index
int64
0
10k
blob_id
stringlengths
40
40
step-1
stringlengths
0
305k
step-2
stringlengths
6
1.1M
step-3
stringlengths
15
1.23M
step-4
stringlengths
23
1.34M
step-5
stringlengths
55
1.2M
step-ids
listlengths
1
5
2,400
cbf93eb96f40ff0aedc4b8d9238669da72934b27
<mask token> class ascii_handler(port_handler): <mask token> <mask token>
<mask token> class ascii_handler(port_handler): <mask token> def handle_data(self): """ Show a nicely formatted server list and immediately close connection """ self.ls.log.info('Sending ascii server list to %s' % self.ip) self.cleanup() servers = fetch_all( 'SELECT * FROM servers WHERE max > 0 ORDER BY prefer DESC, private ASC, (players = max) ASC, players DESC, created ASC' ) asciilist = '' server_count = 0 for server in servers: try: entry = server['ip'] + ':' + str(server['port']) + ' ' entry += 'local ' if server['remote'] == 0 else 'mirror ' entry += 'public ' if server['private'] == 0 else 'private ' entry += server['mode'] + ' ' entry += server['version'][:6].ljust(6, ' ') + ' ' entry += str(int(time.time()) - int(server['created'])) + ' ' entry += '[' + str(server['players']) + '/' + str(server['max'] ) + '] ' entry += server['name'] + '\r\n' asciilist += entry server_count += 1 except TypeError: continue self.msg(asciilist) self.end()
<mask token> class ascii_handler(port_handler): """ Serve ASCII server list """ def handle_data(self): """ Show a nicely formatted server list and immediately close connection """ self.ls.log.info('Sending ascii server list to %s' % self.ip) self.cleanup() servers = fetch_all( 'SELECT * FROM servers WHERE max > 0 ORDER BY prefer DESC, private ASC, (players = max) ASC, players DESC, created ASC' ) asciilist = '' server_count = 0 for server in servers: try: entry = server['ip'] + ':' + str(server['port']) + ' ' entry += 'local ' if server['remote'] == 0 else 'mirror ' entry += 'public ' if server['private'] == 0 else 'private ' entry += server['mode'] + ' ' entry += server['version'][:6].ljust(6, ' ') + ' ' entry += str(int(time.time()) - int(server['created'])) + ' ' entry += '[' + str(server['players']) + '/' + str(server['max'] ) + '] ' entry += server['name'] + '\r\n' asciilist += entry server_count += 1 except TypeError: continue self.msg(asciilist) self.end()
import time from helpers.handler import port_handler from helpers.functions import fetch_all class ascii_handler(port_handler): """ Serve ASCII server list """ def handle_data(self): """ Show a nicely formatted server list and immediately close connection """ self.ls.log.info('Sending ascii server list to %s' % self.ip) self.cleanup() servers = fetch_all( 'SELECT * FROM servers WHERE max > 0 ORDER BY prefer DESC, private ASC, (players = max) ASC, players DESC, created ASC' ) asciilist = '' server_count = 0 for server in servers: try: entry = server['ip'] + ':' + str(server['port']) + ' ' entry += 'local ' if server['remote'] == 0 else 'mirror ' entry += 'public ' if server['private'] == 0 else 'private ' entry += server['mode'] + ' ' entry += server['version'][:6].ljust(6, ' ') + ' ' entry += str(int(time.time()) - int(server['created'])) + ' ' entry += '[' + str(server['players']) + '/' + str(server['max'] ) + '] ' entry += server['name'] + '\r\n' asciilist += entry server_count += 1 except TypeError: continue self.msg(asciilist) self.end()
import time from helpers.handler import port_handler from helpers.functions import fetch_all class ascii_handler(port_handler): """ Serve ASCII server list """ def handle_data(self): """ Show a nicely formatted server list and immediately close connection """ self.ls.log.info("Sending ascii server list to %s" % self.ip) self.cleanup() servers = fetch_all( "SELECT * FROM servers WHERE max > 0 ORDER BY prefer DESC, private ASC, (players = max) ASC, players DESC, created ASC") asciilist = "" server_count = 0 for server in servers: try: entry = server['ip'] + ':' + str(server['port']) + ' ' # ip:port entry += 'local ' if server['remote'] == 0 else 'mirror ' # 'local' or 'mirror' entry += 'public ' if server['private'] == 0 else 'private ' # 'public' or 'private' entry += server['mode'] + ' ' # game mode entry += server['version'][:6].ljust(6, ' ') + ' ' # version entry += str(int(time.time()) - int(server['created'])) + ' ' # uptime in seconds entry += '[' + str(server['players']) + '/' + str(server['max']) + '] ' # [players/max] entry += server['name'] + "\r\n" # server name asciilist += entry server_count += 1 except TypeError: continue self.msg(asciilist) self.end()
[ 1, 2, 3, 4, 5 ]
2,401
19d86c64876575ed9b3f5e33dd44e7633c96e696
<mask token> class product_product(orm.Model): <mask token> def get_kits_product_available(self, cr, uid, ids, context=None): pass def _kits_product_available(self, cr, uid, ids, field_names=None, arg= False, context=None): res = {} field_names = field_names or [] context = context or {} for id in ids: res[id] = {}.fromkeys(field_names, 0.0) field_map = {'kits_qty_available': 'qty_available', 'kits_incoming_qty': 'incoming_qty', 'kits_outgoing_qty': 'outgoing_qty', 'kits_virtual_available': 'virtual_available'} for product_record in self.browse(cr, uid, ids, context=context): so_qty = self._get_sale_quotation_qty(cr, uid, product_record. id, context=context) if not self._is_kit(cr, uid, [product_record.id], context=context ).get(product_record.id): res[product_record.id] = {'kits_qty_available': 0, 'kits_incoming_qty': 0, 'kits_virtual_available': 0, 'kits_outgoing_qty': 0, 'kits_sale_quotation_qty': so_qty} else: for bom in product_record.bom_ids: if bom.type == 'phantom': child_product_res = {} for line in bom.bom_lines: child_product_res[line.product_id.id] = { 'product_qty': line.product_qty or 0.0} child_product_qtys = self._product_available(cr, uid, child_product_res.keys(), field_map.values (), context=context) res[product_record.id] = {'kits_qty_available': self._get_qty_from_children(child_product_qtys, child_product_res, 'qty_available'), 'kits_incoming_qty': self. _get_qty_from_children(child_product_qtys, child_product_res, 'incoming_qty'), 'kits_virtual_available': self. _get_qty_from_children(child_product_qtys, child_product_res, 'virtual_available') - so_qty, 'kits_outgoing_qty': self. _get_qty_from_children(child_product_qtys, child_product_res, 'outgoing_qty'), 'kits_sale_quotation_qty': so_qty} else: raw_res = self._product_available(cr, uid, ids, field_map.values(), arg, context) for key, val in field_map.items(): res[product_record.id][key] = raw_res[ product_record.id].get(val) break return res def _get_sale_quotation_qty(self, cr, uid, product_id, context=None): """get all qty of the product in all sale quotations (draft, sent)""" sol_obj = self.pool.get('sale.order.line') domain = [('state', 'in', ('draft', False, None)), ('product_id', '=', product_id)] sol_ids = sol_obj.read_group(cr, uid, domain, ['product_uom_qty', 'product_id'], groupby=['product_id']) return sol_ids and sol_ids[0].get('product_uom_qty') or 0.0 <mask token> def _is_kit(self, cr, uid, ids, fields=None, args=False, context=None): """see if this product is Kit or not""" res = {} for product_record in self.browse(cr, uid, ids, context=context): res[product_record.id] = False if product_record.bom_ids: for bom in product_record.bom_ids: if bom.type == 'phantom': res[product_record.id] = True return res def _get_product_from_bom(self, cr, uid, ids, context=None): res = {} bom_ids = self.pool.get('mrp.bom').browse(cr, uid, ids, context=context ) for bom in bom_ids: res[bom.product_id.id] = True return res.keys() <mask token>
<mask token> class product_product(orm.Model): <mask token> def get_kits_product_available(self, cr, uid, ids, context=None): pass def _kits_product_available(self, cr, uid, ids, field_names=None, arg= False, context=None): res = {} field_names = field_names or [] context = context or {} for id in ids: res[id] = {}.fromkeys(field_names, 0.0) field_map = {'kits_qty_available': 'qty_available', 'kits_incoming_qty': 'incoming_qty', 'kits_outgoing_qty': 'outgoing_qty', 'kits_virtual_available': 'virtual_available'} for product_record in self.browse(cr, uid, ids, context=context): so_qty = self._get_sale_quotation_qty(cr, uid, product_record. id, context=context) if not self._is_kit(cr, uid, [product_record.id], context=context ).get(product_record.id): res[product_record.id] = {'kits_qty_available': 0, 'kits_incoming_qty': 0, 'kits_virtual_available': 0, 'kits_outgoing_qty': 0, 'kits_sale_quotation_qty': so_qty} else: for bom in product_record.bom_ids: if bom.type == 'phantom': child_product_res = {} for line in bom.bom_lines: child_product_res[line.product_id.id] = { 'product_qty': line.product_qty or 0.0} child_product_qtys = self._product_available(cr, uid, child_product_res.keys(), field_map.values (), context=context) res[product_record.id] = {'kits_qty_available': self._get_qty_from_children(child_product_qtys, child_product_res, 'qty_available'), 'kits_incoming_qty': self. _get_qty_from_children(child_product_qtys, child_product_res, 'incoming_qty'), 'kits_virtual_available': self. _get_qty_from_children(child_product_qtys, child_product_res, 'virtual_available') - so_qty, 'kits_outgoing_qty': self. _get_qty_from_children(child_product_qtys, child_product_res, 'outgoing_qty'), 'kits_sale_quotation_qty': so_qty} else: raw_res = self._product_available(cr, uid, ids, field_map.values(), arg, context) for key, val in field_map.items(): res[product_record.id][key] = raw_res[ product_record.id].get(val) break return res def _get_sale_quotation_qty(self, cr, uid, product_id, context=None): """get all qty of the product in all sale quotations (draft, sent)""" sol_obj = self.pool.get('sale.order.line') domain = [('state', 'in', ('draft', False, None)), ('product_id', '=', product_id)] sol_ids = sol_obj.read_group(cr, uid, domain, ['product_uom_qty', 'product_id'], groupby=['product_id']) return sol_ids and sol_ids[0].get('product_uom_qty') or 0.0 def _get_qty_from_children(self, child_product_qtys, child_product_res, field_name): def qty_div(product_total_qty, component_qty): return product_total_qty[1].get(field_name) / component_qty[1].get( 'product_qty') return min(map(qty_div, child_product_qtys.iteritems(), child_product_res.iteritems())) def _is_kit(self, cr, uid, ids, fields=None, args=False, context=None): """see if this product is Kit or not""" res = {} for product_record in self.browse(cr, uid, ids, context=context): res[product_record.id] = False if product_record.bom_ids: for bom in product_record.bom_ids: if bom.type == 'phantom': res[product_record.id] = True return res def _get_product_from_bom(self, cr, uid, ids, context=None): res = {} bom_ids = self.pool.get('mrp.bom').browse(cr, uid, ids, context=context ) for bom in bom_ids: res[bom.product_id.id] = True return res.keys() <mask token>
<mask token> class product_product(orm.Model): _inherit = 'product.product' def get_kits_product_available(self, cr, uid, ids, context=None): pass def _kits_product_available(self, cr, uid, ids, field_names=None, arg= False, context=None): res = {} field_names = field_names or [] context = context or {} for id in ids: res[id] = {}.fromkeys(field_names, 0.0) field_map = {'kits_qty_available': 'qty_available', 'kits_incoming_qty': 'incoming_qty', 'kits_outgoing_qty': 'outgoing_qty', 'kits_virtual_available': 'virtual_available'} for product_record in self.browse(cr, uid, ids, context=context): so_qty = self._get_sale_quotation_qty(cr, uid, product_record. id, context=context) if not self._is_kit(cr, uid, [product_record.id], context=context ).get(product_record.id): res[product_record.id] = {'kits_qty_available': 0, 'kits_incoming_qty': 0, 'kits_virtual_available': 0, 'kits_outgoing_qty': 0, 'kits_sale_quotation_qty': so_qty} else: for bom in product_record.bom_ids: if bom.type == 'phantom': child_product_res = {} for line in bom.bom_lines: child_product_res[line.product_id.id] = { 'product_qty': line.product_qty or 0.0} child_product_qtys = self._product_available(cr, uid, child_product_res.keys(), field_map.values (), context=context) res[product_record.id] = {'kits_qty_available': self._get_qty_from_children(child_product_qtys, child_product_res, 'qty_available'), 'kits_incoming_qty': self. _get_qty_from_children(child_product_qtys, child_product_res, 'incoming_qty'), 'kits_virtual_available': self. _get_qty_from_children(child_product_qtys, child_product_res, 'virtual_available') - so_qty, 'kits_outgoing_qty': self. _get_qty_from_children(child_product_qtys, child_product_res, 'outgoing_qty'), 'kits_sale_quotation_qty': so_qty} else: raw_res = self._product_available(cr, uid, ids, field_map.values(), arg, context) for key, val in field_map.items(): res[product_record.id][key] = raw_res[ product_record.id].get(val) break return res def _get_sale_quotation_qty(self, cr, uid, product_id, context=None): """get all qty of the product in all sale quotations (draft, sent)""" sol_obj = self.pool.get('sale.order.line') domain = [('state', 'in', ('draft', False, None)), ('product_id', '=', product_id)] sol_ids = sol_obj.read_group(cr, uid, domain, ['product_uom_qty', 'product_id'], groupby=['product_id']) return sol_ids and sol_ids[0].get('product_uom_qty') or 0.0 def _get_qty_from_children(self, child_product_qtys, child_product_res, field_name): def qty_div(product_total_qty, component_qty): return product_total_qty[1].get(field_name) / component_qty[1].get( 'product_qty') return min(map(qty_div, child_product_qtys.iteritems(), child_product_res.iteritems())) def _is_kit(self, cr, uid, ids, fields=None, args=False, context=None): """see if this product is Kit or not""" res = {} for product_record in self.browse(cr, uid, ids, context=context): res[product_record.id] = False if product_record.bom_ids: for bom in product_record.bom_ids: if bom.type == 'phantom': res[product_record.id] = True return res def _get_product_from_bom(self, cr, uid, ids, context=None): res = {} bom_ids = self.pool.get('mrp.bom').browse(cr, uid, ids, context=context ) for bom in bom_ids: res[bom.product_id.id] = True return res.keys() _columns = {'is_kit': fields.function(_is_kit, readonly=True, type= 'boolean', string='Is Kit', store={'mrp.bom': ( _get_product_from_bom, ['type'], 10)}), 'kits_qty_available': fields.function(_kits_product_available, multi='kits_qty_available', type='float', digits_compute=dp.get_precision( 'Product Unit of Measure'), string='Quantity On Hand (Kits)', help= ''), 'kits_incoming_qty': fields.function(_kits_product_available, multi='kits_qty_available', type='float', digits_compute=dp. get_precision('Product Unit of Measure'), string='Incoming (Kits)', help=''), 'kits_outgoing_qty': fields.function( _kits_product_available, multi='kits_qty_available', type='float', digits_compute=dp.get_precision('Product Unit of Measure'), string= 'Outgoing (Kits)', help=''), 'kits_sale_quotation_qty': fields. function(_kits_product_available, multi='kits_qty_available', type= 'float', digits_compute=dp.get_precision('Product Unit of Measure'), string='Sales Quotation Allocated', help=''), 'kits_virtual_available': fields.function(_kits_product_available, multi='kits_qty_available', type='float', digits_compute=dp. get_precision('Product Unit of Measure'), string= 'Forecasted Quantity (Kits)', help='')}
from openerp.osv import orm, fields import openerp.addons.decimal_precision as dp class product_product(orm.Model): _inherit = 'product.product' def get_kits_product_available(self, cr, uid, ids, context=None): pass def _kits_product_available(self, cr, uid, ids, field_names=None, arg= False, context=None): res = {} field_names = field_names or [] context = context or {} for id in ids: res[id] = {}.fromkeys(field_names, 0.0) field_map = {'kits_qty_available': 'qty_available', 'kits_incoming_qty': 'incoming_qty', 'kits_outgoing_qty': 'outgoing_qty', 'kits_virtual_available': 'virtual_available'} for product_record in self.browse(cr, uid, ids, context=context): so_qty = self._get_sale_quotation_qty(cr, uid, product_record. id, context=context) if not self._is_kit(cr, uid, [product_record.id], context=context ).get(product_record.id): res[product_record.id] = {'kits_qty_available': 0, 'kits_incoming_qty': 0, 'kits_virtual_available': 0, 'kits_outgoing_qty': 0, 'kits_sale_quotation_qty': so_qty} else: for bom in product_record.bom_ids: if bom.type == 'phantom': child_product_res = {} for line in bom.bom_lines: child_product_res[line.product_id.id] = { 'product_qty': line.product_qty or 0.0} child_product_qtys = self._product_available(cr, uid, child_product_res.keys(), field_map.values (), context=context) res[product_record.id] = {'kits_qty_available': self._get_qty_from_children(child_product_qtys, child_product_res, 'qty_available'), 'kits_incoming_qty': self. _get_qty_from_children(child_product_qtys, child_product_res, 'incoming_qty'), 'kits_virtual_available': self. _get_qty_from_children(child_product_qtys, child_product_res, 'virtual_available') - so_qty, 'kits_outgoing_qty': self. _get_qty_from_children(child_product_qtys, child_product_res, 'outgoing_qty'), 'kits_sale_quotation_qty': so_qty} else: raw_res = self._product_available(cr, uid, ids, field_map.values(), arg, context) for key, val in field_map.items(): res[product_record.id][key] = raw_res[ product_record.id].get(val) break return res def _get_sale_quotation_qty(self, cr, uid, product_id, context=None): """get all qty of the product in all sale quotations (draft, sent)""" sol_obj = self.pool.get('sale.order.line') domain = [('state', 'in', ('draft', False, None)), ('product_id', '=', product_id)] sol_ids = sol_obj.read_group(cr, uid, domain, ['product_uom_qty', 'product_id'], groupby=['product_id']) return sol_ids and sol_ids[0].get('product_uom_qty') or 0.0 def _get_qty_from_children(self, child_product_qtys, child_product_res, field_name): def qty_div(product_total_qty, component_qty): return product_total_qty[1].get(field_name) / component_qty[1].get( 'product_qty') return min(map(qty_div, child_product_qtys.iteritems(), child_product_res.iteritems())) def _is_kit(self, cr, uid, ids, fields=None, args=False, context=None): """see if this product is Kit or not""" res = {} for product_record in self.browse(cr, uid, ids, context=context): res[product_record.id] = False if product_record.bom_ids: for bom in product_record.bom_ids: if bom.type == 'phantom': res[product_record.id] = True return res def _get_product_from_bom(self, cr, uid, ids, context=None): res = {} bom_ids = self.pool.get('mrp.bom').browse(cr, uid, ids, context=context ) for bom in bom_ids: res[bom.product_id.id] = True return res.keys() _columns = {'is_kit': fields.function(_is_kit, readonly=True, type= 'boolean', string='Is Kit', store={'mrp.bom': ( _get_product_from_bom, ['type'], 10)}), 'kits_qty_available': fields.function(_kits_product_available, multi='kits_qty_available', type='float', digits_compute=dp.get_precision( 'Product Unit of Measure'), string='Quantity On Hand (Kits)', help= ''), 'kits_incoming_qty': fields.function(_kits_product_available, multi='kits_qty_available', type='float', digits_compute=dp. get_precision('Product Unit of Measure'), string='Incoming (Kits)', help=''), 'kits_outgoing_qty': fields.function( _kits_product_available, multi='kits_qty_available', type='float', digits_compute=dp.get_precision('Product Unit of Measure'), string= 'Outgoing (Kits)', help=''), 'kits_sale_quotation_qty': fields. function(_kits_product_available, multi='kits_qty_available', type= 'float', digits_compute=dp.get_precision('Product Unit of Measure'), string='Sales Quotation Allocated', help=''), 'kits_virtual_available': fields.function(_kits_product_available, multi='kits_qty_available', type='float', digits_compute=dp. get_precision('Product Unit of Measure'), string= 'Forecasted Quantity (Kits)', help='')}
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (c) 2010-2014 Elico Corp. All Rights Reserved. # Alex Duan <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.osv import orm, fields import openerp.addons.decimal_precision as dp class product_product(orm.Model): _inherit = 'product.product' def get_kits_product_available(self, cr, uid, ids, context=None): pass def _kits_product_available(self, cr, uid, ids, field_names=None, arg=False, context=None): res = {} field_names = field_names or [] context = context or {} for id in ids: res[id] = {}.fromkeys(field_names, 0.0) field_map = { 'kits_qty_available': 'qty_available', 'kits_incoming_qty': 'incoming_qty', 'kits_outgoing_qty': 'outgoing_qty', 'kits_virtual_available': 'virtual_available' } for product_record in self.browse(cr, uid, ids, context=context): #check if is a kit product. so_qty = self._get_sale_quotation_qty(cr, uid, product_record.id, context=context) if not self._is_kit( cr, uid, [product_record.id], context=context).get(product_record.id): res[product_record.id] = { 'kits_qty_available': 0, 'kits_incoming_qty': 0, 'kits_virtual_available': 0, 'kits_outgoing_qty': 0, 'kits_sale_quotation_qty': so_qty } #product with no bom # if not product_record.bom_ids: # raw_res = self._product_available(cr, uid, [product_record.id], field_map.values(), arg, context) # for key, val in field_map.items(): # res[product_record.id][key] = raw_res[product_record.id].get(val) #TODO how to deal with multi-bom products. #now get always get the first bom. #product with bom else: for bom in product_record.bom_ids: #bom type is phantom #TODO take care of the valid date of the components if bom.type == 'phantom': child_product_res = {} for line in bom.bom_lines: child_product_res[line.product_id.id] = {'product_qty': line.product_qty or 0.0} child_product_qtys = self._product_available(cr, uid, child_product_res.keys(), field_map.values(), context=context) res[product_record.id] = { 'kits_qty_available': self._get_qty_from_children(child_product_qtys, child_product_res, 'qty_available'), 'kits_incoming_qty': self._get_qty_from_children(child_product_qtys, child_product_res, 'incoming_qty'), 'kits_virtual_available': self._get_qty_from_children(child_product_qtys, child_product_res, 'virtual_available') - so_qty, 'kits_outgoing_qty': self._get_qty_from_children(child_product_qtys, child_product_res, 'outgoing_qty'), 'kits_sale_quotation_qty': so_qty } else: raw_res = self._product_available(cr, uid, ids, field_map.values(), arg, context) for key, val in field_map.items(): res[product_record.id][key] = raw_res[product_record.id].get(val) #only get the first bom. break return res def _get_sale_quotation_qty(self, cr, uid, product_id, context=None): '''get all qty of the product in all sale quotations (draft, sent)''' sol_obj = self.pool.get('sale.order.line') domain = [('state', 'in', ('draft', False, None)), ('product_id', '=', product_id)] #TODO take care of the uom. sol_ids = sol_obj.read_group(cr, uid, domain, ['product_uom_qty', 'product_id'], groupby=['product_id']) return sol_ids and sol_ids[0].get('product_uom_qty') or 0.0 def _get_qty_from_children(self, child_product_qtys, child_product_res, field_name): def qty_div(product_total_qty, component_qty): return product_total_qty[1].get(field_name) / component_qty[1].get('product_qty') # import pdb # pdb.set_trace() return min(map(qty_div, child_product_qtys.iteritems(), child_product_res.iteritems())) def _is_kit(self, cr, uid, ids, fields=None, args=False, context=None): '''see if this product is Kit or not''' res = {} for product_record in self.browse(cr, uid, ids, context=context): res[product_record.id] = False if product_record.bom_ids: for bom in product_record.bom_ids: if bom.type == 'phantom': res[product_record.id] = True return res def _get_product_from_bom(self, cr, uid, ids, context=None): res = {} bom_ids = self.pool.get('mrp.bom').browse(cr, uid, ids, context=context) for bom in bom_ids: res[bom.product_id.id] = True return res.keys() _columns = { 'is_kit': fields.function( _is_kit, readonly=True, type='boolean', string='Is Kit', store={ 'mrp.bom': (_get_product_from_bom, ['type'], 10) }), 'kits_qty_available': fields.function( _kits_product_available, multi='kits_qty_available', type='float', digits_compute=dp.get_precision('Product Unit of Measure'), string='Quantity On Hand (Kits)', help=""), 'kits_incoming_qty': fields.function( _kits_product_available, multi='kits_qty_available', type='float', digits_compute=dp.get_precision('Product Unit of Measure'), string='Incoming (Kits)', help=""), 'kits_outgoing_qty': fields.function( _kits_product_available, multi='kits_qty_available', type='float', digits_compute=dp.get_precision('Product Unit of Measure'), string='Outgoing (Kits)', help=""), 'kits_sale_quotation_qty': fields.function( _kits_product_available, multi='kits_qty_available', type='float', digits_compute=dp.get_precision('Product Unit of Measure'), string='Sales Quotation Allocated', help=""), 'kits_virtual_available': fields.function( _kits_product_available, multi='kits_qty_available', type='float', digits_compute=dp.get_precision('Product Unit of Measure'), string='Forecasted Quantity (Kits)', help=""), }
[ 6, 7, 8, 9, 10 ]
2,402
a7099b2506de08893ca849146813505d88784895
<mask token>
<mask token> class WGANUpdater(chainer.training.updaters.StandardUpdater): def __init__(self, *args, **kwargs): self.gen, self.dis = kwargs.pop('models') self.n_dis = kwargs.pop('n_dis') self.lam = kwargs.pop('lam') self.iteration = 0 super(WGANUpdater, self).__init__(*args, **kwargs) def loss_gen(self, gen, y_fake): batchsize = len(y_fake) loss = F.sum(-y_fake) / batchsize chainer.reporter.report({'loss': loss}, gen) return loss def loss_dis(self, dis, y_real, y_fake, x_real, x_fake): batchsize = len(y_fake) xp = dis.xp eps = xp.random.uniform(0, 1, size=batchsize).astype('f')[:, None, None, None] x_mid = eps * x_real + (1.0 - eps) * x_fake y_mid, _ = self.dis(x_mid) grad, = chainer.grad([y_mid], [x_mid], enable_double_backprop=True) grad = F.sqrt(F.batch_l2_norm_squared(grad)) loss_grad = self.lam * F.mean_squared_error(grad, xp.ones_like(grad .data)) loss = F.sum(-y_real) / batchsize loss += F.sum(y_fake) / batchsize wasserstein_distance = -loss loss += loss_grad chainer.reporter.report({'wasserstein_distance': wasserstein_distance, 'loss_grad': loss_grad}) chainer.reporter.report({'loss': loss}, dis) return loss <mask token>
<mask token> class WGANUpdater(chainer.training.updaters.StandardUpdater): def __init__(self, *args, **kwargs): self.gen, self.dis = kwargs.pop('models') self.n_dis = kwargs.pop('n_dis') self.lam = kwargs.pop('lam') self.iteration = 0 super(WGANUpdater, self).__init__(*args, **kwargs) def loss_gen(self, gen, y_fake): batchsize = len(y_fake) loss = F.sum(-y_fake) / batchsize chainer.reporter.report({'loss': loss}, gen) return loss def loss_dis(self, dis, y_real, y_fake, x_real, x_fake): batchsize = len(y_fake) xp = dis.xp eps = xp.random.uniform(0, 1, size=batchsize).astype('f')[:, None, None, None] x_mid = eps * x_real + (1.0 - eps) * x_fake y_mid, _ = self.dis(x_mid) grad, = chainer.grad([y_mid], [x_mid], enable_double_backprop=True) grad = F.sqrt(F.batch_l2_norm_squared(grad)) loss_grad = self.lam * F.mean_squared_error(grad, xp.ones_like(grad .data)) loss = F.sum(-y_real) / batchsize loss += F.sum(y_fake) / batchsize wasserstein_distance = -loss loss += loss_grad chainer.reporter.report({'wasserstein_distance': wasserstein_distance, 'loss_grad': loss_grad}) chainer.reporter.report({'loss': loss}, dis) return loss def update_core(self): gen_optimizer = self.get_optimizer('gen') dis_optimizer = self.get_optimizer('dis') xp = self.gen.xp for i in range(self.n_dis): batch = self.get_iterator('main').next() batchsize = len(batch) x = [] for j in range(batchsize): x.append(np.asarray(batch[j]).astype('f')) x_real = Variable(xp.asarray(x)) y_real, _ = self.dis(x_real) z = Variable(xp.asarray(self.gen.make_hidden(batchsize))) x_fake = self.gen(z) y_fake, _ = self.dis(x_fake) if i == 0: gen_optimizer.update(self.loss_gen, self.gen, y_fake) x_fake.unchain_backward() dis_optimizer.update(self.loss_dis, self.dis, y_real, y_fake, x_real, x_fake)
import numpy as np import chainer import chainer.functions as F from chainer import Variable from chainer.dataset import convert class WGANUpdater(chainer.training.updaters.StandardUpdater): def __init__(self, *args, **kwargs): self.gen, self.dis = kwargs.pop('models') self.n_dis = kwargs.pop('n_dis') self.lam = kwargs.pop('lam') self.iteration = 0 super(WGANUpdater, self).__init__(*args, **kwargs) def loss_gen(self, gen, y_fake): batchsize = len(y_fake) loss = F.sum(-y_fake) / batchsize chainer.reporter.report({'loss': loss}, gen) return loss def loss_dis(self, dis, y_real, y_fake, x_real, x_fake): batchsize = len(y_fake) xp = dis.xp eps = xp.random.uniform(0, 1, size=batchsize).astype('f')[:, None, None, None] x_mid = eps * x_real + (1.0 - eps) * x_fake y_mid, _ = self.dis(x_mid) grad, = chainer.grad([y_mid], [x_mid], enable_double_backprop=True) grad = F.sqrt(F.batch_l2_norm_squared(grad)) loss_grad = self.lam * F.mean_squared_error(grad, xp.ones_like(grad .data)) loss = F.sum(-y_real) / batchsize loss += F.sum(y_fake) / batchsize wasserstein_distance = -loss loss += loss_grad chainer.reporter.report({'wasserstein_distance': wasserstein_distance, 'loss_grad': loss_grad}) chainer.reporter.report({'loss': loss}, dis) return loss def update_core(self): gen_optimizer = self.get_optimizer('gen') dis_optimizer = self.get_optimizer('dis') xp = self.gen.xp for i in range(self.n_dis): batch = self.get_iterator('main').next() batchsize = len(batch) x = [] for j in range(batchsize): x.append(np.asarray(batch[j]).astype('f')) x_real = Variable(xp.asarray(x)) y_real, _ = self.dis(x_real) z = Variable(xp.asarray(self.gen.make_hidden(batchsize))) x_fake = self.gen(z) y_fake, _ = self.dis(x_fake) if i == 0: gen_optimizer.update(self.loss_gen, self.gen, y_fake) x_fake.unchain_backward() dis_optimizer.update(self.loss_dis, self.dis, y_real, y_fake, x_real, x_fake)
#!/usr/bin/python3 #https://github.com/pfnet-research/chainer-gan-lib/blob/master/wgan_gp/updater.py import numpy as np import chainer import chainer.functions as F from chainer import Variable from chainer.dataset import convert class WGANUpdater(chainer.training.updaters.StandardUpdater): def __init__(self, *args, **kwargs): self.gen, self.dis = kwargs.pop('models') self.n_dis = kwargs.pop('n_dis') self.lam = kwargs.pop('lam') self.iteration = 0 super(WGANUpdater, self).__init__(*args, **kwargs) def loss_gen(self, gen, y_fake): batchsize = len(y_fake) loss = F.sum(-y_fake)/batchsize chainer.reporter.report({'loss': loss}, gen) return loss def loss_dis(self, dis, y_real, y_fake, x_real, x_fake): batchsize = len(y_fake) xp = dis.xp eps = xp.random.uniform(0, 1, size=batchsize)\ .astype("f")[:, None, None, None] x_mid = eps * x_real + (1.0 - eps) * x_fake y_mid,_ = self.dis(x_mid) grad, = chainer.grad([y_mid], [x_mid], enable_double_backprop=True) grad = F.sqrt(F.batch_l2_norm_squared(grad)) loss_grad = self.lam * F.mean_squared_error(grad, xp.ones_like(grad.data)) loss = F.sum(-y_real) / batchsize loss += F.sum(y_fake) / batchsize wasserstein_distance = -loss loss += loss_grad chainer.reporter.report({'wasserstein_distance': wasserstein_distance, 'loss_grad':loss_grad}) chainer.reporter.report({'loss': loss}, dis) return loss def update_core(self): gen_optimizer = self.get_optimizer('gen') dis_optimizer = self.get_optimizer('dis') xp = self.gen.xp for i in range(self.n_dis): batch = self.get_iterator('main').next() batchsize = len(batch) x = [] for j in range(batchsize): x.append(np.asarray(batch[j]).astype("f")) x_real = Variable(xp.asarray(x)) y_real,_ = self.dis(x_real) z = Variable(xp.asarray(self.gen.make_hidden(batchsize))) x_fake = self.gen(z) y_fake,_ = self.dis(x_fake) if i == 0: gen_optimizer.update(self.loss_gen, self.gen, y_fake) x_fake.unchain_backward() dis_optimizer.update(self.loss_dis, self.dis, y_real, y_fake, x_real, x_fake)
[ 0, 4, 5, 6, 7 ]
2,403
cb904408486ad9ea8cc0c8ff2ec393e480309a57
<mask token>
<mask token> result_dir = 'results' data_dir = 'datasets' cache_dir = f'{ROOT_PATH}/data/cache' run_dir_ignore = ['results', 'datasets', 'cache'] use_treeconnect = False treeconnect_threshold = 1024 vgg16 = 'vgg16_zhang_perceptual.pkl' model = 'stylegan2-ffhq-config-f.pkl' networks_urls = {'european': [ 'https://drive.google.com/uc?id=1--kh2Em5U1qh-H7Lin9FzppkZCQ18c4W', 'generator_model-stylegan2-config-f.pkl'], 'asian': [ 'https://drive.google.com/uc?id=1-3XU6KzIVywFoKXx2zG1hW8mH4OYpyO9', 'generator_yellow-stylegan2-config-f.pkl'], 'asian beauty': [ 'https://drive.google.com/uc?id=1-04v78_pI59M0IvhcKxsm3YhK2-plnbj', 'generator_star-stylegan2-config-f.pkl'], 'baby': [ 'https://drive.google.com/uc?id=1--684mANXSgC3aDhLc7lPM7OBHWuVRXa', 'generator_baby-stylegan2-config-f.pkl']}
<mask token> from facegan import ROOT_PATH result_dir = 'results' data_dir = 'datasets' cache_dir = f'{ROOT_PATH}/data/cache' run_dir_ignore = ['results', 'datasets', 'cache'] use_treeconnect = False treeconnect_threshold = 1024 vgg16 = 'vgg16_zhang_perceptual.pkl' model = 'stylegan2-ffhq-config-f.pkl' networks_urls = {'european': [ 'https://drive.google.com/uc?id=1--kh2Em5U1qh-H7Lin9FzppkZCQ18c4W', 'generator_model-stylegan2-config-f.pkl'], 'asian': [ 'https://drive.google.com/uc?id=1-3XU6KzIVywFoKXx2zG1hW8mH4OYpyO9', 'generator_yellow-stylegan2-config-f.pkl'], 'asian beauty': [ 'https://drive.google.com/uc?id=1-04v78_pI59M0IvhcKxsm3YhK2-plnbj', 'generator_star-stylegan2-config-f.pkl'], 'baby': [ 'https://drive.google.com/uc?id=1--684mANXSgC3aDhLc7lPM7OBHWuVRXa', 'generator_baby-stylegan2-config-f.pkl']}
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the Creative Commons Attribution-NonCommercial # 4.0 International License. To view a copy of this license, visit # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. """Global configuration.""" # ---------------------------------------------------------------------------- # Paths. from facegan import ROOT_PATH result_dir = 'results' data_dir = 'datasets' cache_dir = f'{ROOT_PATH}/data/cache' run_dir_ignore = ['results', 'datasets', 'cache'] # experimental - replace Dense layers with TreeConnect use_treeconnect = False treeconnect_threshold = 1024 # ---------------------------------------------------------------------------- vgg16 = 'vgg16_zhang_perceptual.pkl' model = 'stylegan2-ffhq-config-f.pkl' networks_urls = { 'european': [ 'https://drive.google.com/uc?id=1--kh2Em5U1qh-H7Lin9FzppkZCQ18c4W', 'generator_model-stylegan2-config-f.pkl' ], 'asian': [ 'https://drive.google.com/uc?id=1-3XU6KzIVywFoKXx2zG1hW8mH4OYpyO9', 'generator_yellow-stylegan2-config-f.pkl' ], 'asian beauty': [ 'https://drive.google.com/uc?id=1-04v78_pI59M0IvhcKxsm3YhK2-plnbj', 'generator_star-stylegan2-config-f.pkl' ], 'baby': [ 'https://drive.google.com/uc?id=1--684mANXSgC3aDhLc7lPM7OBHWuVRXa', 'generator_baby-stylegan2-config-f.pkl' ], }
null
[ 0, 1, 2, 3 ]
2,404
e30aaf1616a107662924da3671b179a1887974f7
<mask token> def get_req_var(var): result = 0 for s in vars: s = re.search('((?<=' + var + '>).+)', s) if s: result = s[0] break return result <mask token> @app.route('/') def home(): return render_template('index.html') <mask token> @app.route('/display/<filename>') def display_image(filename): filename = 'uploaded_images/' + filename return redirect(url_for('static', filename=filename), code=301) @app.route('/download/<filename>') def download_image(filename): filename = 'static/uploaded_images/' + filename return send_file(filename, as_attachment=True) @app.route('/send-mail/<filename>') def send_mail(filename): filename = 'static/uploaded_images/' + filename mail = Mail(app) mail.init_app(app) msg = Message('Sent from flask_app', sender=app.config['MAIL_USERNAME'], recipients=['[email protected]', '[email protected]', app.config['MAIL_USERNAME']]) with app.open_resource(filename) as fp: msg.attach('image.jpg', 'image/jpg', fp.read()) mail.send(msg) return render_template('mail_sent.html') @app.route('/upload-image', methods=['GET', 'POST']) def upload_image(): for f in os.listdir(image_path): os.remove(os.path.join(image_path, f)) print(f'file {f}') print(image_path) if request.method == 'POST': if request.files: if 'filesize' in request.cookies: if not allowed_image_filesize(request.cookies['filesize']): return redirect(request.url) image = request.files['image'] if image.filename == '': return redirect(request.url) if allowed_image(image.filename): filename = secure_filename(image.filename) img = np.fromfile(image, np.uint8) img = cv.imdecode(img, cv.IMREAD_COLOR) quality = 80 quality_param = [int(cv.IMWRITE_JPEG_QUALITY), quality] img_path = app.config['IMAGE_UPLOADS'] + '/' + filename cv.imwrite(img_path, img, quality_param) return render_template('success.html', filename=filename) else: return redirect(request.url) return render_template('upload_image.html')
<mask token> def get_req_var(var): result = 0 for s in vars: s = re.search('((?<=' + var + '>).+)', s) if s: result = s[0] break return result <mask token> @app.route('/') def home(): return render_template('index.html') def allowed_image_filesize(filesize): if int(filesize) <= app.config['MAX_IMAGE_FILESIZE']: return True else: return False def allowed_image(filename): if '.' not in filename: return False ext = filename.rsplit('.', 1)[1] if ext.upper() in app.config['ALLOWED_IMAGE_EXTENSIONS']: return True else: return False @app.route('/success') def success(filename): return render_template('success.html', filename=filename) @app.route('/display/<filename>') def display_image(filename): filename = 'uploaded_images/' + filename return redirect(url_for('static', filename=filename), code=301) @app.route('/download/<filename>') def download_image(filename): filename = 'static/uploaded_images/' + filename return send_file(filename, as_attachment=True) @app.route('/send-mail/<filename>') def send_mail(filename): filename = 'static/uploaded_images/' + filename mail = Mail(app) mail.init_app(app) msg = Message('Sent from flask_app', sender=app.config['MAIL_USERNAME'], recipients=['[email protected]', '[email protected]', app.config['MAIL_USERNAME']]) with app.open_resource(filename) as fp: msg.attach('image.jpg', 'image/jpg', fp.read()) mail.send(msg) return render_template('mail_sent.html') @app.route('/upload-image', methods=['GET', 'POST']) def upload_image(): for f in os.listdir(image_path): os.remove(os.path.join(image_path, f)) print(f'file {f}') print(image_path) if request.method == 'POST': if request.files: if 'filesize' in request.cookies: if not allowed_image_filesize(request.cookies['filesize']): return redirect(request.url) image = request.files['image'] if image.filename == '': return redirect(request.url) if allowed_image(image.filename): filename = secure_filename(image.filename) img = np.fromfile(image, np.uint8) img = cv.imdecode(img, cv.IMREAD_COLOR) quality = 80 quality_param = [int(cv.IMWRITE_JPEG_QUALITY), quality] img_path = app.config['IMAGE_UPLOADS'] + '/' + filename cv.imwrite(img_path, img, quality_param) return render_template('success.html', filename=filename) else: return redirect(request.url) return render_template('upload_image.html')
<mask token> file_path_file = open('flask_app/file_path.txt', 'r') vars = file_path_file.readlines() def get_req_var(var): result = 0 for s in vars: s = re.search('((?<=' + var + '>).+)', s) if s: result = s[0] break return result image_path = get_req_var('IMAGE_UPLOADS') app.config['IMAGE_UPLOADS'] = image_path app.config['ALLOWED_IMAGE_EXTENSIONS'] = ['JPEG', 'JPG'] app.config['MAX_CONTENT_LENGTH'] = 50 * 1024 * 1024 app.config['MAX_IMAGE_FILESIZE'] = 50 * 1024 * 1024 app.config['MAIL_SERVER'] = 'smtp.gmail.com' app.config['MAIL_PORT'] = 465 app.config['MAIL_USERNAME'] = get_req_var('MAIL_USERNAME') app.config['MAIL_PASSWORD'] = get_req_var('MAIL_PASSWORD') app.config['MAIL_USE_TLS'] = False app.config['MAIL_USE_SSL'] = True @app.route('/') def home(): return render_template('index.html') def allowed_image_filesize(filesize): if int(filesize) <= app.config['MAX_IMAGE_FILESIZE']: return True else: return False def allowed_image(filename): if '.' not in filename: return False ext = filename.rsplit('.', 1)[1] if ext.upper() in app.config['ALLOWED_IMAGE_EXTENSIONS']: return True else: return False @app.route('/success') def success(filename): return render_template('success.html', filename=filename) @app.route('/display/<filename>') def display_image(filename): filename = 'uploaded_images/' + filename return redirect(url_for('static', filename=filename), code=301) @app.route('/download/<filename>') def download_image(filename): filename = 'static/uploaded_images/' + filename return send_file(filename, as_attachment=True) @app.route('/send-mail/<filename>') def send_mail(filename): filename = 'static/uploaded_images/' + filename mail = Mail(app) mail.init_app(app) msg = Message('Sent from flask_app', sender=app.config['MAIL_USERNAME'], recipients=['[email protected]', '[email protected]', app.config['MAIL_USERNAME']]) with app.open_resource(filename) as fp: msg.attach('image.jpg', 'image/jpg', fp.read()) mail.send(msg) return render_template('mail_sent.html') @app.route('/upload-image', methods=['GET', 'POST']) def upload_image(): for f in os.listdir(image_path): os.remove(os.path.join(image_path, f)) print(f'file {f}') print(image_path) if request.method == 'POST': if request.files: if 'filesize' in request.cookies: if not allowed_image_filesize(request.cookies['filesize']): return redirect(request.url) image = request.files['image'] if image.filename == '': return redirect(request.url) if allowed_image(image.filename): filename = secure_filename(image.filename) img = np.fromfile(image, np.uint8) img = cv.imdecode(img, cv.IMREAD_COLOR) quality = 80 quality_param = [int(cv.IMWRITE_JPEG_QUALITY), quality] img_path = app.config['IMAGE_UPLOADS'] + '/' + filename cv.imwrite(img_path, img, quality_param) return render_template('success.html', filename=filename) else: return redirect(request.url) return render_template('upload_image.html')
from flask import render_template, request, redirect, url_for, send_file from flask_app import app import re import os from werkzeug.utils import secure_filename import numpy as np import cv2 as cv from flask_mail import Message, Mail file_path_file = open('flask_app/file_path.txt', 'r') vars = file_path_file.readlines() def get_req_var(var): result = 0 for s in vars: s = re.search('((?<=' + var + '>).+)', s) if s: result = s[0] break return result image_path = get_req_var('IMAGE_UPLOADS') app.config['IMAGE_UPLOADS'] = image_path app.config['ALLOWED_IMAGE_EXTENSIONS'] = ['JPEG', 'JPG'] app.config['MAX_CONTENT_LENGTH'] = 50 * 1024 * 1024 app.config['MAX_IMAGE_FILESIZE'] = 50 * 1024 * 1024 app.config['MAIL_SERVER'] = 'smtp.gmail.com' app.config['MAIL_PORT'] = 465 app.config['MAIL_USERNAME'] = get_req_var('MAIL_USERNAME') app.config['MAIL_PASSWORD'] = get_req_var('MAIL_PASSWORD') app.config['MAIL_USE_TLS'] = False app.config['MAIL_USE_SSL'] = True @app.route('/') def home(): return render_template('index.html') def allowed_image_filesize(filesize): if int(filesize) <= app.config['MAX_IMAGE_FILESIZE']: return True else: return False def allowed_image(filename): if '.' not in filename: return False ext = filename.rsplit('.', 1)[1] if ext.upper() in app.config['ALLOWED_IMAGE_EXTENSIONS']: return True else: return False @app.route('/success') def success(filename): return render_template('success.html', filename=filename) @app.route('/display/<filename>') def display_image(filename): filename = 'uploaded_images/' + filename return redirect(url_for('static', filename=filename), code=301) @app.route('/download/<filename>') def download_image(filename): filename = 'static/uploaded_images/' + filename return send_file(filename, as_attachment=True) @app.route('/send-mail/<filename>') def send_mail(filename): filename = 'static/uploaded_images/' + filename mail = Mail(app) mail.init_app(app) msg = Message('Sent from flask_app', sender=app.config['MAIL_USERNAME'], recipients=['[email protected]', '[email protected]', app.config['MAIL_USERNAME']]) with app.open_resource(filename) as fp: msg.attach('image.jpg', 'image/jpg', fp.read()) mail.send(msg) return render_template('mail_sent.html') @app.route('/upload-image', methods=['GET', 'POST']) def upload_image(): for f in os.listdir(image_path): os.remove(os.path.join(image_path, f)) print(f'file {f}') print(image_path) if request.method == 'POST': if request.files: if 'filesize' in request.cookies: if not allowed_image_filesize(request.cookies['filesize']): return redirect(request.url) image = request.files['image'] if image.filename == '': return redirect(request.url) if allowed_image(image.filename): filename = secure_filename(image.filename) img = np.fromfile(image, np.uint8) img = cv.imdecode(img, cv.IMREAD_COLOR) quality = 80 quality_param = [int(cv.IMWRITE_JPEG_QUALITY), quality] img_path = app.config['IMAGE_UPLOADS'] + '/' + filename cv.imwrite(img_path, img, quality_param) return render_template('success.html', filename=filename) else: return redirect(request.url) return render_template('upload_image.html')
from flask import render_template, request, redirect, url_for, send_file from flask_app import app import re import os from werkzeug.utils import secure_filename import numpy as np import cv2 as cv from flask_mail import Message, Mail file_path_file = open('flask_app/file_path.txt', 'r') vars = file_path_file.readlines() def get_req_var(var): result = 0 for s in vars: s = re.search("((?<=" + var + ">).+)", s) if s: result = s[0] break return result image_path = get_req_var("IMAGE_UPLOADS") app.config["IMAGE_UPLOADS"] = image_path app.config["ALLOWED_IMAGE_EXTENSIONS"] = ["JPEG", "JPG"] app.config['MAX_CONTENT_LENGTH'] = 50 * 1024 * 1024 app.config["MAX_IMAGE_FILESIZE"] = 50 * 1024 * 1024 # for mail app.config['MAIL_SERVER'] = 'smtp.gmail.com' app.config['MAIL_PORT'] = 465 app.config['MAIL_USERNAME'] = get_req_var("MAIL_USERNAME") app.config['MAIL_PASSWORD'] = get_req_var("MAIL_PASSWORD") app.config['MAIL_USE_TLS'] = False app.config['MAIL_USE_SSL'] = True # for mail @app.route('/') def home(): return render_template('index.html') def allowed_image_filesize(filesize): if int(filesize) <= app.config["MAX_IMAGE_FILESIZE"]: return True else: return False def allowed_image(filename): # We only want files with a . in the filename if "." not in filename: return False # Split the extension from the filename ext = filename.rsplit(".", 1)[1] # Check if the extension is in ALLOWED_IMAGE_EXTENSIONS if ext.upper() in app.config["ALLOWED_IMAGE_EXTENSIONS"]: return True else: return False @app.route('/success') def success(filename): return render_template('success.html', filename=filename) @app.route('/display/<filename>') def display_image(filename): filename = 'uploaded_images/' + filename return redirect(url_for('static', filename=filename), code=301) @app.route("/download/<filename>") def download_image(filename): filename = 'static/uploaded_images/' + filename return send_file(filename, as_attachment=True) @app.route("/send-mail/<filename>") def send_mail(filename): filename = 'static/uploaded_images/' + filename mail = Mail(app) mail.init_app(app) msg = Message( "Sent from flask_app", sender=app.config["MAIL_USERNAME"], recipients=["[email protected]", "[email protected]", app.config["MAIL_USERNAME"]], ) with app.open_resource(filename) as fp: msg.attach("image.jpg", "image/jpg", fp.read()) mail.send(msg) return render_template("mail_sent.html") @app.route("/upload-image", methods=["GET", "POST"]) def upload_image(): # cwd = os.path.join(os.getcwd(), image_path) # print(cwd) for f in os.listdir(image_path): os.remove(os.path.join(image_path, f)) print(f"file {f}") print(image_path) if request.method == "POST": if request.files: if "filesize" in request.cookies: if not allowed_image_filesize(request.cookies["filesize"]): return redirect(request.url) image = request.files["image"] if image.filename == "": return redirect(request.url) if allowed_image(image.filename): filename = secure_filename(image.filename) img = np.fromfile(image, np.uint8) img = cv.imdecode(img, cv.IMREAD_COLOR) quality = 80 quality_param = [int(cv.IMWRITE_JPEG_QUALITY), quality] img_path = app.config["IMAGE_UPLOADS"] + "/" + filename cv.imwrite(img_path, img, quality_param) return render_template('success.html', filename=filename) else: return redirect(request.url) return render_template("upload_image.html")
[ 6, 9, 10, 11, 12 ]
2,405
d4361b169bf75d3af82eca3d26609961ccc2f27e
<mask token>
<mask token> array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] solution = Solution.Find(6, array)
from find import Solution array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] solution = Solution.Find(6, array)
from find import Solution array = [[1,2,3],[4,5,6],[7,8,9]] solution = Solution.Find(6,array)
null
[ 0, 1, 2, 3 ]
2,406
74faeb1c09fe136ec4d9578173aeebe54b451e33
<mask token>
<mask token> @authentication.route('/register', methods=['GET', 'POST']) def register(): form = Register() if form.validate_on_submit(): data = {'first_name': request.form.get('first_name'), 'last_name': request.form.get('last_name'), 'email': request.form.get( 'email'), 'password': request.form.get('password')} u = User(first_name=data['first_name'], last_name=data['last_name'], email=data['email'], password=data['password']) u.hash_pass(u.password) db.session.add(u) db.session.commit() flash('You have succesfully registered!', 'primary') return redirect(url_for('authentication.login')) content = {'form': form} return render_template('register.html', **content) <mask token> @authentication.route('/logout') def logout(): logout_user() flash('You have successfully logged out!', 'info') return redirect(url_for('authentication.login'))
<mask token> @authentication.route('/register', methods=['GET', 'POST']) def register(): form = Register() if form.validate_on_submit(): data = {'first_name': request.form.get('first_name'), 'last_name': request.form.get('last_name'), 'email': request.form.get( 'email'), 'password': request.form.get('password')} u = User(first_name=data['first_name'], last_name=data['last_name'], email=data['email'], password=data['password']) u.hash_pass(u.password) db.session.add(u) db.session.commit() flash('You have succesfully registered!', 'primary') return redirect(url_for('authentication.login')) content = {'form': form} return render_template('register.html', **content) @authentication.route('/login', methods=['GET', 'POST']) def login(): form = Login() user = User.query.filter_by(email=request.form.get('email')).first() if form.validate_on_submit(): if user is None or not user.check_password(request.form.get('password') ): flash('You have entered incorrect details, please try again', 'danger') return redirect(url_for('authentication.login')) login_user(user) flash('You have successfully logged in!', 'success') return redirect(url_for('main.index')) content = {'form': form} return render_template('login.html', **content) @authentication.route('/logout') def logout(): logout_user() flash('You have successfully logged out!', 'info') return redirect(url_for('authentication.login'))
from . import bp as authentication from app import db from flask import current_app as app, render_template, request, redirect, url_for, flash, session from flask_login import login_user, logout_user, current_user, login_required from .forms import Register, Login, Settings from .models import User @authentication.route('/register', methods=['GET', 'POST']) def register(): form = Register() if form.validate_on_submit(): data = {'first_name': request.form.get('first_name'), 'last_name': request.form.get('last_name'), 'email': request.form.get( 'email'), 'password': request.form.get('password')} u = User(first_name=data['first_name'], last_name=data['last_name'], email=data['email'], password=data['password']) u.hash_pass(u.password) db.session.add(u) db.session.commit() flash('You have succesfully registered!', 'primary') return redirect(url_for('authentication.login')) content = {'form': form} return render_template('register.html', **content) @authentication.route('/login', methods=['GET', 'POST']) def login(): form = Login() user = User.query.filter_by(email=request.form.get('email')).first() if form.validate_on_submit(): if user is None or not user.check_password(request.form.get('password') ): flash('You have entered incorrect details, please try again', 'danger') return redirect(url_for('authentication.login')) login_user(user) flash('You have successfully logged in!', 'success') return redirect(url_for('main.index')) content = {'form': form} return render_template('login.html', **content) @authentication.route('/logout') def logout(): logout_user() flash('You have successfully logged out!', 'info') return redirect(url_for('authentication.login'))
from .import bp as authentication from app import db from flask import current_app as app, render_template, request, redirect, url_for, flash, session from flask_login import login_user, logout_user, current_user, login_required from .forms import Register, Login, Settings from .models import User # route for register using a WTForm @authentication.route('/register', methods=['GET', 'POST']) def register(): # set an instance of the form form = Register() if form.validate_on_submit(): # collect the data from the form into a dictionary data = { 'first_name' : request.form.get('first_name'), 'last_name' : request.form.get('last_name'), 'email' : request.form.get('email'), 'password' : request.form.get('password') } # create an instance of the User class using the data dictionary u = User(first_name=data['first_name'], last_name=data['last_name'], email=data['email'], password=data['password']) # securing the password u.hash_pass(u.password) # adding the user to the database db.session.add(u) db.session.commit() # confirmations flash("You have succesfully registered!", 'primary') # send them to the login page return redirect(url_for("authentication.login")) # sending the form model to the HTML page for rendering content = { 'form': form } return render_template('register.html', **content) # route for login using a WTform @authentication.route('/login', methods=['GET', 'POST']) def login(): # set an instance of the form form = Login() user = User.query.filter_by(email=request.form.get('email')).first() if form.validate_on_submit(): # check if the info is correct if user is None or not user.check_password(request.form.get('password')): flash("You have entered incorrect details, please try again", 'danger') return redirect(url_for('authentication.login')) login_user(user) flash("You have successfully logged in!", 'success') return redirect(url_for('main.index')) # sending the form model to the HTML page for rendering content = { 'form' : form } return render_template('login.html', **content) # logout route, pretty simple @authentication.route('/logout') def logout(): logout_user() flash("You have successfully logged out!", 'info') return redirect(url_for("authentication.login"))
[ 0, 2, 3, 4, 5 ]
2,407
743aa4ccbb9a131b5ef3d04475789d3d1da1a2fa
<mask token> class Category(db.Model): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token>
<mask token> class Category(db.Model): __tablename__ = 'category' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(20), nullable=False) addtime = db.Column(db.DateTime, nullable=False) def __repr__(self): return '<User %r>' % self.name <mask token>
<mask token> class Category(db.Model): __tablename__ = 'category' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(20), nullable=False) addtime = db.Column(db.DateTime, nullable=False) def __repr__(self): return '<User %r>' % self.name if __name__ == '__main__': db.create_all()
from flask_sqlalchemy import SQLAlchemy from config.manager import app from config.db import db class Category(db.Model): __tablename__ = 'category' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(20), nullable=False) addtime = db.Column(db.DateTime, nullable=False) def __repr__(self): return '<User %r>' % self.name if __name__ == '__main__': db.create_all()
# coding:utf-8 from flask_sqlalchemy import SQLAlchemy from config.manager import app from config.db import db class Category(db.Model): __tablename__ = 'category' id = db.Column(db.Integer, primary_key=True) # 编号 name = db.Column(db.String(20), nullable=False) # 账号 addtime = db.Column(db.DateTime, nullable=False) # 注册时间 def __repr__(self): return "<User %r>" % self.name if __name__ == '__main__': db.create_all()
[ 1, 3, 4, 5, 6 ]
2,408
418f2e1cbe4fb3ef369e981e72bf40eeddfd052e
<mask token>
<mask token> def my_loss(): return nn.CrossEntropyLoss()
import torch.nn as nn def my_loss(): return nn.CrossEntropyLoss()
import torch.nn as nn def my_loss(): return nn.CrossEntropyLoss()
null
[ 0, 1, 2, 3 ]
2,409
66b42791325a53172d4514cdd16ccd58d4edb186
<mask token> class Tarefas(Screen): <mask token> <mask token> class Tarefa(BoxLayout): def __init__(self, text='', **kwargs): super().__init__(**kwargs) self.ids.label.text = text class Test(App): def build(self): return Gerenciador() <mask token>
<mask token> class Gerenciador(ScreenManager): pass class Menu(Screen): pass class Tarefas(Screen): def __init__(self, tarefas=[], **kwargs): super().__init__(**kwargs) for tarefa in tarefas: self.ids.box.add_widget(Tarefa(text=tarefa)) def addWidget(self): texto = self.ids.texto.text self.ids.box.add_widget(Tarefa(text=texto)) self.ids.texto.text = '' class Tarefa(BoxLayout): def __init__(self, text='', **kwargs): super().__init__(**kwargs) self.ids.label.text = text class Test(App): def build(self): return Gerenciador() <mask token>
<mask token> class Gerenciador(ScreenManager): pass class Menu(Screen): pass class Tarefas(Screen): def __init__(self, tarefas=[], **kwargs): super().__init__(**kwargs) for tarefa in tarefas: self.ids.box.add_widget(Tarefa(text=tarefa)) def addWidget(self): texto = self.ids.texto.text self.ids.box.add_widget(Tarefa(text=texto)) self.ids.texto.text = '' class Tarefa(BoxLayout): def __init__(self, text='', **kwargs): super().__init__(**kwargs) self.ids.label.text = text class Test(App): def build(self): return Gerenciador() Test().run()
from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.uix.screenmanager import ScreenManager, Screen class Gerenciador(ScreenManager): pass class Menu(Screen): pass class Tarefas(Screen): def __init__(self, tarefas=[], **kwargs): super().__init__(**kwargs) for tarefa in tarefas: self.ids.box.add_widget(Tarefa(text=tarefa)) def addWidget(self): texto = self.ids.texto.text self.ids.box.add_widget(Tarefa(text=texto)) self.ids.texto.text = '' class Tarefa(BoxLayout): def __init__(self, text='', **kwargs): super().__init__(**kwargs) self.ids.label.text = text class Test(App): def build(self): return Gerenciador() Test().run()
from kivy.app import App from kivy.uix.boxlayout import BoxLayout from kivy.uix.screenmanager import ScreenManager, Screen class Gerenciador(ScreenManager): pass class Menu(Screen): pass class Tarefas(Screen): def __init__(self, tarefas=[], **kwargs): super().__init__(**kwargs) for tarefa in tarefas: self.ids.box.add_widget(Tarefa(text = tarefa)) def addWidget(self): texto = self.ids.texto.text self.ids.box.add_widget(Tarefa(text = texto)) self.ids.texto.text = '' class Tarefa(BoxLayout): def __init__(self, text='', **kwargs): super().__init__(**kwargs) self.ids.label.text = text class Test(App): def build(self): return Gerenciador() Test().run()
[ 5, 9, 10, 11, 12 ]
2,410
0354445d255cc79d3cb9242f82d37e035ff61788
/Users/jhajhajhajha1/anaconda/lib/python3.6/codecs.py
null
null
null
null
[ 0 ]
2,411
c46495eebbe796253f56b7472d5548b41c5d0bc4
<mask token> def check_number_2(problem_input: str) ->bool: previous = 0 current = 1 triple = True seen_a_double = False length = len(problem_input) while current < length: if int(problem_input[current]) < int(problem_input[previous]): return False if int(problem_input[current]) == int(problem_input[previous]): if previous >= 1: triple = int(problem_input[previous - 1]) == int(problem_input [previous]) if current < length - 1: triple = int(problem_input[current + 1]) == int(problem_input [current]) while current < length - 1 and int(problem_input[current] ) == int(problem_input[current + 1]): current += 1 previous += 1 if not triple: seen_a_double = True previous += 1 current += 1 return seen_a_double <mask token> def main(): x = '111111' print(check_number(x) is True) x = '223450' print(check_number(x) is False) x = '123789' print(check_number(x) is False) print('PART 1:', part_1()) x = '112233' print(check_number_2(x) is True) x = '123444' print(check_number_2(x) is False) x = '111122' print(check_number_2(x) is True) x = '112222' print(check_number_2(x) is True) x = '1112589' print(check_number_2(x) is False) print('PART 2:', part_2()) <mask token>
def part_1() ->int: start = 382345 end = 843167 total = 0 for number in range(start, end + 1): if check_number(str(number)): total += 1 return total <mask token> def check_number_2(problem_input: str) ->bool: previous = 0 current = 1 triple = True seen_a_double = False length = len(problem_input) while current < length: if int(problem_input[current]) < int(problem_input[previous]): return False if int(problem_input[current]) == int(problem_input[previous]): if previous >= 1: triple = int(problem_input[previous - 1]) == int(problem_input [previous]) if current < length - 1: triple = int(problem_input[current + 1]) == int(problem_input [current]) while current < length - 1 and int(problem_input[current] ) == int(problem_input[current + 1]): current += 1 previous += 1 if not triple: seen_a_double = True previous += 1 current += 1 return seen_a_double <mask token> def main(): x = '111111' print(check_number(x) is True) x = '223450' print(check_number(x) is False) x = '123789' print(check_number(x) is False) print('PART 1:', part_1()) x = '112233' print(check_number_2(x) is True) x = '123444' print(check_number_2(x) is False) x = '111122' print(check_number_2(x) is True) x = '112222' print(check_number_2(x) is True) x = '1112589' print(check_number_2(x) is False) print('PART 2:', part_2()) <mask token>
def part_1() ->int: start = 382345 end = 843167 total = 0 for number in range(start, end + 1): if check_number(str(number)): total += 1 return total def check_number(problem_input: str) ->bool: previous = 0 double = False for current in range(1, len(problem_input)): if int(problem_input[current]) < int(problem_input[previous]): return False if int(problem_input[previous]) == int(problem_input[current]): double = True previous += 1 return double def check_number_2(problem_input: str) ->bool: previous = 0 current = 1 triple = True seen_a_double = False length = len(problem_input) while current < length: if int(problem_input[current]) < int(problem_input[previous]): return False if int(problem_input[current]) == int(problem_input[previous]): if previous >= 1: triple = int(problem_input[previous - 1]) == int(problem_input [previous]) if current < length - 1: triple = int(problem_input[current + 1]) == int(problem_input [current]) while current < length - 1 and int(problem_input[current] ) == int(problem_input[current + 1]): current += 1 previous += 1 if not triple: seen_a_double = True previous += 1 current += 1 return seen_a_double def part_2() ->int: start = 382345 end = 843167 total = 0 for number in range(start, end + 1): if check_number_2(str(number)): total += 1 return total def main(): x = '111111' print(check_number(x) is True) x = '223450' print(check_number(x) is False) x = '123789' print(check_number(x) is False) print('PART 1:', part_1()) x = '112233' print(check_number_2(x) is True) x = '123444' print(check_number_2(x) is False) x = '111122' print(check_number_2(x) is True) x = '112222' print(check_number_2(x) is True) x = '1112589' print(check_number_2(x) is False) print('PART 2:', part_2()) <mask token>
def part_1() ->int: start = 382345 end = 843167 total = 0 for number in range(start, end + 1): if check_number(str(number)): total += 1 return total def check_number(problem_input: str) ->bool: previous = 0 double = False for current in range(1, len(problem_input)): if int(problem_input[current]) < int(problem_input[previous]): return False if int(problem_input[previous]) == int(problem_input[current]): double = True previous += 1 return double def check_number_2(problem_input: str) ->bool: previous = 0 current = 1 triple = True seen_a_double = False length = len(problem_input) while current < length: if int(problem_input[current]) < int(problem_input[previous]): return False if int(problem_input[current]) == int(problem_input[previous]): if previous >= 1: triple = int(problem_input[previous - 1]) == int(problem_input [previous]) if current < length - 1: triple = int(problem_input[current + 1]) == int(problem_input [current]) while current < length - 1 and int(problem_input[current] ) == int(problem_input[current + 1]): current += 1 previous += 1 if not triple: seen_a_double = True previous += 1 current += 1 return seen_a_double def part_2() ->int: start = 382345 end = 843167 total = 0 for number in range(start, end + 1): if check_number_2(str(number)): total += 1 return total def main(): x = '111111' print(check_number(x) is True) x = '223450' print(check_number(x) is False) x = '123789' print(check_number(x) is False) print('PART 1:', part_1()) x = '112233' print(check_number_2(x) is True) x = '123444' print(check_number_2(x) is False) x = '111122' print(check_number_2(x) is True) x = '112222' print(check_number_2(x) is True) x = '1112589' print(check_number_2(x) is False) print('PART 2:', part_2()) if __name__ == '__main__': main()
def part_1() -> int: start = 382345 end = 843167 total = 0 for number in range(start, end + 1): if check_number(str(number)): total += 1 return total def check_number(problem_input: str) -> bool: previous = 0 double = False for current in range(1, len(problem_input)): if int(problem_input[current]) < int(problem_input[previous]): return False if int(problem_input[previous]) == int(problem_input[current]): double = True previous += 1 return double def check_number_2(problem_input: str) -> bool: previous = 0 current = 1 triple = True seen_a_double = False length = len(problem_input) while current < length: if int(problem_input[current]) < int(problem_input[previous]): return False if int(problem_input[current]) == int(problem_input[previous]): if previous >= 1: triple = int(problem_input[previous - 1]) == int(problem_input[previous]) if current < length - 1: triple = int(problem_input[current + 1]) == int(problem_input[current]) while current < length - 1 and int(problem_input[current]) == int(problem_input[current + 1]): current += 1 previous += 1 if not triple: seen_a_double = True previous += 1 current += 1 return seen_a_double def part_2() -> int: start = 382345 end = 843167 total = 0 for number in range(start, end + 1): if check_number_2(str(number)): total += 1 return total def main(): x = "111111" print(check_number(x) is True) x = "223450" print(check_number(x) is False) x = "123789" print(check_number(x) is False) print("PART 1:", part_1()) # should be 460 x = "112233" print(check_number_2(x) is True) x = "123444" print(check_number_2(x) is False) x = "111122" print(check_number_2(x) is True) x = "112222" print(check_number_2(x) is True) x = "1112589" print(check_number_2(x) is False) print("PART 2:", part_2()) if __name__ == '__main__': main()
[ 2, 3, 5, 6, 7 ]
2,412
1c5ca920fe1f116a5bc52c9e5c53c13b1e1c925f
<mask token>
def tobin(n): bin = '' while n / 2 != 0: if n % 2 == 0: bin = bin + '0' else: bin = bin + '1' if n % 2 == 1: bin = bin + '1' return bin <mask token>
def tobin(n): bin = '' while n / 2 != 0: if n % 2 == 0: bin = bin + '0' else: bin = bin + '1' if n % 2 == 1: bin = bin + '1' return bin <mask token> print(bin)
def tobin(n): bin = '' while n / 2 != 0: if n % 2 == 0: bin = bin + '0' else: bin = bin + '1' if n % 2 == 1: bin = bin + '1' return bin n = int(input()) bin = tobin(5) print(bin)
def tobin(n): bin = ""; while(n/2!=0): if n%2==0: bin = bin + "0" else: bin = bin + "1" if n%2==1: bin = bin + "1" return bin n = int(input()) bin = tobin(5) print(bin)
[ 0, 1, 2, 3, 4 ]
2,413
f193094c551df2a32860948b1a8710b53ca0dfb6
<mask token>
<mask token> def quicksort(x, pivot_index): key1_idx, key2_idx, key3_idx = 0, 0, len(x) key1_val, key2_val = 'key1', 'key2' while key2_idx < key3_idx: if x[key2_idx]['key'] == key1_val: x[key1_idx], x[key2_idx] = x[key2_idx], x[key1_idx] key1_idx, key2_idx = key1_idx + 1, key2_idx + 1 elif x[key2_idx]['key'] == key2_val: key2_idx += 1 else: key3_idx -= 1 x[key2_idx], x[key3_idx] = x[key3_idx], x[key2_idx] return x <mask token>
<mask token> def quicksort(x, pivot_index): key1_idx, key2_idx, key3_idx = 0, 0, len(x) key1_val, key2_val = 'key1', 'key2' while key2_idx < key3_idx: if x[key2_idx]['key'] == key1_val: x[key1_idx], x[key2_idx] = x[key2_idx], x[key1_idx] key1_idx, key2_idx = key1_idx + 1, key2_idx + 1 elif x[key2_idx]['key'] == key2_val: key2_idx += 1 else: key3_idx -= 1 x[key2_idx], x[key3_idx] = x[key3_idx], x[key2_idx] return x if __name__ == '__main__': keys = ['key1', 'key2', 'key3'] values = [0, 1, 2, 3, 4] key_values = [{'key': key, 'value': value} for key in keys for value in values] random.shuffle(key_values) print(quicksort(key_values, 7))
import random def quicksort(x, pivot_index): key1_idx, key2_idx, key3_idx = 0, 0, len(x) key1_val, key2_val = 'key1', 'key2' while key2_idx < key3_idx: if x[key2_idx]['key'] == key1_val: x[key1_idx], x[key2_idx] = x[key2_idx], x[key1_idx] key1_idx, key2_idx = key1_idx + 1, key2_idx + 1 elif x[key2_idx]['key'] == key2_val: key2_idx += 1 else: key3_idx -= 1 x[key2_idx], x[key3_idx] = x[key3_idx], x[key2_idx] return x if __name__ == '__main__': keys = ['key1', 'key2', 'key3'] values = [0, 1, 2, 3, 4] key_values = [{'key': key, 'value': value} for key in keys for value in values] random.shuffle(key_values) print(quicksort(key_values, 7))
import random #quicksort a list of objects based on keys, which can be any of 3 values # done in O(n) time in one pass, and O(1) additional space complexity def quicksort(x, pivot_index): key1_idx, key2_idx, key3_idx = 0, 0, len(x) key1_val, key2_val= 'key1', 'key2' while key2_idx < key3_idx: if x[key2_idx]['key'] == key1_val: x[key1_idx], x[key2_idx] = x[key2_idx], x[key1_idx] key1_idx, key2_idx = key1_idx + 1, key2_idx + 1 elif x[key2_idx]['key'] == key2_val: key2_idx += 1 else: key3_idx -= 1 x[key2_idx], x[key3_idx] = x[key3_idx], x[key2_idx] return x if __name__ == '__main__': keys = ['key1', 'key2', 'key3'] values = [0, 1, 2, 3, 4] key_values = [{'key': key, 'value': value} for key in keys for value in values] random.shuffle(key_values) print(quicksort(key_values, 7))
[ 0, 1, 2, 3, 4 ]
2,414
0c7efa99dc22154f9835b277cba5057b213a28e7
<mask token>
<mask token> class NombreaplicacionConfig(AppConfig): <mask token>
<mask token> class NombreaplicacionConfig(AppConfig): name = 'nombreAplicacion'
from django.apps import AppConfig class NombreaplicacionConfig(AppConfig): name = 'nombreAplicacion'
null
[ 0, 1, 2, 3 ]
2,415
d0364b7cad29c639af9df5c78e810144ffd6ce2e
<mask token>
<mask token> def train(token2id, train_data, lr, batch_size, epochs, model): dataset = DataGenerator(token2id, train_data) dataloader = DataLoader(dataset, batch_size=batch_size, collate_fn= my_collate) model = to_device(model) model_optimizer = optim.Adam(model.discriminator.parameters(), lr=lr) criterion = nn.BCELoss() for epoch in range(1, epochs): print('Epoch {}'.format(epoch)) print('*' * 80) running_loss = 0 for i, data in enumerate(dataloader): data = to_device(data) x, x_len, y, _ = data predict = model(x, x_len) loss = criterion(predict.squeeze(1), y) model_optimizer.zero_grad() loss.backward() model_optimizer.step() running_loss += loss.item() if i % 10 == 0 and i != 0: print('Average batch loss: {}'.format(running_loss / 10)) running_loss = 0 <mask token>
<mask token> def train(token2id, train_data, lr, batch_size, epochs, model): dataset = DataGenerator(token2id, train_data) dataloader = DataLoader(dataset, batch_size=batch_size, collate_fn= my_collate) model = to_device(model) model_optimizer = optim.Adam(model.discriminator.parameters(), lr=lr) criterion = nn.BCELoss() for epoch in range(1, epochs): print('Epoch {}'.format(epoch)) print('*' * 80) running_loss = 0 for i, data in enumerate(dataloader): data = to_device(data) x, x_len, y, _ = data predict = model(x, x_len) loss = criterion(predict.squeeze(1), y) model_optimizer.zero_grad() loss.backward() model_optimizer.step() running_loss += loss.item() if i % 10 == 0 and i != 0: print('Average batch loss: {}'.format(running_loss / 10)) running_loss = 0 if __name__ == '__mian__': pass
from utils import to_device from utils import build_dictionary, my_collate from DataGenerator import DataGenerator from torch.utils.data import DataLoader from torch import optim import torch.nn as nn from ADSentimentModel import ADSentimentModel import torch def train(token2id, train_data, lr, batch_size, epochs, model): dataset = DataGenerator(token2id, train_data) dataloader = DataLoader(dataset, batch_size=batch_size, collate_fn= my_collate) model = to_device(model) model_optimizer = optim.Adam(model.discriminator.parameters(), lr=lr) criterion = nn.BCELoss() for epoch in range(1, epochs): print('Epoch {}'.format(epoch)) print('*' * 80) running_loss = 0 for i, data in enumerate(dataloader): data = to_device(data) x, x_len, y, _ = data predict = model(x, x_len) loss = criterion(predict.squeeze(1), y) model_optimizer.zero_grad() loss.backward() model_optimizer.step() running_loss += loss.item() if i % 10 == 0 and i != 0: print('Average batch loss: {}'.format(running_loss / 10)) running_loss = 0 if __name__ == '__mian__': pass
from utils import to_device from utils import build_dictionary,my_collate from DataGenerator import DataGenerator from torch.utils.data import DataLoader from torch import optim import torch.nn as nn from ADSentimentModel import ADSentimentModel import torch def train(token2id, train_data, lr, batch_size, epochs,model): dataset = DataGenerator(token2id, train_data) dataloader = DataLoader(dataset,batch_size=batch_size,collate_fn=my_collate) model = to_device(model) model_optimizer = optim.Adam(model.discriminator.parameters(),lr=lr) criterion = nn.BCELoss() for epoch in range(1,epochs): print("Epoch {}".format(epoch)) print("*"*80) running_loss = 0 for i,data in enumerate(dataloader): data = to_device(data) x,x_len,y,_ = data predict = model(x,x_len) loss = criterion(predict.squeeze(1),y) model_optimizer.zero_grad() loss.backward() model_optimizer.step() running_loss += loss.item() if i%10 == 0 and i != 0 : print("Average batch loss: {}".format(running_loss/10)) running_loss = 0 if __name__ == "__mian__": pass
[ 0, 1, 2, 3, 4 ]
2,416
43d9edd9120351ce5065eb266d482ccaa2e56177
<mask token>
<mask token> model.add(Dense(5, input_dim=1, activation='relu')) model.add(Dense(3)) model.add(Dense(1)) model.summary() <mask token>
<mask token> x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) x2 = np.array([11, 12, 13, 14, 15]) model = Sequential() model.add(Dense(5, input_dim=1, activation='relu')) model.add(Dense(3)) model.add(Dense(1)) model.summary() <mask token>
from keras.models import Sequential from keras.layers import Dense import numpy as np x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) x2 = np.array([11, 12, 13, 14, 15]) model = Sequential() model.add(Dense(5, input_dim=1, activation='relu')) model.add(Dense(3)) model.add(Dense(1)) model.summary() <mask token>
from keras.models import Sequential from keras.layers import Dense import numpy as np x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) x2 = np.array([11, 12, 13, 14, 15]) model = Sequential() model.add(Dense(5, input_dim=1, activation='relu')) model.add(Dense(3)) model.add(Dense(1)) model.summary() ''' model.compile(loss='mse', optimizer='adam', metrics=['accuracy']) model.fit(x, y, epochs=100) loss, acc = model.evaluate(x, y) print("acc : ", acc) print("loss : ", loss) y_predict = model.predict(x2) print(y_predict) '''
[ 0, 1, 2, 3, 4 ]
2,417
eca40c37e0e437a5f4e5643f5fb7cd3e38605471
<mask token> def about(request): teams = Team.objects.all() return render(request, 'pages/about.html', {'teams': teams}) <mask token> def contact(request): if request.method == 'POST': name = request.POST['name'] email = request.POST['email'] subject = request.POST['subject'] phone = request.POST['phone'] message = request.POST['message'] cfm = ContactForm(name=name, email=email, subject=subject, phone= phone, message=message) cfm.save() messages.success(request, 'Successfully Saved') return render(request, 'pages/contact.html')
<mask token> def about(request): teams = Team.objects.all() return render(request, 'pages/about.html', {'teams': teams}) def service(request): return render(request, 'pages/services.html') def contact(request): if request.method == 'POST': name = request.POST['name'] email = request.POST['email'] subject = request.POST['subject'] phone = request.POST['phone'] message = request.POST['message'] cfm = ContactForm(name=name, email=email, subject=subject, phone= phone, message=message) cfm.save() messages.success(request, 'Successfully Saved') return render(request, 'pages/contact.html')
<mask token> def index(request): teams = Team.objects.all() cars = Car.objects.order_by('-created_date').filter(is_featured=True) all_cars = Car.objects.order_by('-created_date').all() model_field = Car.objects.values_list('model', flat=True).distinct() state_field = Car.objects.values_list('state', flat=True).distinct() body_field = Car.objects.values_list('body_style', flat=True).distinct() year_field = Car.objects.values_list('year', flat=True).distinct() return render(request, 'pages/index.html', {'teams': teams, 'featured_cars': cars, 'all_cars': all_cars, 'model_field': model_field, 'state_field': state_field, 'body_field': body_field, 'year_field': year_field}) def about(request): teams = Team.objects.all() return render(request, 'pages/about.html', {'teams': teams}) def service(request): return render(request, 'pages/services.html') def contact(request): if request.method == 'POST': name = request.POST['name'] email = request.POST['email'] subject = request.POST['subject'] phone = request.POST['phone'] message = request.POST['message'] cfm = ContactForm(name=name, email=email, subject=subject, phone= phone, message=message) cfm.save() messages.success(request, 'Successfully Saved') return render(request, 'pages/contact.html')
from django.shortcuts import render from .models import Team, ContactForm from cars.models import Car from django.contrib import messages def index(request): teams = Team.objects.all() cars = Car.objects.order_by('-created_date').filter(is_featured=True) all_cars = Car.objects.order_by('-created_date').all() model_field = Car.objects.values_list('model', flat=True).distinct() state_field = Car.objects.values_list('state', flat=True).distinct() body_field = Car.objects.values_list('body_style', flat=True).distinct() year_field = Car.objects.values_list('year', flat=True).distinct() return render(request, 'pages/index.html', {'teams': teams, 'featured_cars': cars, 'all_cars': all_cars, 'model_field': model_field, 'state_field': state_field, 'body_field': body_field, 'year_field': year_field}) def about(request): teams = Team.objects.all() return render(request, 'pages/about.html', {'teams': teams}) def service(request): return render(request, 'pages/services.html') def contact(request): if request.method == 'POST': name = request.POST['name'] email = request.POST['email'] subject = request.POST['subject'] phone = request.POST['phone'] message = request.POST['message'] cfm = ContactForm(name=name, email=email, subject=subject, phone= phone, message=message) cfm.save() messages.success(request, 'Successfully Saved') return render(request, 'pages/contact.html')
from django.shortcuts import render from .models import Team,ContactForm from cars.models import Car from django.contrib import messages # Create your views here. def index(request): teams=Team.objects.all() cars = Car.objects.order_by("-created_date").filter(is_featured=True) all_cars=Car.objects.order_by("-created_date").all() model_field=Car.objects.values_list('model',flat=True).distinct() state_field=Car.objects.values_list('state',flat=True).distinct() body_field=Car.objects.values_list('body_style',flat=True).distinct() year_field=Car.objects.values_list('year',flat=True).distinct() return render(request,'pages/index.html',{'teams':teams,'featured_cars':cars,"all_cars":all_cars,'model_field':model_field,'state_field':state_field,'body_field':body_field,'year_field':year_field}) def about(request): teams = Team.objects.all() return render(request,'pages/about.html',{'teams':teams}) def service(request): return render(request,'pages/services.html') def contact(request): if request.method == 'POST': name=request.POST['name'] email=request.POST['email'] subject=request.POST['subject'] phone=request.POST['phone'] message=request.POST['message'] cfm=ContactForm(name=name,email=email,subject=subject,phone=phone,message=message) cfm.save() messages.success(request,'Successfully Saved') return render(request,'pages/contact.html')
[ 2, 3, 4, 5, 6 ]
2,418
77a82f99ab10e3d53e3f8466d43b67e8b87c1588
<mask token>
print(1) print(2) print('Jenkins') print('Jenkins2') print('Jenkins3') print('Jenkins44') print('Jenkins55khlk') print('3333333') print('44444444') print('jhjhj')
print(1) print(2) print("Jenkins") print("Jenkins2") print("Jenkins3") print("Jenkins44") print("Jenkins55khlk") print("3333333") print("44444444") print("jhjhj")
null
null
[ 0, 1, 2 ]
2,419
28f4f14c3c29ee96c370ffe71c268549552b915e
<mask token> class Person(models.Model): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> class PersonTemporaryCode(models.Model): person = models.ForeignKey(Person, on_delete=models.CASCADE) code = models.IntegerField() expiration_date = models.DateTimeField() def __str__(self): return f'{self.person} - {self.code} -- {self.expiration_date}'
<mask token> class Person(models.Model): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def __str__(self): return '{} {}'.format(self.name, self.last_name) class PersonTemporaryCode(models.Model): person = models.ForeignKey(Person, on_delete=models.CASCADE) code = models.IntegerField() expiration_date = models.DateTimeField() def __str__(self): return f'{self.person} - {self.code} -- {self.expiration_date}'
<mask token> class Person(models.Model): user = models.ForeignKey(User, related_name='person', on_delete=models. CASCADE, blank=True, null=True) event = models.ForeignKey(Event, on_delete=models.CASCADE) name = models.CharField(max_length=100) last_name = models.CharField(max_length=100) email = models.EmailField(unique=True, validators=[validate_email]) university = models.ForeignKey(University, on_delete=models.PROTECT) rut = models.CharField(max_length=13, unique=True) phone_number = models.CharField(max_length=20) emergency_phone_number = models.CharField(max_length=20, null=True) avatar = models.ImageField(upload_to='person_avatars/', blank=True) pending_messages = models.IntegerField(default=0) def __str__(self): return '{} {}'.format(self.name, self.last_name) class PersonTemporaryCode(models.Model): person = models.ForeignKey(Person, on_delete=models.CASCADE) code = models.IntegerField() expiration_date = models.DateTimeField() def __str__(self): return f'{self.person} - {self.code} -- {self.expiration_date}'
from django.db import models from django.contrib.auth.models import User from Event.models import Event from University.models import University from django.core.validators import validate_email class Person(models.Model): user = models.ForeignKey(User, related_name='person', on_delete=models. CASCADE, blank=True, null=True) event = models.ForeignKey(Event, on_delete=models.CASCADE) name = models.CharField(max_length=100) last_name = models.CharField(max_length=100) email = models.EmailField(unique=True, validators=[validate_email]) university = models.ForeignKey(University, on_delete=models.PROTECT) rut = models.CharField(max_length=13, unique=True) phone_number = models.CharField(max_length=20) emergency_phone_number = models.CharField(max_length=20, null=True) avatar = models.ImageField(upload_to='person_avatars/', blank=True) pending_messages = models.IntegerField(default=0) def __str__(self): return '{} {}'.format(self.name, self.last_name) class PersonTemporaryCode(models.Model): person = models.ForeignKey(Person, on_delete=models.CASCADE) code = models.IntegerField() expiration_date = models.DateTimeField() def __str__(self): return f'{self.person} - {self.code} -- {self.expiration_date}'
from django.db import models from django.contrib.auth.models import User from Event.models import Event from University.models import University from django.core.validators import validate_email class Person(models.Model): user = models.ForeignKey( User, related_name='person', on_delete=models.CASCADE, blank=True, null=True ) event = models.ForeignKey(Event, on_delete=models.CASCADE) name = models.CharField(max_length=100) last_name = models.CharField(max_length=100) email = models.EmailField(unique=True, validators=[validate_email]) university = models.ForeignKey(University, on_delete=models.PROTECT) rut = models.CharField(max_length=13, unique=True) phone_number = models.CharField(max_length=20) emergency_phone_number = models.CharField(max_length=20, null=True) avatar = models.ImageField(upload_to='person_avatars/', blank=True) pending_messages = models.IntegerField(default=0) def __str__(self): return '{} {}'.format(self.name, self.last_name) class PersonTemporaryCode(models.Model): person = models.ForeignKey(Person, on_delete=models.CASCADE) code = models.IntegerField() expiration_date = models.DateTimeField() def __str__(self): return f'{self.person} - {self.code} -- {self.expiration_date}'
[ 4, 5, 6, 7, 8 ]
2,420
660334be611c30397c2f33890e1bca1fc43bd01f
<mask token> def PMHD(p, chi, b): return b ** 2 / p * (1 + sin(chi) ** 2) def xMHD(p, chi, b): return -b ** 2 / p ** 2 * sin(chi) * cos(chi) def PBGI(p, chi, b): Q = 0.7 * p / b ** 0.57 / sqrt(cos(chi)) if Q > 1: A = 1 else: A = Q return b ** 2 / p * (A * cos(chi) ** 2 + 0.01 / sqrt(p)) def xBGI(p, chi, b): Q = 0.7 * p / b ** 0.57 / sqrt(cos(chi)) if Q > 1: A = 1 else: A = Q return A * b ** 2 / p ** 2 * sin(chi) * cos(chi) <mask token>
<mask token> def PMHD(p, chi, b): return b ** 2 / p * (1 + sin(chi) ** 2) def xMHD(p, chi, b): return -b ** 2 / p ** 2 * sin(chi) * cos(chi) def PBGI(p, chi, b): Q = 0.7 * p / b ** 0.57 / sqrt(cos(chi)) if Q > 1: A = 1 else: A = Q return b ** 2 / p * (A * cos(chi) ** 2 + 0.01 / sqrt(p)) def xBGI(p, chi, b): Q = 0.7 * p / b ** 0.57 / sqrt(cos(chi)) if Q > 1: A = 1 else: A = Q return A * b ** 2 / p ** 2 * sin(chi) * cos(chi) <mask token> for i in range(450): xi0 = i / 5 + 0.1 x0 = pi / 180 * xi0 P = P0 x = x0 while 0.7 * P / B12 ** 0.57 / sqrt(cos(x)) < 2: P = P + PMHD(P, x, B12) * dx x = x + xMHD(P, x, B12) * dx gx = 180 / pi * x iP = int(P / 0.1) ix = int(gx) if iP < 80: MHD[iP, ix, 0] = MHD[iP, ix, 0] + 1 for i in range(450): xi0 = i / 5 + 0.1 x0 = pi / 180 * xi0 P = P0 x = x0 while 0.7 * P / B12 ** 0.57 / sqrt(cos(x)) < 2: P = P + PBGI(P, x, B12) * dx x = x + xBGI(P, x, B12) * dx gx = 180 / pi * x iP = int(P / 0.1) ix = int(gx) if iP < 80: BGI[iP, ix, 0] = BGI[iP, ix, 0] + 1 for i in range(90): j = int(10 * Pend) AngMHD[i, 0] = i AngBGI[i, 0] = i AngMHD[i, 1] = MHD[j, i, 0] AngBGI[i, 1] = BGI[j, i, 0] <mask token> plt.xlim(1, 90) plt.ylim(0, 1.2 * ymax) <mask token> plt.scatter(X1, Y1, color='blue', s=15, label='MHD') plt.scatter(X2, Y2, color='red', s=15, label='BGI') plt.title('$P_0$ = ' + str(P0) + ', P = ' + str(Pend) + ', $B_{12}$ = ' + str(B12) + '') plt.grid(True, which='both', ls='-') plt.grid(True, which='both', ls='-') plt.xlabel('$\\chi$') plt.legend() plt.show()
<mask token> MHD = np.zeros((80, 90, 5), dtype=float) BGI = np.zeros((80, 90, 5), dtype=float) Fp = np.zeros(80, dtype=float) AngMHD = np.zeros((90, 2), dtype=float) AngBGI = np.zeros((90, 2), dtype=float) B0 = [0.5, 1.5, 3, 5, 10] V = [0.3, 0.3, 0.2, 0.1, 0.1] def PMHD(p, chi, b): return b ** 2 / p * (1 + sin(chi) ** 2) def xMHD(p, chi, b): return -b ** 2 / p ** 2 * sin(chi) * cos(chi) def PBGI(p, chi, b): Q = 0.7 * p / b ** 0.57 / sqrt(cos(chi)) if Q > 1: A = 1 else: A = Q return b ** 2 / p * (A * cos(chi) ** 2 + 0.01 / sqrt(p)) def xBGI(p, chi, b): Q = 0.7 * p / b ** 0.57 / sqrt(cos(chi)) if Q > 1: A = 1 else: A = Q return A * b ** 2 / p ** 2 * sin(chi) * cos(chi) P0 = 0.3 Pend = 1 B12 = 4 dx = 0.0001 for i in range(450): xi0 = i / 5 + 0.1 x0 = pi / 180 * xi0 P = P0 x = x0 while 0.7 * P / B12 ** 0.57 / sqrt(cos(x)) < 2: P = P + PMHD(P, x, B12) * dx x = x + xMHD(P, x, B12) * dx gx = 180 / pi * x iP = int(P / 0.1) ix = int(gx) if iP < 80: MHD[iP, ix, 0] = MHD[iP, ix, 0] + 1 for i in range(450): xi0 = i / 5 + 0.1 x0 = pi / 180 * xi0 P = P0 x = x0 while 0.7 * P / B12 ** 0.57 / sqrt(cos(x)) < 2: P = P + PBGI(P, x, B12) * dx x = x + xBGI(P, x, B12) * dx gx = 180 / pi * x iP = int(P / 0.1) ix = int(gx) if iP < 80: BGI[iP, ix, 0] = BGI[iP, ix, 0] + 1 for i in range(90): j = int(10 * Pend) AngMHD[i, 0] = i AngBGI[i, 0] = i AngMHD[i, 1] = MHD[j, i, 0] AngBGI[i, 1] = BGI[j, i, 0] ymax = np.max(AngBGI) fig, ax = plt.subplots() x = np.linspace(0, 90) plt.xlim(1, 90) plt.ylim(0, 1.2 * ymax) data1 = np.array(AngMHD) data2 = np.array(AngBGI) X1, Y1 = data1.T X2, Y2 = data2.T plt.scatter(X1, Y1, color='blue', s=15, label='MHD') plt.scatter(X2, Y2, color='red', s=15, label='BGI') plt.title('$P_0$ = ' + str(P0) + ', P = ' + str(Pend) + ', $B_{12}$ = ' + str(B12) + '') plt.grid(True, which='both', ls='-') plt.grid(True, which='both', ls='-') plt.xlabel('$\\chi$') plt.legend() plt.show()
import numpy as np import matplotlib.pyplot as plt from math import * from scipy.integrate import * from pylab import * from scipy.integrate import quad MHD = np.zeros((80, 90, 5), dtype=float) BGI = np.zeros((80, 90, 5), dtype=float) Fp = np.zeros(80, dtype=float) AngMHD = np.zeros((90, 2), dtype=float) AngBGI = np.zeros((90, 2), dtype=float) B0 = [0.5, 1.5, 3, 5, 10] V = [0.3, 0.3, 0.2, 0.1, 0.1] def PMHD(p, chi, b): return b ** 2 / p * (1 + sin(chi) ** 2) def xMHD(p, chi, b): return -b ** 2 / p ** 2 * sin(chi) * cos(chi) def PBGI(p, chi, b): Q = 0.7 * p / b ** 0.57 / sqrt(cos(chi)) if Q > 1: A = 1 else: A = Q return b ** 2 / p * (A * cos(chi) ** 2 + 0.01 / sqrt(p)) def xBGI(p, chi, b): Q = 0.7 * p / b ** 0.57 / sqrt(cos(chi)) if Q > 1: A = 1 else: A = Q return A * b ** 2 / p ** 2 * sin(chi) * cos(chi) P0 = 0.3 Pend = 1 B12 = 4 dx = 0.0001 for i in range(450): xi0 = i / 5 + 0.1 x0 = pi / 180 * xi0 P = P0 x = x0 while 0.7 * P / B12 ** 0.57 / sqrt(cos(x)) < 2: P = P + PMHD(P, x, B12) * dx x = x + xMHD(P, x, B12) * dx gx = 180 / pi * x iP = int(P / 0.1) ix = int(gx) if iP < 80: MHD[iP, ix, 0] = MHD[iP, ix, 0] + 1 for i in range(450): xi0 = i / 5 + 0.1 x0 = pi / 180 * xi0 P = P0 x = x0 while 0.7 * P / B12 ** 0.57 / sqrt(cos(x)) < 2: P = P + PBGI(P, x, B12) * dx x = x + xBGI(P, x, B12) * dx gx = 180 / pi * x iP = int(P / 0.1) ix = int(gx) if iP < 80: BGI[iP, ix, 0] = BGI[iP, ix, 0] + 1 for i in range(90): j = int(10 * Pend) AngMHD[i, 0] = i AngBGI[i, 0] = i AngMHD[i, 1] = MHD[j, i, 0] AngBGI[i, 1] = BGI[j, i, 0] ymax = np.max(AngBGI) fig, ax = plt.subplots() x = np.linspace(0, 90) plt.xlim(1, 90) plt.ylim(0, 1.2 * ymax) data1 = np.array(AngMHD) data2 = np.array(AngBGI) X1, Y1 = data1.T X2, Y2 = data2.T plt.scatter(X1, Y1, color='blue', s=15, label='MHD') plt.scatter(X2, Y2, color='red', s=15, label='BGI') plt.title('$P_0$ = ' + str(P0) + ', P = ' + str(Pend) + ', $B_{12}$ = ' + str(B12) + '') plt.grid(True, which='both', ls='-') plt.grid(True, which='both', ls='-') plt.xlabel('$\\chi$') plt.legend() plt.show()
import numpy as np import matplotlib.pyplot as plt from math import * from scipy.integrate import * from pylab import * from scipy.integrate import quad MHD = np.zeros((80, 90, 5), dtype=float) BGI = np.zeros((80, 90, 5), dtype=float) Fp = np.zeros((80), dtype=float) AngMHD = np.zeros((90,2), dtype=float) AngBGI = np.zeros((90,2), dtype=float) B0 = [0.5, 1.5, 3, 5, 10] V = [0.3, 0.3, 0.2, 0.1, 0.1] def PMHD(p, chi, b): return b**2/p*(1 +(sin(chi))**2) def xMHD(p, chi, b): return -b**2/p**2*sin(chi)*cos(chi) def PBGI(p, chi, b): Q = 0.7*p/b**0.57/sqrt(cos(chi)) if Q > 1: A = 1 else: A = Q return b**2/p*(A*(cos(chi))**2 + 0.01/sqrt(p)) def xBGI(p, chi, b): Q = 0.7*p/b**0.57/sqrt(cos(chi)) if Q > 1: A = 1 else: A = Q return A*b**2/p**2*sin(chi)*cos(chi) P0 = 0.3 Pend = 1 B12 = 4 dx = 0.0001 for i in range(450): xi0 = i/5 + 0.1 x0 = pi/180*xi0 P = P0 x = x0 while 0.7*P/B12**0.57/sqrt(cos(x)) < 2: P = P + PMHD(P, x, B12)*dx x = x + xMHD(P, x, B12)*dx gx = 180/pi*x iP = int(P/0.1) ix = int(gx) if iP < 80: MHD[iP, ix, 0] = MHD[iP, ix, 0] + 1 for i in range(450): xi0 = i/5 + 0.1 x0 = pi/180*xi0 P = P0 x = x0 while 0.7*P/B12**0.57/sqrt(cos(x)) < 2: P = P + PBGI(P, x, B12)*dx x = x + xBGI(P, x, B12)*dx gx = 180/pi*x iP = int(P/0.1) ix = int(gx) if iP < 80: BGI[iP, ix, 0] = BGI[iP, ix, 0] + 1 #for j in range(80): # for i in range(90): # Fp[j] = Fp[j] + PxiB[j, i, 0] # print(j/10, Fp[j]) for i in range(90): j = int(10*Pend) AngMHD[i,0] = i AngBGI[i,0] = i AngMHD[i,1] = MHD[j, i, 0] AngBGI[i,1] = BGI[j, i, 0] # print(i, PxiB[10, i, 0]) ymax = np.max(AngBGI) fig, ax = plt.subplots() x = np.linspace(0, 90) plt.xlim(1, 90) plt.ylim(0, 1.2*ymax) data1 = np.array(AngMHD) data2 = np.array(AngBGI) X1,Y1 = data1.T X2,Y2 = data2.T plt.scatter(X1,Y1, color = 'blue', s=15, label="MHD") plt.scatter(X2,Y2, color = 'red', s=15, label="BGI") plt.title('$P_0$ = '+str(P0)+', P = '+str(Pend)+', $B_{12}$ = '+str(B12)+'') plt.grid(True,which="both", ls="-") plt.grid(True,which="both", ls="-") plt.xlabel('$\chi$') #plt.ylabel('$\lambda g(x_{0})$') plt.legend() plt.show() #fig, ax = plt.subplots() #x = np.linspace(0, 1) #plt.xlim(0.0001, 1.0) #plt.ylim(0, 0.1) #plt.plot(x, x**2*(cos(ch)*(1 - x**2) + 1/2*sin(ch)*(x - x**3))**3, label="fitting") #plt.title(''+str(PSR)+', $n_{\pm}$ (P = '+str(P)+', $B_{12}$ = '+str(B12)+', $\chi$ = '+str(chi)+'$^{\circ}$), $\lambda = 92$') #plt.grid(True,which="both", ls="-") #plt.grid(True,which="both", ls="-") ##ax.vlines(xcr, 0, 8, color = 'black', linewidth = 1.5, linestyle = '--') #plt.xlabel('$r_{0}/R_0$') #plt.ylabel('$n_{\pm}$') #plt.legend() #plt.show()
[ 4, 5, 6, 7, 8 ]
2,421
95ea8a21d3ac44c7760179bc4ebf67f0c16e6a19
<mask token> class SpecificationsEventHandler(FileSystemEventHandler): <mask token> def __init__(self): self.paused = False self.banner = ( '============================================================') <mask token> <mask token>
<mask token> class SpecificationsEventHandler(FileSystemEventHandler): <mask token> def __init__(self): self.paused = False self.banner = ( '============================================================') def on_modified(self, event): super(SpecificationsEventHandler, self).on_modified(event) """ Description: Catches the file modified event from the watchdog package and creates the full path to the file for submission to the test engine of choice. Args: event: Contains the information for the file system event when modification has occurred """ if event.is_directory: return if self.paused: return if event.src_path.endswith('_specs.py') and not self.paused: self.paused = True directory = os.path.abspath(os.path.dirname(event.src_path)) filename = os.path.basename(event.src_path) file = os.path.join(directory, filename) print(self.banner, end='\n') print('testing specifications found in file: {0}'.format(file)) print('') subprocess.call(['mamba', file], shell=True) print(self.banner, end='\n') self.paused = False return <mask token>
<mask token> class SpecificationsEventHandler(FileSystemEventHandler): """Runs the tests inside the specifications class when any specification file is modified """ def __init__(self): self.paused = False self.banner = ( '============================================================') def on_modified(self, event): super(SpecificationsEventHandler, self).on_modified(event) """ Description: Catches the file modified event from the watchdog package and creates the full path to the file for submission to the test engine of choice. Args: event: Contains the information for the file system event when modification has occurred """ if event.is_directory: return if self.paused: return if event.src_path.endswith('_specs.py') and not self.paused: self.paused = True directory = os.path.abspath(os.path.dirname(event.src_path)) filename = os.path.basename(event.src_path) file = os.path.join(directory, filename) print(self.banner, end='\n') print('testing specifications found in file: {0}'.format(file)) print('') subprocess.call(['mamba', file], shell=True) print(self.banner, end='\n') self.paused = False return if __name__ == '__main__': path = sys.argv[1] event_handler = SpecificationsEventHandler() observer = Observer() observer.schedule(event_handler, path, recursive=True) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join()
<mask token> import sys import os.path import subprocess import time from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler class SpecificationsEventHandler(FileSystemEventHandler): """Runs the tests inside the specifications class when any specification file is modified """ def __init__(self): self.paused = False self.banner = ( '============================================================') def on_modified(self, event): super(SpecificationsEventHandler, self).on_modified(event) """ Description: Catches the file modified event from the watchdog package and creates the full path to the file for submission to the test engine of choice. Args: event: Contains the information for the file system event when modification has occurred """ if event.is_directory: return if self.paused: return if event.src_path.endswith('_specs.py') and not self.paused: self.paused = True directory = os.path.abspath(os.path.dirname(event.src_path)) filename = os.path.basename(event.src_path) file = os.path.join(directory, filename) print(self.banner, end='\n') print('testing specifications found in file: {0}'.format(file)) print('') subprocess.call(['mamba', file], shell=True) print(self.banner, end='\n') self.paused = False return if __name__ == '__main__': path = sys.argv[1] event_handler = SpecificationsEventHandler() observer = Observer() observer.schedule(event_handler, path, recursive=True) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join()
""" module : watcher.py description : Script to automatically watch a directory (via watchdog) for tests and run them via py.test """ import sys import os.path import subprocess import time from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler class SpecificationsEventHandler(FileSystemEventHandler): """Runs the tests inside the specifications class when any specification file is modified """ def __init__(self): self.paused = False self.banner = "============================================================" def on_modified(self, event): super(SpecificationsEventHandler, self).on_modified(event) """ Description: Catches the file modified event from the watchdog package and creates the full path to the file for submission to the test engine of choice. Args: event: Contains the information for the file system event when modification has occurred """ # file modified triggers directory modified as well... if event.is_directory: return if self.paused: return if event.src_path.endswith("_specs.py") and not self.paused: self.paused = True #filename = os.path.basename(event.src_path) directory = os.path.abspath(os.path.dirname(event.src_path)) filename = os.path.basename(event.src_path) file = os.path.join(directory, filename) print(self.banner, end="\n") print("testing specifications found in file: {0}".format(file)) print("") # if using pytest, uncomment the line below #subprocess.call(['py.test', '-v', file], shell=True) #using mamba as the test engine: subprocess.call(['mamba', file], shell=True) print(self.banner, end="\n") self.paused = False return if __name__ == "__main__": path = sys.argv[1] event_handler = SpecificationsEventHandler() observer = Observer() observer.schedule(event_handler, path, recursive=True) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join()
[ 2, 3, 5, 6, 7 ]
2,422
18a49d46b39fe6e00e2ad137984cceab82f1e94b
<mask token> class PromptMessage(QWidget): <mask token> def set_stay(self, stay): self.m_stay = stay <mask token> def on_move(self): self.m_desktop_height = self.m_desktop_height - 10 self.move(self.m_point.x(), self.m_desktop_height) if self.m_desktop_height <= self.m_point.y(): self.m_show_tm.stop() time.sleep(self.m_stay) self.close() <mask token>
<mask token> class PromptMessage(QWidget): <mask token> def set_stay(self, stay): self.m_stay = stay def show_message(self, message_list): self.m_show_tm.timeout.connect(self.on_move) layout = QGridLayout() num = len(message_list) for i in range(num): label = QLabel() label.setText(message_list[i]) layout.addWidget(label, i, 0) self.setLayout(layout) self.adjustSize() rect = QApplication.desktop().availableGeometry() rect1 = QApplication.desktop().screenGeometry() self.m_desktop_height = rect.height() self.setMaximumSize(rect.width() * 0.1, rect.height() * 0.1) self.setWindowFlags(Qt.FramelessWindowHint) self.m_point.setX(rect.width() - self.width()) self.m_point.setY(rect.height() - self.height() - (rect1.height() - rect.height())) self.setWindowOpacity(0.8) self.show() self.m_show_tm.start(100) def on_move(self): self.m_desktop_height = self.m_desktop_height - 10 self.move(self.m_point.x(), self.m_desktop_height) if self.m_desktop_height <= self.m_point.y(): self.m_show_tm.stop() time.sleep(self.m_stay) self.close() <mask token>
<mask token> class PromptMessage(QWidget): def __init__(self, parent=None): super(PromptMessage, self).__init__(parent) self.m_show_tm = QTimer() self.m_stay_tm = QTimer() self.m_close_tm = QTimer() self.m_point = QPoint() self.m_stay = 2 def set_stay(self, stay): self.m_stay = stay def show_message(self, message_list): self.m_show_tm.timeout.connect(self.on_move) layout = QGridLayout() num = len(message_list) for i in range(num): label = QLabel() label.setText(message_list[i]) layout.addWidget(label, i, 0) self.setLayout(layout) self.adjustSize() rect = QApplication.desktop().availableGeometry() rect1 = QApplication.desktop().screenGeometry() self.m_desktop_height = rect.height() self.setMaximumSize(rect.width() * 0.1, rect.height() * 0.1) self.setWindowFlags(Qt.FramelessWindowHint) self.m_point.setX(rect.width() - self.width()) self.m_point.setY(rect.height() - self.height() - (rect1.height() - rect.height())) self.setWindowOpacity(0.8) self.show() self.m_show_tm.start(100) def on_move(self): self.m_desktop_height = self.m_desktop_height - 10 self.move(self.m_point.x(), self.m_desktop_height) if self.m_desktop_height <= self.m_point.y(): self.m_show_tm.stop() time.sleep(self.m_stay) self.close() <mask token> def logs(): print(sys._getframe().f_code.co_name) print(sys._getframe().f_back.f_code.co_name) print(sys._getframe().f_back.f_lineno) print(sys._getframe().f_back.f_code.co_filename) def get_cur_info(): logs() if __name__ == '__main__': from CommonAPI.Log import LOG_ERROR
import sys import time from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * from PyQt5 import * class PromptMessage(QWidget): def __init__(self, parent=None): super(PromptMessage, self).__init__(parent) self.m_show_tm = QTimer() self.m_stay_tm = QTimer() self.m_close_tm = QTimer() self.m_point = QPoint() self.m_stay = 2 def set_stay(self, stay): self.m_stay = stay def show_message(self, message_list): self.m_show_tm.timeout.connect(self.on_move) layout = QGridLayout() num = len(message_list) for i in range(num): label = QLabel() label.setText(message_list[i]) layout.addWidget(label, i, 0) self.setLayout(layout) self.adjustSize() rect = QApplication.desktop().availableGeometry() rect1 = QApplication.desktop().screenGeometry() self.m_desktop_height = rect.height() self.setMaximumSize(rect.width() * 0.1, rect.height() * 0.1) self.setWindowFlags(Qt.FramelessWindowHint) self.m_point.setX(rect.width() - self.width()) self.m_point.setY(rect.height() - self.height() - (rect1.height() - rect.height())) self.setWindowOpacity(0.8) self.show() self.m_show_tm.start(100) def on_move(self): self.m_desktop_height = self.m_desktop_height - 10 self.move(self.m_point.x(), self.m_desktop_height) if self.m_desktop_height <= self.m_point.y(): self.m_show_tm.stop() time.sleep(self.m_stay) self.close() import sys def logs(): print(sys._getframe().f_code.co_name) print(sys._getframe().f_back.f_code.co_name) print(sys._getframe().f_back.f_lineno) print(sys._getframe().f_back.f_code.co_filename) def get_cur_info(): logs() if __name__ == '__main__': from CommonAPI.Log import LOG_ERROR
import sys import time from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * from PyQt5 import * class PromptMessage(QWidget): def __init__(self, parent = None): super(PromptMessage,self).__init__(parent) self.m_show_tm = QTimer() self.m_stay_tm = QTimer() self.m_close_tm = QTimer() self.m_point = QPoint() self.m_stay=2 def set_stay(self, stay): self.m_stay = stay def show_message(self, message_list): self.m_show_tm.timeout.connect(self.on_move) layout=QGridLayout() num=len(message_list) for i in range(num): label=QLabel() label.setText(message_list[i]) layout.addWidget(label, i, 0) self.setLayout(layout) self.adjustSize() rect = QApplication.desktop().availableGeometry() rect1 = QApplication.desktop().screenGeometry () self.m_desktop_height=rect.height() self.setMaximumSize(rect.width() * 0.1, rect.height() * 0.1) self.setWindowFlags(Qt.FramelessWindowHint); self.m_point.setX(rect.width() - self.width()) self.m_point.setY(rect.height() - self.height() - (rect1.height() - rect.height())) #self.move(self.m_point) self.setWindowOpacity(0.8) self.show() self.m_show_tm.start(100) def on_move(self): self.m_desktop_height = self.m_desktop_height - 10 self.move(self.m_point.x(), self.m_desktop_height) if self.m_desktop_height <= self.m_point.y(): self.m_show_tm.stop() time.sleep(self.m_stay) self.close() import sys def logs(): print(sys._getframe().f_code.co_name) print(sys._getframe().f_back.f_code.co_name) print(sys._getframe().f_back.f_lineno) print(sys._getframe().f_back.f_code.co_filename) def get_cur_info() : logs() #模拟写日志 if __name__ == "__main__": from CommonAPI.Log import LOG_ERROR
[ 3, 4, 8, 9, 10 ]
2,423
74bc530d53cd86c52c44ba8e98d4d8f502032340
<mask token> class TestCRMcreateCustomer(TestCRM): <mask token> <mask token> <mask token>
<mask token> class TestCRMcreateCustomer(TestCRM): def createCustomer(self): self.driver.click('text= 客户 ') self.driver.click('text=sYVInwAAAABJRU5ErkJggg==') self.driver.send_keys('xpath=//*[@text="请输入"][1]', 'crm000001') self.driver.send_keys('xpath=//*[@text="请输入"][1]', 'c000001') self.driver.click_index('class=android.view.View', 59) self.driver.click('text=电话营销') self.driver.click('text=保存') self.driver.click_index('class=android.view.View', 10) def test_weiChat(self): self.login() self.createCustomer() self.logout() <mask token>
<mask token> class TestCRMcreateCustomer(TestCRM): def createCustomer(self): self.driver.click('text= 客户 ') self.driver.click('text=sYVInwAAAABJRU5ErkJggg==') self.driver.send_keys('xpath=//*[@text="请输入"][1]', 'crm000001') self.driver.send_keys('xpath=//*[@text="请输入"][1]', 'c000001') self.driver.click_index('class=android.view.View', 59) self.driver.click('text=电话营销') self.driver.click('text=保存') self.driver.click_index('class=android.view.View', 10) def test_weiChat(self): self.login() self.createCustomer() self.logout() if __name__ == '__main__': report_path = os.path.dirname(__file__ ) + '/report/' + 'TestCRM_report.html' suite = unittest.TestLoader().loadTestsFromTestCase(TestCRM) runer = HTMLTestRunner(title='悟空CRM测试报告', description='登录', stream=open (report_path, 'wb'), verbosity=2, retry=0, save_last_try=True) runer.run(suite)
import os import unittest from HTMLTestRunner_cn import HTMLTestRunner from time import sleep from framework.SunFlower import SunFlower from testcase.TestCRM import TestCRM class TestCRMcreateCustomer(TestCRM): def createCustomer(self): self.driver.click('text= 客户 ') self.driver.click('text=sYVInwAAAABJRU5ErkJggg==') self.driver.send_keys('xpath=//*[@text="请输入"][1]', 'crm000001') self.driver.send_keys('xpath=//*[@text="请输入"][1]', 'c000001') self.driver.click_index('class=android.view.View', 59) self.driver.click('text=电话营销') self.driver.click('text=保存') self.driver.click_index('class=android.view.View', 10) def test_weiChat(self): self.login() self.createCustomer() self.logout() if __name__ == '__main__': report_path = os.path.dirname(__file__ ) + '/report/' + 'TestCRM_report.html' suite = unittest.TestLoader().loadTestsFromTestCase(TestCRM) runer = HTMLTestRunner(title='悟空CRM测试报告', description='登录', stream=open (report_path, 'wb'), verbosity=2, retry=0, save_last_try=True) runer.run(suite)
# -*- encoding:utf-8 -*- import os import unittest from HTMLTestRunner_cn import HTMLTestRunner from time import sleep from framework.SunFlower import SunFlower from testcase.TestCRM import TestCRM class TestCRMcreateCustomer(TestCRM): # 创建客户 def createCustomer(self): # 点击客户图标 self.driver.click("text= 客户 ") # 点击添加客户按钮 self.driver.click("text=sYVInwAAAABJRU5ErkJggg==") #输入客户名称 self.driver.send_keys("xpath=//*[@text=\"请输入\"][1]","crm000001") #输入客户编号 self.driver.send_keys("xpath=//*[@text=\"请输入\"][1]","c000001") #选择客户信息来源 self.driver.click_index("class=android.view.View",59) self.driver.click("text=电话营销") #保存 self.driver.click("text=保存") #点击返回 self.driver.click_index("class=android.view.View",10) # sleep(5) # # # 向上滑动屏幕 # # self.driver.swipe_up(n=3) def test_weiChat(self): self.login() self.createCustomer() self.logout() if __name__ == "__main__": report_path = os.path.dirname(__file__) + "/report/" + "TestCRM_report.html" suite = unittest.TestLoader().loadTestsFromTestCase(TestCRM) runer = HTMLTestRunner(title="悟空CRM测试报告", description="登录", stream=open(report_path, "wb"), verbosity=2, retry=0, save_last_try=True) runer.run(suite)
[ 1, 3, 4, 5, 6 ]
2,424
825f3b930fee319314d520a32c2f9dcd718505ab
<mask token>
<mask token> for _ in range(int(input())): noe = int(input()) arr = [int(x) for x in input().split()] left = arr[0] rite = sum(arr) - left mins = abs(rite - left) for i in range(1, noe - 1): left += arr[i] rite -= arr[i] print(left, rite) mins = min(mins, abs(left - rite)) print(mins)
''' Sample Input 1 5 1 2 3 2 1 Sample Output 3 ''' for _ in range(int(input())): noe = int(input()) arr = [int(x) for x in input().split()] left = arr[0] rite = sum(arr) - left mins = abs(rite - left) for i in range(1, noe-1): left += arr[i] rite -= arr[i] print(left, rite) mins = min(mins, abs(left - rite)) print(mins)
null
null
[ 0, 1, 2 ]
2,425
ff0495ee1f4aa1f243c82b709a974d3d7c37e8bd
<mask token>
<mask token> if download_dir != '': os.chdir(download_dir) response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') soup.findAll('a') one_a_tag = soup.findAll('a')[startindex:] links = [one_a_tag[i]['href'] for i in range(len(one_a_tag))] for link in links: print(link) download_url = url + link urllib.request.urlretrieve(download_url, './' + link) if argentina: subprocess.check_call(['cdo', 'sellonlatbox,-80,-44,-60,-20', link, link.replace('.nc', 'ARG.nc')]) subprocess.check_call(['rm', link]) time.sleep(1) else: print('Please enter a valid download direction')
<mask token> download_dir = '' url = 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_dekad/netcdf/' argentina = False startindex = 5 if download_dir != '': os.chdir(download_dir) response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') soup.findAll('a') one_a_tag = soup.findAll('a')[startindex:] links = [one_a_tag[i]['href'] for i in range(len(one_a_tag))] for link in links: print(link) download_url = url + link urllib.request.urlretrieve(download_url, './' + link) if argentina: subprocess.check_call(['cdo', 'sellonlatbox,-80,-44,-60,-20', link, link.replace('.nc', 'ARG.nc')]) subprocess.check_call(['rm', link]) time.sleep(1) else: print('Please enter a valid download direction')
<mask token> import os import requests import urllib.request import time from bs4 import BeautifulSoup import subprocess download_dir = '' url = 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_dekad/netcdf/' argentina = False startindex = 5 if download_dir != '': os.chdir(download_dir) response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') soup.findAll('a') one_a_tag = soup.findAll('a')[startindex:] links = [one_a_tag[i]['href'] for i in range(len(one_a_tag))] for link in links: print(link) download_url = url + link urllib.request.urlretrieve(download_url, './' + link) if argentina: subprocess.check_call(['cdo', 'sellonlatbox,-80,-44,-60,-20', link, link.replace('.nc', 'ARG.nc')]) subprocess.check_call(['rm', link]) time.sleep(1) else: print('Please enter a valid download direction')
""" Download the full CHIRPS 2.0 data for a specific type (dekads, pentads, daily ...) with the possibility to automatically recut the data over Argentina. """ import os import requests import urllib.request import time from bs4 import BeautifulSoup import subprocess ############## # PARAMETERS to define # Set a pre-existing directory where the CHIRPS files must be saved download_dir = "" # Url for global dekad, change if you want another product url = 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_dekad/netcdf/' # Recut the data over Argentina argentina = False startindex = 5 ############## if download_dir != "": os.chdir(download_dir) response = requests.get(url) soup = BeautifulSoup(response.text,"html.parser") soup.findAll('a') # First link to download in the page # Here the index = 5 is valid for the dekad link but it may change if you download another product (ex : daily, dekad, monthly) # To be sure you can check the link and check that it is the first year one_a_tag = soup.findAll('a')[startindex:] links = [one_a_tag[i]['href'] for i in range(len(one_a_tag))] for link in links: print(link) download_url = url + link urllib.request.urlretrieve(download_url,"./"+link) # Section to recut CHIRPS over Argentina if argentina: subprocess.check_call(["cdo", "sellonlatbox,-80,-44,-60,-20", link, link.replace(".nc", "ARG.nc")]) subprocess.check_call(["rm", link]) time.sleep(1) else: print("Please enter a valid download direction")
[ 0, 1, 2, 3, 4 ]
2,426
70b08b9e8c1510a9be48a4bc1de39c6c85b36eed
<mask token> class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.encoder = nn.Sequential(nn.Conv2d(1, 6, 5), nn.MaxPool2d(2, 2), nn.ReLU(True), nn.Conv2d(6, 16, 5), nn.MaxPool2d(2, 2), nn.ReLU (True)) self.classifier = nn.Sequential(nn.Linear(16 * 4 * 4, 120), nn.ReLU (), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10), nn.Softmax(1) ) def forward(self, x): x = self.encoder(x) x = x.view(-1, 16 * 4 * 4) x = self.classifier(x) return x def train(args, model, device, train_loader, optimizer, epoch): model.train() test = MVPP('programs/mnist.txt') for batch_idx, (data, target) in enumerate(train_loader): for inner_iter in range(1): data, target = data.to(device), target.to(device) output = model(data) test.parameters = output.tolist() test.normalize_probs() value = sum(target.tolist()) observation = ':- not addition(i1,i2,' + str(value) + ').' gradients = test.gradients_one_obs(observation) if device.type == 'cuda': grad_by_prob = -1 * torch.cuda.FloatTensor(gradients) else: grad_by_prob = -1 * torch.FloatTensor(gradients) loss = F.nll_loss(output, target) output.backward(grad_by_prob, retain_graph=True) if (batch_idx + 1) % args.multiExampleNum == 0 and inner_iter == 0: optimizer.step() optimizer.zero_grad() if batch_idx % args.log_interval == 0 and inner_iter == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'. format(epoch, batch_idx * len(data), len(train_loader. dataset), 100.0 * batch_idx / len(train_loader), loss. item())) print(observation) print('Output: {}'.format(output.data.tolist())) print('Gradient: {}'.format(grad_by_prob)) def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'. format(test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset))) def main(): parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=2, metavar='N', help='input batch size for training (default: 2)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=1, metavar='N', help= 'number of epochs to train (default: 1)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help= 'random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=1000, metavar= 'N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--multiExampleNum', type=int, default=1, metavar= 'N', help= 'input the number of examples whose gradients are accumulated before back-propogation (default: 10)' ) args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device('cuda' if use_cuda else 'cpu') kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([transforms .ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args. test_batch_size, shuffle=True, **kwargs) model = Net().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) if args.save_model: torch.save(model.state_dict(), 'mnist_cnn.pt') <mask token>
<mask token> class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.encoder = nn.Sequential(nn.Conv2d(1, 6, 5), nn.MaxPool2d(2, 2), nn.ReLU(True), nn.Conv2d(6, 16, 5), nn.MaxPool2d(2, 2), nn.ReLU (True)) self.classifier = nn.Sequential(nn.Linear(16 * 4 * 4, 120), nn.ReLU (), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10), nn.Softmax(1) ) def forward(self, x): x = self.encoder(x) x = x.view(-1, 16 * 4 * 4) x = self.classifier(x) return x def train(args, model, device, train_loader, optimizer, epoch): model.train() test = MVPP('programs/mnist.txt') for batch_idx, (data, target) in enumerate(train_loader): for inner_iter in range(1): data, target = data.to(device), target.to(device) output = model(data) test.parameters = output.tolist() test.normalize_probs() value = sum(target.tolist()) observation = ':- not addition(i1,i2,' + str(value) + ').' gradients = test.gradients_one_obs(observation) if device.type == 'cuda': grad_by_prob = -1 * torch.cuda.FloatTensor(gradients) else: grad_by_prob = -1 * torch.FloatTensor(gradients) loss = F.nll_loss(output, target) output.backward(grad_by_prob, retain_graph=True) if (batch_idx + 1) % args.multiExampleNum == 0 and inner_iter == 0: optimizer.step() optimizer.zero_grad() if batch_idx % args.log_interval == 0 and inner_iter == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'. format(epoch, batch_idx * len(data), len(train_loader. dataset), 100.0 * batch_idx / len(train_loader), loss. item())) print(observation) print('Output: {}'.format(output.data.tolist())) print('Gradient: {}'.format(grad_by_prob)) def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'. format(test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset))) def main(): parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=2, metavar='N', help='input batch size for training (default: 2)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=1, metavar='N', help= 'number of epochs to train (default: 1)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help= 'random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=1000, metavar= 'N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--multiExampleNum', type=int, default=1, metavar= 'N', help= 'input the number of examples whose gradients are accumulated before back-propogation (default: 10)' ) args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device('cuda' if use_cuda else 'cpu') kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([transforms .ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args. test_batch_size, shuffle=True, **kwargs) model = Net().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) if args.save_model: torch.save(model.state_dict(), 'mnist_cnn.pt') if __name__ == '__main__': main()
<mask token> dprogram = """ img(i1). img(i2). addition(A,B,N) :- digit(A,1,N1), digit(B,1,N2), N=N1+N2. nn(m(X,1), digit, [0,1,2,3,4,5,6,7,8,9]) :- img(X). """ class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.encoder = nn.Sequential(nn.Conv2d(1, 6, 5), nn.MaxPool2d(2, 2), nn.ReLU(True), nn.Conv2d(6, 16, 5), nn.MaxPool2d(2, 2), nn.ReLU (True)) self.classifier = nn.Sequential(nn.Linear(16 * 4 * 4, 120), nn.ReLU (), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10), nn.Softmax(1) ) def forward(self, x): x = self.encoder(x) x = x.view(-1, 16 * 4 * 4) x = self.classifier(x) return x def train(args, model, device, train_loader, optimizer, epoch): model.train() test = MVPP('programs/mnist.txt') for batch_idx, (data, target) in enumerate(train_loader): for inner_iter in range(1): data, target = data.to(device), target.to(device) output = model(data) test.parameters = output.tolist() test.normalize_probs() value = sum(target.tolist()) observation = ':- not addition(i1,i2,' + str(value) + ').' gradients = test.gradients_one_obs(observation) if device.type == 'cuda': grad_by_prob = -1 * torch.cuda.FloatTensor(gradients) else: grad_by_prob = -1 * torch.FloatTensor(gradients) loss = F.nll_loss(output, target) output.backward(grad_by_prob, retain_graph=True) if (batch_idx + 1) % args.multiExampleNum == 0 and inner_iter == 0: optimizer.step() optimizer.zero_grad() if batch_idx % args.log_interval == 0 and inner_iter == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'. format(epoch, batch_idx * len(data), len(train_loader. dataset), 100.0 * batch_idx / len(train_loader), loss. item())) print(observation) print('Output: {}'.format(output.data.tolist())) print('Gradient: {}'.format(grad_by_prob)) def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'. format(test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset))) def main(): parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=2, metavar='N', help='input batch size for training (default: 2)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=1, metavar='N', help= 'number of epochs to train (default: 1)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help= 'random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=1000, metavar= 'N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--multiExampleNum', type=int, default=1, metavar= 'N', help= 'input the number of examples whose gradients are accumulated before back-propogation (default: 10)' ) args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device('cuda' if use_cuda else 'cpu') kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([transforms .ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args. test_batch_size, shuffle=True, **kwargs) model = Net().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) if args.save_model: torch.save(model.state_dict(), 'mnist_cnn.pt') if __name__ == '__main__': main()
from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import sys import json import math from klpmln import MVPP dprogram = """ img(i1). img(i2). addition(A,B,N) :- digit(A,1,N1), digit(B,1,N2), N=N1+N2. nn(m(X,1), digit, [0,1,2,3,4,5,6,7,8,9]) :- img(X). """ class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.encoder = nn.Sequential(nn.Conv2d(1, 6, 5), nn.MaxPool2d(2, 2), nn.ReLU(True), nn.Conv2d(6, 16, 5), nn.MaxPool2d(2, 2), nn.ReLU (True)) self.classifier = nn.Sequential(nn.Linear(16 * 4 * 4, 120), nn.ReLU (), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10), nn.Softmax(1) ) def forward(self, x): x = self.encoder(x) x = x.view(-1, 16 * 4 * 4) x = self.classifier(x) return x def train(args, model, device, train_loader, optimizer, epoch): model.train() test = MVPP('programs/mnist.txt') for batch_idx, (data, target) in enumerate(train_loader): for inner_iter in range(1): data, target = data.to(device), target.to(device) output = model(data) test.parameters = output.tolist() test.normalize_probs() value = sum(target.tolist()) observation = ':- not addition(i1,i2,' + str(value) + ').' gradients = test.gradients_one_obs(observation) if device.type == 'cuda': grad_by_prob = -1 * torch.cuda.FloatTensor(gradients) else: grad_by_prob = -1 * torch.FloatTensor(gradients) loss = F.nll_loss(output, target) output.backward(grad_by_prob, retain_graph=True) if (batch_idx + 1) % args.multiExampleNum == 0 and inner_iter == 0: optimizer.step() optimizer.zero_grad() if batch_idx % args.log_interval == 0 and inner_iter == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'. format(epoch, batch_idx * len(data), len(train_loader. dataset), 100.0 * batch_idx / len(train_loader), loss. item())) print(observation) print('Output: {}'.format(output.data.tolist())) print('Gradient: {}'.format(grad_by_prob)) def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'. format(test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset))) def main(): parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=2, metavar='N', help='input batch size for training (default: 2)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=1, metavar='N', help= 'number of epochs to train (default: 1)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help= 'random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=1000, metavar= 'N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--multiExampleNum', type=int, default=1, metavar= 'N', help= 'input the number of examples whose gradients are accumulated before back-propogation (default: 10)' ) args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device('cuda' if use_cuda else 'cpu') kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([transforms .ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args. test_batch_size, shuffle=True, **kwargs) model = Net().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) if args.save_model: torch.save(model.state_dict(), 'mnist_cnn.pt') if __name__ == '__main__': main()
from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import sys import json import math from klpmln import MVPP dprogram = ''' img(i1). img(i2). addition(A,B,N) :- digit(A,1,N1), digit(B,1,N2), N=N1+N2. nn(m(X,1), digit, [0,1,2,3,4,5,6,7,8,9]) :- img(X). ''' class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(1, 6, 5), # 6 is the output chanel size; 5 is the kernal size; 1 (chanel) 28 28 -> 6 24 24 nn.MaxPool2d(2, 2), # kernal size 2; stride size 2; 6 24 24 -> 6 12 12 nn.ReLU(True), # inplace=True means that it will modify the input directly thus save memory nn.Conv2d(6, 16, 5), # 6 12 12 -> 16 8 8 nn.MaxPool2d(2, 2), # 16 8 8 -> 16 4 4 nn.ReLU(True) ) self.classifier = nn.Sequential( nn.Linear(16 * 4 * 4, 120), nn.ReLU(), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10), nn.Softmax(1) ) def forward(self, x): x = self.encoder(x) x = x.view(-1, 16 * 4 * 4) x = self.classifier(x) # return F.log_softmax(x, dim=1) return x def train(args, model, device, train_loader, optimizer, epoch): model.train() test = MVPP("programs/mnist.txt") for batch_idx, (data, target) in enumerate(train_loader): for inner_iter in range(1): data, target = data.to(device), target.to(device) # optimizer.zero_grad() output = model(data) # test = MVPP("programs/mnist.txt") test.parameters = output.tolist() test.normalize_probs() # construct observation addition(i1, i2, sum) value = sum(target.tolist()) observation = ":- not addition(i1,i2,"+ str(value) + ")." # we calculate gradients with exact computation gradients = test.gradients_one_obs(observation) if device.type == 'cuda': grad_by_prob = -1 * torch.cuda.FloatTensor(gradients) else: grad_by_prob = -1 * torch.FloatTensor(gradients) loss = F.nll_loss(output, target) output.backward(grad_by_prob, retain_graph=True) if (batch_idx+1) % args.multiExampleNum == 0 and inner_iter == 0: optimizer.step() optimizer.zero_grad() # optimizer.step() if batch_idx % args.log_interval == 0 and inner_iter == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) print(observation) print("Output: {}".format(output.data.tolist())) print("Gradient: {}".format(grad_by_prob)) def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=2, metavar='N', help='input batch size for training (default: 2)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=1, metavar='N', help='number of epochs to train (default: 1)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=1000, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--multiExampleNum', type=int, default=1, metavar='N', help='input the number of examples whose gradients are accumulated before back-propogation (default: 10)') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) model = Net().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) # optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) if (args.save_model): torch.save(model.state_dict(),"mnist_cnn.pt") if __name__ == '__main__': main()
[ 6, 7, 8, 9, 10 ]
2,427
2ea335dd8d879731aad7713499440db6d1f60d36
<mask token> class ArchiveParserTest(unittest.TestCase): <mask token> def testReadHeaderPass(self): """Tests that archive is read when header is correct. Parses archive content containing only the signature. """ try: archive = archive_parser.Archive(archive_parser.Archive.GLOBAL_SIG) archive.Parse() except ValueError: self.fail('Archive reader read improperly.') def testReadHeaderFail(self): """Tests that parser throws error when header is invalid. Parses archive content lacking the correct signature. """ archive = archive_parser.Archive('Fail.') self.assertRaises(ValueError, archive.Parse) def testReadFile(self): """Tests that file is read correctly. Tests that correctly formatted file in archive is read correctly. """ content = archive_parser.Archive.GLOBAL_SIG file_name = 'test_file' content += file_name + ' ' * (archive_parser.Archive.FILE_ID_LENGTH - len(file_name)) content += ' ' * archive_parser.Archive.FILE_TIMESTAMP_LENGTH content += ' ' * archive_parser.Archive.OWNER_ID_LENGTH content += ' ' * archive_parser.Archive.GROUP_ID_LENGTH content += ' ' * archive_parser.Archive.FILE_MODE_LENGTH message = 'test file contents' message_size = str(len(message)) content += message_size + ' ' * (archive_parser.Archive. CONTENT_SIZE_LENGTH - len(message_size)) content += archive_parser.Archive.END_TAG content += message archive = archive_parser.Archive(content) archive.Parse() self.assertIn(file_name, archive.files) self.assertEquals(archive.files[file_name], message) <mask token>
<mask token> class ArchiveParserTest(unittest.TestCase): """Unit tests for archive_parser of vts.utils.python.archive. """ def testReadHeaderPass(self): """Tests that archive is read when header is correct. Parses archive content containing only the signature. """ try: archive = archive_parser.Archive(archive_parser.Archive.GLOBAL_SIG) archive.Parse() except ValueError: self.fail('Archive reader read improperly.') def testReadHeaderFail(self): """Tests that parser throws error when header is invalid. Parses archive content lacking the correct signature. """ archive = archive_parser.Archive('Fail.') self.assertRaises(ValueError, archive.Parse) def testReadFile(self): """Tests that file is read correctly. Tests that correctly formatted file in archive is read correctly. """ content = archive_parser.Archive.GLOBAL_SIG file_name = 'test_file' content += file_name + ' ' * (archive_parser.Archive.FILE_ID_LENGTH - len(file_name)) content += ' ' * archive_parser.Archive.FILE_TIMESTAMP_LENGTH content += ' ' * archive_parser.Archive.OWNER_ID_LENGTH content += ' ' * archive_parser.Archive.GROUP_ID_LENGTH content += ' ' * archive_parser.Archive.FILE_MODE_LENGTH message = 'test file contents' message_size = str(len(message)) content += message_size + ' ' * (archive_parser.Archive. CONTENT_SIZE_LENGTH - len(message_size)) content += archive_parser.Archive.END_TAG content += message archive = archive_parser.Archive(content) archive.Parse() self.assertIn(file_name, archive.files) self.assertEquals(archive.files[file_name], message) <mask token>
<mask token> class ArchiveParserTest(unittest.TestCase): """Unit tests for archive_parser of vts.utils.python.archive. """ def testReadHeaderPass(self): """Tests that archive is read when header is correct. Parses archive content containing only the signature. """ try: archive = archive_parser.Archive(archive_parser.Archive.GLOBAL_SIG) archive.Parse() except ValueError: self.fail('Archive reader read improperly.') def testReadHeaderFail(self): """Tests that parser throws error when header is invalid. Parses archive content lacking the correct signature. """ archive = archive_parser.Archive('Fail.') self.assertRaises(ValueError, archive.Parse) def testReadFile(self): """Tests that file is read correctly. Tests that correctly formatted file in archive is read correctly. """ content = archive_parser.Archive.GLOBAL_SIG file_name = 'test_file' content += file_name + ' ' * (archive_parser.Archive.FILE_ID_LENGTH - len(file_name)) content += ' ' * archive_parser.Archive.FILE_TIMESTAMP_LENGTH content += ' ' * archive_parser.Archive.OWNER_ID_LENGTH content += ' ' * archive_parser.Archive.GROUP_ID_LENGTH content += ' ' * archive_parser.Archive.FILE_MODE_LENGTH message = 'test file contents' message_size = str(len(message)) content += message_size + ' ' * (archive_parser.Archive. CONTENT_SIZE_LENGTH - len(message_size)) content += archive_parser.Archive.END_TAG content += message archive = archive_parser.Archive(content) archive.Parse() self.assertIn(file_name, archive.files) self.assertEquals(archive.files[file_name], message) if __name__ == '__main__': unittest.main()
import os import unittest from vts.utils.python.archive import archive_parser class ArchiveParserTest(unittest.TestCase): """Unit tests for archive_parser of vts.utils.python.archive. """ def testReadHeaderPass(self): """Tests that archive is read when header is correct. Parses archive content containing only the signature. """ try: archive = archive_parser.Archive(archive_parser.Archive.GLOBAL_SIG) archive.Parse() except ValueError: self.fail('Archive reader read improperly.') def testReadHeaderFail(self): """Tests that parser throws error when header is invalid. Parses archive content lacking the correct signature. """ archive = archive_parser.Archive('Fail.') self.assertRaises(ValueError, archive.Parse) def testReadFile(self): """Tests that file is read correctly. Tests that correctly formatted file in archive is read correctly. """ content = archive_parser.Archive.GLOBAL_SIG file_name = 'test_file' content += file_name + ' ' * (archive_parser.Archive.FILE_ID_LENGTH - len(file_name)) content += ' ' * archive_parser.Archive.FILE_TIMESTAMP_LENGTH content += ' ' * archive_parser.Archive.OWNER_ID_LENGTH content += ' ' * archive_parser.Archive.GROUP_ID_LENGTH content += ' ' * archive_parser.Archive.FILE_MODE_LENGTH message = 'test file contents' message_size = str(len(message)) content += message_size + ' ' * (archive_parser.Archive. CONTENT_SIZE_LENGTH - len(message_size)) content += archive_parser.Archive.END_TAG content += message archive = archive_parser.Archive(content) archive.Parse() self.assertIn(file_name, archive.files) self.assertEquals(archive.files[file_name], message) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python # # Copyright (C) 2016 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import unittest from vts.utils.python.archive import archive_parser class ArchiveParserTest(unittest.TestCase): """Unit tests for archive_parser of vts.utils.python.archive. """ def testReadHeaderPass(self): """Tests that archive is read when header is correct. Parses archive content containing only the signature. """ try: archive = archive_parser.Archive(archive_parser.Archive.GLOBAL_SIG) archive.Parse() except ValueError: self.fail('Archive reader read improperly.') def testReadHeaderFail(self): """Tests that parser throws error when header is invalid. Parses archive content lacking the correct signature. """ archive = archive_parser.Archive('Fail.') self.assertRaises(ValueError, archive.Parse) def testReadFile(self): """Tests that file is read correctly. Tests that correctly formatted file in archive is read correctly. """ content = archive_parser.Archive.GLOBAL_SIG file_name = 'test_file' content += file_name + ' ' * (archive_parser.Archive.FILE_ID_LENGTH - len(file_name)) content += ' ' * archive_parser.Archive.FILE_TIMESTAMP_LENGTH content += ' ' * archive_parser.Archive.OWNER_ID_LENGTH content += ' ' * archive_parser.Archive.GROUP_ID_LENGTH content += ' ' * archive_parser.Archive.FILE_MODE_LENGTH message = 'test file contents' message_size = str(len(message)) content += message_size + ' ' * (archive_parser.Archive.CONTENT_SIZE_LENGTH - len(message_size)) content += archive_parser.Archive.END_TAG content += message archive = archive_parser.Archive(content) archive.Parse() self.assertIn(file_name, archive.files) self.assertEquals(archive.files[file_name], message) if __name__ == "__main__": unittest.main()
[ 4, 5, 6, 7, 8 ]
2,428
d6bc8afcdb7636085b01add860f808024fbe566d
import sys lines = sys.stdin.readlines() t = int(lines[0]) for i in range(t): c = i*10+1 n = int(lines[c]) - 1 first = [x.strip() for x in [ lines[c+1], lines[c+2], lines[c+3], lines[c+4]]] first = [s.split() for s in first] m = int(lines[c+5]) - 1 second = [x.strip() for x in [ lines[c+6], lines[c+7], lines[c+8], lines[c+9]]] second = [s.split() for s in second] results = [a for a in first[n] if a in second[m] and a is not ' '] if len(results) == 1: print 'Case #{nr}: {number}'.format(nr=(i+1), number=results[0]) if len(results) > 1: print 'Case #{nr}: Bad magician!'.format(nr=(i+1)) if len(results) == 0: print 'Case #{nr}: Volunteer cheated!'.format(nr=(i+1))
null
null
null
null
[ 0 ]
2,429
0b833276ca10118f2d60e229ff03400b03915958
<mask token> class GenomicArray: <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def as_columns(self, **columns): """Wrap the named columns in this instance's metadata.""" return self.__class__.from_columns(columns, self.meta) def as_dataframe(self, dframe: pd.DataFrame, reset_index: bool=False): """Wrap the given pandas DataFrame in this instance's metadata.""" if reset_index: dframe = dframe.reset_index(drop=True) return self.__class__(dframe, self.meta.copy()) def as_series(self, arraylike: Iterable) ->pd.Series: """Coerce `arraylike` to a Series with this instance's index.""" return pd.Series(arraylike, index=self.data.index) <mask token> <mask token> def __eq__(self, other) ->bool: return isinstance(other, self.__class__) and self.data.equals(other .data) def __len__(self) ->int: return len(self.data) <mask token> <mask token> def __setitem__(self, index, value): """Assign to a portion of the data.""" if isinstance(index, int): self.data.iloc[index] = value elif isinstance(index, str): self.data[index] = value elif isinstance(index, tuple) and len(index) == 2 and index[1 ] in self.data.columns: self.data.loc[index] = value else: assert isinstance(index, slice) or len(index) > 0 self.data[index] = value def __delitem__(self, index): return NotImplemented def __iter__(self): return self.data.itertuples(index=False) <mask token> <mask token> <mask token> @property def end(self) ->pd.Series: """Get column 'end'.""" return self.data['end'] <mask token> def autosomes(self, also=None): """Select chromosomes w/ integer names, ignoring any 'chr' prefixes.""" is_auto = self.chromosome.str.match('(chr)?\\d+$', na=False) if not is_auto.any(): return self if also is not None: if isinstance(also, pd.Series): is_auto |= also else: if isinstance(also, str): also = [also] for a_chrom in also: is_auto |= self.chromosome == a_chrom return self[is_auto] <mask token> <mask token> def by_ranges(self, other, mode: str='outer', keep_empty: bool=True ) ->Iterator: """Group rows by another GenomicArray's bin coordinate ranges. For example, this can be used to group SNVs by CNV segments. Bins in this array that fall outside the other array's bins are skipped. Parameters ---------- other : GenomicArray Another GA instance. mode : string Determines what to do with bins that overlap a boundary of the selection. Possible values are: - ``inner``: Drop the bins on the selection boundary, don't emit them. - ``outer``: Keep/emit those bins as they are. - ``trim``: Emit those bins but alter their boundaries to match the selection; the bin start or end position is replaced with the selection boundary position. keep_empty : bool Whether to also yield `other` bins with no overlapping bins in `self`, or to skip them when iterating. Yields ------ tuple (other bin, GenomicArray of overlapping rows in self) """ for bin_row, subrange in by_ranges(self.data, other.data, mode, keep_empty): if len(subrange): yield bin_row, self.as_dataframe(subrange) elif keep_empty: yield bin_row, self.as_rows(subrange) def coords(self, also: Union[str, Iterable[str]]=()): """Iterate over plain coordinates of each bin: chromosome, start, end. Parameters ---------- also : str, or iterable of strings Also include these columns from `self`, in addition to chromosome, start, and end. Example, yielding rows in BED format: >>> probes.coords(also=["gene", "strand"]) """ cols = list(GenomicArray._required_columns) if also: if isinstance(also, str): cols.append(also) else: cols.extend(also) coordframe = self.data.loc[:, cols] return coordframe.itertuples(index=False) <mask token> <mask token> def in_ranges(self, chrom: Optional[str]=None, starts: Optional[ Sequence[Numeric]]=None, ends: Optional[Sequence[Numeric]]=None, mode: str='outer'): """Get the GenomicArray portion within the specified ranges. Similar to `in_ranges`, but concatenating the selections of all the regions specified by the `starts` and `ends` arrays. Parameters ---------- chrom : str or None Chromosome name to select. Use None if `self` has only one chromosome. starts : int array, or None Start coordinates of ranges to select, in 0-based coordinates. If None, start from 0. ends : int array, or None End coordinates of ranges to select. If None, select to the end of the chromosome. If `starts` and `ends` are both specified, they must be arrays of equal length. mode : str As in `by_ranges`: ``outer`` includes bins straddling the range boundaries, ``trim`` additionally alters the straddling bins' endpoints to match the range boundaries, and ``inner`` excludes those bins. Returns ------- GenomicArray Concatenation of all the subsets of `self` enclosed by the specified ranges. """ table = pd.concat(iter_ranges(self.data, chrom, starts, ends, mode), sort=False) return self.as_dataframe(table) <mask token> def iter_ranges_of(self, other, column: str, mode: str='outer', keep_empty: bool=True): """Group rows by another GenomicArray's bin coordinate ranges. For example, this can be used to group SNVs by CNV segments. Bins in this array that fall outside the other array's bins are skipped. Parameters ---------- other : GenomicArray Another GA instance. column : string Column name in `self` to extract values from. mode : string Determines what to do with bins that overlap a boundary of the selection. Possible values are: - ``inner``: Drop the bins on the selection boundary, don't emit them. - ``outer``: Keep/emit those bins as they are. - ``trim``: Emit those bins but alter their boundaries to match the selection; the bin start or end position is replaced with the selection boundary position. keep_empty : bool Whether to also yield `other` bins with no overlapping bins in `self`, or to skip them when iterating. Yields ------ tuple (other bin, GenomicArray of overlapping rows in self) """ if column not in self.data.columns: raise ValueError(f'No column named {column!r} in this object') ser = self.data[column] for slc in iter_slices(self.data, other.data, mode, keep_empty): yield ser[slc] <mask token> <mask token> <mask token> def add_columns(self, **columns): """Add the given columns to a copy of this GenomicArray. Parameters ---------- **columns : array Keyword arguments where the key is the new column's name and the value is an array of the same length as `self` which will be the new column's values. Returns ------- GenomicArray or subclass A new instance of `self` with the given columns included in the underlying dataframe. """ return self.as_dataframe(self.data.assign(**columns)) <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def cut(self, other, combine=None): """Split this array's regions at the boundaries in `other`.""" return NotImplemented <mask token> <mask token> <mask token> def resize_ranges(self, bp: int, chrom_sizes: Optional[Mapping[str, Numeric]]=None): """Resize each genomic bin by a fixed number of bases at each end. Bin 'start' values have a minimum of 0, and `chrom_sizes` can specify each chromosome's maximum 'end' value. Similar to 'bedtools slop'. Parameters ---------- bp : int Number of bases in each direction to expand or shrink each bin. Applies to 'start' and 'end' values symmetrically, and may be positive (expand) or negative (shrink). chrom_sizes : dict of string-to-int Chromosome name to length in base pairs. If given, all chromosomes in `self` must be included. """ table = self.data limits = {'lower': 0} if chrom_sizes: limits['upper'] = self.chromosome.replace(chrom_sizes) table = table.assign(start=(table['start'] - bp).clip(**limits), end=(table['end'] + bp).clip(**limits)) if bp < 0: ok_size = table['end'] - table['start'] > 0 logging.debug('Dropping %d bins with size <= 0', (~ok_size).sum()) table = table[ok_size] return self.as_dataframe(table.copy()) <mask token> <mask token> <mask token> <mask token> def _get_gene_map(self) ->OrderedDict: """Map unique gene names to their indices in this array. Returns ------- OrderedDict An (ordered) dictionary of unique gene names and the data indices of their segments in the order of occurrence (genomic order). """ if 'gene' not in self.data: return OrderedDict() genes: OrderedDict = OrderedDict() for idx, genestr in self.data['gene'].items(): if pd.isnull(genestr): continue for gene in genestr.split(','): if gene not in genes: genes[gene] = [] genes[gene].append(idx) return genes
<mask token> class GenomicArray: <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def as_columns(self, **columns): """Wrap the named columns in this instance's metadata.""" return self.__class__.from_columns(columns, self.meta) def as_dataframe(self, dframe: pd.DataFrame, reset_index: bool=False): """Wrap the given pandas DataFrame in this instance's metadata.""" if reset_index: dframe = dframe.reset_index(drop=True) return self.__class__(dframe, self.meta.copy()) def as_series(self, arraylike: Iterable) ->pd.Series: """Coerce `arraylike` to a Series with this instance's index.""" return pd.Series(arraylike, index=self.data.index) <mask token> <mask token> def __eq__(self, other) ->bool: return isinstance(other, self.__class__) and self.data.equals(other .data) def __len__(self) ->int: return len(self.data) <mask token> <mask token> def __setitem__(self, index, value): """Assign to a portion of the data.""" if isinstance(index, int): self.data.iloc[index] = value elif isinstance(index, str): self.data[index] = value elif isinstance(index, tuple) and len(index) == 2 and index[1 ] in self.data.columns: self.data.loc[index] = value else: assert isinstance(index, slice) or len(index) > 0 self.data[index] = value def __delitem__(self, index): return NotImplemented def __iter__(self): return self.data.itertuples(index=False) <mask token> <mask token> @property def start(self) ->pd.Series: """Get column 'start'.""" return self.data['start'] @property def end(self) ->pd.Series: """Get column 'end'.""" return self.data['end'] <mask token> def autosomes(self, also=None): """Select chromosomes w/ integer names, ignoring any 'chr' prefixes.""" is_auto = self.chromosome.str.match('(chr)?\\d+$', na=False) if not is_auto.any(): return self if also is not None: if isinstance(also, pd.Series): is_auto |= also else: if isinstance(also, str): also = [also] for a_chrom in also: is_auto |= self.chromosome == a_chrom return self[is_auto] <mask token> <mask token> def by_ranges(self, other, mode: str='outer', keep_empty: bool=True ) ->Iterator: """Group rows by another GenomicArray's bin coordinate ranges. For example, this can be used to group SNVs by CNV segments. Bins in this array that fall outside the other array's bins are skipped. Parameters ---------- other : GenomicArray Another GA instance. mode : string Determines what to do with bins that overlap a boundary of the selection. Possible values are: - ``inner``: Drop the bins on the selection boundary, don't emit them. - ``outer``: Keep/emit those bins as they are. - ``trim``: Emit those bins but alter their boundaries to match the selection; the bin start or end position is replaced with the selection boundary position. keep_empty : bool Whether to also yield `other` bins with no overlapping bins in `self`, or to skip them when iterating. Yields ------ tuple (other bin, GenomicArray of overlapping rows in self) """ for bin_row, subrange in by_ranges(self.data, other.data, mode, keep_empty): if len(subrange): yield bin_row, self.as_dataframe(subrange) elif keep_empty: yield bin_row, self.as_rows(subrange) def coords(self, also: Union[str, Iterable[str]]=()): """Iterate over plain coordinates of each bin: chromosome, start, end. Parameters ---------- also : str, or iterable of strings Also include these columns from `self`, in addition to chromosome, start, and end. Example, yielding rows in BED format: >>> probes.coords(also=["gene", "strand"]) """ cols = list(GenomicArray._required_columns) if also: if isinstance(also, str): cols.append(also) else: cols.extend(also) coordframe = self.data.loc[:, cols] return coordframe.itertuples(index=False) <mask token> <mask token> def in_ranges(self, chrom: Optional[str]=None, starts: Optional[ Sequence[Numeric]]=None, ends: Optional[Sequence[Numeric]]=None, mode: str='outer'): """Get the GenomicArray portion within the specified ranges. Similar to `in_ranges`, but concatenating the selections of all the regions specified by the `starts` and `ends` arrays. Parameters ---------- chrom : str or None Chromosome name to select. Use None if `self` has only one chromosome. starts : int array, or None Start coordinates of ranges to select, in 0-based coordinates. If None, start from 0. ends : int array, or None End coordinates of ranges to select. If None, select to the end of the chromosome. If `starts` and `ends` are both specified, they must be arrays of equal length. mode : str As in `by_ranges`: ``outer`` includes bins straddling the range boundaries, ``trim`` additionally alters the straddling bins' endpoints to match the range boundaries, and ``inner`` excludes those bins. Returns ------- GenomicArray Concatenation of all the subsets of `self` enclosed by the specified ranges. """ table = pd.concat(iter_ranges(self.data, chrom, starts, ends, mode), sort=False) return self.as_dataframe(table) <mask token> def iter_ranges_of(self, other, column: str, mode: str='outer', keep_empty: bool=True): """Group rows by another GenomicArray's bin coordinate ranges. For example, this can be used to group SNVs by CNV segments. Bins in this array that fall outside the other array's bins are skipped. Parameters ---------- other : GenomicArray Another GA instance. column : string Column name in `self` to extract values from. mode : string Determines what to do with bins that overlap a boundary of the selection. Possible values are: - ``inner``: Drop the bins on the selection boundary, don't emit them. - ``outer``: Keep/emit those bins as they are. - ``trim``: Emit those bins but alter their boundaries to match the selection; the bin start or end position is replaced with the selection boundary position. keep_empty : bool Whether to also yield `other` bins with no overlapping bins in `self`, or to skip them when iterating. Yields ------ tuple (other bin, GenomicArray of overlapping rows in self) """ if column not in self.data.columns: raise ValueError(f'No column named {column!r} in this object') ser = self.data[column] for slc in iter_slices(self.data, other.data, mode, keep_empty): yield ser[slc] <mask token> <mask token> <mask token> def add_columns(self, **columns): """Add the given columns to a copy of this GenomicArray. Parameters ---------- **columns : array Keyword arguments where the key is the new column's name and the value is an array of the same length as `self` which will be the new column's values. Returns ------- GenomicArray or subclass A new instance of `self` with the given columns included in the underlying dataframe. """ return self.as_dataframe(self.data.assign(**columns)) <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def cut(self, other, combine=None): """Split this array's regions at the boundaries in `other`.""" return NotImplemented <mask token> <mask token> <mask token> def resize_ranges(self, bp: int, chrom_sizes: Optional[Mapping[str, Numeric]]=None): """Resize each genomic bin by a fixed number of bases at each end. Bin 'start' values have a minimum of 0, and `chrom_sizes` can specify each chromosome's maximum 'end' value. Similar to 'bedtools slop'. Parameters ---------- bp : int Number of bases in each direction to expand or shrink each bin. Applies to 'start' and 'end' values symmetrically, and may be positive (expand) or negative (shrink). chrom_sizes : dict of string-to-int Chromosome name to length in base pairs. If given, all chromosomes in `self` must be included. """ table = self.data limits = {'lower': 0} if chrom_sizes: limits['upper'] = self.chromosome.replace(chrom_sizes) table = table.assign(start=(table['start'] - bp).clip(**limits), end=(table['end'] + bp).clip(**limits)) if bp < 0: ok_size = table['end'] - table['start'] > 0 logging.debug('Dropping %d bins with size <= 0', (~ok_size).sum()) table = table[ok_size] return self.as_dataframe(table.copy()) <mask token> <mask token> <mask token> <mask token> def _get_gene_map(self) ->OrderedDict: """Map unique gene names to their indices in this array. Returns ------- OrderedDict An (ordered) dictionary of unique gene names and the data indices of their segments in the order of occurrence (genomic order). """ if 'gene' not in self.data: return OrderedDict() genes: OrderedDict = OrderedDict() for idx, genestr in self.data['gene'].items(): if pd.isnull(genestr): continue for gene in genestr.split(','): if gene not in genes: genes[gene] = [] genes[gene].append(idx) return genes
<mask token> class GenomicArray: <mask token> <mask token> <mask token> def __init__(self, data_table: Optional[Union[Sequence, pd.DataFrame]], meta_dict: Optional[Mapping]=None): if data_table is None or isinstance(data_table, (list, tuple) ) and not len(data_table) or isinstance(data_table, pd.DataFrame ) and not len(data_table.columns): data_table = self._make_blank() else: if not isinstance(data_table, pd.DataFrame): data_table = pd.DataFrame(data_table) if not all(c in data_table.columns for c in self._required_columns ): raise ValueError('data table must have at least columns ' + f'{self._required_columns!r}; got {tuple(data_table.columns)!r}' ) if len(data_table): def ok_dtype(col, dtype): return isinstance(data_table[col].iat[0], dtype) else: def ok_dtype(col, dtype): return data_table[col].dtype == np.dtype(dtype) recast_cols = {col: dtype for col, dtype in zip(self. _required_columns, self._required_dtypes) if not ok_dtype( col, dtype)} if recast_cols: data_table = data_table.astype(recast_cols) self.data = data_table self.meta = dict(meta_dict) if meta_dict is not None and len(meta_dict ) else {} <mask token> <mask token> @classmethod def from_rows(cls, rows: Iterable, columns: Optional[Sequence[str]]= None, meta_dict: Optional[Mapping]=None): """Create a new instance from a list of rows, as tuples or arrays.""" if columns is None: columns = cls._required_columns table = pd.DataFrame.from_records(rows, columns=columns) return cls(table, meta_dict) def as_columns(self, **columns): """Wrap the named columns in this instance's metadata.""" return self.__class__.from_columns(columns, self.meta) def as_dataframe(self, dframe: pd.DataFrame, reset_index: bool=False): """Wrap the given pandas DataFrame in this instance's metadata.""" if reset_index: dframe = dframe.reset_index(drop=True) return self.__class__(dframe, self.meta.copy()) def as_series(self, arraylike: Iterable) ->pd.Series: """Coerce `arraylike` to a Series with this instance's index.""" return pd.Series(arraylike, index=self.data.index) <mask token> def __bool__(self) ->bool: return bool(len(self.data)) def __eq__(self, other) ->bool: return isinstance(other, self.__class__) and self.data.equals(other .data) def __len__(self) ->int: return len(self.data) def __contains__(self, key) ->bool: return key in self.data.columns def __getitem__(self, index) ->Union[pd.Series, pd.DataFrame]: """Access a portion of the data. Cases: - single integer: a row, as pd.Series - string row name: a column, as pd.Series - a boolean array: masked rows, as_dataframe - tuple of integers: selected rows, as_dataframe """ if isinstance(index, int): return self.data.iloc[index] if isinstance(index, str): return self.data[index] if isinstance(index, tuple) and len(index) == 2 and index[1 ] in self.data.columns: return self.data.loc[index] if isinstance(index, slice): return self.as_dataframe(self.data[index]) try: if isinstance(index, type(None)) or len(index) == 0: empty = pd.DataFrame(columns=self.data.columns) return self.as_dataframe(empty) except TypeError as exc: raise TypeError( f'object of type {type(index)!r} cannot be used as an index into a {self.__class__.__name__}' ) from exc return self.as_dataframe(self.data[index]) def __setitem__(self, index, value): """Assign to a portion of the data.""" if isinstance(index, int): self.data.iloc[index] = value elif isinstance(index, str): self.data[index] = value elif isinstance(index, tuple) and len(index) == 2 and index[1 ] in self.data.columns: self.data.loc[index] = value else: assert isinstance(index, slice) or len(index) > 0 self.data[index] = value def __delitem__(self, index): return NotImplemented def __iter__(self): return self.data.itertuples(index=False) <mask token> @property def chromosome(self) ->pd.Series: """Get column 'chromosome'.""" return self.data['chromosome'] @property def start(self) ->pd.Series: """Get column 'start'.""" return self.data['start'] @property def end(self) ->pd.Series: """Get column 'end'.""" return self.data['end'] <mask token> def autosomes(self, also=None): """Select chromosomes w/ integer names, ignoring any 'chr' prefixes.""" is_auto = self.chromosome.str.match('(chr)?\\d+$', na=False) if not is_auto.any(): return self if also is not None: if isinstance(also, pd.Series): is_auto |= also else: if isinstance(also, str): also = [also] for a_chrom in also: is_auto |= self.chromosome == a_chrom return self[is_auto] <mask token> def by_chromosome(self) ->Iterator: """Iterate over bins grouped by chromosome name.""" for chrom, subtable in self.data.groupby('chromosome', sort=False): yield chrom, self.as_dataframe(subtable) def by_ranges(self, other, mode: str='outer', keep_empty: bool=True ) ->Iterator: """Group rows by another GenomicArray's bin coordinate ranges. For example, this can be used to group SNVs by CNV segments. Bins in this array that fall outside the other array's bins are skipped. Parameters ---------- other : GenomicArray Another GA instance. mode : string Determines what to do with bins that overlap a boundary of the selection. Possible values are: - ``inner``: Drop the bins on the selection boundary, don't emit them. - ``outer``: Keep/emit those bins as they are. - ``trim``: Emit those bins but alter their boundaries to match the selection; the bin start or end position is replaced with the selection boundary position. keep_empty : bool Whether to also yield `other` bins with no overlapping bins in `self`, or to skip them when iterating. Yields ------ tuple (other bin, GenomicArray of overlapping rows in self) """ for bin_row, subrange in by_ranges(self.data, other.data, mode, keep_empty): if len(subrange): yield bin_row, self.as_dataframe(subrange) elif keep_empty: yield bin_row, self.as_rows(subrange) def coords(self, also: Union[str, Iterable[str]]=()): """Iterate over plain coordinates of each bin: chromosome, start, end. Parameters ---------- also : str, or iterable of strings Also include these columns from `self`, in addition to chromosome, start, and end. Example, yielding rows in BED format: >>> probes.coords(also=["gene", "strand"]) """ cols = list(GenomicArray._required_columns) if also: if isinstance(also, str): cols.append(also) else: cols.extend(also) coordframe = self.data.loc[:, cols] return coordframe.itertuples(index=False) <mask token> def in_range(self, chrom: Optional[str]=None, start: Optional[Numeric]= None, end: Optional[Numeric]=None, mode: str='outer'): """Get the GenomicArray portion within the given genomic range. Parameters ---------- chrom : str or None Chromosome name to select. Use None if `self` has only one chromosome. start : int or None Start coordinate of range to select, in 0-based coordinates. If None, start from 0. end : int or None End coordinate of range to select. If None, select to the end of the chromosome. mode : str As in `by_ranges`: ``outer`` includes bins straddling the range boundaries, ``trim`` additionally alters the straddling bins' endpoints to match the range boundaries, and ``inner`` excludes those bins. Returns ------- GenomicArray The subset of `self` enclosed by the specified range. """ starts = [int(start)] if start is not None else None ends = [int(end)] if end is not None else None results = iter_ranges(self.data, chrom, starts, ends, mode) return self.as_dataframe(next(results)) def in_ranges(self, chrom: Optional[str]=None, starts: Optional[ Sequence[Numeric]]=None, ends: Optional[Sequence[Numeric]]=None, mode: str='outer'): """Get the GenomicArray portion within the specified ranges. Similar to `in_ranges`, but concatenating the selections of all the regions specified by the `starts` and `ends` arrays. Parameters ---------- chrom : str or None Chromosome name to select. Use None if `self` has only one chromosome. starts : int array, or None Start coordinates of ranges to select, in 0-based coordinates. If None, start from 0. ends : int array, or None End coordinates of ranges to select. If None, select to the end of the chromosome. If `starts` and `ends` are both specified, they must be arrays of equal length. mode : str As in `by_ranges`: ``outer`` includes bins straddling the range boundaries, ``trim`` additionally alters the straddling bins' endpoints to match the range boundaries, and ``inner`` excludes those bins. Returns ------- GenomicArray Concatenation of all the subsets of `self` enclosed by the specified ranges. """ table = pd.concat(iter_ranges(self.data, chrom, starts, ends, mode), sort=False) return self.as_dataframe(table) def into_ranges(self, other, column: str, default, summary_func: Optional[Callable]=None): """Re-bin values from `column` into the corresponding ranges in `other`. Match overlapping/intersecting rows from `other` to each row in `self`. Then, within each range in `other`, extract the value(s) from `column` in `self`, using the function `summary_func` to produce a single value if multiple bins in `self` map to a single range in `other`. For example, group SNVs (self) by CNV segments (other) and calculate the median (summary_func) of each SNV group's allele frequencies. Parameters ---------- other : GenomicArray Ranges into which the overlapping values of `self` will be summarized. column : string Column name in `self` to extract values from. default Value to assign to indices in `other` that do not overlap any bins in `self`. Type should be the same as or compatible with the output field specified by `column`, or the output of `summary_func`. summary_func : callable, dict of string-to-callable, or None Specify how to reduce 1 or more `other` rows into a single value for the corresponding row in `self`. - If callable, apply to the `column` field each group of rows in `other` column. - If a single-element dict of column name to callable, apply to that field in `other` instead of `column`. - If None, use an appropriate summarizing function for the datatype of the `column` column in `other` (e.g. median of numbers, concatenation of strings). - If some other value, assign that value to `self` wherever there is an overlap. Returns ------- pd.Series The extracted and summarized values from `self` corresponding to other's genomic ranges, the same length as `other`. """ if column not in self: logging.warning("No '%s' column available for summary calculation", column) return pd.Series(np.repeat(default, len(other))) return into_ranges(self.data, other.data, column, default, summary_func ) def iter_ranges_of(self, other, column: str, mode: str='outer', keep_empty: bool=True): """Group rows by another GenomicArray's bin coordinate ranges. For example, this can be used to group SNVs by CNV segments. Bins in this array that fall outside the other array's bins are skipped. Parameters ---------- other : GenomicArray Another GA instance. column : string Column name in `self` to extract values from. mode : string Determines what to do with bins that overlap a boundary of the selection. Possible values are: - ``inner``: Drop the bins on the selection boundary, don't emit them. - ``outer``: Keep/emit those bins as they are. - ``trim``: Emit those bins but alter their boundaries to match the selection; the bin start or end position is replaced with the selection boundary position. keep_empty : bool Whether to also yield `other` bins with no overlapping bins in `self`, or to skip them when iterating. Yields ------ tuple (other bin, GenomicArray of overlapping rows in self) """ if column not in self.data.columns: raise ValueError(f'No column named {column!r} in this object') ser = self.data[column] for slc in iter_slices(self.data, other.data, mode, keep_empty): yield ser[slc] <mask token> <mask token> def copy(self): """Create an independent copy of this object.""" return self.as_dataframe(self.data.copy()) def add_columns(self, **columns): """Add the given columns to a copy of this GenomicArray. Parameters ---------- **columns : array Keyword arguments where the key is the new column's name and the value is an array of the same length as `self` which will be the new column's values. Returns ------- GenomicArray or subclass A new instance of `self` with the given columns included in the underlying dataframe. """ return self.as_dataframe(self.data.assign(**columns)) def keep_columns(self, colnames): """Extract a subset of columns, reusing this instance's metadata.""" colnames = self.data.columns.intersection(colnames) return self.__class__(self.data.loc[:, colnames], self.meta.copy()) <mask token> def filter(self, func=None, **kwargs): """Take a subset of rows where the given condition is true. Parameters ---------- func : callable A boolean function which will be applied to each row to keep rows where the result is True. **kwargs : string Keyword arguments like ``chromosome="chr7"`` or ``gene="Antitarget"``, which will keep rows where the keyed field equals the specified value. Return ------ GenomicArray Subset of `self` where the specified condition is True. """ table = self.data if func is not None: table = table[table.apply(func, axis=1)] for key, val in list(kwargs.items()): assert key in self table = table[table[key] == val] return self.as_dataframe(table) def shuffle(self): """Randomize the order of bins in this array (in-place).""" order = np.arange(len(self.data)) np.random.seed(679661) np.random.shuffle(order) self.data = self.data.iloc[order] return order def sort(self): """Sort this array's bins in-place, with smart chromosome ordering.""" sort_key = self.data.chromosome.apply(sorter_chrom) self.data = self.data.assign(_sort_key_=sort_key).sort_values(by=[ '_sort_key_', 'start', 'end'], kind='mergesort').drop('_sort_key_', axis=1).reset_index(drop=True) def sort_columns(self): """Sort this array's columns in-place, per class definition.""" extra_cols = [] for col in self.data.columns: if col not in self._required_columns: extra_cols.append(col) sorted_colnames = list(self._required_columns) + sorted(extra_cols) assert len(sorted_colnames) == len(self.data.columns) self.data = self.data.reindex(columns=sorted_colnames) def cut(self, other, combine=None): """Split this array's regions at the boundaries in `other`.""" return NotImplemented <mask token> <mask token> def merge(self, bp: int=0, stranded: bool=False, combine: Optional[Dict [str, Callable]]=None): """Merge adjacent or overlapping regions into single rows. Similar to 'bedtools merge'. """ return self.as_dataframe(merge(self.data, bp, stranded, combine)) def resize_ranges(self, bp: int, chrom_sizes: Optional[Mapping[str, Numeric]]=None): """Resize each genomic bin by a fixed number of bases at each end. Bin 'start' values have a minimum of 0, and `chrom_sizes` can specify each chromosome's maximum 'end' value. Similar to 'bedtools slop'. Parameters ---------- bp : int Number of bases in each direction to expand or shrink each bin. Applies to 'start' and 'end' values symmetrically, and may be positive (expand) or negative (shrink). chrom_sizes : dict of string-to-int Chromosome name to length in base pairs. If given, all chromosomes in `self` must be included. """ table = self.data limits = {'lower': 0} if chrom_sizes: limits['upper'] = self.chromosome.replace(chrom_sizes) table = table.assign(start=(table['start'] - bp).clip(**limits), end=(table['end'] + bp).clip(**limits)) if bp < 0: ok_size = table['end'] - table['start'] > 0 logging.debug('Dropping %d bins with size <= 0', (~ok_size).sum()) table = table[ok_size] return self.as_dataframe(table.copy()) def squash(self, combine=None): """Combine some groups of rows, by some criteria, into single rows.""" return NotImplemented def subdivide(self, avg_size: int, min_size: int=0, verbose: bool=False): """Split this array's regions into roughly equal-sized sub-regions.""" return self.as_dataframe(subdivide(self.data, avg_size, min_size, verbose)) <mask token> def total_range_size(self) ->int: """Total number of bases covered by all (merged) regions.""" if not len(self): return 0 regions = merge(self.data, bp=1) return regions.end.sum() - regions.start.sum() def _get_gene_map(self) ->OrderedDict: """Map unique gene names to their indices in this array. Returns ------- OrderedDict An (ordered) dictionary of unique gene names and the data indices of their segments in the order of occurrence (genomic order). """ if 'gene' not in self.data: return OrderedDict() genes: OrderedDict = OrderedDict() for idx, genestr in self.data['gene'].items(): if pd.isnull(genestr): continue for gene in genestr.split(','): if gene not in genes: genes[gene] = [] genes[gene].append(idx) return genes
<mask token> class GenomicArray: <mask token> <mask token> <mask token> def __init__(self, data_table: Optional[Union[Sequence, pd.DataFrame]], meta_dict: Optional[Mapping]=None): if data_table is None or isinstance(data_table, (list, tuple) ) and not len(data_table) or isinstance(data_table, pd.DataFrame ) and not len(data_table.columns): data_table = self._make_blank() else: if not isinstance(data_table, pd.DataFrame): data_table = pd.DataFrame(data_table) if not all(c in data_table.columns for c in self._required_columns ): raise ValueError('data table must have at least columns ' + f'{self._required_columns!r}; got {tuple(data_table.columns)!r}' ) if len(data_table): def ok_dtype(col, dtype): return isinstance(data_table[col].iat[0], dtype) else: def ok_dtype(col, dtype): return data_table[col].dtype == np.dtype(dtype) recast_cols = {col: dtype for col, dtype in zip(self. _required_columns, self._required_dtypes) if not ok_dtype( col, dtype)} if recast_cols: data_table = data_table.astype(recast_cols) self.data = data_table self.meta = dict(meta_dict) if meta_dict is not None and len(meta_dict ) else {} <mask token> @classmethod def from_columns(cls, columns: Mapping[str, Iterable], meta_dict: Optional[Mapping]=None): """Create a new instance from column arrays, given as a dict.""" table = pd.DataFrame.from_dict(columns) ary = cls(table, meta_dict) ary.sort_columns() return ary @classmethod def from_rows(cls, rows: Iterable, columns: Optional[Sequence[str]]= None, meta_dict: Optional[Mapping]=None): """Create a new instance from a list of rows, as tuples or arrays.""" if columns is None: columns = cls._required_columns table = pd.DataFrame.from_records(rows, columns=columns) return cls(table, meta_dict) def as_columns(self, **columns): """Wrap the named columns in this instance's metadata.""" return self.__class__.from_columns(columns, self.meta) def as_dataframe(self, dframe: pd.DataFrame, reset_index: bool=False): """Wrap the given pandas DataFrame in this instance's metadata.""" if reset_index: dframe = dframe.reset_index(drop=True) return self.__class__(dframe, self.meta.copy()) def as_series(self, arraylike: Iterable) ->pd.Series: """Coerce `arraylike` to a Series with this instance's index.""" return pd.Series(arraylike, index=self.data.index) <mask token> def __bool__(self) ->bool: return bool(len(self.data)) def __eq__(self, other) ->bool: return isinstance(other, self.__class__) and self.data.equals(other .data) def __len__(self) ->int: return len(self.data) def __contains__(self, key) ->bool: return key in self.data.columns def __getitem__(self, index) ->Union[pd.Series, pd.DataFrame]: """Access a portion of the data. Cases: - single integer: a row, as pd.Series - string row name: a column, as pd.Series - a boolean array: masked rows, as_dataframe - tuple of integers: selected rows, as_dataframe """ if isinstance(index, int): return self.data.iloc[index] if isinstance(index, str): return self.data[index] if isinstance(index, tuple) and len(index) == 2 and index[1 ] in self.data.columns: return self.data.loc[index] if isinstance(index, slice): return self.as_dataframe(self.data[index]) try: if isinstance(index, type(None)) or len(index) == 0: empty = pd.DataFrame(columns=self.data.columns) return self.as_dataframe(empty) except TypeError as exc: raise TypeError( f'object of type {type(index)!r} cannot be used as an index into a {self.__class__.__name__}' ) from exc return self.as_dataframe(self.data[index]) def __setitem__(self, index, value): """Assign to a portion of the data.""" if isinstance(index, int): self.data.iloc[index] = value elif isinstance(index, str): self.data[index] = value elif isinstance(index, tuple) and len(index) == 2 and index[1 ] in self.data.columns: self.data.loc[index] = value else: assert isinstance(index, slice) or len(index) > 0 self.data[index] = value def __delitem__(self, index): return NotImplemented def __iter__(self): return self.data.itertuples(index=False) <mask token> @property def chromosome(self) ->pd.Series: """Get column 'chromosome'.""" return self.data['chromosome'] @property def start(self) ->pd.Series: """Get column 'start'.""" return self.data['start'] @property def end(self) ->pd.Series: """Get column 'end'.""" return self.data['end'] <mask token> def autosomes(self, also=None): """Select chromosomes w/ integer names, ignoring any 'chr' prefixes.""" is_auto = self.chromosome.str.match('(chr)?\\d+$', na=False) if not is_auto.any(): return self if also is not None: if isinstance(also, pd.Series): is_auto |= also else: if isinstance(also, str): also = [also] for a_chrom in also: is_auto |= self.chromosome == a_chrom return self[is_auto] <mask token> def by_chromosome(self) ->Iterator: """Iterate over bins grouped by chromosome name.""" for chrom, subtable in self.data.groupby('chromosome', sort=False): yield chrom, self.as_dataframe(subtable) def by_ranges(self, other, mode: str='outer', keep_empty: bool=True ) ->Iterator: """Group rows by another GenomicArray's bin coordinate ranges. For example, this can be used to group SNVs by CNV segments. Bins in this array that fall outside the other array's bins are skipped. Parameters ---------- other : GenomicArray Another GA instance. mode : string Determines what to do with bins that overlap a boundary of the selection. Possible values are: - ``inner``: Drop the bins on the selection boundary, don't emit them. - ``outer``: Keep/emit those bins as they are. - ``trim``: Emit those bins but alter their boundaries to match the selection; the bin start or end position is replaced with the selection boundary position. keep_empty : bool Whether to also yield `other` bins with no overlapping bins in `self`, or to skip them when iterating. Yields ------ tuple (other bin, GenomicArray of overlapping rows in self) """ for bin_row, subrange in by_ranges(self.data, other.data, mode, keep_empty): if len(subrange): yield bin_row, self.as_dataframe(subrange) elif keep_empty: yield bin_row, self.as_rows(subrange) def coords(self, also: Union[str, Iterable[str]]=()): """Iterate over plain coordinates of each bin: chromosome, start, end. Parameters ---------- also : str, or iterable of strings Also include these columns from `self`, in addition to chromosome, start, and end. Example, yielding rows in BED format: >>> probes.coords(also=["gene", "strand"]) """ cols = list(GenomicArray._required_columns) if also: if isinstance(also, str): cols.append(also) else: cols.extend(also) coordframe = self.data.loc[:, cols] return coordframe.itertuples(index=False) <mask token> def in_range(self, chrom: Optional[str]=None, start: Optional[Numeric]= None, end: Optional[Numeric]=None, mode: str='outer'): """Get the GenomicArray portion within the given genomic range. Parameters ---------- chrom : str or None Chromosome name to select. Use None if `self` has only one chromosome. start : int or None Start coordinate of range to select, in 0-based coordinates. If None, start from 0. end : int or None End coordinate of range to select. If None, select to the end of the chromosome. mode : str As in `by_ranges`: ``outer`` includes bins straddling the range boundaries, ``trim`` additionally alters the straddling bins' endpoints to match the range boundaries, and ``inner`` excludes those bins. Returns ------- GenomicArray The subset of `self` enclosed by the specified range. """ starts = [int(start)] if start is not None else None ends = [int(end)] if end is not None else None results = iter_ranges(self.data, chrom, starts, ends, mode) return self.as_dataframe(next(results)) def in_ranges(self, chrom: Optional[str]=None, starts: Optional[ Sequence[Numeric]]=None, ends: Optional[Sequence[Numeric]]=None, mode: str='outer'): """Get the GenomicArray portion within the specified ranges. Similar to `in_ranges`, but concatenating the selections of all the regions specified by the `starts` and `ends` arrays. Parameters ---------- chrom : str or None Chromosome name to select. Use None if `self` has only one chromosome. starts : int array, or None Start coordinates of ranges to select, in 0-based coordinates. If None, start from 0. ends : int array, or None End coordinates of ranges to select. If None, select to the end of the chromosome. If `starts` and `ends` are both specified, they must be arrays of equal length. mode : str As in `by_ranges`: ``outer`` includes bins straddling the range boundaries, ``trim`` additionally alters the straddling bins' endpoints to match the range boundaries, and ``inner`` excludes those bins. Returns ------- GenomicArray Concatenation of all the subsets of `self` enclosed by the specified ranges. """ table = pd.concat(iter_ranges(self.data, chrom, starts, ends, mode), sort=False) return self.as_dataframe(table) def into_ranges(self, other, column: str, default, summary_func: Optional[Callable]=None): """Re-bin values from `column` into the corresponding ranges in `other`. Match overlapping/intersecting rows from `other` to each row in `self`. Then, within each range in `other`, extract the value(s) from `column` in `self`, using the function `summary_func` to produce a single value if multiple bins in `self` map to a single range in `other`. For example, group SNVs (self) by CNV segments (other) and calculate the median (summary_func) of each SNV group's allele frequencies. Parameters ---------- other : GenomicArray Ranges into which the overlapping values of `self` will be summarized. column : string Column name in `self` to extract values from. default Value to assign to indices in `other` that do not overlap any bins in `self`. Type should be the same as or compatible with the output field specified by `column`, or the output of `summary_func`. summary_func : callable, dict of string-to-callable, or None Specify how to reduce 1 or more `other` rows into a single value for the corresponding row in `self`. - If callable, apply to the `column` field each group of rows in `other` column. - If a single-element dict of column name to callable, apply to that field in `other` instead of `column`. - If None, use an appropriate summarizing function for the datatype of the `column` column in `other` (e.g. median of numbers, concatenation of strings). - If some other value, assign that value to `self` wherever there is an overlap. Returns ------- pd.Series The extracted and summarized values from `self` corresponding to other's genomic ranges, the same length as `other`. """ if column not in self: logging.warning("No '%s' column available for summary calculation", column) return pd.Series(np.repeat(default, len(other))) return into_ranges(self.data, other.data, column, default, summary_func ) def iter_ranges_of(self, other, column: str, mode: str='outer', keep_empty: bool=True): """Group rows by another GenomicArray's bin coordinate ranges. For example, this can be used to group SNVs by CNV segments. Bins in this array that fall outside the other array's bins are skipped. Parameters ---------- other : GenomicArray Another GA instance. column : string Column name in `self` to extract values from. mode : string Determines what to do with bins that overlap a boundary of the selection. Possible values are: - ``inner``: Drop the bins on the selection boundary, don't emit them. - ``outer``: Keep/emit those bins as they are. - ``trim``: Emit those bins but alter their boundaries to match the selection; the bin start or end position is replaced with the selection boundary position. keep_empty : bool Whether to also yield `other` bins with no overlapping bins in `self`, or to skip them when iterating. Yields ------ tuple (other bin, GenomicArray of overlapping rows in self) """ if column not in self.data.columns: raise ValueError(f'No column named {column!r} in this object') ser = self.data[column] for slc in iter_slices(self.data, other.data, mode, keep_empty): yield ser[slc] <mask token> <mask token> def copy(self): """Create an independent copy of this object.""" return self.as_dataframe(self.data.copy()) def add_columns(self, **columns): """Add the given columns to a copy of this GenomicArray. Parameters ---------- **columns : array Keyword arguments where the key is the new column's name and the value is an array of the same length as `self` which will be the new column's values. Returns ------- GenomicArray or subclass A new instance of `self` with the given columns included in the underlying dataframe. """ return self.as_dataframe(self.data.assign(**columns)) def keep_columns(self, colnames): """Extract a subset of columns, reusing this instance's metadata.""" colnames = self.data.columns.intersection(colnames) return self.__class__(self.data.loc[:, colnames], self.meta.copy()) <mask token> def filter(self, func=None, **kwargs): """Take a subset of rows where the given condition is true. Parameters ---------- func : callable A boolean function which will be applied to each row to keep rows where the result is True. **kwargs : string Keyword arguments like ``chromosome="chr7"`` or ``gene="Antitarget"``, which will keep rows where the keyed field equals the specified value. Return ------ GenomicArray Subset of `self` where the specified condition is True. """ table = self.data if func is not None: table = table[table.apply(func, axis=1)] for key, val in list(kwargs.items()): assert key in self table = table[table[key] == val] return self.as_dataframe(table) def shuffle(self): """Randomize the order of bins in this array (in-place).""" order = np.arange(len(self.data)) np.random.seed(679661) np.random.shuffle(order) self.data = self.data.iloc[order] return order def sort(self): """Sort this array's bins in-place, with smart chromosome ordering.""" sort_key = self.data.chromosome.apply(sorter_chrom) self.data = self.data.assign(_sort_key_=sort_key).sort_values(by=[ '_sort_key_', 'start', 'end'], kind='mergesort').drop('_sort_key_', axis=1).reset_index(drop=True) def sort_columns(self): """Sort this array's columns in-place, per class definition.""" extra_cols = [] for col in self.data.columns: if col not in self._required_columns: extra_cols.append(col) sorted_colnames = list(self._required_columns) + sorted(extra_cols) assert len(sorted_colnames) == len(self.data.columns) self.data = self.data.reindex(columns=sorted_colnames) def cut(self, other, combine=None): """Split this array's regions at the boundaries in `other`.""" return NotImplemented <mask token> def intersection(self, other, mode: str='outer'): """Select the bins in `self` that overlap the regions in `other`. The extra fields of `self`, but not `other`, are retained in the output. """ if mode == 'trim': chunks = [chunk.data for _, chunk in self.by_ranges(other, mode =mode, keep_empty=False)] return self.as_dataframe(pd.concat(chunks)) slices = iter_slices(self.data, other.data, mode, False) indices = np.concatenate(list(slices)) return self.as_dataframe(self.data.loc[indices]) def merge(self, bp: int=0, stranded: bool=False, combine: Optional[Dict [str, Callable]]=None): """Merge adjacent or overlapping regions into single rows. Similar to 'bedtools merge'. """ return self.as_dataframe(merge(self.data, bp, stranded, combine)) def resize_ranges(self, bp: int, chrom_sizes: Optional[Mapping[str, Numeric]]=None): """Resize each genomic bin by a fixed number of bases at each end. Bin 'start' values have a minimum of 0, and `chrom_sizes` can specify each chromosome's maximum 'end' value. Similar to 'bedtools slop'. Parameters ---------- bp : int Number of bases in each direction to expand or shrink each bin. Applies to 'start' and 'end' values symmetrically, and may be positive (expand) or negative (shrink). chrom_sizes : dict of string-to-int Chromosome name to length in base pairs. If given, all chromosomes in `self` must be included. """ table = self.data limits = {'lower': 0} if chrom_sizes: limits['upper'] = self.chromosome.replace(chrom_sizes) table = table.assign(start=(table['start'] - bp).clip(**limits), end=(table['end'] + bp).clip(**limits)) if bp < 0: ok_size = table['end'] - table['start'] > 0 logging.debug('Dropping %d bins with size <= 0', (~ok_size).sum()) table = table[ok_size] return self.as_dataframe(table.copy()) def squash(self, combine=None): """Combine some groups of rows, by some criteria, into single rows.""" return NotImplemented def subdivide(self, avg_size: int, min_size: int=0, verbose: bool=False): """Split this array's regions into roughly equal-sized sub-regions.""" return self.as_dataframe(subdivide(self.data, avg_size, min_size, verbose)) <mask token> def total_range_size(self) ->int: """Total number of bases covered by all (merged) regions.""" if not len(self): return 0 regions = merge(self.data, bp=1) return regions.end.sum() - regions.start.sum() def _get_gene_map(self) ->OrderedDict: """Map unique gene names to their indices in this array. Returns ------- OrderedDict An (ordered) dictionary of unique gene names and the data indices of their segments in the order of occurrence (genomic order). """ if 'gene' not in self.data: return OrderedDict() genes: OrderedDict = OrderedDict() for idx, genestr in self.data['gene'].items(): if pd.isnull(genestr): continue for gene in genestr.split(','): if gene not in genes: genes[gene] = [] genes[gene].append(idx) return genes
"""Base class for an array of annotated genomic regions.""" import logging from typing import Callable, Dict, Iterable, Iterator, Mapping, Optional, Sequence, Union from collections import OrderedDict import numpy as np import pandas as pd from .chromsort import sorter_chrom from .intersect import by_ranges, into_ranges, iter_ranges, iter_slices, Numeric from .merge import flatten, merge from .rangelabel import to_label from .subtract import subtract from .subdivide import subdivide class GenomicArray: """An array of genomic intervals. Base class for genomic data structures. Can represent most BED-like tabular formats with arbitrary additional columns. """ _required_columns = ("chromosome", "start", "end") _required_dtypes = (str, int, int) def __init__( self, data_table: Optional[Union[Sequence, pd.DataFrame]], meta_dict: Optional[Mapping] = None, ): # Validation if ( data_table is None or (isinstance(data_table, (list, tuple)) and not len(data_table)) or (isinstance(data_table, pd.DataFrame) and not len(data_table.columns)) ): data_table = self._make_blank() else: if not isinstance(data_table, pd.DataFrame): # Rarely if ever needed -- prefer from_rows, from_columns, etc. data_table = pd.DataFrame(data_table) if not all(c in data_table.columns for c in self._required_columns): raise ValueError( "data table must have at least columns " + f"{self._required_columns!r}; got {tuple(data_table.columns)!r}" ) # Ensure columns are the right type # (in case they've been automatically converted to the wrong type, # e.g. chromosome names as integers; genome coordinates as floats) if len(data_table): def ok_dtype(col, dtype): return isinstance(data_table[col].iat[0], dtype) else: def ok_dtype(col, dtype): return data_table[col].dtype == np.dtype(dtype) recast_cols = { col: dtype for col, dtype in zip(self._required_columns, self._required_dtypes) if not ok_dtype(col, dtype) } if recast_cols: data_table = data_table.astype(recast_cols) self.data = data_table self.meta = dict(meta_dict) if meta_dict is not None and len(meta_dict) else {} @classmethod def _make_blank(cls) -> pd.DataFrame: """Create an empty dataframe with the columns required by this class.""" spec = list(zip(cls._required_columns, cls._required_dtypes)) try: arr = np.zeros(0, dtype=spec) return pd.DataFrame(arr) except TypeError as exc: raise TypeError(r"{exc}: {spec}") from exc @classmethod def from_columns( cls, columns: Mapping[str, Iterable], meta_dict: Optional[Mapping] = None ): """Create a new instance from column arrays, given as a dict.""" table = pd.DataFrame.from_dict(columns) ary = cls(table, meta_dict) ary.sort_columns() return ary @classmethod def from_rows( cls, rows: Iterable, columns: Optional[Sequence[str]] = None, meta_dict: Optional[Mapping] = None, ): """Create a new instance from a list of rows, as tuples or arrays.""" if columns is None: columns = cls._required_columns table = pd.DataFrame.from_records(rows, columns=columns) return cls(table, meta_dict) def as_columns(self, **columns): """Wrap the named columns in this instance's metadata.""" return self.__class__.from_columns(columns, self.meta) # return self.__class__(self.data.loc[:, columns], self.meta.copy()) def as_dataframe(self, dframe: pd.DataFrame, reset_index: bool = False): """Wrap the given pandas DataFrame in this instance's metadata.""" if reset_index: dframe = dframe.reset_index(drop=True) return self.__class__(dframe, self.meta.copy()) def as_series(self, arraylike: Iterable) -> pd.Series: """Coerce `arraylike` to a Series with this instance's index.""" return pd.Series(arraylike, index=self.data.index) def as_rows(self, rows: Iterable): """Wrap the given rows in this instance's metadata.""" try: out = self.from_rows(rows, columns=self.data.columns, meta_dict=self.meta) except AssertionError as exc: columns = self.data.columns.tolist() firstrow = next(iter(rows)) raise RuntimeError( f"Passed {len(columns)} columns {columns!r}, but " f"{len(firstrow)} elements in first row: {firstrow}" ) from exc return out # Container behaviour def __bool__(self) -> bool: return bool(len(self.data)) def __eq__(self, other) -> bool: return isinstance(other, self.__class__) and self.data.equals(other.data) def __len__(self) -> int: return len(self.data) def __contains__(self, key) -> bool: return key in self.data.columns def __getitem__(self, index) -> Union[pd.Series, pd.DataFrame]: """Access a portion of the data. Cases: - single integer: a row, as pd.Series - string row name: a column, as pd.Series - a boolean array: masked rows, as_dataframe - tuple of integers: selected rows, as_dataframe """ if isinstance(index, int): # A single row return self.data.iloc[index] # return self.as_dataframe(self.data.iloc[index:index+1]) if isinstance(index, str): # A column, by name return self.data[index] if ( isinstance(index, tuple) and len(index) == 2 and index[1] in self.data.columns ): # Row index, column index -> cell value return self.data.loc[index] if isinstance(index, slice): # return self.as_dataframe(self.data.take(index)) return self.as_dataframe(self.data[index]) # Iterable -- selected row indices or boolean array, probably try: if isinstance(index, type(None)) or len(index) == 0: empty = pd.DataFrame(columns=self.data.columns) return self.as_dataframe(empty) except TypeError as exc: raise TypeError( f"object of type {type(index)!r} " f"cannot be used as an index into a {self.__class__.__name__}" ) from exc return self.as_dataframe(self.data[index]) # return self.as_dataframe(self.data.take(index)) def __setitem__(self, index, value): """Assign to a portion of the data.""" if isinstance(index, int): self.data.iloc[index] = value elif isinstance(index, str): self.data[index] = value elif ( isinstance(index, tuple) and len(index) == 2 and index[1] in self.data.columns ): self.data.loc[index] = value else: assert isinstance(index, slice) or len(index) > 0 self.data[index] = value def __delitem__(self, index): return NotImplemented def __iter__(self): return self.data.itertuples(index=False) __next__ = next @property def chromosome(self) -> pd.Series: """Get column 'chromosome'.""" return self.data["chromosome"] @property def start(self) -> pd.Series: """Get column 'start'.""" return self.data["start"] @property def end(self) -> pd.Series: """Get column 'end'.""" return self.data["end"] @property def sample_id(self) -> pd.Series: """Get metadata field 'sample_id'.""" return self.meta.get("sample_id") # Traversal def autosomes(self, also=None): """Select chromosomes w/ integer names, ignoring any 'chr' prefixes.""" is_auto = self.chromosome.str.match(r"(chr)?\d+$", na=False) if not is_auto.any(): # The autosomes, if any, are not named with plain integers return self if also is not None: if isinstance(also, pd.Series): is_auto |= also else: # The assumption is that `also` is a single chromosome name or an iterable thereof. if isinstance(also, str): also = [also] for a_chrom in also: is_auto |= self.chromosome == a_chrom return self[is_auto] def by_arm(self, min_gap_size: Union[int, float] = 1e5, min_arm_bins: int = 50): """Iterate over bins grouped by chromosome arm (inferred).""" # ENH: # - Accept GArray of actual centromere regions as input # -> find largest gap (any size) within cmere region, split there # - Cache centromere locations once found self.data.chromosome = self.data.chromosome.astype(str) for chrom, subtable in self.data.groupby("chromosome", sort=False): margin = max(min_arm_bins, int(round(0.1 * len(subtable)))) if len(subtable) > 2 * margin + 1: # Found a candidate centromere gaps = ( subtable.start.values[margin + 1 : -margin] - subtable.end.values[margin : -margin - 1] ) cmere_idx = gaps.argmax() + margin + 1 cmere_size = gaps[cmere_idx - margin - 1] else: cmere_idx = 0 cmere_size = 0 if cmere_idx and cmere_size >= min_gap_size: logging.debug( "%s centromere at %d of %d bins (size %s)", chrom, cmere_idx, len(subtable), cmere_size, ) p_arm = subtable.index[:cmere_idx] yield chrom, self.as_dataframe(subtable.loc[p_arm, :]) q_arm = subtable.index[cmere_idx:] yield chrom, self.as_dataframe(subtable.loc[q_arm, :]) else: # No centromere found -- emit the whole chromosome if cmere_idx: logging.debug( "%s: Ignoring centromere at %d of %d bins (size %s)", chrom, cmere_idx, len(subtable), cmere_size, ) else: logging.debug("%s: Skipping centromere search, too small", chrom) yield chrom, self.as_dataframe(subtable) def by_chromosome(self) -> Iterator: """Iterate over bins grouped by chromosome name.""" for chrom, subtable in self.data.groupby("chromosome", sort=False): yield chrom, self.as_dataframe(subtable) def by_ranges( self, other, mode: str = "outer", keep_empty: bool = True ) -> Iterator: """Group rows by another GenomicArray's bin coordinate ranges. For example, this can be used to group SNVs by CNV segments. Bins in this array that fall outside the other array's bins are skipped. Parameters ---------- other : GenomicArray Another GA instance. mode : string Determines what to do with bins that overlap a boundary of the selection. Possible values are: - ``inner``: Drop the bins on the selection boundary, don't emit them. - ``outer``: Keep/emit those bins as they are. - ``trim``: Emit those bins but alter their boundaries to match the selection; the bin start or end position is replaced with the selection boundary position. keep_empty : bool Whether to also yield `other` bins with no overlapping bins in `self`, or to skip them when iterating. Yields ------ tuple (other bin, GenomicArray of overlapping rows in self) """ for bin_row, subrange in by_ranges(self.data, other.data, mode, keep_empty): if len(subrange): yield bin_row, self.as_dataframe(subrange) elif keep_empty: yield bin_row, self.as_rows(subrange) def coords(self, also: Union[str, Iterable[str]] = ()): """Iterate over plain coordinates of each bin: chromosome, start, end. Parameters ---------- also : str, or iterable of strings Also include these columns from `self`, in addition to chromosome, start, and end. Example, yielding rows in BED format: >>> probes.coords(also=["gene", "strand"]) """ cols = list(GenomicArray._required_columns) if also: if isinstance(also, str): cols.append(also) else: cols.extend(also) coordframe = self.data.loc[:, cols] return coordframe.itertuples(index=False) def labels(self) -> pd.Series: """Get chromosomal coordinates as genomic range labels.""" return self.data.apply(to_label, axis=1) def in_range( self, chrom: Optional[str] = None, start: Optional[Numeric] = None, end: Optional[Numeric] = None, mode: str = "outer", ): """Get the GenomicArray portion within the given genomic range. Parameters ---------- chrom : str or None Chromosome name to select. Use None if `self` has only one chromosome. start : int or None Start coordinate of range to select, in 0-based coordinates. If None, start from 0. end : int or None End coordinate of range to select. If None, select to the end of the chromosome. mode : str As in `by_ranges`: ``outer`` includes bins straddling the range boundaries, ``trim`` additionally alters the straddling bins' endpoints to match the range boundaries, and ``inner`` excludes those bins. Returns ------- GenomicArray The subset of `self` enclosed by the specified range. """ starts = [int(start)] if start is not None else None ends = [int(end)] if end is not None else None results = iter_ranges(self.data, chrom, starts, ends, mode) return self.as_dataframe(next(results)) def in_ranges( self, chrom: Optional[str] = None, starts: Optional[Sequence[Numeric]] = None, ends: Optional[Sequence[Numeric]] = None, mode: str = "outer", ): """Get the GenomicArray portion within the specified ranges. Similar to `in_ranges`, but concatenating the selections of all the regions specified by the `starts` and `ends` arrays. Parameters ---------- chrom : str or None Chromosome name to select. Use None if `self` has only one chromosome. starts : int array, or None Start coordinates of ranges to select, in 0-based coordinates. If None, start from 0. ends : int array, or None End coordinates of ranges to select. If None, select to the end of the chromosome. If `starts` and `ends` are both specified, they must be arrays of equal length. mode : str As in `by_ranges`: ``outer`` includes bins straddling the range boundaries, ``trim`` additionally alters the straddling bins' endpoints to match the range boundaries, and ``inner`` excludes those bins. Returns ------- GenomicArray Concatenation of all the subsets of `self` enclosed by the specified ranges. """ table = pd.concat(iter_ranges(self.data, chrom, starts, ends, mode), sort=False) return self.as_dataframe(table) def into_ranges( self, other, column: str, default, summary_func: Optional[Callable] = None ): """Re-bin values from `column` into the corresponding ranges in `other`. Match overlapping/intersecting rows from `other` to each row in `self`. Then, within each range in `other`, extract the value(s) from `column` in `self`, using the function `summary_func` to produce a single value if multiple bins in `self` map to a single range in `other`. For example, group SNVs (self) by CNV segments (other) and calculate the median (summary_func) of each SNV group's allele frequencies. Parameters ---------- other : GenomicArray Ranges into which the overlapping values of `self` will be summarized. column : string Column name in `self` to extract values from. default Value to assign to indices in `other` that do not overlap any bins in `self`. Type should be the same as or compatible with the output field specified by `column`, or the output of `summary_func`. summary_func : callable, dict of string-to-callable, or None Specify how to reduce 1 or more `other` rows into a single value for the corresponding row in `self`. - If callable, apply to the `column` field each group of rows in `other` column. - If a single-element dict of column name to callable, apply to that field in `other` instead of `column`. - If None, use an appropriate summarizing function for the datatype of the `column` column in `other` (e.g. median of numbers, concatenation of strings). - If some other value, assign that value to `self` wherever there is an overlap. Returns ------- pd.Series The extracted and summarized values from `self` corresponding to other's genomic ranges, the same length as `other`. """ if column not in self: logging.warning("No '%s' column available for summary calculation", column) return pd.Series(np.repeat(default, len(other))) return into_ranges(self.data, other.data, column, default, summary_func) def iter_ranges_of( self, other, column: str, mode: str = "outer", keep_empty: bool = True ): """Group rows by another GenomicArray's bin coordinate ranges. For example, this can be used to group SNVs by CNV segments. Bins in this array that fall outside the other array's bins are skipped. Parameters ---------- other : GenomicArray Another GA instance. column : string Column name in `self` to extract values from. mode : string Determines what to do with bins that overlap a boundary of the selection. Possible values are: - ``inner``: Drop the bins on the selection boundary, don't emit them. - ``outer``: Keep/emit those bins as they are. - ``trim``: Emit those bins but alter their boundaries to match the selection; the bin start or end position is replaced with the selection boundary position. keep_empty : bool Whether to also yield `other` bins with no overlapping bins in `self`, or to skip them when iterating. Yields ------ tuple (other bin, GenomicArray of overlapping rows in self) """ if column not in self.data.columns: raise ValueError(f"No column named {column!r} in this object") ser = self.data[column] for slc in iter_slices(self.data, other.data, mode, keep_empty): yield ser[slc] # Modification def add(self, other): """Combine this array's data with another GenomicArray (in-place). Any optional columns must match between both arrays. """ if not isinstance(other, self.__class__): raise ValueError( f"Argument (type {type(other)}) is not a {self.__class__} instance" ) if len(other.data): self.data = pd.concat([self.data, other.data], ignore_index=True) self.sort() def concat(self, others): """Concatenate several GenomicArrays, keeping this array's metadata. This array's data table is not implicitly included in the result. """ table = pd.concat([otr.data for otr in others], ignore_index=True) result = self.as_dataframe(table) result.sort() return result def copy(self): """Create an independent copy of this object.""" return self.as_dataframe(self.data.copy()) def add_columns(self, **columns): """Add the given columns to a copy of this GenomicArray. Parameters ---------- **columns : array Keyword arguments where the key is the new column's name and the value is an array of the same length as `self` which will be the new column's values. Returns ------- GenomicArray or subclass A new instance of `self` with the given columns included in the underlying dataframe. """ return self.as_dataframe(self.data.assign(**columns)) def keep_columns(self, colnames): """Extract a subset of columns, reusing this instance's metadata.""" colnames = self.data.columns.intersection(colnames) return self.__class__(self.data.loc[:, colnames], self.meta.copy()) def drop_extra_columns(self): """Remove any optional columns from this GenomicArray. Returns ------- GenomicArray or subclass A new copy with only the minimal set of columns required by the class (e.g. chromosome, start, end for GenomicArray; may be more for subclasses). """ table = self.data.loc[:, self._required_columns] return self.as_dataframe(table) def filter(self, func=None, **kwargs): """Take a subset of rows where the given condition is true. Parameters ---------- func : callable A boolean function which will be applied to each row to keep rows where the result is True. **kwargs : string Keyword arguments like ``chromosome="chr7"`` or ``gene="Antitarget"``, which will keep rows where the keyed field equals the specified value. Return ------ GenomicArray Subset of `self` where the specified condition is True. """ table = self.data if func is not None: table = table[table.apply(func, axis=1)] for key, val in list(kwargs.items()): assert key in self table = table[table[key] == val] return self.as_dataframe(table) def shuffle(self): """Randomize the order of bins in this array (in-place).""" order = np.arange(len(self.data)) np.random.seed(0xA5EED) np.random.shuffle(order) self.data = self.data.iloc[order] return order def sort(self): """Sort this array's bins in-place, with smart chromosome ordering.""" sort_key = self.data.chromosome.apply(sorter_chrom) self.data = ( self.data.assign(_sort_key_=sort_key) .sort_values(by=["_sort_key_", "start", "end"], kind="mergesort") .drop("_sort_key_", axis=1) .reset_index(drop=True) ) def sort_columns(self): """Sort this array's columns in-place, per class definition.""" extra_cols = [] for col in self.data.columns: if col not in self._required_columns: extra_cols.append(col) sorted_colnames = list(self._required_columns) + sorted(extra_cols) assert len(sorted_colnames) == len(self.data.columns) self.data = self.data.reindex(columns=sorted_colnames) # Genome arithmetic def cut(self, other, combine=None): """Split this array's regions at the boundaries in `other`.""" # TODO return NotImplemented def flatten( self, combine: Optional[Dict[str, Callable]] = None, split_columns: Optional[Iterable[str]] = None, ): """Split this array's regions where they overlap.""" return self.as_dataframe( flatten(self.data, combine=combine, split_columns=split_columns) ) def intersection(self, other, mode: str = "outer"): """Select the bins in `self` that overlap the regions in `other`. The extra fields of `self`, but not `other`, are retained in the output. """ # TODO options for which extra fields to keep # by default, keep just the fields in 'table' if mode == "trim": # Slower chunks = [ chunk.data for _, chunk in self.by_ranges(other, mode=mode, keep_empty=False) ] return self.as_dataframe(pd.concat(chunks)) # Faster slices = iter_slices(self.data, other.data, mode, False) indices = np.concatenate(list(slices)) return self.as_dataframe(self.data.loc[indices]) def merge( self, bp: int = 0, stranded: bool = False, combine: Optional[Dict[str, Callable]] = None, ): """Merge adjacent or overlapping regions into single rows. Similar to 'bedtools merge'. """ return self.as_dataframe(merge(self.data, bp, stranded, combine)) def resize_ranges(self, bp: int, chrom_sizes: Optional[Mapping[str, Numeric]] = None): """Resize each genomic bin by a fixed number of bases at each end. Bin 'start' values have a minimum of 0, and `chrom_sizes` can specify each chromosome's maximum 'end' value. Similar to 'bedtools slop'. Parameters ---------- bp : int Number of bases in each direction to expand or shrink each bin. Applies to 'start' and 'end' values symmetrically, and may be positive (expand) or negative (shrink). chrom_sizes : dict of string-to-int Chromosome name to length in base pairs. If given, all chromosomes in `self` must be included. """ table = self.data limits = {"lower": 0} if chrom_sizes: limits["upper"] = self.chromosome.replace(chrom_sizes) table = table.assign( start=(table["start"] - bp).clip(**limits), end=(table["end"] + bp).clip(**limits), ) if bp < 0: # Drop any bins that now have zero or negative size ok_size = table["end"] - table["start"] > 0 logging.debug("Dropping %d bins with size <= 0", (~ok_size).sum()) table = table[ok_size] # Don't modify the original return self.as_dataframe(table.copy()) def squash(self, combine=None): """Combine some groups of rows, by some criteria, into single rows.""" # TODO return NotImplemented def subdivide(self, avg_size: int, min_size: int = 0, verbose: bool = False): """Split this array's regions into roughly equal-sized sub-regions.""" return self.as_dataframe(subdivide(self.data, avg_size, min_size, verbose)) def subtract(self, other): """Remove the overlapping regions in `other` from this array.""" return self.as_dataframe(subtract(self.data, other.data)) def total_range_size(self) -> int: """Total number of bases covered by all (merged) regions.""" if not len(self): return 0 regions = merge(self.data, bp=1) return regions.end.sum() - regions.start.sum() def _get_gene_map(self) -> OrderedDict: """Map unique gene names to their indices in this array. Returns ------- OrderedDict An (ordered) dictionary of unique gene names and the data indices of their segments in the order of occurrence (genomic order). """ if "gene" not in self.data: return OrderedDict() genes: OrderedDict = OrderedDict() for idx, genestr in self.data["gene"].items(): if pd.isnull(genestr): continue for gene in genestr.split(","): if gene not in genes: genes[gene] = [] genes[gene].append(idx) return genes
[ 19, 20, 39, 41, 55 ]
2,430
5debc97e99bbd78b17e545896d718d4b0eac8519
<mask token>
<mask token> app_name = 'cae_web_audio_visual' urlpatterns = []
<mask token> from django.conf.urls import url from . import views app_name = 'cae_web_audio_visual' urlpatterns = []
""" Urls for CAE_Web Audio_Visual app. """ from django.conf.urls import url from . import views app_name = 'cae_web_audio_visual' urlpatterns = [ ]
null
[ 0, 1, 2, 3 ]
2,431
af9adc0faad4fc1426a2bd75c1c77e23e37b60bf
<mask token> def f(a): list1 = [] dict1 = {(1): 'one', (2): 'two', (3): 'three', (4): 'four', (5): 'five', (6): 'six', (7): 'seven', (8): 'eight', (9): 'nine', (0): 'zero'} for i in list(a): list1.append(dict1[int(i)]) print('-'.join(list1)) <mask token> def fa(x): dict2 = {(1): 'one', (2): 'two', (3): 'three', (4): 'four', (5): 'five', (6): 'six', (7): 'seven', (8): 'eight', (9): 'nine', (0): 'zero'} return dict2[int(x)] <mask token>
<mask token> for i in range(1, n + 1): factorial = i * factorial sum += factorial print(f'阶乘之和{sum}') <mask token> for i in range(1, n + 1): F = math.factorial(i) sum1 += F print(f'阶乘之和{sum1}') <mask token> def f(a): list1 = [] dict1 = {(1): 'one', (2): 'two', (3): 'three', (4): 'four', (5): 'five', (6): 'six', (7): 'seven', (8): 'eight', (9): 'nine', (0): 'zero'} for i in list(a): list1.append(dict1[int(i)]) print('-'.join(list1)) f(str) <mask token> def fa(x): dict2 = {(1): 'one', (2): 'two', (3): 'three', (4): 'four', (5): 'five', (6): 'six', (7): 'seven', (8): 'eight', (9): 'nine', (0): 'zero'} return dict2[int(x)] <mask token> print('-'.join(r)) <mask token> for x in follow_list['data']['follow_list']: if x['is_vip'] == 1: print(f"土豪{x['nickname']},我关注了你,给我打赏吧") for x in follow_list['data']['follow_list']: if x['is_vip'] == 1 and x['is_friend'] == 0: print(f"土豪{x['nickname']},我关注了你,给个好友位吧")
<mask token> n = 10 factorial = 1 sum = 0 for i in range(1, n + 1): factorial = i * factorial sum += factorial print(f'阶乘之和{sum}') sum1 = 0 n = 10 for i in range(1, n + 1): F = math.factorial(i) sum1 += F print(f'阶乘之和{sum1}') <mask token> str = '13543897565' def f(a): list1 = [] dict1 = {(1): 'one', (2): 'two', (3): 'three', (4): 'four', (5): 'five', (6): 'six', (7): 'seven', (8): 'eight', (9): 'nine', (0): 'zero'} for i in list(a): list1.append(dict1[int(i)]) print('-'.join(list1)) f(str) str1 = '13543897565' def fa(x): dict2 = {(1): 'one', (2): 'two', (3): 'three', (4): 'four', (5): 'five', (6): 'six', (7): 'seven', (8): 'eight', (9): 'nine', (0): 'zero'} return dict2[int(x)] r = map(fa, list(str1)) print('-'.join(r)) <mask token> follow_list = {'status': 'ok', 'data': {'follow_list': [{'user_id': '32804516', 'nickname': '羽秋璃1111233', 'is_friend': 0, 'is_vip': 1}, { 'user_id': '35742446', 'nickname': '我是你的宝贝哦', 'is_friend': 1, 'is_vip': 1}, {'user_id': '264844', 'nickname': '大鱼噢大鱼', 'is_friend': 0, 'is_vip': 1}, {'user_id': '34362681', 'nickname': '薛一十三', 'is_friend': 0, 'is_vip': 0}]}} for x in follow_list['data']['follow_list']: if x['is_vip'] == 1: print(f"土豪{x['nickname']},我关注了你,给我打赏吧") for x in follow_list['data']['follow_list']: if x['is_vip'] == 1 and x['is_friend'] == 0: print(f"土豪{x['nickname']},我关注了你,给个好友位吧")
import math <mask token> n = 10 factorial = 1 sum = 0 for i in range(1, n + 1): factorial = i * factorial sum += factorial print(f'阶乘之和{sum}') sum1 = 0 n = 10 for i in range(1, n + 1): F = math.factorial(i) sum1 += F print(f'阶乘之和{sum1}') <mask token> str = '13543897565' def f(a): list1 = [] dict1 = {(1): 'one', (2): 'two', (3): 'three', (4): 'four', (5): 'five', (6): 'six', (7): 'seven', (8): 'eight', (9): 'nine', (0): 'zero'} for i in list(a): list1.append(dict1[int(i)]) print('-'.join(list1)) f(str) str1 = '13543897565' def fa(x): dict2 = {(1): 'one', (2): 'two', (3): 'three', (4): 'four', (5): 'five', (6): 'six', (7): 'seven', (8): 'eight', (9): 'nine', (0): 'zero'} return dict2[int(x)] r = map(fa, list(str1)) print('-'.join(r)) <mask token> follow_list = {'status': 'ok', 'data': {'follow_list': [{'user_id': '32804516', 'nickname': '羽秋璃1111233', 'is_friend': 0, 'is_vip': 1}, { 'user_id': '35742446', 'nickname': '我是你的宝贝哦', 'is_friend': 1, 'is_vip': 1}, {'user_id': '264844', 'nickname': '大鱼噢大鱼', 'is_friend': 0, 'is_vip': 1}, {'user_id': '34362681', 'nickname': '薛一十三', 'is_friend': 0, 'is_vip': 0}]}} for x in follow_list['data']['follow_list']: if x['is_vip'] == 1: print(f"土豪{x['nickname']},我关注了你,给我打赏吧") for x in follow_list['data']['follow_list']: if x['is_vip'] == 1 and x['is_friend'] == 0: print(f"土豪{x['nickname']},我关注了你,给个好友位吧")
# -*- coding: utf-8 -*- # @Time : 2020/6/12 20:19 # @Author : damon # @Site : # @File : work0612 # @Software: PyCharm import math """ 1、给定n=10,计算1! + 2! + 3! + ... + n!的值 """ # 解法1: n = 10 factorial = 1 sum = 0 for i in range(1, n+1): factorial = i * factorial sum += factorial print(f"阶乘之和{sum}") # 解法2: sum1 = 0 n = 10 for i in range(1, n + 1): F = math.factorial(i) sum1 += F print(f"阶乘之和{sum1}") """ 2、给一个数字字符串13543897565,把每一位对应的数字转换成英文数字(例如:“123” -> "one-two-three") """ str = '13543897565' def f(a): list1 = [] dict1 = {1: "one", 2: "two", 3: "three", 4: "four", 5: "five", 6: "six", 7: "seven", 8: "eight", 9: "nine", 0: "zero"} for i in list(a): list1.append(dict1[int(i)]) print("-".join(list1)) f(str) str1 = '13543897565' def fa(x): dict2 = {1: "one", 2: "two", 3: "three", 4: "four", 5: "five", 6: "six", 7: "seven", 8: "eight", 9: "nine", 0: "zero"} return dict2[int(x)] r = map(fa, list(str1)) print('-'.join(r)) """ 3、我的关注列表follow_list = {"status":"ok","data":{"follow_list":[{"user_id":"32804516","nickname":"羽秋璃1111233","is_friend":0,"is_vip":1},{"user_id":"35742446","nickname":"我是你的宝贝哦","is_friend":1,"is_vip":1},{"user_id":"264844","nickname":"大鱼噢大鱼","is_friend":0,"is_vip":1},{"user_id":"34362681","nickname":"薛一十三","is_friend":0,"is_vip":0}]}} (1)如果用户是vip,对用户说“土豪xxx,我关注了你,给个打赏吧”(xxx是用户昵称) (2)如果用户不是好友关系但是vip(is_friend=0, is_vip=1),对用户说“土豪xxx,我关注了你,给个好友位吧” """ follow_list = {"status":"ok","data":{"follow_list":[ {"user_id":"32804516","nickname":"羽秋璃1111233","is_friend":0,"is_vip":1}, {"user_id":"35742446","nickname":"我是你的宝贝哦","is_friend":1,"is_vip":1}, {"user_id":"264844","nickname":"大鱼噢大鱼","is_friend":0,"is_vip":1}, {"user_id":"34362681","nickname":"薛一十三","is_friend":0,"is_vip":0}]}} for x in follow_list['data']['follow_list']: if x['is_vip'] == 1: print(f"土豪{x['nickname']},我关注了你,给我打赏吧") for x in follow_list['data']['follow_list']: if x['is_vip'] == 1 and x['is_friend'] == 0: print(f"土豪{x['nickname']},我关注了你,给个好友位吧")
[ 2, 3, 4, 5, 6 ]
2,432
2ee5991e2b6de6ee48c8207f2b78574fc8a02fc0
#! /usr/bin/python # Project Euler problem 21 """Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a != b, then a and b are an amicable pair and each of a and b are called amicable numbers. For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220. Evaluate the sum of all the amicable numbers under 10,000.""" import math # This is inefficient. def get_divs(n): divs = [1] check = 2 rootn = math.sqrt(n) while check < rootn: if n % check == 0: divs.append(check) divs.append(n / check) check += 1 if rootn == check: divs.append(check) divs.sort() return divs def amicable(a): b = sum(get_divs(a)) if a == b: return 0 sum_b_divs = sum(get_divs(b)) if a == sum_b_divs: return b return 0 print sum([amicable(i) for i in range(1, 10000)])
null
null
null
null
[ 0 ]
2,433
6216a5e45fee8ade5ec9072c42c1b08f3b0f4c65
<mask token>
class Solution: <mask token>
class Solution: def validIPAddress(self, IP): """ :type IP: str :rtype: str """ def validateIPv4(IP): digits = IP.split('.') if len(digits) != 4: return False for digitstr in digits: if len(digitstr) > 3 or len(digitstr) <= 0: return False try: digit = int(digitstr) except: return False if digit > 255 or digit < 0: return False if len(str(digit)) != len(digitstr): return False return True def validateIPv6(IP): hexDigits = IP.split(':') if len(hexDigits) != 8: return False for hexDigitStr in hexDigits: if len(hexDigitStr) > 4 or len(hexDigitStr) <= 0: return False for char in hexDigitStr: try: int(char) except: if ord(char.lower()) - ord('a') < 0 or ord(char.lower() ) - ord('a') > 5: return False return True if validateIPv4(IP): return 'IPv4' elif validateIPv6(IP): return 'IPv6' else: return 'Neither'
class Solution: def validIPAddress(self, IP): """ :type IP: str :rtype: str """ def validateIPv4(IP): digits = IP.split('.') if len(digits) != 4: return False for digitstr in digits: if len(digitstr) > 3 or len(digitstr) <= 0: return False try: digit = int(digitstr) except: return False # check range if digit > 255 or digit < 0: return False # check leading 0s if len(str(digit)) != len(digitstr): return False return True def validateIPv6(IP): hexDigits = IP.split(':') if len(hexDigits) != 8: return False for hexDigitStr in hexDigits: if len(hexDigitStr) > 4 or len(hexDigitStr) <= 0: return False for char in hexDigitStr: # check hexadecimal digit try: int(char) except: if ord(char.lower()) - ord('a') < 0 or \ ord(char.lower()) - ord('a') > 5: return False return True if validateIPv4(IP): return 'IPv4' elif validateIPv6(IP): return 'IPv6' else: return 'Neither' # print(Solution().validIPAddress("172.16.254.1")) # print(Solution().validIPAddress("2001:0db8:85a3:0:0:8A2E:0370:7334")) # print(Solution().validIPAddress("256.256.256.256")) # print(Solution().validIPAddress("172.16.254.01")) # print(Solution().validIPAddress("2001:db8:85a3:0:0:8A2E:0370:7334")) # print(Solution().validIPAddress("2001:0db8:85a3::8A2E:0370:7334")) # print(Solution().validIPAddress("10:0df8:85a3:0:0:8a2e:037:7334")) # print(Solution().validIPAddress("120.25.2.10"))
null
[ 0, 1, 2, 3 ]
2,434
59338170b44be037f749790a7942c2bcca1fc078
#!/usr/bin/env python ############################################################################### # # # Project: # Purpose: # # # Author: Massimo Di Stefano , [email protected] # ############################################################################### # Copyright (c) 2009, Massimo Di Stefano <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. ############################################################################### __author__ = "Massimo Di Stefano" __copyright__ = "Copyright 2009, gfoss.it" __credits__ = [""] __license__ = "GPL V3" __version__ = "1.0.0" __maintainer__ = "Massimo Di Stefano" __email__ = "[email protected]" __status__ = "Production" __date__ = "" try: from osgeo import osr, ogr, gdal except ImportError: import osr, ogr, gdal import string import sys def GeomType2Name(type): if type == ogr.wkbUnknown: return 'wkbUnknown' elif type == ogr.wkbPoint: return 'wkbPoint' elif type == ogr.wkbLineString: return 'wkbLineString' elif type == ogr.wkbPolygon: return 'wkbPolygon' elif type == ogr.wkbMultiPoint: return 'wkbMultiPoint' elif type == ogr.wkbMultiLineString: return 'wkbMultiLineString' elif type == ogr.wkbMultiPolygon: return 'wkbMultiPolygon' elif type == ogr.wkbGeometryCollection: return 'wkbGeometryCollection' elif type == ogr.wkbNone: return 'wkbNone' elif type == ogr.wkbLinearRing: return 'wkbLinearRing' else: return 'wkbUnknown' def Esc(x): return gdal.EscapeString(x, gdal.CPLES_XML) def makestile(outfile, brush, pen, size, fill, thickness): brush = brush.split(',') pen = pen.split(',') size = size.split(',') outfile = outfile.replace('.vrt', '') outfile = outfile + '.omd' omd = '// vector file rendering options\n' omd += 'brush_color: %s %s %s \n' % (brush[0], brush[1], brush[2]) omd += 'pen_color: %s %s %s \n' % (pen[0], pen[1], pen[2]) omd += 'point_width_height: %s %s \n' % (size[0], size[1]) omd += 'fill_flag: %s \n' % (fill) omd += 'thickness: %s \n' % (thickness) open(outfile, 'w').write(omd) def ogrvrt(infile, outfile): layer_list = [] relative = "0" schema = 0 print infile src_ds = ogr.Open(infile, update=0) if len(layer_list) == 0: for layer in src_ds: layer_list.append(layer.GetLayerDefn().GetName()) vrt = '<OGRVRTDataSource>\n' for name in layer_list: layer = src_ds.GetLayerByName(name) layerdef = layer.GetLayerDefn() vrt += ' <OGRVRTLayer name="%s">\n' % Esc(name) vrt += ' <SrcDataSource relativeToVRT="%s" shared="%d">%s</SrcDataSource>\n' \ % (relative, not schema, Esc(infile)) if schema: vrt += ' <SrcLayer>@dummy@</SrcLayer>\n' else: vrt += ' <SrcLayer>%s</SrcLayer>\n' % Esc(name) vrt += ' <GeometryType>%s</GeometryType>\n' \ % GeomType2Name(layerdef.GetGeomType()) srs = layer.GetSpatialRef() if srs is not None: vrt += ' <LayerSRS>%s</LayerSRS>\n' \ % (Esc(srs.ExportToWkt())) # Process all the fields. for fld_index in range(layerdef.GetFieldCount()): src_fd = layerdef.GetFieldDefn(fld_index) if src_fd.GetType() == ogr.OFTInteger: type = 'Integer' elif src_fd.GetType() == ogr.OFTString: type = 'String' elif src_fd.GetType() == ogr.OFTReal: type = 'Real' elif src_fd.GetType() == ogr.OFTStringList: type = 'StringList' elif src_fd.GetType() == ogr.OFTIntegerList: type = 'IntegerList' elif src_fd.GetType() == ogr.OFTRealList: type = 'RealList' elif src_fd.GetType() == ogr.OFTBinary: type = 'Binary' elif src_fd.GetType() == ogr.OFTDate: type = 'Date' elif src_fd.GetType() == ogr.OFTTime: type = 'Time' elif src_fd.GetType() == ogr.OFTDateTime: type = 'DateTime' else: type = 'String' vrt += ' <Field name="%s" type="%s"' \ % (Esc(src_fd.GetName()), type) if not schema: vrt += ' src="%s"' % Esc(src_fd.GetName()) if src_fd.GetWidth() > 0: vrt += ' width="%d"' % src_fd.GetWidth() if src_fd.GetPrecision() > 0: vrt += ' precision="%d"' % src_fd.GetPrecision() vrt += '/>\n' vrt += ' </OGRVRTLayer>\n' vrt += '</OGRVRTDataSource>\n' file = open(outfile, 'w') file.write(vrt) file.close() print 'vrt wroted'
null
null
null
null
[ 0 ]
2,435
e2f134f5ff00405396b8bbf4edc263b70ef5d972
<mask token> class BytesWriter: <mask token> class BytesReader: def read(self, n: int=...) ->bytes: ... def seek(self, offset: int, whence: int=...) ->int: ... <mask token>
<mask token> class BytesWriter: def write(self, data: bytes) ->None: ... class BytesReader: def read(self, n: int=...) ->bytes: ... def seek(self, offset: int, whence: int=...) ->int: ... <mask token>
<mask token> if sys.version_info >= (3, 11): from typing import assert_type else: from typing_extensions import assert_type str_path: str pathlib_path: pathlib.Path str_file: IO[str] bytes_file: IO[bytes] npz_file: np.lib.npyio.NpzFile AR_i8: npt.NDArray[np.int64] AR_LIKE_f8: list[float] class BytesWriter: def write(self, data: bytes) ->None: ... class BytesReader: def read(self, n: int=...) ->bytes: ... def seek(self, offset: int, whence: int=...) ->int: ... bytes_writer: BytesWriter bytes_reader: BytesReader assert_type(npz_file.zip, zipfile.ZipFile) assert_type(npz_file.fid, None | IO[str]) assert_type(npz_file.files, list[str]) assert_type(npz_file.allow_pickle, bool) assert_type(npz_file.pickle_kwargs, None | Mapping[str, Any]) assert_type(npz_file.f, BagObj[np.lib.npyio.NpzFile]) assert_type(npz_file['test'], npt.NDArray[Any]) assert_type(len(npz_file), int) with npz_file as f: assert_type(f, np.lib.npyio.NpzFile) assert_type(np.load(bytes_file), Any) assert_type(np.load(pathlib_path, allow_pickle=True), Any) assert_type(np.load(str_path, encoding='bytes'), Any) assert_type(np.load(bytes_reader), Any) assert_type(np.save(bytes_file, AR_LIKE_f8), None) assert_type(np.save(pathlib_path, AR_i8, allow_pickle=True), None) assert_type(np.save(str_path, AR_LIKE_f8), None) assert_type(np.save(bytes_writer, AR_LIKE_f8), None) assert_type(np.savez(bytes_file, AR_LIKE_f8), None) assert_type(np.savez(pathlib_path, ar1=AR_i8, ar2=AR_i8), None) assert_type(np.savez(str_path, AR_LIKE_f8, ar1=AR_i8), None) assert_type(np.savez(bytes_writer, AR_LIKE_f8, ar1=AR_i8), None) assert_type(np.savez_compressed(bytes_file, AR_LIKE_f8), None) assert_type(np.savez_compressed(pathlib_path, ar1=AR_i8, ar2=AR_i8), None) assert_type(np.savez_compressed(str_path, AR_LIKE_f8, ar1=AR_i8), None) assert_type(np.savez_compressed(bytes_writer, AR_LIKE_f8, ar1=AR_i8), None) assert_type(np.loadtxt(bytes_file), npt.NDArray[np.float64]) assert_type(np.loadtxt(pathlib_path, dtype=np.str_), npt.NDArray[np.str_]) assert_type(np.loadtxt(str_path, dtype=str, skiprows=2), npt.NDArray[Any]) assert_type(np.loadtxt(str_file, comments='test'), npt.NDArray[np.float64]) assert_type(np.loadtxt(str_file, comments=None), npt.NDArray[np.float64]) assert_type(np.loadtxt(str_path, delimiter='\n'), npt.NDArray[np.float64]) assert_type(np.loadtxt(str_path, ndmin=2), npt.NDArray[np.float64]) assert_type(np.loadtxt(['1', '2', '3']), npt.NDArray[np.float64]) assert_type(np.fromregex(bytes_file, 'test', np.float64), npt.NDArray[np. float64]) assert_type(np.fromregex(str_file, b'test', dtype=float), npt.NDArray[Any]) assert_type(np.fromregex(str_path, re.compile('test'), dtype=np.str_, encoding='utf8'), npt.NDArray[np.str_]) assert_type(np.fromregex(pathlib_path, 'test', np.float64), npt.NDArray[np. float64]) assert_type(np.fromregex(bytes_reader, 'test', np.float64), npt.NDArray[np. float64]) assert_type(np.genfromtxt(bytes_file), npt.NDArray[Any]) assert_type(np.genfromtxt(pathlib_path, dtype=np.str_), npt.NDArray[np.str_]) assert_type(np.genfromtxt(str_path, dtype=str, skip_header=2), npt.NDArray[Any] ) assert_type(np.genfromtxt(str_file, comments='test'), npt.NDArray[Any]) assert_type(np.genfromtxt(str_path, delimiter='\n'), npt.NDArray[Any]) assert_type(np.genfromtxt(str_path, ndmin=2), npt.NDArray[Any]) assert_type(np.genfromtxt(['1', '2', '3'], ndmin=2), npt.NDArray[Any])
import re import sys import zipfile import pathlib from typing import IO, Any from collections.abc import Mapping import numpy.typing as npt import numpy as np from numpy.lib._npyio_impl import BagObj if sys.version_info >= (3, 11): from typing import assert_type else: from typing_extensions import assert_type str_path: str pathlib_path: pathlib.Path str_file: IO[str] bytes_file: IO[bytes] npz_file: np.lib.npyio.NpzFile AR_i8: npt.NDArray[np.int64] AR_LIKE_f8: list[float] class BytesWriter: def write(self, data: bytes) ->None: ... class BytesReader: def read(self, n: int=...) ->bytes: ... def seek(self, offset: int, whence: int=...) ->int: ... bytes_writer: BytesWriter bytes_reader: BytesReader assert_type(npz_file.zip, zipfile.ZipFile) assert_type(npz_file.fid, None | IO[str]) assert_type(npz_file.files, list[str]) assert_type(npz_file.allow_pickle, bool) assert_type(npz_file.pickle_kwargs, None | Mapping[str, Any]) assert_type(npz_file.f, BagObj[np.lib.npyio.NpzFile]) assert_type(npz_file['test'], npt.NDArray[Any]) assert_type(len(npz_file), int) with npz_file as f: assert_type(f, np.lib.npyio.NpzFile) assert_type(np.load(bytes_file), Any) assert_type(np.load(pathlib_path, allow_pickle=True), Any) assert_type(np.load(str_path, encoding='bytes'), Any) assert_type(np.load(bytes_reader), Any) assert_type(np.save(bytes_file, AR_LIKE_f8), None) assert_type(np.save(pathlib_path, AR_i8, allow_pickle=True), None) assert_type(np.save(str_path, AR_LIKE_f8), None) assert_type(np.save(bytes_writer, AR_LIKE_f8), None) assert_type(np.savez(bytes_file, AR_LIKE_f8), None) assert_type(np.savez(pathlib_path, ar1=AR_i8, ar2=AR_i8), None) assert_type(np.savez(str_path, AR_LIKE_f8, ar1=AR_i8), None) assert_type(np.savez(bytes_writer, AR_LIKE_f8, ar1=AR_i8), None) assert_type(np.savez_compressed(bytes_file, AR_LIKE_f8), None) assert_type(np.savez_compressed(pathlib_path, ar1=AR_i8, ar2=AR_i8), None) assert_type(np.savez_compressed(str_path, AR_LIKE_f8, ar1=AR_i8), None) assert_type(np.savez_compressed(bytes_writer, AR_LIKE_f8, ar1=AR_i8), None) assert_type(np.loadtxt(bytes_file), npt.NDArray[np.float64]) assert_type(np.loadtxt(pathlib_path, dtype=np.str_), npt.NDArray[np.str_]) assert_type(np.loadtxt(str_path, dtype=str, skiprows=2), npt.NDArray[Any]) assert_type(np.loadtxt(str_file, comments='test'), npt.NDArray[np.float64]) assert_type(np.loadtxt(str_file, comments=None), npt.NDArray[np.float64]) assert_type(np.loadtxt(str_path, delimiter='\n'), npt.NDArray[np.float64]) assert_type(np.loadtxt(str_path, ndmin=2), npt.NDArray[np.float64]) assert_type(np.loadtxt(['1', '2', '3']), npt.NDArray[np.float64]) assert_type(np.fromregex(bytes_file, 'test', np.float64), npt.NDArray[np. float64]) assert_type(np.fromregex(str_file, b'test', dtype=float), npt.NDArray[Any]) assert_type(np.fromregex(str_path, re.compile('test'), dtype=np.str_, encoding='utf8'), npt.NDArray[np.str_]) assert_type(np.fromregex(pathlib_path, 'test', np.float64), npt.NDArray[np. float64]) assert_type(np.fromregex(bytes_reader, 'test', np.float64), npt.NDArray[np. float64]) assert_type(np.genfromtxt(bytes_file), npt.NDArray[Any]) assert_type(np.genfromtxt(pathlib_path, dtype=np.str_), npt.NDArray[np.str_]) assert_type(np.genfromtxt(str_path, dtype=str, skip_header=2), npt.NDArray[Any] ) assert_type(np.genfromtxt(str_file, comments='test'), npt.NDArray[Any]) assert_type(np.genfromtxt(str_path, delimiter='\n'), npt.NDArray[Any]) assert_type(np.genfromtxt(str_path, ndmin=2), npt.NDArray[Any]) assert_type(np.genfromtxt(['1', '2', '3'], ndmin=2), npt.NDArray[Any])
import re import sys import zipfile import pathlib from typing import IO, Any from collections.abc import Mapping import numpy.typing as npt import numpy as np from numpy.lib._npyio_impl import BagObj if sys.version_info >= (3, 11): from typing import assert_type else: from typing_extensions import assert_type str_path: str pathlib_path: pathlib.Path str_file: IO[str] bytes_file: IO[bytes] npz_file: np.lib.npyio.NpzFile AR_i8: npt.NDArray[np.int64] AR_LIKE_f8: list[float] class BytesWriter: def write(self, data: bytes) -> None: ... class BytesReader: def read(self, n: int = ...) -> bytes: ... def seek(self, offset: int, whence: int = ...) -> int: ... bytes_writer: BytesWriter bytes_reader: BytesReader assert_type(npz_file.zip, zipfile.ZipFile) assert_type(npz_file.fid, None | IO[str]) assert_type(npz_file.files, list[str]) assert_type(npz_file.allow_pickle, bool) assert_type(npz_file.pickle_kwargs, None | Mapping[str, Any]) assert_type(npz_file.f, BagObj[np.lib.npyio.NpzFile]) assert_type(npz_file["test"], npt.NDArray[Any]) assert_type(len(npz_file), int) with npz_file as f: assert_type(f, np.lib.npyio.NpzFile) assert_type(np.load(bytes_file), Any) assert_type(np.load(pathlib_path, allow_pickle=True), Any) assert_type(np.load(str_path, encoding="bytes"), Any) assert_type(np.load(bytes_reader), Any) assert_type(np.save(bytes_file, AR_LIKE_f8), None) assert_type(np.save(pathlib_path, AR_i8, allow_pickle=True), None) assert_type(np.save(str_path, AR_LIKE_f8), None) assert_type(np.save(bytes_writer, AR_LIKE_f8), None) assert_type(np.savez(bytes_file, AR_LIKE_f8), None) assert_type(np.savez(pathlib_path, ar1=AR_i8, ar2=AR_i8), None) assert_type(np.savez(str_path, AR_LIKE_f8, ar1=AR_i8), None) assert_type(np.savez(bytes_writer, AR_LIKE_f8, ar1=AR_i8), None) assert_type(np.savez_compressed(bytes_file, AR_LIKE_f8), None) assert_type(np.savez_compressed(pathlib_path, ar1=AR_i8, ar2=AR_i8), None) assert_type(np.savez_compressed(str_path, AR_LIKE_f8, ar1=AR_i8), None) assert_type(np.savez_compressed(bytes_writer, AR_LIKE_f8, ar1=AR_i8), None) assert_type(np.loadtxt(bytes_file), npt.NDArray[np.float64]) assert_type(np.loadtxt(pathlib_path, dtype=np.str_), npt.NDArray[np.str_]) assert_type(np.loadtxt(str_path, dtype=str, skiprows=2), npt.NDArray[Any]) assert_type(np.loadtxt(str_file, comments="test"), npt.NDArray[np.float64]) assert_type(np.loadtxt(str_file, comments=None), npt.NDArray[np.float64]) assert_type(np.loadtxt(str_path, delimiter="\n"), npt.NDArray[np.float64]) assert_type(np.loadtxt(str_path, ndmin=2), npt.NDArray[np.float64]) assert_type(np.loadtxt(["1", "2", "3"]), npt.NDArray[np.float64]) assert_type(np.fromregex(bytes_file, "test", np.float64), npt.NDArray[np.float64]) assert_type(np.fromregex(str_file, b"test", dtype=float), npt.NDArray[Any]) assert_type(np.fromregex(str_path, re.compile("test"), dtype=np.str_, encoding="utf8"), npt.NDArray[np.str_]) assert_type(np.fromregex(pathlib_path, "test", np.float64), npt.NDArray[np.float64]) assert_type(np.fromregex(bytes_reader, "test", np.float64), npt.NDArray[np.float64]) assert_type(np.genfromtxt(bytes_file), npt.NDArray[Any]) assert_type(np.genfromtxt(pathlib_path, dtype=np.str_), npt.NDArray[np.str_]) assert_type(np.genfromtxt(str_path, dtype=str, skip_header=2), npt.NDArray[Any]) assert_type(np.genfromtxt(str_file, comments="test"), npt.NDArray[Any]) assert_type(np.genfromtxt(str_path, delimiter="\n"), npt.NDArray[Any]) assert_type(np.genfromtxt(str_path, ndmin=2), npt.NDArray[Any]) assert_type(np.genfromtxt(["1", "2", "3"], ndmin=2), npt.NDArray[Any])
[ 4, 5, 6, 7, 8 ]
2,436
bbb23d606b081d2591699cb6b9336c8766eea5b2
<mask token>
<mask token> for i in s: if i.isupper(): u += 1 elif i.islower(): l += 1 print(u, l, end='')
s = input('enter a string') u = 0 l = 0 for i in s: if i.isupper(): u += 1 elif i.islower(): l += 1 print(u, l, end='')
s=input("enter a string") u=0 l=0 for i in s: if i.isupper(): u+=1 elif i.islower(): l+=1 print(u,l,end="")
null
[ 0, 1, 2, 3 ]
2,437
fdb680f12dfb4b29f25cfe4f7af80469dc4294cf
<mask token>
COG_QUOTAS = (30, 25, 20, 15, 10, 5, 2, 1), (45, 40, 35, 30, 25, 20, 15, 10) COG_UNSEEN = 1 COG_BATTLED = 2 COG_DEFEATED = 3 COG_COMPLETE1 = 4 COG_COMPLETE2 = 5
# Fuck you Disyer. Stealing my fucking paypal. GET FUCKED: toontown.shtiker.CogPageGlobals COG_QUOTAS = ((30, 25, 20, 15, 10, 5, 2, 1), (45, 40, 35, 30, 25, 20, 15, 10)) COG_UNSEEN = 1 COG_BATTLED = 2 COG_DEFEATED = 3 COG_COMPLETE1 = 4 COG_COMPLETE2 = 5
null
null
[ 0, 1, 2 ]
2,438
0b0282ade565eb4031cef3a2fa8605249f104d9d
<mask token> def main(argc, argv, envir): raw_samples = np.array([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) deal_with_ohe(raw_samples) ohe = sp.OneHotEncoder(sparse=False, dtype=int) ohe_samples = ohe.fit_transform(raw_samples) print(ohe_samples) return 0 <mask token>
<mask token> def deal_with_ohe(raw_sample): ohe_samples = [] copy_sample = raw_sample cols = copy_sample.shape[1] for col in range(cols): col_sample = copy_sample[:, col] type = np.unique(col_sample).size ohe = [] for raw in col_sample: sample = np.zeros(type) sample[raw] = 1 ohe.append(sample) ohe_samples.append(ohe) print(np.array(ohe_samples).T) def main(argc, argv, envir): raw_samples = np.array([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) deal_with_ohe(raw_samples) ohe = sp.OneHotEncoder(sparse=False, dtype=int) ohe_samples = ohe.fit_transform(raw_samples) print(ohe_samples) return 0 <mask token>
<mask token> def deal_with_ohe(raw_sample): ohe_samples = [] copy_sample = raw_sample cols = copy_sample.shape[1] for col in range(cols): col_sample = copy_sample[:, col] type = np.unique(col_sample).size ohe = [] for raw in col_sample: sample = np.zeros(type) sample[raw] = 1 ohe.append(sample) ohe_samples.append(ohe) print(np.array(ohe_samples).T) def main(argc, argv, envir): raw_samples = np.array([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) deal_with_ohe(raw_samples) ohe = sp.OneHotEncoder(sparse=False, dtype=int) ohe_samples = ohe.fit_transform(raw_samples) print(ohe_samples) return 0 if __name__ == '__main__': sys.exit(main(len(sys.argv), sys.argv, os.environ))
import os import sys import platform import numpy as np import sklearn.preprocessing as sp def deal_with_ohe(raw_sample): ohe_samples = [] copy_sample = raw_sample cols = copy_sample.shape[1] for col in range(cols): col_sample = copy_sample[:, col] type = np.unique(col_sample).size ohe = [] for raw in col_sample: sample = np.zeros(type) sample[raw] = 1 ohe.append(sample) ohe_samples.append(ohe) print(np.array(ohe_samples).T) def main(argc, argv, envir): raw_samples = np.array([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) deal_with_ohe(raw_samples) ohe = sp.OneHotEncoder(sparse=False, dtype=int) ohe_samples = ohe.fit_transform(raw_samples) print(ohe_samples) return 0 if __name__ == '__main__': sys.exit(main(len(sys.argv), sys.argv, os.environ))
import os import sys import platform import numpy as np import sklearn.preprocessing as sp def deal_with_ohe(raw_sample): # --------------------# # 10 100 0001 # # 01 010 1000 # # 10 001 0100 # # 01 100 0010 # # --------------------# ohe_samples = [] copy_sample = raw_sample cols = copy_sample.shape[1] for col in range(cols): col_sample = copy_sample[:,col] type = np.unique(col_sample).size ohe = [] for raw in col_sample: sample = np.zeros(type) sample[raw] = 1 ohe.append(sample) ohe_samples.append(ohe) print(np.array(ohe_samples).T) def main(argc, argv, envir): raw_samples = np.array([ [0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) deal_with_ohe(raw_samples) ohe = sp.OneHotEncoder(sparse=False, dtype=int) ohe_samples = ohe.fit_transform(raw_samples) print(ohe_samples) return 0 if __name__ == "__main__": sys.exit(main(len(sys.argv),sys.argv, os.environ))
[ 1, 2, 3, 4, 5 ]
2,439
7c2349810fc757848eeb5bddef4640d87d5f9ab9
<mask token> class Helper(object): <mask token> def base_dir(self, filePath, folder='data'): """ 返回公共路径 :parameter folder:文件夹 :parameter filePath:文件名称 """ return os.path.join(os.path.dirname(os.path.dirname(__file__)), folder, filePath) <mask token> def getUrl(self, rowx): """ 获取请求地址 :parameter rowx:在excel中的行数 """ return self.readExcel(rowx)[1] def getData(self, rowx): """ 获取数据并且返回 :parameter rowx:在excel中的行数 """ return json.loads(self.readExcel(rowx)[2])
<mask token> class Helper(object): <mask token> def base_dir(self, filePath, folder='data'): """ 返回公共路径 :parameter folder:文件夹 :parameter filePath:文件名称 """ return os.path.join(os.path.dirname(os.path.dirname(__file__)), folder, filePath) def readExcel(self, rowx, filePath='data.xlsx'): """ 读取excel中数据并且返回 :parameter filePath:xlsx文件名称 :parameter rowx:在excel中的行数 """ book = xlrd.open_workbook(self.base_dir(filePath)) sheet = book.sheet_by_index(0) return sheet.row_values(rowx) def getUrl(self, rowx): """ 获取请求地址 :parameter rowx:在excel中的行数 """ return self.readExcel(rowx)[1] def getData(self, rowx): """ 获取数据并且返回 :parameter rowx:在excel中的行数 """ return json.loads(self.readExcel(rowx)[2])
<mask token> class Helper(object): """公共方法""" def base_dir(self, filePath, folder='data'): """ 返回公共路径 :parameter folder:文件夹 :parameter filePath:文件名称 """ return os.path.join(os.path.dirname(os.path.dirname(__file__)), folder, filePath) def readExcel(self, rowx, filePath='data.xlsx'): """ 读取excel中数据并且返回 :parameter filePath:xlsx文件名称 :parameter rowx:在excel中的行数 """ book = xlrd.open_workbook(self.base_dir(filePath)) sheet = book.sheet_by_index(0) return sheet.row_values(rowx) def getUrl(self, rowx): """ 获取请求地址 :parameter rowx:在excel中的行数 """ return self.readExcel(rowx)[1] def getData(self, rowx): """ 获取数据并且返回 :parameter rowx:在excel中的行数 """ return json.loads(self.readExcel(rowx)[2])
import os import xlrd import json class Helper(object): """公共方法""" def base_dir(self, filePath, folder='data'): """ 返回公共路径 :parameter folder:文件夹 :parameter filePath:文件名称 """ return os.path.join(os.path.dirname(os.path.dirname(__file__)), folder, filePath) def readExcel(self, rowx, filePath='data.xlsx'): """ 读取excel中数据并且返回 :parameter filePath:xlsx文件名称 :parameter rowx:在excel中的行数 """ book = xlrd.open_workbook(self.base_dir(filePath)) sheet = book.sheet_by_index(0) return sheet.row_values(rowx) def getUrl(self, rowx): """ 获取请求地址 :parameter rowx:在excel中的行数 """ return self.readExcel(rowx)[1] def getData(self, rowx): """ 获取数据并且返回 :parameter rowx:在excel中的行数 """ return json.loads(self.readExcel(rowx)[2])
#!/usr/bin/env python #-*-coding:utf-8-*- #author:wuya import os import xlrd import json class Helper(object): '''公共方法''' def base_dir(self,filePath,folder='data'): ''' 返回公共路径 :parameter folder:文件夹 :parameter filePath:文件名称 ''' return os.path.join( os.path.dirname( os.path.dirname(__file__)), folder,filePath) def readExcel(self,rowx,filePath='data.xlsx'): ''' 读取excel中数据并且返回 :parameter filePath:xlsx文件名称 :parameter rowx:在excel中的行数 ''' book=xlrd.open_workbook(self.base_dir(filePath)) sheet=book.sheet_by_index(0) return sheet.row_values(rowx) def getUrl(self,rowx): ''' 获取请求地址 :parameter rowx:在excel中的行数 ''' return self.readExcel(rowx)[1] def getData(self,rowx): ''' 获取数据并且返回 :parameter rowx:在excel中的行数 ''' return json.loads(self.readExcel(rowx)[2])
[ 4, 5, 6, 7, 8 ]
2,440
9de2589cfb5bebba789ece8df9a0fcfbedb01173
#!/usr/bin/env python import sys, re, urllib, urllib2, string, time, os from urllib2 import Request, urlopen, URLError, HTTPError from urlparse import urlparse joomla_version="undefined" #used for joomla veersin info provided_url="" #the selected provided url verbose_flag = 0 # If set to 1, prints verbose information default_input_path = "" # The default input file path default_output_path = "" # The default output file path if os.name == "nt": path_slash = "\\" else: path_slash = "/" # Prints usage def print_usage(): """ print_usage() Prints help screen and exits. """ print "" print "" print " JoomFind v0.1" print "" print " Script made by Jasdev Singh" print "" print " This script is made only for educational and offline self-testing " print " purposes. The creator is not responsible or accountable for any " print " damage or loss caused that you perform with this script. " print "" print " Usage example:" print '\tpython joomfind.py -f filepath | -v' print "" print " Put URL(s) to scan in a newline delimited file" print " URL(s) must point to homepage of the CMS " print "" print " Options:" print " -f filename (specify input file)" print " -v, --verbose (show detailed output)" print " --help (displays this help text)" print "" return # Testing if URL is reachable, with error handling def test_url(): """ test_url() Checks whether URL is rechable. Prints relevant infomation. """ global provided_url global verbose_flag # extracting url provided_url = urlparse(provided_url).scheme+"://"+urlparse(provided_url).netloc print provided_url if verbose_flag: print "\t[.] Checking if connection can be established...",# + provided_url try: response = urllib2.urlopen(provided_url) except HTTPError, e: if verbose_flag: print "[!] Failed" return 0 except URLError, e: if verbose_flag: print "[!] Failed" return 0 else: valid_target = 1 if verbose_flag: print "Success" return 1 # Scans for the HTML meta tag information def scan_target_metatag(): """ scan_target_metatag() Scans the meta-tag of the website. The meta-tag has information that can lead to the detection of Joomla. """ target_meta_url=provided_url+"/index.php" if verbose_flag: print "\t[.] Trying to access meta tag information...", #+ target_meta_url try: response = urllib2.urlopen(target_meta_url) html = response.read(2000) #print html # Now extract the interesting information get_metatag = string.find(html, "Joomla! - Open Source Content Management") # If the target is not vulnerable exit if get_metatag == -1: meta_flag=0 if verbose_flag: print "Failed" else: meta_flag=1 if verbose_flag: print "Success" #print "meta flag="+str(meta_flag) return meta_flag except: if verbose_flag: print "Failed" # Tests whether the URL has a '/administrator' login page def scan_admin_url(): """ scan_admin_url() Scans the administrator URL of the website. The administrator URL, if reachable, is a clue that Joomla is being used. """ target_admin_url=provided_url+"/administrator/index.php" if verbose_flag: print "\t[.] Trying to access admin login page...", #+ target_admin_url try: response = urllib2.urlopen(target_admin_url) except HTTPError, e: admin_flag=0 #print "admin flag="+str(admin_flag) if verbose_flag: print "Failed" return admin_flag else: admin_flag=1 #print "admin flag="+str(admin_flag) if verbose_flag: print "Success" return admin_flag # Scans content of 'com_content' component def scan_com_content(): """ scan_com_content() Scans the content.xml file of the default component of the website. The content.xml file, if readable, is a clue that Joomla is being used. """ target_com_content=provided_url+"/administrator/components/com_content/content.xml" if verbose_flag: print "\t[.] Trying to access com_content component...", #+ target_com_content try: response = urllib2.urlopen(target_com_content) html = response.read() get_com = string.find(html, "Joomla") except HTTPError, e: com_component_flag=0 #print "com_component flag="+str(com_component_flag) if verbose_flag: print "Failed" return com_component_flag else: if get_com==-1: com_component_flag=0 if verbose_flag: print "Failed" else: com_component_flag=1 if verbose_flag: print "Success" #print "com_component flag="+str(com_component_flag) return com_component_flag # Scans the robots.txt file def scan_robots_txt(): """ scan_robots_txt() Scans the robots.txt file of website. The robots.txt file, if readable, has clues that Joomla is being used. """ target_robots_txt=provided_url+"/robots.txt" if verbose_flag: print "\t[.] Trying to access robots.txt file...",#+target_robots_txt try: response = urllib2.urlopen(target_robots_txt) html = response.read() get_robots = string.find(html, "Joomla") except HTTPError, e: robots_flag=0 #print "robots flag="+str(robots_flag) if verbose_flag: print "Failed" return robots_flag else: if get_robots==-1: robots_flag=0 if verbose_flag: print "Failed" else: robots_flag=1 if verbose_flag: print "Success" #print "robots flag="+str(robots_flag) return robots_flag # Scans the htaccess.txt file def scan_htaccess(): """ scan_htaccess() Scans the htaccess file of website. The htaccess file, if readable, has clues that Joomla is being used. """ target_htacess=provided_url+"/htaccess.txt" if verbose_flag: print "\t[.] Trying to access htaccess file...",#+target_htacess try: response = urllib2.urlopen(target_htacess) html = response.read() get_htaccess = string.find(html, "Joomla") except HTTPError, e: htaccess_flag=0 #print "htaccess flag="+str(htaccess_flag) if verbose_flag: print "Failed" return htaccess_flag else: if get_htaccess==-1: htaccess_flag=0 if verbose_flag: print "Failed" else: htaccess_flag=1 if verbose_flag: print "Success" #print "htaccess flag="+str(htaccess_flag) return htaccess_flag # Scans the system.css file def scan_system_css(): """ scan_system_css() Scans the system.css file of website. The system.css file, if readable, has clues that Joomla is being used. """ pass # Scans the MooTools.js file def scan_mootools(): """ scan_mootools() Scans the mootools.js file of website. The mootools.js file, if readable, has clues that Joomla is being used. """ target_mootools=provided_url+"/media/system/js/mootools-more.js" if verbose_flag: print "\t[.] Trying to access MooTools file...", #+ target_mootools try: response = urllib2.urlopen(target_mootools) html = response.read(3300) #print html get_mootools = string.find(html, 'MooTools.More={version:"1.4.0.1"') except HTTPError, e: mootools_flag=0 #print "mootools flag="+str(mootools_flag) if verbose_flag: print "Failed" return mootools_flag else: if get_mootools==-1: mootools_flag=0 if verbose_flag: print "Failed" else: mootools_flag=1 if verbose_flag: print "Success" joomla_version="2.x or 3.x" #print "mootools flag="+str(mootools_flag) return mootools_flag # Scans the en-GB.xml file def scan_engb_ini(): """ scan_engb_ini() Scans the en-GB.ini file of website. The en-GB.ini file, if readable, has clues that Joomla is being used. """ target_engb=provided_url+"/language/en-GB/en-GB.xml" if verbose_flag: print "\t[.] Trying to access en-GB file...", #+ target_engb try: response = urllib2.urlopen(target_engb) html = response.read(200) #print html t1 = string.find(html, '<version>') target_engb = html[t1+9:t1+14] except HTTPError, e: engb_flag=0 #print "engb flag="+str(engb_flag) if verbose_flag: print "Failed" return engb_flag else: if t1==-1: engb_flag=0 if verbose_flag: print "Failed" else: engb_flag=1 if verbose_flag: print "Success" global joomla_version joomla_version=target_engb #print "engb flag="+str(engb_flag) return engb_flag # Computes the result of the scans def compute_result(a,b,c,d,e,f,g): """ compute_result() Computes the final result. """ if (a or b or c or d or e or f or g)and ((a+b+c+d+e+f+g)>=3): return 1 else: return 0 # Reads URL's from an input file and processes them def process_from_file(): """ process_from_file() Starts processing the URL's from the input file. """ global default_input_path print "JoomFind v 1.0" print "\n\nTrying to read URL(s) form " + default_input_path + " file...\n" try: if not default_input_path: f = open("urls.txt") else: f=open(default_input_path) cwd=os.getcwd() file_path = cwd + path_slash + f.name # extracting url's to list from file start_urls = [url.strip() for url in f.readlines() if url[0] not in ['#',' ',"\n"]] if not start_urls: print "File is empty. Add some URL(s) first.\n" f.close() return 0 except: print "File not found. Make sure it exists.\n" return 0 #print start_urls num=str(len(start_urls)) print "Found " + num + " URL(s) on " + time.asctime(time.localtime(time.time())) + "\n" of=open(default_output_path,'a+') of.write("\n\n\tScanning " + num + " URL(s) ") of.write("\n\n\tDate\Time : " + time.asctime(time.localtime(time.time())) ) of.write("\n\n\tInput file path : " + default_input_path + "\n\n") of.close() for url in start_urls: global provided_url provided_url=url print "\nWorking on URL " + str(start_urls.index(url)+1) + ": " + provided_url processing() print "\nAll done! Check '" + default_output_path +"' file for results.\n" # Calls other scans and writes results to output file def processing(): """ processing() Calls other helper functions. """ err=test_url() of=open(default_output_path,'a+') if err!=0: metaf=scan_target_metatag() adminf=scan_admin_url() comf=scan_com_content() robotsf=scan_robots_txt() htf=scan_htaccess() moof=scan_mootools() engbf=scan_engb_ini() result=compute_result(metaf,adminf,comf,robotsf,htf,moof,engbf) if result==1: #print "THE TARGET IS USING JOOMLA CMS" #print "Joomla version is " + joomla_version of.write("\nJOOMLA USED (version : " + joomla_version + ") --> " + provided_url + "\n") else: #print "JOOMLA NOT USED" of.write("\nJOMLA NOT USED --> " + provided_url + "\n") else: of.write("\nBAD URL --> " + provided_url + "\n") of.close() return 0 # main method def main(): """ main() Starting point of program execution. """ # Checking if argument was provided if len(sys.argv) <=1: print_usage() sys.exit(1) for arg in sys.argv: # Checking if help was called if arg == "-h" or arg == "--help": print_usage() sys.exit(1) # Checking for verbose mode if arg == "-v" or arg == "--verbose": global verbose_flag verbose_flag=1 # Checking for input file if arg == "-f" or arg == "--file": global default_input_path global default_output_path default_input_path = sys.argv[2] default_output_path=default_input_path[:-4] + "_results.txt" #if arg == "-u" or arg == "--url": # input_url = sys.argv[2] if os.name == "nt": os.system('cls') else: os.system('clear') process_from_file() if __name__=="__main__": main() #EOF
null
null
null
null
[ 0 ]
2,441
f2397ba3fe1452238f251111f35b06b4a93e0359
<mask token> class TestModel(tl.LightningModule): def __init__(self): super().__init__() self.model = tf.keras.Sequential([tf.keras.layers.Dense(5), tf. keras.layers.Dense(2)]) <mask token> <mask token> def training_step(self, batch, batch_idx, optimizer_idx): pred = self(batch) loss = tf.reduce_mean(pred) log = {'batch_idx': batch_idx, 'tr_loss': loss} result = tl.TrainResult(loss, self.model.trainable_variables, log=log) return result <mask token> <mask token> class TestDataLoader(tl.LightningDataModule): def __init__(self): self.batch_size = 32 def setup(self): self.tr_dataset = tf.random.normal((256, 7)) self.val_dataset = tf.random.normal((64, 7)) def train_dataloader(self): dataset = tf.data.Dataset.from_tensor_slices(self.tr_dataset).batch( self.batch_size) return dataset def val_dataloader(self): dataset = tf.data.Dataset.from_tensor_slices(self.val_dataset).batch( self.batch_size) return dataset <mask token>
<mask token> class TestModel(tl.LightningModule): def __init__(self): super().__init__() self.model = tf.keras.Sequential([tf.keras.layers.Dense(5), tf. keras.layers.Dense(2)]) def call(self, dataset): return self.model(dataset) def configure_optimizers(self): return tf.keras.optimizers.Adam(0.1), def training_step(self, batch, batch_idx, optimizer_idx): pred = self(batch) loss = tf.reduce_mean(pred) log = {'batch_idx': batch_idx, 'tr_loss': loss} result = tl.TrainResult(loss, self.model.trainable_variables, log=log) return result <mask token> <mask token> class TestDataLoader(tl.LightningDataModule): def __init__(self): self.batch_size = 32 def setup(self): self.tr_dataset = tf.random.normal((256, 7)) self.val_dataset = tf.random.normal((64, 7)) def train_dataloader(self): dataset = tf.data.Dataset.from_tensor_slices(self.tr_dataset).batch( self.batch_size) return dataset def val_dataloader(self): dataset = tf.data.Dataset.from_tensor_slices(self.val_dataset).batch( self.batch_size) return dataset <mask token>
<mask token> class TestModel(tl.LightningModule): def __init__(self): super().__init__() self.model = tf.keras.Sequential([tf.keras.layers.Dense(5), tf. keras.layers.Dense(2)]) def call(self, dataset): return self.model(dataset) def configure_optimizers(self): return tf.keras.optimizers.Adam(0.1), def training_step(self, batch, batch_idx, optimizer_idx): pred = self(batch) loss = tf.reduce_mean(pred) log = {'batch_idx': batch_idx, 'tr_loss': loss} result = tl.TrainResult(loss, self.model.trainable_variables, log=log) return result def validation_step(self, batch, batch_idx, optimizer_idx): pred = self(batch) loss = tf.reduce_mean(pred) log = {'batch_idx': batch_idx, 'val_loss': loss} result = tl.EvalResult(loss, log=log) return result def checkpointer(self): return tf.train.Checkpoint(m=self.model, opt0=self.optimizer_0) class TestDataLoader(tl.LightningDataModule): def __init__(self): self.batch_size = 32 def setup(self): self.tr_dataset = tf.random.normal((256, 7)) self.val_dataset = tf.random.normal((64, 7)) def train_dataloader(self): dataset = tf.data.Dataset.from_tensor_slices(self.tr_dataset).batch( self.batch_size) return dataset def val_dataloader(self): dataset = tf.data.Dataset.from_tensor_slices(self.val_dataset).batch( self.batch_size) return dataset <mask token>
import tf_lightning as tl import tensorflow as tf class TestModel(tl.LightningModule): def __init__(self): super().__init__() self.model = tf.keras.Sequential([tf.keras.layers.Dense(5), tf. keras.layers.Dense(2)]) def call(self, dataset): return self.model(dataset) def configure_optimizers(self): return tf.keras.optimizers.Adam(0.1), def training_step(self, batch, batch_idx, optimizer_idx): pred = self(batch) loss = tf.reduce_mean(pred) log = {'batch_idx': batch_idx, 'tr_loss': loss} result = tl.TrainResult(loss, self.model.trainable_variables, log=log) return result def validation_step(self, batch, batch_idx, optimizer_idx): pred = self(batch) loss = tf.reduce_mean(pred) log = {'batch_idx': batch_idx, 'val_loss': loss} result = tl.EvalResult(loss, log=log) return result def checkpointer(self): return tf.train.Checkpoint(m=self.model, opt0=self.optimizer_0) class TestDataLoader(tl.LightningDataModule): def __init__(self): self.batch_size = 32 def setup(self): self.tr_dataset = tf.random.normal((256, 7)) self.val_dataset = tf.random.normal((64, 7)) def train_dataloader(self): dataset = tf.data.Dataset.from_tensor_slices(self.tr_dataset).batch( self.batch_size) return dataset def val_dataloader(self): dataset = tf.data.Dataset.from_tensor_slices(self.val_dataset).batch( self.batch_size) return dataset if __name__ == '__main__': model = TestModel() dataloader = TestDataLoader() trainer = tl.Trainer() trainer.fit(model, dataloader)
# __author__ = 'Vasudev Gupta' import tf_lightning as tl import tensorflow as tf class TestModel(tl.LightningModule): # just a random model with random dataset def __init__(self): # simple test model super().__init__() self.model = tf.keras.Sequential([ tf.keras.layers.Dense(5), tf.keras.layers.Dense(2) ]) def call(self, dataset): return self.model(dataset) def configure_optimizers(self): return tf.keras.optimizers.Adam(0.1), def training_step(self, batch, batch_idx, optimizer_idx): pred = self(batch) loss = tf.reduce_mean(pred) log = {'batch_idx': batch_idx, 'tr_loss': loss} result = tl.TrainResult( loss, self.model.trainable_variables, log=log) return result def validation_step(self, batch, batch_idx, optimizer_idx): pred = self(batch) loss = tf.reduce_mean(pred) log = {'batch_idx': batch_idx, 'val_loss': loss} result = tl.EvalResult(loss, log=log) return result def checkpointer(self): return tf.train.Checkpoint(m=self.model, opt0=self.optimizer_0) class TestDataLoader(tl.LightningDataModule): # using random dataset def __init__(self): self.batch_size = 32 def setup(self): self.tr_dataset = tf.random.normal((256, 7)) self.val_dataset = tf.random.normal((64, 7)) def train_dataloader(self): dataset = tf.data.Dataset.from_tensor_slices( self.tr_dataset).batch(self.batch_size) return dataset def val_dataloader(self): dataset = tf.data.Dataset.from_tensor_slices( self.val_dataset).batch(self.batch_size) return dataset if __name__ == '__main__': model = TestModel() dataloader = TestDataLoader() trainer = tl.Trainer() trainer.fit(model, dataloader)
[ 8, 10, 12, 14, 15 ]
2,442
4a63431aa71ca3f4b75fcd89a50bf599e7717645
<mask token>
<mask token> def main(dir_train, C, gamma, number_partitions, do_subsampling, write_labels): hlp.setup_logging() if number_partitions is None or number_partitions == 0: do_concat = False partitions_from_files = True early_subsampling = False late_subsampling = True else: do_concat = True partitions_from_files = False early_subsampling = True late_subsampling = False if not do_subsampling: early_subsampling = late_subsampling = False X, y = pre.get_multiple_data_and_targets(dir_filepath=dir_train, do_subsampling=early_subsampling, do_concat=do_concat) clf = s.get_svclassifier(C=C, gamma=gamma) scores, y_pred = s.get_crossval_scores_prediction(X, y, n_folds= number_partitions, clf=clf, files_as_folds=partitions_from_files, do_subsampling=late_subsampling) evaluation = s.get_eval_report(scores) hlp.log(scores) hlp.log(evaluation) if write_labels: dbg.write_list_to_dir(dir_train, y_pred, 'y_pred.txt') if do_concat: dbg.write_list_to_dir(dir_train, y, 'y_true.txt') <mask token>
<mask token> def main(dir_train, C, gamma, number_partitions, do_subsampling, write_labels): hlp.setup_logging() if number_partitions is None or number_partitions == 0: do_concat = False partitions_from_files = True early_subsampling = False late_subsampling = True else: do_concat = True partitions_from_files = False early_subsampling = True late_subsampling = False if not do_subsampling: early_subsampling = late_subsampling = False X, y = pre.get_multiple_data_and_targets(dir_filepath=dir_train, do_subsampling=early_subsampling, do_concat=do_concat) clf = s.get_svclassifier(C=C, gamma=gamma) scores, y_pred = s.get_crossval_scores_prediction(X, y, n_folds= number_partitions, clf=clf, files_as_folds=partitions_from_files, do_subsampling=late_subsampling) evaluation = s.get_eval_report(scores) hlp.log(scores) hlp.log(evaluation) if write_labels: dbg.write_list_to_dir(dir_train, y_pred, 'y_pred.txt') if do_concat: dbg.write_list_to_dir(dir_train, y, 'y_true.txt') if __name__ == '__main__': parser = argparse.ArgumentParser(description= 'Print evaluation metrics for cross validating an HSV classifier.') parser.add_argument('dir_train', help= 'Directory containing all feature XMLs and label CSVs for cross validating the classifier. CSVs need to have the same file name as their corresponding XML.' ) parser.add_argument('-c', '--C_value', help= 'Omit the grid search and directly specify a C value.', type=float) parser.add_argument('-g', '--gamma_value', help= 'Omit the grid search and directly specify a gamma value.', type=float) parser.add_argument('-p', '--number_partitions', help= 'Set the number of partitions for cross validation. If omitted, take each file as a partition.' , type=int) parser.add_argument('-s', '--subsampling', help= 'Subsample majority class', action='store_true') parser.add_argument('-wl', '--write_labels', help= 'Write both true and predicted labels of the eval file(s) to TXT files.' , action='store_true') args = parser.parse_args() main(args.dir_train, args.C_value, args.gamma_value, args. number_partitions, args.subsampling, args.write_labels)
import argparse import debug.debug as dbg import helper.helper as hlp import prep.preprocessor as pre import sample.sample as s def main(dir_train, C, gamma, number_partitions, do_subsampling, write_labels): hlp.setup_logging() if number_partitions is None or number_partitions == 0: do_concat = False partitions_from_files = True early_subsampling = False late_subsampling = True else: do_concat = True partitions_from_files = False early_subsampling = True late_subsampling = False if not do_subsampling: early_subsampling = late_subsampling = False X, y = pre.get_multiple_data_and_targets(dir_filepath=dir_train, do_subsampling=early_subsampling, do_concat=do_concat) clf = s.get_svclassifier(C=C, gamma=gamma) scores, y_pred = s.get_crossval_scores_prediction(X, y, n_folds= number_partitions, clf=clf, files_as_folds=partitions_from_files, do_subsampling=late_subsampling) evaluation = s.get_eval_report(scores) hlp.log(scores) hlp.log(evaluation) if write_labels: dbg.write_list_to_dir(dir_train, y_pred, 'y_pred.txt') if do_concat: dbg.write_list_to_dir(dir_train, y, 'y_true.txt') if __name__ == '__main__': parser = argparse.ArgumentParser(description= 'Print evaluation metrics for cross validating an HSV classifier.') parser.add_argument('dir_train', help= 'Directory containing all feature XMLs and label CSVs for cross validating the classifier. CSVs need to have the same file name as their corresponding XML.' ) parser.add_argument('-c', '--C_value', help= 'Omit the grid search and directly specify a C value.', type=float) parser.add_argument('-g', '--gamma_value', help= 'Omit the grid search and directly specify a gamma value.', type=float) parser.add_argument('-p', '--number_partitions', help= 'Set the number of partitions for cross validation. If omitted, take each file as a partition.' , type=int) parser.add_argument('-s', '--subsampling', help= 'Subsample majority class', action='store_true') parser.add_argument('-wl', '--write_labels', help= 'Write both true and predicted labels of the eval file(s) to TXT files.' , action='store_true') args = parser.parse_args() main(args.dir_train, args.C_value, args.gamma_value, args. number_partitions, args.subsampling, args.write_labels)
import argparse import debug.debug as dbg import helper.helper as hlp import prep.preprocessor as pre import sample.sample as s def main(dir_train, C, gamma, number_partitions, do_subsampling, write_labels): hlp.setup_logging() # Files as folds? if number_partitions is None or number_partitions == 0: # Yes do_concat = False partitions_from_files = True early_subsampling = False late_subsampling = True else: # No do_concat = True partitions_from_files = False early_subsampling = True late_subsampling = False if not do_subsampling: early_subsampling = late_subsampling = False X, y = pre.get_multiple_data_and_targets(dir_filepath=dir_train, do_subsampling=early_subsampling, do_concat=do_concat) clf = s.get_svclassifier(C=C, gamma=gamma) scores, y_pred = s.get_crossval_scores_prediction(X, y, n_folds=number_partitions, clf=clf, files_as_folds=partitions_from_files, do_subsampling=late_subsampling) evaluation = s.get_eval_report(scores) hlp.log(scores) hlp.log(evaluation) if write_labels: dbg.write_list_to_dir(dir_train, y_pred, "y_pred.txt") if do_concat: dbg.write_list_to_dir(dir_train, y, "y_true.txt") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Print evaluation metrics for cross validating an HSV classifier.") parser.add_argument("dir_train", help="Directory containing all feature XMLs and label CSVs for cross validating the " "classifier. CSVs need to have the same file name as their corresponding XML.") parser.add_argument("-c", "--C_value", help="Omit the grid search and directly specify a C value.", type=float) parser.add_argument("-g", "--gamma_value", help="Omit the grid search and directly specify a gamma value.", type=float) parser.add_argument("-p", "--number_partitions", help="Set the number of partitions for cross validation. If omitted, take each file " "as a partition.", type=int) parser.add_argument("-s", "--subsampling", help="Subsample majority class", action="store_true") parser.add_argument("-wl", "--write_labels", help="Write both true and predicted labels of the eval file(s) to TXT files.", action="store_true") args = parser.parse_args() main(args.dir_train, args.C_value, args.gamma_value, args.number_partitions, args.subsampling, args.write_labels)
[ 0, 1, 2, 3, 4 ]
2,443
8ede786526f4b730173777d9d3b9c7e4554fc887
<mask token>
config_info = {'n_input': 1, 'num_layers': 1, 'features': 20, 'sequence_length': 1344, 'num_steps': None, 'lstm_size': None, 'batch_size': None, 'init_learning_rate': None, 'learning_rate_decay': None, 'init_epoch': None, 'max_epoch': None, 'dropout_rate': None}
config_info = { 'n_input': 1, 'num_layers': 1, 'features': 20, 'sequence_length': 1344, 'num_steps' : None, 'lstm_size' : None, 'batch_size' : None, 'init_learning_rate' : None, 'learning_rate_decay' : None, 'init_epoch' : None, 'max_epoch' : None, 'dropout_rate' : None }
null
null
[ 0, 1, 2 ]
2,444
624ecf743d5be1acc33df14bd721b3103d232f0e
#!/bin/usr/python ''' Author: SaiKumar Immadi Basic DBSCAN clustering algorithm written in python 5th Semester @ IIIT Guwahati ''' # You can use this code for free. Just don't plagiarise it for your lab assignments import sys from math import sqrt from random import randint import matplotlib.pyplot as plt def main(argv): global e,mainList,minPts,clusters,outliers mainList=[] clusters=[] outliers=[] if(len(argv)!=3): print "The Format is <dbscan.py minPts e data.txt>" return 0 minPts=int(argv[0]) e=float(argv[1]) if(minPts<2 or e<=0): print "minPts should be greater than or equal to 2" print "e should be greater than 0" return 0 filename=argv[2] file=open(filename,"r") for line in file: lineStripped=line.strip().split('\t') mainList.append((float(lineStripped[0]),float(lineStripped[1]))) file.close() while(len(mainList)>0): point=mainList.pop(0) mainEneigh=calcEneigh(point,1,[]) outEneigh=calcEneigh(point,2,[]) if(len(mainEneigh+outEneigh)>=minPts): cluster=calcCluster(point) clusters.append(cluster) else: outliers.append(point) fig=plt.figure() cluster_count=0 for cluster in clusters: cluster_count+=1 x_coordinates=[] y_coordinates=[] for point in cluster: x_coordinates.append(point[0]) y_coordinates.append(point[1]) label_name="Cluster : %.d" % (cluster_count) plt.scatter(x_coordinates,y_coordinates,s=5,label=label_name) x_out_coordinates=[] y_out_coordinates=[] for outlier in outliers: x_out_coordinates.append(outlier[0]) y_out_coordinates.append(outlier[1]) plt.scatter(x_out_coordinates,y_out_coordinates,s=5,label='outliers') plt.title('DBSCAN Clustering') plt.xlabel('x-axis') plt.ylabel('y-axis') plt.legend() fig.savefig('output.jpg') print len(clusters),"clusters" plt.show() return 0 def calcEneigh(p,opt,optList): global e,mainList,minPts,clusters,outliers if(opt==1): list=mainList elif(opt==2): list=outliers elif(opt==3): list=optList eneigh=[] for point in list: x1=p[0] y1=p[1] x2=point[0] y2=point[1] dist = sqrt((x2 - x1)**2 + (y2 - y1)**2) if(dist<=e): eneigh.append(point) return eneigh def calcCluster(p): global e,mainList,minPts,clusters,outliers cluster=[] tempList=[] tempList.append(p) while(len(tempList)>0): point=tempList.pop(0) mainEneigh=calcEneigh(point,1,[]) outEneigh=calcEneigh(point,2,[]) clusterEneigh=calcEneigh(point,3,cluster+tempList) cluster.append(point) for x in mainEneigh: mainList.remove(x) for x in outEneigh: outliers.remove(x) if(len(mainEneigh+outEneigh+clusterEneigh)>=minPts): tempList=tempList+mainEneigh+outEneigh else: cluster=cluster+mainEneigh+outEneigh return cluster if __name__ == "__main__": main(sys.argv[1:])
null
null
null
null
[ 0 ]
2,445
aeef27d667f95e3818f73533439385ea949b96a4
<mask token> class MainHandler(webapp2.RequestHandler): <mask token> def get(self): """ Show home page """ user = users.get_current_user() if user: url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' query = Contact.gql('WHERE pid = :1', user.nickname()) result = query.fetch(1) if result: contact = result[0] greeting = 'Welcome %s!' % (contact.name,) else: contact = 'Invalid dhs.sg user' greeting = '' else: url = users.create_login_url(self.request.uri) url_linktext = 'Login' contact = 'Not authorised' greeting = 'You need to' template_values = {'contact': contact, 'greeting': greeting, 'url': url, 'url_linktext': url_linktext} template = jinja_environment.get_template('index.html') self.response.out.write(template.render(template_values)) class Submit(webapp2.RequestHandler): """ Submit form """ def post(self): if self.request.get('submit'): updated_handphone = self.request.get('handphone') updated_tickets_csjh = self.request.get('tickets_csjh') updated_tickets_edssh = self.request.get('tickets_edssh') updated_remark = self.request.get('remark') url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' user = users.get_current_user() query = Contact.gql('WHERE pid = :1', user.nickname()) result = query.fetch(1) if result: contact = result[0] greeting = 'User: %s' % (contact.name,) contact.handphone = updated_handphone contact.tickets_csjh = updated_tickets_csjh contact.tickets_edssh = updated_tickets_edssh contact.remark = db.Text(updated_remark) contact.put() else: self.response.out.write('Reservation failed!') template_values = {'contact': contact, 'greeting': greeting, 'url': url, 'url_linktext': url_linktext, 'contact.handphone': updated_handphone, 'contact.tickets_csjh': updated_tickets_csjh, 'contact.tickets_edssh': updated_tickets_edssh, 'contact.remark': updated_remark} template = jinja_environment.get_template('submit.html') self.response.out.write(template.render(template_values)) <mask token>
<mask token> class Contact(db.Expando): <mask token> pid = db.StringProperty(required=True) name = db.StringProperty(required=True) class12 = db.StringProperty(required=True) email = db.EmailProperty(required=True) handphone = db.StringProperty(required=False) tickets_csjh = db.StringProperty(required=False) tickets_edssh = db.StringProperty(required=False) remark = db.TextProperty() class MainHandler(webapp2.RequestHandler): """ Home page handler """ def get(self): """ Show home page """ user = users.get_current_user() if user: url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' query = Contact.gql('WHERE pid = :1', user.nickname()) result = query.fetch(1) if result: contact = result[0] greeting = 'Welcome %s!' % (contact.name,) else: contact = 'Invalid dhs.sg user' greeting = '' else: url = users.create_login_url(self.request.uri) url_linktext = 'Login' contact = 'Not authorised' greeting = 'You need to' template_values = {'contact': contact, 'greeting': greeting, 'url': url, 'url_linktext': url_linktext} template = jinja_environment.get_template('index.html') self.response.out.write(template.render(template_values)) class Submit(webapp2.RequestHandler): """ Submit form """ def post(self): if self.request.get('submit'): updated_handphone = self.request.get('handphone') updated_tickets_csjh = self.request.get('tickets_csjh') updated_tickets_edssh = self.request.get('tickets_edssh') updated_remark = self.request.get('remark') url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' user = users.get_current_user() query = Contact.gql('WHERE pid = :1', user.nickname()) result = query.fetch(1) if result: contact = result[0] greeting = 'User: %s' % (contact.name,) contact.handphone = updated_handphone contact.tickets_csjh = updated_tickets_csjh contact.tickets_edssh = updated_tickets_edssh contact.remark = db.Text(updated_remark) contact.put() else: self.response.out.write('Reservation failed!') template_values = {'contact': contact, 'greeting': greeting, 'url': url, 'url_linktext': url_linktext, 'contact.handphone': updated_handphone, 'contact.tickets_csjh': updated_tickets_csjh, 'contact.tickets_edssh': updated_tickets_edssh, 'contact.remark': updated_remark} template = jinja_environment.get_template('submit.html') self.response.out.write(template.render(template_values)) <mask token>
<mask token> class Contact(db.Expando): """ User data model """ pid = db.StringProperty(required=True) name = db.StringProperty(required=True) class12 = db.StringProperty(required=True) email = db.EmailProperty(required=True) handphone = db.StringProperty(required=False) tickets_csjh = db.StringProperty(required=False) tickets_edssh = db.StringProperty(required=False) remark = db.TextProperty() class MainHandler(webapp2.RequestHandler): """ Home page handler """ def get(self): """ Show home page """ user = users.get_current_user() if user: url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' query = Contact.gql('WHERE pid = :1', user.nickname()) result = query.fetch(1) if result: contact = result[0] greeting = 'Welcome %s!' % (contact.name,) else: contact = 'Invalid dhs.sg user' greeting = '' else: url = users.create_login_url(self.request.uri) url_linktext = 'Login' contact = 'Not authorised' greeting = 'You need to' template_values = {'contact': contact, 'greeting': greeting, 'url': url, 'url_linktext': url_linktext} template = jinja_environment.get_template('index.html') self.response.out.write(template.render(template_values)) class Submit(webapp2.RequestHandler): """ Submit form """ def post(self): if self.request.get('submit'): updated_handphone = self.request.get('handphone') updated_tickets_csjh = self.request.get('tickets_csjh') updated_tickets_edssh = self.request.get('tickets_edssh') updated_remark = self.request.get('remark') url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' user = users.get_current_user() query = Contact.gql('WHERE pid = :1', user.nickname()) result = query.fetch(1) if result: contact = result[0] greeting = 'User: %s' % (contact.name,) contact.handphone = updated_handphone contact.tickets_csjh = updated_tickets_csjh contact.tickets_edssh = updated_tickets_edssh contact.remark = db.Text(updated_remark) contact.put() else: self.response.out.write('Reservation failed!') template_values = {'contact': contact, 'greeting': greeting, 'url': url, 'url_linktext': url_linktext, 'contact.handphone': updated_handphone, 'contact.tickets_csjh': updated_tickets_csjh, 'contact.tickets_edssh': updated_tickets_edssh, 'contact.remark': updated_remark} template = jinja_environment.get_template('submit.html') self.response.out.write(template.render(template_values)) <mask token>
import webapp2 import jinja2 import os import csv from google.appengine.api import users from google.appengine.ext import db jinja_environment = jinja2.Environment(loader=jinja2.FileSystemLoader(os. path.dirname(__file__))) class Contact(db.Expando): """ User data model """ pid = db.StringProperty(required=True) name = db.StringProperty(required=True) class12 = db.StringProperty(required=True) email = db.EmailProperty(required=True) handphone = db.StringProperty(required=False) tickets_csjh = db.StringProperty(required=False) tickets_edssh = db.StringProperty(required=False) remark = db.TextProperty() class MainHandler(webapp2.RequestHandler): """ Home page handler """ def get(self): """ Show home page """ user = users.get_current_user() if user: url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' query = Contact.gql('WHERE pid = :1', user.nickname()) result = query.fetch(1) if result: contact = result[0] greeting = 'Welcome %s!' % (contact.name,) else: contact = 'Invalid dhs.sg user' greeting = '' else: url = users.create_login_url(self.request.uri) url_linktext = 'Login' contact = 'Not authorised' greeting = 'You need to' template_values = {'contact': contact, 'greeting': greeting, 'url': url, 'url_linktext': url_linktext} template = jinja_environment.get_template('index.html') self.response.out.write(template.render(template_values)) class Submit(webapp2.RequestHandler): """ Submit form """ def post(self): if self.request.get('submit'): updated_handphone = self.request.get('handphone') updated_tickets_csjh = self.request.get('tickets_csjh') updated_tickets_edssh = self.request.get('tickets_edssh') updated_remark = self.request.get('remark') url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' user = users.get_current_user() query = Contact.gql('WHERE pid = :1', user.nickname()) result = query.fetch(1) if result: contact = result[0] greeting = 'User: %s' % (contact.name,) contact.handphone = updated_handphone contact.tickets_csjh = updated_tickets_csjh contact.tickets_edssh = updated_tickets_edssh contact.remark = db.Text(updated_remark) contact.put() else: self.response.out.write('Reservation failed!') template_values = {'contact': contact, 'greeting': greeting, 'url': url, 'url_linktext': url_linktext, 'contact.handphone': updated_handphone, 'contact.tickets_csjh': updated_tickets_csjh, 'contact.tickets_edssh': updated_tickets_edssh, 'contact.remark': updated_remark} template = jinja_environment.get_template('submit.html') self.response.out.write(template.render(template_values)) contact2 = Contact(pid='lim.ahseng', name='Lim Ah Seng', class12='5C99', email='[email protected]', handphone='', tickets_csjh='', tickets_edssh ='', remark='') contact2.put() app = webapp2.WSGIApplication([('/', MainHandler), ('/submit', Submit)], debug=True)
#!/usr/bin/env python import webapp2 # web application framework import jinja2 # template engine import os # access file system import csv from google.appengine.api import users # Google account authentication from google.appengine.ext import db # datastore # initialise template jinja_environment = jinja2.Environment(loader=jinja2.FileSystemLoader(os.path.dirname(__file__))) class Contact(db.Expando): # allows for different number of fields ''' User data model ''' pid = db.StringProperty(required=True) # string = 500 char, allow field to be indexed, perform faster name = db.StringProperty(required=True) class12 = db.StringProperty(required=True) email = db.EmailProperty(required=True) handphone = db.StringProperty(required=False) tickets_csjh = db.StringProperty(required=False) tickets_edssh = db.StringProperty(required=False) remark = db.TextProperty() class MainHandler(webapp2.RequestHandler): ''' Home page handler ''' def get(self): ''' Show home page ''' # import data # check if valid Google account # school_register = csv.reader(open('data.csv'),delimiter=',') # found = False user = users.get_current_user() # for student in school_register: # if valid logged in user # if student[0] == self.request.get('pid'): # contact = student # found = True # break if user: # logout link url = users.create_logout_url(self.request.uri) # logout text url_linktext = 'Logout' # retrieve user record from datastore # may get multiple records, so in order to get one record: query = Contact.gql('WHERE pid = :1', user.nickname()) result = query.fetch(1) if result: #if user record found contact = result[0] greeting = ("Welcome %s!" % (contact.name,)) #1 item in couple = put comma else: #not found contact = "Invalid dhs.sg user" greeting = "" else: # not logged in # login link url = users.create_login_url(self.request.uri) # login text url_linktext = 'Login' contact = "Not authorised" greeting = "You need to" template_values = { 'contact': contact, 'greeting': greeting, 'url': url, 'url_linktext': url_linktext, } # create index.html template template = jinja_environment.get_template('index.html') # associate template values with template self.response.out.write(template.render(template_values)) class Submit(webapp2.RequestHandler): ''' Submit form ''' def post(self): if self.request.get('submit'): updated_handphone = self.request.get('handphone') updated_tickets_csjh = self.request.get('tickets_csjh') updated_tickets_edssh = self.request.get('tickets_edssh') updated_remark = self.request.get('remark') url = users.create_logout_url(self.request.uri) url_linktext = 'Logout' user = users.get_current_user() query = Contact.gql('WHERE pid = :1', user.nickname()) result = query.fetch(1) if result: contact = result[0] greeting = ("User: %s" % (contact.name,)) contact.handphone = updated_handphone contact.tickets_csjh = updated_tickets_csjh contact.tickets_edssh = updated_tickets_edssh contact.remark = db.Text(updated_remark) contact.put() else: self.response.out.write('Reservation failed!') template_values = { 'contact': contact, 'greeting': greeting, 'url': url, 'url_linktext': url_linktext, 'contact.handphone': updated_handphone, 'contact.tickets_csjh': updated_tickets_csjh, 'contact.tickets_edssh': updated_tickets_edssh, 'contact.remark': updated_remark, } template = jinja_environment.get_template('submit.html') self.response.out.write(template.render(template_values)) # main contact2 = Contact(pid = 'lim.ahseng', name = 'Lim Ah Seng', class12 = '5C99', email = '[email protected]', handphone = '', tickets_csjh = '', tickets_edssh = '', remark = '') contact2.put() app = webapp2.WSGIApplication([('/', MainHandler), ('/submit', Submit)], debug=True)
[ 5, 8, 9, 12, 13 ]
2,446
7f5f16ea10980e0ade7357cdae38f47f8d7cdf01
<mask token>
<mask token> def count_words(sentence): sentence = re.findall("\\b[\\w'-]+\\b", sentence.lower().replace('_', ' ')) counts = defaultdict(lambda : 0) for word in sentence: counts[word] += 1 return counts
import re from collections import defaultdict def count_words(sentence): sentence = re.findall("\\b[\\w'-]+\\b", sentence.lower().replace('_', ' ')) counts = defaultdict(lambda : 0) for word in sentence: counts[word] += 1 return counts
import re from collections import defaultdict def count_words(sentence): # extract all the words as per definition sentence = re.findall(r"\b[\w'-]+\b", sentence.lower().replace('_', ' ')) counts = defaultdict(lambda: 0) # Counting the frequency of each words for word in sentence: counts[word] += 1 return counts
null
[ 0, 1, 2, 3 ]
2,447
f26e6164fc4c07fd3339171e316b3a1f7a4be669
<mask token> def eval_ground_scores(gt_relations, pred_relations, tiou_threshold): """ :param gt_relations: :param pred_relations: :param tiou_threshold: :return: """ relation_num = len(gt_relations) predict, predict_sub, predict_obj = 0, 0, 0 for relation, pred_trajs in pred_relations.items(): pred_sub = pred_trajs['sub'] pred_obj = pred_trajs['obj'] flag, flag_s, flag_o = False, False, False gt_trajs = gt_relations[relation] for gt_traj in gt_trajs: gt_sub = gt_traj['sub'] gt_obj = gt_traj['obj'] s_tiou = tiou(pred_sub, gt_sub) o_tiou = tiou(pred_obj, gt_obj) r_iou = min(s_tiou, o_tiou) if r_iou >= tiou_threshold: flag = True if s_tiou >= tiou_threshold: flag_s = True if o_tiou >= tiou_threshold: flag_o = True if flag: predict += 1 if flag_s: predict_sub += 1 if flag_o: predict_obj += 1 predict = predict / relation_num predict_sub = predict_sub / relation_num predict_obj = predict_obj / relation_num return predict, predict_sub, predict_obj, relation_num <mask token>
<mask token> def eval_ground_scores(gt_relations, pred_relations, tiou_threshold): """ :param gt_relations: :param pred_relations: :param tiou_threshold: :return: """ relation_num = len(gt_relations) predict, predict_sub, predict_obj = 0, 0, 0 for relation, pred_trajs in pred_relations.items(): pred_sub = pred_trajs['sub'] pred_obj = pred_trajs['obj'] flag, flag_s, flag_o = False, False, False gt_trajs = gt_relations[relation] for gt_traj in gt_trajs: gt_sub = gt_traj['sub'] gt_obj = gt_traj['obj'] s_tiou = tiou(pred_sub, gt_sub) o_tiou = tiou(pred_obj, gt_obj) r_iou = min(s_tiou, o_tiou) if r_iou >= tiou_threshold: flag = True if s_tiou >= tiou_threshold: flag_s = True if o_tiou >= tiou_threshold: flag_o = True if flag: predict += 1 if flag_s: predict_sub += 1 if flag_o: predict_obj += 1 predict = predict / relation_num predict_sub = predict_sub / relation_num predict_obj = predict_obj / relation_num return predict, predict_sub, predict_obj, relation_num def evaluate(groundtruth, prediction, tiou_threshold=0.5): """ evaluate visual relation detection and visual relation tagging. """ video_num = len(groundtruth) print('Computing grounding accuracy over {} videos...'.format(video_num)) acc, acc_sub, acc_obj = 0.0, 0.0, 0.0 gt_rnum = 0 for qid, relation_gt in groundtruth.items(): if qid not in prediction: continue relation_pred = prediction[qid] if len(relation_pred) == 0: continue video_acc, video_acc_sub, video_acc_obj, relation_num = ( eval_ground_scores(relation_gt, relation_pred, tiou_threshold)) acc += video_acc acc_sub += video_acc_sub acc_obj += video_acc_obj gt_rnum += relation_num acc /= video_num acc_sub /= video_num acc_obj /= video_num print('Acc_S\t Acc_O\t Acc_R') print('{:.2f}\t {:.2f}\t {:.2f}'.format(acc_sub * 100, acc_obj * 100, acc * 100)) def main(): groundtruth_dir = 'dataset/vidvrd/' gt_file = osp.join(groundtruth_dir, 'gt_relation_frame.json') result_dir = 'results/' res_file = osp.join(result_dir, 'test_viterbi_1gap_04_batch.json') if not osp.exists(res_file): print('Generating ...') generate_track_link.main(res_file) grountruth = load_file(gt_file) prediction = load_file(res_file) evaluate(grountruth, prediction) <mask token>
<mask token> def eval_ground_scores(gt_relations, pred_relations, tiou_threshold): """ :param gt_relations: :param pred_relations: :param tiou_threshold: :return: """ relation_num = len(gt_relations) predict, predict_sub, predict_obj = 0, 0, 0 for relation, pred_trajs in pred_relations.items(): pred_sub = pred_trajs['sub'] pred_obj = pred_trajs['obj'] flag, flag_s, flag_o = False, False, False gt_trajs = gt_relations[relation] for gt_traj in gt_trajs: gt_sub = gt_traj['sub'] gt_obj = gt_traj['obj'] s_tiou = tiou(pred_sub, gt_sub) o_tiou = tiou(pred_obj, gt_obj) r_iou = min(s_tiou, o_tiou) if r_iou >= tiou_threshold: flag = True if s_tiou >= tiou_threshold: flag_s = True if o_tiou >= tiou_threshold: flag_o = True if flag: predict += 1 if flag_s: predict_sub += 1 if flag_o: predict_obj += 1 predict = predict / relation_num predict_sub = predict_sub / relation_num predict_obj = predict_obj / relation_num return predict, predict_sub, predict_obj, relation_num def evaluate(groundtruth, prediction, tiou_threshold=0.5): """ evaluate visual relation detection and visual relation tagging. """ video_num = len(groundtruth) print('Computing grounding accuracy over {} videos...'.format(video_num)) acc, acc_sub, acc_obj = 0.0, 0.0, 0.0 gt_rnum = 0 for qid, relation_gt in groundtruth.items(): if qid not in prediction: continue relation_pred = prediction[qid] if len(relation_pred) == 0: continue video_acc, video_acc_sub, video_acc_obj, relation_num = ( eval_ground_scores(relation_gt, relation_pred, tiou_threshold)) acc += video_acc acc_sub += video_acc_sub acc_obj += video_acc_obj gt_rnum += relation_num acc /= video_num acc_sub /= video_num acc_obj /= video_num print('Acc_S\t Acc_O\t Acc_R') print('{:.2f}\t {:.2f}\t {:.2f}'.format(acc_sub * 100, acc_obj * 100, acc * 100)) def main(): groundtruth_dir = 'dataset/vidvrd/' gt_file = osp.join(groundtruth_dir, 'gt_relation_frame.json') result_dir = 'results/' res_file = osp.join(result_dir, 'test_viterbi_1gap_04_batch.json') if not osp.exists(res_file): print('Generating ...') generate_track_link.main(res_file) grountruth = load_file(gt_file) prediction = load_file(res_file) evaluate(grountruth, prediction) if __name__ == '__main__': main()
import os.path as osp from evaluations.common import tiou from evaluations.util import load_file import generate_track_link def eval_ground_scores(gt_relations, pred_relations, tiou_threshold): """ :param gt_relations: :param pred_relations: :param tiou_threshold: :return: """ relation_num = len(gt_relations) predict, predict_sub, predict_obj = 0, 0, 0 for relation, pred_trajs in pred_relations.items(): pred_sub = pred_trajs['sub'] pred_obj = pred_trajs['obj'] flag, flag_s, flag_o = False, False, False gt_trajs = gt_relations[relation] for gt_traj in gt_trajs: gt_sub = gt_traj['sub'] gt_obj = gt_traj['obj'] s_tiou = tiou(pred_sub, gt_sub) o_tiou = tiou(pred_obj, gt_obj) r_iou = min(s_tiou, o_tiou) if r_iou >= tiou_threshold: flag = True if s_tiou >= tiou_threshold: flag_s = True if o_tiou >= tiou_threshold: flag_o = True if flag: predict += 1 if flag_s: predict_sub += 1 if flag_o: predict_obj += 1 predict = predict / relation_num predict_sub = predict_sub / relation_num predict_obj = predict_obj / relation_num return predict, predict_sub, predict_obj, relation_num def evaluate(groundtruth, prediction, tiou_threshold=0.5): """ evaluate visual relation detection and visual relation tagging. """ video_num = len(groundtruth) print('Computing grounding accuracy over {} videos...'.format(video_num)) acc, acc_sub, acc_obj = 0.0, 0.0, 0.0 gt_rnum = 0 for qid, relation_gt in groundtruth.items(): if qid not in prediction: continue relation_pred = prediction[qid] if len(relation_pred) == 0: continue video_acc, video_acc_sub, video_acc_obj, relation_num = ( eval_ground_scores(relation_gt, relation_pred, tiou_threshold)) acc += video_acc acc_sub += video_acc_sub acc_obj += video_acc_obj gt_rnum += relation_num acc /= video_num acc_sub /= video_num acc_obj /= video_num print('Acc_S\t Acc_O\t Acc_R') print('{:.2f}\t {:.2f}\t {:.2f}'.format(acc_sub * 100, acc_obj * 100, acc * 100)) def main(): groundtruth_dir = 'dataset/vidvrd/' gt_file = osp.join(groundtruth_dir, 'gt_relation_frame.json') result_dir = 'results/' res_file = osp.join(result_dir, 'test_viterbi_1gap_04_batch.json') if not osp.exists(res_file): print('Generating ...') generate_track_link.main(res_file) grountruth = load_file(gt_file) prediction = load_file(res_file) evaluate(grountruth, prediction) if __name__ == '__main__': main()
import os.path as osp from evaluations.common import tiou from evaluations.util import load_file import generate_track_link def eval_ground_scores(gt_relations, pred_relations, tiou_threshold): """ :param gt_relations: :param pred_relations: :param tiou_threshold: :return: """ # pred_relations = sorted(pred_relations, key=lambda x: x['score'], reverse=True) relation_num = len(gt_relations) predict, predict_sub, predict_obj = 0, 0, 0 for relation, pred_trajs in pred_relations.items(): pred_sub = pred_trajs['sub'] pred_obj = pred_trajs['obj'] flag, flag_s, flag_o = False, False, False gt_trajs = gt_relations[relation] # print(relation) for gt_traj in gt_trajs: gt_sub = gt_traj['sub'] gt_obj = gt_traj['obj'] s_tiou = tiou(pred_sub, gt_sub) o_tiou = tiou(pred_obj, gt_obj) r_iou = min(s_tiou, o_tiou) if r_iou >= tiou_threshold: flag = True if s_tiou >= tiou_threshold: flag_s = True if o_tiou >= tiou_threshold: flag_o = True if flag: predict += 1 if flag_s: predict_sub += 1 if flag_o: predict_obj += 1 predict = predict / relation_num predict_sub = predict_sub /relation_num predict_obj = predict_obj /relation_num return predict, predict_sub, predict_obj, relation_num def evaluate(groundtruth, prediction, tiou_threshold=0.5): """ evaluate visual relation detection and visual relation tagging. """ video_num = len(groundtruth) print('Computing grounding accuracy over {} videos...'.format(video_num)) acc, acc_sub, acc_obj = 0.0, 0.0, 0.0 gt_rnum = 0 for qid, relation_gt in groundtruth.items(): if qid not in prediction: continue relation_pred = prediction[qid] if len(relation_pred) == 0: continue video_acc, video_acc_sub, video_acc_obj, relation_num = eval_ground_scores(relation_gt, relation_pred, tiou_threshold) acc += video_acc acc_sub += video_acc_sub acc_obj += video_acc_obj gt_rnum += relation_num acc /= video_num acc_sub /= video_num acc_obj /= video_num print("Acc_S\t Acc_O\t Acc_R") print('{:.2f}\t {:.2f}\t {:.2f}'.format(acc_sub*100, acc_obj*100, acc*100)) def main(): groundtruth_dir = 'dataset/vidvrd/' gt_file = osp.join(groundtruth_dir, 'gt_relation_frame.json') result_dir = 'results/' res_file = osp.join(result_dir, 'test_viterbi_1gap_04_batch.json') if not osp.exists(res_file): print('Generating ...') generate_track_link.main(res_file) grountruth = load_file(gt_file) prediction = load_file(res_file) evaluate(grountruth, prediction) if __name__ == "__main__": main()
[ 1, 3, 4, 5, 6 ]
2,448
9555e5f75e3045afff6da9228764fca542caf539
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [] operations = [migrations.CreateModel(name='Beach', fields=[('id', models.AutoField(verbose_name='ID', serialize=False, auto_created= True, primary_key=True)), ('name', models.CharField(max_length=128) )]), migrations.CreateModel(name='SelectedBeach', fields=[('id', models.AutoField(verbose_name='ID', serialize=False, auto_created= True, primary_key=True)), ('json_beach', models.ForeignKey( related_name='json', blank=True, to='testapp.Beach', null=True)), ( 'rest_framework_beach', models.ForeignKey(related_name='rest', blank=True, to='testapp.Beach', null=True)), ( 'tastypie_beach_contains', models.ForeignKey(related_name= 'tp_contains', blank=True, to='testapp.Beach', null=True)), ( 'tastypie_beach_starts', models.ForeignKey(related_name='tp_starts', blank=True, to='testapp.Beach', null=True))])]
from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [] operations = [migrations.CreateModel(name='Beach', fields=[('id', models.AutoField(verbose_name='ID', serialize=False, auto_created= True, primary_key=True)), ('name', models.CharField(max_length=128) )]), migrations.CreateModel(name='SelectedBeach', fields=[('id', models.AutoField(verbose_name='ID', serialize=False, auto_created= True, primary_key=True)), ('json_beach', models.ForeignKey( related_name='json', blank=True, to='testapp.Beach', null=True)), ( 'rest_framework_beach', models.ForeignKey(related_name='rest', blank=True, to='testapp.Beach', null=True)), ( 'tastypie_beach_contains', models.ForeignKey(related_name= 'tp_contains', blank=True, to='testapp.Beach', null=True)), ( 'tastypie_beach_starts', models.ForeignKey(related_name='tp_starts', blank=True, to='testapp.Beach', null=True))])]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Beach', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=128)), ], ), migrations.CreateModel( name='SelectedBeach', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('json_beach', models.ForeignKey(related_name='json', blank=True, to='testapp.Beach', null=True)), ('rest_framework_beach', models.ForeignKey(related_name='rest', blank=True, to='testapp.Beach', null=True)), ('tastypie_beach_contains', models.ForeignKey(related_name='tp_contains', blank=True, to='testapp.Beach', null=True)), ('tastypie_beach_starts', models.ForeignKey(related_name='tp_starts', blank=True, to='testapp.Beach', null=True)), ], ), ]
[ 0, 1, 2, 3, 4 ]
2,449
97ea837961c92b5c92a93ec33ac016de7ff1e876
<mask token> class simpleLSTM: <mask token> def create_dataset(self, dataset, look_back=4): dataX, dataY = [], [] for i in range(len(dataset) - look_back - 1): a = dataset.iloc[i:i + look_back] dataX.append(a) dataY.append(dataset.iloc[i + look_back]) return np.array(dataX), np.array(dataY) <mask token> <mask token> def LSTM_CNN(self, stock_h): num_of_features = 4 dataset = self.get_features(stock_h, num_of_features=num_of_features) train, test = self.split_dataset(dataset, '2019-01-01') train, val = self.split_dataset(train, '2014-01-01') batch_size = 1 look_back = 3 EPOCHS = 100 trainX, trainY = self.create_dataset(train, look_back) valX, valY = self.create_dataset(val, look_back) testX, testY = self.create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], num_of_features, trainX.shape[1])) valX = np.reshape(valX, (valX.shape[0], num_of_features, valX.shape[1]) ) testX = np.reshape(testX, (testX.shape[0], num_of_features, testX. shape[1])) early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1) SAVE = False if os.path.exists(self.MODEL_PATH) and SAVE: model = tensorflow.keras.models.load_model(self.MODEL_PATH) print('[INFO] MODEL LOADED...') else: input_shape = num_of_features, look_back model = Sequential() model.add(LSTM(32, activation='relu', input_shape=input_shape)) model.add(Dropout(0.2)) model.add(Dense(num_of_features, activation='relu')) model.compile(loss='mse', optimizer='adam', metrics=['accuracy']) early_stop = EarlyStopping(monitor='loss', patience=15, verbose=1) history = model.fit(trainX, trainY, epochs=EPOCHS, verbose=1, validation_data=(valX, valY)) model.save(self.MODEL_PATH) print('[INFO] MODEL SAVED...') trainPredict = model.predict(trainX) valPredict = model.predict(valX) testPredict = model.predict(testX) testR2 = r2_score(testY, testPredict) print('Test R2: %.2f ' % testR2) valR2 = r2_score(valY, valPredict) print('Val R2: %.2f ' % valR2) trainR2 = r2_score(trainY, trainPredict) print('Train R2: %.2f ' % trainR2) feature_i = 0 plt.plot(test.index[look_back + 1:], testY[:, feature_i].ravel(), label='Test_obs') plt.plot(test.index[look_back + 1:], testPredict[:, feature_i]. ravel(), label='Test_pred') plt.plot(val.index[look_back + 1:], valY[:, feature_i].ravel(), label='Val_obs') plt.plot(val.index[look_back + 1:], valPredict[:, feature_i].ravel( ), label='Val_pred') plt.plot(train.index[look_back + 1:], trainY[:, feature_i].ravel(), label='Train_obs') plt.plot(train.index[look_back + 1:], trainPredict[:, feature_i]. ravel(), label='Train_pred') plt.xticks(rotation=45) plt.legend() plt.show() <mask token> def statefulLSTM(self, stock_h): dataset = self.get_features(stock_h, num_of_features=1) train, test = self.split_dataset(dataset, '2017-01-01') val, test = self.split_dataset(test, '2019-01-01') batch_size = 1 look_back = 3 EPOCHS = 25 trainX, trainY = self.create_dataset(train, look_back) valX, valY = self.create_dataset(val, look_back) testX, testY = self.create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1)) valX = np.reshape(valX, (valX.shape[0], valX.shape[1], 1)) testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1)) early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1) if os.path.exists('models\\stateful_lstm.h5'): model = tensorflow.keras.models.load_model( 'models\\stateful_lstm.h5') else: model = Sequential() model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=True)) model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy']) for i in range(EPOCHS): print(f'[INFO] EPOCH: {i}/{EPOCHS}') model.fit(trainX, trainY, epochs=1, batch_size=batch_size, verbose=2, shuffle=False, validation_data=(valX, valY)) model.save('models\\stateful_lstm.h5') trainPredict = model.predict(trainX, batch_size=batch_size) testPredict = model.predict(testX, batch_size=batch_size) trainScore = math.sqrt(mean_squared_error(trainY[:, 0], trainPredict[:, 0])) print('Train Score: %.2f RMSE' % trainScore) testScore = math.sqrt(mean_squared_error(testY[:, 0], testPredict[:, 0])) print('Test Score: %.2f RMSE' % testScore) plt.plot(testY) plt.plot(testPredict) plt.show()
<mask token> class simpleLSTM: def __init__(self): self.MODEL_PATH = 'models\\basic_lstm.h5' def create_dataset(self, dataset, look_back=4): dataX, dataY = [], [] for i in range(len(dataset) - look_back - 1): a = dataset.iloc[i:i + look_back] dataX.append(a) dataY.append(dataset.iloc[i + look_back]) return np.array(dataX), np.array(dataY) <mask token> def split_dataset(self, dataset, split_date, initial_data_cut=None, type='start'): if initial_data_cut != None: split_date_old = pd.Timestamp(initial_data_cut + ' 00:00:00') if type == 'start': dataset = dataset.loc[split_date_old:] if type == 'end': dataset = dataset.loc[:split_date_old] split_date = pd.Timestamp(split_date + ' 00:00:00') train = dataset.loc[:split_date] test = dataset.loc[split_date:] print(f'Train: {len(train)}, Test: {len(test)}') return train, test def LSTM_CNN(self, stock_h): num_of_features = 4 dataset = self.get_features(stock_h, num_of_features=num_of_features) train, test = self.split_dataset(dataset, '2019-01-01') train, val = self.split_dataset(train, '2014-01-01') batch_size = 1 look_back = 3 EPOCHS = 100 trainX, trainY = self.create_dataset(train, look_back) valX, valY = self.create_dataset(val, look_back) testX, testY = self.create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], num_of_features, trainX.shape[1])) valX = np.reshape(valX, (valX.shape[0], num_of_features, valX.shape[1]) ) testX = np.reshape(testX, (testX.shape[0], num_of_features, testX. shape[1])) early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1) SAVE = False if os.path.exists(self.MODEL_PATH) and SAVE: model = tensorflow.keras.models.load_model(self.MODEL_PATH) print('[INFO] MODEL LOADED...') else: input_shape = num_of_features, look_back model = Sequential() model.add(LSTM(32, activation='relu', input_shape=input_shape)) model.add(Dropout(0.2)) model.add(Dense(num_of_features, activation='relu')) model.compile(loss='mse', optimizer='adam', metrics=['accuracy']) early_stop = EarlyStopping(monitor='loss', patience=15, verbose=1) history = model.fit(trainX, trainY, epochs=EPOCHS, verbose=1, validation_data=(valX, valY)) model.save(self.MODEL_PATH) print('[INFO] MODEL SAVED...') trainPredict = model.predict(trainX) valPredict = model.predict(valX) testPredict = model.predict(testX) testR2 = r2_score(testY, testPredict) print('Test R2: %.2f ' % testR2) valR2 = r2_score(valY, valPredict) print('Val R2: %.2f ' % valR2) trainR2 = r2_score(trainY, trainPredict) print('Train R2: %.2f ' % trainR2) feature_i = 0 plt.plot(test.index[look_back + 1:], testY[:, feature_i].ravel(), label='Test_obs') plt.plot(test.index[look_back + 1:], testPredict[:, feature_i]. ravel(), label='Test_pred') plt.plot(val.index[look_back + 1:], valY[:, feature_i].ravel(), label='Val_obs') plt.plot(val.index[look_back + 1:], valPredict[:, feature_i].ravel( ), label='Val_pred') plt.plot(train.index[look_back + 1:], trainY[:, feature_i].ravel(), label='Train_obs') plt.plot(train.index[look_back + 1:], trainPredict[:, feature_i]. ravel(), label='Train_pred') plt.xticks(rotation=45) plt.legend() plt.show() def basicLSTM(self, stock_h): num_of_features = 4 dataset = self.get_features(stock_h, num_of_features=num_of_features) train, test = self.split_dataset(dataset, '2016-01-01', initial_data_cut='2019-01-01') train, val = self.split_dataset(train, '2012-01-01') look_back = 5 trainX, trainY = self.create_dataset(train, look_back) valX, valY = self.create_dataset(val, look_back) testX, testY = self.create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], num_of_features, trainX.shape[1])) valX = np.reshape(valX, (valX.shape[0], num_of_features, valX.shape[1]) ) testX = np.reshape(testX, (testX.shape[0], num_of_features, testX. shape[1])) early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1) SAVE = True if os.path.exists(self.MODEL_PATH) and SAVE: model = tensorflow.keras.models.load_model(self.MODEL_PATH) else: model = Sequential() model.add(LSTM(32, input_shape=(num_of_features, look_back))) model.add(Dropout(0.3)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy']) model.fit(trainX, trainY, epochs=25, batch_size=1, verbose=2, validation_data=(valX, valY), callbacks=[early_stop]) model.save(self.MODEL_PATH) trainPredict = model.predict(trainX) testPredict = model.predict(testX) trainScore = r2_score(trainY, trainPredict) print('R2 Train Score: %.2f' % trainScore) testScore = r2_score(testY, testPredict) print('R2 Test Score: %.2f' % testScore) plt.plot(testY) plt.plot(testPredict) plt.show() def statefulLSTM(self, stock_h): dataset = self.get_features(stock_h, num_of_features=1) train, test = self.split_dataset(dataset, '2017-01-01') val, test = self.split_dataset(test, '2019-01-01') batch_size = 1 look_back = 3 EPOCHS = 25 trainX, trainY = self.create_dataset(train, look_back) valX, valY = self.create_dataset(val, look_back) testX, testY = self.create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1)) valX = np.reshape(valX, (valX.shape[0], valX.shape[1], 1)) testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1)) early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1) if os.path.exists('models\\stateful_lstm.h5'): model = tensorflow.keras.models.load_model( 'models\\stateful_lstm.h5') else: model = Sequential() model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=True)) model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy']) for i in range(EPOCHS): print(f'[INFO] EPOCH: {i}/{EPOCHS}') model.fit(trainX, trainY, epochs=1, batch_size=batch_size, verbose=2, shuffle=False, validation_data=(valX, valY)) model.save('models\\stateful_lstm.h5') trainPredict = model.predict(trainX, batch_size=batch_size) testPredict = model.predict(testX, batch_size=batch_size) trainScore = math.sqrt(mean_squared_error(trainY[:, 0], trainPredict[:, 0])) print('Train Score: %.2f RMSE' % trainScore) testScore = math.sqrt(mean_squared_error(testY[:, 0], testPredict[:, 0])) print('Test Score: %.2f RMSE' % testScore) plt.plot(testY) plt.plot(testPredict) plt.show()
<mask token> class simpleLSTM: def __init__(self): self.MODEL_PATH = 'models\\basic_lstm.h5' def create_dataset(self, dataset, look_back=4): dataX, dataY = [], [] for i in range(len(dataset) - look_back - 1): a = dataset.iloc[i:i + look_back] dataX.append(a) dataY.append(dataset.iloc[i + look_back]) return np.array(dataX), np.array(dataY) def get_features(self, stock_h, num_of_features=1): if num_of_features == 1: dataset = stock_h[['Close']] elif num_of_features == 2: dataset = stock_h[['Close', 'Open']] elif num_of_features == 4: dataset = stock_h[['Close', 'Open', 'Low', 'High']] elif num_of_features == 5: dataset = stock_h[['Close', 'Open', 'Low', 'High', 'Volume']] return dataset def split_dataset(self, dataset, split_date, initial_data_cut=None, type='start'): if initial_data_cut != None: split_date_old = pd.Timestamp(initial_data_cut + ' 00:00:00') if type == 'start': dataset = dataset.loc[split_date_old:] if type == 'end': dataset = dataset.loc[:split_date_old] split_date = pd.Timestamp(split_date + ' 00:00:00') train = dataset.loc[:split_date] test = dataset.loc[split_date:] print(f'Train: {len(train)}, Test: {len(test)}') return train, test def LSTM_CNN(self, stock_h): num_of_features = 4 dataset = self.get_features(stock_h, num_of_features=num_of_features) train, test = self.split_dataset(dataset, '2019-01-01') train, val = self.split_dataset(train, '2014-01-01') batch_size = 1 look_back = 3 EPOCHS = 100 trainX, trainY = self.create_dataset(train, look_back) valX, valY = self.create_dataset(val, look_back) testX, testY = self.create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], num_of_features, trainX.shape[1])) valX = np.reshape(valX, (valX.shape[0], num_of_features, valX.shape[1]) ) testX = np.reshape(testX, (testX.shape[0], num_of_features, testX. shape[1])) early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1) SAVE = False if os.path.exists(self.MODEL_PATH) and SAVE: model = tensorflow.keras.models.load_model(self.MODEL_PATH) print('[INFO] MODEL LOADED...') else: input_shape = num_of_features, look_back model = Sequential() model.add(LSTM(32, activation='relu', input_shape=input_shape)) model.add(Dropout(0.2)) model.add(Dense(num_of_features, activation='relu')) model.compile(loss='mse', optimizer='adam', metrics=['accuracy']) early_stop = EarlyStopping(monitor='loss', patience=15, verbose=1) history = model.fit(trainX, trainY, epochs=EPOCHS, verbose=1, validation_data=(valX, valY)) model.save(self.MODEL_PATH) print('[INFO] MODEL SAVED...') trainPredict = model.predict(trainX) valPredict = model.predict(valX) testPredict = model.predict(testX) testR2 = r2_score(testY, testPredict) print('Test R2: %.2f ' % testR2) valR2 = r2_score(valY, valPredict) print('Val R2: %.2f ' % valR2) trainR2 = r2_score(trainY, trainPredict) print('Train R2: %.2f ' % trainR2) feature_i = 0 plt.plot(test.index[look_back + 1:], testY[:, feature_i].ravel(), label='Test_obs') plt.plot(test.index[look_back + 1:], testPredict[:, feature_i]. ravel(), label='Test_pred') plt.plot(val.index[look_back + 1:], valY[:, feature_i].ravel(), label='Val_obs') plt.plot(val.index[look_back + 1:], valPredict[:, feature_i].ravel( ), label='Val_pred') plt.plot(train.index[look_back + 1:], trainY[:, feature_i].ravel(), label='Train_obs') plt.plot(train.index[look_back + 1:], trainPredict[:, feature_i]. ravel(), label='Train_pred') plt.xticks(rotation=45) plt.legend() plt.show() def basicLSTM(self, stock_h): num_of_features = 4 dataset = self.get_features(stock_h, num_of_features=num_of_features) train, test = self.split_dataset(dataset, '2016-01-01', initial_data_cut='2019-01-01') train, val = self.split_dataset(train, '2012-01-01') look_back = 5 trainX, trainY = self.create_dataset(train, look_back) valX, valY = self.create_dataset(val, look_back) testX, testY = self.create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], num_of_features, trainX.shape[1])) valX = np.reshape(valX, (valX.shape[0], num_of_features, valX.shape[1]) ) testX = np.reshape(testX, (testX.shape[0], num_of_features, testX. shape[1])) early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1) SAVE = True if os.path.exists(self.MODEL_PATH) and SAVE: model = tensorflow.keras.models.load_model(self.MODEL_PATH) else: model = Sequential() model.add(LSTM(32, input_shape=(num_of_features, look_back))) model.add(Dropout(0.3)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy']) model.fit(trainX, trainY, epochs=25, batch_size=1, verbose=2, validation_data=(valX, valY), callbacks=[early_stop]) model.save(self.MODEL_PATH) trainPredict = model.predict(trainX) testPredict = model.predict(testX) trainScore = r2_score(trainY, trainPredict) print('R2 Train Score: %.2f' % trainScore) testScore = r2_score(testY, testPredict) print('R2 Test Score: %.2f' % testScore) plt.plot(testY) plt.plot(testPredict) plt.show() def statefulLSTM(self, stock_h): dataset = self.get_features(stock_h, num_of_features=1) train, test = self.split_dataset(dataset, '2017-01-01') val, test = self.split_dataset(test, '2019-01-01') batch_size = 1 look_back = 3 EPOCHS = 25 trainX, trainY = self.create_dataset(train, look_back) valX, valY = self.create_dataset(val, look_back) testX, testY = self.create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1)) valX = np.reshape(valX, (valX.shape[0], valX.shape[1], 1)) testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1)) early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1) if os.path.exists('models\\stateful_lstm.h5'): model = tensorflow.keras.models.load_model( 'models\\stateful_lstm.h5') else: model = Sequential() model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=True)) model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy']) for i in range(EPOCHS): print(f'[INFO] EPOCH: {i}/{EPOCHS}') model.fit(trainX, trainY, epochs=1, batch_size=batch_size, verbose=2, shuffle=False, validation_data=(valX, valY)) model.save('models\\stateful_lstm.h5') trainPredict = model.predict(trainX, batch_size=batch_size) testPredict = model.predict(testX, batch_size=batch_size) trainScore = math.sqrt(mean_squared_error(trainY[:, 0], trainPredict[:, 0])) print('Train Score: %.2f RMSE' % trainScore) testScore = math.sqrt(mean_squared_error(testY[:, 0], testPredict[:, 0])) print('Test Score: %.2f RMSE' % testScore) plt.plot(testY) plt.plot(testPredict) plt.show()
import numpy as np import pandas as pd import math import sklearn import sklearn.preprocessing import datetime import os import matplotlib.pyplot as plt import yfinance as yf import math from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.layers import LSTM from tensorflow.keras.callbacks import EarlyStopping from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error, r2_score import tensorflow class simpleLSTM: def __init__(self): self.MODEL_PATH = 'models\\basic_lstm.h5' def create_dataset(self, dataset, look_back=4): dataX, dataY = [], [] for i in range(len(dataset) - look_back - 1): a = dataset.iloc[i:i + look_back] dataX.append(a) dataY.append(dataset.iloc[i + look_back]) return np.array(dataX), np.array(dataY) def get_features(self, stock_h, num_of_features=1): if num_of_features == 1: dataset = stock_h[['Close']] elif num_of_features == 2: dataset = stock_h[['Close', 'Open']] elif num_of_features == 4: dataset = stock_h[['Close', 'Open', 'Low', 'High']] elif num_of_features == 5: dataset = stock_h[['Close', 'Open', 'Low', 'High', 'Volume']] return dataset def split_dataset(self, dataset, split_date, initial_data_cut=None, type='start'): if initial_data_cut != None: split_date_old = pd.Timestamp(initial_data_cut + ' 00:00:00') if type == 'start': dataset = dataset.loc[split_date_old:] if type == 'end': dataset = dataset.loc[:split_date_old] split_date = pd.Timestamp(split_date + ' 00:00:00') train = dataset.loc[:split_date] test = dataset.loc[split_date:] print(f'Train: {len(train)}, Test: {len(test)}') return train, test def LSTM_CNN(self, stock_h): num_of_features = 4 dataset = self.get_features(stock_h, num_of_features=num_of_features) train, test = self.split_dataset(dataset, '2019-01-01') train, val = self.split_dataset(train, '2014-01-01') batch_size = 1 look_back = 3 EPOCHS = 100 trainX, trainY = self.create_dataset(train, look_back) valX, valY = self.create_dataset(val, look_back) testX, testY = self.create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], num_of_features, trainX.shape[1])) valX = np.reshape(valX, (valX.shape[0], num_of_features, valX.shape[1]) ) testX = np.reshape(testX, (testX.shape[0], num_of_features, testX. shape[1])) early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1) SAVE = False if os.path.exists(self.MODEL_PATH) and SAVE: model = tensorflow.keras.models.load_model(self.MODEL_PATH) print('[INFO] MODEL LOADED...') else: input_shape = num_of_features, look_back model = Sequential() model.add(LSTM(32, activation='relu', input_shape=input_shape)) model.add(Dropout(0.2)) model.add(Dense(num_of_features, activation='relu')) model.compile(loss='mse', optimizer='adam', metrics=['accuracy']) early_stop = EarlyStopping(monitor='loss', patience=15, verbose=1) history = model.fit(trainX, trainY, epochs=EPOCHS, verbose=1, validation_data=(valX, valY)) model.save(self.MODEL_PATH) print('[INFO] MODEL SAVED...') trainPredict = model.predict(trainX) valPredict = model.predict(valX) testPredict = model.predict(testX) testR2 = r2_score(testY, testPredict) print('Test R2: %.2f ' % testR2) valR2 = r2_score(valY, valPredict) print('Val R2: %.2f ' % valR2) trainR2 = r2_score(trainY, trainPredict) print('Train R2: %.2f ' % trainR2) feature_i = 0 plt.plot(test.index[look_back + 1:], testY[:, feature_i].ravel(), label='Test_obs') plt.plot(test.index[look_back + 1:], testPredict[:, feature_i]. ravel(), label='Test_pred') plt.plot(val.index[look_back + 1:], valY[:, feature_i].ravel(), label='Val_obs') plt.plot(val.index[look_back + 1:], valPredict[:, feature_i].ravel( ), label='Val_pred') plt.plot(train.index[look_back + 1:], trainY[:, feature_i].ravel(), label='Train_obs') plt.plot(train.index[look_back + 1:], trainPredict[:, feature_i]. ravel(), label='Train_pred') plt.xticks(rotation=45) plt.legend() plt.show() def basicLSTM(self, stock_h): num_of_features = 4 dataset = self.get_features(stock_h, num_of_features=num_of_features) train, test = self.split_dataset(dataset, '2016-01-01', initial_data_cut='2019-01-01') train, val = self.split_dataset(train, '2012-01-01') look_back = 5 trainX, trainY = self.create_dataset(train, look_back) valX, valY = self.create_dataset(val, look_back) testX, testY = self.create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], num_of_features, trainX.shape[1])) valX = np.reshape(valX, (valX.shape[0], num_of_features, valX.shape[1]) ) testX = np.reshape(testX, (testX.shape[0], num_of_features, testX. shape[1])) early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1) SAVE = True if os.path.exists(self.MODEL_PATH) and SAVE: model = tensorflow.keras.models.load_model(self.MODEL_PATH) else: model = Sequential() model.add(LSTM(32, input_shape=(num_of_features, look_back))) model.add(Dropout(0.3)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy']) model.fit(trainX, trainY, epochs=25, batch_size=1, verbose=2, validation_data=(valX, valY), callbacks=[early_stop]) model.save(self.MODEL_PATH) trainPredict = model.predict(trainX) testPredict = model.predict(testX) trainScore = r2_score(trainY, trainPredict) print('R2 Train Score: %.2f' % trainScore) testScore = r2_score(testY, testPredict) print('R2 Test Score: %.2f' % testScore) plt.plot(testY) plt.plot(testPredict) plt.show() def statefulLSTM(self, stock_h): dataset = self.get_features(stock_h, num_of_features=1) train, test = self.split_dataset(dataset, '2017-01-01') val, test = self.split_dataset(test, '2019-01-01') batch_size = 1 look_back = 3 EPOCHS = 25 trainX, trainY = self.create_dataset(train, look_back) valX, valY = self.create_dataset(val, look_back) testX, testY = self.create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1)) valX = np.reshape(valX, (valX.shape[0], valX.shape[1], 1)) testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1)) early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1) if os.path.exists('models\\stateful_lstm.h5'): model = tensorflow.keras.models.load_model( 'models\\stateful_lstm.h5') else: model = Sequential() model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=True)) model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy']) for i in range(EPOCHS): print(f'[INFO] EPOCH: {i}/{EPOCHS}') model.fit(trainX, trainY, epochs=1, batch_size=batch_size, verbose=2, shuffle=False, validation_data=(valX, valY)) model.save('models\\stateful_lstm.h5') trainPredict = model.predict(trainX, batch_size=batch_size) testPredict = model.predict(testX, batch_size=batch_size) trainScore = math.sqrt(mean_squared_error(trainY[:, 0], trainPredict[:, 0])) print('Train Score: %.2f RMSE' % trainScore) testScore = math.sqrt(mean_squared_error(testY[:, 0], testPredict[:, 0])) print('Test Score: %.2f RMSE' % testScore) plt.plot(testY) plt.plot(testPredict) plt.show()
import numpy as np import pandas as pd import math import sklearn import sklearn.preprocessing import datetime import os import matplotlib.pyplot as plt import yfinance as yf import math from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.layers import LSTM from tensorflow.keras.callbacks import EarlyStopping from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error, r2_score import tensorflow class simpleLSTM: def __init__(self): self.MODEL_PATH = r"models\basic_lstm.h5" def create_dataset(self, dataset, look_back=4): dataX, dataY = [], [] for i in range(len(dataset) - look_back - 1): a = dataset.iloc[i:(i + look_back)] dataX.append(a) dataY.append(dataset.iloc[i + look_back]) # dataY.append(dataset.iloc[i + look_back][0]) return np.array(dataX), np.array(dataY) def get_features(self, stock_h, num_of_features=1): if num_of_features == 1: dataset = stock_h[["Close"]] elif num_of_features == 2: dataset = stock_h[["Close", "Open"]] elif num_of_features == 4: dataset = stock_h[["Close", "Open", "Low", "High"]] elif num_of_features == 5: dataset = stock_h[["Close", "Open", "Low", "High", "Volume"]] return dataset def split_dataset(self, dataset, split_date, initial_data_cut=None, type="start"): if initial_data_cut != None: split_date_old = pd.Timestamp(initial_data_cut + ' 00:00:00') if type == "start": dataset = dataset.loc[split_date_old:] if type == "end": dataset = dataset.loc[:split_date_old] split_date = pd.Timestamp(split_date + ' 00:00:00') train = dataset.loc[:split_date] test = dataset.loc[split_date:] # train_size = int(len(dataset) * 0.67) # test_size = len(dataset) - train_size # train = dataset[0:train_size, :] # test = dataset[train_size:len(dataset), :] # print(len(train), len(test)) print(f"Train: {len(train)}, Test: {len(test)}") return train, test def LSTM_CNN(self, stock_h): num_of_features = 4 dataset = self.get_features(stock_h, num_of_features=num_of_features) # train, test = self.split_dataset(dataset, "2020-09-01", initial_data_cut="2020-01-01", type="start") # train, test = self.split_dataset(dataset, "2017-02-01") # val, test = self.split_dataset(test, "2021-01-01") # train, test = self.split_dataset(dataset, "2017-01-01", initial_data_cut="2019-01-01", type="end") train, test = self.split_dataset(dataset, "2019-01-01") train, val = self.split_dataset(train, "2014-01-01") batch_size = 1 look_back = 3 EPOCHS = 100 trainX, trainY = self.create_dataset(train, look_back) valX, valY = self.create_dataset(val, look_back) testX, testY = self.create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], num_of_features, trainX.shape[1])) valX = np.reshape(valX, (valX.shape[0], num_of_features, valX.shape[1])) testX = np.reshape(testX, (testX.shape[0], num_of_features, testX.shape[1])) early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1) SAVE = False # It can be used to reconstruct the model identically. if os.path.exists(self.MODEL_PATH) and SAVE: model = tensorflow.keras.models.load_model(self.MODEL_PATH) print("[INFO] MODEL LOADED...") else: # input_shape = (look_back, 1) input_shape = (num_of_features, look_back) model = Sequential() model.add( LSTM(32, activation="relu", input_shape=input_shape)) # model.add( # Conv1D(filters=32, kernel_size=5, strides=1, padding="same", activation="relu", # input_shape=input_shape)) # lstm_model.add(Dropout(0.1)) model.add(Dropout(0.2)) model.add(Dense(num_of_features, activation='relu')) model.compile(loss='mse', optimizer='adam', metrics=['accuracy']) early_stop = EarlyStopping(monitor='loss', patience=15, verbose=1) # callbacks=[early_stop] history = model.fit(trainX, trainY, epochs=EPOCHS, verbose=1, validation_data=(valX, valY)) model.save(self.MODEL_PATH) print("[INFO] MODEL SAVED...") trainPredict = model.predict(trainX) valPredict = model.predict(valX) testPredict = model.predict(testX) # testR2 = r2_score(testY[:, 0], testPredict[:, 0]) # print('Test R2: %.2f ' % (testR2)) # valR2 = r2_score(valY[:, 0], valPredict[:, 0]) # print('Val R2: %.2f ' % (valR2)) # trainR2 = r2_score(trainY[:, 0], trainPredict[:, 0]) # print('Train R2: %.2f ' % (trainR2)) testR2 = r2_score(testY, testPredict) print('Test R2: %.2f ' % (testR2)) valR2 = r2_score(valY, valPredict) print('Val R2: %.2f ' % (valR2)) trainR2 = r2_score(trainY, trainPredict) print('Train R2: %.2f ' % (trainR2)) feature_i = 0 plt.plot(test.index[look_back+1:], testY[:, feature_i].ravel(), label="Test_obs") plt.plot(test.index[look_back+1:], testPredict[:, feature_i].ravel(), label="Test_pred") plt.plot(val.index[look_back+1:], valY[:, feature_i].ravel(), label="Val_obs") plt.plot(val.index[look_back+1:], valPredict[:, feature_i].ravel(), label="Val_pred") plt.plot(train.index[look_back+1:], trainY[:, feature_i].ravel(), label="Train_obs") plt.plot(train.index[look_back+1:], trainPredict[:, feature_i].ravel(), label="Train_pred") plt.xticks(rotation=45) plt.legend() plt.show() def basicLSTM(self, stock_h): num_of_features = 4 dataset = self.get_features(stock_h, num_of_features=num_of_features) train, test = self.split_dataset(dataset, "2016-01-01", initial_data_cut="2019-01-01") # train, test = self.split_dataset(dataset, "2018-01-01") train, val = self.split_dataset(train, "2012-01-01") look_back = 5 trainX, trainY = self.create_dataset(train, look_back) valX, valY = self.create_dataset(val, look_back) testX, testY = self.create_dataset(test, look_back) trainX = np.reshape(trainX, (trainX.shape[0], num_of_features, trainX.shape[1])) valX = np.reshape(valX, (valX.shape[0], num_of_features, valX.shape[1])) testX = np.reshape(testX, (testX.shape[0], num_of_features, testX.shape[1])) early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1) SAVE = True if os.path.exists(self.MODEL_PATH) and SAVE: model = tensorflow.keras.models.load_model(self.MODEL_PATH) else: model = Sequential() model.add(LSTM(32, input_shape=(num_of_features, look_back))) model.add(Dropout(0.3)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy']) model.fit(trainX, trainY, epochs=25, batch_size=1, verbose=2, validation_data=(valX, valY), callbacks=[early_stop]) model.save(self.MODEL_PATH) trainPredict = model.predict(trainX) testPredict = model.predict(testX) # trainScore = math.sqrt(mean_squared_error(trainY, trainPredict)) # print('Train Score: %.2f RMSE' % (trainScore)) # testScore = math.sqrt(mean_squared_error(testY, testPredict)) # print('Test Score: %.2f RMSE' % (testScore)) trainScore = r2_score(trainY, trainPredict) print('R2 Train Score: %.2f' % (trainScore)) testScore = r2_score(testY, testPredict) print('R2 Test Score: %.2f' % (testScore)) plt.plot(testY) plt.plot(testPredict) plt.show() def statefulLSTM(self, stock_h): dataset = self.get_features(stock_h, num_of_features=1) # train, test = split_dataset(dataset, "2019-01-01", initial_data_cut="2018-01-01") train, test = self.split_dataset(dataset, "2017-01-01") val, test = self.split_dataset(test, "2019-01-01") batch_size = 1 look_back = 3 EPOCHS = 25 trainX, trainY = self.create_dataset(train, look_back) valX, valY = self.create_dataset(val, look_back) testX, testY = self.create_dataset(test, look_back) # reshape input to be [samples, time steps, features] trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1)) valX = np.reshape(valX, (valX.shape[0], valX.shape[1], 1)) testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1)) # trainX = np.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) # valX = np.reshape(valX, (valX.shape[0], 1, valX.shape[1])) # testX = np.reshape(testX, (testX.shape[0], 1, testX.shape[1])) early_stop = EarlyStopping(monitor='loss', patience=1, verbose=1) # It can be used to reconstruct the model identically. if os.path.exists("models\stateful_lstm.h5"): model = tensorflow.keras.models.load_model("models\stateful_lstm.h5") else: model = Sequential() model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=True)) model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy']) for i in range(EPOCHS): print(f"[INFO] EPOCH: {i}/{EPOCHS}") model.fit(trainX, trainY, epochs=1, batch_size=batch_size, verbose=2, shuffle=False, validation_data=(valX, valY)) # model.reset_states() model.save("models\stateful_lstm.h5") # model.save("stateful_lstm") # model.fit(trainX, trainY, epochs=200, batch_size=1, verbose=2, validation_data=(valX, valY), # callbacks=[early_stop]) trainPredict = model.predict(trainX, batch_size=batch_size) # model.reset_states() testPredict = model.predict(testX, batch_size=batch_size) # trainPredict = model.predict(trainX) # testPredict = model.predict(testX) # trainScore = math.sqrt(mean_squared_error(trainY, trainPredict)) # print('Train Score: %.2f RMSE' % (trainScore)) # testScore = math.sqrt(mean_squared_error(testY, testPredict)) # print('Test Score: %.2f RMSE' % (testScore)) # trainScore = math.sqrt(mean_squared_error(trainY[:, 0], trainPredict[:, 0])) print('Train Score: %.2f RMSE' % (trainScore)) testScore = math.sqrt(mean_squared_error(testY[:, 0], testPredict[:, 0])) print('Test Score: %.2f RMSE' % (testScore)) plt.plot(testY) plt.plot(testPredict) plt.show() # # shift train predictions for plotting # trainPredictPlot = np.empty_like(dataset) # trainPredictPlot[:, :] = np.nan # trainPredictPlot[look_back:len(trainPredict) + look_back, :] = trainPredict # # shift test predictions for plotting # testPredictPlot = np.empty_like(dataset) # testPredictPlot[:, :] = np.nan # testPredictPlot[len(trainPredict) + (look_back * 2) + 1:len(dataset) - 1, :] = testPredict # # plot baseline and predictions # # plt.plot(scaler.inverse_transform(dataset)) # plt.plot(trainPredictPlot) # plt.plot(testPredictPlot) # plt.show()
[ 4, 7, 8, 9, 10 ]
2,450
ed7fa6e6f30eb06400cb38128617967a597f6c04
<mask token> def greedy_motif_search(dnas, k, t): best_motifs = [dna[:k] for dna in dnas] best_score = score_motifs(best_motifs) for i in range(len(dnas[0]) - k + 1): print(i) motifs = [dnas[0][i:i + k]] for j in range(1, t): motifs.append(profile_most_probable(dnas[j], k, form_profile( motifs))) score = score_motifs(motifs) if score < best_score: best_motifs = motifs best_score = score return best_motifs def form_profile(motifs): profile = pd.DataFrame(0, columns=range(len(motifs[0])), index=BASES) for motif in motifs: for i, base in enumerate(motif): profile.loc[base, i] += 1 return profile / len(motifs) def score_motifs(motifs): profile = form_profile(motifs) consensus = ''.join(profile.idxmax()) return sum(hamming_distance(motif, consensus) for motif in motifs) <mask token>
<mask token> def greedy_motif_search(dnas, k, t): best_motifs = [dna[:k] for dna in dnas] best_score = score_motifs(best_motifs) for i in range(len(dnas[0]) - k + 1): print(i) motifs = [dnas[0][i:i + k]] for j in range(1, t): motifs.append(profile_most_probable(dnas[j], k, form_profile( motifs))) score = score_motifs(motifs) if score < best_score: best_motifs = motifs best_score = score return best_motifs def form_profile(motifs): profile = pd.DataFrame(0, columns=range(len(motifs[0])), index=BASES) for motif in motifs: for i, base in enumerate(motif): profile.loc[base, i] += 1 return profile / len(motifs) def score_motifs(motifs): profile = form_profile(motifs) consensus = ''.join(profile.idxmax()) return sum(hamming_distance(motif, consensus) for motif in motifs) def main(): with open(filename) as f: k, t = list(map(int, f.readline().strip().split())) dnas = [line.strip() for line in f.readlines()] for motif in greedy_motif_search(dnas, k, t): print(motif) if __name__ == '__main__': main()
<mask token> filename = 'rosalind_ba2d.txt' BASES = ['A', 'C', 'G', 'T'] def greedy_motif_search(dnas, k, t): best_motifs = [dna[:k] for dna in dnas] best_score = score_motifs(best_motifs) for i in range(len(dnas[0]) - k + 1): print(i) motifs = [dnas[0][i:i + k]] for j in range(1, t): motifs.append(profile_most_probable(dnas[j], k, form_profile( motifs))) score = score_motifs(motifs) if score < best_score: best_motifs = motifs best_score = score return best_motifs def form_profile(motifs): profile = pd.DataFrame(0, columns=range(len(motifs[0])), index=BASES) for motif in motifs: for i, base in enumerate(motif): profile.loc[base, i] += 1 return profile / len(motifs) def score_motifs(motifs): profile = form_profile(motifs) consensus = ''.join(profile.idxmax()) return sum(hamming_distance(motif, consensus) for motif in motifs) def main(): with open(filename) as f: k, t = list(map(int, f.readline().strip().split())) dnas = [line.strip() for line in f.readlines()] for motif in greedy_motif_search(dnas, k, t): print(motif) if __name__ == '__main__': main()
<mask token> import pandas as pd from ba1g import hamming_distance from ba2c import profile_most_probable filename = 'rosalind_ba2d.txt' BASES = ['A', 'C', 'G', 'T'] def greedy_motif_search(dnas, k, t): best_motifs = [dna[:k] for dna in dnas] best_score = score_motifs(best_motifs) for i in range(len(dnas[0]) - k + 1): print(i) motifs = [dnas[0][i:i + k]] for j in range(1, t): motifs.append(profile_most_probable(dnas[j], k, form_profile( motifs))) score = score_motifs(motifs) if score < best_score: best_motifs = motifs best_score = score return best_motifs def form_profile(motifs): profile = pd.DataFrame(0, columns=range(len(motifs[0])), index=BASES) for motif in motifs: for i, base in enumerate(motif): profile.loc[base, i] += 1 return profile / len(motifs) def score_motifs(motifs): profile = form_profile(motifs) consensus = ''.join(profile.idxmax()) return sum(hamming_distance(motif, consensus) for motif in motifs) def main(): with open(filename) as f: k, t = list(map(int, f.readline().strip().split())) dnas = [line.strip() for line in f.readlines()] for motif in greedy_motif_search(dnas, k, t): print(motif) if __name__ == '__main__': main()
''' Implement GreedyMotifSearch http://rosalind.info/problems/ba2d/ Given: Integers k and t, followed by a collection of strings Dna. Return: A collection of strings BestMotifs resulting from running GreedyMotifSearch(Dna, k, t). If at any step you find more than one Profile-most probable k-mer in a given string, use the one occurring first. ''' import pandas as pd from ba1g import hamming_distance from ba2c import profile_most_probable filename = 'rosalind_ba2d.txt' BASES = ['A', 'C', 'G', 'T'] def greedy_motif_search(dnas, k, t): # took ~4 min to run on test dataset but seems to be the correct algorithm # based on pseudocode (and other peoples' submissions) best_motifs = [dna[:k] for dna in dnas] best_score = score_motifs(best_motifs) for i in range(len(dnas[0]) - k + 1): print(i) motifs = [dnas[0][i:i+k]] for j in range(1, t): motifs.append(profile_most_probable(dnas[j], k, form_profile(motifs))) score = score_motifs(motifs) if score < best_score: best_motifs = motifs best_score = score return best_motifs def form_profile(motifs): profile = pd.DataFrame(0, columns=range(len(motifs[0])), index=BASES) for motif in motifs: for i, base in enumerate(motif): profile.loc[base, i] += 1 return profile / len(motifs) def score_motifs(motifs): # couldn't figure out what 'score' from pseudocode meant :( # had to reference someone else's code: # https://github.com/NathanielLovin/Rosalind/blob/master/BA2D.py profile = form_profile(motifs) # neat df function generates the consensus string consensus = ''.join(profile.idxmax()) return sum(hamming_distance(motif, consensus) for motif in motifs) def main(): with open(filename) as f: k, t = list(map(int, f.readline().strip().split())) dnas = [line.strip() for line in f.readlines()] for motif in greedy_motif_search(dnas, k, t): print(motif) if __name__ == '__main__': main()
[ 3, 5, 6, 7, 8 ]
2,451
b46fe26f1a3c9e93e735b752e54132bd95408251
<mask token> class MongoTest: <mask token> try: client = MongoClient( 'mongodb://root:root@localhost:27017/test?authSource=admin') print('init mongo client:', client) except Exception as e: logging.exception(e) @classmethod def get_connection(cls) ->MongoClient: return cls.client or MongoClient( 'mongodb://root:root@localhost:27017/test?authSource=admin') @classmethod def insert(cls, db: str, collection: str, data: dict) ->InsertOneResult: return cls.client.get_database(db).get_collection(collection ).insert_one(data) <mask token> <mask token> @classmethod def update(cls, db: str, collection: str, condition: dict, update: dict ) ->UpdateResult: return cls.client.get_database(db).get_collection(collection ).update_one(condition, update) <mask token>
<mask token> class MongoTest: client = None try: client = MongoClient( 'mongodb://root:root@localhost:27017/test?authSource=admin') print('init mongo client:', client) except Exception as e: logging.exception(e) @classmethod def get_connection(cls) ->MongoClient: return cls.client or MongoClient( 'mongodb://root:root@localhost:27017/test?authSource=admin') @classmethod def insert(cls, db: str, collection: str, data: dict) ->InsertOneResult: return cls.client.get_database(db).get_collection(collection ).insert_one(data) @classmethod def find(cls, db: str, collection: str, condition: dict) ->Cursor: return cls.client.get_database(db).get_collection(collection).find( condition) @classmethod def delete(cls, db: str, collection: str, condition: dict) ->DeleteResult: return cls.client.get_database(db).get_collection(collection ).delete_one(condition) @classmethod def update(cls, db: str, collection: str, condition: dict, update: dict ) ->UpdateResult: return cls.client.get_database(db).get_collection(collection ).update_one(condition, update) <mask token>
<mask token> class MongoTest: client = None try: client = MongoClient( 'mongodb://root:root@localhost:27017/test?authSource=admin') print('init mongo client:', client) except Exception as e: logging.exception(e) @classmethod def get_connection(cls) ->MongoClient: return cls.client or MongoClient( 'mongodb://root:root@localhost:27017/test?authSource=admin') @classmethod def insert(cls, db: str, collection: str, data: dict) ->InsertOneResult: return cls.client.get_database(db).get_collection(collection ).insert_one(data) @classmethod def find(cls, db: str, collection: str, condition: dict) ->Cursor: return cls.client.get_database(db).get_collection(collection).find( condition) @classmethod def delete(cls, db: str, collection: str, condition: dict) ->DeleteResult: return cls.client.get_database(db).get_collection(collection ).delete_one(condition) @classmethod def update(cls, db: str, collection: str, condition: dict, update: dict ) ->UpdateResult: return cls.client.get_database(db).get_collection(collection ).update_one(condition, update) if __name__ == '__main__': for result in MongoTest.find('test', 'inventory', {}): pprint(result) MongoTest.delete('test', 'inventory', {'item': 'pymongo20201008204049'}) MongoTest.update('test', 'inventory', {'item': 'pymongo'}, {'$set': { 'size.uom': 'cm', 'status': 'P'}, '$currentDate': {'lastModified': True}})
<mask token> import logging import time import traceback from pprint import pprint from pymongo import MongoClient from pymongo.cursor import Cursor from pymongo.results import DeleteResult, InsertOneResult, UpdateResult class MongoTest: client = None try: client = MongoClient( 'mongodb://root:root@localhost:27017/test?authSource=admin') print('init mongo client:', client) except Exception as e: logging.exception(e) @classmethod def get_connection(cls) ->MongoClient: return cls.client or MongoClient( 'mongodb://root:root@localhost:27017/test?authSource=admin') @classmethod def insert(cls, db: str, collection: str, data: dict) ->InsertOneResult: return cls.client.get_database(db).get_collection(collection ).insert_one(data) @classmethod def find(cls, db: str, collection: str, condition: dict) ->Cursor: return cls.client.get_database(db).get_collection(collection).find( condition) @classmethod def delete(cls, db: str, collection: str, condition: dict) ->DeleteResult: return cls.client.get_database(db).get_collection(collection ).delete_one(condition) @classmethod def update(cls, db: str, collection: str, condition: dict, update: dict ) ->UpdateResult: return cls.client.get_database(db).get_collection(collection ).update_one(condition, update) if __name__ == '__main__': for result in MongoTest.find('test', 'inventory', {}): pprint(result) MongoTest.delete('test', 'inventory', {'item': 'pymongo20201008204049'}) MongoTest.update('test', 'inventory', {'item': 'pymongo'}, {'$set': { 'size.uom': 'cm', 'status': 'P'}, '$currentDate': {'lastModified': True}})
# -*- coding: utf-8 -*- """ 测试如何使用python的pymongo模块操作MongoDB @author: hch @date : 2020/10/8 """ import logging import time import traceback from pprint import pprint from pymongo import MongoClient from pymongo.cursor import Cursor from pymongo.results import DeleteResult, InsertOneResult, UpdateResult class MongoTest: client = None try: client = MongoClient('mongodb://root:root@localhost:27017/test?authSource=admin') print('init mongo client:', client) except Exception as e: # traceback.print_exc() logging.exception(e) @classmethod def get_connection(cls) -> MongoClient: return cls.client or MongoClient('mongodb://root:root@localhost:27017/test?authSource=admin') @classmethod def insert(cls, db: str, collection: str, data: dict) -> InsertOneResult: return cls.client.get_database(db).get_collection(collection).insert_one(data) @classmethod def find(cls, db: str, collection: str, condition: dict) -> Cursor: return cls.client.get_database(db).get_collection(collection).find(condition) @classmethod def delete(cls, db: str, collection: str, condition: dict) -> DeleteResult: return cls.client.get_database(db).get_collection(collection).delete_one(condition) @classmethod def update(cls, db: str, collection: str, condition: dict, update: dict) -> UpdateResult: return cls.client.get_database(db).get_collection(collection).update_one(condition, update) if __name__ == '__main__': # client = MongoTest.get_connection() # client = MongoClient('mongodb://root@localhost:27017/test?authSource=admin') # print(client.test.__class__) # <class 'pymongo.database.Database'> # print(client.test.inventory.__class__) # <class 'pymongo.collection.Collection'> # client.test.inventory.insert_one( # { # "item": "pymongo", # "qty": 100, # "tags": ["cotton"], # "size": {"h": 28, "w": 35.5, "uom": "cm"} # } # ) # MongoTest.insert('test', 'inventory', # { # "item": "pymongo" + time.strftime('%Y%m%d%H%M%S', time.localtime()), # "qty": 100, # "tags": ["cotton"], # "size": {"h": 28, "w": 35.5, "uom": "cm"} # } # ) for result in MongoTest.find('test', 'inventory', {}): pprint(result) MongoTest.delete('test', 'inventory', {'item': 'pymongo20201008204049'}) MongoTest.update('test', 'inventory', {"item": "pymongo"}, {"$set": {"size.uom": "cm", "status": "P"}, "$currentDate": {"lastModified": True}})
[ 4, 7, 8, 9, 10 ]
2,452
9583a97ae4b1fbf5ecdf33d848b13bf0b28d2eb4
<mask token>
<mask token> add(2, 2) sub(2, 3)
from package.pack import * add(2, 2) sub(2, 3)
from package.pack import * add(2,2) sub(2,3)
null
[ 0, 1, 2, 3 ]
2,453
55cf99e3493c9c94955fc7e75ac428cbd88ac5cf
<mask token> def preProcesar(request): id_archivo = request.GET.get('id_archivo') archivo = DataArchivoCargueProcesar.objects.filter(id=id_archivo).last() valores, columnas = iniPreviw(id_archivo, archivo. archivocargueprocesararchivo, archivo. archivocargueprocesararchivotipocargue.id, archivo. archivocargueprocesararchivoobservacion) iniPreviws = dict(valores=valores, columnas=columnas.tolist(), id= id_archivo) return HttpResponse(json.dumps(iniPreviws), content_type='application/json' ) def ProcesarArchivo(request, idAsiganacion): datoUsu = datosUsu(request.user.id) print('Aca llego', idAsiganacion) return render(request, 'cargueArchivos/procesandoArchivo.html', { 'datoUsu': datoUsu, 'id_archivo': idAsiganacion}) <mask token> def getFalabella(request): datoUsu = datosUsu(request.user.id) inner_qs = DataAsignacion.objects.filter(asignacion_cliente='Falabella') lista = [] for x in inner_qs: lista.append(x.id) pass campFalabella = DataAsignacionarchivosStraus.objects.filter( archivos_asignacion__in=lista) vista = 0 return render(request, 'cargueArchivos/falabella.html', { 'idAsiganacion': 0, 'idFile': 0, 'campFalabella': campFalabella, 'vista': vista, 'datoUsu': datoUsu}) <mask token> def crezcamosCampanacrear(request): datoUsu = datosUsu(request.user.id) if request.method == 'POST': strs_nombre = request.POST['archivos_nombre'] porta = getValidate(strs_nombre, 'Crezcamos', request.user.id, 'Crezcamos') if porta == 'Exite': messages = 1 form = UploadArchivosAsignacion() return render(request, 'cargueArchivos/Crezcamos/archivosProcesarCreateCrezcamos.html' , {'datoUsu': datoUsu, 'messages': messages, 'form': form, 'portafolio': strs_nombre}) else: form = UploadArchivosAsignacion(request.POST, request.FILES) if form.is_valid(): idForm = form.save() valores1, valores2, valores, resultados = ( getCrezcamosClientePreview(porta, 'Crezcamos', idForm. id, request.user.id)) vista = 1 lista1 = [] lista2 = [] lista3 = [] listaFin = [] for x in valores: lista1.append(x) pass for x in valores1: lista2.append(x) pass for x in valores2: lista3.append(x) pass listaFin.append(dict(lista=lista1, lista1=lista2, lista2= lista3)) return render(request, 'cargueArchivos/Crezcamos/crezcamos.html', {'datoUsu': datoUsu, 'idFile': idForm.id, 'lista': listaFin, 'vista': vista, 'idAsiganacion': resultados}) else: print('No se esta validando el formulario') pass pass else: form = UploadArchivosAsignacion() return render(request, 'cargueArchivos/Crezcamos/archivosProcesarCreateCrezcamos.html', { 'datoUsu': datoUsu, 'form': form}) <mask token> def getUpdateCrezcamos(request): datoUsu = datosUsu(request.user.id) clie = DataClientesStraus.objects.filter(cliente_nombre='Crezcamos').last() inner_qs = DataAsignacion.objects.filter(portafolio_usuario=request. user.id, portafolio_cliente=clie.id) if request.is_ajax(): idPortafolio = str(request.GET.get('id', None)) idPortafolioValor = str(request.GET.get('valor', None)) idPortafolioDato = str(request.GET.get('dato', None)) if (idPortafolioDato == '1') | (idPortafolioDato == 1): DataAsignacion.objects.filter(id=idPortafolio).update( portafolio_contrapropuesta=idPortafolioValor) else: DataAsignacion.objects.filter(id=idPortafolio).update( portafolio_descuentos=idPortafolioValor) pass response = {'tipo': 'ok'} return HttpResponse(json.dumps(response), content_type= 'application/json') else: if request.method == 'POST': form = UploadArchivos(request.POST, request.FILES) if form.is_valid(): idForm = form.save() valores1, valores2, valores = getCrezcamosClientePreviewUdate( idForm.id) lista1 = [] lista2 = [] lista3 = [] listaFin = [] for x in valores: lista1.append(x) pass for x in valores1: lista2.append(x) pass for x in valores2: lista3.append(x) pass listaFin.append(dict(lista=lista1, lista1=lista2, lista2= lista3)) vista = 1 return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html' , {'idFile': idForm.id, 'lista': listaFin, 'vista': vista, 'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) else: print('No se esta validando el formulario') pass else: form = UploadArchivos() vista = 0 idForm = 0 return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html', {'idFile': idForm, 'vista': vista, 'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) def trazabilidad(request): datoUsu = datosUsu(request.user.id) clie = 'Crezcamos' inner_qs = DataAsignacion.objects.filter(portafolio_usuario=request. user.id, portafolio_cliente=clie.id) if request.method == 'POST': form = UploadArchivos(request.POST, request.FILES) print(form) if form.is_valid(): idForm = form.save() getCrezcamosClientePreviewUdate(idForm.id) return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html', {'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) else: print('No se esta validando el formulario') pass else: print(2) form = UploadArchivos() return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html', { 'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) def limpiar(request): datoUsu = datosUsu(request.user.id) deleteDatosOrigen = DataUbicacionInfoOrigen.objects.all() deleteDatosOrigen.delete() deleteUbicaEmp = DataUbicacionEmpresa.objects.all() deleteUbicaEmp.delete() deleteUbica = DataUbicacion.objects.all() deleteUbica.delete() deleteCorreos = DataCorreoelectronico.objects.all() deleteCorreos.delete() deleteTele = DataTelefonos.objects.all() deleteTele.delete() deleteObliga = DataObligacion.objects.all() deleteObliga.delete() deletePersonas = DataPersonas.objects.all() deletePersonas.delete() deletePortaArchivoStra = DataAsignacionarchivosStraus.objects.all() deletePortaArchivoStra.delete() deleteArchiStra = DataarchivosStraus.objects.all() deleteArchiStra.delete() deletePorta = DataAsignacion.objects.all() deletePorta.delete() return render(request, 'cargueArchivos/limpiar.html', {'datoUsu': datoUsu})
<mask token> def preProcesar(request): id_archivo = request.GET.get('id_archivo') archivo = DataArchivoCargueProcesar.objects.filter(id=id_archivo).last() valores, columnas = iniPreviw(id_archivo, archivo. archivocargueprocesararchivo, archivo. archivocargueprocesararchivotipocargue.id, archivo. archivocargueprocesararchivoobservacion) iniPreviws = dict(valores=valores, columnas=columnas.tolist(), id= id_archivo) return HttpResponse(json.dumps(iniPreviws), content_type='application/json' ) def ProcesarArchivo(request, idAsiganacion): datoUsu = datosUsu(request.user.id) print('Aca llego', idAsiganacion) return render(request, 'cargueArchivos/procesandoArchivo.html', { 'datoUsu': datoUsu, 'id_archivo': idAsiganacion}) def ProcesarArchivoUpdate(request, id_archivo): datoUsu = datosUsu(request.user.id) return render(request, 'cargueArchivos/procesandoArchivoUpdate.html', { 'datoUsu': datoUsu, 'id_archivo': id_archivo}) def ProcesarArchivoFinal(request, idAsiganacion): datoUsu = datosUsu(request.user.id) print('Star') ejecucionInicial(idAsiganacion) contexto = {} return render(request, 'cargueArchivos/procesandoArchivoOk.html', contexto) <mask token> def getFalabella(request): datoUsu = datosUsu(request.user.id) inner_qs = DataAsignacion.objects.filter(asignacion_cliente='Falabella') lista = [] for x in inner_qs: lista.append(x.id) pass campFalabella = DataAsignacionarchivosStraus.objects.filter( archivos_asignacion__in=lista) vista = 0 return render(request, 'cargueArchivos/falabella.html', { 'idAsiganacion': 0, 'idFile': 0, 'campFalabella': campFalabella, 'vista': vista, 'datoUsu': datoUsu}) def falabellaCampanacrear(request): print(request.POST) datoUsu = datosUsu(request.user.id) if request.method == 'POST': strs_nombre = request.POST['archivos_nombre'] porta = getValidate(strs_nombre, 'Falabella', request.user.id, 'Falabella') if porta == 'Exite': messages = 1 form = UploadArchivosAsignacion() resultados = 0 return render(request, 'cargueArchivos/archivosProcesarCreateFalabella.html', { 'idAsiganacion': resultados, 'messages': messages, 'form': form, 'portafolio': strs_nombre, 'datoUsu': datoUsu}) else: form = UploadArchivosAsignacion(request.POST, request.FILES) if form.is_valid(): idForm = form.save() valores1, valores2, valores, resultados = ( getFalabellaClientePreview(porta, 'Falabella', idForm. id, request.user.id, strs_nombre)) vista = 1 lista1 = [] lista2 = [] lista3 = [] listaFin = [] for x in valores: lista1.append(x) pass for x in valores1: lista2.append(x) pass for x in valores2: lista3.append(x) pass listaFin.append(dict(lista=lista1, lista1=lista2, lista2= lista3)) return render(request, 'cargueArchivos/falabella.html', { 'idFile': idForm.id, 'lista': listaFin, 'vista': vista, 'datoUsu': datoUsu, 'idAsiganacion': resultados}) else: print('No se esta validando el formulario') pass pass else: form = UploadArchivosAsignacion() resultados = 0 return render(request, 'cargueArchivos/archivosProcesarCreateFalabella.html', { 'idAsiganacion': resultados, 'form': form, 'datoUsu': datoUsu}) <mask token> def crezcamosCampanacrear(request): datoUsu = datosUsu(request.user.id) if request.method == 'POST': strs_nombre = request.POST['archivos_nombre'] porta = getValidate(strs_nombre, 'Crezcamos', request.user.id, 'Crezcamos') if porta == 'Exite': messages = 1 form = UploadArchivosAsignacion() return render(request, 'cargueArchivos/Crezcamos/archivosProcesarCreateCrezcamos.html' , {'datoUsu': datoUsu, 'messages': messages, 'form': form, 'portafolio': strs_nombre}) else: form = UploadArchivosAsignacion(request.POST, request.FILES) if form.is_valid(): idForm = form.save() valores1, valores2, valores, resultados = ( getCrezcamosClientePreview(porta, 'Crezcamos', idForm. id, request.user.id)) vista = 1 lista1 = [] lista2 = [] lista3 = [] listaFin = [] for x in valores: lista1.append(x) pass for x in valores1: lista2.append(x) pass for x in valores2: lista3.append(x) pass listaFin.append(dict(lista=lista1, lista1=lista2, lista2= lista3)) return render(request, 'cargueArchivos/Crezcamos/crezcamos.html', {'datoUsu': datoUsu, 'idFile': idForm.id, 'lista': listaFin, 'vista': vista, 'idAsiganacion': resultados}) else: print('No se esta validando el formulario') pass pass else: form = UploadArchivosAsignacion() return render(request, 'cargueArchivos/Crezcamos/archivosProcesarCreateCrezcamos.html', { 'datoUsu': datoUsu, 'form': form}) <mask token> def getUpdateCrezcamos(request): datoUsu = datosUsu(request.user.id) clie = DataClientesStraus.objects.filter(cliente_nombre='Crezcamos').last() inner_qs = DataAsignacion.objects.filter(portafolio_usuario=request. user.id, portafolio_cliente=clie.id) if request.is_ajax(): idPortafolio = str(request.GET.get('id', None)) idPortafolioValor = str(request.GET.get('valor', None)) idPortafolioDato = str(request.GET.get('dato', None)) if (idPortafolioDato == '1') | (idPortafolioDato == 1): DataAsignacion.objects.filter(id=idPortafolio).update( portafolio_contrapropuesta=idPortafolioValor) else: DataAsignacion.objects.filter(id=idPortafolio).update( portafolio_descuentos=idPortafolioValor) pass response = {'tipo': 'ok'} return HttpResponse(json.dumps(response), content_type= 'application/json') else: if request.method == 'POST': form = UploadArchivos(request.POST, request.FILES) if form.is_valid(): idForm = form.save() valores1, valores2, valores = getCrezcamosClientePreviewUdate( idForm.id) lista1 = [] lista2 = [] lista3 = [] listaFin = [] for x in valores: lista1.append(x) pass for x in valores1: lista2.append(x) pass for x in valores2: lista3.append(x) pass listaFin.append(dict(lista=lista1, lista1=lista2, lista2= lista3)) vista = 1 return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html' , {'idFile': idForm.id, 'lista': listaFin, 'vista': vista, 'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) else: print('No se esta validando el formulario') pass else: form = UploadArchivos() vista = 0 idForm = 0 return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html', {'idFile': idForm, 'vista': vista, 'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) def trazabilidad(request): datoUsu = datosUsu(request.user.id) clie = 'Crezcamos' inner_qs = DataAsignacion.objects.filter(portafolio_usuario=request. user.id, portafolio_cliente=clie.id) if request.method == 'POST': form = UploadArchivos(request.POST, request.FILES) print(form) if form.is_valid(): idForm = form.save() getCrezcamosClientePreviewUdate(idForm.id) return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html', {'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) else: print('No se esta validando el formulario') pass else: print(2) form = UploadArchivos() return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html', { 'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) def limpiar(request): datoUsu = datosUsu(request.user.id) deleteDatosOrigen = DataUbicacionInfoOrigen.objects.all() deleteDatosOrigen.delete() deleteUbicaEmp = DataUbicacionEmpresa.objects.all() deleteUbicaEmp.delete() deleteUbica = DataUbicacion.objects.all() deleteUbica.delete() deleteCorreos = DataCorreoelectronico.objects.all() deleteCorreos.delete() deleteTele = DataTelefonos.objects.all() deleteTele.delete() deleteObliga = DataObligacion.objects.all() deleteObliga.delete() deletePersonas = DataPersonas.objects.all() deletePersonas.delete() deletePortaArchivoStra = DataAsignacionarchivosStraus.objects.all() deletePortaArchivoStra.delete() deleteArchiStra = DataarchivosStraus.objects.all() deleteArchiStra.delete() deletePorta = DataAsignacion.objects.all() deletePorta.delete() return render(request, 'cargueArchivos/limpiar.html', {'datoUsu': datoUsu})
<mask token> def preProcesar(request): id_archivo = request.GET.get('id_archivo') archivo = DataArchivoCargueProcesar.objects.filter(id=id_archivo).last() valores, columnas = iniPreviw(id_archivo, archivo. archivocargueprocesararchivo, archivo. archivocargueprocesararchivotipocargue.id, archivo. archivocargueprocesararchivoobservacion) iniPreviws = dict(valores=valores, columnas=columnas.tolist(), id= id_archivo) return HttpResponse(json.dumps(iniPreviws), content_type='application/json' ) def ProcesarArchivo(request, idAsiganacion): datoUsu = datosUsu(request.user.id) print('Aca llego', idAsiganacion) return render(request, 'cargueArchivos/procesandoArchivo.html', { 'datoUsu': datoUsu, 'id_archivo': idAsiganacion}) def ProcesarArchivoUpdate(request, id_archivo): datoUsu = datosUsu(request.user.id) return render(request, 'cargueArchivos/procesandoArchivoUpdate.html', { 'datoUsu': datoUsu, 'id_archivo': id_archivo}) def ProcesarArchivoFinal(request, idAsiganacion): datoUsu = datosUsu(request.user.id) print('Star') ejecucionInicial(idAsiganacion) contexto = {} return render(request, 'cargueArchivos/procesandoArchivoOk.html', contexto) <mask token> def getFalabella(request): datoUsu = datosUsu(request.user.id) inner_qs = DataAsignacion.objects.filter(asignacion_cliente='Falabella') lista = [] for x in inner_qs: lista.append(x.id) pass campFalabella = DataAsignacionarchivosStraus.objects.filter( archivos_asignacion__in=lista) vista = 0 return render(request, 'cargueArchivos/falabella.html', { 'idAsiganacion': 0, 'idFile': 0, 'campFalabella': campFalabella, 'vista': vista, 'datoUsu': datoUsu}) def falabellaCampanacrear(request): print(request.POST) datoUsu = datosUsu(request.user.id) if request.method == 'POST': strs_nombre = request.POST['archivos_nombre'] porta = getValidate(strs_nombre, 'Falabella', request.user.id, 'Falabella') if porta == 'Exite': messages = 1 form = UploadArchivosAsignacion() resultados = 0 return render(request, 'cargueArchivos/archivosProcesarCreateFalabella.html', { 'idAsiganacion': resultados, 'messages': messages, 'form': form, 'portafolio': strs_nombre, 'datoUsu': datoUsu}) else: form = UploadArchivosAsignacion(request.POST, request.FILES) if form.is_valid(): idForm = form.save() valores1, valores2, valores, resultados = ( getFalabellaClientePreview(porta, 'Falabella', idForm. id, request.user.id, strs_nombre)) vista = 1 lista1 = [] lista2 = [] lista3 = [] listaFin = [] for x in valores: lista1.append(x) pass for x in valores1: lista2.append(x) pass for x in valores2: lista3.append(x) pass listaFin.append(dict(lista=lista1, lista1=lista2, lista2= lista3)) return render(request, 'cargueArchivos/falabella.html', { 'idFile': idForm.id, 'lista': listaFin, 'vista': vista, 'datoUsu': datoUsu, 'idAsiganacion': resultados}) else: print('No se esta validando el formulario') pass pass else: form = UploadArchivosAsignacion() resultados = 0 return render(request, 'cargueArchivos/archivosProcesarCreateFalabella.html', { 'idAsiganacion': resultados, 'form': form, 'datoUsu': datoUsu}) <mask token> def crezcamosCampanacrear(request): datoUsu = datosUsu(request.user.id) if request.method == 'POST': strs_nombre = request.POST['archivos_nombre'] porta = getValidate(strs_nombre, 'Crezcamos', request.user.id, 'Crezcamos') if porta == 'Exite': messages = 1 form = UploadArchivosAsignacion() return render(request, 'cargueArchivos/Crezcamos/archivosProcesarCreateCrezcamos.html' , {'datoUsu': datoUsu, 'messages': messages, 'form': form, 'portafolio': strs_nombre}) else: form = UploadArchivosAsignacion(request.POST, request.FILES) if form.is_valid(): idForm = form.save() valores1, valores2, valores, resultados = ( getCrezcamosClientePreview(porta, 'Crezcamos', idForm. id, request.user.id)) vista = 1 lista1 = [] lista2 = [] lista3 = [] listaFin = [] for x in valores: lista1.append(x) pass for x in valores1: lista2.append(x) pass for x in valores2: lista3.append(x) pass listaFin.append(dict(lista=lista1, lista1=lista2, lista2= lista3)) return render(request, 'cargueArchivos/Crezcamos/crezcamos.html', {'datoUsu': datoUsu, 'idFile': idForm.id, 'lista': listaFin, 'vista': vista, 'idAsiganacion': resultados}) else: print('No se esta validando el formulario') pass pass else: form = UploadArchivosAsignacion() return render(request, 'cargueArchivos/Crezcamos/archivosProcesarCreateCrezcamos.html', { 'datoUsu': datoUsu, 'form': form}) def descargaArchivoCampanaSinProcesar(request, id_archivoFinal): infoArchivo = DataAsignacionarchivosStraus.objects.filter(id= id_archivoFinal).last() return redirect('http://poseidon.intelibpo.com:8000/static/upload/%s' % infoArchivo.archivos_archivo) def getUpdateCrezcamos(request): datoUsu = datosUsu(request.user.id) clie = DataClientesStraus.objects.filter(cliente_nombre='Crezcamos').last() inner_qs = DataAsignacion.objects.filter(portafolio_usuario=request. user.id, portafolio_cliente=clie.id) if request.is_ajax(): idPortafolio = str(request.GET.get('id', None)) idPortafolioValor = str(request.GET.get('valor', None)) idPortafolioDato = str(request.GET.get('dato', None)) if (idPortafolioDato == '1') | (idPortafolioDato == 1): DataAsignacion.objects.filter(id=idPortafolio).update( portafolio_contrapropuesta=idPortafolioValor) else: DataAsignacion.objects.filter(id=idPortafolio).update( portafolio_descuentos=idPortafolioValor) pass response = {'tipo': 'ok'} return HttpResponse(json.dumps(response), content_type= 'application/json') else: if request.method == 'POST': form = UploadArchivos(request.POST, request.FILES) if form.is_valid(): idForm = form.save() valores1, valores2, valores = getCrezcamosClientePreviewUdate( idForm.id) lista1 = [] lista2 = [] lista3 = [] listaFin = [] for x in valores: lista1.append(x) pass for x in valores1: lista2.append(x) pass for x in valores2: lista3.append(x) pass listaFin.append(dict(lista=lista1, lista1=lista2, lista2= lista3)) vista = 1 return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html' , {'idFile': idForm.id, 'lista': listaFin, 'vista': vista, 'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) else: print('No se esta validando el formulario') pass else: form = UploadArchivos() vista = 0 idForm = 0 return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html', {'idFile': idForm, 'vista': vista, 'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) def trazabilidad(request): datoUsu = datosUsu(request.user.id) clie = 'Crezcamos' inner_qs = DataAsignacion.objects.filter(portafolio_usuario=request. user.id, portafolio_cliente=clie.id) if request.method == 'POST': form = UploadArchivos(request.POST, request.FILES) print(form) if form.is_valid(): idForm = form.save() getCrezcamosClientePreviewUdate(idForm.id) return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html', {'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) else: print('No se esta validando el formulario') pass else: print(2) form = UploadArchivos() return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html', { 'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) def limpiar(request): datoUsu = datosUsu(request.user.id) deleteDatosOrigen = DataUbicacionInfoOrigen.objects.all() deleteDatosOrigen.delete() deleteUbicaEmp = DataUbicacionEmpresa.objects.all() deleteUbicaEmp.delete() deleteUbica = DataUbicacion.objects.all() deleteUbica.delete() deleteCorreos = DataCorreoelectronico.objects.all() deleteCorreos.delete() deleteTele = DataTelefonos.objects.all() deleteTele.delete() deleteObliga = DataObligacion.objects.all() deleteObliga.delete() deletePersonas = DataPersonas.objects.all() deletePersonas.delete() deletePortaArchivoStra = DataAsignacionarchivosStraus.objects.all() deletePortaArchivoStra.delete() deleteArchiStra = DataarchivosStraus.objects.all() deleteArchiStra.delete() deletePorta = DataAsignacion.objects.all() deletePorta.delete() return render(request, 'cargueArchivos/limpiar.html', {'datoUsu': datoUsu})
from django.conf import settings from django.urls import resolve from django.urls import reverse from django.shortcuts import render, redirect, get_object_or_404 from django.http import HttpResponse, JsonResponse, HttpResponseNotFound from django.template.loader import get_template, render_to_string from django.views.generic import View from .models import * from decimal import Decimal from datetime import datetime, date, timedelta, time import re import simplejson as json from django.db.models import Sum, Avg, Max import os from .forms import * from django.views.generic import ListView, CreateView from .clientes import * from .falabella import * from .crezcamos import * from .ejecucion import * from django.contrib.auth import authenticate, login from django.core import serializers from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from django.shortcuts import render_to_response from django.contrib import messages def preProcesar(request): id_archivo = request.GET.get('id_archivo') archivo = DataArchivoCargueProcesar.objects.filter(id=id_archivo).last() valores, columnas = iniPreviw(id_archivo, archivo. archivocargueprocesararchivo, archivo. archivocargueprocesararchivotipocargue.id, archivo. archivocargueprocesararchivoobservacion) iniPreviws = dict(valores=valores, columnas=columnas.tolist(), id= id_archivo) return HttpResponse(json.dumps(iniPreviws), content_type='application/json' ) def ProcesarArchivo(request, idAsiganacion): datoUsu = datosUsu(request.user.id) print('Aca llego', idAsiganacion) return render(request, 'cargueArchivos/procesandoArchivo.html', { 'datoUsu': datoUsu, 'id_archivo': idAsiganacion}) def ProcesarArchivoUpdate(request, id_archivo): datoUsu = datosUsu(request.user.id) return render(request, 'cargueArchivos/procesandoArchivoUpdate.html', { 'datoUsu': datoUsu, 'id_archivo': id_archivo}) def ProcesarArchivoFinal(request, idAsiganacion): datoUsu = datosUsu(request.user.id) print('Star') ejecucionInicial(idAsiganacion) contexto = {} return render(request, 'cargueArchivos/procesandoArchivoOk.html', contexto) def ProcesarArchivoFinalUpdate(request, id_archivoFinal): datoUsu = datosUsu(request.user.id) print('Star Update') archivo = DataarchivosStraus.objects.filter(id=id_archivoFinal).last() cliente = archivo.archivos_portafolio.portafolio_cliente.cliente_nombre empresa = archivo.archivos_portafolio.portafolio_cliente.cliente_empresa if cliente == 'Crezcamos': print(1) procesado = procesadoFinalCrezcamosUpdate(id_archivoFinal, archivo. archivos_archivo, archivo.archivos_portafolio, request.user.id, cliente, empresa) else: print(2) procesado = procesadoFinalFalabellaUpdate(id_archivoFinal, archivo. archivos_archivo, archivo.archivos_portafolio, request.user.id, cliente, empresa) pass contexto = {'personas': procesado['personas'], 'obligaciones': procesado['obligaciones'], 'telefonos': procesado['telefonos'], 'correos': procesado['correos'], 'tokens': procesado['tokens'], 'datoUsu': datoUsu} if procesado['obligaciones'] > 0: DataAsignacionarchivosStraus.objects.filter(id=id_archivoFinal).update( archivos_estado=True) pass return render(request, 'cargueArchivos/procesandoArchivoUpdateOk.html', contexto) def getFalabella(request): datoUsu = datosUsu(request.user.id) inner_qs = DataAsignacion.objects.filter(asignacion_cliente='Falabella') lista = [] for x in inner_qs: lista.append(x.id) pass campFalabella = DataAsignacionarchivosStraus.objects.filter( archivos_asignacion__in=lista) vista = 0 return render(request, 'cargueArchivos/falabella.html', { 'idAsiganacion': 0, 'idFile': 0, 'campFalabella': campFalabella, 'vista': vista, 'datoUsu': datoUsu}) def falabellaCampanacrear(request): print(request.POST) datoUsu = datosUsu(request.user.id) if request.method == 'POST': strs_nombre = request.POST['archivos_nombre'] porta = getValidate(strs_nombre, 'Falabella', request.user.id, 'Falabella') if porta == 'Exite': messages = 1 form = UploadArchivosAsignacion() resultados = 0 return render(request, 'cargueArchivos/archivosProcesarCreateFalabella.html', { 'idAsiganacion': resultados, 'messages': messages, 'form': form, 'portafolio': strs_nombre, 'datoUsu': datoUsu}) else: form = UploadArchivosAsignacion(request.POST, request.FILES) if form.is_valid(): idForm = form.save() valores1, valores2, valores, resultados = ( getFalabellaClientePreview(porta, 'Falabella', idForm. id, request.user.id, strs_nombre)) vista = 1 lista1 = [] lista2 = [] lista3 = [] listaFin = [] for x in valores: lista1.append(x) pass for x in valores1: lista2.append(x) pass for x in valores2: lista3.append(x) pass listaFin.append(dict(lista=lista1, lista1=lista2, lista2= lista3)) return render(request, 'cargueArchivos/falabella.html', { 'idFile': idForm.id, 'lista': listaFin, 'vista': vista, 'datoUsu': datoUsu, 'idAsiganacion': resultados}) else: print('No se esta validando el formulario') pass pass else: form = UploadArchivosAsignacion() resultados = 0 return render(request, 'cargueArchivos/archivosProcesarCreateFalabella.html', { 'idAsiganacion': resultados, 'form': form, 'datoUsu': datoUsu}) def getCrezcamos(request): datoUsu = datosUsu(request.user.id) inner_qs = DataAsignacion.objects.filter(asignacion_cliente='Crezcamos') lista = [] for x in inner_qs: lista.append(x.id) pass campCrezcamos = DataAsignacionarchivosStraus.objects.filter( archivos_asignacion__in=lista) vista = 0 return render(request, 'cargueArchivos/Crezcamos/crezcamos.html', { 'idFile': 0, 'campCrezcamos': campCrezcamos, 'vista': vista, 'datoUsu': datoUsu}) def crezcamosCampanacrear(request): datoUsu = datosUsu(request.user.id) if request.method == 'POST': strs_nombre = request.POST['archivos_nombre'] porta = getValidate(strs_nombre, 'Crezcamos', request.user.id, 'Crezcamos') if porta == 'Exite': messages = 1 form = UploadArchivosAsignacion() return render(request, 'cargueArchivos/Crezcamos/archivosProcesarCreateCrezcamos.html' , {'datoUsu': datoUsu, 'messages': messages, 'form': form, 'portafolio': strs_nombre}) else: form = UploadArchivosAsignacion(request.POST, request.FILES) if form.is_valid(): idForm = form.save() valores1, valores2, valores, resultados = ( getCrezcamosClientePreview(porta, 'Crezcamos', idForm. id, request.user.id)) vista = 1 lista1 = [] lista2 = [] lista3 = [] listaFin = [] for x in valores: lista1.append(x) pass for x in valores1: lista2.append(x) pass for x in valores2: lista3.append(x) pass listaFin.append(dict(lista=lista1, lista1=lista2, lista2= lista3)) return render(request, 'cargueArchivos/Crezcamos/crezcamos.html', {'datoUsu': datoUsu, 'idFile': idForm.id, 'lista': listaFin, 'vista': vista, 'idAsiganacion': resultados}) else: print('No se esta validando el formulario') pass pass else: form = UploadArchivosAsignacion() return render(request, 'cargueArchivos/Crezcamos/archivosProcesarCreateCrezcamos.html', { 'datoUsu': datoUsu, 'form': form}) def descargaArchivoCampanaSinProcesar(request, id_archivoFinal): infoArchivo = DataAsignacionarchivosStraus.objects.filter(id= id_archivoFinal).last() return redirect('http://poseidon.intelibpo.com:8000/static/upload/%s' % infoArchivo.archivos_archivo) def getUpdateCrezcamos(request): datoUsu = datosUsu(request.user.id) clie = DataClientesStraus.objects.filter(cliente_nombre='Crezcamos').last() inner_qs = DataAsignacion.objects.filter(portafolio_usuario=request. user.id, portafolio_cliente=clie.id) if request.is_ajax(): idPortafolio = str(request.GET.get('id', None)) idPortafolioValor = str(request.GET.get('valor', None)) idPortafolioDato = str(request.GET.get('dato', None)) if (idPortafolioDato == '1') | (idPortafolioDato == 1): DataAsignacion.objects.filter(id=idPortafolio).update( portafolio_contrapropuesta=idPortafolioValor) else: DataAsignacion.objects.filter(id=idPortafolio).update( portafolio_descuentos=idPortafolioValor) pass response = {'tipo': 'ok'} return HttpResponse(json.dumps(response), content_type= 'application/json') else: if request.method == 'POST': form = UploadArchivos(request.POST, request.FILES) if form.is_valid(): idForm = form.save() valores1, valores2, valores = getCrezcamosClientePreviewUdate( idForm.id) lista1 = [] lista2 = [] lista3 = [] listaFin = [] for x in valores: lista1.append(x) pass for x in valores1: lista2.append(x) pass for x in valores2: lista3.append(x) pass listaFin.append(dict(lista=lista1, lista1=lista2, lista2= lista3)) vista = 1 return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html' , {'idFile': idForm.id, 'lista': listaFin, 'vista': vista, 'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) else: print('No se esta validando el formulario') pass else: form = UploadArchivos() vista = 0 idForm = 0 return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html', {'idFile': idForm, 'vista': vista, 'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) def trazabilidad(request): datoUsu = datosUsu(request.user.id) clie = 'Crezcamos' inner_qs = DataAsignacion.objects.filter(portafolio_usuario=request. user.id, portafolio_cliente=clie.id) if request.method == 'POST': form = UploadArchivos(request.POST, request.FILES) print(form) if form.is_valid(): idForm = form.save() getCrezcamosClientePreviewUdate(idForm.id) return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html', {'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) else: print('No se esta validando el formulario') pass else: print(2) form = UploadArchivos() return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html', { 'form': form, 'campCrezcamos': inner_qs, 'datoUsu': datoUsu}) def limpiar(request): datoUsu = datosUsu(request.user.id) deleteDatosOrigen = DataUbicacionInfoOrigen.objects.all() deleteDatosOrigen.delete() deleteUbicaEmp = DataUbicacionEmpresa.objects.all() deleteUbicaEmp.delete() deleteUbica = DataUbicacion.objects.all() deleteUbica.delete() deleteCorreos = DataCorreoelectronico.objects.all() deleteCorreos.delete() deleteTele = DataTelefonos.objects.all() deleteTele.delete() deleteObliga = DataObligacion.objects.all() deleteObliga.delete() deletePersonas = DataPersonas.objects.all() deletePersonas.delete() deletePortaArchivoStra = DataAsignacionarchivosStraus.objects.all() deletePortaArchivoStra.delete() deleteArchiStra = DataarchivosStraus.objects.all() deleteArchiStra.delete() deletePorta = DataAsignacion.objects.all() deletePorta.delete() return render(request, 'cargueArchivos/limpiar.html', {'datoUsu': datoUsu})
from django.conf import settings from django.urls import resolve from django.urls import reverse from django.shortcuts import render, redirect, get_object_or_404 from django.http import HttpResponse, JsonResponse, HttpResponseNotFound from django.template.loader import get_template, render_to_string from django.views.generic import View from .models import * from decimal import Decimal from datetime import datetime, date, timedelta,time import re import simplejson as json from django.db.models import Sum, Avg, Max import os from .forms import * from django.views.generic import ListView,CreateView from .clientes import * from .falabella import * from .crezcamos import * from .ejecucion import * from django.contrib.auth import authenticate, login from django.core import serializers from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from django.shortcuts import render_to_response from django.contrib import messages def preProcesar(request): id_archivo = request.GET.get('id_archivo') archivo = DataArchivoCargueProcesar.objects.filter(id=id_archivo).last() valores, columnas = iniPreviw(id_archivo,archivo.archivocargueprocesararchivo,archivo.archivocargueprocesararchivotipocargue.id,archivo.archivocargueprocesararchivoobservacion) iniPreviws = dict(valores=valores,columnas=columnas.tolist(),id=id_archivo) return HttpResponse(json.dumps(iniPreviws), content_type='application/json') def ProcesarArchivo(request,idAsiganacion): datoUsu = datosUsu(request.user.id) print('Aca llego',idAsiganacion) return render(request, 'cargueArchivos/procesandoArchivo.html',{'datoUsu':datoUsu,'id_archivo':idAsiganacion}) def ProcesarArchivoUpdate(request,id_archivo): datoUsu = datosUsu(request.user.id) return render(request, 'cargueArchivos/procesandoArchivoUpdate.html',{'datoUsu':datoUsu,'id_archivo':id_archivo}) def ProcesarArchivoFinal(request,idAsiganacion): datoUsu = datosUsu(request.user.id) print('Star') # archivo = DataAsignacionarchivosStraus.objects.filter(id=idAsiganacion).last() # cliente = archivo.archivos_portafolio.portafolio_cliente.cliente_nombre # empresa = archivo.archivos_portafolio.portafolio_cliente.cliente_empresa # if cliente == 'Crezcamos': # procesado = procesadoFinalCrezcamos(idAsiganacion,archivo.archivos_archivo,archivo.archivos_portafolio,request.user.id,cliente,empresa) # else: # print('Ejecucion del ETL/DASH') # procesado = procesadoFinalFalabella(idAsiganacion,archivo.archivos_archivo,archivo.archivos_portafolio,request.user.id,cliente,empresa) # pass # contexto ={ # 'personas':procesado['personas'], # 'obligaciones':procesado['obligaciones'], # 'telefonos':procesado['telefonos'], # 'correos':procesado['correos'], # 'tokens':procesado['tokens'], # 'datoUsu':datoUsu, # } # if procesado['obligaciones']>0: # DataAsignacionarchivosStraus.objects.filter(id=id_archivoFinal).update(archivos_estado=True) # pass ejecucionInicial(idAsiganacion) contexto = {} return render(request, 'cargueArchivos/procesandoArchivoOk.html',contexto) def ProcesarArchivoFinalUpdate(request,id_archivoFinal): datoUsu = datosUsu(request.user.id) print('Star Update') archivo = DataarchivosStraus.objects.filter(id=id_archivoFinal).last() cliente = archivo.archivos_portafolio.portafolio_cliente.cliente_nombre empresa = archivo.archivos_portafolio.portafolio_cliente.cliente_empresa if cliente == 'Crezcamos': print(1) procesado = procesadoFinalCrezcamosUpdate(id_archivoFinal,archivo.archivos_archivo,archivo.archivos_portafolio,request.user.id,cliente,empresa) else: print(2) procesado = procesadoFinalFalabellaUpdate(id_archivoFinal,archivo.archivos_archivo,archivo.archivos_portafolio,request.user.id,cliente,empresa) pass contexto ={ 'personas':procesado['personas'], 'obligaciones':procesado['obligaciones'], 'telefonos':procesado['telefonos'], 'correos':procesado['correos'], 'tokens':procesado['tokens'], 'datoUsu':datoUsu, } if procesado['obligaciones']>0: DataAsignacionarchivosStraus.objects.filter(id=id_archivoFinal).update(archivos_estado=True) pass return render(request, 'cargueArchivos/procesandoArchivoUpdateOk.html',contexto) #@login_required def getFalabella(request): datoUsu = datosUsu(request.user.id) inner_qs = DataAsignacion.objects.filter(asignacion_cliente='Falabella') lista = [] for x in inner_qs: lista.append(x.id) pass campFalabella = DataAsignacionarchivosStraus.objects.filter(archivos_asignacion__in=lista) vista = 0 return render(request, 'cargueArchivos/falabella.html',{'idAsiganacion':0,'idFile':0,'campFalabella':campFalabella,'vista':vista,'datoUsu':datoUsu}) def falabellaCampanacrear(request): print(request.POST) datoUsu = datosUsu(request.user.id) if request.method == 'POST': strs_nombre = request.POST['archivos_nombre'] porta = getValidate(strs_nombre,'Falabella',request.user.id,'Falabella') if porta=='Exite': messages = 1 form = UploadArchivosAsignacion() resultados = 0 return render(request,'cargueArchivos/archivosProcesarCreateFalabella.html',{'idAsiganacion':resultados,'messages':messages,'form':form,'portafolio':strs_nombre,'datoUsu':datoUsu}) else: form = UploadArchivosAsignacion(request.POST, request.FILES) if form.is_valid(): idForm = form.save() valores1,valores2,valores,resultados = getFalabellaClientePreview(porta,'Falabella',idForm.id,request.user.id,strs_nombre) vista = 1 lista1 = [] lista2 = [] lista3 = [] listaFin = [] for x in valores: lista1.append(x) pass for x in valores1: lista2.append(x) pass for x in valores2: lista3.append(x) pass listaFin.append(dict(lista=lista1,lista1=lista2,lista2=lista3)) return render(request, 'cargueArchivos/falabella.html',{'idFile':idForm.id,'lista':listaFin,'vista':vista,'datoUsu':datoUsu,'idAsiganacion':resultados}) else: print('No se esta validando el formulario') pass pass else: form = UploadArchivosAsignacion() resultados = 0 return render(request, 'cargueArchivos/archivosProcesarCreateFalabella.html', {'idAsiganacion':resultados,'form':form,'datoUsu':datoUsu}) # Crezcamos def getCrezcamos(request): datoUsu = datosUsu(request.user.id) inner_qs = DataAsignacion.objects.filter(asignacion_cliente='Crezcamos') lista = [] for x in inner_qs: lista.append(x.id) pass campCrezcamos = DataAsignacionarchivosStraus.objects.filter(archivos_asignacion__in=lista) vista = 0 return render(request, 'cargueArchivos/Crezcamos/crezcamos.html',{'idFile':0,'campCrezcamos':campCrezcamos,'vista':vista,'datoUsu':datoUsu}) def crezcamosCampanacrear(request): datoUsu = datosUsu(request.user.id) if request.method == 'POST': strs_nombre = request.POST['archivos_nombre'] porta = getValidate(strs_nombre,'Crezcamos',request.user.id,'Crezcamos') if porta=='Exite': messages = 1 form = UploadArchivosAsignacion() return render(request,'cargueArchivos/Crezcamos/archivosProcesarCreateCrezcamos.html',{'datoUsu':datoUsu,'messages':messages,'form':form,'portafolio':strs_nombre}) else: form = UploadArchivosAsignacion(request.POST, request.FILES) if form.is_valid(): idForm = form.save() valores1,valores2,valores,resultados = getCrezcamosClientePreview(porta,'Crezcamos',idForm.id,request.user.id) vista = 1 lista1 = [] lista2 = [] lista3 = [] listaFin = [] for x in valores: lista1.append(x) pass for x in valores1: lista2.append(x) pass for x in valores2: lista3.append(x) pass listaFin.append(dict(lista=lista1,lista1=lista2,lista2=lista3)) return render(request, 'cargueArchivos/Crezcamos/crezcamos.html',{'datoUsu':datoUsu,'idFile':idForm.id,'lista':listaFin,'vista':vista,'idAsiganacion':resultados}) else: print('No se esta validando el formulario') pass pass else: form = UploadArchivosAsignacion() return render(request, 'cargueArchivos/Crezcamos/archivosProcesarCreateCrezcamos.html', {'datoUsu':datoUsu,'form':form}) def descargaArchivoCampanaSinProcesar(request,id_archivoFinal): infoArchivo = DataAsignacionarchivosStraus.objects.filter(id=id_archivoFinal).last() return redirect('http://poseidon.intelibpo.com:8000/static/upload/%s'%(infoArchivo.archivos_archivo)) def getUpdateCrezcamos(request): datoUsu = datosUsu(request.user.id) clie = DataClientesStraus.objects.filter(cliente_nombre='Crezcamos').last() inner_qs = DataAsignacion.objects.filter(portafolio_usuario=request.user.id,portafolio_cliente=clie.id) if request.is_ajax(): idPortafolio = str(request.GET.get('id', None)) idPortafolioValor = str(request.GET.get('valor', None)) idPortafolioDato = str(request.GET.get('dato', None)) if ( (idPortafolioDato=='1') | (idPortafolioDato==1)): DataAsignacion.objects.filter(id=idPortafolio).update(portafolio_contrapropuesta=idPortafolioValor) else: DataAsignacion.objects.filter(id=idPortafolio).update(portafolio_descuentos=idPortafolioValor) pass response = {'tipo': "ok"} return HttpResponse(json.dumps(response), content_type='application/json') else: if request.method == 'POST': form = UploadArchivos(request.POST, request.FILES) if form.is_valid(): idForm = form.save() valores1,valores2,valores = getCrezcamosClientePreviewUdate(idForm.id) lista1 = [] lista2 = [] lista3 = [] listaFin = [] for x in valores: lista1.append(x) pass for x in valores1: lista2.append(x) pass for x in valores2: lista3.append(x) pass listaFin.append(dict(lista=lista1,lista1=lista2,lista2=lista3)) vista = 1 return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html',{'idFile':idForm.id,'lista':listaFin,'vista':vista,'form':form,'campCrezcamos':inner_qs,'datoUsu':datoUsu}) else: print('No se esta validando el formulario') pass else: form = UploadArchivos() vista = 0 idForm = 0 return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html',{'idFile':idForm,'vista':vista,'form':form,'campCrezcamos':inner_qs,'datoUsu':datoUsu}) def trazabilidad(request): datoUsu = datosUsu(request.user.id) clie = 'Crezcamos' inner_qs = DataAsignacion.objects.filter(portafolio_usuario=request.user.id,portafolio_cliente=clie.id) if request.method == 'POST': form = UploadArchivos(request.POST, request.FILES) print(form) if form.is_valid(): idForm = form.save() getCrezcamosClientePreviewUdate(idForm.id) return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html',{'form':form,'campCrezcamos':inner_qs,'datoUsu':datoUsu}) else: print('No se esta validando el formulario') pass else: print(2) form = UploadArchivos() return render(request, 'cargueArchivos/UpdateCampañas/Crezcamos/updateCrezcamos.html',{'form':form,'campCrezcamos':inner_qs,'datoUsu':datoUsu}) def limpiar(request): datoUsu = datosUsu(request.user.id) deleteDatosOrigen = DataUbicacionInfoOrigen.objects.all() deleteDatosOrigen.delete() deleteUbicaEmp = DataUbicacionEmpresa.objects.all() deleteUbicaEmp.delete() deleteUbica = DataUbicacion.objects.all() deleteUbica.delete() deleteCorreos = DataCorreoelectronico.objects.all() deleteCorreos.delete() deleteTele = DataTelefonos.objects.all() deleteTele.delete() deleteObliga = DataObligacion.objects.all() deleteObliga.delete() deletePersonas = DataPersonas.objects.all() deletePersonas.delete() deletePortaArchivoStra = DataAsignacionarchivosStraus.objects.all() deletePortaArchivoStra.delete() deleteArchiStra = DataarchivosStraus.objects.all() deleteArchiStra.delete() deletePorta = DataAsignacion.objects.all() deletePorta.delete() return render(request, 'cargueArchivos/limpiar.html',{'datoUsu':datoUsu})
[ 7, 10, 11, 14, 15 ]
2,454
c6821cb8dd6f8d74ca20c03f87dae321eb869c32
<mask token> @attr.s class GPTools: <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def find_clipboard(self): for process in psutil.process_iter(): if process.name().lower() != 'gp5.exe': continue break else: raise click.ClickException( 'cannot get Guitar Pro 5 clipboard, is the process running?') exe_path = process.cmdline()[0] clipboard_path = os.path.join(os.path.dirname(exe_path), 'tmp', 'clipboard.tmp') return clipboard_path def write(self): format = None if self.song.clipboard is None else 'tmp' guitarpro.write(self.song, self.output_file, format=format) def selected(self): for track in self.selected_tracks(): for measure in self.selected_measures(track): for voice in measure.voices: for beat in self.selected_beats(voice): yield track, measure, voice, beat def selected_tracks(self): if self.selected_track_numbers is ALL: yield from self.song.tracks return for track in self.song.tracks: if track.number in self.selected_track_numbers: yield track <mask token> <mask token>
<mask token> @attr.s class GPTools: <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def parse(self): if self.input_file is None: self.input_file = self.find_clipboard() if self.output_file is None: self.output_file = self.input_file self.song = guitarpro.parse(self.input_file) if self.selected_track_numbers is None: if self.song.clipboard is not None: self.selected_track_numbers = list(range(self.song. clipboard.startTrack, self.song.clipboard.stopTrack + 1)) else: self.selected_track_numbers = ALL if self.selected_measure_numbers is None: if self.song.clipboard is not None: self.selected_measure_numbers = list(range(self.song. clipboard.startMeasure, self.song.clipboard.stopMeasure + 1)) else: self.selected_measure_numbers = ALL if self.selected_beat_numbers is None: if (self.song.clipboard is not None and self.song.clipboard. subBarCopy): self.selected_beat_numbers = list(range(self.song.clipboard .startBeat, self.song.clipboard.stopBeat + 1)) else: self.selected_beat_numbers = ALL def find_clipboard(self): for process in psutil.process_iter(): if process.name().lower() != 'gp5.exe': continue break else: raise click.ClickException( 'cannot get Guitar Pro 5 clipboard, is the process running?') exe_path = process.cmdline()[0] clipboard_path = os.path.join(os.path.dirname(exe_path), 'tmp', 'clipboard.tmp') return clipboard_path def write(self): format = None if self.song.clipboard is None else 'tmp' guitarpro.write(self.song, self.output_file, format=format) def selected(self): for track in self.selected_tracks(): for measure in self.selected_measures(track): for voice in measure.voices: for beat in self.selected_beats(voice): yield track, measure, voice, beat def selected_tracks(self): if self.selected_track_numbers is ALL: yield from self.song.tracks return for track in self.song.tracks: if track.number in self.selected_track_numbers: yield track def selected_measures(self, track): if self.selected_measure_numbers is ALL: yield from track.measures return for measure in track.measures: if measure.number in self.selected_measure_numbers: yield measure <mask token>
<mask token> @attr.s class GPTools: <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> def parse(self): if self.input_file is None: self.input_file = self.find_clipboard() if self.output_file is None: self.output_file = self.input_file self.song = guitarpro.parse(self.input_file) if self.selected_track_numbers is None: if self.song.clipboard is not None: self.selected_track_numbers = list(range(self.song. clipboard.startTrack, self.song.clipboard.stopTrack + 1)) else: self.selected_track_numbers = ALL if self.selected_measure_numbers is None: if self.song.clipboard is not None: self.selected_measure_numbers = list(range(self.song. clipboard.startMeasure, self.song.clipboard.stopMeasure + 1)) else: self.selected_measure_numbers = ALL if self.selected_beat_numbers is None: if (self.song.clipboard is not None and self.song.clipboard. subBarCopy): self.selected_beat_numbers = list(range(self.song.clipboard .startBeat, self.song.clipboard.stopBeat + 1)) else: self.selected_beat_numbers = ALL def find_clipboard(self): for process in psutil.process_iter(): if process.name().lower() != 'gp5.exe': continue break else: raise click.ClickException( 'cannot get Guitar Pro 5 clipboard, is the process running?') exe_path = process.cmdline()[0] clipboard_path = os.path.join(os.path.dirname(exe_path), 'tmp', 'clipboard.tmp') return clipboard_path def write(self): format = None if self.song.clipboard is None else 'tmp' guitarpro.write(self.song, self.output_file, format=format) def selected(self): for track in self.selected_tracks(): for measure in self.selected_measures(track): for voice in measure.voices: for beat in self.selected_beats(voice): yield track, measure, voice, beat def selected_tracks(self): if self.selected_track_numbers is ALL: yield from self.song.tracks return for track in self.song.tracks: if track.number in self.selected_track_numbers: yield track def selected_measures(self, track): if self.selected_measure_numbers is ALL: yield from track.measures return for measure in track.measures: if measure.number in self.selected_measure_numbers: yield measure def selected_beats(self, voice): if self.selected_beat_numbers is ALL: yield from voice.beats return for number, beat in enumerate(voice.beats, start=1): if number in self.selected_beat_numbers: yield beat
import os import attr import click import guitarpro import psutil ALL = object() @attr.s class GPTools: input_file = attr.ib() output_file = attr.ib() selected_track_numbers = attr.ib(default=None) selected_measure_numbers = attr.ib(default=None) selected_beat_numbers = attr.ib(default=None) song = None def parse(self): if self.input_file is None: self.input_file = self.find_clipboard() if self.output_file is None: self.output_file = self.input_file self.song = guitarpro.parse(self.input_file) if self.selected_track_numbers is None: if self.song.clipboard is not None: self.selected_track_numbers = list(range(self.song. clipboard.startTrack, self.song.clipboard.stopTrack + 1)) else: self.selected_track_numbers = ALL if self.selected_measure_numbers is None: if self.song.clipboard is not None: self.selected_measure_numbers = list(range(self.song. clipboard.startMeasure, self.song.clipboard.stopMeasure + 1)) else: self.selected_measure_numbers = ALL if self.selected_beat_numbers is None: if (self.song.clipboard is not None and self.song.clipboard. subBarCopy): self.selected_beat_numbers = list(range(self.song.clipboard .startBeat, self.song.clipboard.stopBeat + 1)) else: self.selected_beat_numbers = ALL def find_clipboard(self): for process in psutil.process_iter(): if process.name().lower() != 'gp5.exe': continue break else: raise click.ClickException( 'cannot get Guitar Pro 5 clipboard, is the process running?') exe_path = process.cmdline()[0] clipboard_path = os.path.join(os.path.dirname(exe_path), 'tmp', 'clipboard.tmp') return clipboard_path def write(self): format = None if self.song.clipboard is None else 'tmp' guitarpro.write(self.song, self.output_file, format=format) def selected(self): for track in self.selected_tracks(): for measure in self.selected_measures(track): for voice in measure.voices: for beat in self.selected_beats(voice): yield track, measure, voice, beat def selected_tracks(self): if self.selected_track_numbers is ALL: yield from self.song.tracks return for track in self.song.tracks: if track.number in self.selected_track_numbers: yield track def selected_measures(self, track): if self.selected_measure_numbers is ALL: yield from track.measures return for measure in track.measures: if measure.number in self.selected_measure_numbers: yield measure def selected_beats(self, voice): if self.selected_beat_numbers is ALL: yield from voice.beats return for number, beat in enumerate(voice.beats, start=1): if number in self.selected_beat_numbers: yield beat
import os import attr import click import guitarpro import psutil ALL = object() @attr.s class GPTools: input_file = attr.ib() output_file = attr.ib() selected_track_numbers = attr.ib(default=None) selected_measure_numbers = attr.ib(default=None) selected_beat_numbers = attr.ib(default=None) song = None def parse(self): if self.input_file is None: self.input_file = self.find_clipboard() if self.output_file is None: self.output_file = self.input_file self.song = guitarpro.parse(self.input_file) if self.selected_track_numbers is None: if self.song.clipboard is not None: self.selected_track_numbers = list(range(self.song.clipboard.startTrack, self.song.clipboard.stopTrack+1)) else: self.selected_track_numbers = ALL if self.selected_measure_numbers is None: if self.song.clipboard is not None: self.selected_measure_numbers = list(range(self.song.clipboard.startMeasure, self.song.clipboard.stopMeasure+1)) else: self.selected_measure_numbers = ALL if self.selected_beat_numbers is None: if self.song.clipboard is not None and self.song.clipboard.subBarCopy: self.selected_beat_numbers = list(range(self.song.clipboard.startBeat, self.song.clipboard.stopBeat+1)) else: self.selected_beat_numbers = ALL def find_clipboard(self): for process in psutil.process_iter(): if process.name().lower() != 'gp5.exe': continue break else: raise click.ClickException('cannot get Guitar Pro 5 clipboard, is the process running?') exe_path = process.cmdline()[0] clipboard_path = os.path.join(os.path.dirname(exe_path), 'tmp', 'clipboard.tmp') return clipboard_path def write(self): format = None if self.song.clipboard is None else 'tmp' guitarpro.write(self.song, self.output_file, format=format) def selected(self): for track in self.selected_tracks(): for measure in self.selected_measures(track): for voice in measure.voices: for beat in self.selected_beats(voice): yield track, measure, voice, beat def selected_tracks(self): if self.selected_track_numbers is ALL: yield from self.song.tracks return for track in self.song.tracks: if track.number in self.selected_track_numbers: yield track def selected_measures(self, track): if self.selected_measure_numbers is ALL: yield from track.measures return for measure in track.measures: if measure.number in self.selected_measure_numbers: yield measure def selected_beats(self, voice): if self.selected_beat_numbers is ALL: yield from voice.beats return for number, beat in enumerate(voice.beats, start=1): if number in self.selected_beat_numbers: yield beat
[ 5, 7, 8, 11, 12 ]
2,455
90218168841dc76febab67d1e992dfc993730ea4
<mask token> def run_smac(max_fun=30): from smac.facade.func_facade import fmin_smac x, cost, smac = fmin_smac(func=test_func, x0=[-0], bounds=[(-5, 5)], maxfun=max_fun, rng=1234) runhistory = smac.get_runhistory() x_smac = [] y_smac = [] for entry in runhistory.data: config_id = entry.config_id config = runhistory.ids_config[config_id] y_ = runhistory.get_cost(config) x_ = config['x1'] x_smac.append(x_) y_smac.append(y_) x_smac = np.array(x_smac) y_smac = np.array(y_smac) return smac, x_smac, y_smac <mask token> def clean_smac_shit(): import os import shutil for f in os.listdir('.'): if f.startswith('smac3-output_'): shutil.rmtree(f) <mask token>
<mask token> def test_func(x): x = x[0] return math.cos(x) * x ** 2 + x def run_smac(max_fun=30): from smac.facade.func_facade import fmin_smac x, cost, smac = fmin_smac(func=test_func, x0=[-0], bounds=[(-5, 5)], maxfun=max_fun, rng=1234) runhistory = smac.get_runhistory() x_smac = [] y_smac = [] for entry in runhistory.data: config_id = entry.config_id config = runhistory.ids_config[config_id] y_ = runhistory.get_cost(config) x_ = config['x1'] x_smac.append(x_) y_smac.append(y_) x_smac = np.array(x_smac) y_smac = np.array(y_smac) return smac, x_smac, y_smac def plot_state(smac, model, x_points, y_points, x_smac, y_smac, step=None): """ plot function with all evaluated points, EI acquisition function Predictions with uncertainties """ from smac.optimizer.acquisition import EI step = step or len(x_smac) x_smac_ = np.array([[x] for x in x_smac[:step]]) y_smac_ = np.array([[y] for y in y_smac[:step]]) model.train(x_smac_, y_smac_) acq_func = EI(model=model) acq_func.update(model=model, eta=np.min(y_smac)) x_points_ = np.array([[x] for x in x_points]) acq_values = acq_func._compute(X=x_points_)[:, 0] y_mean, y_var = model.predict(x_points_) y_mean = y_mean[:, 0] y_std = np.sqrt(y_var)[:, 0] fig1 = plt.figure() ax1 = fig1.add_subplot(111) ax1.plot(x_points, acq_values) plt.title('Aquisition Function') plt.savefig('fig%da.pdf' % step) fig1 = plt.figure() ax1 = fig1.add_subplot(111) ax1.plot(x_points, y_mean) ax1.fill_between(x_points, y_mean - y_std, y_mean + y_std, alpha=0.5) ax1.plot(x_smac[:step], y_smac[:step], 'bo') ax1.plot(x_smac[:step], y_smac[:step], 'ro') ax1.plot(x_points, y_points, '--') plt.title('Uncertainty Predictions') plt.savefig('fig%db.pdf' % step) def clean_smac_shit(): import os import shutil for f in os.listdir('.'): if f.startswith('smac3-output_'): shutil.rmtree(f) <mask token>
<mask token> def test_func(x): x = x[0] return math.cos(x) * x ** 2 + x def run_smac(max_fun=30): from smac.facade.func_facade import fmin_smac x, cost, smac = fmin_smac(func=test_func, x0=[-0], bounds=[(-5, 5)], maxfun=max_fun, rng=1234) runhistory = smac.get_runhistory() x_smac = [] y_smac = [] for entry in runhistory.data: config_id = entry.config_id config = runhistory.ids_config[config_id] y_ = runhistory.get_cost(config) x_ = config['x1'] x_smac.append(x_) y_smac.append(y_) x_smac = np.array(x_smac) y_smac = np.array(y_smac) return smac, x_smac, y_smac def plot_state(smac, model, x_points, y_points, x_smac, y_smac, step=None): """ plot function with all evaluated points, EI acquisition function Predictions with uncertainties """ from smac.optimizer.acquisition import EI step = step or len(x_smac) x_smac_ = np.array([[x] for x in x_smac[:step]]) y_smac_ = np.array([[y] for y in y_smac[:step]]) model.train(x_smac_, y_smac_) acq_func = EI(model=model) acq_func.update(model=model, eta=np.min(y_smac)) x_points_ = np.array([[x] for x in x_points]) acq_values = acq_func._compute(X=x_points_)[:, 0] y_mean, y_var = model.predict(x_points_) y_mean = y_mean[:, 0] y_std = np.sqrt(y_var)[:, 0] fig1 = plt.figure() ax1 = fig1.add_subplot(111) ax1.plot(x_points, acq_values) plt.title('Aquisition Function') plt.savefig('fig%da.pdf' % step) fig1 = plt.figure() ax1 = fig1.add_subplot(111) ax1.plot(x_points, y_mean) ax1.fill_between(x_points, y_mean - y_std, y_mean + y_std, alpha=0.5) ax1.plot(x_smac[:step], y_smac[:step], 'bo') ax1.plot(x_smac[:step], y_smac[:step], 'ro') ax1.plot(x_points, y_points, '--') plt.title('Uncertainty Predictions') plt.savefig('fig%db.pdf' % step) def clean_smac_shit(): import os import shutil for f in os.listdir('.'): if f.startswith('smac3-output_'): shutil.rmtree(f) if __name__ == '__main__': from smac.epm.rf_with_instances import RandomForestWithInstances x_points = np.linspace(start=-5, stop=5, num=100) y_points = list(map(test_func, map(lambda x: [x], x_points))) smac, x_smac, y_smac = run_smac() types, bounds = np.array([0]), np.array([[0.0, 1.0]]) model = RandomForestWithInstances(types=types, bounds=bounds, instance_features=None, seed=12345, pca_components=12345, ratio_features=1, num_trees=1000, min_samples_split=1, min_samples_leaf=1, max_depth=100000, do_bootstrapping=False, n_points_per_tree=-1, eps_purity=0) for i in range(10): plot_state(smac, model, x_points, y_points, x_smac, y_smac, i + 1) clean_smac_shit()
import math import numpy as np import matplotlib.pyplot as plt def test_func(x): x = x[0] return math.cos(x) * x ** 2 + x def run_smac(max_fun=30): from smac.facade.func_facade import fmin_smac x, cost, smac = fmin_smac(func=test_func, x0=[-0], bounds=[(-5, 5)], maxfun=max_fun, rng=1234) runhistory = smac.get_runhistory() x_smac = [] y_smac = [] for entry in runhistory.data: config_id = entry.config_id config = runhistory.ids_config[config_id] y_ = runhistory.get_cost(config) x_ = config['x1'] x_smac.append(x_) y_smac.append(y_) x_smac = np.array(x_smac) y_smac = np.array(y_smac) return smac, x_smac, y_smac def plot_state(smac, model, x_points, y_points, x_smac, y_smac, step=None): """ plot function with all evaluated points, EI acquisition function Predictions with uncertainties """ from smac.optimizer.acquisition import EI step = step or len(x_smac) x_smac_ = np.array([[x] for x in x_smac[:step]]) y_smac_ = np.array([[y] for y in y_smac[:step]]) model.train(x_smac_, y_smac_) acq_func = EI(model=model) acq_func.update(model=model, eta=np.min(y_smac)) x_points_ = np.array([[x] for x in x_points]) acq_values = acq_func._compute(X=x_points_)[:, 0] y_mean, y_var = model.predict(x_points_) y_mean = y_mean[:, 0] y_std = np.sqrt(y_var)[:, 0] fig1 = plt.figure() ax1 = fig1.add_subplot(111) ax1.plot(x_points, acq_values) plt.title('Aquisition Function') plt.savefig('fig%da.pdf' % step) fig1 = plt.figure() ax1 = fig1.add_subplot(111) ax1.plot(x_points, y_mean) ax1.fill_between(x_points, y_mean - y_std, y_mean + y_std, alpha=0.5) ax1.plot(x_smac[:step], y_smac[:step], 'bo') ax1.plot(x_smac[:step], y_smac[:step], 'ro') ax1.plot(x_points, y_points, '--') plt.title('Uncertainty Predictions') plt.savefig('fig%db.pdf' % step) def clean_smac_shit(): import os import shutil for f in os.listdir('.'): if f.startswith('smac3-output_'): shutil.rmtree(f) if __name__ == '__main__': from smac.epm.rf_with_instances import RandomForestWithInstances x_points = np.linspace(start=-5, stop=5, num=100) y_points = list(map(test_func, map(lambda x: [x], x_points))) smac, x_smac, y_smac = run_smac() types, bounds = np.array([0]), np.array([[0.0, 1.0]]) model = RandomForestWithInstances(types=types, bounds=bounds, instance_features=None, seed=12345, pca_components=12345, ratio_features=1, num_trees=1000, min_samples_split=1, min_samples_leaf=1, max_depth=100000, do_bootstrapping=False, n_points_per_tree=-1, eps_purity=0) for i in range(10): plot_state(smac, model, x_points, y_points, x_smac, y_smac, i + 1) clean_smac_shit()
import math import numpy as np import matplotlib.pyplot as plt def test_func(x): # x is vector; here of length 1 x = x[0] return math.cos(x) * x**2 + x def run_smac(max_fun=30): from smac.facade.func_facade import fmin_smac x, cost, smac = fmin_smac(func=test_func, x0=[-0], # default values bounds=[(-5, 5)], # bounds of each x maxfun=max_fun, # maximal number of function evaluations rng=1234 # random seed ) runhistory = smac.get_runhistory() # extract x value and corresponding y value x_smac = [] y_smac = [] for entry in runhistory.data: # iterate over data because it is an OrderedDict config_id = entry.config_id # look up config id config = runhistory.ids_config[config_id] # look up config y_ = runhistory.get_cost(config) # get cost x_ = config["x1"] # there is only one entry in our example x_smac.append(x_) y_smac.append(y_) x_smac = np.array(x_smac) y_smac = np.array(y_smac) return smac, x_smac, y_smac def plot_state(smac, model, x_points, y_points, x_smac, y_smac, step=None): """ plot function with all evaluated points, EI acquisition function Predictions with uncertainties """ from smac.optimizer.acquisition import EI # cost all points for x step = step or len(x_smac) x_smac_ = np.array([[x] for x in x_smac[:step]]) y_smac_ = np.array([[y] for y in y_smac[:step]]) # as an alternative, we could extract the points from the runhistory again # but these points will be scaled to a unit-hypercube # X, Y = smac.solver.rh2EPM.transform(runhistory) model.train(x_smac_, y_smac_) acq_func = EI(model=model) acq_func.update(model=model, eta=np.min(y_smac)) x_points_ = np.array([[x] for x in x_points]) acq_values = acq_func._compute(X=x_points_)[:, 0] # plot acquisition function y_mean, y_var = model.predict(x_points_) y_mean = y_mean[:, 0] y_std = np.sqrt(y_var)[:, 0] fig1 = plt.figure() ax1 = fig1.add_subplot(111) ax1.plot(x_points, acq_values) plt.title("Aquisition Function") plt.savefig('fig%da.pdf' % step) # plot uncertainties fig1 = plt.figure() ax1 = fig1.add_subplot(111) ax1.plot(x_points, y_mean) ax1.fill_between(x_points, y_mean - y_std, y_mean + y_std, alpha=0.5) ax1.plot(x_smac[:step], y_smac[:step], 'bo') ax1.plot(x_smac[:step], y_smac[:step], 'ro') ax1.plot(x_points, y_points, '--') plt.title("Uncertainty Predictions") plt.savefig('fig%db.pdf' % step) def clean_smac_shit(): import os import shutil for f in os.listdir('.'): if f.startswith('smac3-output_'): shutil.rmtree(f) if __name__ == '__main__': from smac.epm.rf_with_instances import RandomForestWithInstances x_points = np.linspace(start=-5, stop=5, num=100) y_points = list(map(test_func, map(lambda x: [x], x_points))) smac, x_smac, y_smac = run_smac() types, bounds = np.array([0]), np.array([[0.0, 1.0]]) model = RandomForestWithInstances(types=types, bounds=bounds, instance_features=None, seed=12345, pca_components=12345, ratio_features=1, num_trees=1000, min_samples_split=1, min_samples_leaf=1, max_depth=100000, do_bootstrapping=False, n_points_per_tree=-1, eps_purity=0 ) for i in range(10): plot_state(smac, model, x_points, y_points, x_smac, y_smac, i+1) clean_smac_shit()
[ 2, 4, 5, 6, 7 ]
2,456
2b1ec422a42af59a048c708f86b686eb0564b51f
<mask token>
<mask token> urlpatterns = [url('^$', SprintListView.as_view(), name='sprint_list'), path('create/', view=CreateSprintView.as_view(), name='create_sprint'), path('modificar/<int:sprint_pk>/', view=UpdateSprintView.as_view(), name='update_sprint'), path('<int:sprint_pk>/asignarus/', view= AsignarUSUpdateView.as_view(), name='asignar_us'), path( '<int:sprint_pk>/tableros/<int:flujo_pk>/', view=TableroTemplateView. as_view(), name='tablero'), path(route='ver/<int:pk>/', view= VerSprintDetailView.as_view(), name='ver_sprint'), path(route= '<int:sprint_pk>/sprintbacklogpdf/', view=SprintBacklogPDF.as_view(), name='reporte_sb'), path(route='<int:sprint_pk>/prioridades/', view= PrioridadesPDF.as_view(), name='prioridades')]
from django.conf.urls import url from django.urls import path from .views import * from flujo.views import * <mask token> urlpatterns = [url('^$', SprintListView.as_view(), name='sprint_list'), path('create/', view=CreateSprintView.as_view(), name='create_sprint'), path('modificar/<int:sprint_pk>/', view=UpdateSprintView.as_view(), name='update_sprint'), path('<int:sprint_pk>/asignarus/', view= AsignarUSUpdateView.as_view(), name='asignar_us'), path( '<int:sprint_pk>/tableros/<int:flujo_pk>/', view=TableroTemplateView. as_view(), name='tablero'), path(route='ver/<int:pk>/', view= VerSprintDetailView.as_view(), name='ver_sprint'), path(route= '<int:sprint_pk>/sprintbacklogpdf/', view=SprintBacklogPDF.as_view(), name='reporte_sb'), path(route='<int:sprint_pk>/prioridades/', view= PrioridadesPDF.as_view(), name='prioridades')]
from django.conf.urls import url from django.urls import path from .views import * from flujo.views import * """ URL para el Sprint crear, listar y modificar """ urlpatterns = [ url(r'^$', SprintListView.as_view(), name='sprint_list'), path('create/', view=CreateSprintView.as_view(), name='create_sprint'), path('modificar/<int:sprint_pk>/', view=UpdateSprintView.as_view(), name='update_sprint'), path('<int:sprint_pk>/asignarus/', view=AsignarUSUpdateView.as_view(), name='asignar_us'), path('<int:sprint_pk>/tableros/<int:flujo_pk>/', view=TableroTemplateView.as_view(), name='tablero'), path(route='ver/<int:pk>/', view=VerSprintDetailView.as_view(), name='ver_sprint'), path(route='<int:sprint_pk>/sprintbacklogpdf/', view=SprintBacklogPDF.as_view(), name="reporte_sb"), path(route='<int:sprint_pk>/prioridades/', view=PrioridadesPDF.as_view(), name="prioridades") ]
null
[ 0, 1, 2, 3 ]
2,457
a555226b14223dca688d10b811eb36fb229360ce
<mask token> class UIMainWindow(object): def __init__(self): font = QtGui.QFont() font.setFamily('Myriad Pro') font.setPointSize(14) self.main_window = QtWidgets.QWidget() self.main_window.setFont(font) self.main_window.setObjectName('main_window') self.main_window.setWindowModality(QtCore.Qt.WindowModal) self.main_window.resize(450, 460) size_policy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) size_policy.setHorizontalStretch(0) size_policy.setVerticalStretch(0) size_policy.setHeightForWidth(self.main_window.sizePolicy(). hasHeightForWidth()) self.main_window.setSizePolicy(size_policy) self.main_window.setMinimumSize(QtCore.QSize(450, 460)) self.main_window.setMaximumSize(QtCore.QSize(450, 460)) self.main_window.setBaseSize(QtCore.QSize(450, 460)) self.branding_icon = QtWidgets.QLabel(self.main_window) self.branding_icon.setGeometry(QtCore.QRect(20, 5, 90, 90)) self.branding_icon.setText('') self.branding_icon.setPixmap(QtGui.QPixmap( '../images/senticompare_logo.png')) self.branding_icon.setAlignment(QtCore.Qt.AlignJustify | QtCore.Qt. AlignVCenter) self.branding_icon.setObjectName('branding_icon') self.branding_label = QtWidgets.QLabel(self.main_window) self.branding_label.setGeometry(QtCore.QRect(110, 5, 330, 90)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(81, 108, 146)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(81, 108, 146)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) self.branding_label.setPalette(palette) font = QtGui.QFont() font.setFamily('Optima') font.setPointSize(50) self.branding_label.setFont(font) self.branding_label.setObjectName('branding_label') self.horizontal_layout_widget_1 = QtWidgets.QWidget(self.main_window) self.horizontal_layout_widget_1.setGeometry(QtCore.QRect(10, 410, 430, 50)) self.horizontal_layout_widget_1.setObjectName( 'horizontal_layout_widget_1') self.horizontal_layout_1 = QtWidgets.QHBoxLayout(self. horizontal_layout_widget_1) self.horizontal_layout_1.setContentsMargins(0, 0, 0, 0) self.horizontal_layout_1.setObjectName('horizontal_layout_1') self.run_button = QtWidgets.QPushButton(self.horizontal_layout_widget_1 ) self.run_button.setObjectName('run_button') self.run_button.clicked.connect(self.run) self.horizontal_layout_1.addWidget(self.run_button) self.quit_button = QtWidgets.QPushButton(self. horizontal_layout_widget_1) self.quit_button.setObjectName('quit_button') self.quit_button.clicked.connect(self.main_window.close) self.horizontal_layout_1.addWidget(self.quit_button) self.select_files_tab = QtWidgets.QWidget() self.select_files_tab.setObjectName('select_files_tab') self.horizontal_layout_widget_2 = QtWidgets.QWidget(self. select_files_tab) self.horizontal_layout_widget_2.setGeometry(QtCore.QRect(10, 230, 230, 50)) self.horizontal_layout_widget_2.setObjectName( 'horizontal_layout_widget_2') self.horizontal_layout_2 = QtWidgets.QHBoxLayout(self. horizontal_layout_widget_2) self.horizontal_layout_2.setContentsMargins(0, 0, 0, 0) self.horizontal_layout_2.setObjectName('horizontal_layout_2') font.setFamily('Myriad Pro') font.setPointSize(12) self.input_output_box = QtWidgets.QTabWidget(self.main_window) self.input_output_box.setGeometry(QtCore.QRect(10, 100, 260, 300)) self.input_output_box.setFont(font) self.input_output_box.setCursor(QtGui.QCursor(QtCore.Qt. PointingHandCursor)) self.input_output_box.setTabPosition(QtWidgets.QTabWidget.North) self.input_output_box.setTabShape(QtWidgets.QTabWidget.Rounded) self.input_output_box.setTabsClosable(False) self.input_output_box.setObjectName('input_output_box') self.file_view = QtWidgets.QListView(self.select_files_tab) self.file_view.setGeometry(QtCore.QRect(10, 10, 235, 210)) self.file_view.setObjectName('file_view') self.file_view_model = QStandardItemModel(self.file_view) self.file_view.setModel(self.file_view_model) self.file_view.show() self.input_output_box.addTab(self.select_files_tab, '') self.add_button = QtWidgets.QPushButton(self.horizontal_layout_widget_2 ) self.add_button.setFont(font) self.add_button.setObjectName('add_button') self.add_button.clicked.connect(self.selectFiles) self.horizontal_layout_2.addWidget(self.add_button) self.delete_button = QtWidgets.QPushButton(self. horizontal_layout_widget_2) self.delete_button.setFont(font) self.delete_button.setObjectName('delete_button') self.delete_button.clicked.connect(self.removeFiles) self.horizontal_layout_2.addWidget(self.delete_button) self.manual_input_tab = QtWidgets.QWidget() self.manual_input_tab.setObjectName('manual_input_tab') self.text_input = QtWidgets.QTextEdit(self.manual_input_tab) self.text_input.setGeometry(QtCore.QRect(10, 10, 235, 250)) self.text_input.setObjectName('text_input') self.input_output_box.addTab(self.manual_input_tab, '') self.results_tab = QtWidgets.QWidget() self.results_tab.setObjectName('results_tab') self.results_scroll_box = QtWidgets.QScrollArea(self.results_tab) self.results_scroll_box.setGeometry(QtCore.QRect(10, 10, 235, 250)) self.results_scroll_box.setWidgetResizable(True) self.results_scroll_box.setObjectName('results_scroll_box') self.results_content = QtWidgets.QWidget() self.results_content.setGeometry(QtCore.QRect(0, 0, 230, 250)) self.results_content.setObjectName('results_content') self.results_scroll_box.setWidget(self.results_content) self.results_content_text = QtWidgets.QTextEdit(self.results_content) self.results_content_text.setGeometry(QtCore.QRect(-1, -1, 235, 250)) self.results_content_text.setReadOnly(True) self.results_content_text.setObjectName('results_content_text') self.input_output_box.addTab(self.results_tab, '') self.input_output_box.setTabEnabled(2, False) font.setPointSize(14) self.group_box_1 = QtWidgets.QGroupBox(self.main_window) self.group_box_1.setGeometry(QtCore.QRect(280, 110, 160, 140)) self.group_box_1.setFont(font) self.group_box_1.setTitle('') self.group_box_1.setAlignment(QtCore.Qt.AlignCenter) self.group_box_1.setFlat(False) self.group_box_1.setCheckable(False) self.group_box_1.setObjectName('group_box_1') self.vertical_layout_widget_1 = QtWidgets.QWidget(self.group_box_1) self.vertical_layout_widget_1.setGeometry(QtCore.QRect(9, 0, 141, 141)) self.vertical_layout_widget_1.setObjectName('vertical_layout_widget_1') self.vertical_layout_1 = QtWidgets.QVBoxLayout(self. vertical_layout_widget_1) self.vertical_layout_1.setContentsMargins(0, 0, 0, 0) self.vertical_layout_1.setObjectName('vertical_layout_1') self.pronoun_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.pronoun_checkbox.setFont(font) self.pronoun_checkbox.setObjectName('pronoun_checkbox') self.vertical_layout_1.addWidget(self.pronoun_checkbox) self.lexical_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.lexical_checkbox.setFont(font) self.lexical_checkbox.setObjectName('lexical_checkbox') self.vertical_layout_1.addWidget(self.lexical_checkbox) self.rule_based_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.rule_based_checkbox.setFont(font) self.rule_based_checkbox.setObjectName('rule_based_checkbox') self.vertical_layout_1.addWidget(self.rule_based_checkbox) self.machine_learning_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.machine_learning_checkbox.setFont(font) self.machine_learning_checkbox.setObjectName( 'machine_learning_checkbox') self.vertical_layout_1.addWidget(self.machine_learning_checkbox) self.help_scroll_box = QtWidgets.QScrollArea(self.main_window) self.help_scroll_box.setGeometry(QtCore.QRect(280, 260, 160, 140)) self.help_scroll_box.setFrameShape(QtWidgets.QFrame.StyledPanel) self.help_scroll_box.setFrameShadow(QtWidgets.QFrame.Sunken) self.help_scroll_box.setWidgetResizable(True) self.help_scroll_box.setObjectName('help_scroll_box') self.help_content = QtWidgets.QWidget() self.help_content.setGeometry(QtCore.QRect(0, 0, 158, 138)) self.help_content.setObjectName('help_content') self.help_scroll_box.setWidget(self.help_content) self.selected_files = {} self.input_output_box.setCurrentIndex(0) self.retranslateUI() QtCore.QMetaObject.connectSlotsByName(self.main_window) def retranslateUI(self): _translate = QtCore.QCoreApplication.translate self.main_window.setWindowTitle(_translate('main_window', 'SentiCompare')) self.add_button.setText(_translate('main_window', 'Add')) self.delete_button.setText(_translate('main_window', 'Delete')) self.input_output_box.setTabText(self.input_output_box.indexOf(self .select_files_tab), _translate('main_window', 'Select Files')) self.input_output_box.setTabText(self.input_output_box.indexOf(self .manual_input_tab), _translate('main_window', 'Manual Input')) self.input_output_box.setTabText(self.input_output_box.indexOf(self .results_tab), _translate('main_window', 'Results')) self.run_button.setText(_translate('main_window', 'Run')) self.quit_button.setText(_translate('main_window', 'Quit')) self.pronoun_checkbox.setText(_translate('main_window', 'Pronoun Usage')) self.lexical_checkbox.setText(_translate('main_window', 'Lexical')) self.rule_based_checkbox.setText(_translate('main_window', 'Rule Based')) self.machine_learning_checkbox.setText(_translate('main_window', 'Machine Learning')) self.branding_label.setText(_translate('main_window', 'SentiCompare')) def showWindow(self): self.main_window.show() def selectFiles(self): file_dialog = FileDialog(self.main_window) file_dialog.setFilters(['Text files (*.txt)']) file_dialog.setDefaultFilterIndex = 0 file_dialog.setDefaultDirectory(os.path.expanduser('~')) file_dialog.exec() if file_dialog.getPath() == '': return elif file_dialog.getFilename()[2] == '': for file in os.listdir(file_dialog.getPath()): if file.endswith('.txt') and not file.startswith('.'): file_path = os.path.join(file_dialog.getPath(), file) if file_path not in self.selected_files: self.selected_files[file] = file_path item = QStandardItem(file) item.setCheckable(True) self.file_view_model.appendRow(item) elif file_dialog.getPath() not in self.selected_files: self.selected_files[file_dialog.getFilename()[1] ] = file_dialog.getPath() item = QStandardItem(file_dialog.getFilename()[1]) item.setCheckable(True) self.file_view_model.appendRow(item) <mask token> <mask token>
<mask token> class UIMainWindow(object): def __init__(self): font = QtGui.QFont() font.setFamily('Myriad Pro') font.setPointSize(14) self.main_window = QtWidgets.QWidget() self.main_window.setFont(font) self.main_window.setObjectName('main_window') self.main_window.setWindowModality(QtCore.Qt.WindowModal) self.main_window.resize(450, 460) size_policy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) size_policy.setHorizontalStretch(0) size_policy.setVerticalStretch(0) size_policy.setHeightForWidth(self.main_window.sizePolicy(). hasHeightForWidth()) self.main_window.setSizePolicy(size_policy) self.main_window.setMinimumSize(QtCore.QSize(450, 460)) self.main_window.setMaximumSize(QtCore.QSize(450, 460)) self.main_window.setBaseSize(QtCore.QSize(450, 460)) self.branding_icon = QtWidgets.QLabel(self.main_window) self.branding_icon.setGeometry(QtCore.QRect(20, 5, 90, 90)) self.branding_icon.setText('') self.branding_icon.setPixmap(QtGui.QPixmap( '../images/senticompare_logo.png')) self.branding_icon.setAlignment(QtCore.Qt.AlignJustify | QtCore.Qt. AlignVCenter) self.branding_icon.setObjectName('branding_icon') self.branding_label = QtWidgets.QLabel(self.main_window) self.branding_label.setGeometry(QtCore.QRect(110, 5, 330, 90)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(81, 108, 146)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(81, 108, 146)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) self.branding_label.setPalette(palette) font = QtGui.QFont() font.setFamily('Optima') font.setPointSize(50) self.branding_label.setFont(font) self.branding_label.setObjectName('branding_label') self.horizontal_layout_widget_1 = QtWidgets.QWidget(self.main_window) self.horizontal_layout_widget_1.setGeometry(QtCore.QRect(10, 410, 430, 50)) self.horizontal_layout_widget_1.setObjectName( 'horizontal_layout_widget_1') self.horizontal_layout_1 = QtWidgets.QHBoxLayout(self. horizontal_layout_widget_1) self.horizontal_layout_1.setContentsMargins(0, 0, 0, 0) self.horizontal_layout_1.setObjectName('horizontal_layout_1') self.run_button = QtWidgets.QPushButton(self.horizontal_layout_widget_1 ) self.run_button.setObjectName('run_button') self.run_button.clicked.connect(self.run) self.horizontal_layout_1.addWidget(self.run_button) self.quit_button = QtWidgets.QPushButton(self. horizontal_layout_widget_1) self.quit_button.setObjectName('quit_button') self.quit_button.clicked.connect(self.main_window.close) self.horizontal_layout_1.addWidget(self.quit_button) self.select_files_tab = QtWidgets.QWidget() self.select_files_tab.setObjectName('select_files_tab') self.horizontal_layout_widget_2 = QtWidgets.QWidget(self. select_files_tab) self.horizontal_layout_widget_2.setGeometry(QtCore.QRect(10, 230, 230, 50)) self.horizontal_layout_widget_2.setObjectName( 'horizontal_layout_widget_2') self.horizontal_layout_2 = QtWidgets.QHBoxLayout(self. horizontal_layout_widget_2) self.horizontal_layout_2.setContentsMargins(0, 0, 0, 0) self.horizontal_layout_2.setObjectName('horizontal_layout_2') font.setFamily('Myriad Pro') font.setPointSize(12) self.input_output_box = QtWidgets.QTabWidget(self.main_window) self.input_output_box.setGeometry(QtCore.QRect(10, 100, 260, 300)) self.input_output_box.setFont(font) self.input_output_box.setCursor(QtGui.QCursor(QtCore.Qt. PointingHandCursor)) self.input_output_box.setTabPosition(QtWidgets.QTabWidget.North) self.input_output_box.setTabShape(QtWidgets.QTabWidget.Rounded) self.input_output_box.setTabsClosable(False) self.input_output_box.setObjectName('input_output_box') self.file_view = QtWidgets.QListView(self.select_files_tab) self.file_view.setGeometry(QtCore.QRect(10, 10, 235, 210)) self.file_view.setObjectName('file_view') self.file_view_model = QStandardItemModel(self.file_view) self.file_view.setModel(self.file_view_model) self.file_view.show() self.input_output_box.addTab(self.select_files_tab, '') self.add_button = QtWidgets.QPushButton(self.horizontal_layout_widget_2 ) self.add_button.setFont(font) self.add_button.setObjectName('add_button') self.add_button.clicked.connect(self.selectFiles) self.horizontal_layout_2.addWidget(self.add_button) self.delete_button = QtWidgets.QPushButton(self. horizontal_layout_widget_2) self.delete_button.setFont(font) self.delete_button.setObjectName('delete_button') self.delete_button.clicked.connect(self.removeFiles) self.horizontal_layout_2.addWidget(self.delete_button) self.manual_input_tab = QtWidgets.QWidget() self.manual_input_tab.setObjectName('manual_input_tab') self.text_input = QtWidgets.QTextEdit(self.manual_input_tab) self.text_input.setGeometry(QtCore.QRect(10, 10, 235, 250)) self.text_input.setObjectName('text_input') self.input_output_box.addTab(self.manual_input_tab, '') self.results_tab = QtWidgets.QWidget() self.results_tab.setObjectName('results_tab') self.results_scroll_box = QtWidgets.QScrollArea(self.results_tab) self.results_scroll_box.setGeometry(QtCore.QRect(10, 10, 235, 250)) self.results_scroll_box.setWidgetResizable(True) self.results_scroll_box.setObjectName('results_scroll_box') self.results_content = QtWidgets.QWidget() self.results_content.setGeometry(QtCore.QRect(0, 0, 230, 250)) self.results_content.setObjectName('results_content') self.results_scroll_box.setWidget(self.results_content) self.results_content_text = QtWidgets.QTextEdit(self.results_content) self.results_content_text.setGeometry(QtCore.QRect(-1, -1, 235, 250)) self.results_content_text.setReadOnly(True) self.results_content_text.setObjectName('results_content_text') self.input_output_box.addTab(self.results_tab, '') self.input_output_box.setTabEnabled(2, False) font.setPointSize(14) self.group_box_1 = QtWidgets.QGroupBox(self.main_window) self.group_box_1.setGeometry(QtCore.QRect(280, 110, 160, 140)) self.group_box_1.setFont(font) self.group_box_1.setTitle('') self.group_box_1.setAlignment(QtCore.Qt.AlignCenter) self.group_box_1.setFlat(False) self.group_box_1.setCheckable(False) self.group_box_1.setObjectName('group_box_1') self.vertical_layout_widget_1 = QtWidgets.QWidget(self.group_box_1) self.vertical_layout_widget_1.setGeometry(QtCore.QRect(9, 0, 141, 141)) self.vertical_layout_widget_1.setObjectName('vertical_layout_widget_1') self.vertical_layout_1 = QtWidgets.QVBoxLayout(self. vertical_layout_widget_1) self.vertical_layout_1.setContentsMargins(0, 0, 0, 0) self.vertical_layout_1.setObjectName('vertical_layout_1') self.pronoun_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.pronoun_checkbox.setFont(font) self.pronoun_checkbox.setObjectName('pronoun_checkbox') self.vertical_layout_1.addWidget(self.pronoun_checkbox) self.lexical_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.lexical_checkbox.setFont(font) self.lexical_checkbox.setObjectName('lexical_checkbox') self.vertical_layout_1.addWidget(self.lexical_checkbox) self.rule_based_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.rule_based_checkbox.setFont(font) self.rule_based_checkbox.setObjectName('rule_based_checkbox') self.vertical_layout_1.addWidget(self.rule_based_checkbox) self.machine_learning_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.machine_learning_checkbox.setFont(font) self.machine_learning_checkbox.setObjectName( 'machine_learning_checkbox') self.vertical_layout_1.addWidget(self.machine_learning_checkbox) self.help_scroll_box = QtWidgets.QScrollArea(self.main_window) self.help_scroll_box.setGeometry(QtCore.QRect(280, 260, 160, 140)) self.help_scroll_box.setFrameShape(QtWidgets.QFrame.StyledPanel) self.help_scroll_box.setFrameShadow(QtWidgets.QFrame.Sunken) self.help_scroll_box.setWidgetResizable(True) self.help_scroll_box.setObjectName('help_scroll_box') self.help_content = QtWidgets.QWidget() self.help_content.setGeometry(QtCore.QRect(0, 0, 158, 138)) self.help_content.setObjectName('help_content') self.help_scroll_box.setWidget(self.help_content) self.selected_files = {} self.input_output_box.setCurrentIndex(0) self.retranslateUI() QtCore.QMetaObject.connectSlotsByName(self.main_window) def retranslateUI(self): _translate = QtCore.QCoreApplication.translate self.main_window.setWindowTitle(_translate('main_window', 'SentiCompare')) self.add_button.setText(_translate('main_window', 'Add')) self.delete_button.setText(_translate('main_window', 'Delete')) self.input_output_box.setTabText(self.input_output_box.indexOf(self .select_files_tab), _translate('main_window', 'Select Files')) self.input_output_box.setTabText(self.input_output_box.indexOf(self .manual_input_tab), _translate('main_window', 'Manual Input')) self.input_output_box.setTabText(self.input_output_box.indexOf(self .results_tab), _translate('main_window', 'Results')) self.run_button.setText(_translate('main_window', 'Run')) self.quit_button.setText(_translate('main_window', 'Quit')) self.pronoun_checkbox.setText(_translate('main_window', 'Pronoun Usage')) self.lexical_checkbox.setText(_translate('main_window', 'Lexical')) self.rule_based_checkbox.setText(_translate('main_window', 'Rule Based')) self.machine_learning_checkbox.setText(_translate('main_window', 'Machine Learning')) self.branding_label.setText(_translate('main_window', 'SentiCompare')) def showWindow(self): self.main_window.show() def selectFiles(self): file_dialog = FileDialog(self.main_window) file_dialog.setFilters(['Text files (*.txt)']) file_dialog.setDefaultFilterIndex = 0 file_dialog.setDefaultDirectory(os.path.expanduser('~')) file_dialog.exec() if file_dialog.getPath() == '': return elif file_dialog.getFilename()[2] == '': for file in os.listdir(file_dialog.getPath()): if file.endswith('.txt') and not file.startswith('.'): file_path = os.path.join(file_dialog.getPath(), file) if file_path not in self.selected_files: self.selected_files[file] = file_path item = QStandardItem(file) item.setCheckable(True) self.file_view_model.appendRow(item) elif file_dialog.getPath() not in self.selected_files: self.selected_files[file_dialog.getFilename()[1] ] = file_dialog.getPath() item = QStandardItem(file_dialog.getFilename()[1]) item.setCheckable(True) self.file_view_model.appendRow(item) <mask token> def run(self): if not (self.pronoun_checkbox.isChecked() or self.lexical_checkbox. isChecked() or self.rule_based_checkbox.isChecked() or self. machine_learning_checkbox.isChecked()): message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle('Missing Parameters') message_box.setText( "You haven't selected any methods of sentiment analysis. Please select at least one " + 'method from the list of options.') message_box.exec_() return if self.input_output_box.currentIndex() == 2: message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle('Select Input') message_box.setText( 'You must be on the "Select Files" page or the "Manual Input" page to run ' + 'an analysis. Please select one of those pages and try again.') message_box.exec_() return else: progress_bar = QtWidgets.QProgressDialog( 'Running Sentiment Analysis...', 'Cancel', 0, 100, self. main_window) progress_bar.setValue(0) progress_bar.setCancelButton(None) progress_bar.setWindowModality(QtCore.Qt.WindowModal) progress_bar.resize(400, 50) progress_bar.show() if self.input_output_box.currentIndex() == 0: sentiment_analyzer = SentimentAnalyzer(self.selected_files, progress_bar, pronoun=self.pronoun_checkbox.isChecked(), lexical=self.lexical_checkbox.isChecked(), rule_based= self.rule_based_checkbox.isChecked(), machine_learning= self.machine_learning_checkbox.isChecked()) else: sentiment_analyzer = SentimentAnalyzer(self.text_input. toPlainText(), progress_bar, pronoun=self. pronoun_checkbox.isChecked(), lexical=self. lexical_checkbox.isChecked(), rule_based=self. rule_based_checkbox.isChecked(), machine_learning=self. machine_learning_checkbox.isChecked()) results = sentiment_analyzer.runAnalyses() progress_bar.close() if results: self.results_content_text.setText(results) self.input_output_box.setTabEnabled(2, True) self.input_output_box.setCurrentIndex(2) else: message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle('Missing Input') message_box.setText( "You haven't added any input to analyze. Please select one or more files or " + 'input some data manually.') message_box.exec_() return
<mask token> class UIMainWindow(object): def __init__(self): font = QtGui.QFont() font.setFamily('Myriad Pro') font.setPointSize(14) self.main_window = QtWidgets.QWidget() self.main_window.setFont(font) self.main_window.setObjectName('main_window') self.main_window.setWindowModality(QtCore.Qt.WindowModal) self.main_window.resize(450, 460) size_policy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) size_policy.setHorizontalStretch(0) size_policy.setVerticalStretch(0) size_policy.setHeightForWidth(self.main_window.sizePolicy(). hasHeightForWidth()) self.main_window.setSizePolicy(size_policy) self.main_window.setMinimumSize(QtCore.QSize(450, 460)) self.main_window.setMaximumSize(QtCore.QSize(450, 460)) self.main_window.setBaseSize(QtCore.QSize(450, 460)) self.branding_icon = QtWidgets.QLabel(self.main_window) self.branding_icon.setGeometry(QtCore.QRect(20, 5, 90, 90)) self.branding_icon.setText('') self.branding_icon.setPixmap(QtGui.QPixmap( '../images/senticompare_logo.png')) self.branding_icon.setAlignment(QtCore.Qt.AlignJustify | QtCore.Qt. AlignVCenter) self.branding_icon.setObjectName('branding_icon') self.branding_label = QtWidgets.QLabel(self.main_window) self.branding_label.setGeometry(QtCore.QRect(110, 5, 330, 90)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(81, 108, 146)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(81, 108, 146)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) self.branding_label.setPalette(palette) font = QtGui.QFont() font.setFamily('Optima') font.setPointSize(50) self.branding_label.setFont(font) self.branding_label.setObjectName('branding_label') self.horizontal_layout_widget_1 = QtWidgets.QWidget(self.main_window) self.horizontal_layout_widget_1.setGeometry(QtCore.QRect(10, 410, 430, 50)) self.horizontal_layout_widget_1.setObjectName( 'horizontal_layout_widget_1') self.horizontal_layout_1 = QtWidgets.QHBoxLayout(self. horizontal_layout_widget_1) self.horizontal_layout_1.setContentsMargins(0, 0, 0, 0) self.horizontal_layout_1.setObjectName('horizontal_layout_1') self.run_button = QtWidgets.QPushButton(self.horizontal_layout_widget_1 ) self.run_button.setObjectName('run_button') self.run_button.clicked.connect(self.run) self.horizontal_layout_1.addWidget(self.run_button) self.quit_button = QtWidgets.QPushButton(self. horizontal_layout_widget_1) self.quit_button.setObjectName('quit_button') self.quit_button.clicked.connect(self.main_window.close) self.horizontal_layout_1.addWidget(self.quit_button) self.select_files_tab = QtWidgets.QWidget() self.select_files_tab.setObjectName('select_files_tab') self.horizontal_layout_widget_2 = QtWidgets.QWidget(self. select_files_tab) self.horizontal_layout_widget_2.setGeometry(QtCore.QRect(10, 230, 230, 50)) self.horizontal_layout_widget_2.setObjectName( 'horizontal_layout_widget_2') self.horizontal_layout_2 = QtWidgets.QHBoxLayout(self. horizontal_layout_widget_2) self.horizontal_layout_2.setContentsMargins(0, 0, 0, 0) self.horizontal_layout_2.setObjectName('horizontal_layout_2') font.setFamily('Myriad Pro') font.setPointSize(12) self.input_output_box = QtWidgets.QTabWidget(self.main_window) self.input_output_box.setGeometry(QtCore.QRect(10, 100, 260, 300)) self.input_output_box.setFont(font) self.input_output_box.setCursor(QtGui.QCursor(QtCore.Qt. PointingHandCursor)) self.input_output_box.setTabPosition(QtWidgets.QTabWidget.North) self.input_output_box.setTabShape(QtWidgets.QTabWidget.Rounded) self.input_output_box.setTabsClosable(False) self.input_output_box.setObjectName('input_output_box') self.file_view = QtWidgets.QListView(self.select_files_tab) self.file_view.setGeometry(QtCore.QRect(10, 10, 235, 210)) self.file_view.setObjectName('file_view') self.file_view_model = QStandardItemModel(self.file_view) self.file_view.setModel(self.file_view_model) self.file_view.show() self.input_output_box.addTab(self.select_files_tab, '') self.add_button = QtWidgets.QPushButton(self.horizontal_layout_widget_2 ) self.add_button.setFont(font) self.add_button.setObjectName('add_button') self.add_button.clicked.connect(self.selectFiles) self.horizontal_layout_2.addWidget(self.add_button) self.delete_button = QtWidgets.QPushButton(self. horizontal_layout_widget_2) self.delete_button.setFont(font) self.delete_button.setObjectName('delete_button') self.delete_button.clicked.connect(self.removeFiles) self.horizontal_layout_2.addWidget(self.delete_button) self.manual_input_tab = QtWidgets.QWidget() self.manual_input_tab.setObjectName('manual_input_tab') self.text_input = QtWidgets.QTextEdit(self.manual_input_tab) self.text_input.setGeometry(QtCore.QRect(10, 10, 235, 250)) self.text_input.setObjectName('text_input') self.input_output_box.addTab(self.manual_input_tab, '') self.results_tab = QtWidgets.QWidget() self.results_tab.setObjectName('results_tab') self.results_scroll_box = QtWidgets.QScrollArea(self.results_tab) self.results_scroll_box.setGeometry(QtCore.QRect(10, 10, 235, 250)) self.results_scroll_box.setWidgetResizable(True) self.results_scroll_box.setObjectName('results_scroll_box') self.results_content = QtWidgets.QWidget() self.results_content.setGeometry(QtCore.QRect(0, 0, 230, 250)) self.results_content.setObjectName('results_content') self.results_scroll_box.setWidget(self.results_content) self.results_content_text = QtWidgets.QTextEdit(self.results_content) self.results_content_text.setGeometry(QtCore.QRect(-1, -1, 235, 250)) self.results_content_text.setReadOnly(True) self.results_content_text.setObjectName('results_content_text') self.input_output_box.addTab(self.results_tab, '') self.input_output_box.setTabEnabled(2, False) font.setPointSize(14) self.group_box_1 = QtWidgets.QGroupBox(self.main_window) self.group_box_1.setGeometry(QtCore.QRect(280, 110, 160, 140)) self.group_box_1.setFont(font) self.group_box_1.setTitle('') self.group_box_1.setAlignment(QtCore.Qt.AlignCenter) self.group_box_1.setFlat(False) self.group_box_1.setCheckable(False) self.group_box_1.setObjectName('group_box_1') self.vertical_layout_widget_1 = QtWidgets.QWidget(self.group_box_1) self.vertical_layout_widget_1.setGeometry(QtCore.QRect(9, 0, 141, 141)) self.vertical_layout_widget_1.setObjectName('vertical_layout_widget_1') self.vertical_layout_1 = QtWidgets.QVBoxLayout(self. vertical_layout_widget_1) self.vertical_layout_1.setContentsMargins(0, 0, 0, 0) self.vertical_layout_1.setObjectName('vertical_layout_1') self.pronoun_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.pronoun_checkbox.setFont(font) self.pronoun_checkbox.setObjectName('pronoun_checkbox') self.vertical_layout_1.addWidget(self.pronoun_checkbox) self.lexical_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.lexical_checkbox.setFont(font) self.lexical_checkbox.setObjectName('lexical_checkbox') self.vertical_layout_1.addWidget(self.lexical_checkbox) self.rule_based_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.rule_based_checkbox.setFont(font) self.rule_based_checkbox.setObjectName('rule_based_checkbox') self.vertical_layout_1.addWidget(self.rule_based_checkbox) self.machine_learning_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.machine_learning_checkbox.setFont(font) self.machine_learning_checkbox.setObjectName( 'machine_learning_checkbox') self.vertical_layout_1.addWidget(self.machine_learning_checkbox) self.help_scroll_box = QtWidgets.QScrollArea(self.main_window) self.help_scroll_box.setGeometry(QtCore.QRect(280, 260, 160, 140)) self.help_scroll_box.setFrameShape(QtWidgets.QFrame.StyledPanel) self.help_scroll_box.setFrameShadow(QtWidgets.QFrame.Sunken) self.help_scroll_box.setWidgetResizable(True) self.help_scroll_box.setObjectName('help_scroll_box') self.help_content = QtWidgets.QWidget() self.help_content.setGeometry(QtCore.QRect(0, 0, 158, 138)) self.help_content.setObjectName('help_content') self.help_scroll_box.setWidget(self.help_content) self.selected_files = {} self.input_output_box.setCurrentIndex(0) self.retranslateUI() QtCore.QMetaObject.connectSlotsByName(self.main_window) def retranslateUI(self): _translate = QtCore.QCoreApplication.translate self.main_window.setWindowTitle(_translate('main_window', 'SentiCompare')) self.add_button.setText(_translate('main_window', 'Add')) self.delete_button.setText(_translate('main_window', 'Delete')) self.input_output_box.setTabText(self.input_output_box.indexOf(self .select_files_tab), _translate('main_window', 'Select Files')) self.input_output_box.setTabText(self.input_output_box.indexOf(self .manual_input_tab), _translate('main_window', 'Manual Input')) self.input_output_box.setTabText(self.input_output_box.indexOf(self .results_tab), _translate('main_window', 'Results')) self.run_button.setText(_translate('main_window', 'Run')) self.quit_button.setText(_translate('main_window', 'Quit')) self.pronoun_checkbox.setText(_translate('main_window', 'Pronoun Usage')) self.lexical_checkbox.setText(_translate('main_window', 'Lexical')) self.rule_based_checkbox.setText(_translate('main_window', 'Rule Based')) self.machine_learning_checkbox.setText(_translate('main_window', 'Machine Learning')) self.branding_label.setText(_translate('main_window', 'SentiCompare')) def showWindow(self): self.main_window.show() def selectFiles(self): file_dialog = FileDialog(self.main_window) file_dialog.setFilters(['Text files (*.txt)']) file_dialog.setDefaultFilterIndex = 0 file_dialog.setDefaultDirectory(os.path.expanduser('~')) file_dialog.exec() if file_dialog.getPath() == '': return elif file_dialog.getFilename()[2] == '': for file in os.listdir(file_dialog.getPath()): if file.endswith('.txt') and not file.startswith('.'): file_path = os.path.join(file_dialog.getPath(), file) if file_path not in self.selected_files: self.selected_files[file] = file_path item = QStandardItem(file) item.setCheckable(True) self.file_view_model.appendRow(item) elif file_dialog.getPath() not in self.selected_files: self.selected_files[file_dialog.getFilename()[1] ] = file_dialog.getPath() item = QStandardItem(file_dialog.getFilename()[1]) item.setCheckable(True) self.file_view_model.appendRow(item) def removeFiles(self): for i in range(self.file_view_model.rowCount() - 1, -1, -1): if self.file_view_model.item(i).checkState(): filename = self.file_view_model.item(i).text() del self.selected_files[filename] self.file_view_model.removeRow(i) def run(self): if not (self.pronoun_checkbox.isChecked() or self.lexical_checkbox. isChecked() or self.rule_based_checkbox.isChecked() or self. machine_learning_checkbox.isChecked()): message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle('Missing Parameters') message_box.setText( "You haven't selected any methods of sentiment analysis. Please select at least one " + 'method from the list of options.') message_box.exec_() return if self.input_output_box.currentIndex() == 2: message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle('Select Input') message_box.setText( 'You must be on the "Select Files" page or the "Manual Input" page to run ' + 'an analysis. Please select one of those pages and try again.') message_box.exec_() return else: progress_bar = QtWidgets.QProgressDialog( 'Running Sentiment Analysis...', 'Cancel', 0, 100, self. main_window) progress_bar.setValue(0) progress_bar.setCancelButton(None) progress_bar.setWindowModality(QtCore.Qt.WindowModal) progress_bar.resize(400, 50) progress_bar.show() if self.input_output_box.currentIndex() == 0: sentiment_analyzer = SentimentAnalyzer(self.selected_files, progress_bar, pronoun=self.pronoun_checkbox.isChecked(), lexical=self.lexical_checkbox.isChecked(), rule_based= self.rule_based_checkbox.isChecked(), machine_learning= self.machine_learning_checkbox.isChecked()) else: sentiment_analyzer = SentimentAnalyzer(self.text_input. toPlainText(), progress_bar, pronoun=self. pronoun_checkbox.isChecked(), lexical=self. lexical_checkbox.isChecked(), rule_based=self. rule_based_checkbox.isChecked(), machine_learning=self. machine_learning_checkbox.isChecked()) results = sentiment_analyzer.runAnalyses() progress_bar.close() if results: self.results_content_text.setText(results) self.input_output_box.setTabEnabled(2, True) self.input_output_box.setCurrentIndex(2) else: message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle('Missing Input') message_box.setText( "You haven't added any input to analyze. Please select one or more files or " + 'input some data manually.') message_box.exec_() return
import os from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtGui import QStandardItem, QStandardItemModel from PyQt5.QtWidgets import QMessageBox from src import FileDialog, SentimentAnalyzer class UIMainWindow(object): def __init__(self): font = QtGui.QFont() font.setFamily('Myriad Pro') font.setPointSize(14) self.main_window = QtWidgets.QWidget() self.main_window.setFont(font) self.main_window.setObjectName('main_window') self.main_window.setWindowModality(QtCore.Qt.WindowModal) self.main_window.resize(450, 460) size_policy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) size_policy.setHorizontalStretch(0) size_policy.setVerticalStretch(0) size_policy.setHeightForWidth(self.main_window.sizePolicy(). hasHeightForWidth()) self.main_window.setSizePolicy(size_policy) self.main_window.setMinimumSize(QtCore.QSize(450, 460)) self.main_window.setMaximumSize(QtCore.QSize(450, 460)) self.main_window.setBaseSize(QtCore.QSize(450, 460)) self.branding_icon = QtWidgets.QLabel(self.main_window) self.branding_icon.setGeometry(QtCore.QRect(20, 5, 90, 90)) self.branding_icon.setText('') self.branding_icon.setPixmap(QtGui.QPixmap( '../images/senticompare_logo.png')) self.branding_icon.setAlignment(QtCore.Qt.AlignJustify | QtCore.Qt. AlignVCenter) self.branding_icon.setObjectName('branding_icon') self.branding_label = QtWidgets.QLabel(self.main_window) self.branding_label.setGeometry(QtCore.QRect(110, 5, 330, 90)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(81, 108, 146)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(81, 108, 146)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) self.branding_label.setPalette(palette) font = QtGui.QFont() font.setFamily('Optima') font.setPointSize(50) self.branding_label.setFont(font) self.branding_label.setObjectName('branding_label') self.horizontal_layout_widget_1 = QtWidgets.QWidget(self.main_window) self.horizontal_layout_widget_1.setGeometry(QtCore.QRect(10, 410, 430, 50)) self.horizontal_layout_widget_1.setObjectName( 'horizontal_layout_widget_1') self.horizontal_layout_1 = QtWidgets.QHBoxLayout(self. horizontal_layout_widget_1) self.horizontal_layout_1.setContentsMargins(0, 0, 0, 0) self.horizontal_layout_1.setObjectName('horizontal_layout_1') self.run_button = QtWidgets.QPushButton(self.horizontal_layout_widget_1 ) self.run_button.setObjectName('run_button') self.run_button.clicked.connect(self.run) self.horizontal_layout_1.addWidget(self.run_button) self.quit_button = QtWidgets.QPushButton(self. horizontal_layout_widget_1) self.quit_button.setObjectName('quit_button') self.quit_button.clicked.connect(self.main_window.close) self.horizontal_layout_1.addWidget(self.quit_button) self.select_files_tab = QtWidgets.QWidget() self.select_files_tab.setObjectName('select_files_tab') self.horizontal_layout_widget_2 = QtWidgets.QWidget(self. select_files_tab) self.horizontal_layout_widget_2.setGeometry(QtCore.QRect(10, 230, 230, 50)) self.horizontal_layout_widget_2.setObjectName( 'horizontal_layout_widget_2') self.horizontal_layout_2 = QtWidgets.QHBoxLayout(self. horizontal_layout_widget_2) self.horizontal_layout_2.setContentsMargins(0, 0, 0, 0) self.horizontal_layout_2.setObjectName('horizontal_layout_2') font.setFamily('Myriad Pro') font.setPointSize(12) self.input_output_box = QtWidgets.QTabWidget(self.main_window) self.input_output_box.setGeometry(QtCore.QRect(10, 100, 260, 300)) self.input_output_box.setFont(font) self.input_output_box.setCursor(QtGui.QCursor(QtCore.Qt. PointingHandCursor)) self.input_output_box.setTabPosition(QtWidgets.QTabWidget.North) self.input_output_box.setTabShape(QtWidgets.QTabWidget.Rounded) self.input_output_box.setTabsClosable(False) self.input_output_box.setObjectName('input_output_box') self.file_view = QtWidgets.QListView(self.select_files_tab) self.file_view.setGeometry(QtCore.QRect(10, 10, 235, 210)) self.file_view.setObjectName('file_view') self.file_view_model = QStandardItemModel(self.file_view) self.file_view.setModel(self.file_view_model) self.file_view.show() self.input_output_box.addTab(self.select_files_tab, '') self.add_button = QtWidgets.QPushButton(self.horizontal_layout_widget_2 ) self.add_button.setFont(font) self.add_button.setObjectName('add_button') self.add_button.clicked.connect(self.selectFiles) self.horizontal_layout_2.addWidget(self.add_button) self.delete_button = QtWidgets.QPushButton(self. horizontal_layout_widget_2) self.delete_button.setFont(font) self.delete_button.setObjectName('delete_button') self.delete_button.clicked.connect(self.removeFiles) self.horizontal_layout_2.addWidget(self.delete_button) self.manual_input_tab = QtWidgets.QWidget() self.manual_input_tab.setObjectName('manual_input_tab') self.text_input = QtWidgets.QTextEdit(self.manual_input_tab) self.text_input.setGeometry(QtCore.QRect(10, 10, 235, 250)) self.text_input.setObjectName('text_input') self.input_output_box.addTab(self.manual_input_tab, '') self.results_tab = QtWidgets.QWidget() self.results_tab.setObjectName('results_tab') self.results_scroll_box = QtWidgets.QScrollArea(self.results_tab) self.results_scroll_box.setGeometry(QtCore.QRect(10, 10, 235, 250)) self.results_scroll_box.setWidgetResizable(True) self.results_scroll_box.setObjectName('results_scroll_box') self.results_content = QtWidgets.QWidget() self.results_content.setGeometry(QtCore.QRect(0, 0, 230, 250)) self.results_content.setObjectName('results_content') self.results_scroll_box.setWidget(self.results_content) self.results_content_text = QtWidgets.QTextEdit(self.results_content) self.results_content_text.setGeometry(QtCore.QRect(-1, -1, 235, 250)) self.results_content_text.setReadOnly(True) self.results_content_text.setObjectName('results_content_text') self.input_output_box.addTab(self.results_tab, '') self.input_output_box.setTabEnabled(2, False) font.setPointSize(14) self.group_box_1 = QtWidgets.QGroupBox(self.main_window) self.group_box_1.setGeometry(QtCore.QRect(280, 110, 160, 140)) self.group_box_1.setFont(font) self.group_box_1.setTitle('') self.group_box_1.setAlignment(QtCore.Qt.AlignCenter) self.group_box_1.setFlat(False) self.group_box_1.setCheckable(False) self.group_box_1.setObjectName('group_box_1') self.vertical_layout_widget_1 = QtWidgets.QWidget(self.group_box_1) self.vertical_layout_widget_1.setGeometry(QtCore.QRect(9, 0, 141, 141)) self.vertical_layout_widget_1.setObjectName('vertical_layout_widget_1') self.vertical_layout_1 = QtWidgets.QVBoxLayout(self. vertical_layout_widget_1) self.vertical_layout_1.setContentsMargins(0, 0, 0, 0) self.vertical_layout_1.setObjectName('vertical_layout_1') self.pronoun_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.pronoun_checkbox.setFont(font) self.pronoun_checkbox.setObjectName('pronoun_checkbox') self.vertical_layout_1.addWidget(self.pronoun_checkbox) self.lexical_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.lexical_checkbox.setFont(font) self.lexical_checkbox.setObjectName('lexical_checkbox') self.vertical_layout_1.addWidget(self.lexical_checkbox) self.rule_based_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.rule_based_checkbox.setFont(font) self.rule_based_checkbox.setObjectName('rule_based_checkbox') self.vertical_layout_1.addWidget(self.rule_based_checkbox) self.machine_learning_checkbox = QtWidgets.QCheckBox(self. vertical_layout_widget_1) self.machine_learning_checkbox.setFont(font) self.machine_learning_checkbox.setObjectName( 'machine_learning_checkbox') self.vertical_layout_1.addWidget(self.machine_learning_checkbox) self.help_scroll_box = QtWidgets.QScrollArea(self.main_window) self.help_scroll_box.setGeometry(QtCore.QRect(280, 260, 160, 140)) self.help_scroll_box.setFrameShape(QtWidgets.QFrame.StyledPanel) self.help_scroll_box.setFrameShadow(QtWidgets.QFrame.Sunken) self.help_scroll_box.setWidgetResizable(True) self.help_scroll_box.setObjectName('help_scroll_box') self.help_content = QtWidgets.QWidget() self.help_content.setGeometry(QtCore.QRect(0, 0, 158, 138)) self.help_content.setObjectName('help_content') self.help_scroll_box.setWidget(self.help_content) self.selected_files = {} self.input_output_box.setCurrentIndex(0) self.retranslateUI() QtCore.QMetaObject.connectSlotsByName(self.main_window) def retranslateUI(self): _translate = QtCore.QCoreApplication.translate self.main_window.setWindowTitle(_translate('main_window', 'SentiCompare')) self.add_button.setText(_translate('main_window', 'Add')) self.delete_button.setText(_translate('main_window', 'Delete')) self.input_output_box.setTabText(self.input_output_box.indexOf(self .select_files_tab), _translate('main_window', 'Select Files')) self.input_output_box.setTabText(self.input_output_box.indexOf(self .manual_input_tab), _translate('main_window', 'Manual Input')) self.input_output_box.setTabText(self.input_output_box.indexOf(self .results_tab), _translate('main_window', 'Results')) self.run_button.setText(_translate('main_window', 'Run')) self.quit_button.setText(_translate('main_window', 'Quit')) self.pronoun_checkbox.setText(_translate('main_window', 'Pronoun Usage')) self.lexical_checkbox.setText(_translate('main_window', 'Lexical')) self.rule_based_checkbox.setText(_translate('main_window', 'Rule Based')) self.machine_learning_checkbox.setText(_translate('main_window', 'Machine Learning')) self.branding_label.setText(_translate('main_window', 'SentiCompare')) def showWindow(self): self.main_window.show() def selectFiles(self): file_dialog = FileDialog(self.main_window) file_dialog.setFilters(['Text files (*.txt)']) file_dialog.setDefaultFilterIndex = 0 file_dialog.setDefaultDirectory(os.path.expanduser('~')) file_dialog.exec() if file_dialog.getPath() == '': return elif file_dialog.getFilename()[2] == '': for file in os.listdir(file_dialog.getPath()): if file.endswith('.txt') and not file.startswith('.'): file_path = os.path.join(file_dialog.getPath(), file) if file_path not in self.selected_files: self.selected_files[file] = file_path item = QStandardItem(file) item.setCheckable(True) self.file_view_model.appendRow(item) elif file_dialog.getPath() not in self.selected_files: self.selected_files[file_dialog.getFilename()[1] ] = file_dialog.getPath() item = QStandardItem(file_dialog.getFilename()[1]) item.setCheckable(True) self.file_view_model.appendRow(item) def removeFiles(self): for i in range(self.file_view_model.rowCount() - 1, -1, -1): if self.file_view_model.item(i).checkState(): filename = self.file_view_model.item(i).text() del self.selected_files[filename] self.file_view_model.removeRow(i) def run(self): if not (self.pronoun_checkbox.isChecked() or self.lexical_checkbox. isChecked() or self.rule_based_checkbox.isChecked() or self. machine_learning_checkbox.isChecked()): message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle('Missing Parameters') message_box.setText( "You haven't selected any methods of sentiment analysis. Please select at least one " + 'method from the list of options.') message_box.exec_() return if self.input_output_box.currentIndex() == 2: message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle('Select Input') message_box.setText( 'You must be on the "Select Files" page or the "Manual Input" page to run ' + 'an analysis. Please select one of those pages and try again.') message_box.exec_() return else: progress_bar = QtWidgets.QProgressDialog( 'Running Sentiment Analysis...', 'Cancel', 0, 100, self. main_window) progress_bar.setValue(0) progress_bar.setCancelButton(None) progress_bar.setWindowModality(QtCore.Qt.WindowModal) progress_bar.resize(400, 50) progress_bar.show() if self.input_output_box.currentIndex() == 0: sentiment_analyzer = SentimentAnalyzer(self.selected_files, progress_bar, pronoun=self.pronoun_checkbox.isChecked(), lexical=self.lexical_checkbox.isChecked(), rule_based= self.rule_based_checkbox.isChecked(), machine_learning= self.machine_learning_checkbox.isChecked()) else: sentiment_analyzer = SentimentAnalyzer(self.text_input. toPlainText(), progress_bar, pronoun=self. pronoun_checkbox.isChecked(), lexical=self. lexical_checkbox.isChecked(), rule_based=self. rule_based_checkbox.isChecked(), machine_learning=self. machine_learning_checkbox.isChecked()) results = sentiment_analyzer.runAnalyses() progress_bar.close() if results: self.results_content_text.setText(results) self.input_output_box.setTabEnabled(2, True) self.input_output_box.setCurrentIndex(2) else: message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle('Missing Input') message_box.setText( "You haven't added any input to analyze. Please select one or more files or " + 'input some data manually.') message_box.exec_() return
# ================================================== # # MAIN WINDOW # # ================================================== # # Author: Brady Hammond # # Created: 11/21/2017 # # Last Edited: N/A # # Last Edited By: N/A # # ================================================== # #                     FILE SETUP                     # # ================================================== # # Import statements import os from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtGui import QStandardItem, QStandardItemModel from PyQt5.QtWidgets import QMessageBox from src import FileDialog, SentimentAnalyzer # ================================================== # #                 CLASS DEFINITION               # # ================================================== # # UIMainWindow class definition class UIMainWindow(object): # Define __init__ function def __init__(self): # Create main window font = QtGui.QFont() font.setFamily("Myriad Pro") font.setPointSize(14) self.main_window = QtWidgets.QWidget() self.main_window.setFont(font) self.main_window.setObjectName("main_window") self.main_window.setWindowModality(QtCore.Qt.WindowModal) self.main_window.resize(450, 460) size_policy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) size_policy.setHorizontalStretch(0) size_policy.setVerticalStretch(0) size_policy.setHeightForWidth(self.main_window.sizePolicy().hasHeightForWidth()) self.main_window.setSizePolicy(size_policy) self.main_window.setMinimumSize(QtCore.QSize(450, 460)) self.main_window.setMaximumSize(QtCore.QSize(450, 460)) self.main_window.setBaseSize(QtCore.QSize(450, 460)) # Create branding icon self.branding_icon = QtWidgets.QLabel(self.main_window) self.branding_icon.setGeometry(QtCore.QRect(20, 5, 90, 90)) self.branding_icon.setText("") self.branding_icon.setPixmap(QtGui.QPixmap("../images/senticompare_logo.png")) self.branding_icon.setAlignment(QtCore.Qt.AlignJustify | QtCore.Qt.AlignVCenter) self.branding_icon.setObjectName("branding_icon") # Create branding label self.branding_label = QtWidgets.QLabel(self.main_window) self.branding_label.setGeometry(QtCore.QRect(110, 5, 330, 90)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(81, 108, 146)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(81, 108, 146)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) self.branding_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Optima") font.setPointSize(50) self.branding_label.setFont(font) self.branding_label.setObjectName("branding_label") # Create first horizontal layout self.horizontal_layout_widget_1 = QtWidgets.QWidget(self.main_window) self.horizontal_layout_widget_1.setGeometry(QtCore.QRect(10, 410, 430, 50)) self.horizontal_layout_widget_1.setObjectName("horizontal_layout_widget_1") self.horizontal_layout_1 = QtWidgets.QHBoxLayout(self.horizontal_layout_widget_1) self.horizontal_layout_1.setContentsMargins(0, 0, 0, 0) self.horizontal_layout_1.setObjectName("horizontal_layout_1") # Create run button self.run_button = QtWidgets.QPushButton(self.horizontal_layout_widget_1) self.run_button.setObjectName("run_button") self.run_button.clicked.connect(self.run) # Add run button to first horizontal layout self.horizontal_layout_1.addWidget(self.run_button) # Create quit button self.quit_button = QtWidgets.QPushButton(self.horizontal_layout_widget_1) self.quit_button.setObjectName("quit_button") self.quit_button.clicked.connect(self.main_window.close) # Add quit button to first horizontal layout self.horizontal_layout_1.addWidget(self.quit_button) # Create file selection tab self.select_files_tab = QtWidgets.QWidget() self.select_files_tab.setObjectName("select_files_tab") # Create second horizontal layout self.horizontal_layout_widget_2 = QtWidgets.QWidget(self.select_files_tab) self.horizontal_layout_widget_2.setGeometry(QtCore.QRect(10, 230, 230, 50)) self.horizontal_layout_widget_2.setObjectName("horizontal_layout_widget_2") self.horizontal_layout_2 = QtWidgets.QHBoxLayout(self.horizontal_layout_widget_2) self.horizontal_layout_2.setContentsMargins(0, 0, 0, 0) self.horizontal_layout_2.setObjectName("horizontal_layout_2") # Create input/output tab window font.setFamily("Myriad Pro") font.setPointSize(12) self.input_output_box = QtWidgets.QTabWidget(self.main_window) self.input_output_box.setGeometry(QtCore.QRect(10, 100, 260, 300)) self.input_output_box.setFont(font) self.input_output_box.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.input_output_box.setTabPosition(QtWidgets.QTabWidget.North) self.input_output_box.setTabShape(QtWidgets.QTabWidget.Rounded) self.input_output_box.setTabsClosable(False) self.input_output_box.setObjectName("input_output_box") # Create file view self.file_view = QtWidgets.QListView(self.select_files_tab) self.file_view.setGeometry(QtCore.QRect(10, 10, 235, 210)) self.file_view.setObjectName("file_view") # Create file view model self.file_view_model = QStandardItemModel(self.file_view) # Add file view model to file view self.file_view.setModel(self.file_view_model) # Show file view self.file_view.show() # Add file selection tab to input/output tab window self.input_output_box.addTab(self.select_files_tab, "") # Create add button self.add_button = QtWidgets.QPushButton(self.horizontal_layout_widget_2) self.add_button.setFont(font) self.add_button.setObjectName("add_button") self.add_button.clicked.connect(self.selectFiles) # Add add button to second horizontal layout self.horizontal_layout_2.addWidget(self.add_button) # Create delete button self.delete_button = QtWidgets.QPushButton(self.horizontal_layout_widget_2) self.delete_button.setFont(font) self.delete_button.setObjectName("delete_button") self.delete_button.clicked.connect(self.removeFiles) # Add delete button to second horizontal layout self.horizontal_layout_2.addWidget(self.delete_button) # Create manual input tab self.manual_input_tab = QtWidgets.QWidget() self.manual_input_tab.setObjectName("manual_input_tab") # Create text input self.text_input = QtWidgets.QTextEdit(self.manual_input_tab) self.text_input.setGeometry(QtCore.QRect(10, 10, 235, 250)) self.text_input.setObjectName("text_input") # Add text input to manual input tab self.input_output_box.addTab(self.manual_input_tab, "") # Create results tab self.results_tab = QtWidgets.QWidget() self.results_tab.setObjectName("results_tab") # Create results scroll box self.results_scroll_box = QtWidgets.QScrollArea(self.results_tab) self.results_scroll_box.setGeometry(QtCore.QRect(10, 10, 235, 250)) self.results_scroll_box.setWidgetResizable(True) self.results_scroll_box.setObjectName("results_scroll_box") # Create results content self.results_content = QtWidgets.QWidget() self.results_content.setGeometry(QtCore.QRect(0, 0, 230, 250)) self.results_content.setObjectName("results_content") self.results_scroll_box.setWidget(self.results_content) # Create results content text self.results_content_text = QtWidgets.QTextEdit(self.results_content) self.results_content_text.setGeometry(QtCore.QRect(-1, -1, 235, 250)) self.results_content_text.setReadOnly(True) self.results_content_text.setObjectName("results_content_text") # Add results tab to input/output tab window self.input_output_box.addTab(self.results_tab, "") # Disable results tab self.input_output_box.setTabEnabled(2, False) # Create first group box font.setPointSize(14) self.group_box_1 = QtWidgets.QGroupBox(self.main_window) self.group_box_1.setGeometry(QtCore.QRect(280, 110, 160, 140)) self.group_box_1.setFont(font) self.group_box_1.setTitle("") self.group_box_1.setAlignment(QtCore.Qt.AlignCenter) self.group_box_1.setFlat(False) self.group_box_1.setCheckable(False) self.group_box_1.setObjectName("group_box_1") # Create first vertical layout self.vertical_layout_widget_1 = QtWidgets.QWidget(self.group_box_1) self.vertical_layout_widget_1.setGeometry(QtCore.QRect(9, 0, 141, 141)) self.vertical_layout_widget_1.setObjectName("vertical_layout_widget_1") self.vertical_layout_1 = QtWidgets.QVBoxLayout(self.vertical_layout_widget_1) self.vertical_layout_1.setContentsMargins(0, 0, 0, 0) self.vertical_layout_1.setObjectName("vertical_layout_1") # Create pronoun checkbox self.pronoun_checkbox = QtWidgets.QCheckBox(self.vertical_layout_widget_1) self.pronoun_checkbox.setFont(font) self.pronoun_checkbox.setObjectName("pronoun_checkbox") # Add pronoun checkbox to first vertical layout self.vertical_layout_1.addWidget(self.pronoun_checkbox) # Create lexical checkbox self.lexical_checkbox = QtWidgets.QCheckBox(self.vertical_layout_widget_1) self.lexical_checkbox.setFont(font) self.lexical_checkbox.setObjectName("lexical_checkbox") # Add lexical checkbox to first vertical layout self.vertical_layout_1.addWidget(self.lexical_checkbox) # Create rule based checkbox self.rule_based_checkbox = QtWidgets.QCheckBox(self.vertical_layout_widget_1) self.rule_based_checkbox.setFont(font) self.rule_based_checkbox.setObjectName("rule_based_checkbox") # Add rule_based checkbox to first vertical layout self.vertical_layout_1.addWidget(self.rule_based_checkbox) # Create machine learning checkbox self.machine_learning_checkbox = QtWidgets.QCheckBox(self.vertical_layout_widget_1) self.machine_learning_checkbox.setFont(font) self.machine_learning_checkbox.setObjectName("machine_learning_checkbox") # Add machine learning checkbox to first vertical layout self.vertical_layout_1.addWidget(self.machine_learning_checkbox) # Create help scroll box self.help_scroll_box = QtWidgets.QScrollArea(self.main_window) self.help_scroll_box.setGeometry(QtCore.QRect(280, 260, 160, 140)) self.help_scroll_box.setFrameShape(QtWidgets.QFrame.StyledPanel) self.help_scroll_box.setFrameShadow(QtWidgets.QFrame.Sunken) self.help_scroll_box.setWidgetResizable(True) self.help_scroll_box.setObjectName("help_scroll_box") # Create help content self.help_content = QtWidgets.QWidget() self.help_content.setGeometry(QtCore.QRect(0, 0, 158, 138)) self.help_content.setObjectName("help_content") self.help_scroll_box.setWidget(self.help_content) # Create selected files variable self.selected_files = {} # Set current tab self.input_output_box.setCurrentIndex(0) # Retranslate UI self.retranslateUI() # Connect UI slots QtCore.QMetaObject.connectSlotsByName(self.main_window) # ============================================== # # Define retranslateUI function def retranslateUI(self): # Add text to ui elements _translate = QtCore.QCoreApplication.translate self.main_window.setWindowTitle(_translate("main_window", "SentiCompare")) self.add_button.setText(_translate("main_window", "Add")) self.delete_button.setText(_translate("main_window", "Delete")) self.input_output_box.setTabText(self.input_output_box.indexOf(self.select_files_tab), _translate("main_window", "Select Files")) self.input_output_box.setTabText(self.input_output_box.indexOf(self.manual_input_tab), _translate("main_window", "Manual Input")) self.input_output_box.setTabText(self.input_output_box.indexOf(self.results_tab), _translate("main_window", "Results")) self.run_button.setText(_translate("main_window", "Run")) self.quit_button.setText(_translate("main_window", "Quit")) self.pronoun_checkbox.setText(_translate("main_window", "Pronoun Usage")) self.lexical_checkbox.setText(_translate("main_window", "Lexical")) self.rule_based_checkbox.setText(_translate("main_window", "Rule Based")) self.machine_learning_checkbox.setText(_translate("main_window", "Machine Learning")) self.branding_label.setText(_translate("main_window", "SentiCompare")) # ============================================== # # Define showWindow function def showWindow(self): self.main_window.show() # ============================================== # # Define selectFiles function def selectFiles(self): # Create file dialog file_dialog = FileDialog(self.main_window) file_dialog.setFilters(["Text files (*.txt)"]) file_dialog.setDefaultFilterIndex = 0 file_dialog.setDefaultDirectory(os.path.expanduser('~')) file_dialog.exec() # Return if nothing was selected if file_dialog.getPath() == '': return # Add files from selected directory to file list elif file_dialog.getFilename()[2] == '': for file in os.listdir(file_dialog.getPath()): if file.endswith('.txt') and not file.startswith('.'): file_path = os.path.join(file_dialog.getPath(), file) if file_path not in self.selected_files: self.selected_files[file] = file_path item = QStandardItem(file) item.setCheckable(True) self.file_view_model.appendRow(item) # Add selected file to list else: if file_dialog.getPath() not in self.selected_files: self.selected_files[file_dialog.getFilename()[1]] = file_dialog.getPath() item = QStandardItem(file_dialog.getFilename()[1]) item.setCheckable(True) self.file_view_model.appendRow(item) # ============================================== # # Define removeFiles function def removeFiles(self): # Remove all checked files for i in range(self.file_view_model.rowCount() - 1, -1, -1): if self.file_view_model.item(i).checkState(): filename = self.file_view_model.item(i).text() del self.selected_files[filename] self.file_view_model.removeRow(i) # ============================================== # # Define run function def run(self): # Check if an analysis method is selected if not (self.pronoun_checkbox.isChecked() or self.lexical_checkbox.isChecked() or self.rule_based_checkbox.isChecked() or self.machine_learning_checkbox.isChecked()): # Create and show an error message message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle("Missing Parameters") message_box.setText("You haven't selected any methods of sentiment analysis. Please select at least one " + "method from the list of options.") message_box.exec_() return # Check if the current tab is valid if self.input_output_box.currentIndex() == 2: # Create and show error message message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle("Select Input") message_box.setText("You must be on the \"Select Files\" page or the \"Manual Input\" page to run " + "an analysis. Please select one of those pages and try again.") message_box.exec_() return else: progress_bar = QtWidgets.QProgressDialog("Running Sentiment Analysis...", "Cancel", 0, 100, self.main_window) progress_bar.setValue(0) progress_bar.setCancelButton(None) progress_bar.setWindowModality(QtCore.Qt.WindowModal) progress_bar.resize(400, 50) progress_bar.show() # Analyze selected files if self.input_output_box.currentIndex() == 0: sentiment_analyzer = SentimentAnalyzer(self.selected_files, progress_bar, pronoun=self.pronoun_checkbox.isChecked(), lexical=self.lexical_checkbox.isChecked(), rule_based=self.rule_based_checkbox.isChecked(), machine_learning=self.machine_learning_checkbox.isChecked()) # Analyze manual input else: sentiment_analyzer = SentimentAnalyzer(self.text_input.toPlainText(), progress_bar, pronoun=self.pronoun_checkbox.isChecked(), lexical=self.lexical_checkbox.isChecked(), rule_based=self.rule_based_checkbox.isChecked(), machine_learning=self.machine_learning_checkbox.isChecked()) results = sentiment_analyzer.runAnalyses() progress_bar.close() if results: self.results_content_text.setText(results) self.input_output_box.setTabEnabled(2, True) self.input_output_box.setCurrentIndex(2) else: message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle("Missing Input") message_box.setText("You haven't added any input to analyze. Please select one or more files or " + "input some data manually.") message_box.exec_() return # ================================================== # # EOF # # ================================================== #
[ 5, 6, 7, 8, 9 ]
2,458
9a40861239268aa62075b77b3ed452f31bb14fac
<mask token> def replay_train(mainDQN: dqn.DQN, targetDQN: dqn.DQN, train_batch: list ) ->float: states = np.vstack([x[0] for x in train_batch]) actions = np.array([x[1] for x in train_batch]) rewards = np.array([x[2] for x in train_batch]) next_states = np.vstack([x[3] for x in train_batch]) done = np.array([x[4] for x in train_batch]) Q_target = rewards + DISCOUNT_RATE * np.max(targetDQN.predict( next_states), axis=1) * ~done X = states y = mainDQN.predict(states) y[np.arange(len(states)), actions] = Q_target return mainDQN.update(X, y) def bot_play(mainDQN: dqn.DQN, env: gym.Env) ->None: state = env.reset() reward_sum = 0 while True: env.render() action = np.argmax(mainDQN.predict(state)) state, reward, done, _ = env.step(action) reward_sum += reward if done: print('\n Total Score : {}'.format(reward_sum)) break def main(): replay_buffer = deque(maxlen=REPLAY_MEMORY) last_100 = deque(maxlen=100) step_list = [] loss_list = [] with tf.Session() as sess: mainDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name='main') targetDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name='target') sess.run(tf.global_variables_initializer()) copy_ops = get_copy_var_ops('main', 'target') sess.run(copy_ops) for episode in range(MAX_EPISODE): e = 1.0 / (episode / 10 + 1) done = False step_count = 0 state = env.reset() loss = 0 while not done: if np.random.rand() < e: action = env.action_space.sample() else: action = np.argmax(mainDQN.predict(state)) next_states, reward, done, _ = env.step(action) if done: reward = -1 replay_buffer.append((state, action, reward, next_states, done) ) if len(replay_buffer) > BATCH_SIZE: minibatch = random.sample(replay_buffer, BATCH_SIZE) loss, _ = replay_train(mainDQN, targetDQN, minibatch) if step_count % TARGET_UPDATE_FREQUENCY == 0: sess.run(copy_ops) state = next_states step_count += 1 print(' EP : {} | steps : {} | EP loss : {}'.format(episode + 1, step_count, loss), end='\r') step_list.append(step_count) loss_list.append(loss) last_100.append(step_count) if len(last_100) == last_100.maxlen: avg_reward = np.mean(last_100) if avg_reward > 199: print('\n game cleared, avg_reward : {}, episode : {}'. format(avg_reward, episode + 1)) break step_array = np.asarray(step_list) loss_array = np.asarray(loss_list) _, plot = plt.subplots(1, 2) plot[0].plot(step_array) plot[1].plot(loss_array) plt.show() <mask token>
<mask token> def get_copy_var_ops(src_scope_name: str, dest_scope_name: str) ->list: holder = [] src_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope= src_scope_name) dest_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope= dest_scope_name) for src_var, dest_var in zip(src_vars, dest_vars): holder.append(dest_var.assign(src_var.value())) return holder def replay_train(mainDQN: dqn.DQN, targetDQN: dqn.DQN, train_batch: list ) ->float: states = np.vstack([x[0] for x in train_batch]) actions = np.array([x[1] for x in train_batch]) rewards = np.array([x[2] for x in train_batch]) next_states = np.vstack([x[3] for x in train_batch]) done = np.array([x[4] for x in train_batch]) Q_target = rewards + DISCOUNT_RATE * np.max(targetDQN.predict( next_states), axis=1) * ~done X = states y = mainDQN.predict(states) y[np.arange(len(states)), actions] = Q_target return mainDQN.update(X, y) def bot_play(mainDQN: dqn.DQN, env: gym.Env) ->None: state = env.reset() reward_sum = 0 while True: env.render() action = np.argmax(mainDQN.predict(state)) state, reward, done, _ = env.step(action) reward_sum += reward if done: print('\n Total Score : {}'.format(reward_sum)) break def main(): replay_buffer = deque(maxlen=REPLAY_MEMORY) last_100 = deque(maxlen=100) step_list = [] loss_list = [] with tf.Session() as sess: mainDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name='main') targetDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name='target') sess.run(tf.global_variables_initializer()) copy_ops = get_copy_var_ops('main', 'target') sess.run(copy_ops) for episode in range(MAX_EPISODE): e = 1.0 / (episode / 10 + 1) done = False step_count = 0 state = env.reset() loss = 0 while not done: if np.random.rand() < e: action = env.action_space.sample() else: action = np.argmax(mainDQN.predict(state)) next_states, reward, done, _ = env.step(action) if done: reward = -1 replay_buffer.append((state, action, reward, next_states, done) ) if len(replay_buffer) > BATCH_SIZE: minibatch = random.sample(replay_buffer, BATCH_SIZE) loss, _ = replay_train(mainDQN, targetDQN, minibatch) if step_count % TARGET_UPDATE_FREQUENCY == 0: sess.run(copy_ops) state = next_states step_count += 1 print(' EP : {} | steps : {} | EP loss : {}'.format(episode + 1, step_count, loss), end='\r') step_list.append(step_count) loss_list.append(loss) last_100.append(step_count) if len(last_100) == last_100.maxlen: avg_reward = np.mean(last_100) if avg_reward > 199: print('\n game cleared, avg_reward : {}, episode : {}'. format(avg_reward, episode + 1)) break step_array = np.asarray(step_list) loss_array = np.asarray(loss_list) _, plot = plt.subplots(1, 2) plot[0].plot(step_array) plot[1].plot(loss_array) plt.show() if __name__ == '__main__': main()
<mask token> env = gym.make('CartPole-v0') INPUT_SIZE = env.observation_space.shape[0] OUTPUT_SIZE = env.action_space.n DISCOUNT_RATE = 0.9 REPLAY_MEMORY = 50000 BATCH_SIZE = 64 TARGET_UPDATE_FREQUENCY = 5 MAX_EPISODE = 1000 def get_copy_var_ops(src_scope_name: str, dest_scope_name: str) ->list: holder = [] src_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope= src_scope_name) dest_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope= dest_scope_name) for src_var, dest_var in zip(src_vars, dest_vars): holder.append(dest_var.assign(src_var.value())) return holder def replay_train(mainDQN: dqn.DQN, targetDQN: dqn.DQN, train_batch: list ) ->float: states = np.vstack([x[0] for x in train_batch]) actions = np.array([x[1] for x in train_batch]) rewards = np.array([x[2] for x in train_batch]) next_states = np.vstack([x[3] for x in train_batch]) done = np.array([x[4] for x in train_batch]) Q_target = rewards + DISCOUNT_RATE * np.max(targetDQN.predict( next_states), axis=1) * ~done X = states y = mainDQN.predict(states) y[np.arange(len(states)), actions] = Q_target return mainDQN.update(X, y) def bot_play(mainDQN: dqn.DQN, env: gym.Env) ->None: state = env.reset() reward_sum = 0 while True: env.render() action = np.argmax(mainDQN.predict(state)) state, reward, done, _ = env.step(action) reward_sum += reward if done: print('\n Total Score : {}'.format(reward_sum)) break def main(): replay_buffer = deque(maxlen=REPLAY_MEMORY) last_100 = deque(maxlen=100) step_list = [] loss_list = [] with tf.Session() as sess: mainDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name='main') targetDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name='target') sess.run(tf.global_variables_initializer()) copy_ops = get_copy_var_ops('main', 'target') sess.run(copy_ops) for episode in range(MAX_EPISODE): e = 1.0 / (episode / 10 + 1) done = False step_count = 0 state = env.reset() loss = 0 while not done: if np.random.rand() < e: action = env.action_space.sample() else: action = np.argmax(mainDQN.predict(state)) next_states, reward, done, _ = env.step(action) if done: reward = -1 replay_buffer.append((state, action, reward, next_states, done) ) if len(replay_buffer) > BATCH_SIZE: minibatch = random.sample(replay_buffer, BATCH_SIZE) loss, _ = replay_train(mainDQN, targetDQN, minibatch) if step_count % TARGET_UPDATE_FREQUENCY == 0: sess.run(copy_ops) state = next_states step_count += 1 print(' EP : {} | steps : {} | EP loss : {}'.format(episode + 1, step_count, loss), end='\r') step_list.append(step_count) loss_list.append(loss) last_100.append(step_count) if len(last_100) == last_100.maxlen: avg_reward = np.mean(last_100) if avg_reward > 199: print('\n game cleared, avg_reward : {}, episode : {}'. format(avg_reward, episode + 1)) break step_array = np.asarray(step_list) loss_array = np.asarray(loss_list) _, plot = plt.subplots(1, 2) plot[0].plot(step_array) plot[1].plot(loss_array) plt.show() if __name__ == '__main__': main()
<mask token> import numpy as np import tensorflow as tf from collections import deque import random import dqn import gym import matplotlib.pyplot as plt env = gym.make('CartPole-v0') INPUT_SIZE = env.observation_space.shape[0] OUTPUT_SIZE = env.action_space.n DISCOUNT_RATE = 0.9 REPLAY_MEMORY = 50000 BATCH_SIZE = 64 TARGET_UPDATE_FREQUENCY = 5 MAX_EPISODE = 1000 def get_copy_var_ops(src_scope_name: str, dest_scope_name: str) ->list: holder = [] src_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope= src_scope_name) dest_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope= dest_scope_name) for src_var, dest_var in zip(src_vars, dest_vars): holder.append(dest_var.assign(src_var.value())) return holder def replay_train(mainDQN: dqn.DQN, targetDQN: dqn.DQN, train_batch: list ) ->float: states = np.vstack([x[0] for x in train_batch]) actions = np.array([x[1] for x in train_batch]) rewards = np.array([x[2] for x in train_batch]) next_states = np.vstack([x[3] for x in train_batch]) done = np.array([x[4] for x in train_batch]) Q_target = rewards + DISCOUNT_RATE * np.max(targetDQN.predict( next_states), axis=1) * ~done X = states y = mainDQN.predict(states) y[np.arange(len(states)), actions] = Q_target return mainDQN.update(X, y) def bot_play(mainDQN: dqn.DQN, env: gym.Env) ->None: state = env.reset() reward_sum = 0 while True: env.render() action = np.argmax(mainDQN.predict(state)) state, reward, done, _ = env.step(action) reward_sum += reward if done: print('\n Total Score : {}'.format(reward_sum)) break def main(): replay_buffer = deque(maxlen=REPLAY_MEMORY) last_100 = deque(maxlen=100) step_list = [] loss_list = [] with tf.Session() as sess: mainDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name='main') targetDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name='target') sess.run(tf.global_variables_initializer()) copy_ops = get_copy_var_ops('main', 'target') sess.run(copy_ops) for episode in range(MAX_EPISODE): e = 1.0 / (episode / 10 + 1) done = False step_count = 0 state = env.reset() loss = 0 while not done: if np.random.rand() < e: action = env.action_space.sample() else: action = np.argmax(mainDQN.predict(state)) next_states, reward, done, _ = env.step(action) if done: reward = -1 replay_buffer.append((state, action, reward, next_states, done) ) if len(replay_buffer) > BATCH_SIZE: minibatch = random.sample(replay_buffer, BATCH_SIZE) loss, _ = replay_train(mainDQN, targetDQN, minibatch) if step_count % TARGET_UPDATE_FREQUENCY == 0: sess.run(copy_ops) state = next_states step_count += 1 print(' EP : {} | steps : {} | EP loss : {}'.format(episode + 1, step_count, loss), end='\r') step_list.append(step_count) loss_list.append(loss) last_100.append(step_count) if len(last_100) == last_100.maxlen: avg_reward = np.mean(last_100) if avg_reward > 199: print('\n game cleared, avg_reward : {}, episode : {}'. format(avg_reward, episode + 1)) break step_array = np.asarray(step_list) loss_array = np.asarray(loss_list) _, plot = plt.subplots(1, 2) plot[0].plot(step_array) plot[1].plot(loss_array) plt.show() if __name__ == '__main__': main()
""" openAI gym 'cart pole-v0' """ import numpy as np import tensorflow as tf from collections import deque import random import dqn import gym import matplotlib.pyplot as plt # define environment env = gym.make('CartPole-v0') # define parameters INPUT_SIZE = env.observation_space.shape[0] OUTPUT_SIZE = env.action_space.n # DISCOUNT_RATE : y = (1-dr)x + dr(r+f(x+1)) # REPLAY_MEMORY : memory size # BATCH_SIZE : BATCH- training # TARGET_UPDATE_FREQUENCY : targetW <- mainW each n # MAX_EPISODE : n of trainning epoch DISCOUNT_RATE = 0.9 REPLAY_MEMORY = 50000 BATCH_SIZE = 64 TARGET_UPDATE_FREQUENCY = 5 MAX_EPISODE = 1000 # copy targetW from mainW values def get_copy_var_ops(src_scope_name:str, dest_scope_name:str)->list: holder = [] src_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope = src_scope_name) dest_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope = dest_scope_name) for src_var, dest_var in zip(src_vars, dest_vars): holder.append(dest_var.assign(src_var.value())) return holder def replay_train(mainDQN:dqn.DQN, targetDQN:dqn.DQN, train_batch:list)->float: states = np.vstack([x[0] for x in train_batch]) actions = np.array([x[1] for x in train_batch]) rewards = np.array([x[2] for x in train_batch]) next_states = np.vstack([x[3] for x in train_batch]) done = np.array([x[4] for x in train_batch]) Q_target = rewards + DISCOUNT_RATE*np.max(targetDQN.predict(next_states), axis=1)*~done X = states y = mainDQN.predict(states) y[np.arange(len(states)), actions] = Q_target return mainDQN.update(X,y) def bot_play(mainDQN:dqn.DQN, env:gym.Env)->None: state = env.reset() reward_sum = 0 while True: env.render() action = np.argmax(mainDQN.predict(state)) state, reward, done, _ = env.step(action) reward_sum += reward if done: print("\n Total Score : {}".format(reward_sum)) break def main(): replay_buffer = deque(maxlen=REPLAY_MEMORY) last_100 = deque(maxlen=100) step_list = [] loss_list = [] with tf.Session() as sess: mainDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name="main") targetDQN = dqn.DQN(sess, INPUT_SIZE, OUTPUT_SIZE, name="target") sess.run(tf.global_variables_initializer()) copy_ops = get_copy_var_ops("main","target") sess.run(copy_ops) for episode in range(MAX_EPISODE): e = 1./ ((episode/10)+1) done = False step_count = 0 state = env.reset() loss = 0 while not done: if np.random.rand() < e: action = env.action_space.sample() else: action = np.argmax(mainDQN.predict(state)) next_states, reward, done, _ = env.step(action) if done: reward = -1 replay_buffer.append((state, action, reward, next_states, done)) if len(replay_buffer) > BATCH_SIZE: minibatch = random.sample(replay_buffer, BATCH_SIZE) loss, _ = replay_train(mainDQN, targetDQN, minibatch) if step_count % TARGET_UPDATE_FREQUENCY == 0: sess.run(copy_ops) state = next_states step_count += 1 print(" EP : {} | steps : {} | EP loss : {}".format(episode+1, step_count, loss), end="\r") step_list.append(step_count) loss_list.append(loss) last_100.append(step_count) if len(last_100) == last_100.maxlen: avg_reward = np.mean(last_100) if avg_reward>199: print("\n game cleared, avg_reward : {}, episode : {}".format(avg_reward, episode+1)) break step_array = np.asarray(step_list) loss_array = np.asarray(loss_list) _, plot = plt.subplots(1,2) plot[0].plot(step_array) plot[1].plot(loss_array) plt.show() if __name__ == "__main__": main()
[ 3, 5, 6, 7, 8 ]
2,459
dcda8f26a06145579a9be6e5fbfdaed83d4908da
<mask token> class TrieNode(object): def __init__(self, char: str): self.char = char self.children = [] self.word_finished = False self.counter = 1 self.OccurrenceList = {} <mask token> def insert(root, word: str, document): node = root for char in word: found_in_child = False for child in node.children: if child.char == char: child.counter += 1 node = child found_in_child = True break if not found_in_child: new_node = TrieNode(char) node.children.append(new_node) node = new_node node.word_finished = True if document not in node.OccurrenceList: node.OccurrenceList[document] = 1 node.OccurrenceList[document] = node.OccurrenceList[document] + 1 def find_prefix(root, prefix: str) ->Tuple[bool, int]: node = root if not root.children: return False, 0 for char in prefix: char_not_found = True for child in node.children: if child.char == char: char_not_found = False node = child break if char_not_found: print('Word Not Found: ' + prefix) else: print('Word Found: ' + prefix) return True, node.OccurrenceList <mask token>
<mask token> class TrieNode(object): def __init__(self, char: str): self.char = char self.children = [] self.word_finished = False self.counter = 1 self.OccurrenceList = {} <mask token> def insert(root, word: str, document): node = root for char in word: found_in_child = False for child in node.children: if child.char == char: child.counter += 1 node = child found_in_child = True break if not found_in_child: new_node = TrieNode(char) node.children.append(new_node) node = new_node node.word_finished = True if document not in node.OccurrenceList: node.OccurrenceList[document] = 1 node.OccurrenceList[document] = node.OccurrenceList[document] + 1 def find_prefix(root, prefix: str) ->Tuple[bool, int]: node = root if not root.children: return False, 0 for char in prefix: char_not_found = True for child in node.children: if child.char == char: char_not_found = False node = child break if char_not_found: print('Word Not Found: ' + prefix) else: print('Word Found: ' + prefix) return True, node.OccurrenceList <mask token> nltk.download('stopwords') nltk.download('punkt') <mask token> stop_words.update(string.punctuation) <mask token> for file in files: fname = file file = open(fdata + str(file), encoding='utf8') soup = BeautifulSoup(file.read(), 'html.parser') [script.extract() for script in soup.findAll('script')] [style.extract() for style in soup.findAll('style')] words = word_tokenize(soup.get_text()) words = [i for i in words if all(j not in string.punctuation for j in i)] for word in words: if word.lower() not in stop_words and len(word) > 2 and word.isdigit( ) == False: try: word = word.lower().strip().encode('ascII') except: a = 1 else: insert(root, word.decode('utf-8'), fname) <mask token> for word in inp: boolw, dic = find_prefix(root, word.lower()) for key in dic: if key not in rank: rank[key] = dic[key] else: rank[key] = rank[key] + dic[key] <mask token> items.sort() items.reverse() if not items: print('No results') else: print('Results : ') for key in items: print(key)
<mask token> class TrieNode(object): def __init__(self, char: str): self.char = char self.children = [] self.word_finished = False self.counter = 1 self.OccurrenceList = {} root = TrieNode('*') def insert(root, word: str, document): node = root for char in word: found_in_child = False for child in node.children: if child.char == char: child.counter += 1 node = child found_in_child = True break if not found_in_child: new_node = TrieNode(char) node.children.append(new_node) node = new_node node.word_finished = True if document not in node.OccurrenceList: node.OccurrenceList[document] = 1 node.OccurrenceList[document] = node.OccurrenceList[document] + 1 def find_prefix(root, prefix: str) ->Tuple[bool, int]: node = root if not root.children: return False, 0 for char in prefix: char_not_found = True for child in node.children: if child.char == char: char_not_found = False node = child break if char_not_found: print('Word Not Found: ' + prefix) else: print('Word Found: ' + prefix) return True, node.OccurrenceList <mask token> nltk.download('stopwords') nltk.download('punkt') <mask token> stop_words = set(stopwords.words('english')) stop_words.update(string.punctuation) <mask token> fdata = './input/' files = os.listdir(fdata) for file in files: fname = file file = open(fdata + str(file), encoding='utf8') soup = BeautifulSoup(file.read(), 'html.parser') [script.extract() for script in soup.findAll('script')] [style.extract() for style in soup.findAll('style')] words = word_tokenize(soup.get_text()) words = [i for i in words if all(j not in string.punctuation for j in i)] for word in words: if word.lower() not in stop_words and len(word) > 2 and word.isdigit( ) == False: try: word = word.lower().strip().encode('ascII') except: a = 1 else: insert(root, word.decode('utf-8'), fname) Enter = input('Please enter what you would like to search for: ') inp = Enter.split(' ') rank = {} for word in inp: boolw, dic = find_prefix(root, word.lower()) for key in dic: if key not in rank: rank[key] = dic[key] else: rank[key] = rank[key] + dic[key] items = [(v, k) for k, v in rank.items()] items.sort() items.reverse() if not items: print('No results') else: print('Results : ') for key in items: print(key)
from typing import Tuple class TrieNode(object): def __init__(self, char: str): self.char = char self.children = [] self.word_finished = False self.counter = 1 self.OccurrenceList = {} root = TrieNode('*') def insert(root, word: str, document): node = root for char in word: found_in_child = False for child in node.children: if child.char == char: child.counter += 1 node = child found_in_child = True break if not found_in_child: new_node = TrieNode(char) node.children.append(new_node) node = new_node node.word_finished = True if document not in node.OccurrenceList: node.OccurrenceList[document] = 1 node.OccurrenceList[document] = node.OccurrenceList[document] + 1 def find_prefix(root, prefix: str) ->Tuple[bool, int]: node = root if not root.children: return False, 0 for char in prefix: char_not_found = True for child in node.children: if child.char == char: char_not_found = False node = child break if char_not_found: print('Word Not Found: ' + prefix) else: print('Word Found: ' + prefix) return True, node.OccurrenceList from bs4 import BeautifulSoup import nltk nltk.download('stopwords') nltk.download('punkt') from nltk.corpus import stopwords from nltk.tokenize import word_tokenize import re import string stop_words = set(stopwords.words('english')) stop_words.update(string.punctuation) import os fdata = './input/' files = os.listdir(fdata) for file in files: fname = file file = open(fdata + str(file), encoding='utf8') soup = BeautifulSoup(file.read(), 'html.parser') [script.extract() for script in soup.findAll('script')] [style.extract() for style in soup.findAll('style')] words = word_tokenize(soup.get_text()) words = [i for i in words if all(j not in string.punctuation for j in i)] for word in words: if word.lower() not in stop_words and len(word) > 2 and word.isdigit( ) == False: try: word = word.lower().strip().encode('ascII') except: a = 1 else: insert(root, word.decode('utf-8'), fname) Enter = input('Please enter what you would like to search for: ') inp = Enter.split(' ') rank = {} for word in inp: boolw, dic = find_prefix(root, word.lower()) for key in dic: if key not in rank: rank[key] = dic[key] else: rank[key] = rank[key] + dic[key] items = [(v, k) for k, v in rank.items()] items.sort() items.reverse() if not items: print('No results') else: print('Results : ') for key in items: print(key)
from typing import Tuple #Creating a trie structure and it's node class TrieNode(object): def __init__(self, char: str): self.char = char self.children = [] #the last character of the word.` self.word_finished = False #counter for this character self.counter = 1 #list of all the occurences of the prefix in the documents self.OccurrenceList={} #Initialize the root of the trie root = TrieNode('*') #Adding a word in the trie structure def insert(root, word: str,document): node = root for char in word: found_in_child = False # Search for the character in the children of the present `node` for child in node.children: if child.char == char: #the char of the word to be inserted is already present in trie; increment the counter of this char child.counter += 1 # move the pointer to the node's child to continue the insertion of the rest of the word node = child found_in_child = True break # this char has never been inserted before, create node and insert it if not found_in_child: new_node = TrieNode(char) node.children.append(new_node) # And then point node to the new child node = new_node # At this point, word is inserted- we mark the end of this word node.word_finished = True if document not in node.OccurrenceList: #If document is not in OccurenceList for that word node.OccurrenceList[document]=1 # Create a new key with document name node.OccurrenceList[document]= node.OccurrenceList[document]+1 # We append the position in the document #Performing the search in our files for the input word, using the trie structure we created above #We will first check for the word's existence, if it exists- return file name and occurence number def find_prefix(root, prefix: str) -> Tuple[bool, int]: node = root #handling the case of an empty trie ie the root node has no children if not root.children: return False, 0 for char in prefix: char_not_found = True # Search through all the children of the node the pointer is pointing to for child in node.children: if child.char == char: #the char of the input word exists in trie char_not_found = False # increment the pointer to go further down the trie to check for the remaining chars in prefix node = child break #letting the user know that the input word of prefix doesn't exist in the trie if char_not_found: print("Word Not Found: " +prefix) #input word found, return the found status, along the files in which it exists else: print("Word Found: " +prefix) return True,node.OccurrenceList #for scrapping words from website from bs4 import BeautifulSoup import nltk nltk.download('stopwords') nltk.download('punkt') from nltk.corpus import stopwords from nltk.tokenize import word_tokenize import re import string stop_words = set(stopwords.words('english')) stop_words.update(string.punctuation) import os #selecting file for scrapping into fdata->files #please change the dircectory to run on your device fdata = r"./input/" files=os.listdir(fdata) #cleaning the text in every every file from punctuations, stop words, digits, words less than length 2 and other symbols for file in files: fname=file #called later, while associating word with the file it exists in for insertion in trie file=open(fdata+str(file), encoding="utf8") soup = BeautifulSoup(file.read(), 'html.parser') #filter the soup [script.extract() for script in soup.findAll('script')] [style.extract() for style in soup.findAll('style')] #gather words from filtered soup words = word_tokenize(soup.get_text()) # remove the words containing punctuation words = [i for i in words if all(j not in string.punctuation for j in i)] #filtering words and cleaning the data to insert in trie for word in words: if word.lower() not in stop_words and len(word) > 2 and word.isdigit() == False: # build compressed trie tree try: # remove the words whcih can't encode to ascII word = word.lower().strip().encode('ascII') except: # print word a = 1 else: #inserting words into tree insert(root, word.decode("utf-8"), fname) # Asking the user for input word that we search Enter = input("Please enter what you would like to search for: ") #In case if multiple word search inp = Enter.split(' ') rank = {} #searching for each word of the input for word in inp: #search in trie, store the result in dic boolw,dic = find_prefix(root, word.lower()) #ranking the files in which the word was present for key in dic: if key not in rank: rank[key] = dic[key] else: rank[key] = rank[key] + dic[key] #ranking website based on number of time word present - sort them in acsending order and reversing them so we display # the websites in order of relevance items=[(v,k) for k,v in rank.items()] items.sort() items.reverse() #displaying search results if not items: print("No results") else: print("Results : ") #printing all the files the input was found in, in order of maximum occurences for key in items: print(key)
[ 4, 5, 6, 7, 8 ]
2,460
8afaa69d3a20c5e39e6321869f25dbd9020a5b3a
<mask token>
<mask token> c.execute(q) <mask token> c.execute(q) <mask token> c.execute(q) conn.commit()
<mask token> conn = sqlite3.connect('blog.db') c = conn.cursor() q = 'CREATE TABLE users(Username text, Password text, UserID integer)' c.execute(q) q = ( 'CREATE TABLE blogs(Title text, Content text, BlogID integer, UserID integer)' ) c.execute(q) q = ( 'CREATE TABLE comments(Content text, CommentID integer, BlogID integer, UserID integer)' ) c.execute(q) conn.commit()
import sqlite3 conn = sqlite3.connect('blog.db') c = conn.cursor() q = 'CREATE TABLE users(Username text, Password text, UserID integer)' c.execute(q) q = ( 'CREATE TABLE blogs(Title text, Content text, BlogID integer, UserID integer)' ) c.execute(q) q = ( 'CREATE TABLE comments(Content text, CommentID integer, BlogID integer, UserID integer)' ) c.execute(q) conn.commit()
import sqlite3 conn = sqlite3.connect("blog.db") c = conn.cursor() q = "CREATE TABLE users(Username text, Password text, UserID integer)" c.execute(q) q = "CREATE TABLE blogs(Title text, Content text, BlogID integer, UserID integer)" c.execute(q) q = "CREATE TABLE comments(Content text, CommentID integer, BlogID integer, UserID integer)" c.execute(q) conn.commit()
[ 0, 1, 2, 3, 4 ]
2,461
e5a698979bc84fe733a9bf5cd51e2f078956d468
<mask token> class LoginRegistrationAction(LoginRegistration): def check_welcome_xunyou(self): return self.welcome_xunyou().text def click_welcome_xunyou(self): self.welcome_xunyou().click() return self def logged_in_random(self): self.phone_id().send_keys('1831111{}'.format(random.randint(1000, 9999))) return self def logged_in_appoint(self): self.phone_id().send_keys(str(random.sample(public_number_vip, 1))) return self def logged_in_not_vip_appoint(self): self.phone_id().send_keys(str(random.sample(public_number_not_vip, 1))) return self def logged_in_appoint_183(self): self.phone_id().send_keys('18333334444') return self def click_verification_code(self): self.verification_code().click() return VerificationCodeAction(self._driver) def check_verification_code_enabled(self): return self.verification_code().is_enabled() def write_in_error_quantity(self): self.phone_id().send_keys('1399999219392s我!3') return self def number_quantity(self): return len(self.phone_id().text) def click_privacy_agreement(self): self.privacy_agreement().click() return self def click_service_agreement(self): self.service_agreement().click() return self def click_exit_privacy_agreement(self): self.exit_privacy_agreement().click() return self def click_exit_service_agreement(self): self.exit_service_agreement().click() return self def check_keyboard_Delete(self): return self.keyboard_Delete().text <mask token> def click_exit_logged_in(self): self.exit_logged_in().click() from page.test_accelerate_page import AccelerateHomeAction return AccelerateHomeAction(self._driver) def click_default_area_code(self): self.default_area_code().click() return self <mask token> def click_switch_area_code(self): self.switch_area_code().click() return self def check_switch_area_code(self): return self.switch_area_code().text def check_memory_logged_in_number(self): return self.memory_logged_in_number().text
<mask token> class LoginRegistrationAction(LoginRegistration): def check_welcome_xunyou(self): return self.welcome_xunyou().text def click_welcome_xunyou(self): self.welcome_xunyou().click() return self def logged_in_random(self): self.phone_id().send_keys('1831111{}'.format(random.randint(1000, 9999))) return self def logged_in_appoint(self): self.phone_id().send_keys(str(random.sample(public_number_vip, 1))) return self def logged_in_not_vip_appoint(self): self.phone_id().send_keys(str(random.sample(public_number_not_vip, 1))) return self def logged_in_appoint_183(self): self.phone_id().send_keys('18333334444') return self def click_verification_code(self): self.verification_code().click() return VerificationCodeAction(self._driver) def check_verification_code_enabled(self): return self.verification_code().is_enabled() def write_in_error_quantity(self): self.phone_id().send_keys('1399999219392s我!3') return self def number_quantity(self): return len(self.phone_id().text) def click_privacy_agreement(self): self.privacy_agreement().click() return self def click_service_agreement(self): self.service_agreement().click() return self def click_exit_privacy_agreement(self): self.exit_privacy_agreement().click() return self def click_exit_service_agreement(self): self.exit_service_agreement().click() return self def check_keyboard_Delete(self): return self.keyboard_Delete().text <mask token> def click_exit_logged_in(self): self.exit_logged_in().click() from page.test_accelerate_page import AccelerateHomeAction return AccelerateHomeAction(self._driver) def click_default_area_code(self): self.default_area_code().click() return self def click_exit_area_code(self): self.exit_area_code().click() return self def click_switch_area_code(self): self.switch_area_code().click() return self def check_switch_area_code(self): return self.switch_area_code().text def check_memory_logged_in_number(self): return self.memory_logged_in_number().text
<mask token> class LoginRegistrationAction(LoginRegistration): def check_welcome_xunyou(self): return self.welcome_xunyou().text def click_welcome_xunyou(self): self.welcome_xunyou().click() return self def logged_in_random(self): self.phone_id().send_keys('1831111{}'.format(random.randint(1000, 9999))) return self def logged_in_appoint(self): self.phone_id().send_keys(str(random.sample(public_number_vip, 1))) return self def logged_in_not_vip_appoint(self): self.phone_id().send_keys(str(random.sample(public_number_not_vip, 1))) return self def logged_in_appoint_183(self): self.phone_id().send_keys('18333334444') return self def click_verification_code(self): self.verification_code().click() return VerificationCodeAction(self._driver) def check_verification_code_enabled(self): return self.verification_code().is_enabled() def write_in_error_quantity(self): self.phone_id().send_keys('1399999219392s我!3') return self def number_quantity(self): return len(self.phone_id().text) def click_privacy_agreement(self): self.privacy_agreement().click() return self def click_service_agreement(self): self.service_agreement().click() return self def click_exit_privacy_agreement(self): self.exit_privacy_agreement().click() return self def click_exit_service_agreement(self): self.exit_service_agreement().click() return self def check_keyboard_Delete(self): return self.keyboard_Delete().text def logged_in_assert(self): assert '欢迎登录迅游' in self.check_welcome_xunyou() return self def click_exit_logged_in(self): self.exit_logged_in().click() from page.test_accelerate_page import AccelerateHomeAction return AccelerateHomeAction(self._driver) def click_default_area_code(self): self.default_area_code().click() return self def click_exit_area_code(self): self.exit_area_code().click() return self def click_switch_area_code(self): self.switch_area_code().click() return self def check_switch_area_code(self): return self.switch_area_code().text def check_memory_logged_in_number(self): return self.memory_logged_in_number().text
import random from elment.login_registration_element import LoginRegistration from page.test_verification_code_page import VerificationCodeAction public_number_vip = ['17800000000', '17800000001', '17800000002', '17800000003', '17800000004', '17800000005', '17800000006', '17800000007', '17800000008', '17800000009'] public_number_not_vip = ['18381939440', '18381939441', '18381939445', '18381939446'] class LoginRegistrationAction(LoginRegistration): def check_welcome_xunyou(self): return self.welcome_xunyou().text def click_welcome_xunyou(self): self.welcome_xunyou().click() return self def logged_in_random(self): self.phone_id().send_keys('1831111{}'.format(random.randint(1000, 9999))) return self def logged_in_appoint(self): self.phone_id().send_keys(str(random.sample(public_number_vip, 1))) return self def logged_in_not_vip_appoint(self): self.phone_id().send_keys(str(random.sample(public_number_not_vip, 1))) return self def logged_in_appoint_183(self): self.phone_id().send_keys('18333334444') return self def click_verification_code(self): self.verification_code().click() return VerificationCodeAction(self._driver) def check_verification_code_enabled(self): return self.verification_code().is_enabled() def write_in_error_quantity(self): self.phone_id().send_keys('1399999219392s我!3') return self def number_quantity(self): return len(self.phone_id().text) def click_privacy_agreement(self): self.privacy_agreement().click() return self def click_service_agreement(self): self.service_agreement().click() return self def click_exit_privacy_agreement(self): self.exit_privacy_agreement().click() return self def click_exit_service_agreement(self): self.exit_service_agreement().click() return self def check_keyboard_Delete(self): return self.keyboard_Delete().text def logged_in_assert(self): assert '欢迎登录迅游' in self.check_welcome_xunyou() return self def click_exit_logged_in(self): self.exit_logged_in().click() from page.test_accelerate_page import AccelerateHomeAction return AccelerateHomeAction(self._driver) def click_default_area_code(self): self.default_area_code().click() return self def click_exit_area_code(self): self.exit_area_code().click() return self def click_switch_area_code(self): self.switch_area_code().click() return self def check_switch_area_code(self): return self.switch_area_code().text def check_memory_logged_in_number(self): return self.memory_logged_in_number().text
import random from elment.login_registration_element import LoginRegistration from page.test_verification_code_page import VerificationCodeAction public_number_vip = ['17800000000','17800000001','17800000002','17800000003','17800000004','17800000005','17800000006', '17800000007','17800000008','17800000009'] public_number_not_vip = ['18381939440', '18381939441', '18381939445', '18381939446'] class LoginRegistrationAction(LoginRegistration): # 登录页操作 def check_welcome_xunyou(self): # 欢迎登陆迅游text return self.welcome_xunyou().text def click_welcome_xunyou(self): # 点击欢迎登录迅游(可以将键盘降下去) self.welcome_xunyou().click() return self def logged_in_random(self): # 点击号码栏输入随机账号 self.phone_id().send_keys('1831111{}'.format(random.randint(1000,9999))) return self def logged_in_appoint(self): # 登录随机vip self.phone_id().send_keys(str(random.sample(public_number_vip,1))) return self def logged_in_not_vip_appoint(self): # 登录随机非会员账号 self.phone_id().send_keys(str(random.sample(public_number_not_vip,1))) return self def logged_in_appoint_183(self): # 登录18333334444 self.phone_id().send_keys('18333334444') return self # def check_logged_in_title(self): # 查看更多页已登录账号元素展示 def click_verification_code(self): # 点击获取验证码 self.verification_code().click() return VerificationCodeAction(self._driver) def check_verification_code_enabled(self): # 获取验证码按钮是否可点击 return self.verification_code().is_enabled() def write_in_error_quantity(self): # 输入多位手机号 self.phone_id().send_keys('1399999219392s我!3') return self def number_quantity(self): # 判断手机号位数 return len(self.phone_id().text) def click_privacy_agreement(self): # 点击登录页隐私协议入口 self.privacy_agreement().click() return self def click_service_agreement(self): # 点击登录页服务协议入口 self.service_agreement().click() return self def click_exit_privacy_agreement(self): # 点击隐私协议详情页左上角< self.exit_privacy_agreement().click() return self def click_exit_service_agreement(self): # 点击服务协议详情页左上角< self.exit_service_agreement().click() return self def check_keyboard_Delete(self): # 检查键盘Delete文本,可用来判断键盘是否存在 return self.keyboard_Delete().text def logged_in_assert(self): # 判断是否进入了登录页 assert "欢迎登录迅游" in self.check_welcome_xunyou() return self def click_exit_logged_in(self): # 点击登录页左上角<点击,在加速首页触发的登录,返回加速页 self.exit_logged_in().click() from page.test_accelerate_page import AccelerateHomeAction return AccelerateHomeAction(self._driver) def click_default_area_code(self): # 点击区号按钮 self.default_area_code().click() return self def click_exit_area_code(self): # 点击区号页左上角<,返回登录页 self.exit_area_code().click() return self def click_switch_area_code(self): # 点击区号页面阿富汗区号 self.switch_area_code().click() return self def check_switch_area_code(self): # 查看修改后的区号 return self.switch_area_code().text def check_memory_logged_in_number(self): # 查看账号记忆功能文本 return self.memory_logged_in_number().text
[ 21, 22, 23, 25, 26 ]
2,462
05cfd9d239b63c9b1e0c93a09e89cceb8d8e99e4
<mask token> def get_cachefile(filename): """ Return full path to filename within cache dir. """ if not os.path.exists(cachedir): os.makedirs(cachedir) return os.path.join(cachedir, filename) <mask token> def get_cached_data(name): if name not in _cachedict: load_cachedict(name) return _cachedict[name] def cache_data(name, data): """ Save data to cache under name name: name of datastore data: data to store """ cache_path = get_cachefile('%s.cache' % name) with open(cache_path, 'wb') as f: pickle.dump(data, f) def cached_data_fresh(name, max_age): """ Is data cached at name less than max_age old? name: name of datastore max_age: maximum age of data in seconds returns True if data is less than max_age old, else False """ age = get_cached_data_age(name) if not age: return False return age < max_age def get_cached_data_age(name): """ Return age of data cached at name in seconds or 0 if cache doesn't exist name: name of datastore returns age of datastore in seconds """ cache_path = get_cachefile('%s.cache' % name) if not os.path.exists(cache_path): return 0 return time.time() - os.stat(cache_path).st_mtime def clear_cache(): """ Delete all files in cache directory.""" if os.path.exists(get_cachedir()): for filename in os.listdir(get_cachedir()): if not filename.endswith('.cache'): continue path = os.path.join(get_cachedir(), filename) os.unlink(path) def clear_cachedict(): _cachedict.clear()
<mask token> def get_cachefile(filename): """ Return full path to filename within cache dir. """ if not os.path.exists(cachedir): os.makedirs(cachedir) return os.path.join(cachedir, filename) def load_cachedict(name): cache_path = get_cachefile('%s.cache' % name) if os.path.isfile(cache_path): with open(cache_path, 'rb') as f: _cachedict[name] = pickle.load(f) def get_cached_data(name): if name not in _cachedict: load_cachedict(name) return _cachedict[name] def cache_data(name, data): """ Save data to cache under name name: name of datastore data: data to store """ cache_path = get_cachefile('%s.cache' % name) with open(cache_path, 'wb') as f: pickle.dump(data, f) def cached_data_fresh(name, max_age): """ Is data cached at name less than max_age old? name: name of datastore max_age: maximum age of data in seconds returns True if data is less than max_age old, else False """ age = get_cached_data_age(name) if not age: return False return age < max_age def get_cached_data_age(name): """ Return age of data cached at name in seconds or 0 if cache doesn't exist name: name of datastore returns age of datastore in seconds """ cache_path = get_cachefile('%s.cache' % name) if not os.path.exists(cache_path): return 0 return time.time() - os.stat(cache_path).st_mtime def clear_cache(): """ Delete all files in cache directory.""" if os.path.exists(get_cachedir()): for filename in os.listdir(get_cachedir()): if not filename.endswith('.cache'): continue path = os.path.join(get_cachedir(), filename) os.unlink(path) def clear_cachedict(): _cachedict.clear()
<mask token> try: import cPickle as pickle except: import pickle <mask token> def get_cachefile(filename): """ Return full path to filename within cache dir. """ if not os.path.exists(cachedir): os.makedirs(cachedir) return os.path.join(cachedir, filename) def load_cachedict(name): cache_path = get_cachefile('%s.cache' % name) if os.path.isfile(cache_path): with open(cache_path, 'rb') as f: _cachedict[name] = pickle.load(f) def get_cached_data(name): if name not in _cachedict: load_cachedict(name) return _cachedict[name] def cache_data(name, data): """ Save data to cache under name name: name of datastore data: data to store """ cache_path = get_cachefile('%s.cache' % name) with open(cache_path, 'wb') as f: pickle.dump(data, f) def cached_data_fresh(name, max_age): """ Is data cached at name less than max_age old? name: name of datastore max_age: maximum age of data in seconds returns True if data is less than max_age old, else False """ age = get_cached_data_age(name) if not age: return False return age < max_age def get_cached_data_age(name): """ Return age of data cached at name in seconds or 0 if cache doesn't exist name: name of datastore returns age of datastore in seconds """ cache_path = get_cachefile('%s.cache' % name) if not os.path.exists(cache_path): return 0 return time.time() - os.stat(cache_path).st_mtime def clear_cache(): """ Delete all files in cache directory.""" if os.path.exists(get_cachedir()): for filename in os.listdir(get_cachedir()): if not filename.endswith('.cache'): continue path = os.path.join(get_cachedir(), filename) os.unlink(path) def clear_cachedict(): _cachedict.clear()
import os import time try: import cPickle as pickle except: import pickle cachedir = os.path.expanduser('~/.cache/sherlock/') _cachedict = {} def get_cachefile(filename): """ Return full path to filename within cache dir. """ if not os.path.exists(cachedir): os.makedirs(cachedir) return os.path.join(cachedir, filename) def load_cachedict(name): cache_path = get_cachefile('%s.cache' % name) if os.path.isfile(cache_path): with open(cache_path, 'rb') as f: _cachedict[name] = pickle.load(f) def get_cached_data(name): if name not in _cachedict: load_cachedict(name) return _cachedict[name] def cache_data(name, data): """ Save data to cache under name name: name of datastore data: data to store """ cache_path = get_cachefile('%s.cache' % name) with open(cache_path, 'wb') as f: pickle.dump(data, f) def cached_data_fresh(name, max_age): """ Is data cached at name less than max_age old? name: name of datastore max_age: maximum age of data in seconds returns True if data is less than max_age old, else False """ age = get_cached_data_age(name) if not age: return False return age < max_age def get_cached_data_age(name): """ Return age of data cached at name in seconds or 0 if cache doesn't exist name: name of datastore returns age of datastore in seconds """ cache_path = get_cachefile('%s.cache' % name) if not os.path.exists(cache_path): return 0 return time.time() - os.stat(cache_path).st_mtime def clear_cache(): """ Delete all files in cache directory.""" if os.path.exists(get_cachedir()): for filename in os.listdir(get_cachedir()): if not filename.endswith('.cache'): continue path = os.path.join(get_cachedir(), filename) os.unlink(path) def clear_cachedict(): _cachedict.clear()
import os import time try: import cPickle as pickle except: import pickle #-------------# # Cache utils # #-------------# cachedir = os.path.expanduser('~/.cache/sherlock/') _cachedict = {} def get_cachefile(filename): """ Return full path to filename within cache dir. """ if not os.path.exists(cachedir): os.makedirs(cachedir) return os.path.join(cachedir, filename) def load_cachedict(name): cache_path = get_cachefile('%s.cache' % name) if os.path.isfile(cache_path): with open(cache_path, 'rb') as f: _cachedict[name] = pickle.load(f) def get_cached_data(name): if name not in _cachedict: load_cachedict(name) return _cachedict[name] def cache_data(name, data): """ Save data to cache under name name: name of datastore data: data to store """ cache_path = get_cachefile('%s.cache' % name) with open(cache_path, 'wb') as f: pickle.dump(data, f) def cached_data_fresh(name, max_age): """ Is data cached at name less than max_age old? name: name of datastore max_age: maximum age of data in seconds returns True if data is less than max_age old, else False """ age = get_cached_data_age(name) if not age: return False return age < max_age def get_cached_data_age(name): """ Return age of data cached at name in seconds or 0 if cache doesn't exist name: name of datastore returns age of datastore in seconds """ cache_path = get_cachefile('%s.cache' % name) if not os.path.exists(cache_path): return 0 return time.time() - os.stat(cache_path).st_mtime def clear_cache(): """ Delete all files in cache directory.""" if os.path.exists(get_cachedir()): for filename in os.listdir(get_cachedir()): if not filename.endswith('.cache'): continue path = os.path.join(get_cachedir(), filename) os.unlink(path) def clear_cachedict(): _cachedict.clear()
[ 7, 8, 9, 11, 12 ]
2,463
3f473701b186b5287258ba74e478cccdad0f29bf
<mask token>
<mask token> def corr2d(X, K): """ 定义二维互相关运算函数 :param X:输入数组 :param K: 核数组 :return:二维互相关的运算结果 """ h, w = K.shape Y = tf.Variable(tf.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))) for i in range(Y.shape[0]): for j in range(Y.shape[1]): Y[i, j].assign(tf.cast(tf.reduce_sum(X[i:i + h, j:j + w] * K), dtype=tf.float32)) return Y print('----------验证二维互相关运算的结果--------------') <mask token> print(corr2d(X, K))
<mask token> def corr2d(X, K): """ 定义二维互相关运算函数 :param X:输入数组 :param K: 核数组 :return:二维互相关的运算结果 """ h, w = K.shape Y = tf.Variable(tf.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))) for i in range(Y.shape[0]): for j in range(Y.shape[1]): Y[i, j].assign(tf.cast(tf.reduce_sum(X[i:i + h, j:j + w] * K), dtype=tf.float32)) return Y print('----------验证二维互相关运算的结果--------------') X = tf.constant([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) K = tf.constant([[0, 1], [2, 3]]) <mask token> print(corr2d(X, K))
<mask token> import tensorflow as tf def corr2d(X, K): """ 定义二维互相关运算函数 :param X:输入数组 :param K: 核数组 :return:二维互相关的运算结果 """ h, w = K.shape Y = tf.Variable(tf.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))) for i in range(Y.shape[0]): for j in range(Y.shape[1]): Y[i, j].assign(tf.cast(tf.reduce_sum(X[i:i + h, j:j + w] * K), dtype=tf.float32)) return Y print('----------验证二维互相关运算的结果--------------') X = tf.constant([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) K = tf.constant([[0, 1], [2, 3]]) <mask token> print(corr2d(X, K))
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @File : corr2d.py @Author : jeffsheng @Date : 2020/1/3 @Desc : 卷积层中的互相关(cross-correlation)运算 卷积层需要学习的参数是:卷积核和偏置大小 """ import tensorflow as tf def corr2d(X, K): """ 定义二维互相关运算函数 :param X:输入数组 :param K: 核数组 :return:二维互相关的运算结果 """ h, w = K.shape Y = tf.Variable(tf.zeros((X.shape[0] - h + 1, X.shape[1] - w +1))) for i in range(Y.shape[0]): for j in range(Y.shape[1]): Y[i,j].assign(tf.cast(tf.reduce_sum(X[i:i+h, j:j+w] * K), dtype=tf.float32)) return Y print("----------验证二维互相关运算的结果--------------") X = tf.constant([[0,1,2], [3,4,5], [6,7,8]]) K = tf.constant([[0,1], [2,3]]) """ <tf.Variable 'Variable:0' shape=(2, 2) dtype=float32, numpy= array([[19., 25.], [37., 43.]], dtype=float32)> """ print(corr2d(X, K))
[ 0, 2, 3, 4, 5 ]
2,464
de634c95fddf4591cb15cd0eb20e798043075798
<mask token>
def two_teams(sailors): result = [] temp = [[], []] for i in sailors.items(): if i[1] > 40 or i[1] < 20: temp[0].append(i[0]) else: temp[1].append(i[0]) result.append(sorted(temp[0])) result.append(sorted(temp[1])) return result <mask token>
def two_teams(sailors): result = [] temp = [[], []] for i in sailors.items(): if i[1] > 40 or i[1] < 20: temp[0].append(i[0]) else: temp[1].append(i[0]) result.append(sorted(temp[0])) result.append(sorted(temp[1])) return result if __name__ == '__main__': print('Example:') print(two_teams({'Smith': 34, 'Wesson': 22, 'Coleman': 45, 'Abrahams': 19}) ) print(two_teams({'Fernandes': 18, 'Johnson': 22, 'Kale': 41, 'McCortney': 54})) assert two_teams({'Smith': 34, 'Wesson': 22, 'Coleman': 45, 'Abrahams': 19} ) == [['Abrahams', 'Coleman'], ['Smith', 'Wesson']] assert two_teams({'Fernandes': 18, 'Johnson': 22, 'Kale': 41, 'McCortney': 54}) == [['Fernandes', 'Kale', 'McCortney'], ['Johnson']] print("Coding complete? Click 'Check' to earn cool rewards!")
#Answer to The Ship Teams - https://py.checkio.org/en/mission/the-ship-teams/ def two_teams(sailors): result = [] #To store the result temp = [[],[]] #To store the intermediatary values for i in sailors.items(): #To get the values of dictionary as Tuple if i[1] > 40 or i[1] < 20: #To get the people to be added to the First Ship temp[0].append(i[0]) #Adding each person name to first Temp List else: #To get the people to be added to the Second Ship temp[1].append(i[0]) #Adding each person name to second Temp List result.append(sorted(temp[0])) #Adding all the names of the Ship 1 to resultant result.append(sorted(temp[1])) #Adding all the names of the Ship 2 to resultant return result #Return the result if __name__ == '__main__': print("Example:") print(two_teams({'Smith': 34, 'Wesson': 22, 'Coleman': 45, 'Abrahams': 19})) print(two_teams({'Fernandes': 18, 'Johnson': 22, 'Kale': 41, 'McCortney': 54})) #These "asserts" using only for self-checking and not necessary for auto-testing assert two_teams({ 'Smith': 34, 'Wesson': 22, 'Coleman': 45, 'Abrahams': 19}) == [ ['Abrahams', 'Coleman'], ['Smith', 'Wesson'] ] assert two_teams({ 'Fernandes': 18, 'Johnson': 22, 'Kale': 41, 'McCortney': 54}) == [ ['Fernandes', 'Kale', 'McCortney'], ['Johnson'] ] print("Coding complete? Click 'Check' to earn cool rewards!")
null
[ 0, 1, 2, 3 ]
2,465
3c029adb59cd6db1e3d4a22e6561f5e2ae827d60
<mask token>
def solution(n): arr = [[(0) for _ in range(i + 1)] for i in range(n)] size = n num = 0 x = 0 y = -1 while True: for _ in range(size): num += 1 y += 1 arr[y][x] = num size -= 1 if size == 0: break for _ in range(size): num += 1 x += 1 arr[y][x] = num size -= 1 if size == 0: break for _ in range(size): num += 1 x -= 1 y -= 1 arr[y][x] = num size -= 1 if size == 0: break answer = [] for i in arr: answer.extend(i) return answer
# https://daphne-dev.github.io/2020/09/24/algo-022/ def solution(n): arr = [[0 for _ in range(i+1)] for i in range(n)] # 경우의수 는 3가지 # 1. y축이 증가하면서 수가 증가 # 2. x축이 증가하면서 수가 증가 # 3. y,x축이 감소하면서 수가 증가 size = n num = 0 x = 0 y = -1 while True: # 1번 for _ in range(size): num += 1 y += 1 arr[y][x] = num size-=1 if size == 0: break # 2번 for _ in range(size): num += 1 x += 1 arr[y][x] = num size-=1 if size == 0: break # 3번 for _ in range(size): num += 1 x -= 1 y -= 1 arr[y][x] = num size-=1 if size == 0: break answer = [] for i in arr: answer.extend(i) return answer # print(solution(4))
null
null
[ 0, 1, 2 ]
2,466
6b5399effe73d27eade0381f016cd7819a6e104a
<mask token>
<mask token> cv2.namedWindow('st', cv2.WINDOW_NORMAL) cv2.imshow('st', img) cv2.imwrite('mes.png', img) cv2.waitKey(0) cv2.destroyAllWindows()
<mask token> img = cv2.imread('d:\\st.jpg', 0) cv2.namedWindow('st', cv2.WINDOW_NORMAL) cv2.imshow('st', img) cv2.imwrite('mes.png', img) cv2.waitKey(0) cv2.destroyAllWindows()
import tensorflow as tf import cv2 img = cv2.imread('d:\\st.jpg', 0) cv2.namedWindow('st', cv2.WINDOW_NORMAL) cv2.imshow('st', img) cv2.imwrite('mes.png', img) cv2.waitKey(0) cv2.destroyAllWindows()
import tensorflow as tf import cv2 img=cv2.imread('d:\st.jpg',0) cv2.namedWindow('st',cv2.WINDOW_NORMAL)#可以调整图像窗口大小 cv2.imshow('st',img) cv2.imwrite('mes.png',img) cv2.waitKey(0) cv2.destroyAllWindows()
[ 0, 1, 2, 3, 4 ]
2,467
72f1547ea7de78a5fe4b583523e592fa25c0ee77
<mask token>
<mask token> if button == True: df = pd.read_csv(upload) st.write(df.head()) fig = plt.figure() my = fig.add_subplot(1, 1, 1) my.scatter(df['sepal.length'], df['petal.length']) my.set_xlabel('sepal.length') my.set_ylabel('petal.length') st.write(fig)
<mask token> username = st.text_input('username') upload = st.file_uploader('uploadfile', type=['csv']) button = st.button('submit') if button == True: df = pd.read_csv(upload) st.write(df.head()) fig = plt.figure() my = fig.add_subplot(1, 1, 1) my.scatter(df['sepal.length'], df['petal.length']) my.set_xlabel('sepal.length') my.set_ylabel('petal.length') st.write(fig)
import streamlit as st import pandas as pd import seaborn as sns import matplotlib.pyplot as plt username = st.text_input('username') upload = st.file_uploader('uploadfile', type=['csv']) button = st.button('submit') if button == True: df = pd.read_csv(upload) st.write(df.head()) fig = plt.figure() my = fig.add_subplot(1, 1, 1) my.scatter(df['sepal.length'], df['petal.length']) my.set_xlabel('sepal.length') my.set_ylabel('petal.length') st.write(fig)
import streamlit as st import pandas as pd import seaborn as sns import matplotlib.pyplot as plt username=st.text_input ("username") upload=st.file_uploader("uploadfile",type=['csv']) button=st.button("submit") if button==True: df=pd.read_csv(upload) st.write(df.head()) fig = plt.figure() my = fig.add_subplot(1,1,1) my.scatter(df["sepal.length"],df["petal.length"],) my.set_xlabel("sepal.length") my.set_ylabel("petal.length") st.write(fig)
[ 0, 1, 2, 3, 4 ]
2,468
657866affd653a99eb7d9a9a82b2f7d6503ec21a
from parser import read_expression_line, read_expression_lines, read_assignment_line, read_import_line, Import def test_expression(): lines = ['a % b'] expression, left = read_expression_lines(lines) assert expression is not None and len(left) == 0, left print "test_expression 0: {} {}".format(expression, left) lines = ['[a+b]'] expression, left = read_expression_lines(lines) assert expression is not None print "{} {}".format(expression, left) lines = [ 'get_name({', '"first":"mike",', '"last":"yu"', '}):' ] expression, leftt = read_expression_lines(lines) assert expression is not None print "{} {}".format(expression, left) lines = [ '[a[0]*b[1]]', ] expression, left = read_expression_lines(lines) assert expression is not None print "{} {}".format(expression, left) lines = [ '[a[0]*b[1] - c[2]*d[3],' 'e]', ] expression, left = read_expression_lines(lines) assert expression is not None print "{} {}".format(expression, left) lines = [ '(vector[i] * vector[i])' ] expression, left = read_expression_lines(lines) assert expression is not None print "{} {}".format(expression, left) lines = [ #'if value >= 0 && value < lengths[axis]:' 'value >= 0 && value < lengths[axis]' #'value >= 0 && value < lengths[axis]' #'value < 0' ] expression, left = read_expression_lines(lines) print "test_expression {} {}".format(expression, left) assert expression is not None and len(left) == 0 lines = [ 'assert(matrix == [[1,2,3],[4,5,6]])' ] expression, left = read_expression_lines(lines) print "test_expression assert {} {}".format(expression, left) assert expression is not None and len(left) == 0 def test_assignment(): print "Testing assignments" expression = read_assignment_line('a = 5') assert expression is not None print "{}".format(expression) line = 'text = null' expression = read_assignment_line(line) assert expression is not None print "test assignment 0: {}".format(expression) expression = read_assignment_line('sum += 5') assert expression is not None print "{}".format(expression) expression = read_assignment_line('some[axis] += value') assert expression is not None print "{}".format(expression) expression = read_assignment_line('sum_indices = [indices[0], indices[1], indices[2]]') assert expression is not None print "{}".format(expression) text = 'faces[0][0] = true' expression = read_assignment_line(text) assert expression is not None print "{}\n {}".format(text, expression) text = 'face.arm = true' expression = read_assignment_line(text) assert expression is not None print "test asignment {}\n {}".format(text, expression) text = '(a, b, c) = bob()' expression = read_assignment_line(text) assert expression is not None print "test asignment 2 {}\n {}".format(text, expression) text = 'c = bob(a - 6)' assignment, tokens = read_assignment_line(text) assert assignment is not None and len(tokens) == 0 print "test asignment 3 {}\n {}\n {}".format(text, assignment, tokens) def test_parser(): expression, left = read_import_line("from shared import translate") assert expression is not None assert isinstance(expression, Import) print "test_parser: {}".format(expression) expression, left = read_import_line("from shared import (translate, bob)") assert expression is not None assert isinstance(expression, Import) print "test_parser 2 : {}".format(expression) lines = ['"john"'] expression, left = read_expression_line(lines[0]) assert expression is not None lines = ['a + b'] expression, left = read_expression_line(lines[0]) assert expression is not None lines = ['0'] expression, left = read_expression_line(lines[0]) assert expression is not None lines = ['length(c)'] expression, left = read_expression_line(lines[0]) assert expression is not None lines = ['length(c)[0][1][2]'] expression, left = read_expression_line(lines[0]) assert expression is not None lines = ['(length(c))[0][1][2]'] expression, left = read_expression_line(lines[0]) assert expression is not None print "test parser: {}".format(expression) assert expression is not None lines = ['d[0]'] expression, left = read_expression_line(lines[0]) assert expression is not None lines = ['[e, f]'] expression, left = read_expression_line(lines[0]) assert expression is not None lines = ['[g, str(h)]'] expression, left = read_expression_line(lines[0]) assert expression is not None print "starting dict test 1" lines = ['{"name":"mike"}'] expression, left = read_expression_line(lines[0]) assert expression is not None lines = ['{"first":"alex", "last":"oh"}'] expression, left = read_expression_line(lines[0]) assert expression is not None line = '((position[0] - middleX)/middleX)*width' expression, left = read_expression_line(line) assert expression is not None line = 'keyboard.key_state.bob' expression, left = read_expression_line(line) assert expression is not None print "test parser 3: {}".format(expression) line = 'mouse.button[2]' expression, left = read_expression_line(line) assert expression is not None print "test parser 4: {}".format(expression) line = '{ "position": [0,0,0], "bob": "dole", "nice": "brother" }' expression, left = read_expression_line(line) assert expression is not None print "test parser 5: {}".format(expression) line = 'file_read(join([state.things_dir, "/", state.thing_name]), text)' expression, left = read_expression_line(line) assert expression is not None print "test parser 6: {}".format(expression) if __name__ == '__main__': test_parser() test_expression() test_assignment()
null
null
null
null
[ 0 ]
2,469
08c309645a4ee59716bdd00556096be1c784331a
<mask token> class HandleYaml: <mask token> def __init__(self): with open(YAML_FILE_PATH, 'r') as fs: content = fs.read() self.ya = yaml.load(content, yaml.FullLoader) def get_value(self): return self.ya <mask token>
<mask token> class HandleYaml: """ 处理并封装yaml文件 """ def __init__(self): with open(YAML_FILE_PATH, 'r') as fs: content = fs.read() self.ya = yaml.load(content, yaml.FullLoader) def get_value(self): return self.ya <mask token>
<mask token> class HandleYaml: """ 处理并封装yaml文件 """ def __init__(self): with open(YAML_FILE_PATH, 'r') as fs: content = fs.read() self.ya = yaml.load(content, yaml.FullLoader) def get_value(self): return self.ya <mask token> if __name__ == '__main__': print(desired_caps)
<mask token> class HandleYaml: """ 处理并封装yaml文件 """ def __init__(self): with open(YAML_FILE_PATH, 'r') as fs: content = fs.read() self.ya = yaml.load(content, yaml.FullLoader) def get_value(self): return self.ya desired_caps = HandleYaml().get_value() if __name__ == '__main__': print(desired_caps)
# -*- coding: UTF-8 -*- '''================================================= @Project -> File :AutoMailApp -> handle_yaml @IDE :PyCharm @Author :Mr. wang @Date :2019/11/15 0015 19:53 @Desc : ==================================================''' import yaml from Common.dir_path import YAML_FILE_PATH class HandleYaml(): """ 处理并封装yaml文件 """ def __init__(self): with open(YAML_FILE_PATH, 'r') as fs: content = fs.read() self.ya = yaml.load(content,yaml.FullLoader) def get_value(self): return self.ya desired_caps = HandleYaml().get_value() if __name__=="__main__": print(desired_caps)
[ 3, 4, 5, 6, 8 ]
2,470
a73dcfc21c31d4e984db39c072d11cb9a9c3d5e5
<mask token> class ScheduledEventEntityMetadata(TypedDict): location: str class ScheduledEventSubscriber(TypedDict): guild_scheduled_event_id: Snowflake user: User member: Member | None
<mask token> class ScheduledEvent(TypedDict): id: Snowflake guild_id: Snowflake channel_id: Snowflake creator_id: Snowflake name: str description: str image: str | None scheduled_start_time: str scheduled_end_time: str | None privacy_level: ScheduledEventPrivacyLevel status: ScheduledEventStatus entity_type: ScheduledEventLocationType entity_id: Snowflake entity_metadata: ScheduledEventEntityMetadata creator: User user_count: int | None class ScheduledEventEntityMetadata(TypedDict): location: str class ScheduledEventSubscriber(TypedDict): guild_scheduled_event_id: Snowflake user: User member: Member | None
<mask token> ScheduledEventStatus = Literal[1, 2, 3, 4] ScheduledEventLocationType = Literal[1, 2, 3] ScheduledEventPrivacyLevel = Literal[2] class ScheduledEvent(TypedDict): id: Snowflake guild_id: Snowflake channel_id: Snowflake creator_id: Snowflake name: str description: str image: str | None scheduled_start_time: str scheduled_end_time: str | None privacy_level: ScheduledEventPrivacyLevel status: ScheduledEventStatus entity_type: ScheduledEventLocationType entity_id: Snowflake entity_metadata: ScheduledEventEntityMetadata creator: User user_count: int | None class ScheduledEventEntityMetadata(TypedDict): location: str class ScheduledEventSubscriber(TypedDict): guild_scheduled_event_id: Snowflake user: User member: Member | None
<mask token> from __future__ import annotations from typing import Literal, TypedDict from .member import Member from .snowflake import Snowflake from .user import User ScheduledEventStatus = Literal[1, 2, 3, 4] ScheduledEventLocationType = Literal[1, 2, 3] ScheduledEventPrivacyLevel = Literal[2] class ScheduledEvent(TypedDict): id: Snowflake guild_id: Snowflake channel_id: Snowflake creator_id: Snowflake name: str description: str image: str | None scheduled_start_time: str scheduled_end_time: str | None privacy_level: ScheduledEventPrivacyLevel status: ScheduledEventStatus entity_type: ScheduledEventLocationType entity_id: Snowflake entity_metadata: ScheduledEventEntityMetadata creator: User user_count: int | None class ScheduledEventEntityMetadata(TypedDict): location: str class ScheduledEventSubscriber(TypedDict): guild_scheduled_event_id: Snowflake user: User member: Member | None
""" The MIT License (MIT) Copyright (c) 2021-present Pycord Development Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations from typing import Literal, TypedDict from .member import Member from .snowflake import Snowflake from .user import User ScheduledEventStatus = Literal[1, 2, 3, 4] ScheduledEventLocationType = Literal[1, 2, 3] ScheduledEventPrivacyLevel = Literal[2] class ScheduledEvent(TypedDict): id: Snowflake guild_id: Snowflake channel_id: Snowflake creator_id: Snowflake name: str description: str image: str | None scheduled_start_time: str scheduled_end_time: str | None privacy_level: ScheduledEventPrivacyLevel status: ScheduledEventStatus entity_type: ScheduledEventLocationType entity_id: Snowflake entity_metadata: ScheduledEventEntityMetadata creator: User user_count: int | None class ScheduledEventEntityMetadata(TypedDict): location: str class ScheduledEventSubscriber(TypedDict): guild_scheduled_event_id: Snowflake user: User member: Member | None
[ 2, 3, 4, 5, 6 ]
2,471
ccd1e57518065963158984dda52297db45ce204e
<mask token>
etc_dictionary = {'2 30대': '이삼십대', '20~30대': '이삼십대', '20, 30대': '이십대 삼십대', '1+1': '원플러스원', '3에서 6개월인': '3개월에서 육개월인'} english_dictionary = {'Devsisters': '데브시스터즈', 'track': '트랙', 'LA': '엘에이', 'LG': '엘지', 'KOREA': '코리아', 'JSA': '제이에스에이', 'PGA': '피지에이', 'GA': '지에이', 'idol': '아이돌', 'KTX': '케이티엑스', 'AC': '에이씨', 'DVD': '디비디', 'US': '유에스', 'CNN': '씨엔엔', 'LPGA': '엘피지에이', 'P': '피', 'L': '엘', 'T': '티', 'B': '비', 'C': '씨', 'BIFF': '비아이에프에프', 'GV': '지비', 'IT': '아이티', 'IQ': '아이큐', 'JTBC': '제이티비씨', 'trickle down effect': '트리클 다운 이펙트', 'trickle up effect': '트리클 업 이펙트', 'down': '다운', 'up': '업', 'FCK': '에프씨케이', 'AP': '에이피', 'WHERETHEWILDTHINGSARE': '', 'Rashomon Effect': '', 'O': '오', 'OO': '오오', 'B': '비', 'GDP': '지디피', 'CIPA': '씨아이피에이', 'YS': '와이에스', 'Y': '와이', 'S': '에스', 'JTBC': '제이티비씨', 'PC': '피씨', 'bill': '빌', 'Halmuny': '하모니', 'X': '엑스', 'SNS': '에스엔에스', 'ability': '어빌리티', 'shy': '', 'CCTV': '씨씨티비', 'IT': '아이티', 'the tenth man': '더 텐쓰 맨', 'L': '엘', 'PC': '피씨', 'YSDJJPMB': '', 'Content Attitude Timing': '컨텐트 애티튜드 타이밍', 'CAT': '캣', 'IS': '아이에스', 'SNS': '에스엔에스', 'K': '케이', 'Y': '와이', 'KDI': '케이디아이', 'DOC': '디오씨', 'CIA': '씨아이에이', 'PBS': '피비에스', 'D': '디', 'PPropertyPositionPowerPrisonPS': '에스', 'francisco': '프란시스코', 'I': '아이', 'III': '아이아이', 'No joke': '노 조크', 'BBK': '비비케이', 'LA': '엘에이', 'Don': '', 't worry be happy': ' 워리 비 해피', 'NO': '엔오', 'it was our sky': '잇 워즈 아워 스카이', 'it is our sky': '잇 이즈 아워 스카이', 'NEIS': '엔이아이에스', 'IMF': '아이엠에프', 'apology': '어폴로지', 'humble': '험블', 'M': '엠', 'Nowhere Man': '노웨어 맨', 'The Tenth Man': '더 텐쓰 맨', 'PBS': '피비에스', 'BBC': '비비씨', 'MRJ': '엠알제이', 'CCTV': '씨씨티비', 'Pick me up': '픽 미 업', 'DNA': '디엔에이', 'UN': '유엔', 'STOP': '스탑', 'PRESS': '프레스', 'not to be': '낫 투비', 'Denial': '디나이얼', 'G': '지', 'IMF': '아이엠에프', 'GDP': '지디피', 'JTBC': '제이티비씨', 'Time flies like an arrow': '타임 플라이즈 라이크 언 애로우', 'DDT': '디디티', 'AI': '에이아이', 'Z': '제트', 'OECD': '오이씨디', 'N': '앤', 'A': '에이', 'MB': '엠비', 'EH': '이에이치', 'IS': '아이에스', 'TV': '티비', 'MIT': '엠아이티', 'KBO': '케이비오', 'I love America': '아이 러브 아메리카', 'SF': '에스에프', 'Q': '큐', 'KFX': '케이에프엑스', 'PM': '피엠', 'Prime Minister': '프라임 미니스터', 'Swordline': '스워드라인', 'TBS': '티비에스', 'DDT': '디디티', 'CS': '씨에스', 'Reflecting Absence': '리플렉팅 앱센스', 'PBS': '피비에스', 'Drum being beaten by everyone': '드럼 빙 비튼 바이 에브리원', 'negative pressure': '네거티브 프레셔', 'F': '에프', 'KIA': '기아', 'FTA': '에프티에이', 'Que sais-je': '', 'UFC': '유에프씨', 'P': '피', 'DJ': '디제이', 'Chaebol': '채벌', 'BBC': '비비씨', 'OECD': '오이씨디', 'BC': '삐씨', 'C': '씨', 'B': '씨', 'KY': '케이와이', 'K': '케이', 'CEO': '씨이오', 'YH': '와이에치', 'IS': '아이에스', 'who are you': '후 얼 유', 'Y': '와이', 'The Devils Advocate': '더 데빌즈 어드보카트', 'YS': '와이에스', 'so sorry': '쏘 쏘리', 'Santa': '산타', 'Big Endian': '빅 엔디안', 'Small Endian': '스몰 엔디안', 'Oh Captain My Captain': '오 캡틴 마이 캡틴', 'AIB': '에이아이비', 'K': '케이', 'PBS': '피비에스'}
# coding: utf-8 etc_dictionary = { '2 30대': '이삼십대', '20~30대': '이삼십대', '20, 30대': '이십대 삼십대', '1+1': '원플러스원', '3에서 6개월인': '3개월에서 육개월인', } english_dictionary = { 'Devsisters': '데브시스터즈', 'track': '트랙', # krbook 'LA': '엘에이', 'LG': '엘지', 'KOREA': '코리아', 'JSA': '제이에스에이', 'PGA': '피지에이', 'GA': '지에이', 'idol': '아이돌', 'KTX': '케이티엑스', 'AC': '에이씨', 'DVD': '디비디', 'US': '유에스', 'CNN': '씨엔엔', 'LPGA': '엘피지에이', 'P': '피', 'L': '엘', 'T': '티', 'B': '비', 'C': '씨', 'BIFF': '비아이에프에프', 'GV': '지비', # JTBC 'IT': '아이티', 'IQ': '아이큐', 'JTBC': '제이티비씨', 'trickle down effect': '트리클 다운 이펙트', 'trickle up effect': '트리클 업 이펙트', 'down': '다운', 'up': '업', 'FCK': '에프씨케이', 'AP': '에이피', 'WHERETHEWILDTHINGSARE': '', 'Rashomon Effect': '', 'O': '오', 'OO': '오오', 'B': '비', 'GDP': '지디피', 'CIPA': '씨아이피에이', 'YS': '와이에스', 'Y': '와이', 'S': '에스', 'JTBC': '제이티비씨', 'PC': '피씨', 'bill': '빌', 'Halmuny': '하모니', ##### 'X': '엑스', 'SNS': '에스엔에스', 'ability': '어빌리티', 'shy': '', 'CCTV': '씨씨티비', 'IT': '아이티', 'the tenth man': '더 텐쓰 맨', #### 'L': '엘', 'PC': '피씨', 'YSDJJPMB': '', ######## 'Content Attitude Timing': '컨텐트 애티튜드 타이밍', 'CAT': '캣', 'IS': '아이에스', 'SNS': '에스엔에스', 'K': '케이', 'Y': '와이', 'KDI': '케이디아이', 'DOC': '디오씨', 'CIA': '씨아이에이', 'PBS': '피비에스', 'D': '디', 'PPropertyPositionPowerPrisonP' 'S': '에스', 'francisco': '프란시스코', 'I': '아이', 'III': '아이아이', ###### 'No joke': '노 조크', 'BBK': '비비케이', 'LA': '엘에이', 'Don': '', 't worry be happy': ' 워리 비 해피', 'NO': '엔오', ##### 'it was our sky': '잇 워즈 아워 스카이', 'it is our sky': '잇 이즈 아워 스카이', #### 'NEIS': '엔이아이에스', ##### 'IMF': '아이엠에프', 'apology': '어폴로지', 'humble': '험블', 'M': '엠', 'Nowhere Man': '노웨어 맨', 'The Tenth Man': '더 텐쓰 맨', 'PBS': '피비에스', 'BBC': '비비씨', 'MRJ': '엠알제이', 'CCTV': '씨씨티비', 'Pick me up': '픽 미 업', 'DNA': '디엔에이', 'UN': '유엔', 'STOP': '스탑', ##### 'PRESS': '프레스', ##### 'not to be': '낫 투비', 'Denial': '디나이얼', 'G': '지', 'IMF': '아이엠에프', 'GDP': '지디피', 'JTBC': '제이티비씨', 'Time flies like an arrow': '타임 플라이즈 라이크 언 애로우', 'DDT': '디디티', 'AI': '에이아이', 'Z': '제트', 'OECD': '오이씨디', 'N': '앤', 'A': '에이', 'MB': '엠비', 'EH': '이에이치', 'IS': '아이에스', 'TV': '티비', 'MIT': '엠아이티', 'KBO': '케이비오', 'I love America': '아이 러브 아메리카', 'SF': '에스에프', 'Q': '큐', 'KFX': '케이에프엑스', 'PM': '피엠', 'Prime Minister': '프라임 미니스터', 'Swordline': '스워드라인', 'TBS': '티비에스', 'DDT': '디디티', 'CS': '씨에스', 'Reflecting Absence': '리플렉팅 앱센스', 'PBS': '피비에스', 'Drum being beaten by everyone': '드럼 빙 비튼 바이 에브리원', 'negative pressure': '네거티브 프레셔', 'F': '에프', 'KIA': '기아', 'FTA': '에프티에이', 'Que sais-je': '', 'UFC': '유에프씨', 'P': '피', 'DJ': '디제이', 'Chaebol': '채벌', 'BBC': '비비씨', 'OECD': '오이씨디', 'BC': '삐씨', 'C': '씨', 'B': '씨', 'KY': '케이와이', 'K': '케이', 'CEO': '씨이오', 'YH': '와이에치', 'IS': '아이에스', 'who are you': '후 얼 유', 'Y': '와이', 'The Devils Advocate': '더 데빌즈 어드보카트', 'YS': '와이에스', 'so sorry': '쏘 쏘리', 'Santa': '산타', 'Big Endian': '빅 엔디안', 'Small Endian': '스몰 엔디안', 'Oh Captain My Captain': '오 캡틴 마이 캡틴', 'AIB': '에이아이비', 'K': '케이', 'PBS': '피비에스', }
null
null
[ 0, 1, 2 ]
2,472
ec0697d8d78fafe6bfd4630be2a1fb20eb9eb4cf
<mask token>
<mask token> while True: os.chdir('/home/ec2-user/ML-Processed') print(str(os.getcwd())) for f in os.listdir(os.getcwd()): print('looping in file') file_name, file_ext = os.path.splitext(f) if file_ext == '.jpg': print('working with this file ' + f) print('about to upload ' + str(datetime.datetime.now()) + '\r\n') s3.meta.client.upload_file(f, 'netball-ml-processed', str(sys. argv[1]) + '/' + f) print('Uploaded to S3 ' + str(datetime.datetime.now()) + '\r\n') shutil.move(f, '/home/ec2-user/ML-Processed/shifted_to_s3') print('should of moved the file locally') print('sleeping, ') time.sleep(2)
<mask token> session = boto3.Session(profile_name='default') s3 = boto3.resource('s3') bucket = s3.Bucket('netball-ml-processed') while True: os.chdir('/home/ec2-user/ML-Processed') print(str(os.getcwd())) for f in os.listdir(os.getcwd()): print('looping in file') file_name, file_ext = os.path.splitext(f) if file_ext == '.jpg': print('working with this file ' + f) print('about to upload ' + str(datetime.datetime.now()) + '\r\n') s3.meta.client.upload_file(f, 'netball-ml-processed', str(sys. argv[1]) + '/' + f) print('Uploaded to S3 ' + str(datetime.datetime.now()) + '\r\n') shutil.move(f, '/home/ec2-user/ML-Processed/shifted_to_s3') print('should of moved the file locally') print('sleeping, ') time.sleep(2)
import boto3, os, shutil, datetime, time, sys session = boto3.Session(profile_name='default') s3 = boto3.resource('s3') bucket = s3.Bucket('netball-ml-processed') while True: os.chdir('/home/ec2-user/ML-Processed') print(str(os.getcwd())) for f in os.listdir(os.getcwd()): print('looping in file') file_name, file_ext = os.path.splitext(f) if file_ext == '.jpg': print('working with this file ' + f) print('about to upload ' + str(datetime.datetime.now()) + '\r\n') s3.meta.client.upload_file(f, 'netball-ml-processed', str(sys. argv[1]) + '/' + f) print('Uploaded to S3 ' + str(datetime.datetime.now()) + '\r\n') shutil.move(f, '/home/ec2-user/ML-Processed/shifted_to_s3') print('should of moved the file locally') print('sleeping, ') time.sleep(2)
import boto3, os, shutil, datetime, time, sys session = boto3.Session(profile_name='default') s3 = boto3.resource('s3') bucket = s3.Bucket('netball-ml-processed') #print(bucket.objects) #needs to be run with *** sudo **** otherwise it won't work... while True: #change to the motion working Directory os.chdir('/home/ec2-user/ML-Processed') print (str(os.getcwd())) for f in os.listdir(os.getcwd()): print("looping in file") file_name, file_ext = os.path.splitext(f) #need to check the file starts with 2 (as in the timestamp) and is a .jpg if file_ext == '.jpg': print("working with this file " + f) print("about to upload " + str(datetime.datetime.now()) + "\r\n") # s3.meta.client.upload_file('/Users/andrewhammond/s3_upload.jpg','netball-ml-processing', 's3_upload.jpg') s3.meta.client.upload_file(f, 'netball-ml-processed', str(sys.argv[1]) + "/" + f) print ("Uploaded to S3 " + str(datetime.datetime.now()) + "\r\n") # once pushed to s3 need to shift locally. shutil.move(f, '/home/ec2-user/ML-Processed/shifted_to_s3') print ("should of moved the file locally") print ("sleeping, ") time.sleep(2)
[ 0, 1, 2, 3, 4 ]
2,473
316a34bbc2b3e3c818ef837f51bc1f86863ea59a
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('pancar', '0006_auto_20200526_1058')] operations = [migrations.AlterField(model_name='process', name='price', field=models.DecimalField(decimal_places=1, max_digits=5, null=True))]
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('pancar', '0006_auto_20200526_1058')] operations = [migrations.AlterField(model_name='process', name='price', field=models.DecimalField(decimal_places=1, max_digits=5, null=True))]
# Generated by Django 2.2.6 on 2020-05-27 19:29 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pancar', '0006_auto_20200526_1058'), ] operations = [ migrations.AlterField( model_name='process', name='price', field=models.DecimalField(decimal_places=1, max_digits=5, null=True), ), ]
[ 0, 1, 2, 3, 4 ]
2,474
9cb5573fada7a1529507da1d031f836044c10066
<mask token>
class Solution: <mask token>
class Solution: def longestConsecutive(self, nums) ->int: s = set(nums) answer = 0 for value in s: if value - 1 not in s: j = value while j in s: j = j + 1 answer = max(answer, j - value) return answer
class Solution: def longestConsecutive(self, nums) -> int: s = set(nums) answer = 0 # n = len(s) for value in s: if value - 1 not in s: j = value while (j in s): j = j + 1 answer = max(answer, j - value) return answer
null
[ 0, 1, 2, 3 ]
2,475
43ae01ffe35c6c4491f3f7e480dd6f5c1be86eb2
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('element', '0011_suggestion_suggestion_type'), ('bot', '0001_initial')] operations = [migrations.AddField(model_name='discorduser', name= 'has_elements', field=models.ManyToManyField(to='element.Element'))]
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('element', '0011_suggestion_suggestion_type'), ('bot', '0001_initial')] operations = [migrations.AddField(model_name='discorduser', name= 'has_elements', field=models.ManyToManyField(to='element.Element'))]
# Generated by Django 3.1.1 on 2020-12-02 19:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('element', '0011_suggestion_suggestion_type'), ('bot', '0001_initial'), ] operations = [ migrations.AddField( model_name='discorduser', name='has_elements', field=models.ManyToManyField(to='element.Element'), ), ]
[ 0, 1, 2, 3, 4 ]
2,476
24c1f5195bad17f995fb97a03218fc9bbe5ce4cd
<mask token>
<mask token> def lis(n1, n2): """ Generate and print last 5 element in list. param:n1,n2 """ i = 0 if n1 and n2 <= 20: for x in range(n1, n2 + 1): lis1.append(x * x) lis1.reverse() for y in lis1: if i <= 4: lis2.append(y) i += 1 print(lis2) else: print('Value out of range') <mask token>
<mask token> def lis(n1, n2): """ Generate and print last 5 element in list. param:n1,n2 """ i = 0 if n1 and n2 <= 20: for x in range(n1, n2 + 1): lis1.append(x * x) lis1.reverse() for y in lis1: if i <= 4: lis2.append(y) i += 1 print(lis2) else: print('Value out of range') lis(input_num[0], input_num[1])
<mask token> input_num = input('Write number:') lis1 = [] lis2 = [] def lis(n1, n2): """ Generate and print last 5 element in list. param:n1,n2 """ i = 0 if n1 and n2 <= 20: for x in range(n1, n2 + 1): lis1.append(x * x) lis1.reverse() for y in lis1: if i <= 4: lis2.append(y) i += 1 print(lis2) else: print('Value out of range') lis(input_num[0], input_num[1])
""" Question 39: Define a function which can generate a list where the values are square of numbers between 1 and 20 (both included). Then the function needs to print the last 5 elements in the list. """ #To get a value from console input. input_num = input("Write number:") lis1=[] lis2=[] def lis(n1,n2): """ Generate and print last 5 element in list. param:n1,n2 """ i = 0 if n1 and n2 <= 20: for x in range(n1,n2+1): lis1.append(x*x) lis1.reverse() for y in lis1: if i <=4: lis2.append(y) i +=1 print(lis2) else: print("Value out of range") # Calling function. lis(input_num[0],input_num[1])
[ 0, 1, 2, 3, 4 ]
2,477
671a7ee3fabee6ed8dfafe1bddefb1f94322b0e5
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('articles', '0014_auto_20180726_0926')] operations = [migrations.AlterField(model_name='articles', name= 'cover_url', field=models.URLField(default= 'http://pcgsvdl00.bkt.clouddn.com/default/articles/article_01.jpg', max_length=500, verbose_name='封面图')), migrations.AlterField( model_name='series', name='cover_url', field=models.URLField( default= 'http://pcgsvdl00.bkt.clouddn.com/default/series/series_01.jpg', max_length=500, verbose_name='封面图')), migrations.AlterField( model_name='specialcolumn', name='cover_url', field=models.URLField (default= 'http://pcgsvdl00.bkt.clouddn.com/default/specialColumn/special_01.jpg' , max_length=500, verbose_name='封面图'))]
from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('articles', '0014_auto_20180726_0926')] operations = [migrations.AlterField(model_name='articles', name= 'cover_url', field=models.URLField(default= 'http://pcgsvdl00.bkt.clouddn.com/default/articles/article_01.jpg', max_length=500, verbose_name='封面图')), migrations.AlterField( model_name='series', name='cover_url', field=models.URLField( default= 'http://pcgsvdl00.bkt.clouddn.com/default/series/series_01.jpg', max_length=500, verbose_name='封面图')), migrations.AlterField( model_name='specialcolumn', name='cover_url', field=models.URLField (default= 'http://pcgsvdl00.bkt.clouddn.com/default/specialColumn/special_01.jpg' , max_length=500, verbose_name='封面图'))]
# -*- coding: utf-8 -*- # Generated by Django 1.11.12 on 2018-07-26 19:11 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('articles', '0014_auto_20180726_0926'), ] operations = [ migrations.AlterField( model_name='articles', name='cover_url', field=models.URLField(default='http://pcgsvdl00.bkt.clouddn.com/default/articles/article_01.jpg', max_length=500, verbose_name='封面图'), ), migrations.AlterField( model_name='series', name='cover_url', field=models.URLField(default='http://pcgsvdl00.bkt.clouddn.com/default/series/series_01.jpg', max_length=500, verbose_name='封面图'), ), migrations.AlterField( model_name='specialcolumn', name='cover_url', field=models.URLField(default='http://pcgsvdl00.bkt.clouddn.com/default/specialColumn/special_01.jpg', max_length=500, verbose_name='封面图'), ), ]
[ 0, 1, 2, 3, 4 ]
2,478
8c0377b70b902e6e61351869a4378b4c2c50a3a7
<mask token>
def get_all_lefts(word, substring): if len(substring) == 0: yield (len(word), word), elif substring[0] not in word: yield -1, else: for i in range(len(word)): if word[i] == substring[0]: for sub_sequance in get_all_lefts(word[i + 1:], substring[1:]): yield (i, word[:i]), *sub_sequance <mask token>
def get_all_lefts(word, substring): if len(substring) == 0: yield (len(word), word), elif substring[0] not in word: yield -1, else: for i in range(len(word)): if word[i] == substring[0]: for sub_sequance in get_all_lefts(word[i + 1:], substring[1:]): yield (i, word[:i]), *sub_sequance if __name__ == '__main__': word = input('') substring = input('') maxNum = 0 for lefts in map(list, get_all_lefts(word, substring)): if -1 in lefts: continue print(lefts) print(maxNum)
def get_all_lefts(word,substring): if len(substring) == 0: yield ((len(word),word),) else: if substring[0] not in word: yield (-1,) else: for i in range(len(word)): if word[i] == substring[0]: for sub_sequance in get_all_lefts(word[i+1:],substring[1:]): yield ((i,word[:i]),*sub_sequance) if __name__ == '__main__': word = input('') substring = input('') maxNum = 0 for lefts in map(list,get_all_lefts(word,substring)): if -1 in lefts: continue print(lefts) print(maxNum)
null
[ 0, 1, 2, 3 ]
2,479
6d2581b83a2839dcbc644ca572b05b158d80b58d
<mask token> class Keychains(DeviceFeature): <mask token> class DeviceAttributes(genie.conf.base.attributes.DeviceSubAttributes): class KeyChainAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_chain = key super().__init__(parent) class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only= True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) keychain_attr = managedattribute(name='keychain_attr', read_only= True, doc=KeyChainAttributes.__doc__) @keychain_attr.initter def keychain_attr(self): return SubAttributesDict(self.KeyChainAttributes, parent=self) class KeyChainMacSecAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.ms_key_chain = key super().__init__(parent) class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only= True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) ms_keychain_attr = managedattribute(name='ms_keychain_attr', read_only=True, doc=KeyChainMacSecAttributes.__doc__) @ms_keychain_attr.initter def ms_keychain_attr(self): return SubAttributesDict(self.KeyChainMacSecAttributes, parent=self ) class KeyChainTunEncAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.te_key_chain = key super().__init__(parent) class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only= True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) te_keychain_attr = managedattribute(name='te_keychain_attr', read_only=True, doc=KeyChainTunEncAttributes.__doc__) @te_keychain_attr.initter def te_keychain_attr(self): return SubAttributesDict(self.KeyChainTunEncAttributes, parent=self ) <mask token> @device_attr.initter def device_attr(self): return SubAttributesDict(self.DeviceAttributes, parent=self) <mask token> <mask token> <mask token> class CRYPTO_ALGO(Enum): aes_128_cmac = 'aes-128-cmac' aes_256_cmac = 'aes-256-cmac' <mask token> <mask token> <mask token> <mask token> def build_unconfig(self, devices=None, interfaces=None, links=None, apply=True, attributes=None, **kwargs): attributes = AttributesHelper(self, attributes) cfgs = {} devices, interfaces, links = consolidate_feature_args(self, devices, interfaces, links) for key, sub, attributes2 in attributes.mapping_items('device_attr', keys=devices, sort=True): cfgs[key] = sub.build_unconfig(apply=False, attributes=attributes2) if apply: for device_name, cfg in sorted(cfgs.items()): self.testbed.config_on_devices(cfg, fail_invalid=True) else: return cfgs
<mask token> class Keychains(DeviceFeature): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) class DeviceAttributes(genie.conf.base.attributes.DeviceSubAttributes): class KeyChainAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_chain = key super().__init__(parent) class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only= True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) keychain_attr = managedattribute(name='keychain_attr', read_only= True, doc=KeyChainAttributes.__doc__) @keychain_attr.initter def keychain_attr(self): return SubAttributesDict(self.KeyChainAttributes, parent=self) class KeyChainMacSecAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.ms_key_chain = key super().__init__(parent) class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only= True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) ms_keychain_attr = managedattribute(name='ms_keychain_attr', read_only=True, doc=KeyChainMacSecAttributes.__doc__) @ms_keychain_attr.initter def ms_keychain_attr(self): return SubAttributesDict(self.KeyChainMacSecAttributes, parent=self ) class KeyChainTunEncAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.te_key_chain = key super().__init__(parent) class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only= True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) te_keychain_attr = managedattribute(name='te_keychain_attr', read_only=True, doc=KeyChainTunEncAttributes.__doc__) @te_keychain_attr.initter def te_keychain_attr(self): return SubAttributesDict(self.KeyChainTunEncAttributes, parent=self ) device_attr = managedattribute(name='device_attr', read_only=True, doc= DeviceAttributes.__doc__) @device_attr.initter def device_attr(self): return SubAttributesDict(self.DeviceAttributes, parent=self) key_id = managedattribute(name='key_id', default=None, type=(None, managedattribute.test_istype(str)), doc='Configure a key') key_enc_type = managedattribute(name='key_enc_type', default=None, type =managedattribute.test_istype(int), doc='Set key encode type') key_string = managedattribute(name='key_string', default=None, type=( None, managedattribute.test_istype(str)), doc='Set key string') class CRYPTO_ALGO(Enum): aes_128_cmac = 'aes-128-cmac' aes_256_cmac = 'aes-256-cmac' crypto_algo = managedattribute(name='crypto_algo', default=None, type=( None, CRYPTO_ALGO), doc='Set cryptographic authentication algorithm') lifetime_start = managedattribute(name='lifetime_start', default=None, type=(None, managedattribute.test_istype(str)), doc= 'Set start time for sending lifetime of encryption key') lifetime_duration = managedattribute(name='lifetime_duration', default= None, type=(None, managedattribute.test_istype(int)), doc= 'Set key lifetime duration') def build_config(self, devices=None, interfaces=None, links=None, apply =True, attributes=None, **kwargs): attributes = AttributesHelper(self, attributes) cfgs = {} devices, interfaces, links = consolidate_feature_args(self, devices, interfaces, links) for key, sub, attributes2 in attributes.mapping_items('device_attr', keys=devices, sort=True): cfgs[key] = sub.build_config(apply=False, attributes=attributes2) if apply: for device_name, cfg in sorted(cfgs.items()): self.testbed.config_on_devices(cfg, fail_invalid=True) else: return cfgs def build_unconfig(self, devices=None, interfaces=None, links=None, apply=True, attributes=None, **kwargs): attributes = AttributesHelper(self, attributes) cfgs = {} devices, interfaces, links = consolidate_feature_args(self, devices, interfaces, links) for key, sub, attributes2 in attributes.mapping_items('device_attr', keys=devices, sort=True): cfgs[key] = sub.build_unconfig(apply=False, attributes=attributes2) if apply: for device_name, cfg in sorted(cfgs.items()): self.testbed.config_on_devices(cfg, fail_invalid=True) else: return cfgs
<mask token> __all__ = 'Keychains', class Keychains(DeviceFeature): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) class DeviceAttributes(genie.conf.base.attributes.DeviceSubAttributes): class KeyChainAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_chain = key super().__init__(parent) class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only= True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) keychain_attr = managedattribute(name='keychain_attr', read_only= True, doc=KeyChainAttributes.__doc__) @keychain_attr.initter def keychain_attr(self): return SubAttributesDict(self.KeyChainAttributes, parent=self) class KeyChainMacSecAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.ms_key_chain = key super().__init__(parent) class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only= True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) ms_keychain_attr = managedattribute(name='ms_keychain_attr', read_only=True, doc=KeyChainMacSecAttributes.__doc__) @ms_keychain_attr.initter def ms_keychain_attr(self): return SubAttributesDict(self.KeyChainMacSecAttributes, parent=self ) class KeyChainTunEncAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.te_key_chain = key super().__init__(parent) class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only= True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) te_keychain_attr = managedattribute(name='te_keychain_attr', read_only=True, doc=KeyChainTunEncAttributes.__doc__) @te_keychain_attr.initter def te_keychain_attr(self): return SubAttributesDict(self.KeyChainTunEncAttributes, parent=self ) device_attr = managedattribute(name='device_attr', read_only=True, doc= DeviceAttributes.__doc__) @device_attr.initter def device_attr(self): return SubAttributesDict(self.DeviceAttributes, parent=self) key_id = managedattribute(name='key_id', default=None, type=(None, managedattribute.test_istype(str)), doc='Configure a key') key_enc_type = managedattribute(name='key_enc_type', default=None, type =managedattribute.test_istype(int), doc='Set key encode type') key_string = managedattribute(name='key_string', default=None, type=( None, managedattribute.test_istype(str)), doc='Set key string') class CRYPTO_ALGO(Enum): aes_128_cmac = 'aes-128-cmac' aes_256_cmac = 'aes-256-cmac' crypto_algo = managedattribute(name='crypto_algo', default=None, type=( None, CRYPTO_ALGO), doc='Set cryptographic authentication algorithm') lifetime_start = managedattribute(name='lifetime_start', default=None, type=(None, managedattribute.test_istype(str)), doc= 'Set start time for sending lifetime of encryption key') lifetime_duration = managedattribute(name='lifetime_duration', default= None, type=(None, managedattribute.test_istype(int)), doc= 'Set key lifetime duration') def build_config(self, devices=None, interfaces=None, links=None, apply =True, attributes=None, **kwargs): attributes = AttributesHelper(self, attributes) cfgs = {} devices, interfaces, links = consolidate_feature_args(self, devices, interfaces, links) for key, sub, attributes2 in attributes.mapping_items('device_attr', keys=devices, sort=True): cfgs[key] = sub.build_config(apply=False, attributes=attributes2) if apply: for device_name, cfg in sorted(cfgs.items()): self.testbed.config_on_devices(cfg, fail_invalid=True) else: return cfgs def build_unconfig(self, devices=None, interfaces=None, links=None, apply=True, attributes=None, **kwargs): attributes = AttributesHelper(self, attributes) cfgs = {} devices, interfaces, links = consolidate_feature_args(self, devices, interfaces, links) for key, sub, attributes2 in attributes.mapping_items('device_attr', keys=devices, sort=True): cfgs[key] = sub.build_unconfig(apply=False, attributes=attributes2) if apply: for device_name, cfg in sorted(cfgs.items()): self.testbed.config_on_devices(cfg, fail_invalid=True) else: return cfgs
from enum import Enum from genie.decorator import managedattribute from genie.conf.base import Base, DeviceFeature, LinkFeature, Interface import genie.conf.base.attributes from genie.libs.conf.base.feature import consolidate_feature_args from genie.conf.base.attributes import SubAttributes, SubAttributesDict, AttributesHelper, KeyedSubAttributes from genie.conf.base.attributes import InterfaceSubAttributes from genie.libs import parser from genie.abstract import Lookup from genie.ops.base import Base as ops_Base from genie.ops.base import Context __all__ = 'Keychains', class Keychains(DeviceFeature): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) class DeviceAttributes(genie.conf.base.attributes.DeviceSubAttributes): class KeyChainAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_chain = key super().__init__(parent) class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only= True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) keychain_attr = managedattribute(name='keychain_attr', read_only= True, doc=KeyChainAttributes.__doc__) @keychain_attr.initter def keychain_attr(self): return SubAttributesDict(self.KeyChainAttributes, parent=self) class KeyChainMacSecAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.ms_key_chain = key super().__init__(parent) class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only= True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) ms_keychain_attr = managedattribute(name='ms_keychain_attr', read_only=True, doc=KeyChainMacSecAttributes.__doc__) @ms_keychain_attr.initter def ms_keychain_attr(self): return SubAttributesDict(self.KeyChainMacSecAttributes, parent=self ) class KeyChainTunEncAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.te_key_chain = key super().__init__(parent) class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only= True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) te_keychain_attr = managedattribute(name='te_keychain_attr', read_only=True, doc=KeyChainTunEncAttributes.__doc__) @te_keychain_attr.initter def te_keychain_attr(self): return SubAttributesDict(self.KeyChainTunEncAttributes, parent=self ) device_attr = managedattribute(name='device_attr', read_only=True, doc= DeviceAttributes.__doc__) @device_attr.initter def device_attr(self): return SubAttributesDict(self.DeviceAttributes, parent=self) key_id = managedattribute(name='key_id', default=None, type=(None, managedattribute.test_istype(str)), doc='Configure a key') key_enc_type = managedattribute(name='key_enc_type', default=None, type =managedattribute.test_istype(int), doc='Set key encode type') key_string = managedattribute(name='key_string', default=None, type=( None, managedattribute.test_istype(str)), doc='Set key string') class CRYPTO_ALGO(Enum): aes_128_cmac = 'aes-128-cmac' aes_256_cmac = 'aes-256-cmac' crypto_algo = managedattribute(name='crypto_algo', default=None, type=( None, CRYPTO_ALGO), doc='Set cryptographic authentication algorithm') lifetime_start = managedattribute(name='lifetime_start', default=None, type=(None, managedattribute.test_istype(str)), doc= 'Set start time for sending lifetime of encryption key') lifetime_duration = managedattribute(name='lifetime_duration', default= None, type=(None, managedattribute.test_istype(int)), doc= 'Set key lifetime duration') def build_config(self, devices=None, interfaces=None, links=None, apply =True, attributes=None, **kwargs): attributes = AttributesHelper(self, attributes) cfgs = {} devices, interfaces, links = consolidate_feature_args(self, devices, interfaces, links) for key, sub, attributes2 in attributes.mapping_items('device_attr', keys=devices, sort=True): cfgs[key] = sub.build_config(apply=False, attributes=attributes2) if apply: for device_name, cfg in sorted(cfgs.items()): self.testbed.config_on_devices(cfg, fail_invalid=True) else: return cfgs def build_unconfig(self, devices=None, interfaces=None, links=None, apply=True, attributes=None, **kwargs): attributes = AttributesHelper(self, attributes) cfgs = {} devices, interfaces, links = consolidate_feature_args(self, devices, interfaces, links) for key, sub, attributes2 in attributes.mapping_items('device_attr', keys=devices, sort=True): cfgs[key] = sub.build_unconfig(apply=False, attributes=attributes2) if apply: for device_name, cfg in sorted(cfgs.items()): self.testbed.config_on_devices(cfg, fail_invalid=True) else: return cfgs
from enum import Enum # Genie from genie.decorator import managedattribute from genie.conf.base import Base, \ DeviceFeature, \ LinkFeature, \ Interface import genie.conf.base.attributes from genie.libs.conf.base.feature import consolidate_feature_args from genie.conf.base.attributes import SubAttributes, \ SubAttributesDict, \ AttributesHelper, \ KeyedSubAttributes from genie.conf.base.attributes import InterfaceSubAttributes from genie.libs import parser from genie.abstract import Lookup from genie.ops.base import Base as ops_Base from genie.ops.base import Context __all__ = ('Keychains', ) # Structure Hierarchy: # Keychains # +--DeviceAttributes # +-- KeyChainAttributes # | +-- KeyIdAttributes # +-- KeyChainMacSecAttributes # | +-- KeyIdAttributes # +-- KeyChainTunEncAttributes # +-- KeyIdAttributes class Keychains(DeviceFeature): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # ============================================= # Device attributes # ============================================= class DeviceAttributes(genie.conf.base.attributes.DeviceSubAttributes): # KeyChainAttributes class KeyChainAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_chain = key super().__init__(parent) # KeyIdAttributes class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only=True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) keychain_attr = managedattribute(name='keychain_attr', read_only=True, doc=KeyChainAttributes.__doc__) @keychain_attr.initter def keychain_attr(self): return SubAttributesDict(self.KeyChainAttributes, parent=self) # KeyChainMacSecAttributes class KeyChainMacSecAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.ms_key_chain = key super().__init__(parent) # KeyIdAttributes class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only=True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) ms_keychain_attr = managedattribute( name='ms_keychain_attr', read_only=True, doc=KeyChainMacSecAttributes.__doc__) @ms_keychain_attr.initter def ms_keychain_attr(self): return SubAttributesDict(self.KeyChainMacSecAttributes, parent=self) # KeyChainTunEncAttributes class KeyChainTunEncAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.te_key_chain = key super().__init__(parent) # KeyIdAttributes class KeyIdAttributes(KeyedSubAttributes): def __init__(self, parent, key): self.key_id = key super().__init__(parent) key_id_attr = managedattribute(name='key_id_attr', read_only=True, doc=KeyIdAttributes.__doc__) @key_id_attr.initter def key_id_attr(self): return SubAttributesDict(self.KeyIdAttributes, parent=self) te_keychain_attr = managedattribute( name='te_keychain_attr', read_only=True, doc=KeyChainTunEncAttributes.__doc__) @te_keychain_attr.initter def te_keychain_attr(self): return SubAttributesDict(self.KeyChainTunEncAttributes, parent=self) device_attr = managedattribute(name='device_attr', read_only=True, doc=DeviceAttributes.__doc__) @device_attr.initter def device_attr(self): return SubAttributesDict(self.DeviceAttributes, parent=self) # ============ managedattributes ============# key_id = managedattribute(name='key_id', default=None, type=(None, managedattribute.test_istype(str)), doc='Configure a key') key_enc_type = managedattribute(name='key_enc_type', default=None, type=managedattribute.test_istype(int), doc='Set key encode type') key_string = managedattribute(name='key_string', default=None, type=(None, managedattribute.test_istype(str)), doc='Set key string') class CRYPTO_ALGO(Enum): aes_128_cmac = 'aes-128-cmac' aes_256_cmac = 'aes-256-cmac' crypto_algo = managedattribute( name='crypto_algo', default=None, type=(None, CRYPTO_ALGO), doc='Set cryptographic authentication algorithm') lifetime_start = managedattribute( name='lifetime_start', default=None, type=(None, managedattribute.test_istype(str)), doc='Set start time for sending lifetime of encryption key') lifetime_duration = managedattribute( name='lifetime_duration', default=None, type=(None, managedattribute.test_istype(int)), doc='Set key lifetime duration') # ========================================================= # build_config # ========================================================= def build_config(self, devices=None, interfaces=None, links=None, apply=True, attributes=None, **kwargs): attributes = AttributesHelper(self, attributes) cfgs = {} devices, interfaces, links = \ consolidate_feature_args(self, devices, interfaces, links) for key, sub, attributes2 in attributes.mapping_items('device_attr', keys=devices, sort=True): cfgs[key] = sub.build_config(apply=False, attributes=attributes2) if apply: for device_name, cfg in sorted(cfgs.items()): self.testbed.config_on_devices(cfg, fail_invalid=True) else: return cfgs def build_unconfig(self, devices=None, interfaces=None, links=None, apply=True, attributes=None, **kwargs): attributes = AttributesHelper(self, attributes) cfgs = {} devices, interfaces, links = \ consolidate_feature_args(self, devices, interfaces, links) for key, sub, attributes2 in attributes.mapping_items('device_attr', keys=devices, sort=True): cfgs[key] = sub.build_unconfig(apply=False, attributes=attributes2) if apply: for device_name, cfg in sorted(cfgs.items()): self.testbed.config_on_devices(cfg, fail_invalid=True) else: return cfgs
[ 3, 6, 7, 8, 9 ]
2,480
3f4b484f435936137cb8511ec6e0aa89efb267c4
# Given a stream of numbers, print average (or mean) of the stream at every point. def getAverage(prev_avg, val, n): return ((prev_avg * n) + val) / (n + 1) def findAndPrintMovingAvgs(arr): cur_avg = 0 for i in range(len(arr)): cur_avg = getAverage(cur_avg, arr[i], i) print "Avg at", i, "is", cur_avg arr = [10, 20, 30, 40, 50] findAndPrintMovingAvgs(arr)
null
null
null
null
[ 0 ]
2,481
32105a245f6945dbe8749140d811b20d634289bc
<mask token> class CycleGANVC2LossCalculator: def __init__(self): pass <mask token> @staticmethod def gen_loss(discriminator, y): y_dis = discriminator(y) return F.mean(F.softplus(-y_dis)) <mask token> <mask token> <mask token>
<mask token> class CycleGANVC2LossCalculator: def __init__(self): pass @staticmethod def dis_loss(discriminator, y, t): y_dis = discriminator(y) t_dis = discriminator(t) return F.mean(F.softplus(-t_dis)) + F.mean(F.softplus(y_dis)) @staticmethod def gen_loss(discriminator, y): y_dis = discriminator(y) return F.mean(F.softplus(-y_dis)) @staticmethod def cycle_loss(y, t): return 10.0 * F.mean_absolute_error(y, t) @staticmethod def identity_loss(y, t): return 5.0 * F.mean_absolute_error(y, t) def train(epochs, iterations, batchsize, modeldir, extension, time_width, mel_bins, sampling_rate, g_learning_rate, d_learning_rate, beta1, beta2, identity_epoch, second_step, src_path, tgt_path): dataset = DatasetLoader(src_path, tgt_path, extension, time_width, mel_bins, sampling_rate) print(dataset) generator_xy = Generator() generator_xy.to_gpu() gen_xy_opt = set_optimizer(generator_xy, g_learning_rate, beta1, beta2) generator_yx = Generator() generator_yx.to_gpu() gen_yx_opt = set_optimizer(generator_yx, g_learning_rate, beta1, beta2) discriminator_y = Discriminator() discriminator_y.to_gpu() dis_y_opt = set_optimizer(discriminator_y, d_learning_rate, beta1, beta2) discriminator_x = Discriminator() discriminator_x.to_gpu() dis_x_opt = set_optimizer(discriminator_x, d_learning_rate, beta1, beta2) discriminator_xyx = Discriminator() discriminator_xyx.to_gpu() dis_xyx_opt = set_optimizer(discriminator_xyx, d_learning_rate, beta1, beta2) discriminator_yxy = Discriminator() discriminator_yxy.to_gpu() dis_yxy_opt = set_optimizer(discriminator_yxy, d_learning_rate, beta1, beta2) lossfunc = CycleGANVC2LossCalculator() for epoch in range(epochs): sum_dis_loss = 0 sum_gen_loss = 0 for batch in range(0, iterations, batchsize): x, y = dataset.train(batchsize) xy = generator_xy(x) xyx = generator_yx(xy) yx = generator_yx(y) yxy = generator_xy(yx) xy.unchain_backward() xyx.unchain_backward() yx.unchain_backward() yxy.unchain_backward() dis_loss = lossfunc.dis_loss(discriminator_y, xy, y) dis_loss += lossfunc.dis_loss(discriminator_x, yx, x) if second_step: dis_loss += lossfunc.dis_loss(discriminator_xyx, xyx, x) dis_loss += lossfunc.dis_loss(discriminator_yxy, yxy, y) discriminator_xyx.cleargrads() discriminator_yxy.cleargrads() discriminator_x.cleargrads() discriminator_y.cleargrads() dis_loss.backward() dis_x_opt.update() dis_y_opt.update() if second_step: dis_xyx_opt.update() dis_yxy_opt.update() dis_loss.unchain_backward() xy = generator_xy(x) xyx = generator_yx(xy) id_y = generator_xy(y) yx = generator_yx(y) yxy = generator_xy(yx) id_x = generator_yx(x) gen_loss = lossfunc.gen_loss(discriminator_y, xy) gen_loss += lossfunc.gen_loss(discriminator_x, yx) if second_step: gen_loss += lossfunc.gen_loss(discriminator_yxy, yxy) gen_loss += lossfunc.gen_loss(discriminator_xyx, xyx) gen_loss += lossfunc.cycle_loss(x, xyx) gen_loss += lossfunc.cycle_loss(y, xyx) if epoch < identity_epoch: gen_loss += lossfunc.identity_loss(id_y, y) gen_loss += lossfunc.identity_loss(id_x, x) generator_xy.cleargrads() generator_yx.cleargrads() gen_loss.backward() gen_xy_opt.update() gen_yx_opt.update() gen_loss.unchain_backward() sum_dis_loss += dis_loss.data sum_gen_loss += gen_loss.data if batch == 0: serializers.save_npz(f'{modeldir}/generator_xy_{epoch}.model', generator_xy) serializers.save_npz(f'{modeldir}/generator_yx_{epoch}.model', generator_yx) print('epoch : {}'.format(epoch)) print('Generator loss : {}'.format(sum_gen_loss / iterations)) print('Discriminator loss : {}'.format(sum_dis_loss / iterations)) <mask token>
<mask token> xp = cuda.cupy cuda.get_device(0).use() class CycleGANVC2LossCalculator: def __init__(self): pass @staticmethod def dis_loss(discriminator, y, t): y_dis = discriminator(y) t_dis = discriminator(t) return F.mean(F.softplus(-t_dis)) + F.mean(F.softplus(y_dis)) @staticmethod def gen_loss(discriminator, y): y_dis = discriminator(y) return F.mean(F.softplus(-y_dis)) @staticmethod def cycle_loss(y, t): return 10.0 * F.mean_absolute_error(y, t) @staticmethod def identity_loss(y, t): return 5.0 * F.mean_absolute_error(y, t) def train(epochs, iterations, batchsize, modeldir, extension, time_width, mel_bins, sampling_rate, g_learning_rate, d_learning_rate, beta1, beta2, identity_epoch, second_step, src_path, tgt_path): dataset = DatasetLoader(src_path, tgt_path, extension, time_width, mel_bins, sampling_rate) print(dataset) generator_xy = Generator() generator_xy.to_gpu() gen_xy_opt = set_optimizer(generator_xy, g_learning_rate, beta1, beta2) generator_yx = Generator() generator_yx.to_gpu() gen_yx_opt = set_optimizer(generator_yx, g_learning_rate, beta1, beta2) discriminator_y = Discriminator() discriminator_y.to_gpu() dis_y_opt = set_optimizer(discriminator_y, d_learning_rate, beta1, beta2) discriminator_x = Discriminator() discriminator_x.to_gpu() dis_x_opt = set_optimizer(discriminator_x, d_learning_rate, beta1, beta2) discriminator_xyx = Discriminator() discriminator_xyx.to_gpu() dis_xyx_opt = set_optimizer(discriminator_xyx, d_learning_rate, beta1, beta2) discriminator_yxy = Discriminator() discriminator_yxy.to_gpu() dis_yxy_opt = set_optimizer(discriminator_yxy, d_learning_rate, beta1, beta2) lossfunc = CycleGANVC2LossCalculator() for epoch in range(epochs): sum_dis_loss = 0 sum_gen_loss = 0 for batch in range(0, iterations, batchsize): x, y = dataset.train(batchsize) xy = generator_xy(x) xyx = generator_yx(xy) yx = generator_yx(y) yxy = generator_xy(yx) xy.unchain_backward() xyx.unchain_backward() yx.unchain_backward() yxy.unchain_backward() dis_loss = lossfunc.dis_loss(discriminator_y, xy, y) dis_loss += lossfunc.dis_loss(discriminator_x, yx, x) if second_step: dis_loss += lossfunc.dis_loss(discriminator_xyx, xyx, x) dis_loss += lossfunc.dis_loss(discriminator_yxy, yxy, y) discriminator_xyx.cleargrads() discriminator_yxy.cleargrads() discriminator_x.cleargrads() discriminator_y.cleargrads() dis_loss.backward() dis_x_opt.update() dis_y_opt.update() if second_step: dis_xyx_opt.update() dis_yxy_opt.update() dis_loss.unchain_backward() xy = generator_xy(x) xyx = generator_yx(xy) id_y = generator_xy(y) yx = generator_yx(y) yxy = generator_xy(yx) id_x = generator_yx(x) gen_loss = lossfunc.gen_loss(discriminator_y, xy) gen_loss += lossfunc.gen_loss(discriminator_x, yx) if second_step: gen_loss += lossfunc.gen_loss(discriminator_yxy, yxy) gen_loss += lossfunc.gen_loss(discriminator_xyx, xyx) gen_loss += lossfunc.cycle_loss(x, xyx) gen_loss += lossfunc.cycle_loss(y, xyx) if epoch < identity_epoch: gen_loss += lossfunc.identity_loss(id_y, y) gen_loss += lossfunc.identity_loss(id_x, x) generator_xy.cleargrads() generator_yx.cleargrads() gen_loss.backward() gen_xy_opt.update() gen_yx_opt.update() gen_loss.unchain_backward() sum_dis_loss += dis_loss.data sum_gen_loss += gen_loss.data if batch == 0: serializers.save_npz(f'{modeldir}/generator_xy_{epoch}.model', generator_xy) serializers.save_npz(f'{modeldir}/generator_yx_{epoch}.model', generator_yx) print('epoch : {}'.format(epoch)) print('Generator loss : {}'.format(sum_gen_loss / iterations)) print('Discriminator loss : {}'.format(sum_dis_loss / iterations)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='StarGANVC2') parser.add_argument('--e', type=int, default=50, help= 'the number of epochs') parser.add_argument('--i', type=int, default=1000, help= 'the number of iterations') parser.add_argument('--b', type=int, default=16, help='batch size') parser.add_argument('--modeldir', type=Path, default='modeldir', help= 'model output directory') parser.add_argument('--ext', type=str, default='.npy', help= 'extension of training data') parser.add_argument('--tw', type=int, default=128, help= 'time width of spectral envelope') parser.add_argument('--mb', type=int, default=36, help= 'mel bins of spectral envelope') parser.add_argument('--sr', type=int, default=22050, help= 'sampling rate of audio data') parser.add_argument('--glr', type=float, default=0.0002, help= 'learning rate of Adam on generator') parser.add_argument('--dlr', type=float, default=0.0001, help= 'learning rate of Adam on discriminator') parser.add_argument('--b1', type=float, default=0.5, help='beta1 of Adam') parser.add_argument('--b2', type=float, default=0.999, help='beta2 of Adam' ) parser.add_argument('--ie', type=int, default=20, help= 'time spans enabling identity mapping loss') parser.add_argument('--second', action='store_true', help= 'enabling second step of adversaria loss') parser.add_argument('--src', type=Path, help= 'path which includes source data') parser.add_argument('--tgt', type=Path, help= 'path which includes target data') args = parser.parse_args() modeldir = args.modeldir modeldir.mkdir(exist_ok=True) train(args.e, args.i, args.b, modeldir, args.ext, args.tw, args.mb, args.sr, args.glr, args.dlr, args.b1, args.b2, args.ie, args.second, args.src, args.tgt)
import chainer import chainer.functions as F import numpy as np import argparse from model import Generator, Discriminator from chainer import cuda, serializers from pathlib import Path from utils import set_optimizer from dataset import DatasetLoader xp = cuda.cupy cuda.get_device(0).use() class CycleGANVC2LossCalculator: def __init__(self): pass @staticmethod def dis_loss(discriminator, y, t): y_dis = discriminator(y) t_dis = discriminator(t) return F.mean(F.softplus(-t_dis)) + F.mean(F.softplus(y_dis)) @staticmethod def gen_loss(discriminator, y): y_dis = discriminator(y) return F.mean(F.softplus(-y_dis)) @staticmethod def cycle_loss(y, t): return 10.0 * F.mean_absolute_error(y, t) @staticmethod def identity_loss(y, t): return 5.0 * F.mean_absolute_error(y, t) def train(epochs, iterations, batchsize, modeldir, extension, time_width, mel_bins, sampling_rate, g_learning_rate, d_learning_rate, beta1, beta2, identity_epoch, second_step, src_path, tgt_path): dataset = DatasetLoader(src_path, tgt_path, extension, time_width, mel_bins, sampling_rate) print(dataset) generator_xy = Generator() generator_xy.to_gpu() gen_xy_opt = set_optimizer(generator_xy, g_learning_rate, beta1, beta2) generator_yx = Generator() generator_yx.to_gpu() gen_yx_opt = set_optimizer(generator_yx, g_learning_rate, beta1, beta2) discriminator_y = Discriminator() discriminator_y.to_gpu() dis_y_opt = set_optimizer(discriminator_y, d_learning_rate, beta1, beta2) discriminator_x = Discriminator() discriminator_x.to_gpu() dis_x_opt = set_optimizer(discriminator_x, d_learning_rate, beta1, beta2) discriminator_xyx = Discriminator() discriminator_xyx.to_gpu() dis_xyx_opt = set_optimizer(discriminator_xyx, d_learning_rate, beta1, beta2) discriminator_yxy = Discriminator() discriminator_yxy.to_gpu() dis_yxy_opt = set_optimizer(discriminator_yxy, d_learning_rate, beta1, beta2) lossfunc = CycleGANVC2LossCalculator() for epoch in range(epochs): sum_dis_loss = 0 sum_gen_loss = 0 for batch in range(0, iterations, batchsize): x, y = dataset.train(batchsize) xy = generator_xy(x) xyx = generator_yx(xy) yx = generator_yx(y) yxy = generator_xy(yx) xy.unchain_backward() xyx.unchain_backward() yx.unchain_backward() yxy.unchain_backward() dis_loss = lossfunc.dis_loss(discriminator_y, xy, y) dis_loss += lossfunc.dis_loss(discriminator_x, yx, x) if second_step: dis_loss += lossfunc.dis_loss(discriminator_xyx, xyx, x) dis_loss += lossfunc.dis_loss(discriminator_yxy, yxy, y) discriminator_xyx.cleargrads() discriminator_yxy.cleargrads() discriminator_x.cleargrads() discriminator_y.cleargrads() dis_loss.backward() dis_x_opt.update() dis_y_opt.update() if second_step: dis_xyx_opt.update() dis_yxy_opt.update() dis_loss.unchain_backward() xy = generator_xy(x) xyx = generator_yx(xy) id_y = generator_xy(y) yx = generator_yx(y) yxy = generator_xy(yx) id_x = generator_yx(x) gen_loss = lossfunc.gen_loss(discriminator_y, xy) gen_loss += lossfunc.gen_loss(discriminator_x, yx) if second_step: gen_loss += lossfunc.gen_loss(discriminator_yxy, yxy) gen_loss += lossfunc.gen_loss(discriminator_xyx, xyx) gen_loss += lossfunc.cycle_loss(x, xyx) gen_loss += lossfunc.cycle_loss(y, xyx) if epoch < identity_epoch: gen_loss += lossfunc.identity_loss(id_y, y) gen_loss += lossfunc.identity_loss(id_x, x) generator_xy.cleargrads() generator_yx.cleargrads() gen_loss.backward() gen_xy_opt.update() gen_yx_opt.update() gen_loss.unchain_backward() sum_dis_loss += dis_loss.data sum_gen_loss += gen_loss.data if batch == 0: serializers.save_npz(f'{modeldir}/generator_xy_{epoch}.model', generator_xy) serializers.save_npz(f'{modeldir}/generator_yx_{epoch}.model', generator_yx) print('epoch : {}'.format(epoch)) print('Generator loss : {}'.format(sum_gen_loss / iterations)) print('Discriminator loss : {}'.format(sum_dis_loss / iterations)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='StarGANVC2') parser.add_argument('--e', type=int, default=50, help= 'the number of epochs') parser.add_argument('--i', type=int, default=1000, help= 'the number of iterations') parser.add_argument('--b', type=int, default=16, help='batch size') parser.add_argument('--modeldir', type=Path, default='modeldir', help= 'model output directory') parser.add_argument('--ext', type=str, default='.npy', help= 'extension of training data') parser.add_argument('--tw', type=int, default=128, help= 'time width of spectral envelope') parser.add_argument('--mb', type=int, default=36, help= 'mel bins of spectral envelope') parser.add_argument('--sr', type=int, default=22050, help= 'sampling rate of audio data') parser.add_argument('--glr', type=float, default=0.0002, help= 'learning rate of Adam on generator') parser.add_argument('--dlr', type=float, default=0.0001, help= 'learning rate of Adam on discriminator') parser.add_argument('--b1', type=float, default=0.5, help='beta1 of Adam') parser.add_argument('--b2', type=float, default=0.999, help='beta2 of Adam' ) parser.add_argument('--ie', type=int, default=20, help= 'time spans enabling identity mapping loss') parser.add_argument('--second', action='store_true', help= 'enabling second step of adversaria loss') parser.add_argument('--src', type=Path, help= 'path which includes source data') parser.add_argument('--tgt', type=Path, help= 'path which includes target data') args = parser.parse_args() modeldir = args.modeldir modeldir.mkdir(exist_ok=True) train(args.e, args.i, args.b, modeldir, args.ext, args.tw, args.mb, args.sr, args.glr, args.dlr, args.b1, args.b2, args.ie, args.second, args.src, args.tgt)
import chainer import chainer.functions as F import numpy as np import argparse from model import Generator, Discriminator from chainer import cuda, serializers from pathlib import Path from utils import set_optimizer from dataset import DatasetLoader xp = cuda.cupy cuda.get_device(0).use() class CycleGANVC2LossCalculator: def __init__(self): pass @staticmethod def dis_loss(discriminator, y, t): y_dis = discriminator(y) t_dis = discriminator(t) return F.mean(F.softplus(-t_dis)) + F.mean(F.softplus(y_dis)) @staticmethod def gen_loss(discriminator, y): y_dis = discriminator(y) return F.mean(F.softplus(-y_dis)) @staticmethod def cycle_loss(y, t): return 10.0 * F.mean_absolute_error(y, t) @staticmethod def identity_loss(y, t): return 5.0 * F.mean_absolute_error(y, t) def train(epochs, iterations, batchsize, modeldir, extension, time_width, mel_bins, sampling_rate, g_learning_rate, d_learning_rate, beta1, beta2, identity_epoch, second_step, src_path, tgt_path): # Dataset definiton dataset = DatasetLoader(src_path, tgt_path, extension, time_width, mel_bins, sampling_rate) print(dataset) # Model & Optimizer definition generator_xy = Generator() generator_xy.to_gpu() gen_xy_opt = set_optimizer(generator_xy, g_learning_rate, beta1, beta2) generator_yx = Generator() generator_yx.to_gpu() gen_yx_opt = set_optimizer(generator_yx, g_learning_rate, beta1, beta2) discriminator_y = Discriminator() discriminator_y.to_gpu() dis_y_opt = set_optimizer(discriminator_y, d_learning_rate, beta1, beta2) discriminator_x = Discriminator() discriminator_x.to_gpu() dis_x_opt = set_optimizer(discriminator_x, d_learning_rate, beta1, beta2) discriminator_xyx = Discriminator() discriminator_xyx.to_gpu() dis_xyx_opt = set_optimizer(discriminator_xyx, d_learning_rate, beta1, beta2) discriminator_yxy = Discriminator() discriminator_yxy.to_gpu() dis_yxy_opt = set_optimizer(discriminator_yxy, d_learning_rate, beta1, beta2) # Loss function definition lossfunc = CycleGANVC2LossCalculator() for epoch in range(epochs): sum_dis_loss = 0 sum_gen_loss = 0 for batch in range(0, iterations, batchsize): x, y = dataset.train(batchsize) xy = generator_xy(x) xyx = generator_yx(xy) yx = generator_yx(y) yxy = generator_xy(yx) xy.unchain_backward() xyx.unchain_backward() yx.unchain_backward() yxy.unchain_backward() dis_loss = lossfunc.dis_loss(discriminator_y, xy, y) dis_loss += lossfunc.dis_loss(discriminator_x, yx, x) if second_step: dis_loss += lossfunc.dis_loss(discriminator_xyx, xyx, x) dis_loss += lossfunc.dis_loss(discriminator_yxy, yxy, y) discriminator_xyx.cleargrads() discriminator_yxy.cleargrads() discriminator_x.cleargrads() discriminator_y.cleargrads() dis_loss.backward() dis_x_opt.update() dis_y_opt.update() if second_step: dis_xyx_opt.update() dis_yxy_opt.update() dis_loss.unchain_backward() xy = generator_xy(x) xyx = generator_yx(xy) id_y = generator_xy(y) yx = generator_yx(y) yxy = generator_xy(yx) id_x = generator_yx(x) gen_loss = lossfunc.gen_loss(discriminator_y, xy) gen_loss += lossfunc.gen_loss(discriminator_x, yx) if second_step: gen_loss += lossfunc.gen_loss(discriminator_yxy, yxy) gen_loss += lossfunc.gen_loss(discriminator_xyx, xyx) gen_loss += lossfunc.cycle_loss(x, xyx) gen_loss += lossfunc.cycle_loss(y, xyx) if epoch < identity_epoch: gen_loss += lossfunc.identity_loss(id_y, y) gen_loss += lossfunc.identity_loss(id_x, x) generator_xy.cleargrads() generator_yx.cleargrads() gen_loss.backward() gen_xy_opt.update() gen_yx_opt.update() gen_loss.unchain_backward() sum_dis_loss += dis_loss.data sum_gen_loss += gen_loss.data if batch == 0: serializers.save_npz(f"{modeldir}/generator_xy_{epoch}.model", generator_xy) serializers.save_npz(f"{modeldir}/generator_yx_{epoch}.model", generator_yx) print('epoch : {}'.format(epoch)) print('Generator loss : {}'.format(sum_gen_loss / iterations)) print('Discriminator loss : {}'.format(sum_dis_loss / iterations)) if __name__ == "__main__": parser = argparse.ArgumentParser(description="StarGANVC2") parser.add_argument('--e', type=int, default=50, help="the number of epochs") parser.add_argument('--i', type=int, default=1000, help="the number of iterations") parser.add_argument('--b', type=int, default=16, help="batch size") parser.add_argument('--modeldir', type=Path, default="modeldir", help="model output directory") parser.add_argument('--ext', type=str, default=".npy", help="extension of training data") parser.add_argument('--tw', type=int, default=128, help="time width of spectral envelope") parser.add_argument('--mb', type=int, default=36, help="mel bins of spectral envelope") parser.add_argument('--sr', type=int, default=22050, help="sampling rate of audio data") parser.add_argument('--glr', type=float, default=0.0002, help="learning rate of Adam on generator") parser.add_argument('--dlr', type=float, default=0.0001, help="learning rate of Adam on discriminator") parser.add_argument('--b1', type=float, default=0.5, help="beta1 of Adam") parser.add_argument('--b2', type=float, default=0.999, help="beta2 of Adam") parser.add_argument('--ie', type=int, default=20, help="time spans enabling identity mapping loss") parser.add_argument('--second', action="store_true", help="enabling second step of adversaria loss") parser.add_argument('--src', type=Path, help="path which includes source data") parser.add_argument('--tgt', type=Path, help="path which includes target data") args = parser.parse_args() modeldir = args.modeldir modeldir.mkdir(exist_ok=True) train(args.e, args.i, args.b, modeldir, args.ext, args.tw, args.mb, args.sr, args.glr, args.dlr, args.b1, args.b2, args.ie, args.second, args.src, args.tgt)
[ 3, 7, 9, 10, 11 ]
2,482
3e1e2de555667bf09162cd6c62cad35dabbd0f54
from flask import Flask from flask import render_template # Creates a Flask application called 'app' app = Flask(__name__, template_folder='C:\Users\jwhitehead\Documents\Webdev\Angular Web App') # The route to display the HTML template on @app.route('/') def host(): return render_template('index.html') # Run the Flask application if __name__ == "__main__": app.run(host='localhost', port='80')
null
null
null
null
[ 0 ]
2,483
e2573a5dc507e9aeb811fbc254129aeb6e54cc0b
<mask token> class MyAdmin(admin.ModelAdmin): <mask token> def has_delete_permission(self, request, obj=None): return False class CalcResultAdmin(MyAdmin): list_display = 'result', 'message', 'time' search_fields = 'result', 'message', 'time' <mask token>
<mask token> class MyAdmin(admin.ModelAdmin): def has_add_permission(self, request, obj=None): return False def has_delete_permission(self, request, obj=None): return False class CalcResultAdmin(MyAdmin): list_display = 'result', 'message', 'time' search_fields = 'result', 'message', 'time' <mask token>
<mask token> class MyAdmin(admin.ModelAdmin): def has_add_permission(self, request, obj=None): return False def has_delete_permission(self, request, obj=None): return False class CalcResultAdmin(MyAdmin): list_display = 'result', 'message', 'time' search_fields = 'result', 'message', 'time' admin.site.register(CalcResult, CalcResultAdmin)
from django.contrib import admin from calc.models import CalcResult class MyAdmin(admin.ModelAdmin): def has_add_permission(self, request, obj=None): return False def has_delete_permission(self, request, obj=None): return False class CalcResultAdmin(MyAdmin): list_display = 'result', 'message', 'time' search_fields = 'result', 'message', 'time' admin.site.register(CalcResult, CalcResultAdmin)
from django.contrib import admin from calc.models import CalcResult class MyAdmin(admin.ModelAdmin): def has_add_permission(self, request, obj=None): return False def has_delete_permission(self, request, obj=None): return False class CalcResultAdmin(MyAdmin): list_display = ('result', 'message', 'time',) search_fields = ('result', 'message', 'time',) admin.site.register(CalcResult, CalcResultAdmin)
[ 4, 5, 6, 7, 8 ]
2,484
7c9c13974e1deeb55f08c9e251e8c876cedcad6b
<mask token> @calculate_time def factorial(num): time.sleep(2) print(math.factorial(num)) <mask token>
<mask token> def calculate_time(func): def inner_fn(*args, **kwargs): start = time.time() func(*args, **kwargs) end = time.time() print("Time taken to execute '{}' function is: {} seconds".format( func.__name__, round(end - start, 2))) return inner_fn @calculate_time def factorial(num): time.sleep(2) print(math.factorial(num)) <mask token>
<mask token> def calculate_time(func): def inner_fn(*args, **kwargs): start = time.time() func(*args, **kwargs) end = time.time() print("Time taken to execute '{}' function is: {} seconds".format( func.__name__, round(end - start, 2))) return inner_fn @calculate_time def factorial(num): time.sleep(2) print(math.factorial(num)) factorial(20)
import math import time def calculate_time(func): def inner_fn(*args, **kwargs): start = time.time() func(*args, **kwargs) end = time.time() print("Time taken to execute '{}' function is: {} seconds".format( func.__name__, round(end - start, 2))) return inner_fn @calculate_time def factorial(num): time.sleep(2) print(math.factorial(num)) factorial(20)
import math import time def calculate_time(func): def inner_fn(*args, **kwargs): start = time.time() func(*args, **kwargs) end = time.time() print("Time taken to execute \'{}\' function is: {} seconds".format(func.__name__, round(end - start, 2))) return inner_fn @calculate_time def factorial(num): time.sleep(2) print(math.factorial(num)) factorial(20)
[ 1, 2, 3, 4, 5 ]
2,485
fef4749ce7b8668a5a138aa1245010866a85c853
<mask token>
class Solution: <mask token>
class Solution: def asteroidCollision(self, asteroids: List[int]) ->List[int]: output = [] index = 0 for i in asteroids: if len(output) == 0: index = 0 if index == 0: output.append(i) index += 1 continue elif output[-1] < 0 and i >= 0: output.append(i) elif output[-1] >= 0 and i >= 0: output.append(i) else: append = True while True: if output[-1] < 0: break elif abs(output[-1]) == abs(i): del output[-1] append = False break elif abs(output[-1]) < abs(i): del output[-1] else: append = False break if len(output) == 0: break if append: output.append(i) return output
class Solution: def asteroidCollision(self, asteroids: List[int]) -> List[int]: output = [] index = 0 for i in asteroids: if len(output) == 0: index = 0 if index == 0: output.append(i) index+=1 continue elif output[-1]<0 and i >=0: output.append(i) elif output[-1]>=0 and i >=0: output.append(i) else: append = True while True: if output[-1]<0: break elif abs(output[-1]) == abs(i): del output[-1] append = False break elif abs(output[-1]) < abs(i): del output[-1] else: append = False break if len(output)==0: break if append: output.append(i) return output
null
[ 0, 1, 2, 3 ]
2,486
0372cdbae8c5b0bbcbade86a5a7de28c1ee513b1
<mask token>
<mask token> tkinter.filedialog.askopenfilename() <mask token> from_file.close() <mask token> to_file.write('Copy\n') to_file.write(contents) to_file.close()
<mask token> tkinter.filedialog.askopenfilename() from_filename = tkinter.filedialog.askopenfilename() to_filename = tkinter.filedialog.asksaveasfilename() from_file = open(from_filename, 'r') contents = from_file.read() from_file.close() to_file = open(to_filename, 'w') to_file.write('Copy\n') to_file.write(contents) to_file.close()
import tkinter.filedialog tkinter.filedialog.askopenfilename() from_filename = tkinter.filedialog.askopenfilename() to_filename = tkinter.filedialog.asksaveasfilename() from_file = open(from_filename, 'r') contents = from_file.read() from_file.close() to_file = open(to_filename, 'w') to_file.write('Copy\n') to_file.write(contents) to_file.close()
# Write files # Writing to a file within a Python program: # In order to write to a file, we use file.write(str). # This method writes a string to a file. # The method write() works like Python's print() function, except it does not add a newline ("\n") character. # File dialogs: # Module tkinter has a submodule called filedialog. We import it like this: import tkinter.filedialog # Function askopenfilename() asks the user to select a file to open: tkinter.filedialog.askopenfilename() # This function returns the full path to the file, so we can use that when we call the function open() to open that file. from_filename = tkinter.filedialog.askopenfilename() # Function asksaveasfilename() asks the user to select a file to save to, and provides a warning if the file already exists. to_filename = tkinter.filedialog.asksaveasfilename() ### Example ### # Below is a program that copies a file, but puts "Copy" as the first line of the copied file. # First prompt the user to pick a file, then open the file that we want to read from and get the contents: from_file = open(from_filename, 'r') contents = from_file.read() from_file.close() # Now we can open the file we want to write to and write the contents: to_file = open(to_filename, 'w') to_file.write('Copy\n') # we have to add the newline ourselves to_file.write(contents) # now write the contents of the file to_file.close()
[ 0, 1, 2, 3, 4 ]
2,487
84db1803a352e0ed8c01b7166f522d46ec89b6f5
<mask token>
<mask token> for train_index, test_index in kf.split(x): xtr = x.iloc[train_index] ytr = y[train_index] <mask token> if k % 2 == 0: k = k + 1 else: k = k <mask token> print('Skor KNN: ', round(cross_val_score(knn, xtr, ytr, cv=5).mean() * 100 ), ' %') print('Skor Logistic Regression: ', round(cross_val_score(logreg, xtr, ytr, cv=5).mean() * 100), ' %') print('Skor Random Forest: ', round(cross_val_score(ranfor, xtr, ytr, cv=5) .mean() * 100), ' %') print('Skor Decision Tree: ', round(cross_val_score(dec, xtr, ytr, cv=5). mean() * 100), ' %') <mask token>
<mask token> df = pd.read_csv('data.csv') df = df.fillna(np.NaN) df['Target'] = 0 df['Target_name'] = 'Non-Target' df['Target'][(df['Age'] <= 25) & (df['Overall'] >= 80) & (df['Potential'] >= 80)] = 1 df['Target_name'][(df['Age'] <= 25) & (df['Overall'] >= 80) & (df[ 'Potential'] >= 80)] = 'Target' x = df.loc[:, ['Age', 'Overall', 'Potential']] y = df['Target'] kf = KFold(n_splits=5) for train_index, test_index in kf.split(x): xtr = x.iloc[train_index] ytr = y[train_index] <mask token> k = round(len(x) ** 0.5) if k % 2 == 0: k = k + 1 else: k = k knn = KNeighborsClassifier(n_neighbors=k) <mask token> logreg = LogisticRegression(multi_class='auto', solver='liblinear') <mask token> ranfor = RandomForestClassifier(n_estimators=50) <mask token> dec = DecisionTreeClassifier() print('Skor KNN: ', round(cross_val_score(knn, xtr, ytr, cv=5).mean() * 100 ), ' %') print('Skor Logistic Regression: ', round(cross_val_score(logreg, xtr, ytr, cv=5).mean() * 100), ' %') print('Skor Random Forest: ', round(cross_val_score(ranfor, xtr, ytr, cv=5) .mean() * 100), ' %') print('Skor Decision Tree: ', round(cross_val_score(dec, xtr, ytr, cv=5). mean() * 100), ' %') <mask token>
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold df = pd.read_csv('data.csv') df = df.fillna(np.NaN) df['Target'] = 0 df['Target_name'] = 'Non-Target' df['Target'][(df['Age'] <= 25) & (df['Overall'] >= 80) & (df['Potential'] >= 80)] = 1 df['Target_name'][(df['Age'] <= 25) & (df['Overall'] >= 80) & (df[ 'Potential'] >= 80)] = 'Target' x = df.loc[:, ['Age', 'Overall', 'Potential']] y = df['Target'] kf = KFold(n_splits=5) for train_index, test_index in kf.split(x): xtr = x.iloc[train_index] ytr = y[train_index] <mask token> k = round(len(x) ** 0.5) if k % 2 == 0: k = k + 1 else: k = k knn = KNeighborsClassifier(n_neighbors=k) <mask token> logreg = LogisticRegression(multi_class='auto', solver='liblinear') <mask token> ranfor = RandomForestClassifier(n_estimators=50) <mask token> dec = DecisionTreeClassifier() print('Skor KNN: ', round(cross_val_score(knn, xtr, ytr, cv=5).mean() * 100 ), ' %') print('Skor Logistic Regression: ', round(cross_val_score(logreg, xtr, ytr, cv=5).mean() * 100), ' %') print('Skor Random Forest: ', round(cross_val_score(ranfor, xtr, ytr, cv=5) .mean() * 100), ' %') print('Skor Decision Tree: ', round(cross_val_score(dec, xtr, ytr, cv=5). mean() * 100), ' %') <mask token>
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold df=pd.read_csv('data.csv') df=df.fillna(np.NaN) #kita isi df dengan kolom target = 0, target_name = 0 , agar memudahkan untuk training df['Target']=0 df['Target_name']='Non-Target' # print(df) #tandai target dengan angka 1,target_name='Target' pada dataframe usia <= 25, overall >= 80, dan potential >= 80 df['Target'][(df['Age']<=25)&(df['Overall']>=80)&(df['Potential']>=80)]=1 df['Target_name'][(df['Age']<=25)&(df['Overall']>=80)&(df['Potential']>=80)]='Target' x=df.loc[:,['Age','Overall','Potential']] y=df['Target'] kf=KFold(n_splits = 5) for train_index,test_index in kf.split(x): xtr=x.iloc[train_index] ytr=y[train_index] ''' KNN nilai k terbaik atau n terbaik dapat dicari dengan cara sqrt(n_data) lalu pilih yg odd/ganjil cari len dari data (banyak data) lalu kalikan pangkat setengah ''' k = round(len(x) ** .5) if((k%2) == 0): k=k+1 else: k=k knn=KNeighborsClassifier(n_neighbors=k) ''' Logistic Regression ''' logreg=LogisticRegression(multi_class='auto',solver='liblinear') ''' Random Forest ''' ranfor=RandomForestClassifier(n_estimators=50) ''' Decision Tree ''' dec=DecisionTreeClassifier() print("Skor KNN: ",round(cross_val_score(knn,xtr,ytr,cv=5).mean()*100),' %') print("Skor Logistic Regression: ",round(cross_val_score(logreg,xtr,ytr,cv=5).mean()*100),' %') print("Skor Random Forest: ",round(cross_val_score(ranfor,xtr,ytr,cv=5).mean()*100),' %') print("Skor Decision Tree: ",round(cross_val_score(dec,xtr,ytr,cv=5).mean()*100),' %') ''' Skor KNN: 96.0 % Skor Logistic Regression: 97.0 % Skor Random Forest: 96.0 % Skor Decision Tree: 93.0 % '''
[ 0, 1, 2, 3, 4 ]
2,488
0b0b928aef9a4e9953b02639bf5e7769cc4389d7
<mask token>
default_app_config = 'reman.apps.RemanConfig'
null
null
null
[ 0, 1 ]
2,489
34e902fbced13629657494eedfe385d3b5ae3f55
# TUPLE IMUTAVEL # GERALMENTE HETEORGENEA # tupla com 1 ou 0 elementos # # empty = () # singleton = 'breno', # print(type(empty)) # print(singleton) # tuplas podem ser aninhadas # t = 12345, 54321, 'hello!' # u = t, (1, 2, 3, 4, 5) #imutaveis # t[0] = 88888
null
null
null
[ 0, 1 ]
2,490
93133b9a62d50e4e48e37721585116c1c7d70761
<mask token> class GroupElement: <mask token> def _groupmulprops(self, x): if x == self.group.identity: return True, deepcopy(self) if self == self.group.identity: return True, deepcopy(x) if self.group.inv(self) == x or self == self.group.inv(x): return True, deepcopy(self.group.identity) return False, None def __mul__(self, x): if isinstance(x, SubstituteTerm): return NotImplemented matched, term = self._groupmulprops(x) result = self.group.op(self, x) if not matched else term return self.group.simplify_term(result) if hasattr(self.group, 'simplify_term') else result <mask token> def __truediv__(self, x): return self.__mul__(self.group.inv(x)) def __rtruediv__(self, x): return self.__rmul__(self.group.inv(x)) class GroupVariable(GroupElement, Variable): def __init__(self, g: Group, symbol: str): GroupElement.__init__(self, g) Variable.__init__(self, symbol) def __hash__(self): return hash((self.group, self.symbol)) def __eq__(self, x): return type(self) is type(x ) and self.group == x.group and self.symbol == x.symbol class GroupFuncTerm(GroupElement, FuncTerm): def __init__(self, g: Group, a_term: ATerm): GroupElement.__init__(self, g) FuncTerm.__init__(self, a_term.function, a_term.arguments) self.term = a_term def set_arguments(self, args): self.term.arguments = tuple(args) self.arguments = tuple(args) def set_function(self, function: Function): self.function = function self.term.function = function def __hash__(self): return hash((self.group, self.term)) def __repr__(self): return repr(self.term) def __str__(self): return str(self.term) def __eq__(self, x): return type(self) is type(x ) and self.group == x.group and self.term == x.term class GroupConstant(GroupElement, Constant): def __init__(self, g: Group, symbol: str): GroupElement.__init__(self, g) Constant.__init__(self, symbol) def __hash__(self): return hash((self.group, self.symbol)) def __eq__(self, x): return type(self) is type(x ) and self.group == x.group and self.symbol == x.symbol class AbelianGroup(Group): def __init__(self, name: str, operation: ACFunction, inv_symbol=None, identity_symbol='e'): if not isinstance(operation, ACFunction): raise ValueError( 'operation must be associative and commutative (ACFunction)') super().__init__(name, operation, inv_symbol=inv_symbol, identity_symbol=identity_symbol)
<mask token> class GroupInverseFunction(Function): <mask token> <mask token> class GroupFunction(Function): def __init__(self, g: Group, f: Function): super().__init__(f.symbol, f.arity) self.group = g self.function = f def __call__(self, *args): term = self.function(*args) if not isinstance(term, FuncTerm) or term.function.arity == 0: return deepcopy(term) result = GroupFuncTerm(self.group, term) result.set_function(self) return result class GroupElement: def __init__(self, g: Group): self.group = g def _groupmulprops(self, x): if x == self.group.identity: return True, deepcopy(self) if self == self.group.identity: return True, deepcopy(x) if self.group.inv(self) == x or self == self.group.inv(x): return True, deepcopy(self.group.identity) return False, None def __mul__(self, x): if isinstance(x, SubstituteTerm): return NotImplemented matched, term = self._groupmulprops(x) result = self.group.op(self, x) if not matched else term return self.group.simplify_term(result) if hasattr(self.group, 'simplify_term') else result def __rmul__(self, x): matched, term = self._groupmulprops(x) result = self.group.op(x, self) if not matched else term return self.group.simplify_term(result) if hasattr(self.group, 'simplify_term') else result def __truediv__(self, x): return self.__mul__(self.group.inv(x)) def __rtruediv__(self, x): return self.__rmul__(self.group.inv(x)) class GroupVariable(GroupElement, Variable): def __init__(self, g: Group, symbol: str): GroupElement.__init__(self, g) Variable.__init__(self, symbol) def __hash__(self): return hash((self.group, self.symbol)) def __eq__(self, x): return type(self) is type(x ) and self.group == x.group and self.symbol == x.symbol class GroupFuncTerm(GroupElement, FuncTerm): def __init__(self, g: Group, a_term: ATerm): GroupElement.__init__(self, g) FuncTerm.__init__(self, a_term.function, a_term.arguments) self.term = a_term def set_arguments(self, args): self.term.arguments = tuple(args) self.arguments = tuple(args) def set_function(self, function: Function): self.function = function self.term.function = function def __hash__(self): return hash((self.group, self.term)) def __repr__(self): return repr(self.term) def __str__(self): return str(self.term) def __eq__(self, x): return type(self) is type(x ) and self.group == x.group and self.term == x.term class GroupConstant(GroupElement, Constant): def __init__(self, g: Group, symbol: str): GroupElement.__init__(self, g) Constant.__init__(self, symbol) def __hash__(self): return hash((self.group, self.symbol)) def __eq__(self, x): return type(self) is type(x ) and self.group == x.group and self.symbol == x.symbol class AbelianGroup(Group): def __init__(self, name: str, operation: ACFunction, inv_symbol=None, identity_symbol='e'): if not isinstance(operation, ACFunction): raise ValueError( 'operation must be associative and commutative (ACFunction)') super().__init__(name, operation, inv_symbol=inv_symbol, identity_symbol=identity_symbol)
<mask token> class Group: <mask token> <mask token> def __eq__(self, x): return type(self) is type(x ) and self.name == x.name and self.op == x.op class GroupInverseFunction(Function): def __init__(self, g: Group, symbol: str): super().__init__(symbol, 1) self.group = g def __call__(self, x): if x == self.group.identity: return deepcopy(self.group.identity) if isinstance(x, FuncTerm) and isinstance(x.function, GroupInverseFunction): return x.arguments[0] return FuncTerm(self, (x,)) class GroupFunction(Function): def __init__(self, g: Group, f: Function): super().__init__(f.symbol, f.arity) self.group = g self.function = f def __call__(self, *args): term = self.function(*args) if not isinstance(term, FuncTerm) or term.function.arity == 0: return deepcopy(term) result = GroupFuncTerm(self.group, term) result.set_function(self) return result class GroupElement: def __init__(self, g: Group): self.group = g def _groupmulprops(self, x): if x == self.group.identity: return True, deepcopy(self) if self == self.group.identity: return True, deepcopy(x) if self.group.inv(self) == x or self == self.group.inv(x): return True, deepcopy(self.group.identity) return False, None def __mul__(self, x): if isinstance(x, SubstituteTerm): return NotImplemented matched, term = self._groupmulprops(x) result = self.group.op(self, x) if not matched else term return self.group.simplify_term(result) if hasattr(self.group, 'simplify_term') else result def __rmul__(self, x): matched, term = self._groupmulprops(x) result = self.group.op(x, self) if not matched else term return self.group.simplify_term(result) if hasattr(self.group, 'simplify_term') else result def __truediv__(self, x): return self.__mul__(self.group.inv(x)) def __rtruediv__(self, x): return self.__rmul__(self.group.inv(x)) class GroupVariable(GroupElement, Variable): def __init__(self, g: Group, symbol: str): GroupElement.__init__(self, g) Variable.__init__(self, symbol) def __hash__(self): return hash((self.group, self.symbol)) def __eq__(self, x): return type(self) is type(x ) and self.group == x.group and self.symbol == x.symbol class GroupFuncTerm(GroupElement, FuncTerm): def __init__(self, g: Group, a_term: ATerm): GroupElement.__init__(self, g) FuncTerm.__init__(self, a_term.function, a_term.arguments) self.term = a_term def set_arguments(self, args): self.term.arguments = tuple(args) self.arguments = tuple(args) def set_function(self, function: Function): self.function = function self.term.function = function def __hash__(self): return hash((self.group, self.term)) def __repr__(self): return repr(self.term) def __str__(self): return str(self.term) def __eq__(self, x): return type(self) is type(x ) and self.group == x.group and self.term == x.term class GroupConstant(GroupElement, Constant): def __init__(self, g: Group, symbol: str): GroupElement.__init__(self, g) Constant.__init__(self, symbol) def __hash__(self): return hash((self.group, self.symbol)) def __eq__(self, x): return type(self) is type(x ) and self.group == x.group and self.symbol == x.symbol class AbelianGroup(Group): def __init__(self, name: str, operation: ACFunction, inv_symbol=None, identity_symbol='e'): if not isinstance(operation, ACFunction): raise ValueError( 'operation must be associative and commutative (ACFunction)') super().__init__(name, operation, inv_symbol=inv_symbol, identity_symbol=identity_symbol)
from symcollab.algebra import * from .ac import * from copy import deepcopy class Group: def __init__(self, name: str, operation: AFunction, inv_symbol=None, identity_symbol='e'): if not isinstance(operation, AFunction): raise ValueError('operation must be associative (AFunction)') self.name = name self.identity = GroupConstant(self, identity_symbol) self.inv = GroupInverseFunction(self, name + '_inv' if inv_symbol is None else inv_symbol) self.op = GroupFunction(self, operation) def __hash__(self): return hash(self.name) def __eq__(self, x): return type(self) is type(x ) and self.name == x.name and self.op == x.op class GroupInverseFunction(Function): def __init__(self, g: Group, symbol: str): super().__init__(symbol, 1) self.group = g def __call__(self, x): if x == self.group.identity: return deepcopy(self.group.identity) if isinstance(x, FuncTerm) and isinstance(x.function, GroupInverseFunction): return x.arguments[0] return FuncTerm(self, (x,)) class GroupFunction(Function): def __init__(self, g: Group, f: Function): super().__init__(f.symbol, f.arity) self.group = g self.function = f def __call__(self, *args): term = self.function(*args) if not isinstance(term, FuncTerm) or term.function.arity == 0: return deepcopy(term) result = GroupFuncTerm(self.group, term) result.set_function(self) return result class GroupElement: def __init__(self, g: Group): self.group = g def _groupmulprops(self, x): if x == self.group.identity: return True, deepcopy(self) if self == self.group.identity: return True, deepcopy(x) if self.group.inv(self) == x or self == self.group.inv(x): return True, deepcopy(self.group.identity) return False, None def __mul__(self, x): if isinstance(x, SubstituteTerm): return NotImplemented matched, term = self._groupmulprops(x) result = self.group.op(self, x) if not matched else term return self.group.simplify_term(result) if hasattr(self.group, 'simplify_term') else result def __rmul__(self, x): matched, term = self._groupmulprops(x) result = self.group.op(x, self) if not matched else term return self.group.simplify_term(result) if hasattr(self.group, 'simplify_term') else result def __truediv__(self, x): return self.__mul__(self.group.inv(x)) def __rtruediv__(self, x): return self.__rmul__(self.group.inv(x)) class GroupVariable(GroupElement, Variable): def __init__(self, g: Group, symbol: str): GroupElement.__init__(self, g) Variable.__init__(self, symbol) def __hash__(self): return hash((self.group, self.symbol)) def __eq__(self, x): return type(self) is type(x ) and self.group == x.group and self.symbol == x.symbol class GroupFuncTerm(GroupElement, FuncTerm): def __init__(self, g: Group, a_term: ATerm): GroupElement.__init__(self, g) FuncTerm.__init__(self, a_term.function, a_term.arguments) self.term = a_term def set_arguments(self, args): self.term.arguments = tuple(args) self.arguments = tuple(args) def set_function(self, function: Function): self.function = function self.term.function = function def __hash__(self): return hash((self.group, self.term)) def __repr__(self): return repr(self.term) def __str__(self): return str(self.term) def __eq__(self, x): return type(self) is type(x ) and self.group == x.group and self.term == x.term class GroupConstant(GroupElement, Constant): def __init__(self, g: Group, symbol: str): GroupElement.__init__(self, g) Constant.__init__(self, symbol) def __hash__(self): return hash((self.group, self.symbol)) def __eq__(self, x): return type(self) is type(x ) and self.group == x.group and self.symbol == x.symbol class AbelianGroup(Group): def __init__(self, name: str, operation: ACFunction, inv_symbol=None, identity_symbol='e'): if not isinstance(operation, ACFunction): raise ValueError( 'operation must be associative and commutative (ACFunction)') super().__init__(name, operation, inv_symbol=inv_symbol, identity_symbol=identity_symbol)
from symcollab.algebra import * from .ac import * from copy import deepcopy # This is a single arity function which only actually gets applied when called an odd number of times # Useful for the inverse function later on # A group G is an algebraic structure which satisfies the following properties # (1) G is closed under the operation # (2) The operation is associative # (3) An identity element exists [that is, op(x, id) = x for all x in G] # (4) An inverse exists for each element class Group: def __init__(self, name : str, operation : AFunction, inv_symbol = None, identity_symbol = "e"): if not isinstance(operation, AFunction): raise ValueError("operation must be associative (AFunction)") self.name = name self.identity = GroupConstant(self, identity_symbol) self.inv = GroupInverseFunction(self, name + "_inv" if inv_symbol is None else inv_symbol) self.op = GroupFunction(self, operation) def __hash__(self): return hash(self.name) def __eq__(self, x): return type(self) is type(x) and self.name == x.name and self.op == x.op class GroupInverseFunction(Function): def __init__(self, g : Group, symbol : str): super().__init__(symbol, 1) self.group = g def __call__(self, x): # The inverse of zero in a group is zero if x == self.group.identity: return deepcopy(self.group.identity) if isinstance(x, FuncTerm) and isinstance(x.function, GroupInverseFunction): return x.arguments[0] return FuncTerm(self, (x,)) class GroupFunction(Function): def __init__(self, g : Group, f : Function): super().__init__(f.symbol, f.arity) self.group = g self.function = f def __call__(self, *args): term = self.function(*args) # Important for function calls that returns only a constant if not isinstance(term, FuncTerm) or term.function.arity == 0: return deepcopy(term) result = GroupFuncTerm(self.group, term) result.set_function(self) return result # Class that describes an element of the group. # FuncTerms, Constants, and Variables all inherit from this group # Multiplication is defined so that you can multiply elements like a * b class GroupElement: def __init__(self, g : Group): self.group = g # Properties of multiplication return (True, result) if one matches otherwise (false, None) def _groupmulprops(self, x): if x == self.group.identity: return (True, deepcopy(self)) if self == self.group.identity: return (True, deepcopy(x)) if self.group.inv(self) == x or self == self.group.inv(x): return (True, deepcopy(self.group.identity)) return (False, None) def __mul__(self, x): # To get around the problem with Substitute Terms if isinstance(x, SubstituteTerm): return NotImplemented matched, term = self._groupmulprops(x) result = self.group.op(self, x) if not matched else term return self.group.simplify_term(result) if hasattr(self.group, 'simplify_term') else result def __rmul__(self, x): matched, term = self._groupmulprops(x) result = self.group.op(x, self) if not matched else term return self.group.simplify_term(result) if hasattr(self.group, 'simplify_term') else result # a / b is defined as a * inv(b) def __truediv__(self, x): return self.__mul__(self.group.inv(x)) def __rtruediv__(self, x): return self.__rmul__(self.group.inv(x)) class GroupVariable(GroupElement, Variable): def __init__(self, g : Group, symbol : str): GroupElement.__init__(self, g) Variable.__init__(self, symbol) def __hash__(self): return hash((self.group, self.symbol)) def __eq__(self, x): return type(self) is type(x) and self.group == x.group and self.symbol == x.symbol class GroupFuncTerm(GroupElement, FuncTerm): def __init__(self, g : Group, a_term : ATerm): GroupElement.__init__(self, g) FuncTerm.__init__(self, a_term.function, a_term.arguments) self.term = a_term def set_arguments(self, args): self.term.arguments = tuple(args) self.arguments = tuple(args) def set_function(self, function : Function): self.function = function self.term.function = function def __hash__(self): return hash((self.group, self.term)) def __repr__(self): return repr(self.term) def __str__(self): return str(self.term) def __eq__(self, x): return type(self) is type(x) and self.group == x.group and self.term == x.term class GroupConstant(GroupElement, Constant): def __init__(self, g : Group, symbol : str): GroupElement.__init__(self, g) Constant.__init__(self, symbol) def __hash__(self): return hash((self.group, self.symbol)) def __eq__(self, x): return type(self) is type(x) and self.group == x.group and self.symbol == x.symbol # An abelian group is a group where the operation is also commutative class AbelianGroup(Group): def __init__(self, name : str, operation : ACFunction, inv_symbol = None, identity_symbol = "e"): if not isinstance(operation, ACFunction): raise ValueError("operation must be associative and commutative (ACFunction)") super().__init__(name, operation, inv_symbol = inv_symbol, identity_symbol = identity_symbol)
[ 23, 29, 33, 36, 37 ]
2,491
994210b3de82af02ec7b1b7bee75ceb88ffb2bd5
HORIZONTAL_TABLE = b'\x09' class ReagentInfoItem(): ''' This class if defined for a single reagent info unit, from the table's view, its a cell of the table. ''' def __init__(self, reagent_name, reagent_count): self.reagent_name = reagent_name self.reagent_count = reagent_count def __repr__(self): return 'reagent name: ' + self.reagent_name + HORIZONTAL_TABLE +\ 'reagent count: ' + str(self.reagent_count) class InstrumentReagentInfo(): ''' This class is defined for single instrument,from the table's view, its a column of the reagent info table. ''' def __init__(self, instr_id, instr_type, time_stamp=None, reagent_info_list=[]): ''' Instrument_Id: str Instrument_Type: str Reagent_Info_List: ReagentInfoItem[] ''' self.instrument_id = instr_id self.instrument_type = instr_type self.time_stamp = time_stamp self.reagent_info_list = reagent_info_list def __repr__(self): return 'instrument id: '+ self.instrument_id + HORIZONTAL_TABLE +\ 'instrument type: ' + self.instrument_type + HORIZONTAL_TABLE+\ 'updated timestamp: ' + str(self.time_stamp) + HORIZONTAL_TABLE+\ '\nreagent inventory info:\n' + '\n'.join(str(item) for item in self.reagent_info_list) class SystemReagentInfo(): ''' Reagent information of the whole system ''' def __init__(self): self.system_reagent = [] def update_instrument_reagent_inventory(self,instrument_reagent_invemtory): if isinstance(instrument_reagent_invemtory,InstrumentReagentInfo): if not self.get_last_update_timestamp_per_instrument(instrument_reagent_invemtory.instrument_id) or \ self.get_last_update_timestamp_per_instrument(instrument_reagent_invemtory.instrument_id)<instrument_reagent_invemtory.time_stamp: old_record = self.get_instrument_reagent_inventory_item_by_id(instrument_reagent_invemtory.instrument_id) if old_record: old_record = instrument_reagent_invemtory else: self.system_reagent.append(instrument_reagent_invemtory) def get_instrument_reagent_inventory_item_by_id(self,instr_id): for item in self.system_reagent: if isinstance(item,InstrumentReagentInfo): if item.instrument_id == instr_id: return item def get_last_update_timestamp_per_instrument(self,instr_id): for item in self.system_reagent: if isinstance(item,InstrumentReagentInfo): if item.instrument_id == instr_id: return item.time_stamp def __repr__(self): return 'system reagent info:\n' +'\n'.join(str(item) for item in self.system_reagent) def test01(): ReagentInfoItem11 = ReagentInfoItem('dai', 12) ReagentInfoItem12 = ReagentInfoItem('han', 13) ReagentInfoItem13 = ReagentInfoItem('peng', 14) ReagentInfoList1 = [ReagentInfoItem11, ReagentInfoItem12, ReagentInfoItem13] ReagentInfoItem21 = ReagentInfoItem('I', 32) ReagentInfoItem22 = ReagentInfoItem('love', 33) ReagentInfoItem23 = ReagentInfoItem('python', 34) ReagentInfoList2 = [ReagentInfoItem21, ReagentInfoItem22, ReagentInfoItem23] # 'normal testing, below info should be updated:' InstrumentInfo1 = InstrumentReagentInfo('5', 'A24', '20160101110909', ReagentInfoList1) InstrumentInfo2 = InstrumentReagentInfo('7', 'CEN', '20151212090923', ReagentInfoList2) # 'abnormal testing, below info should not be updated:' InstrumentInfo3 = InstrumentReagentInfo('5', 'A24', '20150101110909', ReagentInfoList2) aptioReagentInfo = SystemReagentInfo() aptioReagentInfo.update_instrument_reagent_inventory(InstrumentInfo1) aptioReagentInfo.update_instrument_reagent_inventory(InstrumentInfo2) aptioReagentInfo.update_instrument_reagent_inventory(InstrumentInfo3) print aptioReagentInfo def test02(): from datetime import datetime dt1 = '20141117100340' dt = datetime.strptime(dt1,'%Y%m%d%H%M%S') print dt < None if __name__ == '__main__': test02()
null
null
null
null
[ 0 ]
2,492
a9df8e45c8b5068aeec2b79e21de6217a3103bb4
# -*- coding: utf-8 -*- from __future__ import unicode_literals import requests from bs4 import BeautifulSoup url = "http://javmobile.net/?s=julia" r = requests.get(url) soup = BeautifulSoup(r.content, "html.parser") imgs = soup.find_all("img" , {"class": "entry-thumb"}) images = [] titles = [] srcs = [] for img in imgs: images.append(img.get("src")) titles.append(img.get("title")) srcs.append(img.get("href")) videos = [] for src in srcs: url2 = "http://javmobile.net/censored/oppai/pppd-524-spence-mammary-gland-development-clinic-special-julia.html" r2 = requests.get(url2) soup2 = BeautifulSoup(r2.content, "html.parser") jsonList = {} for i in range(0,len(images)): jsonList.append({"name" : titles[i], "thumb": images[i]}) print jsonList
null
null
null
null
[ 0 ]
2,493
064792a6aba96a679bec606a85b19d4925861f7d
<mask token> class AppendTrailingSlashHandler(webapp2.RequestHandler): def get(self, uri): self.response.set_status(301) redirect_uri = uri + '/' self.response.headers['Location'] = redirect_uri self.response.headers['Content-Type'] = 'text/plain' self.response.write(redirect_uri) <mask token>
<mask token> class RedirectToSiteRootHandler(webapp2.RequestHandler): <mask token> class AppendTrailingSlashHandler(webapp2.RequestHandler): def get(self, uri): self.response.set_status(301) redirect_uri = uri + '/' self.response.headers['Location'] = redirect_uri self.response.headers['Content-Type'] = 'text/plain' self.response.write(redirect_uri) <mask token>
<mask token> class RedirectToSiteRootHandler(webapp2.RequestHandler): def get(self): self.response.set_status(301) self.response.headers['Location'] = '/' class AppendTrailingSlashHandler(webapp2.RequestHandler): def get(self, uri): self.response.set_status(301) redirect_uri = uri + '/' self.response.headers['Location'] = redirect_uri self.response.headers['Content-Type'] = 'text/plain' self.response.write(redirect_uri) <mask token>
import webapp2 class RedirectToSiteRootHandler(webapp2.RequestHandler): def get(self): self.response.set_status(301) self.response.headers['Location'] = '/' class AppendTrailingSlashHandler(webapp2.RequestHandler): def get(self, uri): self.response.set_status(301) redirect_uri = uri + '/' self.response.headers['Location'] = redirect_uri self.response.headers['Content-Type'] = 'text/plain' self.response.write(redirect_uri) app = webapp2.WSGIApplication([('/blog', RedirectToSiteRootHandler), ( '/blog/', RedirectToSiteRootHandler), ('(.*[^/])', AppendTrailingSlashHandler)], debug=True)
import webapp2 class RedirectToSiteRootHandler(webapp2.RequestHandler): def get(self): self.response.set_status(301) self.response.headers['Location'] = '/' class AppendTrailingSlashHandler(webapp2.RequestHandler): def get(self, uri): self.response.set_status(301) redirect_uri = uri + '/' self.response.headers['Location'] = redirect_uri self.response.headers['Content-Type'] = 'text/plain' self.response.write(redirect_uri) app = webapp2.WSGIApplication([ ('/blog', RedirectToSiteRootHandler), ('/blog/', RedirectToSiteRootHandler), ('(.*[^/])', AppendTrailingSlashHandler), ], debug=True)
[ 2, 3, 4, 6, 7 ]
2,494
6ad939ab541562efdaacb8b56865e76d1745176a
#!/usr/bin/env python # Ben Suay, RAIL # May 2013 # Worcester Polytechnic Institute # # http://openrave.org/docs/latest_stable/command_line_tools/ # openrave-robot.py /your/path/to/your.robot.xml --info=joints # On that page you can find more examples on how to use openrave-robot.py. from openravepy import * import sys if not __openravepy_build_doc__: from openravepy import * from numpy import * import numpy import time from rodrigues import * from TransformMatrix import * from str2num import * from TSR import * from math import * from copy import * import os # for file operations from RaveCBiRRT import * from base_wheel_turning import * class HuboPlusWheelTurning( BaseWheelTurning ): def __init__(self, HuboModelPath = '../../openHubo/huboplus/rlhuboplus.robot.xml', WheelModelPath = '../../../drc_common/models/driving_wheel.robot.xml' ): BaseWheelTurning.__init__( self, HuboModelPath, WheelModelPath ) # Set those variables to show or hide the interface # Do it using the member functions self.StopAtKeyStrokes = False self.ShowUserInterface = False self.ViewerStarted = False # Right Hand Joints # Open - Closed Values self.rhanddofs = range(27,42) self.rhandclosevals = [0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0, 0, 1.2] self.rhandopenvals = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.08] # Left Hand Joints self.lhanddofs = range(42,57) self.lhandclosevals = [0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0.439, 0.683, 0.497, 0, 0, 1.2] self.lhandopenvals = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.08] def SetRobotConfiguration(self,jointValues): print "SetRobotConfiguration" values = [] values.append( jointValues['HPY'] ) # 0 values.append( jointValues['RHY'] ) # 1 values.append( jointValues['LHY'] ) # 2 values.append( jointValues['RHR'] ) # 3 values.append( jointValues['HPY'] ) # 4 values.append( jointValues['LHR'] ) # 5 values.append( jointValues['LHP'] ) # 6 values.append( jointValues['RKP'] ) # 7 values.append( jointValues['LKP'] ) # 8 values.append( jointValues['RAP'] ) # 9 values.append( jointValues['LAP'] ) # 10 values.append( jointValues['RAR'] ) # 11 values.append( jointValues['LAR'] ) # 12 values.append( jointValues['RSP'] ) # 13 values.append( jointValues['LSP'] ) # 14 values.append( jointValues['RSR'] ) # 15 values.append( jointValues['LSR'] ) # 16 values.append( jointValues['RSY'] ) # 17 values.append( jointValues['LSY'] ) # 18 values.append( jointValues['REP'] ) # 19 values.append( jointValues['LEP'] ) # 20 values.append( jointValues['RWY'] ) # 21 values.append( jointValues['LWY'] ) # 22 values.append( jointValues['RWP'] ) # 23 values.append( jointValues['LWP'] ) # 24 values.append( jointValues['HNR'] ) # 25 values.append( jointValues['HNP'] ) # 26 for i in range(27,57): values.append(0) # values.append( jointValues['rightIndexKnuckle2'] ) # 27 # values.append( jointValues['rightIndexKnuckle3'] ) # 28 # values.append( jointValues['rightIndexKnuckle1'] ) # 29 # values.append( jointValues['rightMiddleKnuckle2'] ) # 30 # values.append( jointValues['rightMiddleKnuckle3'] ) # 31 # values.append( jointValues['rightMiddleKnuckle1'] ) # 32 # values.append( jointValues['rightRingKnuckle2'] ) # 33 # values.append( jointValues['rightRingKnuckle3'] ) # 34 # values.append( jointValues['rightRingKnuckle1'] ) # 35 # values.append( jointValues['rightPinkyKnuckle2'] ) # 36 # values.append( jointValues['rightPinkyKnuckle3'] ) # 37 # values.append( jointValues['rightPinkyKnuckle1'] ) # 38 # values.append( jointValues['rightThumbKnuckle2'] ) # 39 # values.append( jointValues['rightThumbKnuckle3'] ) # 40 # values.append( jointValues['rightThumbKnuckle1'] ) # 41 # values.append( jointValues['leftIndexKnuckle2'] ) # 42 # values.append( jointValues['leftIndexKnuckle3'] ) # 43 # values.append( jointValues['leftIndexKnuckle1'] ) # 44 # values.append( jointValues['leftMiddleKnuckle2'] ) # 45 # values.append( jointValues['leftMiddleKnuckle3'] ) # 46 # values.append( jointValues['leftMiddleKnuckle1'] ) # 47 # values.append( jointValues['leftRingKnuckle2'] ) # 48 # values.append( jointValues['leftRingKnuckle3'] ) # 49 # values.append( jointValues['leftRingKnuckle1'] ) # 50 # values.append( jointValues['leftPinkyKnuckle2'] ) # 51 # values.append( jointValues['leftPinkyKnuckle3'] ) # 52 # values.append( jointValues['leftPinkyKnuckle1'] ) # 53 # values.append( jointValues['leftThumbKnuckle2'] ) # 54 # values.append( jointValues['leftThumbKnuckle3'] ) # 55 # values.append( jointValues['leftThumbKnuckle1'] ) # 56 self.robotid.SetDOFValues( values ) def Run(self): self.RemoveFiles() # This is a list of handles of the objects that are # drawn on the screen in OpenRAVE Qt-Viewer. # Keep appending to the end, and pop() if you want to delete. handles = [] normalsmoothingitrs = 150; fastsmoothingitrs = 20; self.StartViewerAndSetWheelPos( handles ) # Wheel Joint Index crankjointind = 0 # Set the wheel joints back to 0 for replanning self.crankid.SetDOFValues([0],[crankjointind]) self.crankid.GetController().Reset(0) manips = self.robotid.GetManipulators() crankmanip = self.crankid.GetManipulators() try: cbirrtHubo = RaveCBiRRT(self.env,'rlhuboplus') cbirrtWheel = RaveCBiRRT(self.env,'crank') except openrave_exception, e: print e return [] # Keep Active Joint Indices # Note that 0 is the driving wheel #activedofs = [0] activedofs = [] for m in manips: # print m.GetArmIndices() activedofs.extend(m.GetArmIndices()) # Sort Active Joint Indices activedofs.sort() #print activedofs # Set Elbows and Thumbs Joint Values self.robotid.SetDOFValues([-0.95,-0.95,1,1],[19,20,41,56]) self.robotid.SetActiveDOFs(activedofs) # Current configuration of the robot is its initial configuration initconfig = self.robotid.GetActiveDOFValues() print "robot init config : " print initconfig # List of Robot Links links = self.robotid.GetLinks() # List of Wheel (Crank Links) cranklinks = self.crankid.GetLinks() # End Effector Transforms Tee = [] for i in range(len(manips)): # Returns End Effector Transform in World Coordinates Tlink = manips[i].GetEndEffectorTransform() Tee.append(Tlink) # Get Transformation Matrix for the Wheel # Note that crank's links are not rotated # If you want use the wheel's end effector's transformation # matrix (which is 23 degrees tilted) then see # CTee matrix below. # # crank has two links: # 0) pole - the blue cylinder in the model, and, # 1) crank - the driving wheel itself. jointtm = cranklinks[0].GetTransform() # handles.append(misc.DrawAxes(env,matrix(jointtm),1)) # We can also get the transformation matrix # with the following command as a string jointtm_str = cbirrtHubo.solve('GetJointTransform name crank jointind '+str(crankjointind)) # And then we can convert the string to a 1x12 array jointtm_str = jointtm_str.replace(" ",",") jointtm_num = eval('['+jointtm_str+']') # In this script we will use jointtm. # jointtm_str and jointtm_num are given as example. # Crank Transform End Effector in World Coordinates # This is the transformation matrix of the end effector # named "dummy" in the xml file. # Note that dummy is tilted 23 degress around its X-Axis CTee = crankmanip[0].GetEndEffectorTransform() tilt_angle_deg = acos(dot(linalg.inv(CTee),jointtm)[1,1])*180/pi tilt_angle_rad = acos(dot(linalg.inv(CTee),jointtm)[1,1]) # Center of Gravity Target cogtarg = [-0.05, 0.085, 0] #if self.ShowUserInterface : #cogtm = MakeTransform(rodrigues([0,0,0]),transpose(matrix(cogtarg))) #handles.append(misc.DrawAxes(self.env,cogtm,1)) # polyscale: changes the scale of the support polygon # polytrans: shifts the support polygon around footlinknames = ' Body_RAR Body_LAR polyscale 0.5 0.5 0 polytrans -0.015 0 0 ' #footlinknames = ' Body_RAR Body_LAR polyscale 0.7 0.5 0 polytrans -0.015 0 0 ' #footlinknames = ' Body_RAR Body_LAR polyscale 1.0 1.0 0 polytrans 0 0 0 ' # What is this? handrot = rodrigues([0,-pi/2,0]) # Translation Offset from the wheel center for the hands transoffset = [0, 0.15, 0]; # Figure out where to put the left hand on the wheel temp = dot(CTee, MakeTransform(rodrigues([-pi/2,0,0]),transpose(matrix([0,0,0])))) temp = dot(temp, MakeTransform(rodrigues([0,0,-pi/2]),transpose(matrix([0,0,0])))) # Left Hand Pose in World Coordinates T0_LH1 = dot(temp, MakeTransform(rodrigues([0,0,0]),transpose(matrix([0,0.15,0])))) # Uncomment if you want to see where T0_LH1 is # handles.append(misc.DrawAxes(env,matrix(T0_LH1),1)) # Figure out where to put the right hand on the wheel temp = dot(CTee, MakeTransform(rodrigues([-pi/2,0,0]),transpose(matrix([0,0,0])))) temp = dot(temp, MakeTransform(rodrigues([0,0,-pi/2]),transpose(matrix([0,0,0])))) # Right Hand Pose in World Coordinates T0_RH1 = dot(temp, MakeTransform(rodrigues([0,0,0]),transpose(matrix([0,-0.15,0])))) # Uncomment if you want to see where T0_RH1 is # handles.append(misc.DrawAxes(env,matrix(T0_RH1),1)) # Define Task Space Region strings # Left Hand TSRString1 = SerializeTSR(0,'NULL',T0_LH1,eye(4),matrix([0,0,0,0,0,0,0,0,0,0,0,0])) # Right Hand TSRString2 = SerializeTSR(1,'NULL',T0_RH1,eye(4),matrix([0,0,0,0,0,0,0,0,0,0,0,0])) # Left Foot TSRString3 = SerializeTSR(2,'NULL',Tee[2],eye(4),matrix([0,0,0,0,0,0,0,0,0,0,0,0])) # Head # Grasp transform in Head coordinates Tw0_eH = eye(4) # How much freedom do we want to give to the Head # [x,x,y,y,z,z,R,R,P,P,Y,Y] Bw0H = matrix([0,0,-0.1,0.1,-0.1,0.01,0,0,0,0,0,0]) TSRString4 = SerializeTSR(4,'NULL',Tee[4],Tw0_eH,Bw0H) # We defined Task Space Regions. Now let's concatenate them. TSRChainStringGrasping = SerializeTSRChain(0,1,0,1,TSRString1,'NULL',[])+' '+SerializeTSRChain(0,1,0,1,TSRString2,'NULL',[])+' '+SerializeTSRChain(0,1,1,1,TSRString3,'NULL',[])+' '+SerializeTSRChain(0,1,1,1,TSRString4,'NULL',[]) if( self.StopAtKeyStrokes ): print "Press Enter to plan initconfig --> startik" sys.stdin.readline() # Get a trajectory from initial configuration to grasp configuration with self.robotid: try: answer = cbirrtHubo.solve('RunCBiRRT psample 0.2 supportlinks 2 '+footlinknames+' smoothingitrs '+str(normalsmoothingitrs)+' '+TSRChainStringGrasping) print "RunCBiRRT answer: ",str(answer) except openrave_exception, e: print "Cannot send command RunCBiRRT: " print e return [] try: os.rename("cmovetraj.txt","movetraj0.txt") except OSError, e: # No file cmovetraj print e return [] # The following is the same as commented out try-except section traj = RaveCreateTrajectory(self.env,'').deserialize(open('movetraj0.txt','r').read()) self.robotid.GetController().SetPath(traj) self.robotid.WaitForController(0) self.robotid.GetController().Reset(0) # Reset(0) releases the controller, otherwise after calling # SetPath the robot controller actively holds the trajectory's final joint values # Instead of 4 lines above, we could use the following block # to play the trajectory # # try: # answer= cbirrtHubo.solve('traj movetraj0.txt'); # robotid.WaitForController(0) # sys.stdin.readline() # # debug # print "traj call answer: ",str(answer) # except openrave_exception, e: # print e # Get the current configuration of the robot # and assign it to startik (start of the wheel # rotation path). startik = self.robotid.GetActiveDOFValues() # Left Hand's index is less than the right hand. # Hence it is evaluated first by the CBiRRT Module. # That's why We need to define the right hand's # transform relative to the wheel (ask Dmitry Berenson # about this for more information). temp1 = MakeTransform(rodrigues([-pi/2,0,0]),transpose(matrix([0,0,0]))) temp2 = MakeTransform(rodrigues([0,0,-pi/2]),transpose(matrix([0,0,0]))) # Rotate the wheel's transform to a suitable pose # for the Left Hand # T0_w0L stands for: # left hand's transform on wheel in world coordinates T0_w0L = dot(dot(CTee,temp1),temp2) # This is what's happening: # # Tw0L_0 = linalg.inv(T0_w0L) # Tw0L_LH1 = Tw0L_0*T0_LH1 # # Left hand's transform in wheel's coordinates Tw0L_LH1 = dot(linalg.inv(T0_w0L),T0_LH1) # Transform of the left hand's end effector in wheel's coords. # Required by CBiRRT Tw0_eL = Tw0L_LH1 # How much freedom do we want to give to the left hand Bw0L = matrix([0,0,0,0,0,0,0,pi,0,0,0,0]) # Right Hand's transforms: T0_crankcrank = self.crankid.GetManipulators()[0].GetTransform() T0_w0R = MakeTransform(rodrigues([tilt_angle_rad,0,0]),transpose(matrix([0,0,0]))) # End effector transform in wheel coordinates Tw0_eR = dot(linalg.inv(T0_crankcrank),T0_RH1) #handles.append(misc.DrawAxes(env,matrix(Tw0_eR),1)) # How much freedom? (note: in frame of crank) Bw0R = matrix([0,0,0,0,0,0,0,0,0,0,0,0]) # Head's transforms: T0_w0H = Tee[4] Tw0_eH = eye(4); Bw0H = matrix([-0.05,0.05,-0.1,0.1,-100,100,-pi,pi,-pi,pi,-pi,pi]) # Define Task Space Regions # Left Hand TSRString1 = SerializeTSR(0,'NULL',T0_w0L,Tw0_eL,Bw0L) # Right Hand TSRString2 = SerializeTSR(1,'crank crank',T0_w0R,Tw0_eR,Bw0R) # Left Foot TSRString3 = SerializeTSR(2,'NULL',Tee[2],eye(4),matrix([0,0,0,0,0,0,0,0,0,0,0,0])) # Head TSRString4 = SerializeTSR(4,'NULL',T0_w0H,Tw0_eH,Bw0H) TSRChainStringFootOnly = SerializeTSRChain(0,0,1,1,TSRString3,'NULL',[]) TSRChainStringFootandHead = TSRChainStringFootOnly+' '+SerializeTSRChain(0,0,1,1,TSRString4,'NULL',[]) TSRChainStringTurning = SerializeTSRChain(0,0,1,1,TSRString1,'crank',matrix([crankjointind]))+' '+SerializeTSRChain(0,0,1,1,TSRString2,'NULL',[])+' '+TSRChainStringFootandHead # Calculate hand transforms after rotating the wheel (they will help us find the goalik): # How much do we want to rotate the wheel? crank_rot = pi/6.5 # Which joint do we want the CBiRRT to mimic the TSR for? TSRChainMimicDOF = 1 # Create the transform for the wheel that we would like to reach to Tcrank_rot = MakeTransform(rodrigues([crank_rot,0,0]),transpose(matrix([0,0,0]))) # What is this? temp = MakeTransform(rodrigues([0,0,crank_rot]),transpose(matrix([0,0,0]))) # Rotate the left hand's transform on the wheel in world transform "crank_rot" radians around it's Z-Axis T0_cranknew = dot(T0_w0L,Tcrank_rot) # Where will the left hand go after turning the wheel? # This is what's happening: # # Tcranknew_LH2 = dot(Tw0L_0,T0_LH1) --> Left hand in wheel's coordinate # T0_LH2 = dot(T0_cranknew,Tcranknew_LH2) --> Left hand rotated around wheel's origin T0_LH2 = dot(T0_cranknew,dot(linalg.inv(T0_w0L),T0_LH1)) # Uncomment to see T0_LH2 # handles.append(misc.DrawAxes(env,matrix(T0_LH2),1)) # Where will the right hand go after turning the wheel? T0_RH2 = dot(T0_crankcrank,dot(temp,dot(linalg.inv(T0_crankcrank),T0_RH1))) # Uncomment to see T0_RH2 # handles.append(misc.DrawAxes(env,matrix(T0_RH2),1)) arg1 = str(cogtarg).strip("[]").replace(', ',' ') arg2 = trans_to_str(T0_LH2) arg3 = trans_to_str(T0_RH2) arg4 = trans_to_str(Tee[2]) # print arg1 # print arg2 # print arg3 # print arg4 if( self.StopAtKeyStrokes ): print "Press Enter to find a goalIK" sys.stdin.readline() self.crankid.SetDOFValues([crank_rot],[crankjointind]) goalik = cbirrtHubo.solve('DoGeneralIK exec supportlinks 2 '+footlinknames+' movecog '+arg1+' nummanips 3 maniptm 0 '+arg2+' maniptm 1 '+arg3+' maniptm 2 '+arg4) # print "goalIK" # print goalik self.robotid.SetActiveDOFValues(str2num(goalik)) self.crankid.SetDOFValues([crank_rot],[crankjointind]) if( self.StopAtKeyStrokes ): print "Press Enter to go to startik" sys.stdin.readline() # Get a trajectory from goalik to grasp configuration goaljoints = deepcopy(goalik) for i in range(TSRChainMimicDOF): goaljoints += ' 0' goaljoints = str2num(goaljoints) self.robotid.SetActiveDOFValues(startik) time.sleep(0.5) self.robotid.SetDOFValues(self.rhandclosevals,self.rhanddofs) self.robotid.SetDOFValues(self.lhandclosevals,self.lhanddofs) # Close hands to start "turning" the wheel self.crankid.SetDOFValues([0],[crankjointind]) time.sleep(0.5) if( self.StopAtKeyStrokes ): print "Press Enter to plan startik --> goalik (DMITRY!!!)" sys.stdin.readline() print self.robotid.GetActiveDOFValues() print TSRChainStringTurning try: answer = cbirrtHubo.solve('RunCBiRRT supportlinks 2 '+footlinknames+' smoothingitrs '+str(fastsmoothingitrs)+' jointgoals '+str(len(goaljoints))+' '+Serialize1DMatrix(matrix(goaljoints))+' '+TSRChainStringTurning) print "RunCBiRRT answer: ",str(answer) except openrave_exception, e: print "Cannot send command RunCBiRRT: " print e return [] try: os.rename("cmovetraj.txt","movetraj1.txt") except OSError, e: # No file cmovetraj print e return [] # The following is the same as commented out try-except section # traj = RaveCreateTrajectory(env,'').deserialize(open('movetraj1.txt','r').read()) # robotid.GetController().SetPath(traj) # crankid.GetController().SetPath(traj) # robotid.WaitForController(0) # crankid.WaitForController(0) # robotid.GetController().Reset(0) # crankid.GetController().Reset(0) try: answer= cbirrtHubo.solve('traj movetraj1.txt'); answer= cbirrtWheel.solve('traj movetraj1.txt'); self.robotid.WaitForController(0) # debug print "traj call answer: ",str(answer) except openrave_exception, e: print e return [] self.robotid.GetController().Reset(0) self.robotid.SetDOFValues(self.rhandopenvals,self.rhanddofs) self.robotid.SetDOFValues(self.lhandopenvals,self.lhanddofs) self.robotid.SetActiveDOFValues(str2num(goalik)) time.sleep(2) if( self.StopAtKeyStrokes ): print "Press Enter to plan goalik --> startik " sys.stdin.readline() goaljoints = startik print self.robotid.GetActiveDOFValues() print TSRChainStringFootandHead try: answer = cbirrtHubo.solve('RunCBiRRT supportlinks 2 '+footlinknames+' smoothingitrs '+str(normalsmoothingitrs)+' jointgoals '+str(len(goaljoints))+' '+Serialize1DMatrix(matrix(goaljoints))+' '+TSRChainStringFootandHead) print "RunCBiRRT answer: ",str(answer) except openrave_exception, e: print "Cannot send command RunCBiRRT: " print e return [] try: os.rename("cmovetraj.txt","movetraj2.txt") except OSError, e: # No file cmovetraj print e return [] try: answer= cbirrtHubo.solve('traj movetraj2.txt'); self.robotid.WaitForController(0) # debug print "traj call answer: ",str(answer) except openrave_exception, e: print e return [] self.robotid.GetController().Reset(0) #self.robotid.SetDOFValues(rhandclosevals,rhanddofs) #self.robotid.SetDOFValues(lhandclosevals,lhanddofs) self.robotid.SetActiveDOFValues(startik) time.sleep(1) if( self.StopAtKeyStrokes ): print "Press Enter to plan startik --> initconfig " sys.stdin.readline() goaljoints = initconfig print goaljoints try: answer = cbirrtHubo.solve('RunCBiRRT supportlinks 2 '+footlinknames+' smoothingitrs '+str(normalsmoothingitrs)+' jointgoals '+str(len(goaljoints))+' '+Serialize1DMatrix(matrix(goaljoints))+' '+TSRChainStringFootandHead) print "RunCBiRRT answer: ",str(answer) except openrave_exception, e: print "Cannot send command RunCBiRRT: " print e return [] try: os.rename("cmovetraj.txt","movetraj3.txt") except OSError, e: # No file cmovetraj print e return [] try: answer= cbirrtHubo.solve('traj movetraj3.txt'); self.robotid.WaitForController(0) # debug print "traj call answer: ",str(answer) except openrave_exception, e: print e return [] self.robotid.GetController().Reset(0) return self.Playback() if __name__ == "__main__": planner = HuboPlusWheelTurning() planner.SetViewer(True) planner.SetStopKeyStrokes(False) planner.Run() planner.KillOpenrave()
null
null
null
null
[ 0 ]
2,495
5d4585dc96d4ebdbc15b7382038cfea959c9a6f3
<mask token> class Filter: <mask token> @classmethod def get_incorrect_vector_example(cls, file_list, example_number): """含まれる瞬時データの内指定した個数のデータがそれぞれ持つ誤ベクトル数""" incorrect_vector_list = [] try: file_list = file_list[0:example_number] except: pass for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) return incorrect_vector_list @classmethod def get_incorrect_vector_all(cls, file_list): """含まれる瞬時データ全てがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) return incorrect_vector_list @classmethod def show_incorrect_vector_example(cls, file_list, example_number): """含まれる瞬時データの内指定した個数のデータがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] try: file_list = file_list[0:example_number] except: pass for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) incorrect_vector_mean = mean(incorrect_vector_list) plt.title('incorrect vector NO. of first {} data'.format( example_number)) plt.scatter(range(len(incorrect_vector_list)), incorrect_vector_list) plt.axhline(incorrect_vector_mean, color='black') plt.text(0, incorrect_vector_mean + 50, 'mean value = ' + str( incorrect_vector_mean)) plt.gca().yaxis.set_minor_locator(tick.MultipleLocator(100)) plt.grid(which='minor') plt.show() @classmethod def show_incorrect_vector_all(cls, file_list): """含まれる瞬時データ全てがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) incorrect_vector_mean = mean(incorrect_vector_list) plt.title('incorrect vector NO. of all data') plt.scatter(range(len(incorrect_vector_list)), incorrect_vector_list) plt.axhline(incorrect_vector_mean, color='black') plt.text(0, incorrect_vector_mean + 50, 'mean value = ' + str( incorrect_vector_mean)) plt.grid() plt.show() <mask token> @staticmethod def get_total_incorrect_vector(file): """瞬時データに含まれる誤ベクトルの数を返す""" data = dymod.InstantData(file) status = data.get_data('Status') return np.sum((status == 1) | (status == 17)) <mask token>
<mask token> class Filter: """誤ベクトル数の確認,誤ベクトル数によるフィルタリング処理""" @classmethod def get_incorrect_vector_example(cls, file_list, example_number): """含まれる瞬時データの内指定した個数のデータがそれぞれ持つ誤ベクトル数""" incorrect_vector_list = [] try: file_list = file_list[0:example_number] except: pass for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) return incorrect_vector_list @classmethod def get_incorrect_vector_all(cls, file_list): """含まれる瞬時データ全てがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) return incorrect_vector_list @classmethod def show_incorrect_vector_example(cls, file_list, example_number): """含まれる瞬時データの内指定した個数のデータがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] try: file_list = file_list[0:example_number] except: pass for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) incorrect_vector_mean = mean(incorrect_vector_list) plt.title('incorrect vector NO. of first {} data'.format( example_number)) plt.scatter(range(len(incorrect_vector_list)), incorrect_vector_list) plt.axhline(incorrect_vector_mean, color='black') plt.text(0, incorrect_vector_mean + 50, 'mean value = ' + str( incorrect_vector_mean)) plt.gca().yaxis.set_minor_locator(tick.MultipleLocator(100)) plt.grid(which='minor') plt.show() @classmethod def show_incorrect_vector_all(cls, file_list): """含まれる瞬時データ全てがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) incorrect_vector_mean = mean(incorrect_vector_list) plt.title('incorrect vector NO. of all data') plt.scatter(range(len(incorrect_vector_list)), incorrect_vector_list) plt.axhline(incorrect_vector_mean, color='black') plt.text(0, incorrect_vector_mean + 50, 'mean value = ' + str( incorrect_vector_mean)) plt.grid() plt.show() @staticmethod def filter_incorrect_vector(file_list, filter_value): """ファイル名のリストから,誤ベクトル数がfilter_value以上のファイルの名前を除外する""" before = len(file_list) print('Filtering...') total_core = mp.cpu_count() pool = mp.Pool(total_core) args = [(file_list, total_core, i, filter_value) for i in range( total_core)] callback = pool.map(parallel_task, args) error_index_list = [] for each_error_index_list in callback: for error_index in each_error_index_list: error_index_list.append(error_index) error_index_list.sort(reverse=True) for error_index in error_index_list: del file_list[error_index] after = len(file_list) print('Finish!\nFiltered data:', str(before - after) + '/' + str( before)) return file_list @staticmethod def get_total_incorrect_vector(file): """瞬時データに含まれる誤ベクトルの数を返す""" data = dymod.InstantData(file) status = data.get_data('Status') return np.sum((status == 1) | (status == 17)) <mask token>
<mask token> class Filter: """誤ベクトル数の確認,誤ベクトル数によるフィルタリング処理""" @classmethod def get_incorrect_vector_example(cls, file_list, example_number): """含まれる瞬時データの内指定した個数のデータがそれぞれ持つ誤ベクトル数""" incorrect_vector_list = [] try: file_list = file_list[0:example_number] except: pass for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) return incorrect_vector_list @classmethod def get_incorrect_vector_all(cls, file_list): """含まれる瞬時データ全てがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) return incorrect_vector_list @classmethod def show_incorrect_vector_example(cls, file_list, example_number): """含まれる瞬時データの内指定した個数のデータがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] try: file_list = file_list[0:example_number] except: pass for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) incorrect_vector_mean = mean(incorrect_vector_list) plt.title('incorrect vector NO. of first {} data'.format( example_number)) plt.scatter(range(len(incorrect_vector_list)), incorrect_vector_list) plt.axhline(incorrect_vector_mean, color='black') plt.text(0, incorrect_vector_mean + 50, 'mean value = ' + str( incorrect_vector_mean)) plt.gca().yaxis.set_minor_locator(tick.MultipleLocator(100)) plt.grid(which='minor') plt.show() @classmethod def show_incorrect_vector_all(cls, file_list): """含まれる瞬時データ全てがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) incorrect_vector_mean = mean(incorrect_vector_list) plt.title('incorrect vector NO. of all data') plt.scatter(range(len(incorrect_vector_list)), incorrect_vector_list) plt.axhline(incorrect_vector_mean, color='black') plt.text(0, incorrect_vector_mean + 50, 'mean value = ' + str( incorrect_vector_mean)) plt.grid() plt.show() @staticmethod def filter_incorrect_vector(file_list, filter_value): """ファイル名のリストから,誤ベクトル数がfilter_value以上のファイルの名前を除外する""" before = len(file_list) print('Filtering...') total_core = mp.cpu_count() pool = mp.Pool(total_core) args = [(file_list, total_core, i, filter_value) for i in range( total_core)] callback = pool.map(parallel_task, args) error_index_list = [] for each_error_index_list in callback: for error_index in each_error_index_list: error_index_list.append(error_index) error_index_list.sort(reverse=True) for error_index in error_index_list: del file_list[error_index] after = len(file_list) print('Finish!\nFiltered data:', str(before - after) + '/' + str( before)) return file_list @staticmethod def get_total_incorrect_vector(file): """瞬時データに含まれる誤ベクトルの数を返す""" data = dymod.InstantData(file) status = data.get_data('Status') return np.sum((status == 1) | (status == 17)) def parallel_task(args): """並列計算タスク""" file_list, total_core, current_core, filter_value = args file_count = len(file_list) start = int(file_count * current_core / total_core) end = int(file_count * (current_core + 1) / total_core) - 1 header = dymod.InstantData.get_header_row(file_list[0]) error_file_index_list = [] text = 'filtering task ' + str(current_core + 1) + '/' + str(total_core) for i in tqdm(range(start, end), desc=text): status = pd.read_csv(file_list[i], header=header)['Status'] if np.sum((status == 1) | (status == 17)) >= filter_value: error_file_index_list.append(i) return error_file_index_list <mask token>
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.ticker as tick from statistics import mean from tqdm import tqdm import multiprocessing as mp from . import model as dymod class Filter: """誤ベクトル数の確認,誤ベクトル数によるフィルタリング処理""" @classmethod def get_incorrect_vector_example(cls, file_list, example_number): """含まれる瞬時データの内指定した個数のデータがそれぞれ持つ誤ベクトル数""" incorrect_vector_list = [] try: file_list = file_list[0:example_number] except: pass for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) return incorrect_vector_list @classmethod def get_incorrect_vector_all(cls, file_list): """含まれる瞬時データ全てがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) return incorrect_vector_list @classmethod def show_incorrect_vector_example(cls, file_list, example_number): """含まれる瞬時データの内指定した個数のデータがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] try: file_list = file_list[0:example_number] except: pass for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) incorrect_vector_mean = mean(incorrect_vector_list) plt.title('incorrect vector NO. of first {} data'.format( example_number)) plt.scatter(range(len(incorrect_vector_list)), incorrect_vector_list) plt.axhline(incorrect_vector_mean, color='black') plt.text(0, incorrect_vector_mean + 50, 'mean value = ' + str( incorrect_vector_mean)) plt.gca().yaxis.set_minor_locator(tick.MultipleLocator(100)) plt.grid(which='minor') plt.show() @classmethod def show_incorrect_vector_all(cls, file_list): """含まれる瞬時データ全てがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) incorrect_vector_mean = mean(incorrect_vector_list) plt.title('incorrect vector NO. of all data') plt.scatter(range(len(incorrect_vector_list)), incorrect_vector_list) plt.axhline(incorrect_vector_mean, color='black') plt.text(0, incorrect_vector_mean + 50, 'mean value = ' + str( incorrect_vector_mean)) plt.grid() plt.show() @staticmethod def filter_incorrect_vector(file_list, filter_value): """ファイル名のリストから,誤ベクトル数がfilter_value以上のファイルの名前を除外する""" before = len(file_list) print('Filtering...') total_core = mp.cpu_count() pool = mp.Pool(total_core) args = [(file_list, total_core, i, filter_value) for i in range( total_core)] callback = pool.map(parallel_task, args) error_index_list = [] for each_error_index_list in callback: for error_index in each_error_index_list: error_index_list.append(error_index) error_index_list.sort(reverse=True) for error_index in error_index_list: del file_list[error_index] after = len(file_list) print('Finish!\nFiltered data:', str(before - after) + '/' + str( before)) return file_list @staticmethod def get_total_incorrect_vector(file): """瞬時データに含まれる誤ベクトルの数を返す""" data = dymod.InstantData(file) status = data.get_data('Status') return np.sum((status == 1) | (status == 17)) def parallel_task(args): """並列計算タスク""" file_list, total_core, current_core, filter_value = args file_count = len(file_list) start = int(file_count * current_core / total_core) end = int(file_count * (current_core + 1) / total_core) - 1 header = dymod.InstantData.get_header_row(file_list[0]) error_file_index_list = [] text = 'filtering task ' + str(current_core + 1) + '/' + str(total_core) for i in tqdm(range(start, end), desc=text): status = pd.read_csv(file_list[i], header=header)['Status'] if np.sum((status == 1) | (status == 17)) >= filter_value: error_file_index_list.append(i) return error_file_index_list filtering = Filter()
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.ticker as tick from statistics import mean from tqdm import tqdm import multiprocessing as mp from . import model as dymod class Filter: """誤ベクトル数の確認,誤ベクトル数によるフィルタリング処理""" @classmethod def get_incorrect_vector_example(cls, file_list, example_number): """含まれる瞬時データの内指定した個数のデータがそれぞれ持つ誤ベクトル数""" incorrect_vector_list = [] try: file_list = file_list[0:example_number] except: pass for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) return incorrect_vector_list @classmethod def get_incorrect_vector_all(cls, file_list): """含まれる瞬時データ全てがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) return incorrect_vector_list @classmethod def show_incorrect_vector_example(cls, file_list, example_number): """含まれる瞬時データの内指定した個数のデータがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] try: file_list = file_list[0:example_number] except: pass for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) incorrect_vector_mean = mean(incorrect_vector_list) # plot plt.title('incorrect vector NO. of first {} data'.format(example_number)) plt.scatter(range(len(incorrect_vector_list)), incorrect_vector_list) plt.axhline(incorrect_vector_mean, color='black') plt.text(0, incorrect_vector_mean + 50, 'mean value = ' + str(incorrect_vector_mean)) plt.gca().yaxis.set_minor_locator(tick.MultipleLocator(100)) plt.grid(which='minor') plt.show() @classmethod def show_incorrect_vector_all(cls, file_list): """含まれる瞬時データ全てがそれぞれ持つ誤ベクトル数を表示する""" incorrect_vector_list = [] for i, file in enumerate(tqdm(file_list)): total_incorrect_vector = cls.get_total_incorrect_vector(file) incorrect_vector_list.append(total_incorrect_vector) incorrect_vector_mean = mean(incorrect_vector_list) # plot plt.title('incorrect vector NO. of all data') plt.scatter(range(len(incorrect_vector_list)), incorrect_vector_list) plt.axhline(incorrect_vector_mean, color='black') plt.text(0, incorrect_vector_mean + 50, 'mean value = ' + str(incorrect_vector_mean)) plt.grid() plt.show() @staticmethod def filter_incorrect_vector(file_list, filter_value): """ファイル名のリストから,誤ベクトル数がfilter_value以上のファイルの名前を除外する""" before = len(file_list) print('Filtering...') total_core = mp.cpu_count() pool = mp.Pool(total_core) args = [(file_list, total_core, i, filter_value) for i in range(total_core)] callback = pool.map(parallel_task, args) error_index_list = [] for each_error_index_list in callback: for error_index in each_error_index_list: error_index_list.append(error_index) error_index_list.sort(reverse=True) for error_index in error_index_list: del file_list[error_index] after = len(file_list) print('Finish!\nFiltered data:', str(before - after) + '/' + str(before)) return file_list @staticmethod def get_total_incorrect_vector(file): """瞬時データに含まれる誤ベクトルの数を返す""" data = dymod.InstantData(file) status = data.get_data('Status') return np.sum((status == 1) | (status == 17)) def parallel_task(args): """並列計算タスク""" file_list, total_core, current_core, filter_value = args file_count = len(file_list) start = int(file_count * current_core / total_core) end = int(file_count * (current_core + 1) / total_core) - 1 header = dymod.InstantData.get_header_row(file_list[0]) error_file_index_list = [] text = 'filtering task ' + str(current_core + 1) + '/' + str(total_core) for i in tqdm(range(start, end), desc=text): status = pd.read_csv(file_list[i], header=header)['Status'] if np.sum((status == 1) | (status == 17)) >= filter_value: error_file_index_list.append(i) return error_file_index_list filtering = Filter()
[ 6, 8, 9, 11, 12 ]
2,496
6161653fb789040d084e475e0ae25921e2e0676b
<mask token>
<mask token> for i in k: if n % i == 0: f = 1 print('YES') break if f == 0: print('NO')
n = int(input()) k = [4, 7, 47, 74, 44, 77, 444, 447, 474, 477, 777, 774, 747, 7444] f = 0 for i in k: if n % i == 0: f = 1 print('YES') break if f == 0: print('NO')
n=int(input()) k=[4,7,47,74,44,77,444,447,474,477,777,774,747,7444] f=0 for i in k: if(n%i==0): f=1 print("YES") break; if(f==0): print("NO")
null
[ 0, 1, 2, 3 ]
2,497
2f0dc8697e979f307c86a08832b0eae86357d416
<mask token>
<mask token> with open(filename) as file_object: lines = file_object.readlines() <mask token> for line in lines: c_string += line.rstrip() print(f"{c_string.replace('Python', 'Scala')}")
filename = 'learning_python.txt' with open(filename) as file_object: lines = file_object.readlines() c_string = '' for line in lines: c_string += line.rstrip() print(f"{c_string.replace('Python', 'Scala')}")
filename = 'learning_python.txt' # with open(filename) as file_object: # contents = file_object.read() # print(contents) # with open(filename) as file_object: # for line in file_object: # print(line.rstrip()) with open(filename) as file_object: lines = file_object.readlines() c_string = '' for line in lines: c_string += line.rstrip() print(f"{c_string.replace('Python', 'Scala')}")
null
[ 0, 1, 2, 3 ]
2,498
d14937aaa7a80d6b95825afa2a2d6ff8202e5f5c
<mask token>
<mask token> print(filtered_words) <mask token> print(' '.join(singles))
stop_words = ['the', 'an', 'is', 'there'] word_list = ['we', 'are', 'the', 'students'] filtered_words = [word for word in word_list if word not in stop_words] print(filtered_words) <mask token> cachedStopWords = stopwords.words('english') <mask token> stemmer = PorterStemmer() test_strs = ['caresses', 'flies', 'dies', 'mules', 'denied', 'died', 'agreed', 'owned', 'humbled', 'sized', 'meeting', 'stating', 'siezing', 'itemization', 'sensational', 'traditional', 'reference', 'colonizer', 'plotted'] singles = [stemmer.stem(word) for word in test_strs] print(' '.join(singles))
stop_words = ['the', 'an', 'is', 'there'] word_list = ['we', 'are', 'the', 'students'] filtered_words = [word for word in word_list if word not in stop_words] print(filtered_words) from nltk.corpus import stopwords cachedStopWords = stopwords.words('english') from nltk.stem.porter import * stemmer = PorterStemmer() test_strs = ['caresses', 'flies', 'dies', 'mules', 'denied', 'died', 'agreed', 'owned', 'humbled', 'sized', 'meeting', 'stating', 'siezing', 'itemization', 'sensational', 'traditional', 'reference', 'colonizer', 'plotted'] singles = [stemmer.stem(word) for word in test_strs] print(' '.join(singles))
# 出现频率特别高的和频率特别低的词对于文本分析帮助不大,一般在预处理阶段会过滤掉。 # 在英文里,经典的停用词为 “The”, "an".... # 方法1: 自己建立一个停用词词典 stop_words = ["the", "an", "is", "there"] # 在使用时: 假设 word_list包含了文本里的单词 word_list = ["we", "are", "the", "students"] filtered_words = [word for word in word_list if word not in stop_words] print (filtered_words) # 方法2:直接利用别人已经构建好的停用词库 from nltk.corpus import stopwords cachedStopWords = stopwords.words("english") from nltk.stem.porter import * stemmer = PorterStemmer() test_strs = ['caresses', 'flies', 'dies', 'mules', 'denied', 'died', 'agreed', 'owned', 'humbled', 'sized', 'meeting', 'stating', 'siezing', 'itemization', 'sensational', 'traditional', 'reference', 'colonizer', 'plotted'] singles = [stemmer.stem(word) for word in test_strs] print(' '.join(singles)) # doctest: +NORMALIZE_WHITESPACE
[ 0, 1, 2, 3, 4 ]
2,499
664f9d5aa981c3590043fae1d0c80441bda4fbb1
<mask token> @app.route('/') def home(): thing = request.args.get('thing') height = request.args.get('height') color = request.args.get('color') return render_template('home1.html', thing=thing, height=height, color= color) <mask token>
<mask token> print( """ ================================ RESTART ================================ """ ) <mask token> print( """ ================================ RESTART ================================ """ ) <mask token> print( """ ================================ RESTART ================================ """ ) <mask token> print( """ ================================ RESTART ================================ """ ) <mask token> @app.route('/') def home(): thing = request.args.get('thing') height = request.args.get('height') color = request.args.get('color') return render_template('home1.html', thing=thing, height=height, color= color) if __name__ == '__main__': app.run(debug=True)
<mask token> print( """ ================================ RESTART ================================ """ ) <mask token> print( """ ================================ RESTART ================================ """ ) <mask token> print( """ ================================ RESTART ================================ """ ) <mask token> print( """ ================================ RESTART ================================ """ ) <mask token> app = Flask(__name__) @app.route('/') def home(): thing = request.args.get('thing') height = request.args.get('height') color = request.args.get('color') return render_template('home1.html', thing=thing, height=height, color= color) if __name__ == '__main__': app.run(debug=True)
<mask token> print( """ ================================ RESTART ================================ """ ) <mask token> print( """ ================================ RESTART ================================ """ ) <mask token> print( """ ================================ RESTART ================================ """ ) <mask token> print( """ ================================ RESTART ================================ """ ) <mask token> from flask import Flask, render_template, request app = Flask(__name__) @app.route('/') def home(): thing = request.args.get('thing') height = request.args.get('height') color = request.args.get('color') return render_template('home1.html', thing=thing, height=height, color= color) if __name__ == '__main__': app.run(debug=True)
#!/usr/bin/env python3 '''Глава 9. Распутываем Всемирную паутину''' '''1. Если вы еще не установили Flask, сделайте это сейчас. Это также установит werkzeug, jinja2 и, возможно, другие пакеты.''' # pip3 install flask print('\n================================ RESTART ================================\n') '''2. Создайте скелет сайта с помощью веб-сервера Flask. Убедитесь, что сервер начинает свою работу по адресу Localhost на стандартном порте 5000. Если ваш компьютер уже использует порт 5000 для чего-то еще, воспользуйтесь другим портом.''' '''from flask import Flask app = Flask(__name__) @app.route("/") def hello(): return "Hello World!" if __name__ == "__main__": app.run(port=5000, debug=True)''' print('\n================================ RESTART ================================\n') '''3. Добавьте функцию home() для обработки запросов к домашней странице. Пусть она возвращает строку It's alive!.''' '''from flask import Flask app = Flask(__name__) @app.route("/") def home(): return "It's alive!" if __name__ == "__main__": app.run(debug=True)''' print('\n================================ RESTART ================================\n') '''4. Создайте шаблон для jinja2, который называется home1.html и содержит следующий контент: <html> <head> <title>It's alive!</title> <body> I'm of course referring to {{thing}}, which is {{height}} feet tall and {{color}}. </body> </html>''' print('\n================================ RESTART ================================\n') '''5. Модифицируйте функцию home() вашего сервера, чтобы она использовала шаблон home1.html. Передайте ей три параметра для команды GET: thing, height и color.''' '''Перейдите в своем клиенте по следующему адресу: http://localhost:5000/?thing=Octothorpe&height=7&color=green''' from flask import Flask, render_template, request app = Flask(__name__) @app.route('/') def home(): thing = request.args.get('thing') height = request.args.get('height') color = request.args.get('color') return render_template('home1.html', thing=thing, height=height, color=color) if __name__ == "__main__": app.run(debug=True)
[ 1, 2, 3, 4, 5 ]