zip(rows, cols):\n if row in usedRows or col in usedCols:\n continue\n objectID = objectIDs[row]\n self.objects[objectID]['centroid'] = currentCentroids[col]\n self.disappeared[objectID] = 0\n usedRows.add(row)\n usedCols.add(col)\n unusedRows = set(range(0, eculideanDistance.shape[0])).difference(\n usedRows)\n unusedCols = set(range(0, eculideanDistance.shape[1])).difference(\n usedCols)\n if len(np.array(objectCentroids)) >= len(currentCentroids):\n for row in unusedRows:\n objectID = objectIDs[row]\n self.disappeared[objectID] += 1\n if self.disappeared[objectID] > self.maxNumberOfDisapper:\n self.deregister(objectID)\n else:\n for col in unusedCols:\n self.register(currentCentroids[col])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'\n ] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n return self.objects\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n\n def startTimer(self):\n self.starttimer = datetime.now()\n\n def event(self):\n return datetime.now() - self.starttimer\n\n\nmodel = '../ssd_mobilenet_v3_large_coco_2020_01_14/frozen_inference_graph.pb'\nconfig = '../config_file/ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'\nDL_model = cv.dnn_DetectionModel(model, config)\nlabels = []\nwith open('../labels.txt') as labelFile:\n labels = labelFile.read().split('\\n')\nlabels.pop()\nDL_model.setInputSize(320, 320)\nDL_model.setInputScale(1.0 / 127.0)\nDL_model.setInputMean((127.5, 127.5, 127.5))\nDL_model.setInputSwapRB(True)\n\n\ndef resizeScaleFrame(frame, scale=0.25):\n height = frame.shape[0]\n width = frame.shape[1]\n scale_dimenstion = int(width * scale), int(height * scale)\n model_dimenstion = 320, 320\n scale_img = cv.resize(frame, scale_dimenstion, interpolation=cv.INTER_CUBIC\n )\n model_img = cv.resize(frame, model_dimenstion, interpolation=cv.INTER_CUBIC\n )\n return [scale_img, model_img]\n\n\ncapture_video = cv.VideoCapture(0)\ntimer = EventCapture()\ntimer.startTimer()\ncentroidAlgo = CentroidAlgorithm()\n\n\ndef detectTheObject(frame):\n class_indexes, confidence_levels, border_boxes = DL_model.detect(frame)\n rectange = []\n if len(class_indexes) > 0:\n for class_index, confidence, border_box in zip(class_indexes.\n flatten(), confidence_levels.flatten(), border_boxes):\n if confidence > 0.61:\n if class_index != 1:\n continue\n print('{}, {}, {}'.format(class_indexes[:, 0], border_boxes\n [:], confidence_levels[:]))\n rectange.append(border_box.astype('int'))\n cv.rectangle(frame, border_box, (255, 0, 0), 2)\n cv.putText(frame, labels[class_index - 1], (border_box[0],\n border_box[1]), cv.FONT_HERSHEY_COMPLEX_SMALL, 1, color\n =(0, 255, 255), thickness=1)\n objects = centroidAlgo.update(rectange, EntryTime=timer.event())\n for ObjectID, info in objects.items():\n text = 'ID {}, st {}, T {}'.format(ObjectID, timer.starttimer.\n strftime('%S.%f'), str(info['entrytime']).split(':')[2])\n cv.putText(frame, text, (info['centroid'][0], info['centroid'][\n 1]), cv.FONT_HERSHEY_COMPLEX_SMALL, 1, color=(0, 255, 255),\n thickness=1)\n cv.circle(frame, (info['centroid'][0], info['centroid'][1]), 4,\n (255, 0, 0), -1)\n return frame\n\n\nwhile True:\n isTrue, frame = capture_video.read()\n if not isTrue:\n print('Error!! unable to read the frame')\n break\n mapped_frame = detectTheObject(frame)\n cv.imshow('mapped_video', mapped_frame)\n if cv.waitKey(20) & 255 == ord('s'):\n break\ncapture_video.release()\ncv.destroyAllWindows()\ncv.waitKey(0)\n", "<import token>\n\n\nclass CentroidAlgorithm:\n\n def __init__(self, maxNumberOfDisapper=30):\n self.nextObject = 0\n self.objects = OrderedDict()\n self.disappeared = OrderedDict()\n self.maxNumberOfDisapper = maxNumberOfDisapper\n\n def __del__(self):\n del self.objects\n del self.disappeared\n print('all objects deregisterd')\n\n def register(self, centroidValues):\n self.registerEvent(centroidValues, None)\n\n def registerEvent(self, centroidValues, EntryTime):\n print('object registered at ', self.nextObject, ': ', centroidValues)\n self.objects[self.nextObject] = {'centroid': centroidValues,\n 'entrytime': EntryTime, 'isUpdated': False}\n self.disappeared[self.nextObject] = 0\n self.nextObject += 1\n\n def deregister(self, objectID):\n print('object deregistered at ', objectID, ': ', self.objects[objectID]\n )\n del self.objects[objectID]\n del self.disappeared[objectID]\n\n def update(self, rectange, EntryTime):\n if len(rectange) == 0:\n for objectId in list(self.objects.keys()):\n self.disappeared[objectId] += 1\n if self.disappeared[objectId] > self.maxNumberOfDisapper:\n self.deregister(objectId)\n return self.objects\n currentCentroids = np.zeros((len(rectange), 2), dtype='int')\n for i, (startX, startY, height, width) in enumerate(rectange):\n X_centroid = int((2 * startX + height) / 2.0)\n Y_centroid = int((2 * startY + width) / 2.0)\n currentCentroids[i] = X_centroid, Y_centroid\n if len(self.objects) == 0:\n for i in range(0, len(currentCentroids)):\n self.register(currentCentroids[i])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n else:\n objectIDs = list(self.objects.keys())\n objectsValue = list(self.objects.values())\n objectCentroids = [list(value['centroid']) for value in\n objectsValue]\n eculideanDistance = distance.cdist(np.array(objectCentroids),\n currentCentroids)\n rows = eculideanDistance.min(axis=1).argsort()\n cols = eculideanDistance.argmin(axis=1)[rows]\n usedRows = set()\n usedCols = set()\n for row, col in zip(rows, cols):\n if row in usedRows or col in usedCols:\n continue\n objectID = objectIDs[row]\n self.objects[objectID]['centroid'] = currentCentroids[col]\n self.disappeared[objectID] = 0\n usedRows.add(row)\n usedCols.add(col)\n unusedRows = set(range(0, eculideanDistance.shape[0])).difference(\n usedRows)\n unusedCols = set(range(0, eculideanDistance.shape[1])).difference(\n usedCols)\n if len(np.array(objectCentroids)) >= len(currentCentroids):\n for row in unusedRows:\n objectID = objectIDs[row]\n self.disappeared[objectID] += 1\n if self.disappeared[objectID] > self.maxNumberOfDisapper:\n self.deregister(objectID)\n else:\n for col in unusedCols:\n self.register(currentCentroids[col])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'\n ] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n return self.objects\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n\n def startTimer(self):\n self.starttimer = datetime.now()\n\n def event(self):\n return datetime.now() - self.starttimer\n\n\n<assignment token>\nwith open('../labels.txt') as labelFile:\n labels = labelFile.read().split('\\n')\nlabels.pop()\nDL_model.setInputSize(320, 320)\nDL_model.setInputScale(1.0 / 127.0)\nDL_model.setInputMean((127.5, 127.5, 127.5))\nDL_model.setInputSwapRB(True)\n\n\ndef resizeScaleFrame(frame, scale=0.25):\n height = frame.shape[0]\n width = frame.shape[1]\n scale_dimenstion = int(width * scale), int(height * scale)\n model_dimenstion = 320, 320\n scale_img = cv.resize(frame, scale_dimenstion, interpolation=cv.INTER_CUBIC\n )\n model_img = cv.resize(frame, model_dimenstion, interpolation=cv.INTER_CUBIC\n )\n return [scale_img, model_img]\n\n\n<assignment token>\ntimer.startTimer()\n<assignment token>\n\n\ndef detectTheObject(frame):\n class_indexes, confidence_levels, border_boxes = DL_model.detect(frame)\n rectange = []\n if len(class_indexes) > 0:\n for class_index, confidence, border_box in zip(class_indexes.\n flatten(), confidence_levels.flatten(), border_boxes):\n if confidence > 0.61:\n if class_index != 1:\n continue\n print('{}, {}, {}'.format(class_indexes[:, 0], border_boxes\n [:], confidence_levels[:]))\n rectange.append(border_box.astype('int'))\n cv.rectangle(frame, border_box, (255, 0, 0), 2)\n cv.putText(frame, labels[class_index - 1], (border_box[0],\n border_box[1]), cv.FONT_HERSHEY_COMPLEX_SMALL, 1, color\n =(0, 255, 255), thickness=1)\n objects = centroidAlgo.update(rectange, EntryTime=timer.event())\n for ObjectID, info in objects.items():\n text = 'ID {}, st {}, T {}'.format(ObjectID, timer.starttimer.\n strftime('%S.%f'), str(info['entrytime']).split(':')[2])\n cv.putText(frame, text, (info['centroid'][0], info['centroid'][\n 1]), cv.FONT_HERSHEY_COMPLEX_SMALL, 1, color=(0, 255, 255),\n thickness=1)\n cv.circle(frame, (info['centroid'][0], info['centroid'][1]), 4,\n (255, 0, 0), -1)\n return frame\n\n\nwhile True:\n isTrue, frame = capture_video.read()\n if not isTrue:\n print('Error!! unable to read the frame')\n break\n mapped_frame = detectTheObject(frame)\n cv.imshow('mapped_video', mapped_frame)\n if cv.waitKey(20) & 255 == ord('s'):\n break\ncapture_video.release()\ncv.destroyAllWindows()\ncv.waitKey(0)\n", "<import token>\n\n\nclass CentroidAlgorithm:\n\n def __init__(self, maxNumberOfDisapper=30):\n self.nextObject = 0\n self.objects = OrderedDict()\n self.disappeared = OrderedDict()\n self.maxNumberOfDisapper = maxNumberOfDisapper\n\n def __del__(self):\n del self.objects\n del self.disappeared\n print('all objects deregisterd')\n\n def register(self, centroidValues):\n self.registerEvent(centroidValues, None)\n\n def registerEvent(self, centroidValues, EntryTime):\n print('object registered at ', self.nextObject, ': ', centroidValues)\n self.objects[self.nextObject] = {'centroid': centroidValues,\n 'entrytime': EntryTime, 'isUpdated': False}\n self.disappeared[self.nextObject] = 0\n self.nextObject += 1\n\n def deregister(self, objectID):\n print('object deregistered at ', objectID, ': ', self.objects[objectID]\n )\n del self.objects[objectID]\n del self.disappeared[objectID]\n\n def update(self, rectange, EntryTime):\n if len(rectange) == 0:\n for objectId in list(self.objects.keys()):\n self.disappeared[objectId] += 1\n if self.disappeared[objectId] > self.maxNumberOfDisapper:\n self.deregister(objectId)\n return self.objects\n currentCentroids = np.zeros((len(rectange), 2), dtype='int')\n for i, (startX, startY, height, width) in enumerate(rectange):\n X_centroid = int((2 * startX + height) / 2.0)\n Y_centroid = int((2 * startY + width) / 2.0)\n currentCentroids[i] = X_centroid, Y_centroid\n if len(self.objects) == 0:\n for i in range(0, len(currentCentroids)):\n self.register(currentCentroids[i])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n else:\n objectIDs = list(self.objects.keys())\n objectsValue = list(self.objects.values())\n objectCentroids = [list(value['centroid']) for value in\n objectsValue]\n eculideanDistance = distance.cdist(np.array(objectCentroids),\n currentCentroids)\n rows = eculideanDistance.min(axis=1).argsort()\n cols = eculideanDistance.argmin(axis=1)[rows]\n usedRows = set()\n usedCols = set()\n for row, col in zip(rows, cols):\n if row in usedRows or col in usedCols:\n continue\n objectID = objectIDs[row]\n self.objects[objectID]['centroid'] = currentCentroids[col]\n self.disappeared[objectID] = 0\n usedRows.add(row)\n usedCols.add(col)\n unusedRows = set(range(0, eculideanDistance.shape[0])).difference(\n usedRows)\n unusedCols = set(range(0, eculideanDistance.shape[1])).difference(\n usedCols)\n if len(np.array(objectCentroids)) >= len(currentCentroids):\n for row in unusedRows:\n objectID = objectIDs[row]\n self.disappeared[objectID] += 1\n if self.disappeared[objectID] > self.maxNumberOfDisapper:\n self.deregister(objectID)\n else:\n for col in unusedCols:\n self.register(currentCentroids[col])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'\n ] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n return self.objects\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n\n def startTimer(self):\n self.starttimer = datetime.now()\n\n def event(self):\n return datetime.now() - self.starttimer\n\n\n<assignment token>\n<code token>\n\n\ndef resizeScaleFrame(frame, scale=0.25):\n height = frame.shape[0]\n width = frame.shape[1]\n scale_dimenstion = int(width * scale), int(height * scale)\n model_dimenstion = 320, 320\n scale_img = cv.resize(frame, scale_dimenstion, interpolation=cv.INTER_CUBIC\n )\n model_img = cv.resize(frame, model_dimenstion, interpolation=cv.INTER_CUBIC\n )\n return [scale_img, model_img]\n\n\n<assignment token>\n<code token>\n<assignment token>\n\n\ndef detectTheObject(frame):\n class_indexes, confidence_levels, border_boxes = DL_model.detect(frame)\n rectange = []\n if len(class_indexes) > 0:\n for class_index, confidence, border_box in zip(class_indexes.\n flatten(), confidence_levels.flatten(), border_boxes):\n if confidence > 0.61:\n if class_index != 1:\n continue\n print('{}, {}, {}'.format(class_indexes[:, 0], border_boxes\n [:], confidence_levels[:]))\n rectange.append(border_box.astype('int'))\n cv.rectangle(frame, border_box, (255, 0, 0), 2)\n cv.putText(frame, labels[class_index - 1], (border_box[0],\n border_box[1]), cv.FONT_HERSHEY_COMPLEX_SMALL, 1, color\n =(0, 255, 255), thickness=1)\n objects = centroidAlgo.update(rectange, EntryTime=timer.event())\n for ObjectID, info in objects.items():\n text = 'ID {}, st {}, T {}'.format(ObjectID, timer.starttimer.\n strftime('%S.%f'), str(info['entrytime']).split(':')[2])\n cv.putText(frame, text, (info['centroid'][0], info['centroid'][\n 1]), cv.FONT_HERSHEY_COMPLEX_SMALL, 1, color=(0, 255, 255),\n thickness=1)\n cv.circle(frame, (info['centroid'][0], info['centroid'][1]), 4,\n (255, 0, 0), -1)\n return frame\n\n\n<code token>\n", "<import token>\n\n\nclass CentroidAlgorithm:\n\n def __init__(self, maxNumberOfDisapper=30):\n self.nextObject = 0\n self.objects = OrderedDict()\n self.disappeared = OrderedDict()\n self.maxNumberOfDisapper = maxNumberOfDisapper\n\n def __del__(self):\n del self.objects\n del self.disappeared\n print('all objects deregisterd')\n\n def register(self, centroidValues):\n self.registerEvent(centroidValues, None)\n\n def registerEvent(self, centroidValues, EntryTime):\n print('object registered at ', self.nextObject, ': ', centroidValues)\n self.objects[self.nextObject] = {'centroid': centroidValues,\n 'entrytime': EntryTime, 'isUpdated': False}\n self.disappeared[self.nextObject] = 0\n self.nextObject += 1\n\n def deregister(self, objectID):\n print('object deregistered at ', objectID, ': ', self.objects[objectID]\n )\n del self.objects[objectID]\n del self.disappeared[objectID]\n\n def update(self, rectange, EntryTime):\n if len(rectange) == 0:\n for objectId in list(self.objects.keys()):\n self.disappeared[objectId] += 1\n if self.disappeared[objectId] > self.maxNumberOfDisapper:\n self.deregister(objectId)\n return self.objects\n currentCentroids = np.zeros((len(rectange), 2), dtype='int')\n for i, (startX, startY, height, width) in enumerate(rectange):\n X_centroid = int((2 * startX + height) / 2.0)\n Y_centroid = int((2 * startY + width) / 2.0)\n currentCentroids[i] = X_centroid, Y_centroid\n if len(self.objects) == 0:\n for i in range(0, len(currentCentroids)):\n self.register(currentCentroids[i])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n else:\n objectIDs = list(self.objects.keys())\n objectsValue = list(self.objects.values())\n objectCentroids = [list(value['centroid']) for value in\n objectsValue]\n eculideanDistance = distance.cdist(np.array(objectCentroids),\n currentCentroids)\n rows = eculideanDistance.min(axis=1).argsort()\n cols = eculideanDistance.argmin(axis=1)[rows]\n usedRows = set()\n usedCols = set()\n for row, col in zip(rows, cols):\n if row in usedRows or col in usedCols:\n continue\n objectID = objectIDs[row]\n self.objects[objectID]['centroid'] = currentCentroids[col]\n self.disappeared[objectID] = 0\n usedRows.add(row)\n usedCols.add(col)\n unusedRows = set(range(0, eculideanDistance.shape[0])).difference(\n usedRows)\n unusedCols = set(range(0, eculideanDistance.shape[1])).difference(\n usedCols)\n if len(np.array(objectCentroids)) >= len(currentCentroids):\n for row in unusedRows:\n objectID = objectIDs[row]\n self.disappeared[objectID] += 1\n if self.disappeared[objectID] > self.maxNumberOfDisapper:\n self.deregister(objectID)\n else:\n for col in unusedCols:\n self.register(currentCentroids[col])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'\n ] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n return self.objects\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n\n def startTimer(self):\n self.starttimer = datetime.now()\n\n def event(self):\n return datetime.now() - self.starttimer\n\n\n<assignment token>\n<code token>\n\n\ndef resizeScaleFrame(frame, scale=0.25):\n height = frame.shape[0]\n width = frame.shape[1]\n scale_dimenstion = int(width * scale), int(height * scale)\n model_dimenstion = 320, 320\n scale_img = cv.resize(frame, scale_dimenstion, interpolation=cv.INTER_CUBIC\n )\n model_img = cv.resize(frame, model_dimenstion, interpolation=cv.INTER_CUBIC\n )\n return [scale_img, model_img]\n\n\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<code token>\n", "<import token>\n\n\nclass CentroidAlgorithm:\n\n def __init__(self, maxNumberOfDisapper=30):\n self.nextObject = 0\n self.objects = OrderedDict()\n self.disappeared = OrderedDict()\n self.maxNumberOfDisapper = maxNumberOfDisapper\n\n def __del__(self):\n del self.objects\n del self.disappeared\n print('all objects deregisterd')\n\n def register(self, centroidValues):\n self.registerEvent(centroidValues, None)\n\n def registerEvent(self, centroidValues, EntryTime):\n print('object registered at ', self.nextObject, ': ', centroidValues)\n self.objects[self.nextObject] = {'centroid': centroidValues,\n 'entrytime': EntryTime, 'isUpdated': False}\n self.disappeared[self.nextObject] = 0\n self.nextObject += 1\n\n def deregister(self, objectID):\n print('object deregistered at ', objectID, ': ', self.objects[objectID]\n )\n del self.objects[objectID]\n del self.disappeared[objectID]\n\n def update(self, rectange, EntryTime):\n if len(rectange) == 0:\n for objectId in list(self.objects.keys()):\n self.disappeared[objectId] += 1\n if self.disappeared[objectId] > self.maxNumberOfDisapper:\n self.deregister(objectId)\n return self.objects\n currentCentroids = np.zeros((len(rectange), 2), dtype='int')\n for i, (startX, startY, height, width) in enumerate(rectange):\n X_centroid = int((2 * startX + height) / 2.0)\n Y_centroid = int((2 * startY + width) / 2.0)\n currentCentroids[i] = X_centroid, Y_centroid\n if len(self.objects) == 0:\n for i in range(0, len(currentCentroids)):\n self.register(currentCentroids[i])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n else:\n objectIDs = list(self.objects.keys())\n objectsValue = list(self.objects.values())\n objectCentroids = [list(value['centroid']) for value in\n objectsValue]\n eculideanDistance = distance.cdist(np.array(objectCentroids),\n currentCentroids)\n rows = eculideanDistance.min(axis=1).argsort()\n cols = eculideanDistance.argmin(axis=1)[rows]\n usedRows = set()\n usedCols = set()\n for row, col in zip(rows, cols):\n if row in usedRows or col in usedCols:\n continue\n objectID = objectIDs[row]\n self.objects[objectID]['centroid'] = currentCentroids[col]\n self.disappeared[objectID] = 0\n usedRows.add(row)\n usedCols.add(col)\n unusedRows = set(range(0, eculideanDistance.shape[0])).difference(\n usedRows)\n unusedCols = set(range(0, eculideanDistance.shape[1])).difference(\n usedCols)\n if len(np.array(objectCentroids)) >= len(currentCentroids):\n for row in unusedRows:\n objectID = objectIDs[row]\n self.disappeared[objectID] += 1\n if self.disappeared[objectID] > self.maxNumberOfDisapper:\n self.deregister(objectID)\n else:\n for col in unusedCols:\n self.register(currentCentroids[col])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'\n ] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n return self.objects\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n\n def startTimer(self):\n self.starttimer = datetime.now()\n\n def event(self):\n return datetime.now() - self.starttimer\n\n\n<assignment token>\n<code token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<code token>\n", "<import token>\n\n\nclass CentroidAlgorithm:\n\n def __init__(self, maxNumberOfDisapper=30):\n self.nextObject = 0\n self.objects = OrderedDict()\n self.disappeared = OrderedDict()\n self.maxNumberOfDisapper = maxNumberOfDisapper\n\n def __del__(self):\n del self.objects\n del self.disappeared\n print('all objects deregisterd')\n <function token>\n\n def registerEvent(self, centroidValues, EntryTime):\n print('object registered at ', self.nextObject, ': ', centroidValues)\n self.objects[self.nextObject] = {'centroid': centroidValues,\n 'entrytime': EntryTime, 'isUpdated': False}\n self.disappeared[self.nextObject] = 0\n self.nextObject += 1\n\n def deregister(self, objectID):\n print('object deregistered at ', objectID, ': ', self.objects[objectID]\n )\n del self.objects[objectID]\n del self.disappeared[objectID]\n\n def update(self, rectange, EntryTime):\n if len(rectange) == 0:\n for objectId in list(self.objects.keys()):\n self.disappeared[objectId] += 1\n if self.disappeared[objectId] > self.maxNumberOfDisapper:\n self.deregister(objectId)\n return self.objects\n currentCentroids = np.zeros((len(rectange), 2), dtype='int')\n for i, (startX, startY, height, width) in enumerate(rectange):\n X_centroid = int((2 * startX + height) / 2.0)\n Y_centroid = int((2 * startY + width) / 2.0)\n currentCentroids[i] = X_centroid, Y_centroid\n if len(self.objects) == 0:\n for i in range(0, len(currentCentroids)):\n self.register(currentCentroids[i])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n else:\n objectIDs = list(self.objects.keys())\n objectsValue = list(self.objects.values())\n objectCentroids = [list(value['centroid']) for value in\n objectsValue]\n eculideanDistance = distance.cdist(np.array(objectCentroids),\n currentCentroids)\n rows = eculideanDistance.min(axis=1).argsort()\n cols = eculideanDistance.argmin(axis=1)[rows]\n usedRows = set()\n usedCols = set()\n for row, col in zip(rows, cols):\n if row in usedRows or col in usedCols:\n continue\n objectID = objectIDs[row]\n self.objects[objectID]['centroid'] = currentCentroids[col]\n self.disappeared[objectID] = 0\n usedRows.add(row)\n usedCols.add(col)\n unusedRows = set(range(0, eculideanDistance.shape[0])).difference(\n usedRows)\n unusedCols = set(range(0, eculideanDistance.shape[1])).difference(\n usedCols)\n if len(np.array(objectCentroids)) >= len(currentCentroids):\n for row in unusedRows:\n objectID = objectIDs[row]\n self.disappeared[objectID] += 1\n if self.disappeared[objectID] > self.maxNumberOfDisapper:\n self.deregister(objectID)\n else:\n for col in unusedCols:\n self.register(currentCentroids[col])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'\n ] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n return self.objects\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n\n def startTimer(self):\n self.starttimer = datetime.now()\n\n def event(self):\n return datetime.now() - self.starttimer\n\n\n<assignment token>\n<code token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<code token>\n", "<import token>\n\n\nclass CentroidAlgorithm:\n\n def __init__(self, maxNumberOfDisapper=30):\n self.nextObject = 0\n self.objects = OrderedDict()\n self.disappeared = OrderedDict()\n self.maxNumberOfDisapper = maxNumberOfDisapper\n <function token>\n <function token>\n\n def registerEvent(self, centroidValues, EntryTime):\n print('object registered at ', self.nextObject, ': ', centroidValues)\n self.objects[self.nextObject] = {'centroid': centroidValues,\n 'entrytime': EntryTime, 'isUpdated': False}\n self.disappeared[self.nextObject] = 0\n self.nextObject += 1\n\n def deregister(self, objectID):\n print('object deregistered at ', objectID, ': ', self.objects[objectID]\n )\n del self.objects[objectID]\n del self.disappeared[objectID]\n\n def update(self, rectange, EntryTime):\n if len(rectange) == 0:\n for objectId in list(self.objects.keys()):\n self.disappeared[objectId] += 1\n if self.disappeared[objectId] > self.maxNumberOfDisapper:\n self.deregister(objectId)\n return self.objects\n currentCentroids = np.zeros((len(rectange), 2), dtype='int')\n for i, (startX, startY, height, width) in enumerate(rectange):\n X_centroid = int((2 * startX + height) / 2.0)\n Y_centroid = int((2 * startY + width) / 2.0)\n currentCentroids[i] = X_centroid, Y_centroid\n if len(self.objects) == 0:\n for i in range(0, len(currentCentroids)):\n self.register(currentCentroids[i])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n else:\n objectIDs = list(self.objects.keys())\n objectsValue = list(self.objects.values())\n objectCentroids = [list(value['centroid']) for value in\n objectsValue]\n eculideanDistance = distance.cdist(np.array(objectCentroids),\n currentCentroids)\n rows = eculideanDistance.min(axis=1).argsort()\n cols = eculideanDistance.argmin(axis=1)[rows]\n usedRows = set()\n usedCols = set()\n for row, col in zip(rows, cols):\n if row in usedRows or col in usedCols:\n continue\n objectID = objectIDs[row]\n self.objects[objectID]['centroid'] = currentCentroids[col]\n self.disappeared[objectID] = 0\n usedRows.add(row)\n usedCols.add(col)\n unusedRows = set(range(0, eculideanDistance.shape[0])).difference(\n usedRows)\n unusedCols = set(range(0, eculideanDistance.shape[1])).difference(\n usedCols)\n if len(np.array(objectCentroids)) >= len(currentCentroids):\n for row in unusedRows:\n objectID = objectIDs[row]\n self.disappeared[objectID] += 1\n if self.disappeared[objectID] > self.maxNumberOfDisapper:\n self.deregister(objectID)\n else:\n for col in unusedCols:\n self.register(currentCentroids[col])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'\n ] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n return self.objects\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n\n def startTimer(self):\n self.starttimer = datetime.now()\n\n def event(self):\n return datetime.now() - self.starttimer\n\n\n<assignment token>\n<code token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<code token>\n", "<import token>\n\n\nclass CentroidAlgorithm:\n\n def __init__(self, maxNumberOfDisapper=30):\n self.nextObject = 0\n self.objects = OrderedDict()\n self.disappeared = OrderedDict()\n self.maxNumberOfDisapper = maxNumberOfDisapper\n <function token>\n <function token>\n <function token>\n\n def deregister(self, objectID):\n print('object deregistered at ', objectID, ': ', self.objects[objectID]\n )\n del self.objects[objectID]\n del self.disappeared[objectID]\n\n def update(self, rectange, EntryTime):\n if len(rectange) == 0:\n for objectId in list(self.objects.keys()):\n self.disappeared[objectId] += 1\n if self.disappeared[objectId] > self.maxNumberOfDisapper:\n self.deregister(objectId)\n return self.objects\n currentCentroids = np.zeros((len(rectange), 2), dtype='int')\n for i, (startX, startY, height, width) in enumerate(rectange):\n X_centroid = int((2 * startX + height) / 2.0)\n Y_centroid = int((2 * startY + width) / 2.0)\n currentCentroids[i] = X_centroid, Y_centroid\n if len(self.objects) == 0:\n for i in range(0, len(currentCentroids)):\n self.register(currentCentroids[i])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n else:\n objectIDs = list(self.objects.keys())\n objectsValue = list(self.objects.values())\n objectCentroids = [list(value['centroid']) for value in\n objectsValue]\n eculideanDistance = distance.cdist(np.array(objectCentroids),\n currentCentroids)\n rows = eculideanDistance.min(axis=1).argsort()\n cols = eculideanDistance.argmin(axis=1)[rows]\n usedRows = set()\n usedCols = set()\n for row, col in zip(rows, cols):\n if row in usedRows or col in usedCols:\n continue\n objectID = objectIDs[row]\n self.objects[objectID]['centroid'] = currentCentroids[col]\n self.disappeared[objectID] = 0\n usedRows.add(row)\n usedCols.add(col)\n unusedRows = set(range(0, eculideanDistance.shape[0])).difference(\n usedRows)\n unusedCols = set(range(0, eculideanDistance.shape[1])).difference(\n usedCols)\n if len(np.array(objectCentroids)) >= len(currentCentroids):\n for row in unusedRows:\n objectID = objectIDs[row]\n self.disappeared[objectID] += 1\n if self.disappeared[objectID] > self.maxNumberOfDisapper:\n self.deregister(objectID)\n else:\n for col in unusedCols:\n self.register(currentCentroids[col])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'\n ] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n return self.objects\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n\n def startTimer(self):\n self.starttimer = datetime.now()\n\n def event(self):\n return datetime.now() - self.starttimer\n\n\n<assignment token>\n<code token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<code token>\n", "<import token>\n\n\nclass CentroidAlgorithm:\n <function token>\n <function token>\n <function token>\n <function token>\n\n def deregister(self, objectID):\n print('object deregistered at ', objectID, ': ', self.objects[objectID]\n )\n del self.objects[objectID]\n del self.disappeared[objectID]\n\n def update(self, rectange, EntryTime):\n if len(rectange) == 0:\n for objectId in list(self.objects.keys()):\n self.disappeared[objectId] += 1\n if self.disappeared[objectId] > self.maxNumberOfDisapper:\n self.deregister(objectId)\n return self.objects\n currentCentroids = np.zeros((len(rectange), 2), dtype='int')\n for i, (startX, startY, height, width) in enumerate(rectange):\n X_centroid = int((2 * startX + height) / 2.0)\n Y_centroid = int((2 * startY + width) / 2.0)\n currentCentroids[i] = X_centroid, Y_centroid\n if len(self.objects) == 0:\n for i in range(0, len(currentCentroids)):\n self.register(currentCentroids[i])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n else:\n objectIDs = list(self.objects.keys())\n objectsValue = list(self.objects.values())\n objectCentroids = [list(value['centroid']) for value in\n objectsValue]\n eculideanDistance = distance.cdist(np.array(objectCentroids),\n currentCentroids)\n rows = eculideanDistance.min(axis=1).argsort()\n cols = eculideanDistance.argmin(axis=1)[rows]\n usedRows = set()\n usedCols = set()\n for row, col in zip(rows, cols):\n if row in usedRows or col in usedCols:\n continue\n objectID = objectIDs[row]\n self.objects[objectID]['centroid'] = currentCentroids[col]\n self.disappeared[objectID] = 0\n usedRows.add(row)\n usedCols.add(col)\n unusedRows = set(range(0, eculideanDistance.shape[0])).difference(\n usedRows)\n unusedCols = set(range(0, eculideanDistance.shape[1])).difference(\n usedCols)\n if len(np.array(objectCentroids)) >= len(currentCentroids):\n for row in unusedRows:\n objectID = objectIDs[row]\n self.disappeared[objectID] += 1\n if self.disappeared[objectID] > self.maxNumberOfDisapper:\n self.deregister(objectID)\n else:\n for col in unusedCols:\n self.register(currentCentroids[col])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'\n ] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n return self.objects\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n\n def startTimer(self):\n self.starttimer = datetime.now()\n\n def event(self):\n return datetime.now() - self.starttimer\n\n\n<assignment token>\n<code token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<code token>\n", "<import token>\n\n\nclass CentroidAlgorithm:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def update(self, rectange, EntryTime):\n if len(rectange) == 0:\n for objectId in list(self.objects.keys()):\n self.disappeared[objectId] += 1\n if self.disappeared[objectId] > self.maxNumberOfDisapper:\n self.deregister(objectId)\n return self.objects\n currentCentroids = np.zeros((len(rectange), 2), dtype='int')\n for i, (startX, startY, height, width) in enumerate(rectange):\n X_centroid = int((2 * startX + height) / 2.0)\n Y_centroid = int((2 * startY + width) / 2.0)\n currentCentroids[i] = X_centroid, Y_centroid\n if len(self.objects) == 0:\n for i in range(0, len(currentCentroids)):\n self.register(currentCentroids[i])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n else:\n objectIDs = list(self.objects.keys())\n objectsValue = list(self.objects.values())\n objectCentroids = [list(value['centroid']) for value in\n objectsValue]\n eculideanDistance = distance.cdist(np.array(objectCentroids),\n currentCentroids)\n rows = eculideanDistance.min(axis=1).argsort()\n cols = eculideanDistance.argmin(axis=1)[rows]\n usedRows = set()\n usedCols = set()\n for row, col in zip(rows, cols):\n if row in usedRows or col in usedCols:\n continue\n objectID = objectIDs[row]\n self.objects[objectID]['centroid'] = currentCentroids[col]\n self.disappeared[objectID] = 0\n usedRows.add(row)\n usedCols.add(col)\n unusedRows = set(range(0, eculideanDistance.shape[0])).difference(\n usedRows)\n unusedCols = set(range(0, eculideanDistance.shape[1])).difference(\n usedCols)\n if len(np.array(objectCentroids)) >= len(currentCentroids):\n for row in unusedRows:\n objectID = objectIDs[row]\n self.disappeared[objectID] += 1\n if self.disappeared[objectID] > self.maxNumberOfDisapper:\n self.deregister(objectID)\n else:\n for col in unusedCols:\n self.register(currentCentroids[col])\n if self.objects[self.nextObject - 1]['isUpdated'] == False:\n self.objects[self.nextObject - 1]['entrytime'\n ] = EntryTime\n self.objects[self.nextObject - 1]['isUpdated'] = True\n return self.objects\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n\n def startTimer(self):\n self.starttimer = datetime.now()\n\n def event(self):\n return datetime.now() - self.starttimer\n\n\n<assignment token>\n<code token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<code token>\n", "<import token>\n\n\nclass CentroidAlgorithm:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n\n def startTimer(self):\n self.starttimer = datetime.now()\n\n def event(self):\n return datetime.now() - self.starttimer\n\n\n<assignment token>\n<code token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<code token>\n", "<import token>\n<class token>\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n\n def startTimer(self):\n self.starttimer = datetime.now()\n\n def event(self):\n return datetime.now() - self.starttimer\n\n\n<assignment token>\n<code token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<code token>\n", "<import token>\n<class token>\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n\n def startTimer(self):\n self.starttimer = datetime.now()\n <function token>\n\n\n<assignment token>\n<code token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<code token>\n", "<import token>\n<class token>\n\n\nclass EventCapture:\n\n def __init__(self):\n self.starttimer = None\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<code token>\n", "<import token>\n<class token>\n\n\nclass EventCapture:\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<code token>\n", "<import token>\n<class token>\n<class token>\n<assignment token>\n<code token>\n<function token>\n<assignment token>\n<code token>\n<assignment token>\n<function token>\n<code token>\n" ]
false
99,590
12d217e79c096774b16408f47c8a40866d6522b6
#Declaring Dependacies import pandas as pd import numpy as np import matplotlib.pyplot as plt from Gender_Age_DF import Gender_Age_2017 from Gender_Age_DF import Gender_Age_2016 from Gender_Age_DF import Gender_Age_2015 from Gender_Age_DF import Gender_Age_2014 from Gender_Age_DF import Gender_Age_2013 from Gender_Age_DF import Gender_Age_2012 from Gender_Age_DF import Gender_Age_2011 #Creating Global Variables to pull DataFrame into Notebook Gender_Age_2017_DF = Gender_Age_2017() Gender_Age_2016_DF = Gender_Age_2016() Gender_Age_2015_DF = Gender_Age_2015() Gender_Age_2014_DF = Gender_Age_2014() Gender_Age_2013_DF = Gender_Age_2013() Gender_Age_2012_DF = Gender_Age_2012() Gender_Age_2011_DF = Gender_Age_2011() #Gender_Age_2017_DF Comp2017 = Gender_Age_2017_DF.loc[(Gender_Age_2017_DF["Industry_x"]=="Computer and Math")] Eng2017 = Gender_Age_2017_DF.loc[(Gender_Age_2017_DF["Industry_x"]=="Engineering")] Ent2017 = Gender_Age_2017_DF.loc[(Gender_Age_2017_DF["Industry_x"]=="Entertainmnet")] HC2017 = Gender_Age_2017_DF.loc[(Gender_Age_2017_DF["Industry_x"]=="Healthcare")] Serv2017 = Gender_Age_2017_DF.loc[(Gender_Age_2017_DF["Industry_x"]=="Service")] #Gender_Age_2016_DF Comp2016 = Gender_Age_2016_DF.loc[(Gender_Age_2016_DF["Industry_x"]=="Computer and Math")] Eng2016= Gender_Age_2016_DF.loc[(Gender_Age_2016_DF["Industry_x"]=="Engineering")] Ent2016 = Gender_Age_2016_DF.loc[(Gender_Age_2016_DF["Industry_x"]=="Entertainmnet")] HC2016 = Gender_Age_2016_DF.loc[(Gender_Age_2016_DF["Industry_x"]=="Healthcare")] Serv2016 = Gender_Age_2016_DF.loc[(Gender_Age_2016_DF["Industry_x"]=="Service")] #Gender_Age_2015_DF Comp2015 = Gender_Age_2015_DF.loc[(Gender_Age_2015_DF["Industry_x"]=="Computer and Math")] Eng2015 = Gender_Age_2015_DF.loc[(Gender_Age_2015_DF["Industry_x"]=="Engineering")] Ent2015 = Gender_Age_2015_DF.loc[(Gender_Age_2015_DF["Industry_x"]=="Entertainmnet")] HC2015 = Gender_Age_2015_DF.loc[(Gender_Age_2015_DF["Industry_x"]=="Healthcare")] Serv2015 = Gender_Age_2015_DF.loc[(Gender_Age_2015_DF["Industry_x"]=="Service")] #Gender_Age_2014_DF Comp2014 = Gender_Age_2014_DF.loc[(Gender_Age_2014_DF["Industry_x"]=="Computer and Math")] Eng2014 = Gender_Age_2014_DF.loc[(Gender_Age_2014_DF["Industry_x"]=="Engineering")] Ent2014 = Gender_Age_2014_DF.loc[(Gender_Age_2014_DF["Industry_x"]=="Entertainmnet")] HC2014 = Gender_Age_2014_DF.loc[(Gender_Age_2014_DF["Industry_x"]=="Healthcare")] Serv2014 = Gender_Age_2014_DF.loc[(Gender_Age_2014_DF["Industry_x"]=="Service")] #Gender_Age_2013_DF Comp2013 = Gender_Age_2013_DF.loc[(Gender_Age_2013_DF["Industry_x"]=="Computer and Math")] Eng2013 = Gender_Age_2013_DF.loc[(Gender_Age_2013_DF["Industry_x"]=="Engineering")] Ent2013 = Gender_Age_2013_DF.loc[(Gender_Age_2013_DF["Industry_x"]=="Entertainmnet")] HC2013 = Gender_Age_2013_DF.loc[(Gender_Age_2013_DF["Industry_x"]=="Healthcare")] Serv2013 = Gender_Age_2013_DF.loc[(Gender_Age_2013_DF["Industry_x"]=="Service")] #Gender_Age_2012_DF Comp2012 = Gender_Age_2012_DF.loc[(Gender_Age_2012_DF["Industry_x"]=="Computer and Math")] Eng2012 = Gender_Age_2012_DF.loc[(Gender_Age_2012_DF["Industry_x"]=="Engineering")] Ent2012 = Gender_Age_2012_DF.loc[(Gender_Age_2012_DF["Industry_x"]=="Entertainmnet")] HC2012 = Gender_Age_2012_DF.loc[(Gender_Age_2012_DF["Industry_x"]=="Healthcare")] Serv2012 = Gender_Age_2012_DF.loc[(Gender_Age_2012_DF["Industry_x"]=="Service")] #Gender_Age_2011_DF Comp2011 = Gender_Age_2011_DF.loc[(Gender_Age_2011_DF["Industry_x"]=="Computer and Math")] Eng2011 = Gender_Age_2011_DF.loc[(Gender_Age_2011_DF["Industry_x"]=="Engineering")] Ent2011 = Gender_Age_2011_DF.loc[(Gender_Age_2011_DF["Industry_x"]=="Entertainmnet")] HC2011 = Gender_Age_2011_DF.loc[(Gender_Age_2011_DF["Industry_x"]=="Healthcare")] Serv2011 = Gender_Age_2011_DF.loc[(Gender_Age_2011_DF["Industry_x"]=="Service")] #Line Graph for Total # of Workers by Industry per Year #Storing total employee values Total_Emp = [] #HealtheCare Total HCTotal2017 = HC2017['Total Number of workers'].sum() HCTotal2016 = HC2016['Total Number of workers'].sum() HCTotal2015 = HC2015['Total Number of workers'].sum() HCTotal2014 = HC2014['Total Number of workers'].sum() HCTotal2013 = HC2013['Total Number of workers'].sum() HCTotal2012 = HC2012['Total Number of workers'].sum() HCTotal2011 = HC2011['Total Number of workers'].sum() #Entertainment Total EntTotal2017 = Ent2017['Total Number of workers'].sum() EntTotal2016 = Ent2016['Total Number of workers'].sum() EntTotal2015 = Ent2015['Total Number of workers'].sum() EntTotal2014 = Ent2014['Total Number of workers'].sum() EntTotal2013 = Ent2013['Total Number of workers'].sum() EntTotal2012 = Ent2012['Total Number of workers'].sum() EntTotal2011 = Ent2011['Total Number of workers'].sum() #Service Total ServTotal2017 = Serv2017['Total Number of workers'].sum() ServTotal2016 = Serv2016['Total Number of workers'].sum() ServTotal2015 = Serv2015['Total Number of workers'].sum() ServTotal2014 = Serv2014['Total Number of workers'].sum() ServTotal2013 = Serv2013['Total Number of workers'].sum() ServTotal2012 = Serv2012['Total Number of workers'].sum() ServTotal2011 = Serv2011['Total Number of workers'].sum() #Computer & Math Total Comptotal2017 = Comp2017['Total Number of workers'].sum() Comptotal2016 = Comp2016['Total Number of workers'].sum() Comptotal2015 = Comp2015['Total Number of workers'].sum() Comptotal2014 = Comp2014['Total Number of workers'].sum() Comptotal2013 = Comp2013['Total Number of workers'].sum() Comptotal2012 = Comp2012['Total Number of workers'].sum() Comptotal2011 = Comp2011['Total Number of workers'].sum() #Engineering Total Engtotal2017 = Eng2017['Total Number of workers'].sum() Engtotal2016 = Eng2016['Total Number of workers'].sum() Engtotal2015 = Eng2015['Total Number of workers'].sum() Engtotal2014 = Eng2014['Total Number of workers'].sum() Engtotal2013 = Eng2013['Total Number of workers'].sum() Engtotal2012 = Eng2012['Total Number of workers'].sum() Engtotal2011 = Eng2011['Total Number of workers'].sum() year = [2011, 2012, 2013, 2014, 2015, 2016, 2017] HC= [HCTotal2011, HCTotal2012, HCTotal2013, HCTotal2014, HCTotal2015, HCTotal2016, HCTotal2017] Comp= [Comptotal2011, Comptotal2012, Comptotal2013, Comptotal2014, Comptotal2015, Comptotal2016, Comptotal2017] Eng= [Engtotal2011, Engtotal2012, Engtotal2013, Engtotal2014, Engtotal2015, Engtotal2016, Engtotal2017] Serv= [ServTotal2011, ServTotal2012, ServTotal2013, ServTotal2014, ServTotal2015, ServTotal2016, ServTotal2017] Ent= [EntTotal2011, EntTotal2012, EntTotal2013, EntTotal2014, EntTotal2015, EntTotal2016, EntTotal2017] #assinging values to line graph plt.plot(year, HC, color='blue', label="Healthcare") plt.plot(year, Comp, color='red', label="Computer & Math") plt.plot(year, Eng, color='green', label="Engineering") plt.plot(year, Serv, color='yellow', label="Service") plt.plot(year, Ent, color='purple', label="Entertainment") plt.title("Total Employees per Industry by Year") plt.xlabel("Year") plt.ylabel("Toal Employees") plt.legend(loc="center left", bbox_to_anchor=(1, 0.5)) plt.savefig("Industry Analysis")
[ "#Declaring Dependacies\nimport pandas as pd\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom Gender_Age_DF import Gender_Age_2017\nfrom Gender_Age_DF import Gender_Age_2016\nfrom Gender_Age_DF import Gender_Age_2015\nfrom Gender_Age_DF import Gender_Age_2014\nfrom Gender_Age_DF import Gender_Age_2013\nfrom Gender_Age_DF import Gender_Age_2012\nfrom Gender_Age_DF import Gender_Age_2011\n\n#Creating Global Variables to pull DataFrame into Notebook\nGender_Age_2017_DF = Gender_Age_2017()\nGender_Age_2016_DF = Gender_Age_2016()\nGender_Age_2015_DF = Gender_Age_2015()\nGender_Age_2014_DF = Gender_Age_2014()\nGender_Age_2013_DF = Gender_Age_2013()\nGender_Age_2012_DF = Gender_Age_2012()\nGender_Age_2011_DF = Gender_Age_2011()\n\n#Gender_Age_2017_DF\nComp2017 = Gender_Age_2017_DF.loc[(Gender_Age_2017_DF[\"Industry_x\"]==\"Computer and Math\")]\nEng2017 = Gender_Age_2017_DF.loc[(Gender_Age_2017_DF[\"Industry_x\"]==\"Engineering\")]\nEnt2017 = Gender_Age_2017_DF.loc[(Gender_Age_2017_DF[\"Industry_x\"]==\"Entertainmnet\")]\nHC2017 = Gender_Age_2017_DF.loc[(Gender_Age_2017_DF[\"Industry_x\"]==\"Healthcare\")]\nServ2017 = Gender_Age_2017_DF.loc[(Gender_Age_2017_DF[\"Industry_x\"]==\"Service\")]\n\n#Gender_Age_2016_DF\nComp2016 = Gender_Age_2016_DF.loc[(Gender_Age_2016_DF[\"Industry_x\"]==\"Computer and Math\")]\nEng2016= Gender_Age_2016_DF.loc[(Gender_Age_2016_DF[\"Industry_x\"]==\"Engineering\")]\nEnt2016 = Gender_Age_2016_DF.loc[(Gender_Age_2016_DF[\"Industry_x\"]==\"Entertainmnet\")]\nHC2016 = Gender_Age_2016_DF.loc[(Gender_Age_2016_DF[\"Industry_x\"]==\"Healthcare\")]\nServ2016 = Gender_Age_2016_DF.loc[(Gender_Age_2016_DF[\"Industry_x\"]==\"Service\")]\n\n#Gender_Age_2015_DF\nComp2015 = Gender_Age_2015_DF.loc[(Gender_Age_2015_DF[\"Industry_x\"]==\"Computer and Math\")]\nEng2015 = Gender_Age_2015_DF.loc[(Gender_Age_2015_DF[\"Industry_x\"]==\"Engineering\")]\nEnt2015 = Gender_Age_2015_DF.loc[(Gender_Age_2015_DF[\"Industry_x\"]==\"Entertainmnet\")]\nHC2015 = Gender_Age_2015_DF.loc[(Gender_Age_2015_DF[\"Industry_x\"]==\"Healthcare\")]\nServ2015 = Gender_Age_2015_DF.loc[(Gender_Age_2015_DF[\"Industry_x\"]==\"Service\")]\n\n#Gender_Age_2014_DF\nComp2014 = Gender_Age_2014_DF.loc[(Gender_Age_2014_DF[\"Industry_x\"]==\"Computer and Math\")]\nEng2014 = Gender_Age_2014_DF.loc[(Gender_Age_2014_DF[\"Industry_x\"]==\"Engineering\")]\nEnt2014 = Gender_Age_2014_DF.loc[(Gender_Age_2014_DF[\"Industry_x\"]==\"Entertainmnet\")]\nHC2014 = Gender_Age_2014_DF.loc[(Gender_Age_2014_DF[\"Industry_x\"]==\"Healthcare\")]\nServ2014 = Gender_Age_2014_DF.loc[(Gender_Age_2014_DF[\"Industry_x\"]==\"Service\")]\n\n#Gender_Age_2013_DF\nComp2013 = Gender_Age_2013_DF.loc[(Gender_Age_2013_DF[\"Industry_x\"]==\"Computer and Math\")]\nEng2013 = Gender_Age_2013_DF.loc[(Gender_Age_2013_DF[\"Industry_x\"]==\"Engineering\")]\nEnt2013 = Gender_Age_2013_DF.loc[(Gender_Age_2013_DF[\"Industry_x\"]==\"Entertainmnet\")]\nHC2013 = Gender_Age_2013_DF.loc[(Gender_Age_2013_DF[\"Industry_x\"]==\"Healthcare\")]\nServ2013 = Gender_Age_2013_DF.loc[(Gender_Age_2013_DF[\"Industry_x\"]==\"Service\")]\n\n#Gender_Age_2012_DF\nComp2012 = Gender_Age_2012_DF.loc[(Gender_Age_2012_DF[\"Industry_x\"]==\"Computer and Math\")]\nEng2012 = Gender_Age_2012_DF.loc[(Gender_Age_2012_DF[\"Industry_x\"]==\"Engineering\")]\nEnt2012 = Gender_Age_2012_DF.loc[(Gender_Age_2012_DF[\"Industry_x\"]==\"Entertainmnet\")]\nHC2012 = Gender_Age_2012_DF.loc[(Gender_Age_2012_DF[\"Industry_x\"]==\"Healthcare\")]\nServ2012 = Gender_Age_2012_DF.loc[(Gender_Age_2012_DF[\"Industry_x\"]==\"Service\")]\n\n#Gender_Age_2011_DF\nComp2011 = Gender_Age_2011_DF.loc[(Gender_Age_2011_DF[\"Industry_x\"]==\"Computer and Math\")]\nEng2011 = Gender_Age_2011_DF.loc[(Gender_Age_2011_DF[\"Industry_x\"]==\"Engineering\")]\nEnt2011 = Gender_Age_2011_DF.loc[(Gender_Age_2011_DF[\"Industry_x\"]==\"Entertainmnet\")]\nHC2011 = Gender_Age_2011_DF.loc[(Gender_Age_2011_DF[\"Industry_x\"]==\"Healthcare\")]\nServ2011 = Gender_Age_2011_DF.loc[(Gender_Age_2011_DF[\"Industry_x\"]==\"Service\")]\n\n\n#Line Graph for Total # of Workers by Industry per Year\n#Storing total employee values\n\nTotal_Emp = []\n\n#HealtheCare Total\nHCTotal2017 = HC2017['Total Number of workers'].sum()\nHCTotal2016 = HC2016['Total Number of workers'].sum()\nHCTotal2015 = HC2015['Total Number of workers'].sum()\nHCTotal2014 = HC2014['Total Number of workers'].sum()\nHCTotal2013 = HC2013['Total Number of workers'].sum()\nHCTotal2012 = HC2012['Total Number of workers'].sum()\nHCTotal2011 = HC2011['Total Number of workers'].sum()\n\n#Entertainment Total\nEntTotal2017 = Ent2017['Total Number of workers'].sum()\nEntTotal2016 = Ent2016['Total Number of workers'].sum()\nEntTotal2015 = Ent2015['Total Number of workers'].sum()\nEntTotal2014 = Ent2014['Total Number of workers'].sum()\nEntTotal2013 = Ent2013['Total Number of workers'].sum()\nEntTotal2012 = Ent2012['Total Number of workers'].sum()\nEntTotal2011 = Ent2011['Total Number of workers'].sum()\n\n#Service Total\nServTotal2017 = Serv2017['Total Number of workers'].sum()\nServTotal2016 = Serv2016['Total Number of workers'].sum()\nServTotal2015 = Serv2015['Total Number of workers'].sum()\nServTotal2014 = Serv2014['Total Number of workers'].sum()\nServTotal2013 = Serv2013['Total Number of workers'].sum()\nServTotal2012 = Serv2012['Total Number of workers'].sum()\nServTotal2011 = Serv2011['Total Number of workers'].sum()\n\n#Computer & Math Total\nComptotal2017 = Comp2017['Total Number of workers'].sum()\nComptotal2016 = Comp2016['Total Number of workers'].sum()\nComptotal2015 = Comp2015['Total Number of workers'].sum()\nComptotal2014 = Comp2014['Total Number of workers'].sum()\nComptotal2013 = Comp2013['Total Number of workers'].sum()\nComptotal2012 = Comp2012['Total Number of workers'].sum()\nComptotal2011 = Comp2011['Total Number of workers'].sum()\n\n#Engineering Total\nEngtotal2017 = Eng2017['Total Number of workers'].sum()\nEngtotal2016 = Eng2016['Total Number of workers'].sum()\nEngtotal2015 = Eng2015['Total Number of workers'].sum()\nEngtotal2014 = Eng2014['Total Number of workers'].sum()\nEngtotal2013 = Eng2013['Total Number of workers'].sum()\nEngtotal2012 = Eng2012['Total Number of workers'].sum()\nEngtotal2011 = Eng2011['Total Number of workers'].sum()\n\nyear = [2011, 2012, 2013, 2014, 2015, 2016, 2017]\nHC= [HCTotal2011, HCTotal2012, HCTotal2013, HCTotal2014, HCTotal2015, HCTotal2016, HCTotal2017]\nComp= [Comptotal2011, Comptotal2012, Comptotal2013, Comptotal2014, Comptotal2015, Comptotal2016, Comptotal2017]\nEng= [Engtotal2011, Engtotal2012, Engtotal2013, Engtotal2014, Engtotal2015, Engtotal2016, Engtotal2017]\nServ= [ServTotal2011, ServTotal2012, ServTotal2013, ServTotal2014, ServTotal2015, ServTotal2016, ServTotal2017]\nEnt= [EntTotal2011, EntTotal2012, EntTotal2013, EntTotal2014, EntTotal2015, EntTotal2016, EntTotal2017]\n\n#assinging values to line graph\nplt.plot(year, HC, color='blue', label=\"Healthcare\")\nplt.plot(year, Comp, color='red', label=\"Computer & Math\")\nplt.plot(year, Eng, color='green', label=\"Engineering\")\nplt.plot(year, Serv, color='yellow', label=\"Service\")\nplt.plot(year, Ent, color='purple', label=\"Entertainment\")\n\nplt.title(\"Total Employees per Industry by Year\")\nplt.xlabel(\"Year\")\nplt.ylabel(\"Toal Employees\") \nplt.legend(loc=\"center left\", bbox_to_anchor=(1, 0.5))\nplt.savefig(\"Industry Analysis\")\n", "import pandas as pd\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom Gender_Age_DF import Gender_Age_2017\nfrom Gender_Age_DF import Gender_Age_2016\nfrom Gender_Age_DF import Gender_Age_2015\nfrom Gender_Age_DF import Gender_Age_2014\nfrom Gender_Age_DF import Gender_Age_2013\nfrom Gender_Age_DF import Gender_Age_2012\nfrom Gender_Age_DF import Gender_Age_2011\nGender_Age_2017_DF = Gender_Age_2017()\nGender_Age_2016_DF = Gender_Age_2016()\nGender_Age_2015_DF = Gender_Age_2015()\nGender_Age_2014_DF = Gender_Age_2014()\nGender_Age_2013_DF = Gender_Age_2013()\nGender_Age_2012_DF = Gender_Age_2012()\nGender_Age_2011_DF = Gender_Age_2011()\nComp2017 = Gender_Age_2017_DF.loc[Gender_Age_2017_DF['Industry_x'] ==\n 'Computer and Math']\nEng2017 = Gender_Age_2017_DF.loc[Gender_Age_2017_DF['Industry_x'] ==\n 'Engineering']\nEnt2017 = Gender_Age_2017_DF.loc[Gender_Age_2017_DF['Industry_x'] ==\n 'Entertainmnet']\nHC2017 = Gender_Age_2017_DF.loc[Gender_Age_2017_DF['Industry_x'] ==\n 'Healthcare']\nServ2017 = Gender_Age_2017_DF.loc[Gender_Age_2017_DF['Industry_x'] == 'Service'\n ]\nComp2016 = Gender_Age_2016_DF.loc[Gender_Age_2016_DF['Industry_x'] ==\n 'Computer and Math']\nEng2016 = Gender_Age_2016_DF.loc[Gender_Age_2016_DF['Industry_x'] ==\n 'Engineering']\nEnt2016 = Gender_Age_2016_DF.loc[Gender_Age_2016_DF['Industry_x'] ==\n 'Entertainmnet']\nHC2016 = Gender_Age_2016_DF.loc[Gender_Age_2016_DF['Industry_x'] ==\n 'Healthcare']\nServ2016 = Gender_Age_2016_DF.loc[Gender_Age_2016_DF['Industry_x'] == 'Service'\n ]\nComp2015 = Gender_Age_2015_DF.loc[Gender_Age_2015_DF['Industry_x'] ==\n 'Computer and Math']\nEng2015 = Gender_Age_2015_DF.loc[Gender_Age_2015_DF['Industry_x'] ==\n 'Engineering']\nEnt2015 = Gender_Age_2015_DF.loc[Gender_Age_2015_DF['Industry_x'] ==\n 'Entertainmnet']\nHC2015 = Gender_Age_2015_DF.loc[Gender_Age_2015_DF['Industry_x'] ==\n 'Healthcare']\nServ2015 = Gender_Age_2015_DF.loc[Gender_Age_2015_DF['Industry_x'] == 'Service'\n ]\nComp2014 = Gender_Age_2014_DF.loc[Gender_Age_2014_DF['Industry_x'] ==\n 'Computer and Math']\nEng2014 = Gender_Age_2014_DF.loc[Gender_Age_2014_DF['Industry_x'] ==\n 'Engineering']\nEnt2014 = Gender_Age_2014_DF.loc[Gender_Age_2014_DF['Industry_x'] ==\n 'Entertainmnet']\nHC2014 = Gender_Age_2014_DF.loc[Gender_Age_2014_DF['Industry_x'] ==\n 'Healthcare']\nServ2014 = Gender_Age_2014_DF.loc[Gender_Age_2014_DF['Industry_x'] == 'Service'\n ]\nComp2013 = Gender_Age_2013_DF.loc[Gender_Age_2013_DF['Industry_x'] ==\n 'Computer and Math']\nEng2013 = Gender_Age_2013_DF.loc[Gender_Age_2013_DF['Industry_x'] ==\n 'Engineering']\nEnt2013 = Gender_Age_2013_DF.loc[Gender_Age_2013_DF['Industry_x'] ==\n 'Entertainmnet']\nHC2013 = Gender_Age_2013_DF.loc[Gender_Age_2013_DF['Industry_x'] ==\n 'Healthcare']\nServ2013 = Gender_Age_2013_DF.loc[Gender_Age_2013_DF['Industry_x'] == 'Service'\n ]\nComp2012 = Gender_Age_2012_DF.loc[Gender_Age_2012_DF['Industry_x'] ==\n 'Computer and Math']\nEng2012 = Gender_Age_2012_DF.loc[Gender_Age_2012_DF['Industry_x'] ==\n 'Engineering']\nEnt2012 = Gender_Age_2012_DF.loc[Gender_Age_2012_DF['Industry_x'] ==\n 'Entertainmnet']\nHC2012 = Gender_Age_2012_DF.loc[Gender_Age_2012_DF['Industry_x'] ==\n 'Healthcare']\nServ2012 = Gender_Age_2012_DF.loc[Gender_Age_2012_DF['Industry_x'] == 'Service'\n ]\nComp2011 = Gender_Age_2011_DF.loc[Gender_Age_2011_DF['Industry_x'] ==\n 'Computer and Math']\nEng2011 = Gender_Age_2011_DF.loc[Gender_Age_2011_DF['Industry_x'] ==\n 'Engineering']\nEnt2011 = Gender_Age_2011_DF.loc[Gender_Age_2011_DF['Industry_x'] ==\n 'Entertainmnet']\nHC2011 = Gender_Age_2011_DF.loc[Gender_Age_2011_DF['Industry_x'] ==\n 'Healthcare']\nServ2011 = Gender_Age_2011_DF.loc[Gender_Age_2011_DF['Industry_x'] == 'Service'\n ]\nTotal_Emp = []\nHCTotal2017 = HC2017['Total Number of workers'].sum()\nHCTotal2016 = HC2016['Total Number of workers'].sum()\nHCTotal2015 = HC2015['Total Number of workers'].sum()\nHCTotal2014 = HC2014['Total Number of workers'].sum()\nHCTotal2013 = HC2013['Total Number of workers'].sum()\nHCTotal2012 = HC2012['Total Number of workers'].sum()\nHCTotal2011 = HC2011['Total Number of workers'].sum()\nEntTotal2017 = Ent2017['Total Number of workers'].sum()\nEntTotal2016 = Ent2016['Total Number of workers'].sum()\nEntTotal2015 = Ent2015['Total Number of workers'].sum()\nEntTotal2014 = Ent2014['Total Number of workers'].sum()\nEntTotal2013 = Ent2013['Total Number of workers'].sum()\nEntTotal2012 = Ent2012['Total Number of workers'].sum()\nEntTotal2011 = Ent2011['Total Number of workers'].sum()\nServTotal2017 = Serv2017['Total Number of workers'].sum()\nServTotal2016 = Serv2016['Total Number of workers'].sum()\nServTotal2015 = Serv2015['Total Number of workers'].sum()\nServTotal2014 = Serv2014['Total Number of workers'].sum()\nServTotal2013 = Serv2013['Total Number of workers'].sum()\nServTotal2012 = Serv2012['Total Number of workers'].sum()\nServTotal2011 = Serv2011['Total Number of workers'].sum()\nComptotal2017 = Comp2017['Total Number of workers'].sum()\nComptotal2016 = Comp2016['Total Number of workers'].sum()\nComptotal2015 = Comp2015['Total Number of workers'].sum()\nComptotal2014 = Comp2014['Total Number of workers'].sum()\nComptotal2013 = Comp2013['Total Number of workers'].sum()\nComptotal2012 = Comp2012['Total Number of workers'].sum()\nComptotal2011 = Comp2011['Total Number of workers'].sum()\nEngtotal2017 = Eng2017['Total Number of workers'].sum()\nEngtotal2016 = Eng2016['Total Number of workers'].sum()\nEngtotal2015 = Eng2015['Total Number of workers'].sum()\nEngtotal2014 = Eng2014['Total Number of workers'].sum()\nEngtotal2013 = Eng2013['Total Number of workers'].sum()\nEngtotal2012 = Eng2012['Total Number of workers'].sum()\nEngtotal2011 = Eng2011['Total Number of workers'].sum()\nyear = [2011, 2012, 2013, 2014, 2015, 2016, 2017]\nHC = [HCTotal2011, HCTotal2012, HCTotal2013, HCTotal2014, HCTotal2015,\n HCTotal2016, HCTotal2017]\nComp = [Comptotal2011, Comptotal2012, Comptotal2013, Comptotal2014,\n Comptotal2015, Comptotal2016, Comptotal2017]\nEng = [Engtotal2011, Engtotal2012, Engtotal2013, Engtotal2014, Engtotal2015,\n Engtotal2016, Engtotal2017]\nServ = [ServTotal2011, ServTotal2012, ServTotal2013, ServTotal2014,\n ServTotal2015, ServTotal2016, ServTotal2017]\nEnt = [EntTotal2011, EntTotal2012, EntTotal2013, EntTotal2014, EntTotal2015,\n EntTotal2016, EntTotal2017]\nplt.plot(year, HC, color='blue', label='Healthcare')\nplt.plot(year, Comp, color='red', label='Computer & Math')\nplt.plot(year, Eng, color='green', label='Engineering')\nplt.plot(year, Serv, color='yellow', label='Service')\nplt.plot(year, Ent, color='purple', label='Entertainment')\nplt.title('Total Employees per Industry by Year')\nplt.xlabel('Year')\nplt.ylabel('Toal Employees')\nplt.legend(loc='center left', bbox_to_anchor=(1, 0.5))\nplt.savefig('Industry Analysis')\n", "<import token>\nGender_Age_2017_DF = Gender_Age_2017()\nGender_Age_2016_DF = Gender_Age_2016()\nGender_Age_2015_DF = Gender_Age_2015()\nGender_Age_2014_DF = Gender_Age_2014()\nGender_Age_2013_DF = Gender_Age_2013()\nGender_Age_2012_DF = Gender_Age_2012()\nGender_Age_2011_DF = Gender_Age_2011()\nComp2017 = Gender_Age_2017_DF.loc[Gender_Age_2017_DF['Industry_x'] ==\n 'Computer and Math']\nEng2017 = Gender_Age_2017_DF.loc[Gender_Age_2017_DF['Industry_x'] ==\n 'Engineering']\nEnt2017 = Gender_Age_2017_DF.loc[Gender_Age_2017_DF['Industry_x'] ==\n 'Entertainmnet']\nHC2017 = Gender_Age_2017_DF.loc[Gender_Age_2017_DF['Industry_x'] ==\n 'Healthcare']\nServ2017 = Gender_Age_2017_DF.loc[Gender_Age_2017_DF['Industry_x'] == 'Service'\n ]\nComp2016 = Gender_Age_2016_DF.loc[Gender_Age_2016_DF['Industry_x'] ==\n 'Computer and Math']\nEng2016 = Gender_Age_2016_DF.loc[Gender_Age_2016_DF['Industry_x'] ==\n 'Engineering']\nEnt2016 = Gender_Age_2016_DF.loc[Gender_Age_2016_DF['Industry_x'] ==\n 'Entertainmnet']\nHC2016 = Gender_Age_2016_DF.loc[Gender_Age_2016_DF['Industry_x'] ==\n 'Healthcare']\nServ2016 = Gender_Age_2016_DF.loc[Gender_Age_2016_DF['Industry_x'] == 'Service'\n ]\nComp2015 = Gender_Age_2015_DF.loc[Gender_Age_2015_DF['Industry_x'] ==\n 'Computer and Math']\nEng2015 = Gender_Age_2015_DF.loc[Gender_Age_2015_DF['Industry_x'] ==\n 'Engineering']\nEnt2015 = Gender_Age_2015_DF.loc[Gender_Age_2015_DF['Industry_x'] ==\n 'Entertainmnet']\nHC2015 = Gender_Age_2015_DF.loc[Gender_Age_2015_DF['Industry_x'] ==\n 'Healthcare']\nServ2015 = Gender_Age_2015_DF.loc[Gender_Age_2015_DF['Industry_x'] == 'Service'\n ]\nComp2014 = Gender_Age_2014_DF.loc[Gender_Age_2014_DF['Industry_x'] ==\n 'Computer and Math']\nEng2014 = Gender_Age_2014_DF.loc[Gender_Age_2014_DF['Industry_x'] ==\n 'Engineering']\nEnt2014 = Gender_Age_2014_DF.loc[Gender_Age_2014_DF['Industry_x'] ==\n 'Entertainmnet']\nHC2014 = Gender_Age_2014_DF.loc[Gender_Age_2014_DF['Industry_x'] ==\n 'Healthcare']\nServ2014 = Gender_Age_2014_DF.loc[Gender_Age_2014_DF['Industry_x'] == 'Service'\n ]\nComp2013 = Gender_Age_2013_DF.loc[Gender_Age_2013_DF['Industry_x'] ==\n 'Computer and Math']\nEng2013 = Gender_Age_2013_DF.loc[Gender_Age_2013_DF['Industry_x'] ==\n 'Engineering']\nEnt2013 = Gender_Age_2013_DF.loc[Gender_Age_2013_DF['Industry_x'] ==\n 'Entertainmnet']\nHC2013 = Gender_Age_2013_DF.loc[Gender_Age_2013_DF['Industry_x'] ==\n 'Healthcare']\nServ2013 = Gender_Age_2013_DF.loc[Gender_Age_2013_DF['Industry_x'] == 'Service'\n ]\nComp2012 = Gender_Age_2012_DF.loc[Gender_Age_2012_DF['Industry_x'] ==\n 'Computer and Math']\nEng2012 = Gender_Age_2012_DF.loc[Gender_Age_2012_DF['Industry_x'] ==\n 'Engineering']\nEnt2012 = Gender_Age_2012_DF.loc[Gender_Age_2012_DF['Industry_x'] ==\n 'Entertainmnet']\nHC2012 = Gender_Age_2012_DF.loc[Gender_Age_2012_DF['Industry_x'] ==\n 'Healthcare']\nServ2012 = Gender_Age_2012_DF.loc[Gender_Age_2012_DF['Industry_x'] == 'Service'\n ]\nComp2011 = Gender_Age_2011_DF.loc[Gender_Age_2011_DF['Industry_x'] ==\n 'Computer and Math']\nEng2011 = Gender_Age_2011_DF.loc[Gender_Age_2011_DF['Industry_x'] ==\n 'Engineering']\nEnt2011 = Gender_Age_2011_DF.loc[Gender_Age_2011_DF['Industry_x'] ==\n 'Entertainmnet']\nHC2011 = Gender_Age_2011_DF.loc[Gender_Age_2011_DF['Industry_x'] ==\n 'Healthcare']\nServ2011 = Gender_Age_2011_DF.loc[Gender_Age_2011_DF['Industry_x'] == 'Service'\n ]\nTotal_Emp = []\nHCTotal2017 = HC2017['Total Number of workers'].sum()\nHCTotal2016 = HC2016['Total Number of workers'].sum()\nHCTotal2015 = HC2015['Total Number of workers'].sum()\nHCTotal2014 = HC2014['Total Number of workers'].sum()\nHCTotal2013 = HC2013['Total Number of workers'].sum()\nHCTotal2012 = HC2012['Total Number of workers'].sum()\nHCTotal2011 = HC2011['Total Number of workers'].sum()\nEntTotal2017 = Ent2017['Total Number of workers'].sum()\nEntTotal2016 = Ent2016['Total Number of workers'].sum()\nEntTotal2015 = Ent2015['Total Number of workers'].sum()\nEntTotal2014 = Ent2014['Total Number of workers'].sum()\nEntTotal2013 = Ent2013['Total Number of workers'].sum()\nEntTotal2012 = Ent2012['Total Number of workers'].sum()\nEntTotal2011 = Ent2011['Total Number of workers'].sum()\nServTotal2017 = Serv2017['Total Number of workers'].sum()\nServTotal2016 = Serv2016['Total Number of workers'].sum()\nServTotal2015 = Serv2015['Total Number of workers'].sum()\nServTotal2014 = Serv2014['Total Number of workers'].sum()\nServTotal2013 = Serv2013['Total Number of workers'].sum()\nServTotal2012 = Serv2012['Total Number of workers'].sum()\nServTotal2011 = Serv2011['Total Number of workers'].sum()\nComptotal2017 = Comp2017['Total Number of workers'].sum()\nComptotal2016 = Comp2016['Total Number of workers'].sum()\nComptotal2015 = Comp2015['Total Number of workers'].sum()\nComptotal2014 = Comp2014['Total Number of workers'].sum()\nComptotal2013 = Comp2013['Total Number of workers'].sum()\nComptotal2012 = Comp2012['Total Number of workers'].sum()\nComptotal2011 = Comp2011['Total Number of workers'].sum()\nEngtotal2017 = Eng2017['Total Number of workers'].sum()\nEngtotal2016 = Eng2016['Total Number of workers'].sum()\nEngtotal2015 = Eng2015['Total Number of workers'].sum()\nEngtotal2014 = Eng2014['Total Number of workers'].sum()\nEngtotal2013 = Eng2013['Total Number of workers'].sum()\nEngtotal2012 = Eng2012['Total Number of workers'].sum()\nEngtotal2011 = Eng2011['Total Number of workers'].sum()\nyear = [2011, 2012, 2013, 2014, 2015, 2016, 2017]\nHC = [HCTotal2011, HCTotal2012, HCTotal2013, HCTotal2014, HCTotal2015,\n HCTotal2016, HCTotal2017]\nComp = [Comptotal2011, Comptotal2012, Comptotal2013, Comptotal2014,\n Comptotal2015, Comptotal2016, Comptotal2017]\nEng = [Engtotal2011, Engtotal2012, Engtotal2013, Engtotal2014, Engtotal2015,\n Engtotal2016, Engtotal2017]\nServ = [ServTotal2011, ServTotal2012, ServTotal2013, ServTotal2014,\n ServTotal2015, ServTotal2016, ServTotal2017]\nEnt = [EntTotal2011, EntTotal2012, EntTotal2013, EntTotal2014, EntTotal2015,\n EntTotal2016, EntTotal2017]\nplt.plot(year, HC, color='blue', label='Healthcare')\nplt.plot(year, Comp, color='red', label='Computer & Math')\nplt.plot(year, Eng, color='green', label='Engineering')\nplt.plot(year, Serv, color='yellow', label='Service')\nplt.plot(year, Ent, color='purple', label='Entertainment')\nplt.title('Total Employees per Industry by Year')\nplt.xlabel('Year')\nplt.ylabel('Toal Employees')\nplt.legend(loc='center left', bbox_to_anchor=(1, 0.5))\nplt.savefig('Industry Analysis')\n", "<import token>\n<assignment token>\nplt.plot(year, HC, color='blue', label='Healthcare')\nplt.plot(year, Comp, color='red', label='Computer & Math')\nplt.plot(year, Eng, color='green', label='Engineering')\nplt.plot(year, Serv, color='yellow', label='Service')\nplt.plot(year, Ent, color='purple', label='Entertainment')\nplt.title('Total Employees per Industry by Year')\nplt.xlabel('Year')\nplt.ylabel('Toal Employees')\nplt.legend(loc='center left', bbox_to_anchor=(1, 0.5))\nplt.savefig('Industry Analysis')\n", "<import token>\n<assignment token>\n<code token>\n" ]
false
99,591
b77721d6baf9cb82539e6aae6e1179601e8347d9
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2016 Timothy Dozat # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import io import re import codecs from collections import Counter import numpy as np import tensorflow as tf from nparser import Configurable, Multibucket from nparser.vocabs.base_vocab import BaseVocab from nparser.misc.bucketer import Bucketer __all__ = ['Trainset', 'Parseset'] #*************************************************************** class Dataset(Configurable): """ """ #============================================================= def __init__(self, vocabs, *args, **kwargs): """ """ nlp_model = kwargs.pop('nlp_model', None) if "parse_files" in kwargs and isinstance(kwargs["parse_files"],io.StringIO): ### SPECIAL CASE - PARSING StringIO self.preopen_parse_file=kwargs.pop("parse_files") #This doesn't really play well with the configparser thing else: self.preopen_parse_file=None super(Dataset, self).__init__(*args, **kwargs) self._vocabs = vocabs self._multibuckets = [Multibucket.from_configurable(vocab, name='%s-%s'%(self.name, vocab.name)) for vocab in self.vocabs] self._metadata=[] if nlp_model is not None: self._nlp_model = nlp_model.from_configurable(self, name=self.name) else: self._nlp_model = None with Bucketer.from_configurable(self, self.n_buckets, name='bucketer-%s'%self.name) as bucketer: splits = bucketer.compute_splits(len(sent) for sent,metadata in self.iterfiles()) for i in range(len(splits)): splits[i] += 1 for multibucket, vocab in self.iteritems(): multibucket.open(splits, depth=vocab.depth) for sent,metadata in self.iterfiles(): #mycode begins #words = [line[1] for line in sent] #uposList = [line[3] for line in sent] #xposList = [line[4].split('|',1)[0][5:] for line in sent] #morpList = [line[5] for line in sent] #newUposList = rule_based_parser(words,uposList,xposList,morpList) #for i,line in enumerate(sent): # line[3] = newUposList[i] #print(sent) #mycode ends self._metadata.append(metadata) for multibucket, vocab in self.iteritems(): tokens = [line[vocab.conll_idx] for line in sent] idxs = [vocab.ROOT] + [vocab.index(token) for token in tokens] multibucket.add(idxs, tokens) for multibucket in self: multibucket.close() self._multibucket = Multibucket.from_dataset(self) return #============================================================= def __call__(self, moving_params=None): """ """ return self._nlp_model(self.vocabs, moving_params=moving_params) #============================================================= def iterfiles(self): """ """ #0 1 2 3 4 5 6 7 8 9 ID,FORM,LEMMA,UPOS,XPOS,FEATS,HEAD,DEPREL,DEPS,MISC=range(10) if isinstance(self.preopen_parse_file,io.StringIO): #Go from here data_files=[self.preopen_parse_file] else: data_files=self.data_files for data_file in data_files: if isinstance(data_file,str): f=codecs.open(data_file, encoding='utf-8', errors='ignore') else: f=data_file buff = [] metadata = {"comments":[],"miscfield":[],"feats":[],"multiwordtokens":[]} for line in f: line = line.strip() if line: if not line.startswith('#'): if not re.match('^[0-9]+[-.][0-9]+\t', line): cols=line.split("\t") metadata["miscfield"].append(cols[MISC]) metadata["feats"].append(cols[FEATS]) buff.append(cols) elif re.match('^[0-9]+[-][0-9]+\t', line): #multiword token cols=line.split("\t") beg,end=cols[ID].split("-") metadata["multiwordtokens"].append((int(beg),int(end),cols[FORM])) else: metadata["comments"].append(line) elif buff: yield buff, metadata buff = [] metadata = {"comments":[],"miscfield":[],"feats":[],"multiwordtokens":[]} yield buff, metadata if isinstance(data_file,str): f.close() else: f.seek(0) #rewind for new reading #============================================================= def iterbatches(self, shuffle=True, return_check=False): """ """ batch_size = self.batch_size batch_by = self.batch_by batches = [] for bkt_idx, bucket in enumerate(self.multibucket): if batch_size == 0: n_splits = 1 else: if batch_by == 'tokens': n_tokens = bucket.indices.shape[0] * bucket.indices.shape[1] n_splits = max(n_tokens // batch_size, 1) elif batch_by == 'seqs': n_seqs = bucket.indices.shape[0] n_splits = max(n_seqs // batch_size, 1) if shuffle: range_func = np.random.permutation else: range_func = np.arange splits = np.array_split(range_func(bucket.indices.shape[0])[1:], n_splits) for split in splits: batches.append( (bkt_idx, split) ) if shuffle: np.random.shuffle(batches) for bkt_idx, batch in batches: feed_dict = {} tokens = [] for multibucket, vocab in self.iteritems(): bucket = multibucket[bkt_idx] indices = bucket.indices[batch] vocab.set_feed_dict(indices, feed_dict) if return_check: #print("INDICES",indices.shape,indices) if len(indices.shape) == 2: tokens.append(vocab[indices]) elif len(indices.shape) == 3: for i,subvocab in enumerate(vocab): tokens.append(subvocab[indices[:,:,i]]) #print("SUBVOCAB",subvocab) #tokens.extend([subvocab[indices[:,:,i]] for i, subvocab in enumerate(vocab)]) # TODO This is super hacky if hasattr(subvocab, 'idx2tok'): tokens[-1] = [[subvocab.idx2tok.get(idx, subvocab[subvocab.PAD]) for idx in idxs] for idxs in indices[:,:,-1]] elif not shuffle: tokens.append(bucket.get_tokens(batch)) if not shuffle or return_check: yield feed_dict, list(zip(*tokens)) else: yield feed_dict #============================================================= def iteritems(self): for i in range(len(self)): yield (self[i], self._vocabs[i]) #============================================================= def update_history(self, history, accumulators): return self._nlp_model.update_history(history, accumulators) def print_accuracy(self, accumulators, time): return self._nlp_model.print_accuracy(accumulators, time, prefix=self.PREFIX.title()) def write_probs(self, sents, output_file, probs, metadata): return self._nlp_model.write_probs(sents, output_file, probs, self.multibucket.inv_idxs(), metadata) def check(self, preds, sents, fileobj): return self._nlp_model.check(preds, sents, fileobj) def plot(self, history): return self._nlp_model.plot(history) #============================================================= @property def data_files(self): return getattr(self, '{0}_files'.format(self.PREFIX.lower())) @property def multibucket(self): return self._multibucket @property def vocabs(self): return self._vocabs @property def train_keys(self): return self._nlp_model.train_keys @property def valid_keys(self): return self._nlp_model.valid_keys @property def parse_keys(self): return self._nlp_model.parse_keys #============================================================= def __len__(self): return len(self._multibuckets) def __iter__(self): return (multibucket for multibucket in self._multibuckets) def __getitem__(self, key): return self._multibuckets[key] #*************************************************************** class Trainset(Dataset): PREFIX = 'train' class Parseset(Dataset): PREFIX = 'parse' #*************************************************************** if __name__ == '__main__': """ """ from nparser.vocabs import * from nparser.dataset import Trainset configurable = Configurable() dep_vocab = DepVocab.from_configurable(configurable) word_vocab = WordVocab.from_configurable(configurable) lemma_vocab = LemmaVocab.from_configurable(configurable) pretrained_vocab = PretrainedVocab.from_vocab(word_vocab) char_vocab = NgramMultivocab.from_vocab(word_vocab) word_multivocab = Multivocab.from_configurable(configurable, [word_vocab, pretrained_vocab, char_vocab], name='words') tag_vocab = TagVocab.from_configurable(configurable) xtag_vocab = XTagVocab.from_configurable(configurable) head_vocab = HeadVocab.from_configurable(configurable) rel_vocab = RelVocab.from_configurable(configurable) trainset = Trainset.from_configurable(configurable, [dep_vocab, word_multivocab, lemma_vocab, tag_vocab, xtag_vocab, head_vocab, rel_vocab]) trainset() print('Dataset passes',file=sys.stderr)
[ "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\n# Copyright 2016 Timothy Dozat\n# \n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n# \n# http://www.apache.org/licenses/LICENSE-2.0\n# \n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\n\n\n\nimport sys\nimport io\nimport re\nimport codecs\nfrom collections import Counter\n\nimport numpy as np\nimport tensorflow as tf\n\nfrom nparser import Configurable, Multibucket\nfrom nparser.vocabs.base_vocab import BaseVocab\nfrom nparser.misc.bucketer import Bucketer\n\n__all__ = ['Trainset', 'Parseset']\n\n#***************************************************************\nclass Dataset(Configurable):\n \"\"\" \"\"\"\n \n #=============================================================\n def __init__(self, vocabs, *args, **kwargs):\n \"\"\" \"\"\"\n \n nlp_model = kwargs.pop('nlp_model', None)\n if \"parse_files\" in kwargs and isinstance(kwargs[\"parse_files\"],io.StringIO): ### SPECIAL CASE - PARSING StringIO\n self.preopen_parse_file=kwargs.pop(\"parse_files\") #This doesn't really play well with the configparser thing\n else:\n self.preopen_parse_file=None\n super(Dataset, self).__init__(*args, **kwargs)\n \n self._vocabs = vocabs\n self._multibuckets = [Multibucket.from_configurable(vocab, name='%s-%s'%(self.name, vocab.name)) for vocab in self.vocabs]\n self._metadata=[]\n \n if nlp_model is not None:\n self._nlp_model = nlp_model.from_configurable(self, name=self.name)\n else:\n self._nlp_model = None\n \n with Bucketer.from_configurable(self, self.n_buckets, name='bucketer-%s'%self.name) as bucketer:\n splits = bucketer.compute_splits(len(sent) for sent,metadata in self.iterfiles())\n \n for i in range(len(splits)):\n splits[i] += 1\n for multibucket, vocab in self.iteritems():\n multibucket.open(splits, depth=vocab.depth)\n for sent,metadata in self.iterfiles():\n \n #mycode begins\n #words = [line[1] for line in sent]\n #uposList = [line[3] for line in sent]\n #xposList = [line[4].split('|',1)[0][5:] for line in sent]\n #morpList = [line[5] for line in sent]\n #newUposList = rule_based_parser(words,uposList,xposList,morpList)\n #for i,line in enumerate(sent):\n # line[3] = newUposList[i]\n #print(sent)\n #mycode ends\n \n self._metadata.append(metadata)\n for multibucket, vocab in self.iteritems():\n tokens = [line[vocab.conll_idx] for line in sent]\n \n idxs = [vocab.ROOT] + [vocab.index(token) for token in tokens]\n\n multibucket.add(idxs, tokens)\n for multibucket in self:\n multibucket.close()\n self._multibucket = Multibucket.from_dataset(self)\n \n return\n \n #=============================================================\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n \n return self._nlp_model(self.vocabs, moving_params=moving_params)\n \n #=============================================================\n def iterfiles(self):\n \"\"\" \"\"\"\n #0 1 2 3 4 5 6 7 8 9\n ID,FORM,LEMMA,UPOS,XPOS,FEATS,HEAD,DEPREL,DEPS,MISC=range(10)\n if isinstance(self.preopen_parse_file,io.StringIO): #Go from here\n data_files=[self.preopen_parse_file]\n else:\n data_files=self.data_files\n for data_file in data_files:\n if isinstance(data_file,str):\n f=codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f=data_file\n \n buff = []\n metadata = {\"comments\":[],\"miscfield\":[],\"feats\":[],\"multiwordtokens\":[]}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols=line.split(\"\\t\")\n metadata[\"miscfield\"].append(cols[MISC])\n metadata[\"feats\"].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line): #multiword token\n cols=line.split(\"\\t\")\n beg,end=cols[ID].split(\"-\")\n metadata[\"multiwordtokens\"].append((int(beg),int(end),cols[FORM]))\n else:\n metadata[\"comments\"].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {\"comments\":[],\"miscfield\":[],\"feats\":[],\"multiwordtokens\":[]}\n yield buff, metadata\n\n if isinstance(data_file,str):\n f.close()\n else:\n f.seek(0) #rewind for new reading\n \n #=============================================================\n def iterbatches(self, shuffle=True, return_check=False):\n \"\"\" \"\"\"\n \n batch_size = self.batch_size\n batch_by = self.batch_by \n batches = []\n for bkt_idx, bucket in enumerate(self.multibucket):\n if batch_size == 0:\n n_splits = 1\n else:\n if batch_by == 'tokens':\n n_tokens = bucket.indices.shape[0] * bucket.indices.shape[1]\n n_splits = max(n_tokens // batch_size, 1)\n elif batch_by == 'seqs':\n n_seqs = bucket.indices.shape[0]\n n_splits = max(n_seqs // batch_size, 1)\n if shuffle:\n range_func = np.random.permutation\n else:\n range_func = np.arange\n splits = np.array_split(range_func(bucket.indices.shape[0])[1:], n_splits)\n for split in splits:\n batches.append( (bkt_idx, split) )\n if shuffle:\n np.random.shuffle(batches)\n\n for bkt_idx, batch in batches:\n feed_dict = {}\n tokens = []\n for multibucket, vocab in self.iteritems():\n bucket = multibucket[bkt_idx]\n indices = bucket.indices[batch]\n vocab.set_feed_dict(indices, feed_dict)\n if return_check:\n #print(\"INDICES\",indices.shape,indices)\n if len(indices.shape) == 2:\n tokens.append(vocab[indices])\n elif len(indices.shape) == 3:\n for i,subvocab in enumerate(vocab):\n tokens.append(subvocab[indices[:,:,i]])\n #print(\"SUBVOCAB\",subvocab)\n #tokens.extend([subvocab[indices[:,:,i]] for i, subvocab in enumerate(vocab)])\n # TODO This is super hacky\n if hasattr(subvocab, 'idx2tok'):\n tokens[-1] = [[subvocab.idx2tok.get(idx, subvocab[subvocab.PAD]) for idx in idxs] for idxs in indices[:,:,-1]]\n elif not shuffle:\n tokens.append(bucket.get_tokens(batch))\n\n if not shuffle or return_check:\n yield feed_dict, list(zip(*tokens))\n else:\n yield feed_dict\n \n #=============================================================\n def iteritems(self):\n for i in range(len(self)):\n yield (self[i], self._vocabs[i])\n \n #=============================================================\n def update_history(self, history, accumulators):\n return self._nlp_model.update_history(history, accumulators)\n \n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=self.PREFIX.title())\n \n def write_probs(self, sents, output_file, probs, metadata):\n return self._nlp_model.write_probs(sents, output_file, probs, self.multibucket.inv_idxs(), metadata)\n\n def check(self, preds, sents, fileobj):\n return self._nlp_model.check(preds, sents, fileobj)\n \n def plot(self, history):\n return self._nlp_model.plot(history)\n \n #=============================================================\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n @property\n def multibucket(self):\n return self._multibucket\n @property\n def vocabs(self):\n return self._vocabs\n @property\n def train_keys(self):\n return self._nlp_model.train_keys\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n \n #=============================================================\n def __len__(self):\n return len(self._multibuckets)\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n#***************************************************************\nclass Trainset(Dataset):\n PREFIX = 'train'\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n#***************************************************************\nif __name__ == '__main__':\n \"\"\" \"\"\"\n \n from nparser.vocabs import *\n from nparser.dataset import Trainset\n \n configurable = Configurable()\n dep_vocab = DepVocab.from_configurable(configurable)\n word_vocab = WordVocab.from_configurable(configurable)\n lemma_vocab = LemmaVocab.from_configurable(configurable)\n pretrained_vocab = PretrainedVocab.from_vocab(word_vocab)\n char_vocab = NgramMultivocab.from_vocab(word_vocab)\n word_multivocab = Multivocab.from_configurable(configurable, [word_vocab, pretrained_vocab, char_vocab], name='words')\n tag_vocab = TagVocab.from_configurable(configurable)\n xtag_vocab = XTagVocab.from_configurable(configurable)\n head_vocab = HeadVocab.from_configurable(configurable)\n rel_vocab = RelVocab.from_configurable(configurable)\n trainset = Trainset.from_configurable(configurable, [dep_vocab, word_multivocab, lemma_vocab, tag_vocab, xtag_vocab, head_vocab, rel_vocab])\n trainset()\n print('Dataset passes',file=sys.stderr)\n \n", "import sys\nimport io\nimport re\nimport codecs\nfrom collections import Counter\nimport numpy as np\nimport tensorflow as tf\nfrom nparser import Configurable, Multibucket\nfrom nparser.vocabs.base_vocab import BaseVocab\nfrom nparser.misc.bucketer import Bucketer\n__all__ = ['Trainset', 'Parseset']\n\n\nclass Dataset(Configurable):\n \"\"\" \"\"\"\n\n def __init__(self, vocabs, *args, **kwargs):\n \"\"\" \"\"\"\n nlp_model = kwargs.pop('nlp_model', None)\n if 'parse_files' in kwargs and isinstance(kwargs['parse_files'], io\n .StringIO):\n self.preopen_parse_file = kwargs.pop('parse_files')\n else:\n self.preopen_parse_file = None\n super(Dataset, self).__init__(*args, **kwargs)\n self._vocabs = vocabs\n self._multibuckets = [Multibucket.from_configurable(vocab, name=\n '%s-%s' % (self.name, vocab.name)) for vocab in self.vocabs]\n self._metadata = []\n if nlp_model is not None:\n self._nlp_model = nlp_model.from_configurable(self, name=self.name)\n else:\n self._nlp_model = None\n with Bucketer.from_configurable(self, self.n_buckets, name=\n 'bucketer-%s' % self.name) as bucketer:\n splits = bucketer.compute_splits(len(sent) for sent, metadata in\n self.iterfiles())\n for i in range(len(splits)):\n splits[i] += 1\n for multibucket, vocab in self.iteritems():\n multibucket.open(splits, depth=vocab.depth)\n for sent, metadata in self.iterfiles():\n self._metadata.append(metadata)\n for multibucket, vocab in self.iteritems():\n tokens = [line[vocab.conll_idx] for line in sent]\n idxs = [vocab.ROOT] + [vocab.index(token) for token in tokens]\n multibucket.add(idxs, tokens)\n for multibucket in self:\n multibucket.close()\n self._multibucket = Multibucket.from_dataset(self)\n return\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n\n def iterfiles(self):\n \"\"\" \"\"\"\n ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10\n )\n if isinstance(self.preopen_parse_file, io.StringIO):\n data_files = [self.preopen_parse_file]\n else:\n data_files = self.data_files\n for data_file in data_files:\n if isinstance(data_file, str):\n f = codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f = data_file\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [],\n 'multiwordtokens': []}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols = line.split('\\t')\n metadata['miscfield'].append(cols[MISC])\n metadata['feats'].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line):\n cols = line.split('\\t')\n beg, end = cols[ID].split('-')\n metadata['multiwordtokens'].append((int(beg),\n int(end), cols[FORM]))\n else:\n metadata['comments'].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [\n ], 'multiwordtokens': []}\n yield buff, metadata\n if isinstance(data_file, str):\n f.close()\n else:\n f.seek(0)\n\n def iterbatches(self, shuffle=True, return_check=False):\n \"\"\" \"\"\"\n batch_size = self.batch_size\n batch_by = self.batch_by\n batches = []\n for bkt_idx, bucket in enumerate(self.multibucket):\n if batch_size == 0:\n n_splits = 1\n elif batch_by == 'tokens':\n n_tokens = bucket.indices.shape[0] * bucket.indices.shape[1]\n n_splits = max(n_tokens // batch_size, 1)\n elif batch_by == 'seqs':\n n_seqs = bucket.indices.shape[0]\n n_splits = max(n_seqs // batch_size, 1)\n if shuffle:\n range_func = np.random.permutation\n else:\n range_func = np.arange\n splits = np.array_split(range_func(bucket.indices.shape[0])[1:],\n n_splits)\n for split in splits:\n batches.append((bkt_idx, split))\n if shuffle:\n np.random.shuffle(batches)\n for bkt_idx, batch in batches:\n feed_dict = {}\n tokens = []\n for multibucket, vocab in self.iteritems():\n bucket = multibucket[bkt_idx]\n indices = bucket.indices[batch]\n vocab.set_feed_dict(indices, feed_dict)\n if return_check:\n if len(indices.shape) == 2:\n tokens.append(vocab[indices])\n elif len(indices.shape) == 3:\n for i, subvocab in enumerate(vocab):\n tokens.append(subvocab[indices[:, :, i]])\n if hasattr(subvocab, 'idx2tok'):\n tokens[-1] = [[subvocab.idx2tok.get(idx,\n subvocab[subvocab.PAD]) for idx in idxs] for\n idxs in indices[:, :, -1]]\n elif not shuffle:\n tokens.append(bucket.get_tokens(batch))\n if not shuffle or return_check:\n yield feed_dict, list(zip(*tokens))\n else:\n yield feed_dict\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n\n def update_history(self, history, accumulators):\n return self._nlp_model.update_history(history, accumulators)\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n\n def write_probs(self, sents, output_file, probs, metadata):\n return self._nlp_model.write_probs(sents, output_file, probs, self.\n multibucket.inv_idxs(), metadata)\n\n def check(self, preds, sents, fileobj):\n return self._nlp_model.check(preds, sents, fileobj)\n\n def plot(self, history):\n return self._nlp_model.plot(history)\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n\n @property\n def vocabs(self):\n return self._vocabs\n\n @property\n def train_keys(self):\n return self._nlp_model.train_keys\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n\n def __len__(self):\n return len(self._multibuckets)\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\nif __name__ == '__main__':\n \"\"\" \"\"\"\n from nparser.vocabs import *\n from nparser.dataset import Trainset\n configurable = Configurable()\n dep_vocab = DepVocab.from_configurable(configurable)\n word_vocab = WordVocab.from_configurable(configurable)\n lemma_vocab = LemmaVocab.from_configurable(configurable)\n pretrained_vocab = PretrainedVocab.from_vocab(word_vocab)\n char_vocab = NgramMultivocab.from_vocab(word_vocab)\n word_multivocab = Multivocab.from_configurable(configurable, [\n word_vocab, pretrained_vocab, char_vocab], name='words')\n tag_vocab = TagVocab.from_configurable(configurable)\n xtag_vocab = XTagVocab.from_configurable(configurable)\n head_vocab = HeadVocab.from_configurable(configurable)\n rel_vocab = RelVocab.from_configurable(configurable)\n trainset = Trainset.from_configurable(configurable, [dep_vocab,\n word_multivocab, lemma_vocab, tag_vocab, xtag_vocab, head_vocab,\n rel_vocab])\n trainset()\n print('Dataset passes', file=sys.stderr)\n", "<import token>\n__all__ = ['Trainset', 'Parseset']\n\n\nclass Dataset(Configurable):\n \"\"\" \"\"\"\n\n def __init__(self, vocabs, *args, **kwargs):\n \"\"\" \"\"\"\n nlp_model = kwargs.pop('nlp_model', None)\n if 'parse_files' in kwargs and isinstance(kwargs['parse_files'], io\n .StringIO):\n self.preopen_parse_file = kwargs.pop('parse_files')\n else:\n self.preopen_parse_file = None\n super(Dataset, self).__init__(*args, **kwargs)\n self._vocabs = vocabs\n self._multibuckets = [Multibucket.from_configurable(vocab, name=\n '%s-%s' % (self.name, vocab.name)) for vocab in self.vocabs]\n self._metadata = []\n if nlp_model is not None:\n self._nlp_model = nlp_model.from_configurable(self, name=self.name)\n else:\n self._nlp_model = None\n with Bucketer.from_configurable(self, self.n_buckets, name=\n 'bucketer-%s' % self.name) as bucketer:\n splits = bucketer.compute_splits(len(sent) for sent, metadata in\n self.iterfiles())\n for i in range(len(splits)):\n splits[i] += 1\n for multibucket, vocab in self.iteritems():\n multibucket.open(splits, depth=vocab.depth)\n for sent, metadata in self.iterfiles():\n self._metadata.append(metadata)\n for multibucket, vocab in self.iteritems():\n tokens = [line[vocab.conll_idx] for line in sent]\n idxs = [vocab.ROOT] + [vocab.index(token) for token in tokens]\n multibucket.add(idxs, tokens)\n for multibucket in self:\n multibucket.close()\n self._multibucket = Multibucket.from_dataset(self)\n return\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n\n def iterfiles(self):\n \"\"\" \"\"\"\n ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10\n )\n if isinstance(self.preopen_parse_file, io.StringIO):\n data_files = [self.preopen_parse_file]\n else:\n data_files = self.data_files\n for data_file in data_files:\n if isinstance(data_file, str):\n f = codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f = data_file\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [],\n 'multiwordtokens': []}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols = line.split('\\t')\n metadata['miscfield'].append(cols[MISC])\n metadata['feats'].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line):\n cols = line.split('\\t')\n beg, end = cols[ID].split('-')\n metadata['multiwordtokens'].append((int(beg),\n int(end), cols[FORM]))\n else:\n metadata['comments'].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [\n ], 'multiwordtokens': []}\n yield buff, metadata\n if isinstance(data_file, str):\n f.close()\n else:\n f.seek(0)\n\n def iterbatches(self, shuffle=True, return_check=False):\n \"\"\" \"\"\"\n batch_size = self.batch_size\n batch_by = self.batch_by\n batches = []\n for bkt_idx, bucket in enumerate(self.multibucket):\n if batch_size == 0:\n n_splits = 1\n elif batch_by == 'tokens':\n n_tokens = bucket.indices.shape[0] * bucket.indices.shape[1]\n n_splits = max(n_tokens // batch_size, 1)\n elif batch_by == 'seqs':\n n_seqs = bucket.indices.shape[0]\n n_splits = max(n_seqs // batch_size, 1)\n if shuffle:\n range_func = np.random.permutation\n else:\n range_func = np.arange\n splits = np.array_split(range_func(bucket.indices.shape[0])[1:],\n n_splits)\n for split in splits:\n batches.append((bkt_idx, split))\n if shuffle:\n np.random.shuffle(batches)\n for bkt_idx, batch in batches:\n feed_dict = {}\n tokens = []\n for multibucket, vocab in self.iteritems():\n bucket = multibucket[bkt_idx]\n indices = bucket.indices[batch]\n vocab.set_feed_dict(indices, feed_dict)\n if return_check:\n if len(indices.shape) == 2:\n tokens.append(vocab[indices])\n elif len(indices.shape) == 3:\n for i, subvocab in enumerate(vocab):\n tokens.append(subvocab[indices[:, :, i]])\n if hasattr(subvocab, 'idx2tok'):\n tokens[-1] = [[subvocab.idx2tok.get(idx,\n subvocab[subvocab.PAD]) for idx in idxs] for\n idxs in indices[:, :, -1]]\n elif not shuffle:\n tokens.append(bucket.get_tokens(batch))\n if not shuffle or return_check:\n yield feed_dict, list(zip(*tokens))\n else:\n yield feed_dict\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n\n def update_history(self, history, accumulators):\n return self._nlp_model.update_history(history, accumulators)\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n\n def write_probs(self, sents, output_file, probs, metadata):\n return self._nlp_model.write_probs(sents, output_file, probs, self.\n multibucket.inv_idxs(), metadata)\n\n def check(self, preds, sents, fileobj):\n return self._nlp_model.check(preds, sents, fileobj)\n\n def plot(self, history):\n return self._nlp_model.plot(history)\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n\n @property\n def vocabs(self):\n return self._vocabs\n\n @property\n def train_keys(self):\n return self._nlp_model.train_keys\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n\n def __len__(self):\n return len(self._multibuckets)\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\nif __name__ == '__main__':\n \"\"\" \"\"\"\n from nparser.vocabs import *\n from nparser.dataset import Trainset\n configurable = Configurable()\n dep_vocab = DepVocab.from_configurable(configurable)\n word_vocab = WordVocab.from_configurable(configurable)\n lemma_vocab = LemmaVocab.from_configurable(configurable)\n pretrained_vocab = PretrainedVocab.from_vocab(word_vocab)\n char_vocab = NgramMultivocab.from_vocab(word_vocab)\n word_multivocab = Multivocab.from_configurable(configurable, [\n word_vocab, pretrained_vocab, char_vocab], name='words')\n tag_vocab = TagVocab.from_configurable(configurable)\n xtag_vocab = XTagVocab.from_configurable(configurable)\n head_vocab = HeadVocab.from_configurable(configurable)\n rel_vocab = RelVocab.from_configurable(configurable)\n trainset = Trainset.from_configurable(configurable, [dep_vocab,\n word_multivocab, lemma_vocab, tag_vocab, xtag_vocab, head_vocab,\n rel_vocab])\n trainset()\n print('Dataset passes', file=sys.stderr)\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n \"\"\" \"\"\"\n\n def __init__(self, vocabs, *args, **kwargs):\n \"\"\" \"\"\"\n nlp_model = kwargs.pop('nlp_model', None)\n if 'parse_files' in kwargs and isinstance(kwargs['parse_files'], io\n .StringIO):\n self.preopen_parse_file = kwargs.pop('parse_files')\n else:\n self.preopen_parse_file = None\n super(Dataset, self).__init__(*args, **kwargs)\n self._vocabs = vocabs\n self._multibuckets = [Multibucket.from_configurable(vocab, name=\n '%s-%s' % (self.name, vocab.name)) for vocab in self.vocabs]\n self._metadata = []\n if nlp_model is not None:\n self._nlp_model = nlp_model.from_configurable(self, name=self.name)\n else:\n self._nlp_model = None\n with Bucketer.from_configurable(self, self.n_buckets, name=\n 'bucketer-%s' % self.name) as bucketer:\n splits = bucketer.compute_splits(len(sent) for sent, metadata in\n self.iterfiles())\n for i in range(len(splits)):\n splits[i] += 1\n for multibucket, vocab in self.iteritems():\n multibucket.open(splits, depth=vocab.depth)\n for sent, metadata in self.iterfiles():\n self._metadata.append(metadata)\n for multibucket, vocab in self.iteritems():\n tokens = [line[vocab.conll_idx] for line in sent]\n idxs = [vocab.ROOT] + [vocab.index(token) for token in tokens]\n multibucket.add(idxs, tokens)\n for multibucket in self:\n multibucket.close()\n self._multibucket = Multibucket.from_dataset(self)\n return\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n\n def iterfiles(self):\n \"\"\" \"\"\"\n ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10\n )\n if isinstance(self.preopen_parse_file, io.StringIO):\n data_files = [self.preopen_parse_file]\n else:\n data_files = self.data_files\n for data_file in data_files:\n if isinstance(data_file, str):\n f = codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f = data_file\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [],\n 'multiwordtokens': []}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols = line.split('\\t')\n metadata['miscfield'].append(cols[MISC])\n metadata['feats'].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line):\n cols = line.split('\\t')\n beg, end = cols[ID].split('-')\n metadata['multiwordtokens'].append((int(beg),\n int(end), cols[FORM]))\n else:\n metadata['comments'].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [\n ], 'multiwordtokens': []}\n yield buff, metadata\n if isinstance(data_file, str):\n f.close()\n else:\n f.seek(0)\n\n def iterbatches(self, shuffle=True, return_check=False):\n \"\"\" \"\"\"\n batch_size = self.batch_size\n batch_by = self.batch_by\n batches = []\n for bkt_idx, bucket in enumerate(self.multibucket):\n if batch_size == 0:\n n_splits = 1\n elif batch_by == 'tokens':\n n_tokens = bucket.indices.shape[0] * bucket.indices.shape[1]\n n_splits = max(n_tokens // batch_size, 1)\n elif batch_by == 'seqs':\n n_seqs = bucket.indices.shape[0]\n n_splits = max(n_seqs // batch_size, 1)\n if shuffle:\n range_func = np.random.permutation\n else:\n range_func = np.arange\n splits = np.array_split(range_func(bucket.indices.shape[0])[1:],\n n_splits)\n for split in splits:\n batches.append((bkt_idx, split))\n if shuffle:\n np.random.shuffle(batches)\n for bkt_idx, batch in batches:\n feed_dict = {}\n tokens = []\n for multibucket, vocab in self.iteritems():\n bucket = multibucket[bkt_idx]\n indices = bucket.indices[batch]\n vocab.set_feed_dict(indices, feed_dict)\n if return_check:\n if len(indices.shape) == 2:\n tokens.append(vocab[indices])\n elif len(indices.shape) == 3:\n for i, subvocab in enumerate(vocab):\n tokens.append(subvocab[indices[:, :, i]])\n if hasattr(subvocab, 'idx2tok'):\n tokens[-1] = [[subvocab.idx2tok.get(idx,\n subvocab[subvocab.PAD]) for idx in idxs] for\n idxs in indices[:, :, -1]]\n elif not shuffle:\n tokens.append(bucket.get_tokens(batch))\n if not shuffle or return_check:\n yield feed_dict, list(zip(*tokens))\n else:\n yield feed_dict\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n\n def update_history(self, history, accumulators):\n return self._nlp_model.update_history(history, accumulators)\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n\n def write_probs(self, sents, output_file, probs, metadata):\n return self._nlp_model.write_probs(sents, output_file, probs, self.\n multibucket.inv_idxs(), metadata)\n\n def check(self, preds, sents, fileobj):\n return self._nlp_model.check(preds, sents, fileobj)\n\n def plot(self, history):\n return self._nlp_model.plot(history)\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n\n @property\n def vocabs(self):\n return self._vocabs\n\n @property\n def train_keys(self):\n return self._nlp_model.train_keys\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n\n def __len__(self):\n return len(self._multibuckets)\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\nif __name__ == '__main__':\n \"\"\" \"\"\"\n from nparser.vocabs import *\n from nparser.dataset import Trainset\n configurable = Configurable()\n dep_vocab = DepVocab.from_configurable(configurable)\n word_vocab = WordVocab.from_configurable(configurable)\n lemma_vocab = LemmaVocab.from_configurable(configurable)\n pretrained_vocab = PretrainedVocab.from_vocab(word_vocab)\n char_vocab = NgramMultivocab.from_vocab(word_vocab)\n word_multivocab = Multivocab.from_configurable(configurable, [\n word_vocab, pretrained_vocab, char_vocab], name='words')\n tag_vocab = TagVocab.from_configurable(configurable)\n xtag_vocab = XTagVocab.from_configurable(configurable)\n head_vocab = HeadVocab.from_configurable(configurable)\n rel_vocab = RelVocab.from_configurable(configurable)\n trainset = Trainset.from_configurable(configurable, [dep_vocab,\n word_multivocab, lemma_vocab, tag_vocab, xtag_vocab, head_vocab,\n rel_vocab])\n trainset()\n print('Dataset passes', file=sys.stderr)\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n \"\"\" \"\"\"\n\n def __init__(self, vocabs, *args, **kwargs):\n \"\"\" \"\"\"\n nlp_model = kwargs.pop('nlp_model', None)\n if 'parse_files' in kwargs and isinstance(kwargs['parse_files'], io\n .StringIO):\n self.preopen_parse_file = kwargs.pop('parse_files')\n else:\n self.preopen_parse_file = None\n super(Dataset, self).__init__(*args, **kwargs)\n self._vocabs = vocabs\n self._multibuckets = [Multibucket.from_configurable(vocab, name=\n '%s-%s' % (self.name, vocab.name)) for vocab in self.vocabs]\n self._metadata = []\n if nlp_model is not None:\n self._nlp_model = nlp_model.from_configurable(self, name=self.name)\n else:\n self._nlp_model = None\n with Bucketer.from_configurable(self, self.n_buckets, name=\n 'bucketer-%s' % self.name) as bucketer:\n splits = bucketer.compute_splits(len(sent) for sent, metadata in\n self.iterfiles())\n for i in range(len(splits)):\n splits[i] += 1\n for multibucket, vocab in self.iteritems():\n multibucket.open(splits, depth=vocab.depth)\n for sent, metadata in self.iterfiles():\n self._metadata.append(metadata)\n for multibucket, vocab in self.iteritems():\n tokens = [line[vocab.conll_idx] for line in sent]\n idxs = [vocab.ROOT] + [vocab.index(token) for token in tokens]\n multibucket.add(idxs, tokens)\n for multibucket in self:\n multibucket.close()\n self._multibucket = Multibucket.from_dataset(self)\n return\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n\n def iterfiles(self):\n \"\"\" \"\"\"\n ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10\n )\n if isinstance(self.preopen_parse_file, io.StringIO):\n data_files = [self.preopen_parse_file]\n else:\n data_files = self.data_files\n for data_file in data_files:\n if isinstance(data_file, str):\n f = codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f = data_file\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [],\n 'multiwordtokens': []}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols = line.split('\\t')\n metadata['miscfield'].append(cols[MISC])\n metadata['feats'].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line):\n cols = line.split('\\t')\n beg, end = cols[ID].split('-')\n metadata['multiwordtokens'].append((int(beg),\n int(end), cols[FORM]))\n else:\n metadata['comments'].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [\n ], 'multiwordtokens': []}\n yield buff, metadata\n if isinstance(data_file, str):\n f.close()\n else:\n f.seek(0)\n\n def iterbatches(self, shuffle=True, return_check=False):\n \"\"\" \"\"\"\n batch_size = self.batch_size\n batch_by = self.batch_by\n batches = []\n for bkt_idx, bucket in enumerate(self.multibucket):\n if batch_size == 0:\n n_splits = 1\n elif batch_by == 'tokens':\n n_tokens = bucket.indices.shape[0] * bucket.indices.shape[1]\n n_splits = max(n_tokens // batch_size, 1)\n elif batch_by == 'seqs':\n n_seqs = bucket.indices.shape[0]\n n_splits = max(n_seqs // batch_size, 1)\n if shuffle:\n range_func = np.random.permutation\n else:\n range_func = np.arange\n splits = np.array_split(range_func(bucket.indices.shape[0])[1:],\n n_splits)\n for split in splits:\n batches.append((bkt_idx, split))\n if shuffle:\n np.random.shuffle(batches)\n for bkt_idx, batch in batches:\n feed_dict = {}\n tokens = []\n for multibucket, vocab in self.iteritems():\n bucket = multibucket[bkt_idx]\n indices = bucket.indices[batch]\n vocab.set_feed_dict(indices, feed_dict)\n if return_check:\n if len(indices.shape) == 2:\n tokens.append(vocab[indices])\n elif len(indices.shape) == 3:\n for i, subvocab in enumerate(vocab):\n tokens.append(subvocab[indices[:, :, i]])\n if hasattr(subvocab, 'idx2tok'):\n tokens[-1] = [[subvocab.idx2tok.get(idx,\n subvocab[subvocab.PAD]) for idx in idxs] for\n idxs in indices[:, :, -1]]\n elif not shuffle:\n tokens.append(bucket.get_tokens(batch))\n if not shuffle or return_check:\n yield feed_dict, list(zip(*tokens))\n else:\n yield feed_dict\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n\n def update_history(self, history, accumulators):\n return self._nlp_model.update_history(history, accumulators)\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n\n def write_probs(self, sents, output_file, probs, metadata):\n return self._nlp_model.write_probs(sents, output_file, probs, self.\n multibucket.inv_idxs(), metadata)\n\n def check(self, preds, sents, fileobj):\n return self._nlp_model.check(preds, sents, fileobj)\n\n def plot(self, history):\n return self._nlp_model.plot(history)\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n\n @property\n def vocabs(self):\n return self._vocabs\n\n @property\n def train_keys(self):\n return self._nlp_model.train_keys\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n\n def __len__(self):\n return len(self._multibuckets)\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n\n def __init__(self, vocabs, *args, **kwargs):\n \"\"\" \"\"\"\n nlp_model = kwargs.pop('nlp_model', None)\n if 'parse_files' in kwargs and isinstance(kwargs['parse_files'], io\n .StringIO):\n self.preopen_parse_file = kwargs.pop('parse_files')\n else:\n self.preopen_parse_file = None\n super(Dataset, self).__init__(*args, **kwargs)\n self._vocabs = vocabs\n self._multibuckets = [Multibucket.from_configurable(vocab, name=\n '%s-%s' % (self.name, vocab.name)) for vocab in self.vocabs]\n self._metadata = []\n if nlp_model is not None:\n self._nlp_model = nlp_model.from_configurable(self, name=self.name)\n else:\n self._nlp_model = None\n with Bucketer.from_configurable(self, self.n_buckets, name=\n 'bucketer-%s' % self.name) as bucketer:\n splits = bucketer.compute_splits(len(sent) for sent, metadata in\n self.iterfiles())\n for i in range(len(splits)):\n splits[i] += 1\n for multibucket, vocab in self.iteritems():\n multibucket.open(splits, depth=vocab.depth)\n for sent, metadata in self.iterfiles():\n self._metadata.append(metadata)\n for multibucket, vocab in self.iteritems():\n tokens = [line[vocab.conll_idx] for line in sent]\n idxs = [vocab.ROOT] + [vocab.index(token) for token in tokens]\n multibucket.add(idxs, tokens)\n for multibucket in self:\n multibucket.close()\n self._multibucket = Multibucket.from_dataset(self)\n return\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n\n def iterfiles(self):\n \"\"\" \"\"\"\n ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10\n )\n if isinstance(self.preopen_parse_file, io.StringIO):\n data_files = [self.preopen_parse_file]\n else:\n data_files = self.data_files\n for data_file in data_files:\n if isinstance(data_file, str):\n f = codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f = data_file\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [],\n 'multiwordtokens': []}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols = line.split('\\t')\n metadata['miscfield'].append(cols[MISC])\n metadata['feats'].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line):\n cols = line.split('\\t')\n beg, end = cols[ID].split('-')\n metadata['multiwordtokens'].append((int(beg),\n int(end), cols[FORM]))\n else:\n metadata['comments'].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [\n ], 'multiwordtokens': []}\n yield buff, metadata\n if isinstance(data_file, str):\n f.close()\n else:\n f.seek(0)\n\n def iterbatches(self, shuffle=True, return_check=False):\n \"\"\" \"\"\"\n batch_size = self.batch_size\n batch_by = self.batch_by\n batches = []\n for bkt_idx, bucket in enumerate(self.multibucket):\n if batch_size == 0:\n n_splits = 1\n elif batch_by == 'tokens':\n n_tokens = bucket.indices.shape[0] * bucket.indices.shape[1]\n n_splits = max(n_tokens // batch_size, 1)\n elif batch_by == 'seqs':\n n_seqs = bucket.indices.shape[0]\n n_splits = max(n_seqs // batch_size, 1)\n if shuffle:\n range_func = np.random.permutation\n else:\n range_func = np.arange\n splits = np.array_split(range_func(bucket.indices.shape[0])[1:],\n n_splits)\n for split in splits:\n batches.append((bkt_idx, split))\n if shuffle:\n np.random.shuffle(batches)\n for bkt_idx, batch in batches:\n feed_dict = {}\n tokens = []\n for multibucket, vocab in self.iteritems():\n bucket = multibucket[bkt_idx]\n indices = bucket.indices[batch]\n vocab.set_feed_dict(indices, feed_dict)\n if return_check:\n if len(indices.shape) == 2:\n tokens.append(vocab[indices])\n elif len(indices.shape) == 3:\n for i, subvocab in enumerate(vocab):\n tokens.append(subvocab[indices[:, :, i]])\n if hasattr(subvocab, 'idx2tok'):\n tokens[-1] = [[subvocab.idx2tok.get(idx,\n subvocab[subvocab.PAD]) for idx in idxs] for\n idxs in indices[:, :, -1]]\n elif not shuffle:\n tokens.append(bucket.get_tokens(batch))\n if not shuffle or return_check:\n yield feed_dict, list(zip(*tokens))\n else:\n yield feed_dict\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n\n def update_history(self, history, accumulators):\n return self._nlp_model.update_history(history, accumulators)\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n\n def write_probs(self, sents, output_file, probs, metadata):\n return self._nlp_model.write_probs(sents, output_file, probs, self.\n multibucket.inv_idxs(), metadata)\n\n def check(self, preds, sents, fileobj):\n return self._nlp_model.check(preds, sents, fileobj)\n\n def plot(self, history):\n return self._nlp_model.plot(history)\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n\n @property\n def vocabs(self):\n return self._vocabs\n\n @property\n def train_keys(self):\n return self._nlp_model.train_keys\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n\n def __len__(self):\n return len(self._multibuckets)\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n\n def __init__(self, vocabs, *args, **kwargs):\n \"\"\" \"\"\"\n nlp_model = kwargs.pop('nlp_model', None)\n if 'parse_files' in kwargs and isinstance(kwargs['parse_files'], io\n .StringIO):\n self.preopen_parse_file = kwargs.pop('parse_files')\n else:\n self.preopen_parse_file = None\n super(Dataset, self).__init__(*args, **kwargs)\n self._vocabs = vocabs\n self._multibuckets = [Multibucket.from_configurable(vocab, name=\n '%s-%s' % (self.name, vocab.name)) for vocab in self.vocabs]\n self._metadata = []\n if nlp_model is not None:\n self._nlp_model = nlp_model.from_configurable(self, name=self.name)\n else:\n self._nlp_model = None\n with Bucketer.from_configurable(self, self.n_buckets, name=\n 'bucketer-%s' % self.name) as bucketer:\n splits = bucketer.compute_splits(len(sent) for sent, metadata in\n self.iterfiles())\n for i in range(len(splits)):\n splits[i] += 1\n for multibucket, vocab in self.iteritems():\n multibucket.open(splits, depth=vocab.depth)\n for sent, metadata in self.iterfiles():\n self._metadata.append(metadata)\n for multibucket, vocab in self.iteritems():\n tokens = [line[vocab.conll_idx] for line in sent]\n idxs = [vocab.ROOT] + [vocab.index(token) for token in tokens]\n multibucket.add(idxs, tokens)\n for multibucket in self:\n multibucket.close()\n self._multibucket = Multibucket.from_dataset(self)\n return\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n\n def iterfiles(self):\n \"\"\" \"\"\"\n ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10\n )\n if isinstance(self.preopen_parse_file, io.StringIO):\n data_files = [self.preopen_parse_file]\n else:\n data_files = self.data_files\n for data_file in data_files:\n if isinstance(data_file, str):\n f = codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f = data_file\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [],\n 'multiwordtokens': []}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols = line.split('\\t')\n metadata['miscfield'].append(cols[MISC])\n metadata['feats'].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line):\n cols = line.split('\\t')\n beg, end = cols[ID].split('-')\n metadata['multiwordtokens'].append((int(beg),\n int(end), cols[FORM]))\n else:\n metadata['comments'].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [\n ], 'multiwordtokens': []}\n yield buff, metadata\n if isinstance(data_file, str):\n f.close()\n else:\n f.seek(0)\n\n def iterbatches(self, shuffle=True, return_check=False):\n \"\"\" \"\"\"\n batch_size = self.batch_size\n batch_by = self.batch_by\n batches = []\n for bkt_idx, bucket in enumerate(self.multibucket):\n if batch_size == 0:\n n_splits = 1\n elif batch_by == 'tokens':\n n_tokens = bucket.indices.shape[0] * bucket.indices.shape[1]\n n_splits = max(n_tokens // batch_size, 1)\n elif batch_by == 'seqs':\n n_seqs = bucket.indices.shape[0]\n n_splits = max(n_seqs // batch_size, 1)\n if shuffle:\n range_func = np.random.permutation\n else:\n range_func = np.arange\n splits = np.array_split(range_func(bucket.indices.shape[0])[1:],\n n_splits)\n for split in splits:\n batches.append((bkt_idx, split))\n if shuffle:\n np.random.shuffle(batches)\n for bkt_idx, batch in batches:\n feed_dict = {}\n tokens = []\n for multibucket, vocab in self.iteritems():\n bucket = multibucket[bkt_idx]\n indices = bucket.indices[batch]\n vocab.set_feed_dict(indices, feed_dict)\n if return_check:\n if len(indices.shape) == 2:\n tokens.append(vocab[indices])\n elif len(indices.shape) == 3:\n for i, subvocab in enumerate(vocab):\n tokens.append(subvocab[indices[:, :, i]])\n if hasattr(subvocab, 'idx2tok'):\n tokens[-1] = [[subvocab.idx2tok.get(idx,\n subvocab[subvocab.PAD]) for idx in idxs] for\n idxs in indices[:, :, -1]]\n elif not shuffle:\n tokens.append(bucket.get_tokens(batch))\n if not shuffle or return_check:\n yield feed_dict, list(zip(*tokens))\n else:\n yield feed_dict\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n\n def update_history(self, history, accumulators):\n return self._nlp_model.update_history(history, accumulators)\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n\n def write_probs(self, sents, output_file, probs, metadata):\n return self._nlp_model.write_probs(sents, output_file, probs, self.\n multibucket.inv_idxs(), metadata)\n\n def check(self, preds, sents, fileobj):\n return self._nlp_model.check(preds, sents, fileobj)\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n\n @property\n def vocabs(self):\n return self._vocabs\n\n @property\n def train_keys(self):\n return self._nlp_model.train_keys\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n\n def __len__(self):\n return len(self._multibuckets)\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n\n def __init__(self, vocabs, *args, **kwargs):\n \"\"\" \"\"\"\n nlp_model = kwargs.pop('nlp_model', None)\n if 'parse_files' in kwargs and isinstance(kwargs['parse_files'], io\n .StringIO):\n self.preopen_parse_file = kwargs.pop('parse_files')\n else:\n self.preopen_parse_file = None\n super(Dataset, self).__init__(*args, **kwargs)\n self._vocabs = vocabs\n self._multibuckets = [Multibucket.from_configurable(vocab, name=\n '%s-%s' % (self.name, vocab.name)) for vocab in self.vocabs]\n self._metadata = []\n if nlp_model is not None:\n self._nlp_model = nlp_model.from_configurable(self, name=self.name)\n else:\n self._nlp_model = None\n with Bucketer.from_configurable(self, self.n_buckets, name=\n 'bucketer-%s' % self.name) as bucketer:\n splits = bucketer.compute_splits(len(sent) for sent, metadata in\n self.iterfiles())\n for i in range(len(splits)):\n splits[i] += 1\n for multibucket, vocab in self.iteritems():\n multibucket.open(splits, depth=vocab.depth)\n for sent, metadata in self.iterfiles():\n self._metadata.append(metadata)\n for multibucket, vocab in self.iteritems():\n tokens = [line[vocab.conll_idx] for line in sent]\n idxs = [vocab.ROOT] + [vocab.index(token) for token in tokens]\n multibucket.add(idxs, tokens)\n for multibucket in self:\n multibucket.close()\n self._multibucket = Multibucket.from_dataset(self)\n return\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n\n def iterfiles(self):\n \"\"\" \"\"\"\n ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10\n )\n if isinstance(self.preopen_parse_file, io.StringIO):\n data_files = [self.preopen_parse_file]\n else:\n data_files = self.data_files\n for data_file in data_files:\n if isinstance(data_file, str):\n f = codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f = data_file\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [],\n 'multiwordtokens': []}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols = line.split('\\t')\n metadata['miscfield'].append(cols[MISC])\n metadata['feats'].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line):\n cols = line.split('\\t')\n beg, end = cols[ID].split('-')\n metadata['multiwordtokens'].append((int(beg),\n int(end), cols[FORM]))\n else:\n metadata['comments'].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [\n ], 'multiwordtokens': []}\n yield buff, metadata\n if isinstance(data_file, str):\n f.close()\n else:\n f.seek(0)\n\n def iterbatches(self, shuffle=True, return_check=False):\n \"\"\" \"\"\"\n batch_size = self.batch_size\n batch_by = self.batch_by\n batches = []\n for bkt_idx, bucket in enumerate(self.multibucket):\n if batch_size == 0:\n n_splits = 1\n elif batch_by == 'tokens':\n n_tokens = bucket.indices.shape[0] * bucket.indices.shape[1]\n n_splits = max(n_tokens // batch_size, 1)\n elif batch_by == 'seqs':\n n_seqs = bucket.indices.shape[0]\n n_splits = max(n_seqs // batch_size, 1)\n if shuffle:\n range_func = np.random.permutation\n else:\n range_func = np.arange\n splits = np.array_split(range_func(bucket.indices.shape[0])[1:],\n n_splits)\n for split in splits:\n batches.append((bkt_idx, split))\n if shuffle:\n np.random.shuffle(batches)\n for bkt_idx, batch in batches:\n feed_dict = {}\n tokens = []\n for multibucket, vocab in self.iteritems():\n bucket = multibucket[bkt_idx]\n indices = bucket.indices[batch]\n vocab.set_feed_dict(indices, feed_dict)\n if return_check:\n if len(indices.shape) == 2:\n tokens.append(vocab[indices])\n elif len(indices.shape) == 3:\n for i, subvocab in enumerate(vocab):\n tokens.append(subvocab[indices[:, :, i]])\n if hasattr(subvocab, 'idx2tok'):\n tokens[-1] = [[subvocab.idx2tok.get(idx,\n subvocab[subvocab.PAD]) for idx in idxs] for\n idxs in indices[:, :, -1]]\n elif not shuffle:\n tokens.append(bucket.get_tokens(batch))\n if not shuffle or return_check:\n yield feed_dict, list(zip(*tokens))\n else:\n yield feed_dict\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n\n def update_history(self, history, accumulators):\n return self._nlp_model.update_history(history, accumulators)\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n <function token>\n\n def check(self, preds, sents, fileobj):\n return self._nlp_model.check(preds, sents, fileobj)\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n\n @property\n def vocabs(self):\n return self._vocabs\n\n @property\n def train_keys(self):\n return self._nlp_model.train_keys\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n\n def __len__(self):\n return len(self._multibuckets)\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n\n def __init__(self, vocabs, *args, **kwargs):\n \"\"\" \"\"\"\n nlp_model = kwargs.pop('nlp_model', None)\n if 'parse_files' in kwargs and isinstance(kwargs['parse_files'], io\n .StringIO):\n self.preopen_parse_file = kwargs.pop('parse_files')\n else:\n self.preopen_parse_file = None\n super(Dataset, self).__init__(*args, **kwargs)\n self._vocabs = vocabs\n self._multibuckets = [Multibucket.from_configurable(vocab, name=\n '%s-%s' % (self.name, vocab.name)) for vocab in self.vocabs]\n self._metadata = []\n if nlp_model is not None:\n self._nlp_model = nlp_model.from_configurable(self, name=self.name)\n else:\n self._nlp_model = None\n with Bucketer.from_configurable(self, self.n_buckets, name=\n 'bucketer-%s' % self.name) as bucketer:\n splits = bucketer.compute_splits(len(sent) for sent, metadata in\n self.iterfiles())\n for i in range(len(splits)):\n splits[i] += 1\n for multibucket, vocab in self.iteritems():\n multibucket.open(splits, depth=vocab.depth)\n for sent, metadata in self.iterfiles():\n self._metadata.append(metadata)\n for multibucket, vocab in self.iteritems():\n tokens = [line[vocab.conll_idx] for line in sent]\n idxs = [vocab.ROOT] + [vocab.index(token) for token in tokens]\n multibucket.add(idxs, tokens)\n for multibucket in self:\n multibucket.close()\n self._multibucket = Multibucket.from_dataset(self)\n return\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n\n def iterfiles(self):\n \"\"\" \"\"\"\n ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10\n )\n if isinstance(self.preopen_parse_file, io.StringIO):\n data_files = [self.preopen_parse_file]\n else:\n data_files = self.data_files\n for data_file in data_files:\n if isinstance(data_file, str):\n f = codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f = data_file\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [],\n 'multiwordtokens': []}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols = line.split('\\t')\n metadata['miscfield'].append(cols[MISC])\n metadata['feats'].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line):\n cols = line.split('\\t')\n beg, end = cols[ID].split('-')\n metadata['multiwordtokens'].append((int(beg),\n int(end), cols[FORM]))\n else:\n metadata['comments'].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [\n ], 'multiwordtokens': []}\n yield buff, metadata\n if isinstance(data_file, str):\n f.close()\n else:\n f.seek(0)\n <function token>\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n\n def update_history(self, history, accumulators):\n return self._nlp_model.update_history(history, accumulators)\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n <function token>\n\n def check(self, preds, sents, fileobj):\n return self._nlp_model.check(preds, sents, fileobj)\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n\n @property\n def vocabs(self):\n return self._vocabs\n\n @property\n def train_keys(self):\n return self._nlp_model.train_keys\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n\n def __len__(self):\n return len(self._multibuckets)\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n\n def iterfiles(self):\n \"\"\" \"\"\"\n ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10\n )\n if isinstance(self.preopen_parse_file, io.StringIO):\n data_files = [self.preopen_parse_file]\n else:\n data_files = self.data_files\n for data_file in data_files:\n if isinstance(data_file, str):\n f = codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f = data_file\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [],\n 'multiwordtokens': []}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols = line.split('\\t')\n metadata['miscfield'].append(cols[MISC])\n metadata['feats'].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line):\n cols = line.split('\\t')\n beg, end = cols[ID].split('-')\n metadata['multiwordtokens'].append((int(beg),\n int(end), cols[FORM]))\n else:\n metadata['comments'].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [\n ], 'multiwordtokens': []}\n yield buff, metadata\n if isinstance(data_file, str):\n f.close()\n else:\n f.seek(0)\n <function token>\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n\n def update_history(self, history, accumulators):\n return self._nlp_model.update_history(history, accumulators)\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n <function token>\n\n def check(self, preds, sents, fileobj):\n return self._nlp_model.check(preds, sents, fileobj)\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n\n @property\n def vocabs(self):\n return self._vocabs\n\n @property\n def train_keys(self):\n return self._nlp_model.train_keys\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n\n def __len__(self):\n return len(self._multibuckets)\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n\n def iterfiles(self):\n \"\"\" \"\"\"\n ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10\n )\n if isinstance(self.preopen_parse_file, io.StringIO):\n data_files = [self.preopen_parse_file]\n else:\n data_files = self.data_files\n for data_file in data_files:\n if isinstance(data_file, str):\n f = codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f = data_file\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [],\n 'multiwordtokens': []}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols = line.split('\\t')\n metadata['miscfield'].append(cols[MISC])\n metadata['feats'].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line):\n cols = line.split('\\t')\n beg, end = cols[ID].split('-')\n metadata['multiwordtokens'].append((int(beg),\n int(end), cols[FORM]))\n else:\n metadata['comments'].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [\n ], 'multiwordtokens': []}\n yield buff, metadata\n if isinstance(data_file, str):\n f.close()\n else:\n f.seek(0)\n <function token>\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n\n def update_history(self, history, accumulators):\n return self._nlp_model.update_history(history, accumulators)\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n <function token>\n\n def check(self, preds, sents, fileobj):\n return self._nlp_model.check(preds, sents, fileobj)\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n <function token>\n\n @property\n def train_keys(self):\n return self._nlp_model.train_keys\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n\n def __len__(self):\n return len(self._multibuckets)\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n\n def iterfiles(self):\n \"\"\" \"\"\"\n ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10\n )\n if isinstance(self.preopen_parse_file, io.StringIO):\n data_files = [self.preopen_parse_file]\n else:\n data_files = self.data_files\n for data_file in data_files:\n if isinstance(data_file, str):\n f = codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f = data_file\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [],\n 'multiwordtokens': []}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols = line.split('\\t')\n metadata['miscfield'].append(cols[MISC])\n metadata['feats'].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line):\n cols = line.split('\\t')\n beg, end = cols[ID].split('-')\n metadata['multiwordtokens'].append((int(beg),\n int(end), cols[FORM]))\n else:\n metadata['comments'].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [\n ], 'multiwordtokens': []}\n yield buff, metadata\n if isinstance(data_file, str):\n f.close()\n else:\n f.seek(0)\n <function token>\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n <function token>\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n <function token>\n\n def check(self, preds, sents, fileobj):\n return self._nlp_model.check(preds, sents, fileobj)\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n <function token>\n\n @property\n def train_keys(self):\n return self._nlp_model.train_keys\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n\n def __len__(self):\n return len(self._multibuckets)\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n\n def iterfiles(self):\n \"\"\" \"\"\"\n ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10\n )\n if isinstance(self.preopen_parse_file, io.StringIO):\n data_files = [self.preopen_parse_file]\n else:\n data_files = self.data_files\n for data_file in data_files:\n if isinstance(data_file, str):\n f = codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f = data_file\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [],\n 'multiwordtokens': []}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols = line.split('\\t')\n metadata['miscfield'].append(cols[MISC])\n metadata['feats'].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line):\n cols = line.split('\\t')\n beg, end = cols[ID].split('-')\n metadata['multiwordtokens'].append((int(beg),\n int(end), cols[FORM]))\n else:\n metadata['comments'].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [\n ], 'multiwordtokens': []}\n yield buff, metadata\n if isinstance(data_file, str):\n f.close()\n else:\n f.seek(0)\n <function token>\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n <function token>\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n <function token>\n\n def check(self, preds, sents, fileobj):\n return self._nlp_model.check(preds, sents, fileobj)\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n <function token>\n <function token>\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n\n def __len__(self):\n return len(self._multibuckets)\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n\n def iterfiles(self):\n \"\"\" \"\"\"\n ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10\n )\n if isinstance(self.preopen_parse_file, io.StringIO):\n data_files = [self.preopen_parse_file]\n else:\n data_files = self.data_files\n for data_file in data_files:\n if isinstance(data_file, str):\n f = codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f = data_file\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [],\n 'multiwordtokens': []}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols = line.split('\\t')\n metadata['miscfield'].append(cols[MISC])\n metadata['feats'].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line):\n cols = line.split('\\t')\n beg, end = cols[ID].split('-')\n metadata['multiwordtokens'].append((int(beg),\n int(end), cols[FORM]))\n else:\n metadata['comments'].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [\n ], 'multiwordtokens': []}\n yield buff, metadata\n if isinstance(data_file, str):\n f.close()\n else:\n f.seek(0)\n <function token>\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n <function token>\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n <function token>\n\n def check(self, preds, sents, fileobj):\n return self._nlp_model.check(preds, sents, fileobj)\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n <function token>\n <function token>\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n <function token>\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n\n def iterfiles(self):\n \"\"\" \"\"\"\n ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10\n )\n if isinstance(self.preopen_parse_file, io.StringIO):\n data_files = [self.preopen_parse_file]\n else:\n data_files = self.data_files\n for data_file in data_files:\n if isinstance(data_file, str):\n f = codecs.open(data_file, encoding='utf-8', errors='ignore')\n else:\n f = data_file\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [],\n 'multiwordtokens': []}\n for line in f:\n line = line.strip()\n if line:\n if not line.startswith('#'):\n if not re.match('^[0-9]+[-.][0-9]+\\t', line):\n cols = line.split('\\t')\n metadata['miscfield'].append(cols[MISC])\n metadata['feats'].append(cols[FEATS])\n buff.append(cols)\n elif re.match('^[0-9]+[-][0-9]+\\t', line):\n cols = line.split('\\t')\n beg, end = cols[ID].split('-')\n metadata['multiwordtokens'].append((int(beg),\n int(end), cols[FORM]))\n else:\n metadata['comments'].append(line)\n elif buff:\n yield buff, metadata\n buff = []\n metadata = {'comments': [], 'miscfield': [], 'feats': [\n ], 'multiwordtokens': []}\n yield buff, metadata\n if isinstance(data_file, str):\n f.close()\n else:\n f.seek(0)\n <function token>\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n <function token>\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n <function token>\n <function token>\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n <function token>\n <function token>\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n <function token>\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n <function token>\n <function token>\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n <function token>\n\n def print_accuracy(self, accumulators, time):\n return self._nlp_model.print_accuracy(accumulators, time, prefix=\n self.PREFIX.title())\n <function token>\n <function token>\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n <function token>\n <function token>\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n <function token>\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n <function token>\n <function token>\n\n def iteritems(self):\n for i in range(len(self)):\n yield self[i], self._vocabs[i]\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n <function token>\n <function token>\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n <function token>\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n\n @property\n def multibucket(self):\n return self._multibucket\n <function token>\n <function token>\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n <function token>\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n <function token>\n <function token>\n <function token>\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n <function token>\n\n def __iter__(self):\n return (multibucket for multibucket in self._multibuckets)\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n <function token>\n <function token>\n <function token>\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n\n @property\n def parse_keys(self):\n return self._nlp_model.parse_keys\n <function token>\n <function token>\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n <function token>\n <function token>\n <function token>\n\n @property\n def valid_keys(self):\n return self._nlp_model.valid_keys\n <function token>\n <function token>\n <function token>\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n\n def __call__(self, moving_params=None):\n \"\"\" \"\"\"\n return self._nlp_model(self.vocabs, moving_params=moving_params)\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n def __getitem__(self, key):\n return self._multibuckets[key]\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n @property\n def data_files(self):\n return getattr(self, '{0}_files'.format(self.PREFIX.lower()))\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n\n\nclass Dataset(Configurable):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n\n\nclass Trainset(Dataset):\n PREFIX = 'train'\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n\n\nclass Trainset(Dataset):\n <assignment token>\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Parseset(Dataset):\n PREFIX = 'parse'\n\n\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n\n\nclass Parseset(Dataset):\n <assignment token>\n\n\n<code token>\n", "<import token>\n<assignment token>\n<class token>\n<class token>\n<class token>\n<code token>\n" ]
false
99,592
9371c5399d6096394467f2718e1a3536ee5f5c0d
from queue import PriorityQueue from math import sqrt def euclidean_heuristic(start, end, M): start_x = M.intersections[start][0] start_y = M.intersections[start][1] end_x = M.intersections[end][0] end_y = M.intersections[end][1] return sqrt((start_x - end_x) ** 2 + (start_y - end_y) ** 2) def shortest_path(M, start, goal): parent = {} # save the correct parent of a node since we need to display the path distances = {} # save the intermediate distance for a node parent[start] = None # the first node has no parent distances[start] = 0 priority = PriorityQueue() priority.put(start, 0) while not priority.empty(): current_node = priority.get()# get the node with the minimum total_distance(f = g + h) #iterate through the connected nodes for neighbor in M.roads[current_node]: current_distance = euclidean_heuristic(current_node, neighbor, M) # calculate the distance between the node new_distance = distances[current_node] + current_distance # if we already passed through a node, we may find a better distance with another route if neighbor not in distances or new_distance < distances[neighbor]: goal_distance = euclidean_heuristic(neighbor, goal, M)# the distance from the new node to the goal node total_distance = new_distance + goal_distance # f = g + h distances[neighbor] = new_distance parent[neighbor] = current_node priority.put(neighbor, total_distance) #at the end we get the path using the parents of the nodes current_node = goal path = [current_node] while current_node != start: current_node = parent[current_node] path.append(current_node) return path[::-1]#we need to reverse the path since we started from the goal and went backwards
[ "from queue import PriorityQueue\nfrom math import sqrt\n\ndef euclidean_heuristic(start, end, M):\n start_x = M.intersections[start][0]\n start_y = M.intersections[start][1]\n end_x = M.intersections[end][0]\n end_y = M.intersections[end][1]\n \n return sqrt((start_x - end_x) ** 2 + (start_y - end_y) ** 2)\n \ndef shortest_path(M, start, goal):\n parent = {} # save the correct parent of a node since we need to display the path\n distances = {} # save the intermediate distance for a node \n parent[start] = None # the first node has no parent\n distances[start] = 0\n \n priority = PriorityQueue()\n priority.put(start, 0)\n\n while not priority.empty():\n current_node = priority.get()# get the node with the minimum total_distance(f = g + h)\n \n #iterate through the connected nodes\n for neighbor in M.roads[current_node]:\n current_distance = euclidean_heuristic(current_node, neighbor, M) # calculate the distance between the node\n new_distance = distances[current_node] + current_distance # if we already passed through a node, we may find a better distance with another route\n \n if neighbor not in distances or new_distance < distances[neighbor]:\n goal_distance = euclidean_heuristic(neighbor, goal, M)# the distance from the new node to the goal node\n total_distance = new_distance + goal_distance # f = g + h\n distances[neighbor] = new_distance\n parent[neighbor] = current_node\n priority.put(neighbor, total_distance)\n\n #at the end we get the path using the parents of the nodes\n current_node = goal\n path = [current_node]\n while current_node != start:\n current_node = parent[current_node]\n path.append(current_node)\n return path[::-1]#we need to reverse the path since we started from the goal and went backwards\n", "from queue import PriorityQueue\nfrom math import sqrt\n\n\ndef euclidean_heuristic(start, end, M):\n start_x = M.intersections[start][0]\n start_y = M.intersections[start][1]\n end_x = M.intersections[end][0]\n end_y = M.intersections[end][1]\n return sqrt((start_x - end_x) ** 2 + (start_y - end_y) ** 2)\n\n\ndef shortest_path(M, start, goal):\n parent = {}\n distances = {}\n parent[start] = None\n distances[start] = 0\n priority = PriorityQueue()\n priority.put(start, 0)\n while not priority.empty():\n current_node = priority.get()\n for neighbor in M.roads[current_node]:\n current_distance = euclidean_heuristic(current_node, neighbor, M)\n new_distance = distances[current_node] + current_distance\n if neighbor not in distances or new_distance < distances[neighbor]:\n goal_distance = euclidean_heuristic(neighbor, goal, M)\n total_distance = new_distance + goal_distance\n distances[neighbor] = new_distance\n parent[neighbor] = current_node\n priority.put(neighbor, total_distance)\n current_node = goal\n path = [current_node]\n while current_node != start:\n current_node = parent[current_node]\n path.append(current_node)\n return path[::-1]\n", "<import token>\n\n\ndef euclidean_heuristic(start, end, M):\n start_x = M.intersections[start][0]\n start_y = M.intersections[start][1]\n end_x = M.intersections[end][0]\n end_y = M.intersections[end][1]\n return sqrt((start_x - end_x) ** 2 + (start_y - end_y) ** 2)\n\n\ndef shortest_path(M, start, goal):\n parent = {}\n distances = {}\n parent[start] = None\n distances[start] = 0\n priority = PriorityQueue()\n priority.put(start, 0)\n while not priority.empty():\n current_node = priority.get()\n for neighbor in M.roads[current_node]:\n current_distance = euclidean_heuristic(current_node, neighbor, M)\n new_distance = distances[current_node] + current_distance\n if neighbor not in distances or new_distance < distances[neighbor]:\n goal_distance = euclidean_heuristic(neighbor, goal, M)\n total_distance = new_distance + goal_distance\n distances[neighbor] = new_distance\n parent[neighbor] = current_node\n priority.put(neighbor, total_distance)\n current_node = goal\n path = [current_node]\n while current_node != start:\n current_node = parent[current_node]\n path.append(current_node)\n return path[::-1]\n", "<import token>\n\n\ndef euclidean_heuristic(start, end, M):\n start_x = M.intersections[start][0]\n start_y = M.intersections[start][1]\n end_x = M.intersections[end][0]\n end_y = M.intersections[end][1]\n return sqrt((start_x - end_x) ** 2 + (start_y - end_y) ** 2)\n\n\n<function token>\n", "<import token>\n<function token>\n<function token>\n" ]
false
99,593
b523d18a7a0e83a0754135ad764722fbab44f4bf
from .Item import Item class StudentClass: def __init__(self): self.__student_list = [] def add_student(self, student: Student): self.__student_list.append(student) def remove_student(self, student_id): for current_student in self.__student_list: if current_student.id == student_id: self.__student_list.remove(current_student) def list_students(self): for student in self.__student_list: print ("Student ID: " + str(student.id) + " Student Name: " + student.name) def get_count_of_students(self): return len(self.__student_list) def get_average_gpa(self): implement_code_here = 0 math_101 = StudentClass() s1 = Student(100, "Mary") s2 = Student(200, "Bob") s3 = Student(300, "Brendan") math_101.add_student(s1) math_101.add_student(s2) math_101.add_student(s3) math_101.remove_student(200) math_101.list_students() print("The number of students left in this class is " + str(math_101.get_count_of_students()))
[ "from .Item import Item\n\nclass StudentClass:\n\n def __init__(self):\n\n self.__student_list = []\n\n def add_student(self, student: Student):\n\n self.__student_list.append(student)\n\n def remove_student(self, student_id):\n\n for current_student in self.__student_list:\n\n if current_student.id == student_id:\n\n self.__student_list.remove(current_student)\n\n def list_students(self):\n\n for student in self.__student_list:\n print (\"Student ID: \" + str(student.id) + \" Student Name: \" + student.name)\n\n def get_count_of_students(self):\n\n return len(self.__student_list)\n\n def get_average_gpa(self):\n implement_code_here = 0\n\n\n\nmath_101 = StudentClass()\n\ns1 = Student(100, \"Mary\")\ns2 = Student(200, \"Bob\")\ns3 = Student(300, \"Brendan\")\n\nmath_101.add_student(s1)\nmath_101.add_student(s2)\nmath_101.add_student(s3)\nmath_101.remove_student(200)\n\nmath_101.list_students()\n\nprint(\"The number of students left in this class is \" + str(math_101.get_count_of_students()))\n", "from .Item import Item\n\n\nclass StudentClass:\n\n def __init__(self):\n self.__student_list = []\n\n def add_student(self, student: Student):\n self.__student_list.append(student)\n\n def remove_student(self, student_id):\n for current_student in self.__student_list:\n if current_student.id == student_id:\n self.__student_list.remove(current_student)\n\n def list_students(self):\n for student in self.__student_list:\n print('Student ID: ' + str(student.id) + ' Student Name: ' +\n student.name)\n\n def get_count_of_students(self):\n return len(self.__student_list)\n\n def get_average_gpa(self):\n implement_code_here = 0\n\n\nmath_101 = StudentClass()\ns1 = Student(100, 'Mary')\ns2 = Student(200, 'Bob')\ns3 = Student(300, 'Brendan')\nmath_101.add_student(s1)\nmath_101.add_student(s2)\nmath_101.add_student(s3)\nmath_101.remove_student(200)\nmath_101.list_students()\nprint('The number of students left in this class is ' + str(math_101.\n get_count_of_students()))\n", "<import token>\n\n\nclass StudentClass:\n\n def __init__(self):\n self.__student_list = []\n\n def add_student(self, student: Student):\n self.__student_list.append(student)\n\n def remove_student(self, student_id):\n for current_student in self.__student_list:\n if current_student.id == student_id:\n self.__student_list.remove(current_student)\n\n def list_students(self):\n for student in self.__student_list:\n print('Student ID: ' + str(student.id) + ' Student Name: ' +\n student.name)\n\n def get_count_of_students(self):\n return len(self.__student_list)\n\n def get_average_gpa(self):\n implement_code_here = 0\n\n\nmath_101 = StudentClass()\ns1 = Student(100, 'Mary')\ns2 = Student(200, 'Bob')\ns3 = Student(300, 'Brendan')\nmath_101.add_student(s1)\nmath_101.add_student(s2)\nmath_101.add_student(s3)\nmath_101.remove_student(200)\nmath_101.list_students()\nprint('The number of students left in this class is ' + str(math_101.\n get_count_of_students()))\n", "<import token>\n\n\nclass StudentClass:\n\n def __init__(self):\n self.__student_list = []\n\n def add_student(self, student: Student):\n self.__student_list.append(student)\n\n def remove_student(self, student_id):\n for current_student in self.__student_list:\n if current_student.id == student_id:\n self.__student_list.remove(current_student)\n\n def list_students(self):\n for student in self.__student_list:\n print('Student ID: ' + str(student.id) + ' Student Name: ' +\n student.name)\n\n def get_count_of_students(self):\n return len(self.__student_list)\n\n def get_average_gpa(self):\n implement_code_here = 0\n\n\n<assignment token>\nmath_101.add_student(s1)\nmath_101.add_student(s2)\nmath_101.add_student(s3)\nmath_101.remove_student(200)\nmath_101.list_students()\nprint('The number of students left in this class is ' + str(math_101.\n get_count_of_students()))\n", "<import token>\n\n\nclass StudentClass:\n\n def __init__(self):\n self.__student_list = []\n\n def add_student(self, student: Student):\n self.__student_list.append(student)\n\n def remove_student(self, student_id):\n for current_student in self.__student_list:\n if current_student.id == student_id:\n self.__student_list.remove(current_student)\n\n def list_students(self):\n for student in self.__student_list:\n print('Student ID: ' + str(student.id) + ' Student Name: ' +\n student.name)\n\n def get_count_of_students(self):\n return len(self.__student_list)\n\n def get_average_gpa(self):\n implement_code_here = 0\n\n\n<assignment token>\n<code token>\n", "<import token>\n\n\nclass StudentClass:\n <function token>\n\n def add_student(self, student: Student):\n self.__student_list.append(student)\n\n def remove_student(self, student_id):\n for current_student in self.__student_list:\n if current_student.id == student_id:\n self.__student_list.remove(current_student)\n\n def list_students(self):\n for student in self.__student_list:\n print('Student ID: ' + str(student.id) + ' Student Name: ' +\n student.name)\n\n def get_count_of_students(self):\n return len(self.__student_list)\n\n def get_average_gpa(self):\n implement_code_here = 0\n\n\n<assignment token>\n<code token>\n", "<import token>\n\n\nclass StudentClass:\n <function token>\n\n def add_student(self, student: Student):\n self.__student_list.append(student)\n\n def remove_student(self, student_id):\n for current_student in self.__student_list:\n if current_student.id == student_id:\n self.__student_list.remove(current_student)\n\n def list_students(self):\n for student in self.__student_list:\n print('Student ID: ' + str(student.id) + ' Student Name: ' +\n student.name)\n <function token>\n\n def get_average_gpa(self):\n implement_code_here = 0\n\n\n<assignment token>\n<code token>\n", "<import token>\n\n\nclass StudentClass:\n <function token>\n\n def add_student(self, student: Student):\n self.__student_list.append(student)\n\n def remove_student(self, student_id):\n for current_student in self.__student_list:\n if current_student.id == student_id:\n self.__student_list.remove(current_student)\n\n def list_students(self):\n for student in self.__student_list:\n print('Student ID: ' + str(student.id) + ' Student Name: ' +\n student.name)\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "<import token>\n\n\nclass StudentClass:\n <function token>\n <function token>\n\n def remove_student(self, student_id):\n for current_student in self.__student_list:\n if current_student.id == student_id:\n self.__student_list.remove(current_student)\n\n def list_students(self):\n for student in self.__student_list:\n print('Student ID: ' + str(student.id) + ' Student Name: ' +\n student.name)\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "<import token>\n\n\nclass StudentClass:\n <function token>\n <function token>\n <function token>\n\n def list_students(self):\n for student in self.__student_list:\n print('Student ID: ' + str(student.id) + ' Student Name: ' +\n student.name)\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "<import token>\n\n\nclass StudentClass:\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\n<assignment token>\n<code token>\n", "<import token>\n<class token>\n<assignment token>\n<code token>\n" ]
false
99,594
0007d2b1e099615f2a9544fa709fcc664c089363
# modusite # Copyright (c) 2006-2010 Phil Christensen # http://modu.bubblehouse.org # # import urllib from modu.editable import define from modu.util import form, tags from modu.persist import sql from modusite.model import release class ReleaseListField(define.definition): """ Display a list of releases for the current project. """ def get_element(self, req, style, storable): frm = form.FormNode(self.name) project_id = storable.get_id() if not(project_id): frm['release']( type = 'label', value = "You must save this project before adding a new release.", ) return frm req.store.ensure_factory('release', model_class=release.Release) releases = req.store.load('release', project_id=project_id, __order_by='version_weight DESC') or [] query = { '__init__[project_id]' : storable.get_id(), '__init__[license_name]' : storable.license_name, '__init__[license_url]' : storable.license_url, '__init__[installation_url]' : storable.installation_url, '__init__[changelog_url]' : storable.changelog_url, } new_release_url = req.get_path(req.prepath, 'detail/release/new?' + urllib.urlencode(query)) if not(releases): if(style == 'listing'): frm['release']( type = 'label', value = "(no releases)", ) else: frm['release']( type = 'label', value = "This project has no releases yet. " + tags.a(href=new_release_url)['Click here to create one.'], ) return frm for r in releases: release_url = req.get_path(req.prepath, 'detail/release', r.get_id()) frm['release'][r.get_id()]( prefix = '<span class="releases">', suffix = '</span>', ) frm['release'][r.get_id()]['version_string']( type = 'label', value = tags.a(href=release_url)[r.version_string], ) if(style != 'listing'): frm['release']['new']( type = 'markup', prefix = '<div>', value = tags.a(href=new_release_url)['Create New Release'], suffix = '</div>', ) return frm def update_storable(self, req, form, storable): """ No operation. @see: L{modu.editable.define.definition.update_storable()} """ pass
[ "# modusite\n# Copyright (c) 2006-2010 Phil Christensen\n# http://modu.bubblehouse.org\n#\n#\n\nimport urllib\n\nfrom modu.editable import define\nfrom modu.util import form, tags\nfrom modu.persist import sql\n\nfrom modusite.model import release\n\nclass ReleaseListField(define.definition):\n\t\"\"\"\n\tDisplay a list of releases for the current project.\n\t\"\"\"\n\tdef get_element(self, req, style, storable):\n\t\tfrm = form.FormNode(self.name)\n\t\tproject_id = storable.get_id()\n\t\t\n\t\tif not(project_id):\n\t\t\tfrm['release'](\n\t\t\t\ttype\t= 'label',\n\t\t\t\tvalue\t= \"You must save this project before adding a new release.\",\n\t\t\t)\n\t\t\treturn frm\n\t\t\n\t\treq.store.ensure_factory('release', model_class=release.Release)\n\t\t\n\t\treleases = req.store.load('release', project_id=project_id, __order_by='version_weight DESC') or []\n\t\t\n\t\tquery = {\n\t\t\t'__init__[project_id]'\t\t\t: storable.get_id(),\n\t\t\t'__init__[license_name]'\t\t: storable.license_name,\n\t\t\t'__init__[license_url]'\t\t\t: storable.license_url,\n\t\t\t'__init__[installation_url]'\t: storable.installation_url,\n\t\t\t'__init__[changelog_url]'\t\t: storable.changelog_url,\n\t\t}\n\t\t\n\t\tnew_release_url = req.get_path(req.prepath, 'detail/release/new?' + urllib.urlencode(query))\n\t\t\n\t\tif not(releases):\n\t\t\tif(style == 'listing'):\n\t\t\t\tfrm['release'](\n\t\t\t\t\ttype\t= 'label',\n\t\t\t\t\tvalue\t= \"(no releases)\",\n\t\t\t\t)\n\t\t\telse:\n\t\t\t\tfrm['release'](\n\t\t\t\t\ttype\t= 'label',\n\t\t\t\t\tvalue\t= \"This project has no releases yet. \" +\n\t\t\t\t\t\t\t\ttags.a(href=new_release_url)['Click here to create one.'],\n\t\t\t\t)\n\t\t\treturn frm\n\t\t\n\t\tfor r in releases:\n\t\t\trelease_url = req.get_path(req.prepath, 'detail/release', r.get_id())\n\t\t\tfrm['release'][r.get_id()](\n\t\t\t\tprefix = '<span class=\"releases\">',\n\t\t\t\tsuffix = '</span>',\n\t\t\t)\n\t\t\tfrm['release'][r.get_id()]['version_string'](\n\t\t\t\ttype \t= 'label',\n\t\t\t\tvalue\t= tags.a(href=release_url)[r.version_string],\n\t\t\t)\n\t\t\n\t\tif(style != 'listing'):\n\t\t\tfrm['release']['new'](\n\t\t\t\ttype\t= 'markup',\n\t\t\t\tprefix\t= '<div>',\n\t\t\t\tvalue\t= tags.a(href=new_release_url)['Create New Release'],\n\t\t\t\tsuffix\t= '</div>',\n\t\t\t)\n\t\t\n\t\treturn frm\n\t\n\tdef update_storable(self, req, form, storable):\n\t\t\"\"\"\n\t\tNo operation.\n\t\t\n\t\t@see: L{modu.editable.define.definition.update_storable()}\n\t\t\"\"\"\n\t\tpass", "import urllib\nfrom modu.editable import define\nfrom modu.util import form, tags\nfrom modu.persist import sql\nfrom modusite.model import release\n\n\nclass ReleaseListField(define.definition):\n \"\"\"\n\tDisplay a list of releases for the current project.\n\t\"\"\"\n\n def get_element(self, req, style, storable):\n frm = form.FormNode(self.name)\n project_id = storable.get_id()\n if not project_id:\n frm['release'](type='label', value=\n 'You must save this project before adding a new release.')\n return frm\n req.store.ensure_factory('release', model_class=release.Release)\n releases = req.store.load('release', project_id=project_id,\n __order_by='version_weight DESC') or []\n query = {'__init__[project_id]': storable.get_id(),\n '__init__[license_name]': storable.license_name,\n '__init__[license_url]': storable.license_url,\n '__init__[installation_url]': storable.installation_url,\n '__init__[changelog_url]': storable.changelog_url}\n new_release_url = req.get_path(req.prepath, 'detail/release/new?' +\n urllib.urlencode(query))\n if not releases:\n if style == 'listing':\n frm['release'](type='label', value='(no releases)')\n else:\n frm['release'](type='label', value=\n 'This project has no releases yet. ' + tags.a(href=\n new_release_url)['Click here to create one.'])\n return frm\n for r in releases:\n release_url = req.get_path(req.prepath, 'detail/release', r.\n get_id())\n frm['release'][r.get_id()](prefix='<span class=\"releases\">',\n suffix='</span>')\n frm['release'][r.get_id()]['version_string'](type='label',\n value=tags.a(href=release_url)[r.version_string])\n if style != 'listing':\n frm['release']['new'](type='markup', prefix='<div>', value=tags\n .a(href=new_release_url)['Create New Release'], suffix='</div>'\n )\n return frm\n\n def update_storable(self, req, form, storable):\n \"\"\"\n\t\tNo operation.\n\t\t\n\t\t@see: L{modu.editable.define.definition.update_storable()}\n\t\t\"\"\"\n pass\n", "<import token>\n\n\nclass ReleaseListField(define.definition):\n \"\"\"\n\tDisplay a list of releases for the current project.\n\t\"\"\"\n\n def get_element(self, req, style, storable):\n frm = form.FormNode(self.name)\n project_id = storable.get_id()\n if not project_id:\n frm['release'](type='label', value=\n 'You must save this project before adding a new release.')\n return frm\n req.store.ensure_factory('release', model_class=release.Release)\n releases = req.store.load('release', project_id=project_id,\n __order_by='version_weight DESC') or []\n query = {'__init__[project_id]': storable.get_id(),\n '__init__[license_name]': storable.license_name,\n '__init__[license_url]': storable.license_url,\n '__init__[installation_url]': storable.installation_url,\n '__init__[changelog_url]': storable.changelog_url}\n new_release_url = req.get_path(req.prepath, 'detail/release/new?' +\n urllib.urlencode(query))\n if not releases:\n if style == 'listing':\n frm['release'](type='label', value='(no releases)')\n else:\n frm['release'](type='label', value=\n 'This project has no releases yet. ' + tags.a(href=\n new_release_url)['Click here to create one.'])\n return frm\n for r in releases:\n release_url = req.get_path(req.prepath, 'detail/release', r.\n get_id())\n frm['release'][r.get_id()](prefix='<span class=\"releases\">',\n suffix='</span>')\n frm['release'][r.get_id()]['version_string'](type='label',\n value=tags.a(href=release_url)[r.version_string])\n if style != 'listing':\n frm['release']['new'](type='markup', prefix='<div>', value=tags\n .a(href=new_release_url)['Create New Release'], suffix='</div>'\n )\n return frm\n\n def update_storable(self, req, form, storable):\n \"\"\"\n\t\tNo operation.\n\t\t\n\t\t@see: L{modu.editable.define.definition.update_storable()}\n\t\t\"\"\"\n pass\n", "<import token>\n\n\nclass ReleaseListField(define.definition):\n <docstring token>\n\n def get_element(self, req, style, storable):\n frm = form.FormNode(self.name)\n project_id = storable.get_id()\n if not project_id:\n frm['release'](type='label', value=\n 'You must save this project before adding a new release.')\n return frm\n req.store.ensure_factory('release', model_class=release.Release)\n releases = req.store.load('release', project_id=project_id,\n __order_by='version_weight DESC') or []\n query = {'__init__[project_id]': storable.get_id(),\n '__init__[license_name]': storable.license_name,\n '__init__[license_url]': storable.license_url,\n '__init__[installation_url]': storable.installation_url,\n '__init__[changelog_url]': storable.changelog_url}\n new_release_url = req.get_path(req.prepath, 'detail/release/new?' +\n urllib.urlencode(query))\n if not releases:\n if style == 'listing':\n frm['release'](type='label', value='(no releases)')\n else:\n frm['release'](type='label', value=\n 'This project has no releases yet. ' + tags.a(href=\n new_release_url)['Click here to create one.'])\n return frm\n for r in releases:\n release_url = req.get_path(req.prepath, 'detail/release', r.\n get_id())\n frm['release'][r.get_id()](prefix='<span class=\"releases\">',\n suffix='</span>')\n frm['release'][r.get_id()]['version_string'](type='label',\n value=tags.a(href=release_url)[r.version_string])\n if style != 'listing':\n frm['release']['new'](type='markup', prefix='<div>', value=tags\n .a(href=new_release_url)['Create New Release'], suffix='</div>'\n )\n return frm\n\n def update_storable(self, req, form, storable):\n \"\"\"\n\t\tNo operation.\n\t\t\n\t\t@see: L{modu.editable.define.definition.update_storable()}\n\t\t\"\"\"\n pass\n", "<import token>\n\n\nclass ReleaseListField(define.definition):\n <docstring token>\n\n def get_element(self, req, style, storable):\n frm = form.FormNode(self.name)\n project_id = storable.get_id()\n if not project_id:\n frm['release'](type='label', value=\n 'You must save this project before adding a new release.')\n return frm\n req.store.ensure_factory('release', model_class=release.Release)\n releases = req.store.load('release', project_id=project_id,\n __order_by='version_weight DESC') or []\n query = {'__init__[project_id]': storable.get_id(),\n '__init__[license_name]': storable.license_name,\n '__init__[license_url]': storable.license_url,\n '__init__[installation_url]': storable.installation_url,\n '__init__[changelog_url]': storable.changelog_url}\n new_release_url = req.get_path(req.prepath, 'detail/release/new?' +\n urllib.urlencode(query))\n if not releases:\n if style == 'listing':\n frm['release'](type='label', value='(no releases)')\n else:\n frm['release'](type='label', value=\n 'This project has no releases yet. ' + tags.a(href=\n new_release_url)['Click here to create one.'])\n return frm\n for r in releases:\n release_url = req.get_path(req.prepath, 'detail/release', r.\n get_id())\n frm['release'][r.get_id()](prefix='<span class=\"releases\">',\n suffix='</span>')\n frm['release'][r.get_id()]['version_string'](type='label',\n value=tags.a(href=release_url)[r.version_string])\n if style != 'listing':\n frm['release']['new'](type='markup', prefix='<div>', value=tags\n .a(href=new_release_url)['Create New Release'], suffix='</div>'\n )\n return frm\n <function token>\n", "<import token>\n\n\nclass ReleaseListField(define.definition):\n <docstring token>\n <function token>\n <function token>\n", "<import token>\n<class token>\n" ]
false
99,595
291ea7713c3074e2eeaa6ba9c0e9098f79b7674e
import math import demoLibrary #scope function def sampleFunction(x,y,z): outOfScope = 10 return (x+y+z) pass def cheese_and_crackers(cheese_count, boxes_of_crackers): print("You have" + str(cheese_count) + "Cheeses!") print "You have %d cheeses!" % cheese_count print "You have %d boxes of crackers!" % boxes_of_crackers print "Man that's enough for a party!" print "Get a blanket.\n" #name space main def main(): cheese = input("how much cheese do you want: ") cracker = input("# crackers?: ") cheese_and_crackers(cheese, cracker) main() #scope global
[ "import math\nimport demoLibrary\n\n\n#scope function\ndef sampleFunction(x,y,z):\n outOfScope = 10\n return (x+y+z)\n pass\n\n\n\n\n\ndef cheese_and_crackers(cheese_count, boxes_of_crackers):\n print(\"You have\" + str(cheese_count) + \"Cheeses!\")\n print \"You have %d cheeses!\" % cheese_count\n print \"You have %d boxes of crackers!\" % boxes_of_crackers\n print \"Man that's enough for a party!\"\n print \"Get a blanket.\\n\"\n\n\n\n\n#name space main\ndef main():\n cheese = input(\"how much cheese do you want: \")\n cracker = input(\"# crackers?: \")\n cheese_and_crackers(cheese, cracker)\n \n \n \nmain()\n#scope global\n" ]
true
99,596
55085335c32483f6a92b637d114b4b4d08288519
def main(): n, m = map(int, input().split()) As = list(map(int, input().split())) if n >= sum(As): ans = n - sum(As) else: ans = -1 print(ans) if __name__ == "__main__": main()
[ "def main():\n n, m = map(int, input().split())\n As = list(map(int, input().split()))\n if n >= sum(As):\n ans = n - sum(As)\n else:\n ans = -1\n print(ans)\n\n\nif __name__ == \"__main__\":\n main()\n", "def main():\n n, m = map(int, input().split())\n As = list(map(int, input().split()))\n if n >= sum(As):\n ans = n - sum(As)\n else:\n ans = -1\n print(ans)\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n n, m = map(int, input().split())\n As = list(map(int, input().split()))\n if n >= sum(As):\n ans = n - sum(As)\n else:\n ans = -1\n print(ans)\n\n\n<code token>\n", "<function token>\n<code token>\n" ]
false
99,597
2baa6df8f3d2acf39afced6fe48181bac41a636d
""" Created on 2021/07/12 @author Sangwoo Han """ import os import pickle import time from datetime import timedelta from typing import Dict, Optional, Tuple, Union import numpy as np import torch from logzero import logger from m2m_text.datasets.text import TextDataset from scipy.sparse import csr_matrix from torch.utils.data import Dataset from transformers import AutoTokenizer class BertDataset(Dataset): """Warpping Dataset class for BERT""" def __init__( self, dataset: TextDataset, model_name: str, verbose: bool = True, **tokenizer_kwargs, ) -> None: self.dataset = dataset self.verbose = verbose self.train = self.dataset.train self.npz_path = "train_" if self.train else "test_" self.npz_path += model_name.replace("-", "_") self.npz_path += f"_{tokenizer_kwargs['max_length']}L.npz" self.npz_path = os.path.join(self.dataset.data_dir, self.npz_path) self.input_ids, self.attention_mask = self._load_data( model_name, **tokenizer_kwargs ) def _load_data( self, model_name: str, **tokenizer_kwargs ) -> Tuple[torch.Tensor, torch.Tensor]: if os.path.isfile(self.npz_path): with np.load(self.npz_path) as npz: return torch.from_numpy(npz["input_ids"]), torch.from_numpy( npz["attention_mask"] ) with open(self.dataset.tokenized_path, "rb") as f: texts = pickle.load(f) os.environ["TOKENIZERS_PARALLELISM"] = "true" tokenizer = AutoTokenizer.from_pretrained(model_name) if self.verbose: logger.info("Tokenize...") start = time.time() inputs = tokenizer([" ".join(s) for s in texts], **tokenizer_kwargs) if self.verbose: elapsed = time.time() - start logger.info( f"Finish Tokenization. {elapsed:.2f}s {timedelta(seconds=elapsed)}" ) np.savez( self.npz_path, input_ids=inputs["input_ids"].numpy(), attention_mask=inputs["attention_mask"].numpy(), ) return inputs["input_ids"], inputs["attention_mask"] def __len__(self) -> int: return len(self.dataset) def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: return ( self.input_ids[idx], self.attention_mask[idx], torch.from_numpy(self.y[idx].toarray().squeeze()).float(), ) @property def raw_y(self) -> np.ndarray: return self.dataset.raw_y @property def y(self) -> csr_matrix: return self.dataset.y class SBertDataset(Dataset): """Warpping Dataset class for senteice BERT""" def __init__( self, inputs: Dict[str, torch.Tensor], labels: Optional[csr_matrix], train: bool = True, ) -> None: self.inputs = inputs self.labels = labels self.is_train = train if train and labels is None: raise ValueError("labels should be set when is_train is true") def __len__(self) -> int: return self.inputs["input_ids"].shape[0] def __getitem__( self, idx: int ) -> Union[ Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor], ]: if self.is_train: return ( idx, self.inputs["input_ids"][idx], self.inputs["attention_mask"][idx], torch.from_numpy(self.labels[idx].toarray().squeeze()), ) else: return ( idx, self.inputs["input_ids"][idx], self.inputs["attention_mask"][idx], ) def collate_fn(batch): if len(batch[0]) == 4: return ( torch.LongTensor([b[0] for b in batch]), { "input_ids": torch.stack([b[1] for b in batch]), "attention_mask": torch.stack([b[2] for b in batch]), }, torch.stack([b[3] for b in batch]), ) else: return ( torch.LongTensor([b[0] for b in batch]), { "input_ids": torch.stack([b[1] for b in batch]), "attention_mask": torch.stack([b[2] for b in batch]), }, ) def collate_fn2(batch): return ( { "input_ids": torch.stack([b[0] for b in batch]), "attention_mask": torch.stack([b[1] for b in batch]), }, torch.stack([b[2] for b in batch]), )
[ "\"\"\"\nCreated on 2021/07/12\n@author Sangwoo Han\n\"\"\"\nimport os\nimport pickle\nimport time\nfrom datetime import timedelta\nfrom typing import Dict, Optional, Tuple, Union\n\nimport numpy as np\nimport torch\nfrom logzero import logger\nfrom m2m_text.datasets.text import TextDataset\nfrom scipy.sparse import csr_matrix\nfrom torch.utils.data import Dataset\nfrom transformers import AutoTokenizer\n\n\nclass BertDataset(Dataset):\n \"\"\"Warpping Dataset class for BERT\"\"\"\n\n def __init__(\n self,\n dataset: TextDataset,\n model_name: str,\n verbose: bool = True,\n **tokenizer_kwargs,\n ) -> None:\n self.dataset = dataset\n self.verbose = verbose\n\n self.train = self.dataset.train\n\n self.npz_path = \"train_\" if self.train else \"test_\"\n self.npz_path += model_name.replace(\"-\", \"_\")\n self.npz_path += f\"_{tokenizer_kwargs['max_length']}L.npz\"\n self.npz_path = os.path.join(self.dataset.data_dir, self.npz_path)\n\n self.input_ids, self.attention_mask = self._load_data(\n model_name, **tokenizer_kwargs\n )\n\n def _load_data(\n self, model_name: str, **tokenizer_kwargs\n ) -> Tuple[torch.Tensor, torch.Tensor]:\n if os.path.isfile(self.npz_path):\n with np.load(self.npz_path) as npz:\n return torch.from_numpy(npz[\"input_ids\"]), torch.from_numpy(\n npz[\"attention_mask\"]\n )\n\n with open(self.dataset.tokenized_path, \"rb\") as f:\n texts = pickle.load(f)\n\n os.environ[\"TOKENIZERS_PARALLELISM\"] = \"true\"\n tokenizer = AutoTokenizer.from_pretrained(model_name)\n\n if self.verbose:\n logger.info(\"Tokenize...\")\n start = time.time()\n\n inputs = tokenizer([\" \".join(s) for s in texts], **tokenizer_kwargs)\n\n if self.verbose:\n elapsed = time.time() - start\n logger.info(\n f\"Finish Tokenization. {elapsed:.2f}s {timedelta(seconds=elapsed)}\"\n )\n\n np.savez(\n self.npz_path,\n input_ids=inputs[\"input_ids\"].numpy(),\n attention_mask=inputs[\"attention_mask\"].numpy(),\n )\n\n return inputs[\"input_ids\"], inputs[\"attention_mask\"]\n\n def __len__(self) -> int:\n return len(self.dataset)\n\n def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:\n return (\n self.input_ids[idx],\n self.attention_mask[idx],\n torch.from_numpy(self.y[idx].toarray().squeeze()).float(),\n )\n\n @property\n def raw_y(self) -> np.ndarray:\n return self.dataset.raw_y\n\n @property\n def y(self) -> csr_matrix:\n return self.dataset.y\n\n\nclass SBertDataset(Dataset):\n \"\"\"Warpping Dataset class for senteice BERT\"\"\"\n\n def __init__(\n self,\n inputs: Dict[str, torch.Tensor],\n labels: Optional[csr_matrix],\n train: bool = True,\n ) -> None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n\n if train and labels is None:\n raise ValueError(\"labels should be set when is_train is true\")\n\n def __len__(self) -> int:\n return self.inputs[\"input_ids\"].shape[0]\n\n def __getitem__(\n self, idx: int\n ) -> Union[\n Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor],\n Tuple[torch.Tensor, torch.Tensor, torch.Tensor],\n ]:\n if self.is_train:\n return (\n idx,\n self.inputs[\"input_ids\"][idx],\n self.inputs[\"attention_mask\"][idx],\n torch.from_numpy(self.labels[idx].toarray().squeeze()),\n )\n else:\n return (\n idx,\n self.inputs[\"input_ids\"][idx],\n self.inputs[\"attention_mask\"][idx],\n )\n\n\ndef collate_fn(batch):\n if len(batch[0]) == 4:\n return (\n torch.LongTensor([b[0] for b in batch]),\n {\n \"input_ids\": torch.stack([b[1] for b in batch]),\n \"attention_mask\": torch.stack([b[2] for b in batch]),\n },\n torch.stack([b[3] for b in batch]),\n )\n else:\n return (\n torch.LongTensor([b[0] for b in batch]),\n {\n \"input_ids\": torch.stack([b[1] for b in batch]),\n \"attention_mask\": torch.stack([b[2] for b in batch]),\n },\n )\n\n\ndef collate_fn2(batch):\n return (\n {\n \"input_ids\": torch.stack([b[0] for b in batch]),\n \"attention_mask\": torch.stack([b[1] for b in batch]),\n },\n torch.stack([b[2] for b in batch]),\n )\n", "<docstring token>\nimport os\nimport pickle\nimport time\nfrom datetime import timedelta\nfrom typing import Dict, Optional, Tuple, Union\nimport numpy as np\nimport torch\nfrom logzero import logger\nfrom m2m_text.datasets.text import TextDataset\nfrom scipy.sparse import csr_matrix\nfrom torch.utils.data import Dataset\nfrom transformers import AutoTokenizer\n\n\nclass BertDataset(Dataset):\n \"\"\"Warpping Dataset class for BERT\"\"\"\n\n def __init__(self, dataset: TextDataset, model_name: str, verbose: bool\n =True, **tokenizer_kwargs) ->None:\n self.dataset = dataset\n self.verbose = verbose\n self.train = self.dataset.train\n self.npz_path = 'train_' if self.train else 'test_'\n self.npz_path += model_name.replace('-', '_')\n self.npz_path += f\"_{tokenizer_kwargs['max_length']}L.npz\"\n self.npz_path = os.path.join(self.dataset.data_dir, self.npz_path)\n self.input_ids, self.attention_mask = self._load_data(model_name,\n **tokenizer_kwargs)\n\n def _load_data(self, model_name: str, **tokenizer_kwargs) ->Tuple[torch\n .Tensor, torch.Tensor]:\n if os.path.isfile(self.npz_path):\n with np.load(self.npz_path) as npz:\n return torch.from_numpy(npz['input_ids']), torch.from_numpy(npz\n ['attention_mask'])\n with open(self.dataset.tokenized_path, 'rb') as f:\n texts = pickle.load(f)\n os.environ['TOKENIZERS_PARALLELISM'] = 'true'\n tokenizer = AutoTokenizer.from_pretrained(model_name)\n if self.verbose:\n logger.info('Tokenize...')\n start = time.time()\n inputs = tokenizer([' '.join(s) for s in texts], **tokenizer_kwargs)\n if self.verbose:\n elapsed = time.time() - start\n logger.info(\n f'Finish Tokenization. {elapsed:.2f}s {timedelta(seconds=elapsed)}'\n )\n np.savez(self.npz_path, input_ids=inputs['input_ids'].numpy(),\n attention_mask=inputs['attention_mask'].numpy())\n return inputs['input_ids'], inputs['attention_mask']\n\n def __len__(self) ->int:\n return len(self.dataset)\n\n def __getitem__(self, idx: int) ->Tuple[torch.Tensor, torch.Tensor,\n torch.Tensor]:\n return self.input_ids[idx], self.attention_mask[idx], torch.from_numpy(\n self.y[idx].toarray().squeeze()).float()\n\n @property\n def raw_y(self) ->np.ndarray:\n return self.dataset.raw_y\n\n @property\n def y(self) ->csr_matrix:\n return self.dataset.y\n\n\nclass SBertDataset(Dataset):\n \"\"\"Warpping Dataset class for senteice BERT\"\"\"\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n\n def __len__(self) ->int:\n return self.inputs['input_ids'].shape[0]\n\n def __getitem__(self, idx: int) ->Union[Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor]]:\n if self.is_train:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx], torch.from_numpy(self.labels[idx].\n toarray().squeeze())\n else:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx]\n\n\ndef collate_fn(batch):\n if len(batch[0]) == 4:\n return torch.LongTensor([b[0] for b in batch]), {'input_ids': torch\n .stack([b[1] for b in batch]), 'attention_mask': torch.stack([b\n [2] for b in batch])}, torch.stack([b[3] for b in batch])\n else:\n return torch.LongTensor([b[0] for b in batch]), {'input_ids': torch\n .stack([b[1] for b in batch]), 'attention_mask': torch.stack([b\n [2] for b in batch])}\n\n\ndef collate_fn2(batch):\n return {'input_ids': torch.stack([b[0] for b in batch]),\n 'attention_mask': torch.stack([b[1] for b in batch])}, torch.stack([\n b[2] for b in batch])\n", "<docstring token>\n<import token>\n\n\nclass BertDataset(Dataset):\n \"\"\"Warpping Dataset class for BERT\"\"\"\n\n def __init__(self, dataset: TextDataset, model_name: str, verbose: bool\n =True, **tokenizer_kwargs) ->None:\n self.dataset = dataset\n self.verbose = verbose\n self.train = self.dataset.train\n self.npz_path = 'train_' if self.train else 'test_'\n self.npz_path += model_name.replace('-', '_')\n self.npz_path += f\"_{tokenizer_kwargs['max_length']}L.npz\"\n self.npz_path = os.path.join(self.dataset.data_dir, self.npz_path)\n self.input_ids, self.attention_mask = self._load_data(model_name,\n **tokenizer_kwargs)\n\n def _load_data(self, model_name: str, **tokenizer_kwargs) ->Tuple[torch\n .Tensor, torch.Tensor]:\n if os.path.isfile(self.npz_path):\n with np.load(self.npz_path) as npz:\n return torch.from_numpy(npz['input_ids']), torch.from_numpy(npz\n ['attention_mask'])\n with open(self.dataset.tokenized_path, 'rb') as f:\n texts = pickle.load(f)\n os.environ['TOKENIZERS_PARALLELISM'] = 'true'\n tokenizer = AutoTokenizer.from_pretrained(model_name)\n if self.verbose:\n logger.info('Tokenize...')\n start = time.time()\n inputs = tokenizer([' '.join(s) for s in texts], **tokenizer_kwargs)\n if self.verbose:\n elapsed = time.time() - start\n logger.info(\n f'Finish Tokenization. {elapsed:.2f}s {timedelta(seconds=elapsed)}'\n )\n np.savez(self.npz_path, input_ids=inputs['input_ids'].numpy(),\n attention_mask=inputs['attention_mask'].numpy())\n return inputs['input_ids'], inputs['attention_mask']\n\n def __len__(self) ->int:\n return len(self.dataset)\n\n def __getitem__(self, idx: int) ->Tuple[torch.Tensor, torch.Tensor,\n torch.Tensor]:\n return self.input_ids[idx], self.attention_mask[idx], torch.from_numpy(\n self.y[idx].toarray().squeeze()).float()\n\n @property\n def raw_y(self) ->np.ndarray:\n return self.dataset.raw_y\n\n @property\n def y(self) ->csr_matrix:\n return self.dataset.y\n\n\nclass SBertDataset(Dataset):\n \"\"\"Warpping Dataset class for senteice BERT\"\"\"\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n\n def __len__(self) ->int:\n return self.inputs['input_ids'].shape[0]\n\n def __getitem__(self, idx: int) ->Union[Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor]]:\n if self.is_train:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx], torch.from_numpy(self.labels[idx].\n toarray().squeeze())\n else:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx]\n\n\ndef collate_fn(batch):\n if len(batch[0]) == 4:\n return torch.LongTensor([b[0] for b in batch]), {'input_ids': torch\n .stack([b[1] for b in batch]), 'attention_mask': torch.stack([b\n [2] for b in batch])}, torch.stack([b[3] for b in batch])\n else:\n return torch.LongTensor([b[0] for b in batch]), {'input_ids': torch\n .stack([b[1] for b in batch]), 'attention_mask': torch.stack([b\n [2] for b in batch])}\n\n\ndef collate_fn2(batch):\n return {'input_ids': torch.stack([b[0] for b in batch]),\n 'attention_mask': torch.stack([b[1] for b in batch])}, torch.stack([\n b[2] for b in batch])\n", "<docstring token>\n<import token>\n\n\nclass BertDataset(Dataset):\n \"\"\"Warpping Dataset class for BERT\"\"\"\n\n def __init__(self, dataset: TextDataset, model_name: str, verbose: bool\n =True, **tokenizer_kwargs) ->None:\n self.dataset = dataset\n self.verbose = verbose\n self.train = self.dataset.train\n self.npz_path = 'train_' if self.train else 'test_'\n self.npz_path += model_name.replace('-', '_')\n self.npz_path += f\"_{tokenizer_kwargs['max_length']}L.npz\"\n self.npz_path = os.path.join(self.dataset.data_dir, self.npz_path)\n self.input_ids, self.attention_mask = self._load_data(model_name,\n **tokenizer_kwargs)\n\n def _load_data(self, model_name: str, **tokenizer_kwargs) ->Tuple[torch\n .Tensor, torch.Tensor]:\n if os.path.isfile(self.npz_path):\n with np.load(self.npz_path) as npz:\n return torch.from_numpy(npz['input_ids']), torch.from_numpy(npz\n ['attention_mask'])\n with open(self.dataset.tokenized_path, 'rb') as f:\n texts = pickle.load(f)\n os.environ['TOKENIZERS_PARALLELISM'] = 'true'\n tokenizer = AutoTokenizer.from_pretrained(model_name)\n if self.verbose:\n logger.info('Tokenize...')\n start = time.time()\n inputs = tokenizer([' '.join(s) for s in texts], **tokenizer_kwargs)\n if self.verbose:\n elapsed = time.time() - start\n logger.info(\n f'Finish Tokenization. {elapsed:.2f}s {timedelta(seconds=elapsed)}'\n )\n np.savez(self.npz_path, input_ids=inputs['input_ids'].numpy(),\n attention_mask=inputs['attention_mask'].numpy())\n return inputs['input_ids'], inputs['attention_mask']\n\n def __len__(self) ->int:\n return len(self.dataset)\n\n def __getitem__(self, idx: int) ->Tuple[torch.Tensor, torch.Tensor,\n torch.Tensor]:\n return self.input_ids[idx], self.attention_mask[idx], torch.from_numpy(\n self.y[idx].toarray().squeeze()).float()\n\n @property\n def raw_y(self) ->np.ndarray:\n return self.dataset.raw_y\n\n @property\n def y(self) ->csr_matrix:\n return self.dataset.y\n\n\nclass SBertDataset(Dataset):\n \"\"\"Warpping Dataset class for senteice BERT\"\"\"\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n\n def __len__(self) ->int:\n return self.inputs['input_ids'].shape[0]\n\n def __getitem__(self, idx: int) ->Union[Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor]]:\n if self.is_train:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx], torch.from_numpy(self.labels[idx].\n toarray().squeeze())\n else:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx]\n\n\ndef collate_fn(batch):\n if len(batch[0]) == 4:\n return torch.LongTensor([b[0] for b in batch]), {'input_ids': torch\n .stack([b[1] for b in batch]), 'attention_mask': torch.stack([b\n [2] for b in batch])}, torch.stack([b[3] for b in batch])\n else:\n return torch.LongTensor([b[0] for b in batch]), {'input_ids': torch\n .stack([b[1] for b in batch]), 'attention_mask': torch.stack([b\n [2] for b in batch])}\n\n\n<function token>\n", "<docstring token>\n<import token>\n\n\nclass BertDataset(Dataset):\n \"\"\"Warpping Dataset class for BERT\"\"\"\n\n def __init__(self, dataset: TextDataset, model_name: str, verbose: bool\n =True, **tokenizer_kwargs) ->None:\n self.dataset = dataset\n self.verbose = verbose\n self.train = self.dataset.train\n self.npz_path = 'train_' if self.train else 'test_'\n self.npz_path += model_name.replace('-', '_')\n self.npz_path += f\"_{tokenizer_kwargs['max_length']}L.npz\"\n self.npz_path = os.path.join(self.dataset.data_dir, self.npz_path)\n self.input_ids, self.attention_mask = self._load_data(model_name,\n **tokenizer_kwargs)\n\n def _load_data(self, model_name: str, **tokenizer_kwargs) ->Tuple[torch\n .Tensor, torch.Tensor]:\n if os.path.isfile(self.npz_path):\n with np.load(self.npz_path) as npz:\n return torch.from_numpy(npz['input_ids']), torch.from_numpy(npz\n ['attention_mask'])\n with open(self.dataset.tokenized_path, 'rb') as f:\n texts = pickle.load(f)\n os.environ['TOKENIZERS_PARALLELISM'] = 'true'\n tokenizer = AutoTokenizer.from_pretrained(model_name)\n if self.verbose:\n logger.info('Tokenize...')\n start = time.time()\n inputs = tokenizer([' '.join(s) for s in texts], **tokenizer_kwargs)\n if self.verbose:\n elapsed = time.time() - start\n logger.info(\n f'Finish Tokenization. {elapsed:.2f}s {timedelta(seconds=elapsed)}'\n )\n np.savez(self.npz_path, input_ids=inputs['input_ids'].numpy(),\n attention_mask=inputs['attention_mask'].numpy())\n return inputs['input_ids'], inputs['attention_mask']\n\n def __len__(self) ->int:\n return len(self.dataset)\n\n def __getitem__(self, idx: int) ->Tuple[torch.Tensor, torch.Tensor,\n torch.Tensor]:\n return self.input_ids[idx], self.attention_mask[idx], torch.from_numpy(\n self.y[idx].toarray().squeeze()).float()\n\n @property\n def raw_y(self) ->np.ndarray:\n return self.dataset.raw_y\n\n @property\n def y(self) ->csr_matrix:\n return self.dataset.y\n\n\nclass SBertDataset(Dataset):\n \"\"\"Warpping Dataset class for senteice BERT\"\"\"\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n\n def __len__(self) ->int:\n return self.inputs['input_ids'].shape[0]\n\n def __getitem__(self, idx: int) ->Union[Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor]]:\n if self.is_train:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx], torch.from_numpy(self.labels[idx].\n toarray().squeeze())\n else:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx]\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n\n\nclass BertDataset(Dataset):\n <docstring token>\n\n def __init__(self, dataset: TextDataset, model_name: str, verbose: bool\n =True, **tokenizer_kwargs) ->None:\n self.dataset = dataset\n self.verbose = verbose\n self.train = self.dataset.train\n self.npz_path = 'train_' if self.train else 'test_'\n self.npz_path += model_name.replace('-', '_')\n self.npz_path += f\"_{tokenizer_kwargs['max_length']}L.npz\"\n self.npz_path = os.path.join(self.dataset.data_dir, self.npz_path)\n self.input_ids, self.attention_mask = self._load_data(model_name,\n **tokenizer_kwargs)\n\n def _load_data(self, model_name: str, **tokenizer_kwargs) ->Tuple[torch\n .Tensor, torch.Tensor]:\n if os.path.isfile(self.npz_path):\n with np.load(self.npz_path) as npz:\n return torch.from_numpy(npz['input_ids']), torch.from_numpy(npz\n ['attention_mask'])\n with open(self.dataset.tokenized_path, 'rb') as f:\n texts = pickle.load(f)\n os.environ['TOKENIZERS_PARALLELISM'] = 'true'\n tokenizer = AutoTokenizer.from_pretrained(model_name)\n if self.verbose:\n logger.info('Tokenize...')\n start = time.time()\n inputs = tokenizer([' '.join(s) for s in texts], **tokenizer_kwargs)\n if self.verbose:\n elapsed = time.time() - start\n logger.info(\n f'Finish Tokenization. {elapsed:.2f}s {timedelta(seconds=elapsed)}'\n )\n np.savez(self.npz_path, input_ids=inputs['input_ids'].numpy(),\n attention_mask=inputs['attention_mask'].numpy())\n return inputs['input_ids'], inputs['attention_mask']\n\n def __len__(self) ->int:\n return len(self.dataset)\n\n def __getitem__(self, idx: int) ->Tuple[torch.Tensor, torch.Tensor,\n torch.Tensor]:\n return self.input_ids[idx], self.attention_mask[idx], torch.from_numpy(\n self.y[idx].toarray().squeeze()).float()\n\n @property\n def raw_y(self) ->np.ndarray:\n return self.dataset.raw_y\n\n @property\n def y(self) ->csr_matrix:\n return self.dataset.y\n\n\nclass SBertDataset(Dataset):\n \"\"\"Warpping Dataset class for senteice BERT\"\"\"\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n\n def __len__(self) ->int:\n return self.inputs['input_ids'].shape[0]\n\n def __getitem__(self, idx: int) ->Union[Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor]]:\n if self.is_train:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx], torch.from_numpy(self.labels[idx].\n toarray().squeeze())\n else:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx]\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n\n\nclass BertDataset(Dataset):\n <docstring token>\n\n def __init__(self, dataset: TextDataset, model_name: str, verbose: bool\n =True, **tokenizer_kwargs) ->None:\n self.dataset = dataset\n self.verbose = verbose\n self.train = self.dataset.train\n self.npz_path = 'train_' if self.train else 'test_'\n self.npz_path += model_name.replace('-', '_')\n self.npz_path += f\"_{tokenizer_kwargs['max_length']}L.npz\"\n self.npz_path = os.path.join(self.dataset.data_dir, self.npz_path)\n self.input_ids, self.attention_mask = self._load_data(model_name,\n **tokenizer_kwargs)\n <function token>\n\n def __len__(self) ->int:\n return len(self.dataset)\n\n def __getitem__(self, idx: int) ->Tuple[torch.Tensor, torch.Tensor,\n torch.Tensor]:\n return self.input_ids[idx], self.attention_mask[idx], torch.from_numpy(\n self.y[idx].toarray().squeeze()).float()\n\n @property\n def raw_y(self) ->np.ndarray:\n return self.dataset.raw_y\n\n @property\n def y(self) ->csr_matrix:\n return self.dataset.y\n\n\nclass SBertDataset(Dataset):\n \"\"\"Warpping Dataset class for senteice BERT\"\"\"\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n\n def __len__(self) ->int:\n return self.inputs['input_ids'].shape[0]\n\n def __getitem__(self, idx: int) ->Union[Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor]]:\n if self.is_train:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx], torch.from_numpy(self.labels[idx].\n toarray().squeeze())\n else:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx]\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n\n\nclass BertDataset(Dataset):\n <docstring token>\n <function token>\n <function token>\n\n def __len__(self) ->int:\n return len(self.dataset)\n\n def __getitem__(self, idx: int) ->Tuple[torch.Tensor, torch.Tensor,\n torch.Tensor]:\n return self.input_ids[idx], self.attention_mask[idx], torch.from_numpy(\n self.y[idx].toarray().squeeze()).float()\n\n @property\n def raw_y(self) ->np.ndarray:\n return self.dataset.raw_y\n\n @property\n def y(self) ->csr_matrix:\n return self.dataset.y\n\n\nclass SBertDataset(Dataset):\n \"\"\"Warpping Dataset class for senteice BERT\"\"\"\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n\n def __len__(self) ->int:\n return self.inputs['input_ids'].shape[0]\n\n def __getitem__(self, idx: int) ->Union[Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor]]:\n if self.is_train:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx], torch.from_numpy(self.labels[idx].\n toarray().squeeze())\n else:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx]\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n\n\nclass BertDataset(Dataset):\n <docstring token>\n <function token>\n <function token>\n\n def __len__(self) ->int:\n return len(self.dataset)\n\n def __getitem__(self, idx: int) ->Tuple[torch.Tensor, torch.Tensor,\n torch.Tensor]:\n return self.input_ids[idx], self.attention_mask[idx], torch.from_numpy(\n self.y[idx].toarray().squeeze()).float()\n\n @property\n def raw_y(self) ->np.ndarray:\n return self.dataset.raw_y\n <function token>\n\n\nclass SBertDataset(Dataset):\n \"\"\"Warpping Dataset class for senteice BERT\"\"\"\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n\n def __len__(self) ->int:\n return self.inputs['input_ids'].shape[0]\n\n def __getitem__(self, idx: int) ->Union[Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor]]:\n if self.is_train:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx], torch.from_numpy(self.labels[idx].\n toarray().squeeze())\n else:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx]\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n\n\nclass BertDataset(Dataset):\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n def __getitem__(self, idx: int) ->Tuple[torch.Tensor, torch.Tensor,\n torch.Tensor]:\n return self.input_ids[idx], self.attention_mask[idx], torch.from_numpy(\n self.y[idx].toarray().squeeze()).float()\n\n @property\n def raw_y(self) ->np.ndarray:\n return self.dataset.raw_y\n <function token>\n\n\nclass SBertDataset(Dataset):\n \"\"\"Warpping Dataset class for senteice BERT\"\"\"\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n\n def __len__(self) ->int:\n return self.inputs['input_ids'].shape[0]\n\n def __getitem__(self, idx: int) ->Union[Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor]]:\n if self.is_train:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx], torch.from_numpy(self.labels[idx].\n toarray().squeeze())\n else:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx]\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n\n\nclass BertDataset(Dataset):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n @property\n def raw_y(self) ->np.ndarray:\n return self.dataset.raw_y\n <function token>\n\n\nclass SBertDataset(Dataset):\n \"\"\"Warpping Dataset class for senteice BERT\"\"\"\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n\n def __len__(self) ->int:\n return self.inputs['input_ids'].shape[0]\n\n def __getitem__(self, idx: int) ->Union[Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor]]:\n if self.is_train:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx], torch.from_numpy(self.labels[idx].\n toarray().squeeze())\n else:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx]\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n\n\nclass BertDataset(Dataset):\n <docstring token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n <function token>\n\n\nclass SBertDataset(Dataset):\n \"\"\"Warpping Dataset class for senteice BERT\"\"\"\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n\n def __len__(self) ->int:\n return self.inputs['input_ids'].shape[0]\n\n def __getitem__(self, idx: int) ->Union[Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor]]:\n if self.is_train:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx], torch.from_numpy(self.labels[idx].\n toarray().squeeze())\n else:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx]\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<class token>\n\n\nclass SBertDataset(Dataset):\n \"\"\"Warpping Dataset class for senteice BERT\"\"\"\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n\n def __len__(self) ->int:\n return self.inputs['input_ids'].shape[0]\n\n def __getitem__(self, idx: int) ->Union[Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor]]:\n if self.is_train:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx], torch.from_numpy(self.labels[idx].\n toarray().squeeze())\n else:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx]\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<class token>\n\n\nclass SBertDataset(Dataset):\n <docstring token>\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n\n def __len__(self) ->int:\n return self.inputs['input_ids'].shape[0]\n\n def __getitem__(self, idx: int) ->Union[Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor]]:\n if self.is_train:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx], torch.from_numpy(self.labels[idx].\n toarray().squeeze())\n else:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx]\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<class token>\n\n\nclass SBertDataset(Dataset):\n <docstring token>\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n <function token>\n\n def __getitem__(self, idx: int) ->Union[Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.\n Tensor, torch.Tensor]]:\n if self.is_train:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx], torch.from_numpy(self.labels[idx].\n toarray().squeeze())\n else:\n return idx, self.inputs['input_ids'][idx], self.inputs[\n 'attention_mask'][idx]\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<class token>\n\n\nclass SBertDataset(Dataset):\n <docstring token>\n\n def __init__(self, inputs: Dict[str, torch.Tensor], labels: Optional[\n csr_matrix], train: bool=True) ->None:\n self.inputs = inputs\n self.labels = labels\n self.is_train = train\n if train and labels is None:\n raise ValueError('labels should be set when is_train is true')\n <function token>\n <function token>\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<class token>\n\n\nclass SBertDataset(Dataset):\n <docstring token>\n <function token>\n <function token>\n <function token>\n\n\n<function token>\n<function token>\n", "<docstring token>\n<import token>\n<class token>\n<class token>\n<function token>\n<function token>\n" ]
false
99,598
1c2bf1f77726938b9d39604725036a34ff2ba0b1
def caught_speeding(speed, is_birthday): j = 0 if is_birthday: j = 5 if speed <= 60 + j: return 0 elif speed in range(61 + j, 81 + j): return 1 else: return 2
[ "def caught_speeding(speed, is_birthday):\n j = 0\n\n if is_birthday:\n j = 5\n\n if speed <= 60 + j:\n return 0\n elif speed in range(61 + j, 81 + j):\n return 1\n else:\n return 2", "def caught_speeding(speed, is_birthday):\n j = 0\n if is_birthday:\n j = 5\n if speed <= 60 + j:\n return 0\n elif speed in range(61 + j, 81 + j):\n return 1\n else:\n return 2\n", "<function token>\n" ]
false
99,599
b94c54d1c0d2de6f402a72272296f5cf18088534
import os datasetLst = [line.rstrip('\n') for line in open('NCTC_ds.txt')] for i in range(len(datasetLst)): if len(datasetLst[i])==0: break ds = datasetLst[i] fldr = ds + "_filtered" os.system("mkdir {}".format(fldr)) os.system("cp filtered_fasta/{}_reads.fasta {}/reads.fasta".format(ds,fldr)) os.system("cp groundTruths/{}_daligner_ground_truth.txt {}/daligner_ground_truth.txt".format(ds,fldr))
[ "import os\n\ndatasetLst = [line.rstrip('\\n') for line in open('NCTC_ds.txt')]\nfor i in range(len(datasetLst)):\n\tif len(datasetLst[i])==0:\n\t\tbreak\n\tds = datasetLst[i]\n\tfldr = ds + \"_filtered\"\n\n\tos.system(\"mkdir {}\".format(fldr))\n\tos.system(\"cp filtered_fasta/{}_reads.fasta {}/reads.fasta\".format(ds,fldr))\n\tos.system(\"cp groundTruths/{}_daligner_ground_truth.txt {}/daligner_ground_truth.txt\".format(ds,fldr))", "import os\ndatasetLst = [line.rstrip('\\n') for line in open('NCTC_ds.txt')]\nfor i in range(len(datasetLst)):\n if len(datasetLst[i]) == 0:\n break\n ds = datasetLst[i]\n fldr = ds + '_filtered'\n os.system('mkdir {}'.format(fldr))\n os.system('cp filtered_fasta/{}_reads.fasta {}/reads.fasta'.format(ds,\n fldr))\n os.system(\n 'cp groundTruths/{}_daligner_ground_truth.txt {}/daligner_ground_truth.txt'\n .format(ds, fldr))\n", "<import token>\ndatasetLst = [line.rstrip('\\n') for line in open('NCTC_ds.txt')]\nfor i in range(len(datasetLst)):\n if len(datasetLst[i]) == 0:\n break\n ds = datasetLst[i]\n fldr = ds + '_filtered'\n os.system('mkdir {}'.format(fldr))\n os.system('cp filtered_fasta/{}_reads.fasta {}/reads.fasta'.format(ds,\n fldr))\n os.system(\n 'cp groundTruths/{}_daligner_ground_truth.txt {}/daligner_ground_truth.txt'\n .format(ds, fldr))\n", "<import token>\n<assignment token>\nfor i in range(len(datasetLst)):\n if len(datasetLst[i]) == 0:\n break\n ds = datasetLst[i]\n fldr = ds + '_filtered'\n os.system('mkdir {}'.format(fldr))\n os.system('cp filtered_fasta/{}_reads.fasta {}/reads.fasta'.format(ds,\n fldr))\n os.system(\n 'cp groundTruths/{}_daligner_ground_truth.txt {}/daligner_ground_truth.txt'\n .format(ds, fldr))\n", "<import token>\n<assignment token>\n<code token>\n" ]
false