index
int64
0
10k
blob_id
stringlengths
40
40
step-1
stringlengths
0
305k
step-2
stringlengths
6
1.1M
step-3
stringlengths
15
1.23M
step-4
stringlengths
23
1.34M
step-5
stringlengths
55
1.2M
step-ids
listlengths
1
5
2,500
cee77a97503cca517d03ce7cce189974da282a03
<mask token>
<mask token> if len(inspect_tables) == 0: for k, t in enumerate(tickers): ticker_data = pd.DataFrame() try: ticker_data = wb.DataReader(t, data_source='yahoo', start=start_1) ticker_data.to_sql(tablenames[k], con=engine, if_exists='replace') except: print('New Import from {} went wrong'.format(t)) else: print('New Import from {} is done'.format(t)) else: for k, t in enumerate(tickers): if tablenames[k] not in inspect_tables: ticker_data = pd.DataFrame() try: ticker_data = wb.DataReader(t, data_source='yahoo', start= start_1) ticker_data.to_sql(tablenames[k], con=engine, if_exists= 'replace') except: print('New Import from {} went wrong'.format(t)) else: print('New Import from {} is done'.format(t)) else: ticker_data = pd.DataFrame() check_last_value = pd.read_sql_query(Select_last_value.format( tablenames[k]), con=engine) check_last_value2 = pd.to_datetime(check_last_value['Date'][0], format='%Y-%m-%d').date() if check_last_value2 != date_today: try: ticker_data = wb.DataReader(t, data_source='yahoo', start=check_last_value2 + dt.timedelta(days=1)) ticker_data.to_sql(tablenames[k], con=engine, if_exists ='append') except: print('Update Import from {} went wrong'.format(t)) else: print('Update Import from {} is done from {}'.format(t, str(check_last_value2 + dt.timedelta(days=1))))
<mask token> conn = sqlite3.connect('Portfolio_dividens.db') c = conn.cursor() <mask token> engine = create_engine('sqlite:///Portfolio_dividens.db') <mask token> path = os.getcwd() <mask token> date_today = dt.date.today() start_1 = '2005-1-1' tickers_df = pd.read_excel(path + '\\Tickers.xlsx') tickers = list(tickers_df['Ticker']) tablenames = list(tickers_df['tablenames']) <mask token> inspector = inspect(engine) inspect_tables = inspector.get_table_names() Select_last_value = "Select Date from '{}' order by date desc limit 1;" Check_table_exists = 'SHOW TABLES LIKE {}' if len(inspect_tables) == 0: for k, t in enumerate(tickers): ticker_data = pd.DataFrame() try: ticker_data = wb.DataReader(t, data_source='yahoo', start=start_1) ticker_data.to_sql(tablenames[k], con=engine, if_exists='replace') except: print('New Import from {} went wrong'.format(t)) else: print('New Import from {} is done'.format(t)) else: for k, t in enumerate(tickers): if tablenames[k] not in inspect_tables: ticker_data = pd.DataFrame() try: ticker_data = wb.DataReader(t, data_source='yahoo', start= start_1) ticker_data.to_sql(tablenames[k], con=engine, if_exists= 'replace') except: print('New Import from {} went wrong'.format(t)) else: print('New Import from {} is done'.format(t)) else: ticker_data = pd.DataFrame() check_last_value = pd.read_sql_query(Select_last_value.format( tablenames[k]), con=engine) check_last_value2 = pd.to_datetime(check_last_value['Date'][0], format='%Y-%m-%d').date() if check_last_value2 != date_today: try: ticker_data = wb.DataReader(t, data_source='yahoo', start=check_last_value2 + dt.timedelta(days=1)) ticker_data.to_sql(tablenames[k], con=engine, if_exists ='append') except: print('Update Import from {} went wrong'.format(t)) else: print('Update Import from {} is done from {}'.format(t, str(check_last_value2 + dt.timedelta(days=1))))
<mask token> import sqlite3 conn = sqlite3.connect('Portfolio_dividens.db') c = conn.cursor() from sqlalchemy import create_engine engine = create_engine('sqlite:///Portfolio_dividens.db') import os path = os.getcwd() <mask token> import pandas as pd from pandas_datareader import data as wb import datetime as dt date_today = dt.date.today() start_1 = '2005-1-1' tickers_df = pd.read_excel(path + '\\Tickers.xlsx') tickers = list(tickers_df['Ticker']) tablenames = list(tickers_df['tablenames']) from sqlalchemy import inspect inspector = inspect(engine) inspect_tables = inspector.get_table_names() Select_last_value = "Select Date from '{}' order by date desc limit 1;" Check_table_exists = 'SHOW TABLES LIKE {}' if len(inspect_tables) == 0: for k, t in enumerate(tickers): ticker_data = pd.DataFrame() try: ticker_data = wb.DataReader(t, data_source='yahoo', start=start_1) ticker_data.to_sql(tablenames[k], con=engine, if_exists='replace') except: print('New Import from {} went wrong'.format(t)) else: print('New Import from {} is done'.format(t)) else: for k, t in enumerate(tickers): if tablenames[k] not in inspect_tables: ticker_data = pd.DataFrame() try: ticker_data = wb.DataReader(t, data_source='yahoo', start= start_1) ticker_data.to_sql(tablenames[k], con=engine, if_exists= 'replace') except: print('New Import from {} went wrong'.format(t)) else: print('New Import from {} is done'.format(t)) else: ticker_data = pd.DataFrame() check_last_value = pd.read_sql_query(Select_last_value.format( tablenames[k]), con=engine) check_last_value2 = pd.to_datetime(check_last_value['Date'][0], format='%Y-%m-%d').date() if check_last_value2 != date_today: try: ticker_data = wb.DataReader(t, data_source='yahoo', start=check_last_value2 + dt.timedelta(days=1)) ticker_data.to_sql(tablenames[k], con=engine, if_exists ='append') except: print('Update Import from {} went wrong'.format(t)) else: print('Update Import from {} is done from {}'.format(t, str(check_last_value2 + dt.timedelta(days=1))))
""" Created on Wed Nov 6 13:03:42 2019 @author: antonio.blago """ #%% Connect to database import sqlite3 conn = sqlite3.connect('Portfolio_dividens.db') c = conn.cursor() from sqlalchemy import create_engine #suport pd.dataframe to sql table #import mysqlclient engine = create_engine("sqlite:///Portfolio_dividens.db") #%% Set up path import os # detect the current working directory and print it path = os.getcwd() #%% ''' Yahoo finance''' import pandas as pd from pandas_datareader import data as wb import datetime as dt date_today=dt.date.today() start_1='2005-1-1' tickers_df=pd.read_excel(path+r'\Tickers.xlsx') tickers=list(tickers_df['Ticker']) tablenames=list(tickers_df['tablenames']) from sqlalchemy import inspect inspector = inspect(engine) # Get table information inspect_tables=inspector.get_table_names() Select_last_value= "Select Date from '{}' order by date desc limit 1;" Check_table_exists="SHOW TABLES LIKE {}" #pd.read_sql_query(Select_last_value,con=engine) if len(inspect_tables)==0: #first initialize db for k, t in enumerate(tickers): ticker_data=pd.DataFrame() try: ticker_data=wb.DataReader(t, data_source='yahoo',start=start_1) ticker_data.to_sql(tablenames[k],con=engine,if_exists="replace" ) except: print("New Import from {} went wrong".format(t)) else: print("New Import from {} is done".format(t)) else: for k, t in enumerate(tickers): if tablenames[k] not in inspect_tables: #check table is existing ticker_data=pd.DataFrame() try: ticker_data=wb.DataReader(t, data_source='yahoo',start=start_1) ticker_data.to_sql(tablenames[k],con=engine,if_exists="replace" ) except: print("New Import from {} went wrong".format(t)) else: print("New Import from {} is done".format(t)) else: ticker_data=pd.DataFrame() check_last_value=pd.read_sql_query(Select_last_value.format(tablenames[k]),con=engine) check_last_value2=(pd.to_datetime(check_last_value['Date'][0],format="%Y-%m-%d")).date() if check_last_value2!=date_today: #dt.datetime.strptime("2019-11-13", "%Y-%m-%d")==pd.to_datetime(check_last_value['Date'][0]) try: ticker_data=wb.DataReader(t, data_source='yahoo',start=check_last_value2+dt.timedelta(days=1)) ticker_data.to_sql(tablenames[k],con=engine,if_exists="append") except: print("Update Import from {} went wrong".format(t)) else: print("Update Import from {} is done from {}".format(t,str(check_last_value2+dt.timedelta(days=1))))
[ 0, 1, 2, 3, 4 ]
2,501
e05f545ca969e0c2330779ed54a33a594d6ebb25
<mask token>
<mask token> print(r)
<mask token> a = 'Python|Java|C#|C++|Kotlin|JavaScript' r = re.findall('Java', a) print(r)
import re a = 'Python|Java|C#|C++|Kotlin|JavaScript' r = re.findall('Java', a) print(r)
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/7/10 14:26 # @Author : MengHe # @File : c1.py # @Software: PyCharm import re a = 'Python|Java|C#|C++|Kotlin|JavaScript' r = re.findall('Java', a) print(r) # print(a.index('Python') > -1) # print('Kotlin' in a)
[ 0, 1, 2, 3, 4 ]
2,502
eed79a3895975a0475c0b192bd8a42e80def2e78
<mask token> class BadArgumentException(Exception): <mask token> def __str__(self): return self.msg class TooManyArgumentsException(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class NotEnoughArgumentsException(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class UsedArchivepgsqlAsArchiveWAL(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg <mask token>
<mask token> class BadArgumentException(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class TooManyArgumentsException(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class NotEnoughArgumentsException(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class UsedArchivepgsqlAsArchiveWAL(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg def get_version(): version = VERSION or check_output(['git', 'describe']).strip() return ' '.join(['%prog', version]) def create_common_parser(**kwargs): kwargs['version'] = get_version() parser = OptionParser(**kwargs) parser.add_option('-c', '--config', dest='config_file', help= 'configuration file', default='/etc/bbpgsql.ini') parser.add_option('--dry-run', dest='dry_run', help= 'test run - do not actually modify any files', action='store_true', default=False) return parser def common_parse_args(args=None): parser = create_common_parser() options, args = parser.parse_args(args) return parser, options, args <mask token> def non_destructive_minimal_parse_and_validate_args(args=None): args = args or sys.argv[:] parser, options, args = common_parse_args(args) common_validate_options_and_args(options, args) return options, args <mask token> def wal_file_exists(config, wal_path): return os.path.isfile(get_wal_filename(config, wal_path)) def get_wal_filename(config, wal_path): data_dir = get_data_dir(config) return os.path.join(data_dir, wal_path) def is_valid_file(config, wal_path): return is_relative_path(wal_path) and wal_file_exists(config, wal_path) <mask token> def archivepgsql_parse_args(args=None): archivepgsql_usage = ' '.join([os.path.basename(sys.argv[0]), '[options]']) parser = create_common_parser(usage=archivepgsql_usage) options, args = parser.parse_args(args) return parser, options, args def archivepgsql_validate_options_and_args(options=None, args=None): if not common_validate_options_and_args(options, args): return False if args: if args[0].startswith('pg_xlog'): raise UsedArchivepgsqlAsArchiveWAL( 'archivepgsql was called with a WAL file path as an argument. This is probably due to configuring archivepgsql as the archive_command in the PGSQL configuration instead of archivewal.' ) raise TooManyArgumentsException( 'archivepgsql should not be called with any arguments. Are you using it as the archive_command instead of archivewal?' ) return True def restorewal_parse_args(args=None): restorewal_usage = ' '.join([os.path.basename(sys.argv[0]), '[options]', '<name_of_wal_file_to_restore>', '<path_to_write_restored_file>']) parser = create_common_parser(usage=restorewal_usage) options, args = parser.parse_args(args) return parser, options, args <mask token> def storagestats_parse_args(args=None): storagestats_usage = ' '.join([os.path.basename(sys.argv[0]), '[options]']) parser = create_common_parser(usage=storagestats_usage) options, args = parser.parse_args(args) return parser, options, args <mask token>
<mask token> class BadArgumentException(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class TooManyArgumentsException(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class NotEnoughArgumentsException(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class UsedArchivepgsqlAsArchiveWAL(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg def get_version(): version = VERSION or check_output(['git', 'describe']).strip() return ' '.join(['%prog', version]) def create_common_parser(**kwargs): kwargs['version'] = get_version() parser = OptionParser(**kwargs) parser.add_option('-c', '--config', dest='config_file', help= 'configuration file', default='/etc/bbpgsql.ini') parser.add_option('--dry-run', dest='dry_run', help= 'test run - do not actually modify any files', action='store_true', default=False) return parser def common_parse_args(args=None): parser = create_common_parser() options, args = parser.parse_args(args) return parser, options, args def common_validate_options_and_args(options=None, args=None): if not os.path.exists(options.config_file): raise Exception('File %s does not exist' % options.config_file) if not os.access(options.config_file, os.R_OK): raise Exception('No read access for %s' % options.config_file) config_stats = os.stat(options.config_file) if (config_stats.st_mode & stat.S_IRWXG | config_stats.st_mode & stat. S_IRWXO): raise Exception('File %s has open group or other permissions' % options.config_file) return True def non_destructive_minimal_parse_and_validate_args(args=None): args = args or sys.argv[:] parser, options, args = common_parse_args(args) common_validate_options_and_args(options, args) return options, args <mask token> def wal_file_exists(config, wal_path): return os.path.isfile(get_wal_filename(config, wal_path)) def get_wal_filename(config, wal_path): data_dir = get_data_dir(config) return os.path.join(data_dir, wal_path) def is_valid_file(config, wal_path): return is_relative_path(wal_path) and wal_file_exists(config, wal_path) <mask token> def archivepgsql_parse_args(args=None): archivepgsql_usage = ' '.join([os.path.basename(sys.argv[0]), '[options]']) parser = create_common_parser(usage=archivepgsql_usage) options, args = parser.parse_args(args) return parser, options, args def archivepgsql_validate_options_and_args(options=None, args=None): if not common_validate_options_and_args(options, args): return False if args: if args[0].startswith('pg_xlog'): raise UsedArchivepgsqlAsArchiveWAL( 'archivepgsql was called with a WAL file path as an argument. This is probably due to configuring archivepgsql as the archive_command in the PGSQL configuration instead of archivewal.' ) raise TooManyArgumentsException( 'archivepgsql should not be called with any arguments. Are you using it as the archive_command instead of archivewal?' ) return True def restorewal_parse_args(args=None): restorewal_usage = ' '.join([os.path.basename(sys.argv[0]), '[options]', '<name_of_wal_file_to_restore>', '<path_to_write_restored_file>']) parser = create_common_parser(usage=restorewal_usage) options, args = parser.parse_args(args) return parser, options, args <mask token> def storagestats_parse_args(args=None): storagestats_usage = ' '.join([os.path.basename(sys.argv[0]), '[options]']) parser = create_common_parser(usage=storagestats_usage) options, args = parser.parse_args(args) return parser, options, args <mask token>
<mask token> VERSION = '' class BadArgumentException(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class TooManyArgumentsException(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class NotEnoughArgumentsException(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class UsedArchivepgsqlAsArchiveWAL(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg def get_version(): version = VERSION or check_output(['git', 'describe']).strip() return ' '.join(['%prog', version]) def create_common_parser(**kwargs): kwargs['version'] = get_version() parser = OptionParser(**kwargs) parser.add_option('-c', '--config', dest='config_file', help= 'configuration file', default='/etc/bbpgsql.ini') parser.add_option('--dry-run', dest='dry_run', help= 'test run - do not actually modify any files', action='store_true', default=False) return parser def common_parse_args(args=None): parser = create_common_parser() options, args = parser.parse_args(args) return parser, options, args def common_validate_options_and_args(options=None, args=None): if not os.path.exists(options.config_file): raise Exception('File %s does not exist' % options.config_file) if not os.access(options.config_file, os.R_OK): raise Exception('No read access for %s' % options.config_file) config_stats = os.stat(options.config_file) if (config_stats.st_mode & stat.S_IRWXG | config_stats.st_mode & stat. S_IRWXO): raise Exception('File %s has open group or other permissions' % options.config_file) return True def non_destructive_minimal_parse_and_validate_args(args=None): args = args or sys.argv[:] parser, options, args = common_parse_args(args) common_validate_options_and_args(options, args) return options, args def archivewal_parse_args(args=None): archivewal_usage = ' '.join([os.path.basename(sys.argv[0]), '[options]', '<path_to_wal_file_to_archive>']) parser = create_common_parser(usage=archivewal_usage) options, args = parser.parse_args(args) return parser, options, args def is_relative_path(wal_path): return not os.path.isabs(wal_path) def wal_file_exists(config, wal_path): return os.path.isfile(get_wal_filename(config, wal_path)) def get_wal_filename(config, wal_path): data_dir = get_data_dir(config) return os.path.join(data_dir, wal_path) def is_valid_file(config, wal_path): return is_relative_path(wal_path) and wal_file_exists(config, wal_path) def archivewal_validate_options_and_args(options=None, args=None): args = args or [] if not common_validate_options_and_args(options, args): return False config = get_config_from_filename_and_set_up_logging(options.config_file) if len(args) != 1 or not is_valid_file(config, args[0]): raise Exception( 'A relative path to a WAL file to be archived must be provided!') return True def archivepgsql_parse_args(args=None): archivepgsql_usage = ' '.join([os.path.basename(sys.argv[0]), '[options]']) parser = create_common_parser(usage=archivepgsql_usage) options, args = parser.parse_args(args) return parser, options, args def archivepgsql_validate_options_and_args(options=None, args=None): if not common_validate_options_and_args(options, args): return False if args: if args[0].startswith('pg_xlog'): raise UsedArchivepgsqlAsArchiveWAL( 'archivepgsql was called with a WAL file path as an argument. This is probably due to configuring archivepgsql as the archive_command in the PGSQL configuration instead of archivewal.' ) raise TooManyArgumentsException( 'archivepgsql should not be called with any arguments. Are you using it as the archive_command instead of archivewal?' ) return True def restorewal_parse_args(args=None): restorewal_usage = ' '.join([os.path.basename(sys.argv[0]), '[options]', '<name_of_wal_file_to_restore>', '<path_to_write_restored_file>']) parser = create_common_parser(usage=restorewal_usage) options, args = parser.parse_args(args) return parser, options, args def restorewal_validate_options_and_args(options=None, args=None): args = args or [] if not common_validate_options_and_args(options, args): return False nargs = len(args) if nargs != 2: raise Exception( 'restorewal must be given the name of the WAL file to retrieve and the destination path to restore to.' ) return True def storagestats_parse_args(args=None): storagestats_usage = ' '.join([os.path.basename(sys.argv[0]), '[options]']) parser = create_common_parser(usage=storagestats_usage) options, args = parser.parse_args(args) return parser, options, args def storagestats_validate_options_and_args(options=None, args=None): if not common_validate_options_and_args(options, args): return False if args: raise TooManyArgumentsException('storagestats takes no arguments') return True
import os import stat from optparse import OptionParser from bbpgsql.configuration import get_config_from_filename_and_set_up_logging from bbpgsql.configuration.general import get_data_dir from subprocess import check_output import sys VERSION = '' class BadArgumentException(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class TooManyArgumentsException(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class NotEnoughArgumentsException(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg class UsedArchivepgsqlAsArchiveWAL(Exception): def __init__(self, msg): self.msg = msg def __str__(self): return self.msg def get_version(): # override "version" with a constant string for release version = VERSION or check_output(['git', 'describe']).strip() return ' '.join(['%prog', version]) def create_common_parser(**kwargs): kwargs['version'] = get_version() parser = OptionParser(**kwargs) parser.add_option('-c', '--config', dest='config_file', help='configuration file', default='/etc/bbpgsql.ini') parser.add_option('--dry-run', dest='dry_run', help='test run - do not actually modify any files', action='store_true', default=False) return parser def common_parse_args(args=None): parser = create_common_parser() options, args = parser.parse_args(args) return parser, options, args def common_validate_options_and_args(options=None, args=None): if not os.path.exists(options.config_file): raise Exception("File %s does not exist" % (options.config_file)) if not os.access(options.config_file, os.R_OK): raise Exception("No read access for %s" % (options.config_file)) config_stats = os.stat(options.config_file) if ((config_stats.st_mode & stat.S_IRWXG) | (config_stats.st_mode & stat.S_IRWXO)): raise Exception("File %s has open group or other permissions" % (options.config_file)) return True def non_destructive_minimal_parse_and_validate_args(args=None): args = args or sys.argv[:] parser, options, args = common_parse_args(args) common_validate_options_and_args(options, args) return options, args def archivewal_parse_args(args=None): archivewal_usage = ' '.join([ os.path.basename(sys.argv[0]), '[options]', '<path_to_wal_file_to_archive>']) parser = create_common_parser(usage=archivewal_usage) options, args = parser.parse_args(args) return parser, options, args def is_relative_path(wal_path): return not os.path.isabs(wal_path) def wal_file_exists(config, wal_path): return os.path.isfile(get_wal_filename(config, wal_path)) def get_wal_filename(config, wal_path): data_dir = get_data_dir(config) return os.path.join(data_dir, wal_path) def is_valid_file(config, wal_path): return is_relative_path(wal_path) and wal_file_exists(config, wal_path) def archivewal_validate_options_and_args(options=None, args=None): args = args or [] if not common_validate_options_and_args(options, args): return False config = get_config_from_filename_and_set_up_logging(options.config_file) if len(args) != 1 or not is_valid_file(config, args[0]): raise Exception('A relative path to a WAL file to be archived' \ ' must be provided!') return True def archivepgsql_parse_args(args=None): archivepgsql_usage = ' '.join([ os.path.basename(sys.argv[0]), '[options]']) parser = create_common_parser(usage=archivepgsql_usage) options, args = parser.parse_args(args) return parser, options, args def archivepgsql_validate_options_and_args(options=None, args=None): if not common_validate_options_and_args(options, args): return False if args: if args[0].startswith('pg_xlog'): raise UsedArchivepgsqlAsArchiveWAL('archivepgsql was called with' \ ' a WAL file path as an argument. This is' \ ' probably due to configuring archivepgsql' \ ' as the archive_command in the PGSQL' \ ' configuration instead of archivewal.') raise TooManyArgumentsException('archivepgsql should not be called' \ ' with any arguments. Are you using it as the' \ ' archive_command instead of archivewal?') return True def restorewal_parse_args(args=None): restorewal_usage = ' '.join([ os.path.basename(sys.argv[0]), '[options]', '<name_of_wal_file_to_restore>', '<path_to_write_restored_file>', ]) parser = create_common_parser(usage=restorewal_usage) options, args = parser.parse_args(args) return parser, options, args def restorewal_validate_options_and_args(options=None, args=None): args = args or [] if not common_validate_options_and_args(options, args): return False nargs = len(args) if nargs != 2: raise Exception('restorewal must be given the name of the WAL' \ ' file to retrieve and the destination path to' \ ' restore to.') return True def storagestats_parse_args(args=None): storagestats_usage = ' '.join([ os.path.basename(sys.argv[0]), '[options]']) parser = create_common_parser(usage=storagestats_usage) options, args = parser.parse_args(args) return parser, options, args def storagestats_validate_options_and_args(options=None, args=None): if not common_validate_options_and_args(options, args): return False if args: raise TooManyArgumentsException('storagestats takes no arguments') return True
[ 11, 23, 24, 30, 32 ]
2,503
35c4e26acbe99ca7f37b63b67f38d5c40fbf0ea4
<mask token>
club_info = {'club_url': 'https://www.futbin.com///18/leagues/Major%20League%20Soccer?page=1&club=101112' , 'club_logo': 'https://cdn.futbin.com/content/fifa18/img/clubs/101112.png', 'club_name': 'Vancouver Whitecaps FC'} players = {} players['Waston'] = {'player_url': 'https://www.futbin.com//18/player/15583/Kendall Waston', 'player_name': 'Kendall Waston', 'player_rating': '80', 'player_shortname': 'Waston', 'player_position': 'CB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/72.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/216811.png?v=2'} players['Montero'] = {'player_url': 'https://www.futbin.com//18/player/1645/Fredy Montero', 'player_name': 'Fredy Montero', 'player_rating': '76', 'player_shortname': 'Montero', 'player_position': 'ST', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/56.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/190919.png?v=2'} players['Waston'] = {'player_url': 'https://www.futbin.com//18/player/2545/Kendall Waston', 'player_name': 'Kendall Waston', 'player_rating': '74', 'player_shortname': 'Waston', 'player_position': 'CB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/72.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/216811.png?v=2'} players['Laba'] = {'player_url': 'https://www.futbin.com//18/player/2526/Matías Laba', 'player_name': 'Matías Laba', 'player_rating': '74', 'player_shortname': 'Laba', 'player_position': 'CDM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/52.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/214594.png?v=2'} players['Kamara'] = {'player_url': 'https://www.futbin.com//18/player/16045/Kei Kamara', 'player_name': 'Kei Kamara', 'player_rating': '74', 'player_shortname': 'Kamara', 'player_position': 'ST', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/138.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/176048.png?v=2'} players['Ghazal'] = {'player_url': 'https://www.futbin.com//18/player/3000/Aly Ghazal', 'player_name': 'Aly Ghazal', 'player_rating': '73', 'player_shortname': 'Ghazal', 'player_position': 'CDM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/111.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/212469.png?v=2'} players['Ousted'] = {'player_url': 'https://www.futbin.com//18/player/2630/David Ousted', 'player_name': 'David Ousted', 'player_rating': '73', 'player_shortname': 'Ousted', 'player_position': 'GK', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/13.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/162052.png?v=2'} players['Bolaños'] = {'player_url': 'https://www.futbin.com//18/player/3890/Christian Bolaños', 'player_name': 'Christian Bolaños', 'player_rating': '71', 'player_shortname': 'Bolaños', 'player_position': 'RM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/72.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/175753.png?v=2'} players['Juárez'] = {'player_url': 'https://www.futbin.com//18/player/18393/Efraín Juárez', 'player_name': 'Efraín Juárez', 'player_rating': '71', 'player_shortname': 'Juárez', 'player_position': 'RB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/83.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/167519.png?v=2'} players['Mutch'] = {'player_url': 'https://www.futbin.com//18/player/18709/Jordon Mutch', 'player_name': 'Jordon Mutch', 'player_rating': '70', 'player_shortname': 'Mutch', 'player_position': 'CM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/14.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/186117.png?v=2'} players['Parker'] = {'player_url': 'https://www.futbin.com//18/player/5180/Tim Parker', 'player_name': 'Tim Parker', 'player_rating': '70', 'player_shortname': 'Parker', 'player_position': 'CB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/226803.png?v=2'} players['Felipe'] = {'player_url': 'https://www.futbin.com//18/player/18710/Felipe Martins', 'player_name': 'Felipe Martins', 'player_rating': '70', 'player_shortname': 'Felipe', 'player_position': 'CM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/54.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/207465.png?v=2'} players['Techera'] = {'player_url': 'https://www.futbin.com//18/player/5285/Cristian Techera', 'player_name': 'Cristian Techera', 'player_rating': '69', 'player_shortname': 'Techera', 'player_position': 'RM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/60.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/228404.png?v=2'} players['Maund'] = {'player_url': 'https://www.futbin.com//18/player/5824/Aaron Maund', 'player_name': 'Aaron Maund', 'player_rating': '69', 'player_shortname': 'Maund', 'player_position': 'CB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/207860.png?v=2'} players['Marinovic'] = {'player_url': 'https://www.futbin.com//18/player/18161/Stefan Marinovic', 'player_name': 'Stefan Marinovic', 'player_rating': '68', 'player_shortname': 'Marinovic', 'player_position': 'GK', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/198.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/231056.png?v=2'} players['Edgar'] = {'player_url': 'https://www.futbin.com//18/player/6202/David Edgar', 'player_name': 'David Edgar', 'player_rating': '68', 'player_shortname': 'Edgar', 'player_position': 'CB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/70.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/172207.png?v=2'} players['Aja'] = {'player_url': 'https://www.futbin.com//18/player/18394/José Aja', 'player_name': 'José Aja', 'player_rating': '68', 'player_shortname': 'Aja', 'player_position': 'CB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/60.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/235280.png?v=2'} players['Davies'] = {'player_url': 'https://www.futbin.com//18/player/18543/Alphonso Davies', 'player_name': 'Alphonso Davies', 'player_rating': '67', 'player_shortname': 'Davies', 'player_position': 'LM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/70.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/234396.png?v=2'} players['Williams'] = {'player_url': 'https://www.futbin.com//18/player/7680/Sheanon Williams', 'player_name': 'Sheanon Williams', 'player_rating': '67', 'player_shortname': 'Williams', 'player_position': 'RB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/190585.png?v=2'} players['Harvey'] = {'player_url': 'https://www.futbin.com//18/player/7581/Jordan Harvey', 'player_name': 'Jordan Harvey', 'player_rating': '67', 'player_shortname': 'Harvey', 'player_position': 'LB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/178379.png?v=2'} players['Franklin'] = {'player_url': 'https://www.futbin.com//18/player/18395/Sean Franklin', 'player_name': 'Sean Franklin', 'player_rating': '67', 'player_shortname': 'Franklin', 'player_position': 'RB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/186645.png?v=2'} players['Henry'] = {'player_url': 'https://www.futbin.com//18/player/18396/Doneil Henry', 'player_name': 'Doneil Henry', 'player_rating': '66', 'player_shortname': 'Henry', 'player_position': 'CB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/70.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/201208.png?v=2'} players['Ibini'] = {'player_url': 'https://www.futbin.com//18/player/8275/Bernie Ibini', 'player_name': 'Bernie Ibini', 'player_rating': '66', 'player_shortname': 'Ibini', 'player_position': 'RM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/195.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/203092.png?v=2'} players['de Jong'] = {'player_url': 'https://www.futbin.com//18/player/7954/Marcel de Jong', 'player_name': 'Marcel de Jong', 'player_rating': '66', 'player_shortname': 'de Jong', 'player_position': 'LB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/70.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/164581.png?v=2'} players['Mezquida'] = {'player_url': 'https://www.futbin.com//18/player/8267/Nicolás Mezquida', 'player_name': 'Nicolás Mezquida', 'player_rating': '66', 'player_shortname': 'Mezquida', 'player_position': 'CAM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/60.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/202866.png?v=2'} players['Reyna'] = {'player_url': 'https://www.futbin.com//18/player/8529/Yordy Reyna', 'player_name': 'Yordy Reyna', 'player_rating': '66', 'player_shortname': 'Reyna', 'player_position': 'CF', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/59.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/214000.png?v=2'} players['Hurtado'] = {'player_url': 'https://www.futbin.com//18/player/8507/Erik Hurtado', 'player_name': 'Erik Hurtado', 'player_rating': '66', 'player_shortname': 'Hurtado', 'player_position': 'ST', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/212750.png?v=2'} players['Tchani'] = {'player_url': 'https://www.futbin.com//18/player/8175/Tony Tchani', 'player_name': 'Tony Tchani', 'player_rating': '66', 'player_shortname': 'Tchani', 'player_position': 'CM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/103.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/197717.png?v=2'} players['Shea'] = {'player_url': 'https://www.futbin.com//18/player/8062/Brek Shea', 'player_name': 'Brek Shea', 'player_rating': '66', 'player_shortname': 'Shea', 'player_position': 'LM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/186536.png?v=2'} players['Rowe'] = {'player_url': 'https://www.futbin.com//18/player/16147/Brian Rowe', 'player_name': 'Brian Rowe', 'player_rating': '66', 'player_shortname': 'Rowe', 'player_position': 'GK', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/210711.png?v=2'}
club_info = {'club_url': 'https://www.futbin.com///18/leagues/Major%20League%20Soccer?page=1&club=101112', 'club_logo': 'https://cdn.futbin.com/content/fifa18/img/clubs/101112.png', 'club_name': 'Vancouver Whitecaps FC'} players = {} players['Waston'] = {'player_url': 'https://www.futbin.com//18/player/15583/Kendall Waston', 'player_name': 'Kendall Waston', 'player_rating': '80', 'player_shortname': 'Waston', 'player_position': 'CB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/72.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/216811.png?v=2'} players['Montero'] = {'player_url': 'https://www.futbin.com//18/player/1645/Fredy Montero', 'player_name': 'Fredy Montero', 'player_rating': '76', 'player_shortname': 'Montero', 'player_position': 'ST', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/56.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/190919.png?v=2'} players['Waston'] = {'player_url': 'https://www.futbin.com//18/player/2545/Kendall Waston', 'player_name': 'Kendall Waston', 'player_rating': '74', 'player_shortname': 'Waston', 'player_position': 'CB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/72.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/216811.png?v=2'} players['Laba'] = {'player_url': 'https://www.futbin.com//18/player/2526/Matías Laba', 'player_name': 'Matías Laba', 'player_rating': '74', 'player_shortname': 'Laba', 'player_position': 'CDM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/52.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/214594.png?v=2'} players['Kamara'] = {'player_url': 'https://www.futbin.com//18/player/16045/Kei Kamara', 'player_name': 'Kei Kamara', 'player_rating': '74', 'player_shortname': 'Kamara', 'player_position': 'ST', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/138.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/176048.png?v=2'} players['Ghazal'] = {'player_url': 'https://www.futbin.com//18/player/3000/Aly Ghazal', 'player_name': 'Aly Ghazal', 'player_rating': '73', 'player_shortname': 'Ghazal', 'player_position': 'CDM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/111.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/212469.png?v=2'} players['Ousted'] = {'player_url': 'https://www.futbin.com//18/player/2630/David Ousted', 'player_name': 'David Ousted', 'player_rating': '73', 'player_shortname': 'Ousted', 'player_position': 'GK', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/13.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/162052.png?v=2'} players['Bolaños'] = {'player_url': 'https://www.futbin.com//18/player/3890/Christian Bolaños', 'player_name': 'Christian Bolaños', 'player_rating': '71', 'player_shortname': 'Bolaños', 'player_position': 'RM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/72.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/175753.png?v=2'} players['Juárez'] = {'player_url': 'https://www.futbin.com//18/player/18393/Efraín Juárez', 'player_name': 'Efraín Juárez', 'player_rating': '71', 'player_shortname': 'Juárez', 'player_position': 'RB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/83.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/167519.png?v=2'} players['Mutch'] = {'player_url': 'https://www.futbin.com//18/player/18709/Jordon Mutch', 'player_name': 'Jordon Mutch', 'player_rating': '70', 'player_shortname': 'Mutch', 'player_position': 'CM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/14.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/186117.png?v=2'} players['Parker'] = {'player_url': 'https://www.futbin.com//18/player/5180/Tim Parker', 'player_name': 'Tim Parker', 'player_rating': '70', 'player_shortname': 'Parker', 'player_position': 'CB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/226803.png?v=2'} players['Felipe'] = {'player_url': 'https://www.futbin.com//18/player/18710/Felipe Martins', 'player_name': 'Felipe Martins', 'player_rating': '70', 'player_shortname': 'Felipe', 'player_position': 'CM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/54.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/207465.png?v=2'} players['Techera'] = {'player_url': 'https://www.futbin.com//18/player/5285/Cristian Techera', 'player_name': 'Cristian Techera', 'player_rating': '69', 'player_shortname': 'Techera', 'player_position': 'RM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/60.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/228404.png?v=2'} players['Maund'] = {'player_url': 'https://www.futbin.com//18/player/5824/Aaron Maund', 'player_name': 'Aaron Maund', 'player_rating': '69', 'player_shortname': 'Maund', 'player_position': 'CB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/207860.png?v=2'} players['Marinovic'] = {'player_url': 'https://www.futbin.com//18/player/18161/Stefan Marinovic', 'player_name': 'Stefan Marinovic', 'player_rating': '68', 'player_shortname': 'Marinovic', 'player_position': 'GK', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/198.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/231056.png?v=2'} players['Edgar'] = {'player_url': 'https://www.futbin.com//18/player/6202/David Edgar', 'player_name': 'David Edgar', 'player_rating': '68', 'player_shortname': 'Edgar', 'player_position': 'CB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/70.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/172207.png?v=2'} players['Aja'] = {'player_url': 'https://www.futbin.com//18/player/18394/José Aja', 'player_name': 'José Aja', 'player_rating': '68', 'player_shortname': 'Aja', 'player_position': 'CB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/60.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/235280.png?v=2'} players['Davies'] = {'player_url': 'https://www.futbin.com//18/player/18543/Alphonso Davies', 'player_name': 'Alphonso Davies', 'player_rating': '67', 'player_shortname': 'Davies', 'player_position': 'LM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/70.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/234396.png?v=2'} players['Williams'] = {'player_url': 'https://www.futbin.com//18/player/7680/Sheanon Williams', 'player_name': 'Sheanon Williams', 'player_rating': '67', 'player_shortname': 'Williams', 'player_position': 'RB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/190585.png?v=2'} players['Harvey'] = {'player_url': 'https://www.futbin.com//18/player/7581/Jordan Harvey', 'player_name': 'Jordan Harvey', 'player_rating': '67', 'player_shortname': 'Harvey', 'player_position': 'LB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/178379.png?v=2'} players['Franklin'] = {'player_url': 'https://www.futbin.com//18/player/18395/Sean Franklin', 'player_name': 'Sean Franklin', 'player_rating': '67', 'player_shortname': 'Franklin', 'player_position': 'RB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/186645.png?v=2'} players['Henry'] = {'player_url': 'https://www.futbin.com//18/player/18396/Doneil Henry', 'player_name': 'Doneil Henry', 'player_rating': '66', 'player_shortname': 'Henry', 'player_position': 'CB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/70.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/201208.png?v=2'} players['Ibini'] = {'player_url': 'https://www.futbin.com//18/player/8275/Bernie Ibini', 'player_name': 'Bernie Ibini', 'player_rating': '66', 'player_shortname': 'Ibini', 'player_position': 'RM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/195.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/203092.png?v=2'} players['de Jong'] = {'player_url': 'https://www.futbin.com//18/player/7954/Marcel de Jong', 'player_name': 'Marcel de Jong', 'player_rating': '66', 'player_shortname': 'de Jong', 'player_position': 'LB', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/70.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/164581.png?v=2'} players['Mezquida'] = {'player_url': 'https://www.futbin.com//18/player/8267/Nicolás Mezquida', 'player_name': 'Nicolás Mezquida', 'player_rating': '66', 'player_shortname': 'Mezquida', 'player_position': 'CAM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/60.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/202866.png?v=2'} players['Reyna'] = {'player_url': 'https://www.futbin.com//18/player/8529/Yordy Reyna', 'player_name': 'Yordy Reyna', 'player_rating': '66', 'player_shortname': 'Reyna', 'player_position': 'CF', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/59.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/214000.png?v=2'} players['Hurtado'] = {'player_url': 'https://www.futbin.com//18/player/8507/Erik Hurtado', 'player_name': 'Erik Hurtado', 'player_rating': '66', 'player_shortname': 'Hurtado', 'player_position': 'ST', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/212750.png?v=2'} players['Tchani'] = {'player_url': 'https://www.futbin.com//18/player/8175/Tony Tchani', 'player_name': 'Tony Tchani', 'player_rating': '66', 'player_shortname': 'Tchani', 'player_position': 'CM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/103.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/197717.png?v=2'} players['Shea'] = {'player_url': 'https://www.futbin.com//18/player/8062/Brek Shea', 'player_name': 'Brek Shea', 'player_rating': '66', 'player_shortname': 'Shea', 'player_position': 'LM', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/186536.png?v=2'} players['Rowe'] = {'player_url': 'https://www.futbin.com//18/player/16147/Brian Rowe', 'player_name': 'Brian Rowe', 'player_rating': '66', 'player_shortname': 'Rowe', 'player_position': 'GK', 'player_nation': 'https://cdn.futbin.com/content/fifa18/img/nation/95.png', 'player_photo': 'https://cdn.futbin.com/content/fifa18/img/players/210711.png?v=2'}
null
null
[ 0, 1, 2 ]
2,504
a2d23c05e1ca04d25f5f5012881c4000e6316cb9
left_motor = 1563872856371375 right_motor = 7567382956378165 servo = 9275392915737265 def autonomous_setup(): print("Autonomous mode has started!") Robot.run(autonomous_actions) def autonomous_main(): pass async def autonomous_actions(): print("Autonomous action sequence started") await Actions.sleep(1.0) print("1 second has passed in autonomous mode") def teleop_setup(): print("Tele-operated mode has started!") def move_arm(); Robot.get_value(left_motor, serv0, 1) time.sleep(2) Robot.get_value(left_motor, serv0, 0) def teleop_main(): if gamepad.get_value("r_trigger") > 0.5: while True: # move forward Robot.get_value(left_motor, "duty_cycle", -1.0) Robot.get_value(right_motor, "duty_cycle", -1.0) else if gamepad.get_value("l_trigger") > 0.5: while True: # move backward Robot.get_value(left_motor, "duty_cycle", 1.0) Robot.get_value(right_motor, "duty_cycle", 1.0) else if 1.0 > gamepad.get_value("joystick_left_y") > 0.75 while True: # turn right Robot.get_value(left_motor, "duty_cycle", 1.0) Robot.get_value(right_motor, "duty_cycle", -1.0) time.sleep(1) else if 1.0 > gamepad.get_value("joystick_right_y") > 0.75) while True: # turn left Robot.get_value(left_motor, "duty_cycle", -1.0) Robot.get_value(right_motor, "duty_cycle", 1.0) time.sleep(1) if gamepad.get_vlue("button_a") == 1: move_arm()
null
null
null
null
[ 0 ]
2,505
94334f91b1556c05dce0ed6f23c074bb8875f185
<mask token> def end_num(s): text = re.compile('.*[0-9]$') if text.match(s): return 'Yes!Number is present at the end of string' else: return 'No!Number is not present at the end of string' <mask token>
<mask token> def end_num(s): text = re.compile('.*[0-9]$') if text.match(s): return 'Yes!Number is present at the end of string' else: return 'No!Number is not present at the end of string' print(end_num(s))
<mask token> s = input('enter the string:') def end_num(s): text = re.compile('.*[0-9]$') if text.match(s): return 'Yes!Number is present at the end of string' else: return 'No!Number is not present at the end of string' print(end_num(s))
import re s = input('enter the string:') def end_num(s): text = re.compile('.*[0-9]$') if text.match(s): return 'Yes!Number is present at the end of string' else: return 'No!Number is not present at the end of string' print(end_num(s))
import re s=input('enter the string:') def end_num(s): text = re.compile(r".*[0-9]$") if text.match(s): return 'Yes!Number is present at the end of string' else: return 'No!Number is not present at the end of string' print(end_num(s))
[ 1, 2, 3, 4, 5 ]
2,506
9696e5799d46adb5b92c0900e2064b927addfd93
<mask token>
<mask token> for sequence_file in sequences: f_in = open(current_dir + '/sample_genomes/' + sequence_file, 'r') f_out.write(f_in.read()) f_in.close() data = [] fa_file = current_dir + '/sample_genomes/' + sequence_file seqs = SeqIO.parse(fa_file, 'fasta') for record in seqs: data.append(record.seq.upper()) seq = data[0] temp_fos = [] temp_glcm = [] temp_lbp = [] temp_mlbp = [] for mapping_type in range(mapping_function_size): skewness, my_kurtosis, energy, entropy = get_features(seq, mapping_type ) temp_fos.append([skewness, my_kurtosis, energy, entropy]) entropy, contrast, energy, correlation, homogeneity = ( get_features_glcm(seq, mapping_type)) temp_glcm.append([entropy, contrast, energy, correlation, homogeneity]) hist_lbp = get_features_lbp(seq, mapping_type) temp_lbp.append(hist_lbp) hist_mlbp = get_features_mlbp(seq, mapping_type) temp_mlbp.append(hist_mlbp) data_features_fos.append(temp_fos) data_features_glcm.append(temp_glcm) data_features_lbp.append(temp_lbp) data_features_mlbp.append(temp_mlbp) f_out.close() <mask token> for mapping_type in range(mapping_function_size): DIST_fos = np.zeros((data_features_fos.shape[0], data_features_fos. shape[0])) for i in range(data_features_fos.shape[0]): row = np.zeros(data_features_fos.shape[0]) for j in range(i, data_features_fos.shape[0]): dist = np.sqrt(np.sum((data_features_fos[i][mapping_type] - data_features_fos[j][mapping_type]) ** 2)) row[j] = dist DIST_fos[i] = row DIST_fos = DIST_fos + DIST_fos.T - np.diag(np.diag(DIST_fos)) DIST_fos = (DIST_fos - np.min(DIST_fos)) / (np.max(DIST_fos) - np.min( DIST_fos)) full_distances_fos.append(DIST_fos[0, 1:DIST_fos.shape[0]]) <mask token> print('full_distances_fos', full_distances_fos.shape) <mask token> for mapping_type in range(mapping_function_size): DIST_glcm = np.zeros((data_features_glcm.shape[0], data_features_glcm. shape[0])) for i in range(data_features_glcm.shape[0]): row = np.zeros(data_features_glcm.shape[0]) for j in range(i, data_features_glcm.shape[0]): dist = np.sqrt(np.sum((data_features_glcm[i][mapping_type] - data_features_glcm[j][mapping_type]) ** 2)) row[j] = dist DIST_glcm[i] = row DIST_glcm = DIST_glcm + DIST_glcm.T - np.diag(np.diag(DIST_glcm)) DIST_glcm = (DIST_glcm - np.min(DIST_glcm)) / (np.max(DIST_glcm) - np. min(DIST_glcm)) full_distances_glcm.append(DIST_glcm[0, 1:DIST_glcm.shape[0]]) <mask token> print('full_distances_glcm', full_distances_glcm.shape) <mask token> for mapping_type in range(mapping_function_size): DIST_lbp = np.zeros((data_features_lbp.shape[0], data_features_lbp. shape[0])) for i in range(data_features_lbp.shape[0]): row = np.zeros(data_features_lbp.shape[0]) for j in range(i, data_features_lbp.shape[0]): dist = np.sqrt(np.sum((data_features_lbp[i][mapping_type] - data_features_lbp[j][mapping_type]) ** 2)) row[j] = dist DIST_lbp[i] = row DIST_lbp = DIST_lbp + DIST_lbp.T - np.diag(np.diag(DIST_lbp)) DIST_lbp = (DIST_lbp - np.min(DIST_lbp)) / (np.max(DIST_lbp) - np.min( DIST_lbp)) full_distances_lbp.append(DIST_lbp[0, 1:DIST_lbp.shape[0]]) <mask token> print('full_distances_lbp', full_distances_lbp.shape) <mask token> for mapping_type in range(mapping_function_size): DIST_mlbp = np.zeros((data_features_mlbp.shape[0], data_features_mlbp. shape[0])) for i in range(data_features_mlbp.shape[0]): row = np.zeros(data_features_mlbp.shape[0]) for j in range(i, data_features_mlbp.shape[0]): dist = np.sqrt(np.sum((data_features_mlbp[i][mapping_type] - data_features_mlbp[j][mapping_type]) ** 2)) row[j] = dist DIST_mlbp[i] = row DIST_mlbp = DIST_mlbp + DIST_mlbp.T - np.diag(np.diag(DIST_mlbp)) DIST_mlbp = (DIST_mlbp - np.min(DIST_mlbp)) / (np.max(DIST_mlbp) - np. min(DIST_mlbp)) full_distances_mlbp.append(DIST_mlbp[0, 1:DIST_mlbp.shape[0]]) <mask token> print('full_distances_mlbp', full_distances_mlbp.shape) <mask token> plt.clf() <mask token> axs[0, 0].plot(names_temp, full_distances_fos[0], 'b--', label='FOS-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_fos[1], 'b--', label='FOS-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_fos[2], 'b--', label='FOS-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_fos[3], 'b--', label='FOS-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) axs[2, 0].plot(names_temp, full_distances_fos[4], 'b--', label='FOS-MAP4') axs[2, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 0].legend(loc='upper right', fontsize=6) axs[2, 1].plot(names_temp, full_distances_fos[5], 'b--', label='FOS-MAP5') axs[2, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_fos.png', dpi=200, bbox_inches='tight') plt.clf() <mask token> axs[0, 0].plot(names_temp, full_distances_glcm[0], 'b--', label='GLCM-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[1], 'b--', label='GLCM-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_glcm[2], 'b--', label='GLCM-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_glcm[3], 'b--', label='GLCM-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) axs[2, 0].plot(names_temp, full_distances_glcm[4], 'b--', label='GLCM-MAP4') axs[2, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 0].legend(loc='upper right', fontsize=6) axs[2, 1].plot(names_temp, full_distances_glcm[5], 'b--', label='GLCM-MAP5') axs[2, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_glcm.png', dpi=200, bbox_inches='tight') plt.clf() <mask token> axs[0, 0].plot(names_temp, full_distances_lbp[0], 'b--', label='LBP-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_lbp[1], 'b--', label='LBP-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[2], 'b--', label='LBP-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_lbp[3], 'b--', label='LBP-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) axs[2, 0].plot(names_temp, full_distances_lbp[4], 'b--', label='LBP-MAP4') axs[2, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 0].legend(loc='upper right', fontsize=6) axs[2, 1].plot(names_temp, full_distances_lbp[5], 'b--', label='LBP-MAP5') axs[2, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_lbp.png', dpi=200, bbox_inches='tight') plt.clf() <mask token> axs[0, 0].plot(names_temp, full_distances_mlbp[0], 'b--', label='MLBP-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_mlbp[1], 'b--', label='MLBP-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_mlbp[2], 'b--', label='MLBP-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[3], 'b--', label='MLBP-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) axs[2, 0].plot(names_temp, full_distances_mlbp[4], 'b--', label='MLBP-MAP4') axs[2, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 0].legend(loc='upper right', fontsize=6) axs[2, 1].plot(names_temp, full_distances_mlbp[5], 'b--', label='MLBP-MAP5') axs[2, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_mlbp.png', dpi=200, bbox_inches='tight') <mask token> for mapping_type in range(mapping_function_size): error_fos.append(np.sum((full_distances_fos[mapping_type] - distances_mega) ** 2) / distances_mega.shape[0]) error_glcm.append(np.sum((full_distances_glcm[mapping_type] - distances_mega) ** 2) / distances_mega.shape[0]) error_lbp.append(np.sum((full_distances_lbp[mapping_type] - distances_mega) ** 2) / distances_mega.shape[0]) error_mlbp.append(np.sum((full_distances_mlbp[mapping_type] - distances_mega) ** 2) / distances_mega.shape[0]) data_csv.append(error_fos) data_csv.append(error_glcm) data_csv.append(error_lbp) data_csv.append(error_mlbp) <mask token> print(df) df.to_csv(results_file + '.csv', index=True) plt.clf() <mask token> axs[0, 0].plot(names_temp, full_distances_fos[0], 'b--', label='FOS-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[0], 'b--', label='GLCM-MAP0') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[0], 'b--', label='LBP-MAP0') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[0], 'b--', label='MLBP-MAP0') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_0map.png', dpi=200, bbox_inches='tight') plt.clf() <mask token> axs[0, 0].plot(names_temp, full_distances_fos[1], 'b--', label='FOS-MAP1') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[1], 'b--', label='GLCM-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[1], 'b--', label='LBP-MAP1') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[1], 'b--', label='MLBP-MAP1') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_1map.png', dpi=200, bbox_inches='tight') plt.clf() <mask token> axs[0, 0].plot(names_temp, full_distances_fos[2], 'b--', label='FOS-MAP2') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[2], 'b--', label='GLCM-MAP2') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[2], 'b--', label='LBP-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[2], 'b--', label='MLBP-MAP2') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_2map.png', dpi=200, bbox_inches='tight') plt.clf() <mask token> axs[0, 0].plot(names_temp, full_distances_fos[3], 'b--', label='FOS-MAP3') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[3], 'b--', label='GLCM-MAP3') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[3], 'b--', label='LBP-MAP3') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[3], 'b--', label='MLBP-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_3map.png', dpi=200, bbox_inches='tight') plt.clf() <mask token> axs[0, 0].plot(names_temp, full_distances_fos[4], 'b--', label='FOS-MAP4') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[4], 'b--', label='GLCM-MAP4') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[4], 'b--', label='LBP-MAP4') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[4], 'b--', label='MLBP-MAP4') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_4map.png', dpi=200, bbox_inches='tight') plt.clf() <mask token> axs[0, 0].plot(names_temp, full_distances_fos[5], 'b--', label='FOS-MAP5') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[5], 'b--', label='GLCM-MAP5') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[5], 'b--', label='LBP-MAP5') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[5], 'b--', label='MLBP-MAP5') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_5map.png', dpi=200, bbox_inches='tight')
<mask token> current_dir = os.path.dirname(os.path.abspath(__file__)) sequences = ['J01859.fna', 'NR_037066.fna', 'NR_040849.fna', 'NR_117152.fna', 'NR_132306.fna', 'NR_134817.fna', 'NR_134818.fna', 'NR_136784.fna', 'NR_148244.fna', 'NR_148787.fna', 'NR_152063.fna', 'KP317497.fna', 'NR_156072.fna'] names = ['Escherichia coli', 'T.Thermophilus', 'B.Wakoensis', 'T.Filiformis', 'T.Tengchongensis', 'S.Cameli', 'S.Tangierensis', 'T.amyloliquefaciens', 'B.Xiamenensis', 'B.Australimaris', 'S.Halotolerans', 'B.Maritimus', 'S.Himalayensis'] csv_mega = current_dir + '/sample_genomes/seqs_db1_distances.csv' seq_file_full = current_dir + '/sample_genomes/seqs_db1.fasta' results_file = current_dir + '/results/compare_features/db1' sequences = ['L00016.fna', 'M22650.fna', 'M22651.fna', 'M22653.fna', 'M22654.fna', 'M22655.fna', 'M22656.fna', 'M22657.fna', 'V00658.fna', 'V00659.fna', 'V00672.fna', 'V00675.fna'] names = ['Human', 'Macaca mulatta', 'Macaca fuscata', 'Macaca fascicularis', 'Macaca sylvanus', 'Saimiri sciureus', 'Tarsius syrichta', 'Lemur catta', 'Gorilla', 'Hylobates', 'Chimpanzee', 'Sumatran Orangutan'] csv_mega = current_dir + '/sample_genomes/seqs_db2_distances.csv' seq_file_full = current_dir + '/sample_genomes/seqs_db2.fasta' results_file = current_dir + '/results/compare_features/db2' sequences = ['V00662.fna', 'D38116.fna', 'D38113.fna', 'D38114.fna', 'D38115.fna', 'X99256.fna', 'Y18001.fna', 'X79547.fna', 'Y07726.fna', 'X63726.fna', 'X72004.fna', 'U20753.fna', 'X61145.fna', 'X72204.fna', 'V00654.fna', 'X14848.fna', 'V00711.fna', 'X83427.fna'] names = ['Human', 'Pygmy chimpanzee', 'Common chimpanzee', 'Gorilla', 'Orangutan', 'Gibbon', 'Baboon', 'Horse', 'White rhinoceros', 'Harbor seal', 'Gray seal', 'Cat', 'Fin whale', 'Blue whale', 'Cow', 'Rat', 'Mouse', 'Platypus'] csv_mega = current_dir + '/sample_genomes/seqs_db3_distances.csv' seq_file_full = current_dir + '/sample_genomes/seqs_db3.fasta' results_file = current_dir + '/results/compare_features/db3' data_features_fos = [] data_features_glcm = [] data_features_lbp = [] data_features_mlbp = [] mapping_function_size = 6 f_out = open(seq_file_full, 'w') for sequence_file in sequences: f_in = open(current_dir + '/sample_genomes/' + sequence_file, 'r') f_out.write(f_in.read()) f_in.close() data = [] fa_file = current_dir + '/sample_genomes/' + sequence_file seqs = SeqIO.parse(fa_file, 'fasta') for record in seqs: data.append(record.seq.upper()) seq = data[0] temp_fos = [] temp_glcm = [] temp_lbp = [] temp_mlbp = [] for mapping_type in range(mapping_function_size): skewness, my_kurtosis, energy, entropy = get_features(seq, mapping_type ) temp_fos.append([skewness, my_kurtosis, energy, entropy]) entropy, contrast, energy, correlation, homogeneity = ( get_features_glcm(seq, mapping_type)) temp_glcm.append([entropy, contrast, energy, correlation, homogeneity]) hist_lbp = get_features_lbp(seq, mapping_type) temp_lbp.append(hist_lbp) hist_mlbp = get_features_mlbp(seq, mapping_type) temp_mlbp.append(hist_mlbp) data_features_fos.append(temp_fos) data_features_glcm.append(temp_glcm) data_features_lbp.append(temp_lbp) data_features_mlbp.append(temp_mlbp) f_out.close() data_features_fos = np.array(data_features_fos) data_features_glcm = np.array(data_features_glcm) data_features_lbp = np.array(data_features_lbp) data_features_mlbp = np.array(data_features_mlbp) full_distances_fos = [] for mapping_type in range(mapping_function_size): DIST_fos = np.zeros((data_features_fos.shape[0], data_features_fos. shape[0])) for i in range(data_features_fos.shape[0]): row = np.zeros(data_features_fos.shape[0]) for j in range(i, data_features_fos.shape[0]): dist = np.sqrt(np.sum((data_features_fos[i][mapping_type] - data_features_fos[j][mapping_type]) ** 2)) row[j] = dist DIST_fos[i] = row DIST_fos = DIST_fos + DIST_fos.T - np.diag(np.diag(DIST_fos)) DIST_fos = (DIST_fos - np.min(DIST_fos)) / (np.max(DIST_fos) - np.min( DIST_fos)) full_distances_fos.append(DIST_fos[0, 1:DIST_fos.shape[0]]) full_distances_fos = np.array(full_distances_fos) print('full_distances_fos', full_distances_fos.shape) full_distances_glcm = [] for mapping_type in range(mapping_function_size): DIST_glcm = np.zeros((data_features_glcm.shape[0], data_features_glcm. shape[0])) for i in range(data_features_glcm.shape[0]): row = np.zeros(data_features_glcm.shape[0]) for j in range(i, data_features_glcm.shape[0]): dist = np.sqrt(np.sum((data_features_glcm[i][mapping_type] - data_features_glcm[j][mapping_type]) ** 2)) row[j] = dist DIST_glcm[i] = row DIST_glcm = DIST_glcm + DIST_glcm.T - np.diag(np.diag(DIST_glcm)) DIST_glcm = (DIST_glcm - np.min(DIST_glcm)) / (np.max(DIST_glcm) - np. min(DIST_glcm)) full_distances_glcm.append(DIST_glcm[0, 1:DIST_glcm.shape[0]]) full_distances_glcm = np.array(full_distances_glcm) print('full_distances_glcm', full_distances_glcm.shape) full_distances_lbp = [] for mapping_type in range(mapping_function_size): DIST_lbp = np.zeros((data_features_lbp.shape[0], data_features_lbp. shape[0])) for i in range(data_features_lbp.shape[0]): row = np.zeros(data_features_lbp.shape[0]) for j in range(i, data_features_lbp.shape[0]): dist = np.sqrt(np.sum((data_features_lbp[i][mapping_type] - data_features_lbp[j][mapping_type]) ** 2)) row[j] = dist DIST_lbp[i] = row DIST_lbp = DIST_lbp + DIST_lbp.T - np.diag(np.diag(DIST_lbp)) DIST_lbp = (DIST_lbp - np.min(DIST_lbp)) / (np.max(DIST_lbp) - np.min( DIST_lbp)) full_distances_lbp.append(DIST_lbp[0, 1:DIST_lbp.shape[0]]) full_distances_lbp = np.array(full_distances_lbp) print('full_distances_lbp', full_distances_lbp.shape) full_distances_mlbp = [] for mapping_type in range(mapping_function_size): DIST_mlbp = np.zeros((data_features_mlbp.shape[0], data_features_mlbp. shape[0])) for i in range(data_features_mlbp.shape[0]): row = np.zeros(data_features_mlbp.shape[0]) for j in range(i, data_features_mlbp.shape[0]): dist = np.sqrt(np.sum((data_features_mlbp[i][mapping_type] - data_features_mlbp[j][mapping_type]) ** 2)) row[j] = dist DIST_mlbp[i] = row DIST_mlbp = DIST_mlbp + DIST_mlbp.T - np.diag(np.diag(DIST_mlbp)) DIST_mlbp = (DIST_mlbp - np.min(DIST_mlbp)) / (np.max(DIST_mlbp) - np. min(DIST_mlbp)) full_distances_mlbp.append(DIST_mlbp[0, 1:DIST_mlbp.shape[0]]) full_distances_mlbp = np.array(full_distances_mlbp) print('full_distances_mlbp', full_distances_mlbp.shape) mega_dist_csv = pd.read_csv(csv_mega) mega_dist_csv = mega_dist_csv.set_index(mega_dist_csv.columns[0]) DIST_mega = mega_dist_csv.values DIST_mega[np.isnan(DIST_mega)] = 0 DIST_mega = DIST_mega + DIST_mega.T distances_mega = DIST_mega[0, 1:DIST_mega.shape[0]] distances_mega = (distances_mega - np.min(distances_mega)) / (np.max( distances_mega) - np.min(distances_mega)) names_temp = np.array(sequences) names_temp = names_temp[1:names_temp.shape[0]] plt.clf() fig, axs = plt.subplots(3, 2) axs[0, 0].plot(names_temp, full_distances_fos[0], 'b--', label='FOS-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_fos[1], 'b--', label='FOS-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_fos[2], 'b--', label='FOS-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_fos[3], 'b--', label='FOS-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) axs[2, 0].plot(names_temp, full_distances_fos[4], 'b--', label='FOS-MAP4') axs[2, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 0].legend(loc='upper right', fontsize=6) axs[2, 1].plot(names_temp, full_distances_fos[5], 'b--', label='FOS-MAP5') axs[2, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_fos.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(3, 2) axs[0, 0].plot(names_temp, full_distances_glcm[0], 'b--', label='GLCM-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[1], 'b--', label='GLCM-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_glcm[2], 'b--', label='GLCM-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_glcm[3], 'b--', label='GLCM-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) axs[2, 0].plot(names_temp, full_distances_glcm[4], 'b--', label='GLCM-MAP4') axs[2, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 0].legend(loc='upper right', fontsize=6) axs[2, 1].plot(names_temp, full_distances_glcm[5], 'b--', label='GLCM-MAP5') axs[2, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_glcm.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(3, 2) axs[0, 0].plot(names_temp, full_distances_lbp[0], 'b--', label='LBP-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_lbp[1], 'b--', label='LBP-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[2], 'b--', label='LBP-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_lbp[3], 'b--', label='LBP-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) axs[2, 0].plot(names_temp, full_distances_lbp[4], 'b--', label='LBP-MAP4') axs[2, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 0].legend(loc='upper right', fontsize=6) axs[2, 1].plot(names_temp, full_distances_lbp[5], 'b--', label='LBP-MAP5') axs[2, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_lbp.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(3, 2) axs[0, 0].plot(names_temp, full_distances_mlbp[0], 'b--', label='MLBP-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_mlbp[1], 'b--', label='MLBP-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_mlbp[2], 'b--', label='MLBP-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[3], 'b--', label='MLBP-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) axs[2, 0].plot(names_temp, full_distances_mlbp[4], 'b--', label='MLBP-MAP4') axs[2, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 0].legend(loc='upper right', fontsize=6) axs[2, 1].plot(names_temp, full_distances_mlbp[5], 'b--', label='MLBP-MAP5') axs[2, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_mlbp.png', dpi=200, bbox_inches='tight') data_csv = [] error_fos = [] error_glcm = [] error_lbp = [] error_mlbp = [] for mapping_type in range(mapping_function_size): error_fos.append(np.sum((full_distances_fos[mapping_type] - distances_mega) ** 2) / distances_mega.shape[0]) error_glcm.append(np.sum((full_distances_glcm[mapping_type] - distances_mega) ** 2) / distances_mega.shape[0]) error_lbp.append(np.sum((full_distances_lbp[mapping_type] - distances_mega) ** 2) / distances_mega.shape[0]) error_mlbp.append(np.sum((full_distances_mlbp[mapping_type] - distances_mega) ** 2) / distances_mega.shape[0]) data_csv.append(error_fos) data_csv.append(error_glcm) data_csv.append(error_lbp) data_csv.append(error_mlbp) data_csv = np.array(data_csv) df = pd.DataFrame(data=data_csv.T, index=['map0', 'map1', 'map2', 'map3', 'map4', 'map5'], columns=['FOS', 'GLCM', 'LBP', 'MLBP']) print(df) df.to_csv(results_file + '.csv', index=True) plt.clf() fig, axs = plt.subplots(2, 2) axs[0, 0].plot(names_temp, full_distances_fos[0], 'b--', label='FOS-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[0], 'b--', label='GLCM-MAP0') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[0], 'b--', label='LBP-MAP0') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[0], 'b--', label='MLBP-MAP0') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_0map.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(2, 2) axs[0, 0].plot(names_temp, full_distances_fos[1], 'b--', label='FOS-MAP1') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[1], 'b--', label='GLCM-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[1], 'b--', label='LBP-MAP1') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[1], 'b--', label='MLBP-MAP1') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_1map.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(2, 2) axs[0, 0].plot(names_temp, full_distances_fos[2], 'b--', label='FOS-MAP2') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[2], 'b--', label='GLCM-MAP2') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[2], 'b--', label='LBP-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[2], 'b--', label='MLBP-MAP2') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_2map.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(2, 2) axs[0, 0].plot(names_temp, full_distances_fos[3], 'b--', label='FOS-MAP3') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[3], 'b--', label='GLCM-MAP3') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[3], 'b--', label='LBP-MAP3') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[3], 'b--', label='MLBP-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_3map.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(2, 2) axs[0, 0].plot(names_temp, full_distances_fos[4], 'b--', label='FOS-MAP4') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[4], 'b--', label='GLCM-MAP4') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[4], 'b--', label='LBP-MAP4') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[4], 'b--', label='MLBP-MAP4') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_4map.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(2, 2) axs[0, 0].plot(names_temp, full_distances_fos[5], 'b--', label='FOS-MAP5') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[5], 'b--', label='GLCM-MAP5') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[5], 'b--', label='LBP-MAP5') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[5], 'b--', label='MLBP-MAP5') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_5map.png', dpi=200, bbox_inches='tight')
from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from matplotlib import pyplot import math import os import sys import cv2 import numpy as np import math from scipy.stats import kurtosis, skew from Bio import SeqIO import pandas as pd import seaborn as sns from descriptor import get_features from descriptor import get_features_glcm from descriptor import get_features_lbp from descriptor import get_features_mlbp from ete3 import PhyloTree, TreeStyle from ete3 import Tree from skbio import DistanceMatrix from skbio.tree import nj current_dir = os.path.dirname(os.path.abspath(__file__)) sequences = ['J01859.fna', 'NR_037066.fna', 'NR_040849.fna', 'NR_117152.fna', 'NR_132306.fna', 'NR_134817.fna', 'NR_134818.fna', 'NR_136784.fna', 'NR_148244.fna', 'NR_148787.fna', 'NR_152063.fna', 'KP317497.fna', 'NR_156072.fna'] names = ['Escherichia coli', 'T.Thermophilus', 'B.Wakoensis', 'T.Filiformis', 'T.Tengchongensis', 'S.Cameli', 'S.Tangierensis', 'T.amyloliquefaciens', 'B.Xiamenensis', 'B.Australimaris', 'S.Halotolerans', 'B.Maritimus', 'S.Himalayensis'] csv_mega = current_dir + '/sample_genomes/seqs_db1_distances.csv' seq_file_full = current_dir + '/sample_genomes/seqs_db1.fasta' results_file = current_dir + '/results/compare_features/db1' sequences = ['L00016.fna', 'M22650.fna', 'M22651.fna', 'M22653.fna', 'M22654.fna', 'M22655.fna', 'M22656.fna', 'M22657.fna', 'V00658.fna', 'V00659.fna', 'V00672.fna', 'V00675.fna'] names = ['Human', 'Macaca mulatta', 'Macaca fuscata', 'Macaca fascicularis', 'Macaca sylvanus', 'Saimiri sciureus', 'Tarsius syrichta', 'Lemur catta', 'Gorilla', 'Hylobates', 'Chimpanzee', 'Sumatran Orangutan'] csv_mega = current_dir + '/sample_genomes/seqs_db2_distances.csv' seq_file_full = current_dir + '/sample_genomes/seqs_db2.fasta' results_file = current_dir + '/results/compare_features/db2' sequences = ['V00662.fna', 'D38116.fna', 'D38113.fna', 'D38114.fna', 'D38115.fna', 'X99256.fna', 'Y18001.fna', 'X79547.fna', 'Y07726.fna', 'X63726.fna', 'X72004.fna', 'U20753.fna', 'X61145.fna', 'X72204.fna', 'V00654.fna', 'X14848.fna', 'V00711.fna', 'X83427.fna'] names = ['Human', 'Pygmy chimpanzee', 'Common chimpanzee', 'Gorilla', 'Orangutan', 'Gibbon', 'Baboon', 'Horse', 'White rhinoceros', 'Harbor seal', 'Gray seal', 'Cat', 'Fin whale', 'Blue whale', 'Cow', 'Rat', 'Mouse', 'Platypus'] csv_mega = current_dir + '/sample_genomes/seqs_db3_distances.csv' seq_file_full = current_dir + '/sample_genomes/seqs_db3.fasta' results_file = current_dir + '/results/compare_features/db3' data_features_fos = [] data_features_glcm = [] data_features_lbp = [] data_features_mlbp = [] mapping_function_size = 6 f_out = open(seq_file_full, 'w') for sequence_file in sequences: f_in = open(current_dir + '/sample_genomes/' + sequence_file, 'r') f_out.write(f_in.read()) f_in.close() data = [] fa_file = current_dir + '/sample_genomes/' + sequence_file seqs = SeqIO.parse(fa_file, 'fasta') for record in seqs: data.append(record.seq.upper()) seq = data[0] temp_fos = [] temp_glcm = [] temp_lbp = [] temp_mlbp = [] for mapping_type in range(mapping_function_size): skewness, my_kurtosis, energy, entropy = get_features(seq, mapping_type ) temp_fos.append([skewness, my_kurtosis, energy, entropy]) entropy, contrast, energy, correlation, homogeneity = ( get_features_glcm(seq, mapping_type)) temp_glcm.append([entropy, contrast, energy, correlation, homogeneity]) hist_lbp = get_features_lbp(seq, mapping_type) temp_lbp.append(hist_lbp) hist_mlbp = get_features_mlbp(seq, mapping_type) temp_mlbp.append(hist_mlbp) data_features_fos.append(temp_fos) data_features_glcm.append(temp_glcm) data_features_lbp.append(temp_lbp) data_features_mlbp.append(temp_mlbp) f_out.close() data_features_fos = np.array(data_features_fos) data_features_glcm = np.array(data_features_glcm) data_features_lbp = np.array(data_features_lbp) data_features_mlbp = np.array(data_features_mlbp) full_distances_fos = [] for mapping_type in range(mapping_function_size): DIST_fos = np.zeros((data_features_fos.shape[0], data_features_fos. shape[0])) for i in range(data_features_fos.shape[0]): row = np.zeros(data_features_fos.shape[0]) for j in range(i, data_features_fos.shape[0]): dist = np.sqrt(np.sum((data_features_fos[i][mapping_type] - data_features_fos[j][mapping_type]) ** 2)) row[j] = dist DIST_fos[i] = row DIST_fos = DIST_fos + DIST_fos.T - np.diag(np.diag(DIST_fos)) DIST_fos = (DIST_fos - np.min(DIST_fos)) / (np.max(DIST_fos) - np.min( DIST_fos)) full_distances_fos.append(DIST_fos[0, 1:DIST_fos.shape[0]]) full_distances_fos = np.array(full_distances_fos) print('full_distances_fos', full_distances_fos.shape) full_distances_glcm = [] for mapping_type in range(mapping_function_size): DIST_glcm = np.zeros((data_features_glcm.shape[0], data_features_glcm. shape[0])) for i in range(data_features_glcm.shape[0]): row = np.zeros(data_features_glcm.shape[0]) for j in range(i, data_features_glcm.shape[0]): dist = np.sqrt(np.sum((data_features_glcm[i][mapping_type] - data_features_glcm[j][mapping_type]) ** 2)) row[j] = dist DIST_glcm[i] = row DIST_glcm = DIST_glcm + DIST_glcm.T - np.diag(np.diag(DIST_glcm)) DIST_glcm = (DIST_glcm - np.min(DIST_glcm)) / (np.max(DIST_glcm) - np. min(DIST_glcm)) full_distances_glcm.append(DIST_glcm[0, 1:DIST_glcm.shape[0]]) full_distances_glcm = np.array(full_distances_glcm) print('full_distances_glcm', full_distances_glcm.shape) full_distances_lbp = [] for mapping_type in range(mapping_function_size): DIST_lbp = np.zeros((data_features_lbp.shape[0], data_features_lbp. shape[0])) for i in range(data_features_lbp.shape[0]): row = np.zeros(data_features_lbp.shape[0]) for j in range(i, data_features_lbp.shape[0]): dist = np.sqrt(np.sum((data_features_lbp[i][mapping_type] - data_features_lbp[j][mapping_type]) ** 2)) row[j] = dist DIST_lbp[i] = row DIST_lbp = DIST_lbp + DIST_lbp.T - np.diag(np.diag(DIST_lbp)) DIST_lbp = (DIST_lbp - np.min(DIST_lbp)) / (np.max(DIST_lbp) - np.min( DIST_lbp)) full_distances_lbp.append(DIST_lbp[0, 1:DIST_lbp.shape[0]]) full_distances_lbp = np.array(full_distances_lbp) print('full_distances_lbp', full_distances_lbp.shape) full_distances_mlbp = [] for mapping_type in range(mapping_function_size): DIST_mlbp = np.zeros((data_features_mlbp.shape[0], data_features_mlbp. shape[0])) for i in range(data_features_mlbp.shape[0]): row = np.zeros(data_features_mlbp.shape[0]) for j in range(i, data_features_mlbp.shape[0]): dist = np.sqrt(np.sum((data_features_mlbp[i][mapping_type] - data_features_mlbp[j][mapping_type]) ** 2)) row[j] = dist DIST_mlbp[i] = row DIST_mlbp = DIST_mlbp + DIST_mlbp.T - np.diag(np.diag(DIST_mlbp)) DIST_mlbp = (DIST_mlbp - np.min(DIST_mlbp)) / (np.max(DIST_mlbp) - np. min(DIST_mlbp)) full_distances_mlbp.append(DIST_mlbp[0, 1:DIST_mlbp.shape[0]]) full_distances_mlbp = np.array(full_distances_mlbp) print('full_distances_mlbp', full_distances_mlbp.shape) mega_dist_csv = pd.read_csv(csv_mega) mega_dist_csv = mega_dist_csv.set_index(mega_dist_csv.columns[0]) DIST_mega = mega_dist_csv.values DIST_mega[np.isnan(DIST_mega)] = 0 DIST_mega = DIST_mega + DIST_mega.T distances_mega = DIST_mega[0, 1:DIST_mega.shape[0]] distances_mega = (distances_mega - np.min(distances_mega)) / (np.max( distances_mega) - np.min(distances_mega)) names_temp = np.array(sequences) names_temp = names_temp[1:names_temp.shape[0]] plt.clf() fig, axs = plt.subplots(3, 2) axs[0, 0].plot(names_temp, full_distances_fos[0], 'b--', label='FOS-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_fos[1], 'b--', label='FOS-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_fos[2], 'b--', label='FOS-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_fos[3], 'b--', label='FOS-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) axs[2, 0].plot(names_temp, full_distances_fos[4], 'b--', label='FOS-MAP4') axs[2, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 0].legend(loc='upper right', fontsize=6) axs[2, 1].plot(names_temp, full_distances_fos[5], 'b--', label='FOS-MAP5') axs[2, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_fos.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(3, 2) axs[0, 0].plot(names_temp, full_distances_glcm[0], 'b--', label='GLCM-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[1], 'b--', label='GLCM-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_glcm[2], 'b--', label='GLCM-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_glcm[3], 'b--', label='GLCM-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) axs[2, 0].plot(names_temp, full_distances_glcm[4], 'b--', label='GLCM-MAP4') axs[2, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 0].legend(loc='upper right', fontsize=6) axs[2, 1].plot(names_temp, full_distances_glcm[5], 'b--', label='GLCM-MAP5') axs[2, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_glcm.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(3, 2) axs[0, 0].plot(names_temp, full_distances_lbp[0], 'b--', label='LBP-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_lbp[1], 'b--', label='LBP-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[2], 'b--', label='LBP-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_lbp[3], 'b--', label='LBP-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) axs[2, 0].plot(names_temp, full_distances_lbp[4], 'b--', label='LBP-MAP4') axs[2, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 0].legend(loc='upper right', fontsize=6) axs[2, 1].plot(names_temp, full_distances_lbp[5], 'b--', label='LBP-MAP5') axs[2, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_lbp.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(3, 2) axs[0, 0].plot(names_temp, full_distances_mlbp[0], 'b--', label='MLBP-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_mlbp[1], 'b--', label='MLBP-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_mlbp[2], 'b--', label='MLBP-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[3], 'b--', label='MLBP-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) axs[2, 0].plot(names_temp, full_distances_mlbp[4], 'b--', label='MLBP-MAP4') axs[2, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 0].legend(loc='upper right', fontsize=6) axs[2, 1].plot(names_temp, full_distances_mlbp[5], 'b--', label='MLBP-MAP5') axs[2, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_mlbp.png', dpi=200, bbox_inches='tight') data_csv = [] error_fos = [] error_glcm = [] error_lbp = [] error_mlbp = [] for mapping_type in range(mapping_function_size): error_fos.append(np.sum((full_distances_fos[mapping_type] - distances_mega) ** 2) / distances_mega.shape[0]) error_glcm.append(np.sum((full_distances_glcm[mapping_type] - distances_mega) ** 2) / distances_mega.shape[0]) error_lbp.append(np.sum((full_distances_lbp[mapping_type] - distances_mega) ** 2) / distances_mega.shape[0]) error_mlbp.append(np.sum((full_distances_mlbp[mapping_type] - distances_mega) ** 2) / distances_mega.shape[0]) data_csv.append(error_fos) data_csv.append(error_glcm) data_csv.append(error_lbp) data_csv.append(error_mlbp) data_csv = np.array(data_csv) df = pd.DataFrame(data=data_csv.T, index=['map0', 'map1', 'map2', 'map3', 'map4', 'map5'], columns=['FOS', 'GLCM', 'LBP', 'MLBP']) print(df) df.to_csv(results_file + '.csv', index=True) plt.clf() fig, axs = plt.subplots(2, 2) axs[0, 0].plot(names_temp, full_distances_fos[0], 'b--', label='FOS-MAP0') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[0], 'b--', label='GLCM-MAP0') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[0], 'b--', label='LBP-MAP0') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[0], 'b--', label='MLBP-MAP0') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_0map.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(2, 2) axs[0, 0].plot(names_temp, full_distances_fos[1], 'b--', label='FOS-MAP1') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[1], 'b--', label='GLCM-MAP1') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[1], 'b--', label='LBP-MAP1') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[1], 'b--', label='MLBP-MAP1') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_1map.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(2, 2) axs[0, 0].plot(names_temp, full_distances_fos[2], 'b--', label='FOS-MAP2') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[2], 'b--', label='GLCM-MAP2') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[2], 'b--', label='LBP-MAP2') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[2], 'b--', label='MLBP-MAP2') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_2map.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(2, 2) axs[0, 0].plot(names_temp, full_distances_fos[3], 'b--', label='FOS-MAP3') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[3], 'b--', label='GLCM-MAP3') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[3], 'b--', label='LBP-MAP3') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[3], 'b--', label='MLBP-MAP3') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_3map.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(2, 2) axs[0, 0].plot(names_temp, full_distances_fos[4], 'b--', label='FOS-MAP4') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[4], 'b--', label='GLCM-MAP4') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[4], 'b--', label='LBP-MAP4') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[4], 'b--', label='MLBP-MAP4') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_4map.png', dpi=200, bbox_inches='tight') plt.clf() fig, axs = plt.subplots(2, 2) axs[0, 0].plot(names_temp, full_distances_fos[5], 'b--', label='FOS-MAP5') axs[0, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 0].legend(loc='upper right', fontsize=6) axs[0, 1].plot(names_temp, full_distances_glcm[5], 'b--', label='GLCM-MAP5') axs[0, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0, 1].legend(loc='upper right', fontsize=6) axs[1, 0].plot(names_temp, full_distances_lbp[5], 'b--', label='LBP-MAP5') axs[1, 0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 0].legend(loc='upper right', fontsize=6) axs[1, 1].plot(names_temp, full_distances_mlbp[5], 'b--', label='MLBP-MAP5') axs[1, 1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1, 1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6) plt.savefig(results_file + '_5map.png', dpi=200, bbox_inches='tight')
# este script comprar diferente metodos de base2number from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split #from matplotlib import pyplot as plt #from matplotlib import cm import matplotlib.pyplot as plt from matplotlib import pyplot import math import os import sys import cv2 import numpy as np import math from scipy.stats import kurtosis, skew from Bio import SeqIO import pandas as pd import seaborn as sns from descriptor import get_features from descriptor import get_features_glcm from descriptor import get_features_lbp from descriptor import get_features_mlbp from ete3 import PhyloTree, TreeStyle from ete3 import Tree from skbio import DistanceMatrix from skbio.tree import nj current_dir = os.path.dirname(os.path.abspath(__file__)) ################################################################################################################################### ################################################################################################################################### sequences = [ 'J01859.fna', 'NR_037066.fna', 'NR_040849.fna', 'NR_117152.fna', 'NR_132306.fna', 'NR_134817.fna', 'NR_134818.fna', 'NR_136784.fna', 'NR_148244.fna', 'NR_148787.fna', 'NR_152063.fna', 'KP317497.fna', 'NR_156072.fna' ] names = [ 'Escherichia coli', 'T.Thermophilus', 'B.Wakoensis', 'T.Filiformis', 'T.Tengchongensis', 'S.Cameli', 'S.Tangierensis', 'T.amyloliquefaciens', 'B.Xiamenensis', 'B.Australimaris', 'S.Halotolerans', 'B.Maritimus', 'S.Himalayensis'] csv_mega = current_dir + "/sample_genomes/seqs_db1_distances.csv" seq_file_full = current_dir + "/sample_genomes/seqs_db1.fasta" results_file = current_dir + "/results/compare_features/db1" ################################################################################################################################### ################################################################################################################################### sequences = [ 'L00016.fna', 'M22650.fna', 'M22651.fna', 'M22653.fna', 'M22654.fna', 'M22655.fna', 'M22656.fna', 'M22657.fna', 'V00658.fna', 'V00659.fna', 'V00672.fna', 'V00675.fna'] names = [ 'Human', 'Macaca mulatta', 'Macaca fuscata', 'Macaca fascicularis', 'Macaca sylvanus', 'Saimiri sciureus', 'Tarsius syrichta', 'Lemur catta', 'Gorilla', 'Hylobates', 'Chimpanzee', 'Sumatran Orangutan'] csv_mega = current_dir + "/sample_genomes/seqs_db2_distances.csv" seq_file_full = current_dir + "/sample_genomes/seqs_db2.fasta" results_file = current_dir + "/results/compare_features/db2" ################################################################################################################################### ################################################################################################################################### sequences = [ 'V00662.fna', 'D38116.fna', 'D38113.fna', 'D38114.fna', 'D38115.fna', 'X99256.fna', 'Y18001.fna', 'X79547.fna', 'Y07726.fna', 'X63726.fna', 'X72004.fna', 'U20753.fna', 'X61145.fna', 'X72204.fna', 'V00654.fna', 'X14848.fna', 'V00711.fna', 'X83427.fna'] names = [ 'Human', 'Pygmy chimpanzee', 'Common chimpanzee', 'Gorilla', 'Orangutan', 'Gibbon', 'Baboon', 'Horse', 'White rhinoceros', 'Harbor seal', 'Gray seal', 'Cat', 'Fin whale', 'Blue whale', 'Cow', 'Rat', 'Mouse', 'Platypus'] csv_mega = current_dir + "/sample_genomes/seqs_db3_distances.csv" seq_file_full = current_dir + "/sample_genomes/seqs_db3.fasta" results_file = current_dir + "/results/compare_features/db3" ################################################################################################################################### ################################################################################################################################### data_features_fos = [] data_features_glcm = [] data_features_lbp = [] data_features_mlbp = [] mapping_function_size = 6 # trere is 6 types of mapping functions f_out = open(seq_file_full, "w") for sequence_file in sequences: f_in = open(current_dir + "/sample_genomes/" + sequence_file, "r") f_out.write(f_in.read()) f_in.close() data = [] fa_file = current_dir + "/sample_genomes/" + sequence_file seqs = SeqIO.parse(fa_file, "fasta") for record in seqs: data.append(record.seq.upper()) seq = data[0] temp_fos = [] temp_glcm = [] temp_lbp = [] temp_mlbp = [] # here we evaluate each mapping funciton for mapping_type in range(mapping_function_size): skewness, my_kurtosis, energy, entropy = get_features(seq, mapping_type) temp_fos.append( [skewness, my_kurtosis, energy, entropy] ) #rint("fos mapping=",mapping_type, [skewness, my_kurtosis, energy, entropy]) entropy, contrast, energy, correlation, homogeneity = get_features_glcm(seq, mapping_type) temp_glcm.append( [entropy, contrast, energy, correlation, homogeneity] ) #print("glcm mapping=",mapping_type, [entropy, contrast, energy, correlation, homogeneity]) hist_lbp = get_features_lbp(seq, mapping_type) temp_lbp.append( hist_lbp ) #print("lbp mapping=",mapping_type, hist_lbp) hist_mlbp = get_features_mlbp(seq, mapping_type) temp_mlbp.append( hist_mlbp ) #print("mlbp mapping=",mapping_type, hist_mlbp) data_features_fos.append(temp_fos) data_features_glcm.append(temp_glcm) data_features_lbp.append(temp_lbp) data_features_mlbp.append(temp_mlbp) f_out.close() data_features_fos = np.array(data_features_fos) data_features_glcm = np.array(data_features_glcm) data_features_lbp = np.array(data_features_lbp) data_features_mlbp = np.array(data_features_mlbp) ###################################################################################################################3 # procesamos las distancias con FOS ################################################################################################################### full_distances_fos = [] for mapping_type in range(mapping_function_size): DIST_fos = np.zeros((data_features_fos.shape[0], data_features_fos.shape[0])) for i in range(data_features_fos.shape[0]): row = np.zeros(data_features_fos.shape[0]) for j in range(i, data_features_fos.shape[0]): dist = np.sqrt(np.sum((data_features_fos[i][mapping_type] - data_features_fos[j][mapping_type])**2)) row[j] = dist DIST_fos[i] = row DIST_fos = DIST_fos + DIST_fos.T - np.diag(np.diag(DIST_fos)) DIST_fos = (DIST_fos - np.min(DIST_fos)) / (np.max(DIST_fos) - np.min(DIST_fos)) full_distances_fos.append( DIST_fos[0,1:DIST_fos.shape[0]] ) full_distances_fos = np.array(full_distances_fos) print("full_distances_fos", full_distances_fos.shape) ###################################################################################################################3 # procesamos las distancias con GLCM ################################################################################################################### full_distances_glcm = [] for mapping_type in range(mapping_function_size): DIST_glcm = np.zeros((data_features_glcm.shape[0], data_features_glcm.shape[0])) for i in range(data_features_glcm.shape[0]): row = np.zeros(data_features_glcm.shape[0]) for j in range(i, data_features_glcm.shape[0]): dist = np.sqrt(np.sum((data_features_glcm[i][mapping_type] - data_features_glcm[j][mapping_type])**2)) row[j] = dist DIST_glcm[i] = row DIST_glcm = DIST_glcm + DIST_glcm.T - np.diag(np.diag(DIST_glcm)) DIST_glcm = (DIST_glcm - np.min(DIST_glcm)) / (np.max(DIST_glcm) - np.min(DIST_glcm)) full_distances_glcm.append( DIST_glcm[0,1:DIST_glcm.shape[0]] ) full_distances_glcm = np.array(full_distances_glcm) print("full_distances_glcm", full_distances_glcm.shape) ###################################################################################################################3 # procesamos las distancias con LBP ################################################################################################################### full_distances_lbp = [] for mapping_type in range(mapping_function_size): DIST_lbp = np.zeros((data_features_lbp.shape[0], data_features_lbp.shape[0])) for i in range(data_features_lbp.shape[0]): row = np.zeros(data_features_lbp.shape[0]) for j in range(i, data_features_lbp.shape[0]): dist = np.sqrt(np.sum((data_features_lbp[i][mapping_type] - data_features_lbp[j][mapping_type])**2)) row[j] = dist DIST_lbp[i] = row DIST_lbp = DIST_lbp + DIST_lbp.T - np.diag(np.diag(DIST_lbp)) DIST_lbp = (DIST_lbp - np.min(DIST_lbp)) / (np.max(DIST_lbp) - np.min(DIST_lbp)) full_distances_lbp.append( DIST_lbp[0,1:DIST_lbp.shape[0]] ) full_distances_lbp = np.array(full_distances_lbp) print("full_distances_lbp", full_distances_lbp.shape) ###################################################################################################################3 # procesamos las distancias con MLBP ################################################################################################################### full_distances_mlbp = [] for mapping_type in range(mapping_function_size): DIST_mlbp = np.zeros((data_features_mlbp.shape[0], data_features_mlbp.shape[0])) for i in range(data_features_mlbp.shape[0]): row = np.zeros(data_features_mlbp.shape[0]) for j in range(i, data_features_mlbp.shape[0]): dist = np.sqrt(np.sum((data_features_mlbp[i][mapping_type] - data_features_mlbp[j][mapping_type])**2)) row[j] = dist DIST_mlbp[i] = row DIST_mlbp = DIST_mlbp + DIST_mlbp.T - np.diag(np.diag(DIST_mlbp)) DIST_mlbp = (DIST_mlbp - np.min(DIST_mlbp)) / (np.max(DIST_mlbp) - np.min(DIST_mlbp)) full_distances_mlbp.append( DIST_mlbp[0,1:DIST_mlbp.shape[0]] ) full_distances_mlbp = np.array(full_distances_mlbp) print("full_distances_mlbp", full_distances_mlbp.shape) ################################################################################################################### ### distances from mega ########################################################### ################################################################################################################### mega_dist_csv = pd.read_csv(csv_mega) mega_dist_csv = mega_dist_csv.set_index(mega_dist_csv.columns[0]) DIST_mega = mega_dist_csv.values DIST_mega[np.isnan(DIST_mega)] = 0 # lllenamos con ceros los valores nan DIST_mega = DIST_mega + DIST_mega.T #copiamos el triangulo inferior al superir en la matriz distances_mega = DIST_mega[0,1:DIST_mega.shape[0]] distances_mega = (distances_mega - np.min(distances_mega)) / (np.max(distances_mega) - np.min(distances_mega)) ################################################################################################################### ################################################################################################################### names_temp = np.array(sequences) names_temp = names_temp[1:names_temp.shape[0]] # eliminamos el primer elemento ###################################################################################################################3 # procesamos las distancias con FOS ################################################################################################################### plt.clf() fig, axs = plt.subplots(3,2) axs[0,0].plot(names_temp, full_distances_fos[0], 'b--', label='FOS-MAP0') axs[0,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,0].legend(loc='upper right', fontsize=6) axs[0,1].plot(names_temp, full_distances_fos[1], 'b--', label='FOS-MAP1') axs[0,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,1].legend(loc='upper right', fontsize=6) axs[1,0].plot(names_temp, full_distances_fos[2], 'b--', label='FOS-MAP2') axs[1,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,0].legend(loc='upper right', fontsize=6) axs[1,1].plot(names_temp, full_distances_fos[3], 'b--', label='FOS-MAP3') axs[1,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,1].legend(loc='upper right', fontsize=6) axs[2,0].plot(names_temp, full_distances_fos[4], 'b--', label='FOS-MAP4') axs[2,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2,0].legend(loc='upper right', fontsize=6) axs[2,1].plot(names_temp, full_distances_fos[5], 'b--', label='FOS-MAP5') axs[2,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2,1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6 ) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6 ) plt.savefig( results_file + "_fos.png", dpi = 200, bbox_inches='tight') ################################################################################################################### # procesamos las distancias con GLCM ################################################################################################################### plt.clf() fig, axs = plt.subplots(3,2) axs[0,0].plot(names_temp, full_distances_glcm[0], 'b--', label='GLCM-MAP0') axs[0,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,0].legend(loc='upper right', fontsize=6) axs[0,1].plot(names_temp, full_distances_glcm[1], 'b--', label='GLCM-MAP1') axs[0,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,1].legend(loc='upper right', fontsize=6) axs[1,0].plot(names_temp, full_distances_glcm[2], 'b--', label='GLCM-MAP2') axs[1,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,0].legend(loc='upper right', fontsize=6) axs[1,1].plot(names_temp, full_distances_glcm[3], 'b--', label='GLCM-MAP3') axs[1,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,1].legend(loc='upper right', fontsize=6) axs[2,0].plot(names_temp, full_distances_glcm[4], 'b--', label='GLCM-MAP4') axs[2,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2,0].legend(loc='upper right', fontsize=6) axs[2,1].plot(names_temp, full_distances_glcm[5], 'b--', label='GLCM-MAP5') axs[2,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2,1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6 ) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6 ) plt.savefig( results_file + "_glcm.png", dpi = 200, bbox_inches='tight') ################################################################################################################### # procesamos las distancias con LBP ################################################################################################################### plt.clf() fig, axs = plt.subplots(3,2) axs[0,0].plot(names_temp, full_distances_lbp[0], 'b--', label='LBP-MAP0') axs[0,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,0].legend(loc='upper right', fontsize=6) axs[0,1].plot(names_temp, full_distances_lbp[1], 'b--', label='LBP-MAP1') axs[0,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,1].legend(loc='upper right', fontsize=6) axs[1,0].plot(names_temp, full_distances_lbp[2], 'b--', label='LBP-MAP2') axs[1,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,0].legend(loc='upper right', fontsize=6) axs[1,1].plot(names_temp, full_distances_lbp[3], 'b--', label='LBP-MAP3') axs[1,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,1].legend(loc='upper right', fontsize=6) axs[2,0].plot(names_temp, full_distances_lbp[4], 'b--', label='LBP-MAP4') axs[2,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2,0].legend(loc='upper right', fontsize=6) axs[2,1].plot(names_temp, full_distances_lbp[5], 'b--', label='LBP-MAP5') axs[2,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2,1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6 ) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6 ) plt.savefig( results_file + "_lbp.png", dpi = 200, bbox_inches='tight') ################################################################################################################### # procesamos las distancias con MLBP ################################################################################################################### plt.clf() fig, axs = plt.subplots(3,2) axs[0,0].plot(names_temp, full_distances_mlbp[0], 'b--', label='MLBP-MAP0') axs[0,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,0].legend(loc='upper right', fontsize=6) axs[0,1].plot(names_temp, full_distances_mlbp[1], 'b--', label='MLBP-MAP1') axs[0,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,1].legend(loc='upper right', fontsize=6) axs[1,0].plot(names_temp, full_distances_mlbp[2], 'b--', label='MLBP-MAP2') axs[1,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,0].legend(loc='upper right', fontsize=6) axs[1,1].plot(names_temp, full_distances_mlbp[3], 'b--', label='MLBP-MAP3') axs[1,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,1].legend(loc='upper right', fontsize=6) axs[2,0].plot(names_temp, full_distances_mlbp[4], 'b--', label='MLBP-MAP4') axs[2,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2,0].legend(loc='upper right', fontsize=6) axs[2,1].plot(names_temp, full_distances_mlbp[5], 'b--', label='MLBP-MAP5') axs[2,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[2,1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6 ) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6 ) plt.savefig( results_file + "_mlbp.png", dpi = 200, bbox_inches='tight') data_csv = [] error_fos = [] # save the error for each mappoing function with FOS error_glcm = [] # save the error for each mappoing function with GLCM error_lbp = [] # save the error for each mappoing function with LBP error_mlbp = [] # save the error for each mappoing function with MLBP for mapping_type in range(mapping_function_size): error_fos.append((np.sum((full_distances_fos[mapping_type] - distances_mega)**2))/distances_mega.shape[0]) error_glcm.append((np.sum((full_distances_glcm[mapping_type] - distances_mega)**2))/distances_mega.shape[0]) error_lbp.append((np.sum((full_distances_lbp[mapping_type] - distances_mega)**2))/distances_mega.shape[0]) error_mlbp.append((np.sum((full_distances_mlbp[mapping_type] - distances_mega)**2))/distances_mega.shape[0]) data_csv.append(error_fos) data_csv.append(error_glcm) data_csv.append(error_lbp) data_csv.append(error_mlbp) data_csv = np.array(data_csv) df = pd.DataFrame(data=data_csv.T, index=["map0", "map1", "map2", "map3", "map4", "map5"], columns=["FOS", "GLCM", "LBP", "MLBP"]) print(df) df.to_csv(results_file + ".csv", index=True) #print(error_fos) #print(error_glcm) #print(error_lbp) #print(error_mlbp) ################################################################################################################### # proccesing a MAPPING 0 funciton with the all algorithms ################################################################################################################### plt.clf() fig, axs = plt.subplots(2,2) axs[0,0].plot(names_temp, full_distances_fos[0], 'b--', label='FOS-MAP0') axs[0,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,0].legend(loc='upper right', fontsize=6) axs[0,1].plot(names_temp, full_distances_glcm[0], 'b--', label='GLCM-MAP0') axs[0,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,1].legend(loc='upper right', fontsize=6) axs[1,0].plot(names_temp, full_distances_lbp[0], 'b--', label='LBP-MAP0') axs[1,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,0].legend(loc='upper right', fontsize=6) axs[1,1].plot(names_temp, full_distances_mlbp[0], 'b--', label='MLBP-MAP0') axs[1,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6 ) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6 ) plt.savefig( results_file + "_0map.png", dpi = 200, bbox_inches='tight') ################################################################################################################### # proccesing a MAPPING 1 funciton with the all algorithms ################################################################################################################### plt.clf() fig, axs = plt.subplots(2,2) axs[0,0].plot(names_temp, full_distances_fos[1], 'b--', label='FOS-MAP1') axs[0,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,0].legend(loc='upper right', fontsize=6) axs[0,1].plot(names_temp, full_distances_glcm[1], 'b--', label='GLCM-MAP1') axs[0,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,1].legend(loc='upper right', fontsize=6) axs[1,0].plot(names_temp, full_distances_lbp[1], 'b--', label='LBP-MAP1') axs[1,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,0].legend(loc='upper right', fontsize=6) axs[1,1].plot(names_temp, full_distances_mlbp[1], 'b--', label='MLBP-MAP1') axs[1,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6 ) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6 ) plt.savefig( results_file + "_1map.png", dpi = 200, bbox_inches='tight') ################################################################################################################### # proccesing a MAPPING 2 funciton with the all algorithms ################################################################################################################### plt.clf() fig, axs = plt.subplots(2,2) axs[0,0].plot(names_temp, full_distances_fos[2], 'b--', label='FOS-MAP2') axs[0,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,0].legend(loc='upper right', fontsize=6) axs[0,1].plot(names_temp, full_distances_glcm[2], 'b--', label='GLCM-MAP2') axs[0,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,1].legend(loc='upper right', fontsize=6) axs[1,0].plot(names_temp, full_distances_lbp[2], 'b--', label='LBP-MAP2') axs[1,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,0].legend(loc='upper right', fontsize=6) axs[1,1].plot(names_temp, full_distances_mlbp[2], 'b--', label='MLBP-MAP2') axs[1,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6 ) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6 ) plt.savefig( results_file + "_2map.png", dpi = 200, bbox_inches='tight') ################################################################################################################### # proccesing a MAPPING 3 funciton with the all algorithms ################################################################################################################### plt.clf() fig, axs = plt.subplots(2,2) axs[0,0].plot(names_temp, full_distances_fos[3], 'b--', label='FOS-MAP3') axs[0,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,0].legend(loc='upper right', fontsize=6) axs[0,1].plot(names_temp, full_distances_glcm[3], 'b--', label='GLCM-MAP3') axs[0,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,1].legend(loc='upper right', fontsize=6) axs[1,0].plot(names_temp, full_distances_lbp[3], 'b--', label='LBP-MAP3') axs[1,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,0].legend(loc='upper right', fontsize=6) axs[1,1].plot(names_temp, full_distances_mlbp[3], 'b--', label='MLBP-MAP3') axs[1,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6 ) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6 ) plt.savefig( results_file + "_3map.png", dpi = 200, bbox_inches='tight') ################################################################################################################### # proccesing a MAPPING 4 funciton with the all algorithms ################################################################################################################### plt.clf() fig, axs = plt.subplots(2,2) axs[0,0].plot(names_temp, full_distances_fos[4], 'b--', label='FOS-MAP4') axs[0,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,0].legend(loc='upper right', fontsize=6) axs[0,1].plot(names_temp, full_distances_glcm[4], 'b--', label='GLCM-MAP4') axs[0,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,1].legend(loc='upper right', fontsize=6) axs[1,0].plot(names_temp, full_distances_lbp[4], 'b--', label='LBP-MAP4') axs[1,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,0].legend(loc='upper right', fontsize=6) axs[1,1].plot(names_temp, full_distances_mlbp[4], 'b--', label='MLBP-MAP4') axs[1,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6 ) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6 ) plt.savefig( results_file + "_4map.png", dpi = 200, bbox_inches='tight') ################################################################################################################### # proccesing a MAPPING 5 funciton with the all algorithms ################################################################################################################### plt.clf() fig, axs = plt.subplots(2,2) axs[0,0].plot(names_temp, full_distances_fos[5], 'b--', label='FOS-MAP5') axs[0,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,0].legend(loc='upper right', fontsize=6) axs[0,1].plot(names_temp, full_distances_glcm[5], 'b--', label='GLCM-MAP5') axs[0,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[0,1].legend(loc='upper right', fontsize=6) axs[1,0].plot(names_temp, full_distances_lbp[5], 'b--', label='LBP-MAP5') axs[1,0].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,0].legend(loc='upper right', fontsize=6) axs[1,1].plot(names_temp, full_distances_mlbp[5], 'b--', label='MLBP-MAP5') axs[1,1].plot(names_temp, distances_mega, 'r-.', label='CLUSTALW') axs[1,1].legend(loc='upper right', fontsize=6) for ax in axs.flat: ax.label_outer() ax.yaxis.set_tick_params(labelsize=6) plt.sca(ax) plt.xticks(rotation=45, horizontalalignment='right', fontweight='light', fontsize=6 ) plt.xlabel('Sequences', fontsize=6) fig.text(0.04, 0.5, 'Distances', va='center', rotation='vertical', fontsize=6 ) plt.savefig( results_file + "_5map.png", dpi = 200, bbox_inches='tight')
[ 0, 1, 2, 3, 4 ]
2,507
89376b2464dfb724197a1c1e164af8277e03ad59
<mask token> class SubsPcLrThumb(Opcode): <mask token> <mask token>
<mask token> class SubsPcLrThumb(Opcode): def __init__(self, instruction, imm32, n): super().__init__(instruction) self.imm32 = imm32 self.n = n <mask token>
<mask token> class SubsPcLrThumb(Opcode): def __init__(self, instruction, imm32, n): super().__init__(instruction) self.imm32 = imm32 self.n = n def execute(self, processor): if processor.condition_passed(): if processor.registers.current_mode_is_user_or_system( ) or processor.registers.current_instr_set( ) == InstrSet.THUMB_EE: print('unpredictable') else: operand2 = self.imm32 result = add_with_carry(processor.registers.get(self.n), bit_not(operand2, 32), 1)[0] if (processor.registers.cpsr.m == 26 and processor. registers.cpsr.j and processor.registers.cpsr.t): print('unpredictable') else: processor.branch_write_pc(result)
from armulator.armv6.bits_ops import add_with_carry, bit_not from armulator.armv6.enums import InstrSet from armulator.armv6.opcodes.opcode import Opcode class SubsPcLrThumb(Opcode): def __init__(self, instruction, imm32, n): super().__init__(instruction) self.imm32 = imm32 self.n = n def execute(self, processor): if processor.condition_passed(): if processor.registers.current_mode_is_user_or_system( ) or processor.registers.current_instr_set( ) == InstrSet.THUMB_EE: print('unpredictable') else: operand2 = self.imm32 result = add_with_carry(processor.registers.get(self.n), bit_not(operand2, 32), 1)[0] if (processor.registers.cpsr.m == 26 and processor. registers.cpsr.j and processor.registers.cpsr.t): print('unpredictable') else: processor.branch_write_pc(result)
from armulator.armv6.bits_ops import add_with_carry, bit_not from armulator.armv6.enums import InstrSet from armulator.armv6.opcodes.opcode import Opcode class SubsPcLrThumb(Opcode): def __init__(self, instruction, imm32, n): super().__init__(instruction) self.imm32 = imm32 self.n = n def execute(self, processor): if processor.condition_passed(): if (processor.registers.current_mode_is_user_or_system() or processor.registers.current_instr_set() == InstrSet.THUMB_EE): print('unpredictable') else: operand2 = self.imm32 result = add_with_carry(processor.registers.get(self.n), bit_not(operand2, 32), 1)[0] if (processor.registers.cpsr.m == 0b11010 and processor.registers.cpsr.j and processor.registers.cpsr.t): print('unpredictable') else: processor.branch_write_pc(result)
[ 1, 2, 3, 4, 5 ]
2,508
6d8c32fe51fadbe6b6ee14419e1e37c65d4f57bf
<mask token>
BLUE = '#1A94D6' GREEN = '#73AD21' PALE_GREEN = '#BBF864' PALE_BLUE = '#A2C4DA' BRIGHT_BLUE = '#04BAE3' ORANGE = '#FF8000' DARK_ORANGE = '#E65C00' LIGHT_ORANGE = '#FFAA3E' PALE_ORANGE = '#F8C381' GUAVA = '#FF4F40' FUSCIA = '#E22EFF' PALE_FUSCIA = '#DFA0E9' PURPLE = '#AE37C1' PALE_PURPLE = '#C3AACF' COLORS = [BLUE, ORANGE, GREEN, PURPLE, FUSCIA, PALE_BLUE, PALE_ORANGE, PALE_GREEN]
BLUE = "#1A94D6" GREEN = "#73AD21" PALE_GREEN = "#BBF864" PALE_BLUE = "#A2C4DA" BRIGHT_BLUE = "#04BAE3" ORANGE = "#FF8000" DARK_ORANGE = "#E65C00" LIGHT_ORANGE = "#FFAA3E" PALE_ORANGE = "#F8C381" GUAVA = "#FF4F40" FUSCIA = "#E22EFF" PALE_FUSCIA = "#DFA0E9" PURPLE = "#AE37C1" PALE_PURPLE = "#C3AACF" COLORS = [BLUE, ORANGE, GREEN, PURPLE, FUSCIA, PALE_BLUE, PALE_ORANGE, PALE_GREEN]
null
null
[ 0, 1, 2 ]
2,509
38f41fa87230ddc0b3a8c411b4c569f59f0ea065
<mask token> class QuoteModel(db.Model): <mask token> <mask token> <mask token> <mask token> def __init__(self, author, quote, rating=1): self.author = author self.quote = quote self.rate = rating def to_dict(self): d = {} for column in self.__table__.columns: d[column.name] = str(getattr(self, column.name)) return d <mask token> <mask token>
<mask token> class QuoteModel(db.Model): <mask token> <mask token> <mask token> <mask token> def __init__(self, author, quote, rating=1): self.author = author self.quote = quote self.rate = rating def to_dict(self): d = {} for column in self.__table__.columns: d[column.name] = str(getattr(self, column.name)) return d def __str__(self): return f'Quote. Author: {self.author}, q: {self.quote[:10]}...' def __repr__(self): return self.__str__()
<mask token> class QuoteModel(db.Model): id = db.Column(db.Integer, primary_key=True) author_id = db.Column(db.Integer, db.ForeignKey(AuthorModel.id)) quote = db.Column(db.String(255), unique=False) rate = db.Column(db.Integer) def __init__(self, author, quote, rating=1): self.author = author self.quote = quote self.rate = rating def to_dict(self): d = {} for column in self.__table__.columns: d[column.name] = str(getattr(self, column.name)) return d def __str__(self): return f'Quote. Author: {self.author}, q: {self.quote[:10]}...' def __repr__(self): return self.__str__()
from api import db from api.models.author import AuthorModel class QuoteModel(db.Model): id = db.Column(db.Integer, primary_key=True) author_id = db.Column(db.Integer, db.ForeignKey(AuthorModel.id)) quote = db.Column(db.String(255), unique=False) rate = db.Column(db.Integer) def __init__(self, author, quote, rating=1): self.author = author self.quote = quote self.rate = rating def to_dict(self): d = {} for column in self.__table__.columns: d[column.name] = str(getattr(self, column.name)) return d def __str__(self): return f'Quote. Author: {self.author}, q: {self.quote[:10]}...' def __repr__(self): return self.__str__()
from api import db from api.models.author import AuthorModel class QuoteModel(db.Model): id = db.Column(db.Integer, primary_key=True) author_id = db.Column(db.Integer, db.ForeignKey(AuthorModel.id)) quote = db.Column(db.String(255), unique=False) rate = db.Column(db.Integer) def __init__(self, author, quote, rating=1): self.author = author self.quote = quote self.rate = rating def to_dict(self): d = {} for column in self.__table__.columns: d[column.name] = str(getattr(self, column.name)) return d def __str__(self): return f"Quote. Author: {self.author}, q: {self.quote[:10]}..." def __repr__(self): return self.__str__()
[ 3, 5, 6, 7, 8 ]
2,510
91e1ac12ba99a8efd8f7f26310244d83bdd4aa52
<mask token> class Partitioner: <mask token> def __init__(self, mesh, partitions, tmpdir): metisMesh = tmpdir.path(METIS_MESH) metis.MeshWriter(metisMesh, mesh.elements()) metisGraph = tmpdir.path(METIS_GRAPH) p = subprocess.Popen(['m2gmetis', '-ncommon=3', metisMesh, metisGraph], stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, errmsg = p.communicate() if p.returncode: raise Exception(errmsg.strip()) p = subprocess.Popen(['gpmetis', '-ptype=rb', metisGraph, str( partitions)], stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, errmsg = p.communicate() if p.returncode: raise Exception(errmsg.strip()) self.__partition = metis.PartitionReader(metisGraph + '.part.' + str(partitions), partitions, len(mesh.elements())) if self.__partition.size() != len(mesh.elements()): raise Exception( 'Mesh size and partition size do not match: mesh size = ' + str(len(mesh.elements())) + ' != partition size = ' + str( self.__partition.size())) def partition(self): return self.__partition
<mask token> class Partitioner: """Converts a mesh into graph and partitions it using metis""" def __init__(self, mesh, partitions, tmpdir): metisMesh = tmpdir.path(METIS_MESH) metis.MeshWriter(metisMesh, mesh.elements()) metisGraph = tmpdir.path(METIS_GRAPH) p = subprocess.Popen(['m2gmetis', '-ncommon=3', metisMesh, metisGraph], stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, errmsg = p.communicate() if p.returncode: raise Exception(errmsg.strip()) p = subprocess.Popen(['gpmetis', '-ptype=rb', metisGraph, str( partitions)], stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, errmsg = p.communicate() if p.returncode: raise Exception(errmsg.strip()) self.__partition = metis.PartitionReader(metisGraph + '.part.' + str(partitions), partitions, len(mesh.elements())) if self.__partition.size() != len(mesh.elements()): raise Exception( 'Mesh size and partition size do not match: mesh size = ' + str(len(mesh.elements())) + ' != partition size = ' + str( self.__partition.size())) def partition(self): return self.__partition
<mask token> METIS_MESH = 'metis.mesh' METIS_GRAPH = 'metis.graph' class Partitioner: """Converts a mesh into graph and partitions it using metis""" def __init__(self, mesh, partitions, tmpdir): metisMesh = tmpdir.path(METIS_MESH) metis.MeshWriter(metisMesh, mesh.elements()) metisGraph = tmpdir.path(METIS_GRAPH) p = subprocess.Popen(['m2gmetis', '-ncommon=3', metisMesh, metisGraph], stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, errmsg = p.communicate() if p.returncode: raise Exception(errmsg.strip()) p = subprocess.Popen(['gpmetis', '-ptype=rb', metisGraph, str( partitions)], stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, errmsg = p.communicate() if p.returncode: raise Exception(errmsg.strip()) self.__partition = metis.PartitionReader(metisGraph + '.part.' + str(partitions), partitions, len(mesh.elements())) if self.__partition.size() != len(mesh.elements()): raise Exception( 'Mesh size and partition size do not match: mesh size = ' + str(len(mesh.elements())) + ' != partition size = ' + str( self.__partition.size())) def partition(self): return self.__partition
import metis import subprocess METIS_MESH = 'metis.mesh' METIS_GRAPH = 'metis.graph' class Partitioner: """Converts a mesh into graph and partitions it using metis""" def __init__(self, mesh, partitions, tmpdir): metisMesh = tmpdir.path(METIS_MESH) metis.MeshWriter(metisMesh, mesh.elements()) metisGraph = tmpdir.path(METIS_GRAPH) p = subprocess.Popen(['m2gmetis', '-ncommon=3', metisMesh, metisGraph], stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, errmsg = p.communicate() if p.returncode: raise Exception(errmsg.strip()) p = subprocess.Popen(['gpmetis', '-ptype=rb', metisGraph, str( partitions)], stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, errmsg = p.communicate() if p.returncode: raise Exception(errmsg.strip()) self.__partition = metis.PartitionReader(metisGraph + '.part.' + str(partitions), partitions, len(mesh.elements())) if self.__partition.size() != len(mesh.elements()): raise Exception( 'Mesh size and partition size do not match: mesh size = ' + str(len(mesh.elements())) + ' != partition size = ' + str( self.__partition.size())) def partition(self): return self.__partition
#!/usr/bin/python ## # @file # This file is part of SeisSol. # # @author Sebastian Rettenberger (rettenbs AT in.tum.de, http://www5.in.tum.de/wiki/index.php/Sebastian_Rettenberger,_M.Sc.) # # @section LICENSE # Copyright (c) 2013, SeisSol Group # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import metis import subprocess METIS_MESH = 'metis.mesh' METIS_GRAPH = 'metis.graph' class Partitioner: """Converts a mesh into graph and partitions it using metis""" def __init__(self, mesh, partitions, tmpdir): metisMesh = tmpdir.path(METIS_MESH) # Write metis mesh metis.MeshWriter(metisMesh, mesh.elements()) # Convert to graph metisGraph = tmpdir.path(METIS_GRAPH) p = subprocess.Popen(['m2gmetis', '-ncommon=3', metisMesh, metisGraph], stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, errmsg = p.communicate() if p.returncode: raise Exception(errmsg.strip()) # Run metis p = subprocess.Popen(['gpmetis', '-ptype=rb', metisGraph, str(partitions)], stdout=subprocess.PIPE, stderr=subprocess.PIPE) _, errmsg = p.communicate() if p.returncode: raise Exception(errmsg.strip()) # Read partitions self.__partition = metis.PartitionReader(metisGraph+'.part.'+str(partitions), partitions, len(mesh.elements())) if self.__partition.size() != len(mesh.elements()): raise Exception('Mesh size and partition size do not match: mesh size = ' +str(len(mesh.elements()))+' != partition size = '+str(self.__partition.size())) def partition(self): return self.__partition
[ 3, 4, 5, 6, 7 ]
2,511
fd907dbcea01679c08aeae6bcbf6e61786f40260
<mask token> def test_stringify_nums(): """.""" from radixsort import stringify_nums nums = [1, 2, 3, 4, 5] stringified_nums = stringify_nums(nums) assert stringified_nums == ['1', '2', '3', '4', '5'] def test_while_condition(): """.""" from radixsort import while_condition stringified_nums = ['1', '2', '3', '4', '5000'] assert while_condition(stringified_nums) == 4 <mask token> def test_push_into_buckets(): """.""" from radixsort import push_into_buckets buckets_dict = OrderedDict({'none': Queue(), '0': Queue(), '1': Queue(), '2': Queue(), '3': Queue(), '4': Queue(), '5': Queue(), '6': Queue( ), '7': Queue(), '8': Queue(), '9': Queue()}) nums = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] full_buckets_dict = push_into_buckets(nums, 0, buckets_dict) for key in full_buckets_dict: if full_buckets_dict[key].peek(): assert full_buckets_dict[key].dequeue() == key <mask token>
<mask token> def test_stringify_nums(): """.""" from radixsort import stringify_nums nums = [1, 2, 3, 4, 5] stringified_nums = stringify_nums(nums) assert stringified_nums == ['1', '2', '3', '4', '5'] def test_while_condition(): """.""" from radixsort import while_condition stringified_nums = ['1', '2', '3', '4', '5000'] assert while_condition(stringified_nums) == 4 <mask token> def test_push_into_buckets(): """.""" from radixsort import push_into_buckets buckets_dict = OrderedDict({'none': Queue(), '0': Queue(), '1': Queue(), '2': Queue(), '3': Queue(), '4': Queue(), '5': Queue(), '6': Queue( ), '7': Queue(), '8': Queue(), '9': Queue()}) nums = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] full_buckets_dict = push_into_buckets(nums, 0, buckets_dict) for key in full_buckets_dict: if full_buckets_dict[key].peek(): assert full_buckets_dict[key].dequeue() == key <mask token> def test_radix_sort_verbose(): """Test with many lists.""" from radixsort import radixsort for i in range(100): list_length = random.randint(0, 100) unsorted_list = [] for x in range(list_length): unsorted_list.append(random.randint(0, 100)) assert radixsort(unsorted_list) == sorted(unsorted_list)
<mask token> def test_stringify_nums(): """.""" from radixsort import stringify_nums nums = [1, 2, 3, 4, 5] stringified_nums = stringify_nums(nums) assert stringified_nums == ['1', '2', '3', '4', '5'] def test_while_condition(): """.""" from radixsort import while_condition stringified_nums = ['1', '2', '3', '4', '5000'] assert while_condition(stringified_nums) == 4 def test_unravel_buckets(): """.""" from radixsort import unravel_buckets buckets_dict = OrderedDict({'none': Queue(), '0': Queue(), '1': Queue(), '2': Queue(), '3': Queue(), '4': Queue(), '5': Queue(), '6': Queue( ), '7': Queue(), '8': Queue(), '9': Queue()}) for bucket in buckets_dict: buckets_dict[bucket].enqueue(bucket) assert unravel_buckets(buckets_dict) == ['none', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] def test_push_into_buckets(): """.""" from radixsort import push_into_buckets buckets_dict = OrderedDict({'none': Queue(), '0': Queue(), '1': Queue(), '2': Queue(), '3': Queue(), '4': Queue(), '5': Queue(), '6': Queue( ), '7': Queue(), '8': Queue(), '9': Queue()}) nums = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] full_buckets_dict = push_into_buckets(nums, 0, buckets_dict) for key in full_buckets_dict: if full_buckets_dict[key].peek(): assert full_buckets_dict[key].dequeue() == key <mask token> def test_radix_sort_verbose(): """Test with many lists.""" from radixsort import radixsort for i in range(100): list_length = random.randint(0, 100) unsorted_list = [] for x in range(list_length): unsorted_list.append(random.randint(0, 100)) assert radixsort(unsorted_list) == sorted(unsorted_list)
<mask token> def test_stringify_nums(): """.""" from radixsort import stringify_nums nums = [1, 2, 3, 4, 5] stringified_nums = stringify_nums(nums) assert stringified_nums == ['1', '2', '3', '4', '5'] def test_while_condition(): """.""" from radixsort import while_condition stringified_nums = ['1', '2', '3', '4', '5000'] assert while_condition(stringified_nums) == 4 def test_unravel_buckets(): """.""" from radixsort import unravel_buckets buckets_dict = OrderedDict({'none': Queue(), '0': Queue(), '1': Queue(), '2': Queue(), '3': Queue(), '4': Queue(), '5': Queue(), '6': Queue( ), '7': Queue(), '8': Queue(), '9': Queue()}) for bucket in buckets_dict: buckets_dict[bucket].enqueue(bucket) assert unravel_buckets(buckets_dict) == ['none', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] def test_push_into_buckets(): """.""" from radixsort import push_into_buckets buckets_dict = OrderedDict({'none': Queue(), '0': Queue(), '1': Queue(), '2': Queue(), '3': Queue(), '4': Queue(), '5': Queue(), '6': Queue( ), '7': Queue(), '8': Queue(), '9': Queue()}) nums = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] full_buckets_dict = push_into_buckets(nums, 0, buckets_dict) for key in full_buckets_dict: if full_buckets_dict[key].peek(): assert full_buckets_dict[key].dequeue() == key def test_radix_sort(): """Test with simple list.""" from radixsort import radixsort nums = [5, 3, 2, 7, 9, 4, 0, 1] assert radixsort(nums) == [0, 1, 2, 3, 4, 5, 7, 9] def test_radix_sort_verbose(): """Test with many lists.""" from radixsort import radixsort for i in range(100): list_length = random.randint(0, 100) unsorted_list = [] for x in range(list_length): unsorted_list.append(random.randint(0, 100)) assert radixsort(unsorted_list) == sorted(unsorted_list)
"""Test radix sort.""" import random from collections import OrderedDict from que_ import Queue def test_stringify_nums(): """.""" from radixsort import stringify_nums nums = [1, 2, 3, 4, 5] stringified_nums = stringify_nums(nums) assert stringified_nums == ['1', '2', '3', '4', '5'] def test_while_condition(): """.""" from radixsort import while_condition stringified_nums = ['1', '2', '3', '4', '5000'] assert while_condition(stringified_nums) == 4 def test_unravel_buckets(): """.""" from radixsort import unravel_buckets buckets_dict = OrderedDict({ 'none': Queue(), '0': Queue(), '1': Queue(), '2': Queue(), '3': Queue(), '4': Queue(), '5': Queue(), '6': Queue(), '7': Queue(), '8': Queue(), '9': Queue(), }) for bucket in buckets_dict: buckets_dict[bucket].enqueue(bucket) assert unravel_buckets(buckets_dict) == ['none', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] def test_push_into_buckets(): """.""" from radixsort import push_into_buckets buckets_dict = OrderedDict({ 'none': Queue(), '0': Queue(), '1': Queue(), '2': Queue(), '3': Queue(), '4': Queue(), '5': Queue(), '6': Queue(), '7': Queue(), '8': Queue(), '9': Queue(), }) nums = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] full_buckets_dict = push_into_buckets(nums, 0, buckets_dict) for key in full_buckets_dict: if full_buckets_dict[key].peek(): assert full_buckets_dict[key].dequeue() == key def test_radix_sort(): """Test with simple list.""" from radixsort import radixsort nums = [5, 3, 2, 7, 9, 4, 0, 1] assert radixsort(nums) == [0, 1, 2, 3, 4, 5, 7, 9] def test_radix_sort_verbose(): """Test with many lists.""" from radixsort import radixsort # test on 100 lists for i in range(100): # generate random length of list list_length = random.randint(0, 100) unsorted_list = [] for x in range(list_length): # generate random numbers for random length list unsorted_list.append(random.randint(0, 100)) # test that list is sorted assert radixsort(unsorted_list) == sorted(unsorted_list)
[ 3, 4, 5, 6, 8 ]
2,512
004a9cd0e459116bf3f88f3546ff4eded3dfb2a8
<mask token>
<mask token> def exportVSSD(path, camName, wantTris=False, renderdata=None): mainFileDict = {} mainFilePath = path mainFileStem = os.path.basename(path)[:-5] mainFileDir = os.path.dirname(path) resolution = pmc.ls('defaultResolution')[0] renderWidth = resolution.width.get() renderHeight = resolution.height.get() if renderdata is not None: mainFileDict['render'] = {'width': renderWidth, 'height': renderHeight, 'spp': renderdata['spp']} cam = pmc.ls(camName)[0].getShape() mainFileDict['camera'] = {'focal': cam.getFocalLength(), 'gate': cam. getVerticalFilmAperture(), 'aspect': renderWidth / renderHeight, 'eye': list(cam.getEyePoint(space='world')), 'up': list(cam. upDirection(space='world')), 'look': list(cam.viewDirection(space= 'world'))} bufPath = os.path.join(mainFileDir, '{}.bin'.format(mainFileStem)) geomList = pmc.ls(type='mesh', visible=True) mainFileGeoms = [] offset = 0 with open(bufPath, 'wb') as bufFd: for geom in geomList: print('Processing {}...'.format(geom)) smoothLevel = pmc.displaySmoothness(geom, q=True, po=0)[0] isSmooth = smoothLevel > 1 print('Smooth level {}'.format(smoothLevel)) faceBuf = '' idxBuf = '' vtxBuf = '' nidxs = 0 for face in geom.f: vtxidxs = face.getVertices() nvtxidxs = len(vtxidxs) if not isSmooth and wantTris: if nvtxidxs > 3: print( 'Non-triangulated face. Triangulate before exporting' ) return else: faceBuf += struct.pack('<I', nvtxidxs) nidxs += nvtxidxs for vtxidx in vtxidxs: idxBuf += struct.pack('<I', vtxidx) for vertex in geom.vtx: p = vertex.getPosition('world') vtxBuf += struct.pack('<fff', p.x, p.y, p.z) hasCreases = False if isSmooth: edges = geom.edges creaseIdxBuf = '' creaseValBuf = '' creases = pmc.modeling.polyCrease(edges, q=True, v=0) for e in range(0, len(edges)): c = creases[e] if c > 0: hasCreases = True vtxs = edges[e].connectedVertices() creaseIdxBuf += struct.pack('<I', vtxs[0].index()) creaseIdxBuf += struct.pack('<I', vtxs[1].index()) creaseValBuf += struct.pack('<f', c) buffers = [(idxBuf, 'indices'), (vtxBuf, 'vertices')] if not wantTris: buffers += [(faceBuf, 'faces')] if hasCreases: buffers += [(creaseIdxBuf, 'creaseindices'), (creaseValBuf, 'creasevalues')] buffersList = [] for b in buffers: print('Writing buffer {}'.format(b[1])) bufFd.write(b[0]) s = len(b[0]) buffersList.append({'offset': offset, 'size': s, 'type': b[1]}) offset += s sg = geom.connections(t='shadingEngine')[0] mat = sg.surfaceShader.connections()[0] albedo = mat.color.get() emittance = mat.incandescence.get() geomDict = {'triangles': wantTris, 'smooth': isSmooth, 'buffers': buffersList, 'material': {'albedo': list(albedo), 'emittance': list(emittance)}} mainFileGeoms.append(geomDict) mainFileDict['geometries'] = mainFileGeoms mainFileJson = json.dumps(mainFileDict, indent=2) with open(mainFilePath, 'w') as fd: fd.write(mainFileJson) print('Done')
import json import struct import pymel.core as pmc import os.path def exportVSSD(path, camName, wantTris=False, renderdata=None): mainFileDict = {} mainFilePath = path mainFileStem = os.path.basename(path)[:-5] mainFileDir = os.path.dirname(path) resolution = pmc.ls('defaultResolution')[0] renderWidth = resolution.width.get() renderHeight = resolution.height.get() if renderdata is not None: mainFileDict['render'] = {'width': renderWidth, 'height': renderHeight, 'spp': renderdata['spp']} cam = pmc.ls(camName)[0].getShape() mainFileDict['camera'] = {'focal': cam.getFocalLength(), 'gate': cam. getVerticalFilmAperture(), 'aspect': renderWidth / renderHeight, 'eye': list(cam.getEyePoint(space='world')), 'up': list(cam. upDirection(space='world')), 'look': list(cam.viewDirection(space= 'world'))} bufPath = os.path.join(mainFileDir, '{}.bin'.format(mainFileStem)) geomList = pmc.ls(type='mesh', visible=True) mainFileGeoms = [] offset = 0 with open(bufPath, 'wb') as bufFd: for geom in geomList: print('Processing {}...'.format(geom)) smoothLevel = pmc.displaySmoothness(geom, q=True, po=0)[0] isSmooth = smoothLevel > 1 print('Smooth level {}'.format(smoothLevel)) faceBuf = '' idxBuf = '' vtxBuf = '' nidxs = 0 for face in geom.f: vtxidxs = face.getVertices() nvtxidxs = len(vtxidxs) if not isSmooth and wantTris: if nvtxidxs > 3: print( 'Non-triangulated face. Triangulate before exporting' ) return else: faceBuf += struct.pack('<I', nvtxidxs) nidxs += nvtxidxs for vtxidx in vtxidxs: idxBuf += struct.pack('<I', vtxidx) for vertex in geom.vtx: p = vertex.getPosition('world') vtxBuf += struct.pack('<fff', p.x, p.y, p.z) hasCreases = False if isSmooth: edges = geom.edges creaseIdxBuf = '' creaseValBuf = '' creases = pmc.modeling.polyCrease(edges, q=True, v=0) for e in range(0, len(edges)): c = creases[e] if c > 0: hasCreases = True vtxs = edges[e].connectedVertices() creaseIdxBuf += struct.pack('<I', vtxs[0].index()) creaseIdxBuf += struct.pack('<I', vtxs[1].index()) creaseValBuf += struct.pack('<f', c) buffers = [(idxBuf, 'indices'), (vtxBuf, 'vertices')] if not wantTris: buffers += [(faceBuf, 'faces')] if hasCreases: buffers += [(creaseIdxBuf, 'creaseindices'), (creaseValBuf, 'creasevalues')] buffersList = [] for b in buffers: print('Writing buffer {}'.format(b[1])) bufFd.write(b[0]) s = len(b[0]) buffersList.append({'offset': offset, 'size': s, 'type': b[1]}) offset += s sg = geom.connections(t='shadingEngine')[0] mat = sg.surfaceShader.connections()[0] albedo = mat.color.get() emittance = mat.incandescence.get() geomDict = {'triangles': wantTris, 'smooth': isSmooth, 'buffers': buffersList, 'material': {'albedo': list(albedo), 'emittance': list(emittance)}} mainFileGeoms.append(geomDict) mainFileDict['geometries'] = mainFileGeoms mainFileJson = json.dumps(mainFileDict, indent=2) with open(mainFilePath, 'w') as fd: fd.write(mainFileJson) print('Done')
import json import struct import pymel.core as pmc import os.path def exportVSSD(path, camName, wantTris=False, renderdata=None): mainFileDict = {} mainFilePath = path mainFileStem = os.path.basename(path)[:-5] mainFileDir = os.path.dirname(path) resolution = pmc.ls('defaultResolution')[0] renderWidth = resolution.width.get() renderHeight = resolution.height.get() if renderdata is not None: mainFileDict['render'] = { 'width' : renderWidth, 'height': renderHeight, 'spp' : renderdata['spp'] } cam = pmc.ls(camName)[0].getShape() mainFileDict['camera'] = { 'focal' : cam.getFocalLength(), 'gate' : cam.getVerticalFilmAperture(), 'aspect': renderWidth / renderHeight, 'eye' : list(cam.getEyePoint(space='world')), 'up' : list(cam.upDirection(space='world')), 'look' : list(cam.viewDirection(space='world')) } bufPath = os.path.join(mainFileDir, '{}.bin'.format(mainFileStem)) geomList = pmc.ls(type='mesh', visible=True) mainFileGeoms = [] offset = 0 with open(bufPath, 'wb') as bufFd: for geom in geomList: print('Processing {}...'.format(geom)) smoothLevel = pmc.displaySmoothness(geom, q=True, po=0)[0] isSmooth = smoothLevel > 1 print('Smooth level {}'.format(smoothLevel)) faceBuf = '' idxBuf = '' vtxBuf = '' nidxs = 0 for face in geom.f: vtxidxs = face.getVertices() nvtxidxs = len(vtxidxs) if not isSmooth and wantTris: if nvtxidxs > 3: print('Non-triangulated face. Triangulate before exporting') return else: faceBuf += struct.pack('<I', nvtxidxs) nidxs += nvtxidxs for vtxidx in vtxidxs: idxBuf += struct.pack('<I', vtxidx) for vertex in geom.vtx: p = vertex.getPosition('world') vtxBuf += struct.pack('<fff', p.x, p.y, p.z) hasCreases = False if isSmooth: edges = geom.edges creaseIdxBuf = '' creaseValBuf = '' creases = pmc.modeling.polyCrease(edges, q=True, v=0) for e in range(0, len(edges)): c = creases[e] if c > 0: hasCreases = True vtxs = edges[e].connectedVertices() creaseIdxBuf += struct.pack('<I', vtxs[0].index()) creaseIdxBuf += struct.pack('<I', vtxs[1].index()) creaseValBuf += struct.pack('<f', c) buffers = [ (idxBuf, 'indices'), (vtxBuf, 'vertices') ] if not wantTris: buffers += [ (faceBuf, 'faces') ] if hasCreases: buffers += [ (creaseIdxBuf, 'creaseindices'), (creaseValBuf, 'creasevalues') ] buffersList = [] for b in buffers: print('Writing buffer {}'.format(b[1])) bufFd.write(b[0]) s = len(b[0]) buffersList.append({ 'offset': offset, 'size': s, 'type': b[1] }) offset += s sg = geom.connections(t='shadingEngine')[0] mat = sg.surfaceShader.connections()[0] albedo = mat.color.get() emittance = mat.incandescence.get() geomDict = { 'triangles' : wantTris, 'smooth' : isSmooth, 'buffers' : buffersList, 'material' : { 'albedo' : list(albedo), 'emittance' : list(emittance) } } mainFileGeoms.append(geomDict) mainFileDict['geometries'] = mainFileGeoms mainFileJson = json.dumps(mainFileDict, indent=2) with open(mainFilePath, 'w') as fd: fd.write(mainFileJson) print('Done')
null
[ 0, 1, 2, 3 ]
2,513
8a0e781f29c426161240e33b9d2adc7537b3d352
<mask token>
<mask token> for i in range(N): c, t = map(int, input().split()) if nm > c and T >= t: nm = c if nm == 1000000: print('TLE') else: print(nm)
N, T = map(int, input().split()) nm = 1000000 for i in range(N): c, t = map(int, input().split()) if nm > c and T >= t: nm = c if nm == 1000000: print('TLE') else: print(nm)
N,T=map(int,input().split()) nm=1000000 for i in range(N): c,t=map(int,input().split()) if nm>c and T>=t: nm=c if nm==1000000: print("TLE") else: print(nm)
null
[ 0, 1, 2, 3 ]
2,514
03cc3bf37ea8d971550a89107161005901d842de
<mask token>
<mask token> class Solution: <mask token>
<mask token> class Solution: def destCity(self, paths: List[List[str]]) ->str: departCity = set() destCity = [] for i in paths: if i[1] not in departCity: destCity.append(i[1]) if i[0] in destCity: destCity.remove(i[0]) departCity.add(i[0]) return destCity[0]
from typing import List class Solution: def destCity(self, paths: List[List[str]]) ->str: departCity = set() destCity = [] for i in paths: if i[1] not in departCity: destCity.append(i[1]) if i[0] in destCity: destCity.remove(i[0]) departCity.add(i[0]) return destCity[0]
from typing import List class Solution: def destCity(self, paths: List[List[str]]) -> str: departCity = set() destCity = [] for i in paths: if i[1] not in departCity: destCity.append(i[1]) if i[0] in destCity: destCity.remove(i[0]) departCity.add(i[0]) return destCity[0]
[ 0, 1, 2, 3, 4 ]
2,515
de2de26d0c82213393e8174d1144c3510c63b899
<mask token>
<mask token> if __name__ == '__main__': app.run(port=NLC.port, debug=True)
<mask token> app = NLC.create_app() if __name__ == '__main__': app.run(port=NLC.port, debug=True)
import NLC app = NLC.create_app() if __name__ == '__main__': app.run(port=NLC.port, debug=True)
import NLC app = NLC.create_app() if __name__ == '__main__': app.run(port=NLC.port, debug=True)
[ 0, 1, 2, 3, 4 ]
2,516
8b4bd2d267f20775ee5d41f7fe9ef6f6eeab5bb0
from scipy import misc from math import exp import tensorflow as tf import timeit import os dir_path = os.path.dirname(os.path.realpath(__file__)) IMAGE_WIDTH = 30 IMAGE_HEIGHT = 30 IMAGE_DEPTH = 3 IMAGE_PIXELS = IMAGE_WIDTH * IMAGE_HEIGHT def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def get_single_img(): file_path = dir_path+'/trunk_data_set/img_test/true_seg_cube/220.png' img = misc.imread(file_path) print "the inpute image shape: ", img.shape return img def conv_net(x, W_conv1, b_conv1, W_conv2, b_conv2, W_fc1, b_fc1, W_fc2, b_fc2): # first convolutional leyer x_image = tf.reshape(x, [-1,30,30,3]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) # second convolutional leyer h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # third leyer h_pool2_flat = tf.reshape(h_pool2, [-1, 8*8*60]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # drop out h_fc1_drop = tf.nn.dropout(h_fc1, 1.0) # rool out leyer out = tf.add(tf.matmul(h_fc1_drop, W_fc2) , b_fc2) return out config = tf.ConfigProto( device_count = {'GPU': 0} ) with tf.Session(config=config) as sess1: image_input = get_single_img() saver = tf.train.import_meta_graph('learned_model/model.ckpt.meta') saver.restore(sess1,"learned_model/model.ckpt") start = timeit.default_timer() #print("Model restored.") #print tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) W_conv1 = [v for v in tf.trainable_variables() if v.name == "Variable:0"][0] b_conv1 = [v for v in tf.trainable_variables() if v.name == "Variable_1:0"][0] W_conv2 = [v for v in tf.trainable_variables() if v.name == "Variable_2:0"][0] b_conv2 = [v for v in tf.trainable_variables() if v.name == "Variable_3:0"][0] W_fc1 = [v for v in tf.trainable_variables() if v.name == "Variable_4:0"][0] b_fc1 = [v for v in tf.trainable_variables() if v.name == "Variable_5:0"][0] W_fc2 = [v for v in tf.trainable_variables() if v.name == "Variable_6:0"][0] b_fc2 = [v for v in tf.trainable_variables() if v.name == "Variable_7:0"][0] img2 = tf.convert_to_tensor(image_input) img2 = tf.reshape( img2, [ IMAGE_PIXELS * IMAGE_DEPTH ] ) img2.set_shape( [ IMAGE_PIXELS * IMAGE_DEPTH ] ) image_input = tf.cast( img2, tf.float32 ) * ( 1. / 255 ) - 0.5 y = conv_net(image_input,W_conv1, b_conv1, W_conv2, b_conv2, W_fc1, b_fc1, W_fc2, b_fc2) stop = timeit.default_timer() print "There is no trunk with %f probablity" % (1/(1+exp(-y.eval()[0][1]))) print "There is a trunk with %f probablity" % (1/(1+exp(-y.eval()[0][0]))) print "calculation time :", stop - start
null
null
null
null
[ 0 ]
2,517
9ab119b32ceac370b744658e5fa679292609373a
<mask token>
<mask token> def merge_sort(items, temp, low, high): if high <= low: return None mid = low + (high - low) // 2 merge_sort(items, temp, low, mid) merge_sort(items, temp, mid + 1, high) merge(items, temp, low, mid, high) <mask token>
def merge(items, temp, low, mid, high): i = low j = mid + 1 for k in range(low, high + 1): if i > mid: temp[k] = items[j] j += 1 elif j > high: temp[k] = items[i] i += 1 elif items[j] < items[i]: temp[k] = items[j] j += 1 else: temp[k] = items[i] i += 1 for k in range(low, high + 1): items[k] = temp[k] def merge_sort(items, temp, low, high): if high <= low: return None mid = low + (high - low) // 2 merge_sort(items, temp, low, mid) merge_sort(items, temp, mid + 1, high) merge(items, temp, low, mid, high) <mask token>
def merge(items, temp, low, mid, high): i = low j = mid + 1 for k in range(low, high + 1): if i > mid: temp[k] = items[j] j += 1 elif j > high: temp[k] = items[i] i += 1 elif items[j] < items[i]: temp[k] = items[j] j += 1 else: temp[k] = items[i] i += 1 for k in range(low, high + 1): items[k] = temp[k] def merge_sort(items, temp, low, high): if high <= low: return None mid = low + (high - low) // 2 merge_sort(items, temp, low, mid) merge_sort(items, temp, mid + 1, high) merge(items, temp, low, mid, high) if __name__ == '__main__': items = [5, 4, 3, 3, 5, 6, 4, 4, 3, 2] temp = [None] * len(items) print('정렬 전 : \t', end='') print(items) merge_sort(items, temp, 0, len(items) - 1) print('정렬 전 : \t', end='') print(items)
def merge(items, temp, low, mid, high): i = low j = mid + 1 for k in range(low, high+1): if i > mid: # 왼쪽 리스트의 순회를 마쳤음 # 남은 오른쪽 리스트의 원소들은 모두 왼쪽 리스트 원소보다 작음 temp[k] = items[j] # 뒤에 나머지는 정렬되어있으니 그대로 넣기 j += 1 elif j > high: # 오른쪽 리스트의 순회를 마쳤음 # 남은 왼쪽 리스트 원소들은 모두 오른쪽 리스트 원소보다 작음 temp[k] = items[i] # 앞의 나머지는 정렬되어있으니 그대로 넣기 i += 1 elif items[j] < items[i]: # 왼쪽 리스트의 원소가 더 큰 경우 # 오른쪽 리스트의 원소를 정렬리스트에 넣을거임 temp[k] = items[j] j += 1 # 오른쪽 리스트 다음 원소를 비교해보자 else: # 왼쪽 리스트의 원소가 더 작거나 같은 경우 # 왼쪽 리스트의 원소를 정렬리스트에 넣을거임 temp[k] = items[i] i += 1 # 왼쪽 리스트 다음 원소를 비교해라 for k in range(low, high+1): items[k] = temp[k] # 이제 정렬해놓은거 원래 리스트로 복사해라 def merge_sort(items, temp, low, high): if high <= low: return None # 다 정렬했으면 이제 끝내라 mid = low + (high - low)//2 # low, high, mid 는 값이 아니라 index 값임 merge_sort(items, temp, low, mid) merge_sort(items, temp, mid+1, high) merge(items, temp, low, mid, high) if __name__ == '__main__': items = [5,4,3,3,5,6,4,4,3,2] temp = [None]*len(items) print('정렬 전 : \t', end ='') print(items) merge_sort(items, temp, 0, len(items)-1) print('정렬 전 : \t', end='') print(items)
[ 0, 1, 2, 3, 4 ]
2,518
8a2ab260f4758bcca7b1a68d1fb65b7eebab5533
<mask token> class SpiderMiddlewares2(object): def process_request(self, request): print(u'SpiderMiddlewares2 process_request {}'.format(request.url)) return request def process_item(self, item): print(u'SpiderMiddlewares2 process_item {}'.format(item.data)) return item
class SpiderMiddlewares1(object): <mask token> <mask token> class SpiderMiddlewares2(object): def process_request(self, request): print(u'SpiderMiddlewares2 process_request {}'.format(request.url)) return request def process_item(self, item): print(u'SpiderMiddlewares2 process_item {}'.format(item.data)) return item
class SpiderMiddlewares1(object): <mask token> def process_item(self, item): print(u'SpiderMiddlewares1 process_item {}'.format(item.data)) return item class SpiderMiddlewares2(object): def process_request(self, request): print(u'SpiderMiddlewares2 process_request {}'.format(request.url)) return request def process_item(self, item): print(u'SpiderMiddlewares2 process_item {}'.format(item.data)) return item
class SpiderMiddlewares1(object): def process_request(self, request): print(u'SpiderMiddlewares1 process_request {}'.format(request.url)) return request def process_item(self, item): print(u'SpiderMiddlewares1 process_item {}'.format(item.data)) return item class SpiderMiddlewares2(object): def process_request(self, request): print(u'SpiderMiddlewares2 process_request {}'.format(request.url)) return request def process_item(self, item): print(u'SpiderMiddlewares2 process_item {}'.format(item.data)) return item
# coding:utf-8 class SpiderMiddlewares1(object): def process_request(self, request): print(u"SpiderMiddlewares1 process_request {}".format(request.url)) return request def process_item(self, item): print(u"SpiderMiddlewares1 process_item {}".format(item.data)) return item class SpiderMiddlewares2(object): def process_request(self, request): print(u"SpiderMiddlewares2 process_request {}".format(request.url)) return request def process_item(self, item): print(u"SpiderMiddlewares2 process_item {}".format(item.data)) return item
[ 3, 4, 5, 6, 7 ]
2,519
9c50a3abd353d5ba619eaa217dcc07ab76fb850c
<mask token> class BookSerializer(serializers.ModelSerializer): class Meta: model = Book fields = '__all__' def create(self, validated_data): formats = validated_data.pop('format', []) book = Book.objects.create(**validated_data) book.format.add(*formats) return book def to_representation(self, instance): representation = super().to_representation(instance) representation['genre'] = GenresSerializer(instance.genre, context= self.context).data representation['reviews'] = ReviewSerializer(instance.reviews.all(), many=True).data representation['orders_count'] = instance.orders.count() representation['price'] = PriceSerializer(instance.books_price.all( ), many=True).data return representation class BookListSerializer(serializers.ModelSerializer): details = serializers.HyperlinkedIdentityField(view_name='book-detail', lookup_field='slug') class Meta: model = Book fields = ['title', 'author', 'genre', 'cover', 'details'] class ReviewSerializer(serializers.ModelSerializer): user = serializers.PrimaryKeyRelatedField(read_only=True) class Meta: model = Review fields = 'user', 'book', 'text', 'rating', 'created_time' def validate_rating(self, rating): if rating not in range(1, 6): raise serializers.ValidationError('Оценка от 1 до 5') return rating def create(self, validated_data): request = self.context.get('request') user = request.user review = Review.objects.create(user=user, **validated_data) return review
<mask token> class FormatSerializer(serializers.ModelSerializer): class Meta: model = Format fields = 'title', class BookSerializer(serializers.ModelSerializer): class Meta: model = Book fields = '__all__' def create(self, validated_data): formats = validated_data.pop('format', []) book = Book.objects.create(**validated_data) book.format.add(*formats) return book def to_representation(self, instance): representation = super().to_representation(instance) representation['genre'] = GenresSerializer(instance.genre, context= self.context).data representation['reviews'] = ReviewSerializer(instance.reviews.all(), many=True).data representation['orders_count'] = instance.orders.count() representation['price'] = PriceSerializer(instance.books_price.all( ), many=True).data return representation class BookListSerializer(serializers.ModelSerializer): details = serializers.HyperlinkedIdentityField(view_name='book-detail', lookup_field='slug') class Meta: model = Book fields = ['title', 'author', 'genre', 'cover', 'details'] class ReviewSerializer(serializers.ModelSerializer): user = serializers.PrimaryKeyRelatedField(read_only=True) class Meta: model = Review fields = 'user', 'book', 'text', 'rating', 'created_time' def validate_rating(self, rating): if rating not in range(1, 6): raise serializers.ValidationError('Оценка от 1 до 5') return rating def create(self, validated_data): request = self.context.get('request') user = request.user review = Review.objects.create(user=user, **validated_data) return review
<mask token> class GenresSerializer(serializers.ModelSerializer): class Meta: model = Genres fields = 'title', class PriceSerializer(serializers.ModelSerializer): class Meta: model = ExtraTableForPrice fields = 'formats', 'price' class FormatSerializer(serializers.ModelSerializer): class Meta: model = Format fields = 'title', class BookSerializer(serializers.ModelSerializer): class Meta: model = Book fields = '__all__' def create(self, validated_data): formats = validated_data.pop('format', []) book = Book.objects.create(**validated_data) book.format.add(*formats) return book def to_representation(self, instance): representation = super().to_representation(instance) representation['genre'] = GenresSerializer(instance.genre, context= self.context).data representation['reviews'] = ReviewSerializer(instance.reviews.all(), many=True).data representation['orders_count'] = instance.orders.count() representation['price'] = PriceSerializer(instance.books_price.all( ), many=True).data return representation class BookListSerializer(serializers.ModelSerializer): details = serializers.HyperlinkedIdentityField(view_name='book-detail', lookup_field='slug') class Meta: model = Book fields = ['title', 'author', 'genre', 'cover', 'details'] class ReviewSerializer(serializers.ModelSerializer): user = serializers.PrimaryKeyRelatedField(read_only=True) class Meta: model = Review fields = 'user', 'book', 'text', 'rating', 'created_time' def validate_rating(self, rating): if rating not in range(1, 6): raise serializers.ValidationError('Оценка от 1 до 5') return rating def create(self, validated_data): request = self.context.get('request') user = request.user review = Review.objects.create(user=user, **validated_data) return review
from rest_framework import serializers from books.models import Genres, Format, Book, Review, ExtraTableForPrice class GenresSerializer(serializers.ModelSerializer): class Meta: model = Genres fields = 'title', class PriceSerializer(serializers.ModelSerializer): class Meta: model = ExtraTableForPrice fields = 'formats', 'price' class FormatSerializer(serializers.ModelSerializer): class Meta: model = Format fields = 'title', class BookSerializer(serializers.ModelSerializer): class Meta: model = Book fields = '__all__' def create(self, validated_data): formats = validated_data.pop('format', []) book = Book.objects.create(**validated_data) book.format.add(*formats) return book def to_representation(self, instance): representation = super().to_representation(instance) representation['genre'] = GenresSerializer(instance.genre, context= self.context).data representation['reviews'] = ReviewSerializer(instance.reviews.all(), many=True).data representation['orders_count'] = instance.orders.count() representation['price'] = PriceSerializer(instance.books_price.all( ), many=True).data return representation class BookListSerializer(serializers.ModelSerializer): details = serializers.HyperlinkedIdentityField(view_name='book-detail', lookup_field='slug') class Meta: model = Book fields = ['title', 'author', 'genre', 'cover', 'details'] class ReviewSerializer(serializers.ModelSerializer): user = serializers.PrimaryKeyRelatedField(read_only=True) class Meta: model = Review fields = 'user', 'book', 'text', 'rating', 'created_time' def validate_rating(self, rating): if rating not in range(1, 6): raise serializers.ValidationError('Оценка от 1 до 5') return rating def create(self, validated_data): request = self.context.get('request') user = request.user review = Review.objects.create(user=user, **validated_data) return review
from rest_framework import serializers from books.models import Genres, Format, Book, Review, ExtraTableForPrice class GenresSerializer(serializers.ModelSerializer): class Meta: model = Genres fields = ('title', ) class PriceSerializer(serializers.ModelSerializer): class Meta: model = ExtraTableForPrice fields = ('formats', 'price', ) class FormatSerializer(serializers.ModelSerializer): class Meta: model = Format fields = ('title', ) class BookSerializer(serializers.ModelSerializer): class Meta: model = Book fields = '__all__' def create(self, validated_data): formats = validated_data.pop('format', []) book = Book.objects.create(**validated_data) book.format.add(*formats) return book def to_representation(self, instance): representation = super().to_representation(instance) representation['genre'] = GenresSerializer(instance.genre, context=self.context).data representation['reviews'] = ReviewSerializer(instance.reviews.all(), many=True).data representation['orders_count'] = instance.orders.count() representation['price'] = PriceSerializer(instance.books_price.all(), many=True).data return representation class BookListSerializer(serializers.ModelSerializer): details = serializers.HyperlinkedIdentityField(view_name='book-detail', lookup_field='slug') class Meta: model = Book fields = ['title', 'author', 'genre', 'cover', 'details'] class ReviewSerializer(serializers.ModelSerializer): user = serializers.PrimaryKeyRelatedField(read_only=True) class Meta: model = Review fields = ('user', 'book', 'text', 'rating', 'created_time') def validate_rating(self, rating): if rating not in range(1, 6): raise(serializers.ValidationError('Оценка от 1 до 5')) return rating def create(self, validated_data): request = self.context.get('request') user = request.user review = Review.objects.create(user=user, **validated_data) return review
[ 9, 10, 12, 13, 14 ]
2,520
4bad45f8c135463fadea9b3eed52ab045a51e8db
<mask token>
<mask token> if __name__ == '__main__': text = input('Введите предложение: ') x1 = text.index('с') x2 = text.index('т') if x1 > x2: print("Бурква 'с' встречается позже") else: print("Бурква 'т' встречается позже")
''' Дано предложение, в котором имеются буквы с и т. Определить, какая из них встречается позже (при просмотре слова слева направо). Если таких букв несколько, то должны учитываться последние из них. Оператор цикла с условием не использовать. ''' #!/usr/bin/env python3 # -*- coding: utf-8 -*- if __name__ == '__main__': text = input("Введите предложение: ") x1 = text.index("с") x2 = text.index("т") if x1 > x2: print("Бурква 'с' встречается позже") else: print("Бурква 'т' встречается позже")
null
null
[ 0, 1, 2 ]
2,521
3b531c5935f0be89536c95ff471f96b4249d951c
<mask token> class EchoBot(ClientXMPP): def __init__(self, jid, password): ClientXMPP.__init__(self, jid, password) self.add_event_handler('session_start', self.session_start) self.register_plugin('xep_0045') <mask token> <mask token>
<mask token> class EchoBot(ClientXMPP): def __init__(self, jid, password): ClientXMPP.__init__(self, jid, password) self.add_event_handler('session_start', self.session_start) self.register_plugin('xep_0045') def session_start(self, event): self.send_presence() self.get_roster() self['xep_0045'].joinMUC('[email protected]', 'your_name', wait=True) <mask token>
<mask token> class EchoBot(ClientXMPP): def __init__(self, jid, password): ClientXMPP.__init__(self, jid, password) self.add_event_handler('session_start', self.session_start) self.register_plugin('xep_0045') def session_start(self, event): self.send_presence() self.get_roster() self['xep_0045'].joinMUC('[email protected]', 'your_name', wait=True) if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG, format= '%(levelname)-8s %(message)s') xmpp = EchoBot('[email protected]', 'your_password') xmpp.connect() xmpp.process(block=True)
import logging from sleekxmpp import ClientXMPP from sleekxmpp.exceptions import IqError, IqTimeout class EchoBot(ClientXMPP): def __init__(self, jid, password): ClientXMPP.__init__(self, jid, password) self.add_event_handler('session_start', self.session_start) self.register_plugin('xep_0045') def session_start(self, event): self.send_presence() self.get_roster() self['xep_0045'].joinMUC('[email protected]', 'your_name', wait=True) if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG, format= '%(levelname)-8s %(message)s') xmpp = EchoBot('[email protected]', 'your_password') xmpp.connect() xmpp.process(block=True)
import logging from sleekxmpp import ClientXMPP from sleekxmpp.exceptions import IqError, IqTimeout class EchoBot(ClientXMPP): def __init__(self, jid, password): ClientXMPP.__init__(self, jid, password) self.add_event_handler("session_start", self.session_start) self.register_plugin('xep_0045') # Multi-User Chat def session_start(self, event): self.send_presence() self.get_roster() self['xep_0045'].joinMUC('[email protected]', 'your_name', wait=True) if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG, format='%(levelname)-8s %(message)s') xmpp = EchoBot('[email protected]', 'your_password') xmpp.connect() xmpp.process(block=True)
[ 2, 3, 4, 5, 6 ]
2,522
650f00dd9740d62546eb58724e6e5a74398b3e59
<mask token> class DataGenerator(IterableDataset): def __init__(self, memmap_directory, apikey_weighted_df): super(DataGenerator, self).__init__() self.data_generator = training_generator(memmap_directory, apikey_weighted_df) def __iter__(self): return self.data_generator class CrossEncoderModel(torch.nn.Module): def __init__(self): super(CrossEncoderModel, self).__init__() self.bert = AutoModel.from_pretrained('distilbert-base-cased') self.hidden = nn.Linear(768, 512) self.out = nn.Linear(512, 1) def forward(self, tensor_in, sep_token_id=102): positive_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 1]], dim=1) positive_pairs[:, 256] = sep_token_id negative_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 2]], dim=1) negative_pairs[:, 256] = sep_token_id positive_labels = torch.ones(len(positive_pairs), dtype=torch. float32, device=tensor_in.device) negative_labels = torch.zeros_like(positive_labels) labels = torch.cat([positive_labels, negative_labels]) inputs = torch.cat([positive_pairs, negative_pairs], dim=0) assert len(labels) == inputs.shape[0] out = self.bert(inputs)[0] out = out.mean(dim=1, keepdims=False) out = F.gelu(self.hidden(out)) out = torch.squeeze(self.out(out)) loss = F.binary_cross_entropy_with_logits(out, labels) return loss <mask token>
<mask token> class DataGenerator(IterableDataset): def __init__(self, memmap_directory, apikey_weighted_df): super(DataGenerator, self).__init__() self.data_generator = training_generator(memmap_directory, apikey_weighted_df) def __iter__(self): return self.data_generator class CrossEncoderModel(torch.nn.Module): def __init__(self): super(CrossEncoderModel, self).__init__() self.bert = AutoModel.from_pretrained('distilbert-base-cased') self.hidden = nn.Linear(768, 512) self.out = nn.Linear(512, 1) def forward(self, tensor_in, sep_token_id=102): positive_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 1]], dim=1) positive_pairs[:, 256] = sep_token_id negative_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 2]], dim=1) negative_pairs[:, 256] = sep_token_id positive_labels = torch.ones(len(positive_pairs), dtype=torch. float32, device=tensor_in.device) negative_labels = torch.zeros_like(positive_labels) labels = torch.cat([positive_labels, negative_labels]) inputs = torch.cat([positive_pairs, negative_pairs], dim=0) assert len(labels) == inputs.shape[0] out = self.bert(inputs)[0] out = out.mean(dim=1, keepdims=False) out = F.gelu(self.hidden(out)) out = torch.squeeze(self.out(out)) loss = F.binary_cross_entropy_with_logits(out, labels) return loss def main(): batch_size = 16 batches_per_epoch = 2 ** 19 // batch_size eval_batches_per_epoch = 2 ** 18 // batch_size save_path = Path('model.save') train_weighted_apikeys, test_weighted_apikeys = get_train_test_apikeys( MEMMAP_DIRECTORY) debug_weighted_apikeys = pd.concat([train_weighted_apikeys, test_weighted_apikeys]).query('num_posts > 1000000') train_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys) train_loader = DataLoader(train_dataset, batch_size=batch_size, pin_memory=True, num_workers=1) test_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys) test_loader = DataLoader(test_dataset, batch_size=batch_size, pin_memory=True, num_workers=1) model = CrossEncoderModel().cuda() model_params = model.parameters() optimizer = torch.optim.Adam(model_params, lr=0.0001) if save_path.is_file(): print('Loading state...') checkpoint = torch.load(str(save_path)) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) start_epoch = checkpoint['epoch'] + 1 else: start_epoch = 0 for epoch in range(start_epoch, 60): with tqdm(total=batches_per_epoch, dynamic_ncols=True) as bar: bar.set_description(f'Epoch {epoch}') bar_loss = 0.0 model.train() optimizer.zero_grad() for i, batch in enumerate(train_loader): batch = batch.cuda() loss = model(batch) loss.backward() optimizer.step() bar.update(1) bar_loss = (bar_loss * i + float(loss.detach())) / (i + 1) bar.set_postfix_str(f'Loss: {bar_loss:.3f}') if i == batches_per_epoch - 1: break with tqdm(total=eval_batches_per_epoch, dynamic_ncols=True) as bar: bar.set_description(f'Eval epoch {epoch}') bar_loss = 0.0 model.eval() with torch.no_grad(): for i, batch in enumerate(test_loader): batch = batch.cuda() loss = model(batch) bar.update(1) bar_loss = (bar_loss * i + float(loss.detach())) / (i + 1) bar.set_postfix_str(f'Loss: {bar_loss:.3f}') if i == eval_batches_per_epoch - 1: break torch.save({'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict()}, str(save_path)) <mask token>
<mask token> class DataGenerator(IterableDataset): def __init__(self, memmap_directory, apikey_weighted_df): super(DataGenerator, self).__init__() self.data_generator = training_generator(memmap_directory, apikey_weighted_df) def __iter__(self): return self.data_generator class CrossEncoderModel(torch.nn.Module): def __init__(self): super(CrossEncoderModel, self).__init__() self.bert = AutoModel.from_pretrained('distilbert-base-cased') self.hidden = nn.Linear(768, 512) self.out = nn.Linear(512, 1) def forward(self, tensor_in, sep_token_id=102): positive_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 1]], dim=1) positive_pairs[:, 256] = sep_token_id negative_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 2]], dim=1) negative_pairs[:, 256] = sep_token_id positive_labels = torch.ones(len(positive_pairs), dtype=torch. float32, device=tensor_in.device) negative_labels = torch.zeros_like(positive_labels) labels = torch.cat([positive_labels, negative_labels]) inputs = torch.cat([positive_pairs, negative_pairs], dim=0) assert len(labels) == inputs.shape[0] out = self.bert(inputs)[0] out = out.mean(dim=1, keepdims=False) out = F.gelu(self.hidden(out)) out = torch.squeeze(self.out(out)) loss = F.binary_cross_entropy_with_logits(out, labels) return loss def main(): batch_size = 16 batches_per_epoch = 2 ** 19 // batch_size eval_batches_per_epoch = 2 ** 18 // batch_size save_path = Path('model.save') train_weighted_apikeys, test_weighted_apikeys = get_train_test_apikeys( MEMMAP_DIRECTORY) debug_weighted_apikeys = pd.concat([train_weighted_apikeys, test_weighted_apikeys]).query('num_posts > 1000000') train_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys) train_loader = DataLoader(train_dataset, batch_size=batch_size, pin_memory=True, num_workers=1) test_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys) test_loader = DataLoader(test_dataset, batch_size=batch_size, pin_memory=True, num_workers=1) model = CrossEncoderModel().cuda() model_params = model.parameters() optimizer = torch.optim.Adam(model_params, lr=0.0001) if save_path.is_file(): print('Loading state...') checkpoint = torch.load(str(save_path)) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) start_epoch = checkpoint['epoch'] + 1 else: start_epoch = 0 for epoch in range(start_epoch, 60): with tqdm(total=batches_per_epoch, dynamic_ncols=True) as bar: bar.set_description(f'Epoch {epoch}') bar_loss = 0.0 model.train() optimizer.zero_grad() for i, batch in enumerate(train_loader): batch = batch.cuda() loss = model(batch) loss.backward() optimizer.step() bar.update(1) bar_loss = (bar_loss * i + float(loss.detach())) / (i + 1) bar.set_postfix_str(f'Loss: {bar_loss:.3f}') if i == batches_per_epoch - 1: break with tqdm(total=eval_batches_per_epoch, dynamic_ncols=True) as bar: bar.set_description(f'Eval epoch {epoch}') bar_loss = 0.0 model.eval() with torch.no_grad(): for i, batch in enumerate(test_loader): batch = batch.cuda() loss = model(batch) bar.update(1) bar_loss = (bar_loss * i + float(loss.detach())) / (i + 1) bar.set_postfix_str(f'Loss: {bar_loss:.3f}') if i == eval_batches_per_epoch - 1: break torch.save({'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict()}, str(save_path)) if __name__ == '__main__': main()
from torch.utils.data import IterableDataset, DataLoader from torch import nn from torch.nn import functional as F from triplet_training_generator import get_train_test_apikeys, training_generator from pathlib import Path from transformers import AutoModel import torch from tqdm import tqdm import pandas as pd MEMMAP_DIRECTORY = Path('/media/data/tokenized_crawl') BATCHES_PER_EPOCH = 8192 class DataGenerator(IterableDataset): def __init__(self, memmap_directory, apikey_weighted_df): super(DataGenerator, self).__init__() self.data_generator = training_generator(memmap_directory, apikey_weighted_df) def __iter__(self): return self.data_generator class CrossEncoderModel(torch.nn.Module): def __init__(self): super(CrossEncoderModel, self).__init__() self.bert = AutoModel.from_pretrained('distilbert-base-cased') self.hidden = nn.Linear(768, 512) self.out = nn.Linear(512, 1) def forward(self, tensor_in, sep_token_id=102): positive_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 1]], dim=1) positive_pairs[:, 256] = sep_token_id negative_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 2]], dim=1) negative_pairs[:, 256] = sep_token_id positive_labels = torch.ones(len(positive_pairs), dtype=torch. float32, device=tensor_in.device) negative_labels = torch.zeros_like(positive_labels) labels = torch.cat([positive_labels, negative_labels]) inputs = torch.cat([positive_pairs, negative_pairs], dim=0) assert len(labels) == inputs.shape[0] out = self.bert(inputs)[0] out = out.mean(dim=1, keepdims=False) out = F.gelu(self.hidden(out)) out = torch.squeeze(self.out(out)) loss = F.binary_cross_entropy_with_logits(out, labels) return loss def main(): batch_size = 16 batches_per_epoch = 2 ** 19 // batch_size eval_batches_per_epoch = 2 ** 18 // batch_size save_path = Path('model.save') train_weighted_apikeys, test_weighted_apikeys = get_train_test_apikeys( MEMMAP_DIRECTORY) debug_weighted_apikeys = pd.concat([train_weighted_apikeys, test_weighted_apikeys]).query('num_posts > 1000000') train_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys) train_loader = DataLoader(train_dataset, batch_size=batch_size, pin_memory=True, num_workers=1) test_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys) test_loader = DataLoader(test_dataset, batch_size=batch_size, pin_memory=True, num_workers=1) model = CrossEncoderModel().cuda() model_params = model.parameters() optimizer = torch.optim.Adam(model_params, lr=0.0001) if save_path.is_file(): print('Loading state...') checkpoint = torch.load(str(save_path)) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) start_epoch = checkpoint['epoch'] + 1 else: start_epoch = 0 for epoch in range(start_epoch, 60): with tqdm(total=batches_per_epoch, dynamic_ncols=True) as bar: bar.set_description(f'Epoch {epoch}') bar_loss = 0.0 model.train() optimizer.zero_grad() for i, batch in enumerate(train_loader): batch = batch.cuda() loss = model(batch) loss.backward() optimizer.step() bar.update(1) bar_loss = (bar_loss * i + float(loss.detach())) / (i + 1) bar.set_postfix_str(f'Loss: {bar_loss:.3f}') if i == batches_per_epoch - 1: break with tqdm(total=eval_batches_per_epoch, dynamic_ncols=True) as bar: bar.set_description(f'Eval epoch {epoch}') bar_loss = 0.0 model.eval() with torch.no_grad(): for i, batch in enumerate(test_loader): batch = batch.cuda() loss = model(batch) bar.update(1) bar_loss = (bar_loss * i + float(loss.detach())) / (i + 1) bar.set_postfix_str(f'Loss: {bar_loss:.3f}') if i == eval_batches_per_epoch - 1: break torch.save({'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict()}, str(save_path)) if __name__ == '__main__': main()
from torch.utils.data import IterableDataset, DataLoader from torch import nn from torch.nn import functional as F from triplet_training_generator import get_train_test_apikeys, training_generator from pathlib import Path from transformers import AutoModel import torch from tqdm import tqdm import pandas as pd MEMMAP_DIRECTORY = Path("/media/data/tokenized_crawl") BATCHES_PER_EPOCH = 8192 class DataGenerator(IterableDataset): def __init__(self, memmap_directory, apikey_weighted_df): super(DataGenerator, self).__init__() self.data_generator = training_generator(memmap_directory, apikey_weighted_df) def __iter__(self): return self.data_generator class CrossEncoderModel(torch.nn.Module): def __init__(self): super(CrossEncoderModel, self).__init__() # We need to make sure this matches the model we tokenized for! # self.bert = AutoModel.from_pretrained('distilbert-base-cased') self.bert = AutoModel.from_pretrained('distilbert-base-cased') self.hidden = nn.Linear(768, 512) self.out = nn.Linear(512, 1) # self.out = torch.nn.Linear(768, 768, bias=False) def forward(self, tensor_in, sep_token_id=102): positive_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 1]], dim=1) positive_pairs[:, 256] = sep_token_id negative_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 2]], dim=1) negative_pairs[:, 256] = sep_token_id positive_labels = torch.ones(len(positive_pairs), dtype=torch.float32, device=tensor_in.device) negative_labels = torch.zeros_like(positive_labels) labels = torch.cat([positive_labels, negative_labels]) inputs = torch.cat([positive_pairs, negative_pairs], dim=0) assert len(labels) == inputs.shape[0] out = self.bert(inputs)[0] # out = out[:, 0, :] # CLS token out = out.mean(dim=1, keepdims=False) # Mean pooling out = F.gelu(self.hidden(out)) out = torch.squeeze(self.out(out)) loss = F.binary_cross_entropy_with_logits(out, labels) return loss def main(): batch_size = 16 batches_per_epoch = (2 ** 19) // batch_size eval_batches_per_epoch = (2 ** 18) // batch_size save_path = Path('model.save') train_weighted_apikeys, test_weighted_apikeys = get_train_test_apikeys(MEMMAP_DIRECTORY) debug_weighted_apikeys = pd.concat([train_weighted_apikeys, test_weighted_apikeys]).query('num_posts > 1000000') train_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys) train_loader = DataLoader(train_dataset, batch_size=batch_size, pin_memory=True, num_workers=1) test_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys) test_loader = DataLoader(test_dataset, batch_size=batch_size, pin_memory=True, num_workers=1) model = CrossEncoderModel().cuda() # Diverges or just outputs the same vector for all samples at higher LRs model_params = model.parameters() optimizer = torch.optim.Adam(model_params, lr=1e-4) if save_path.is_file(): print("Loading state...") checkpoint = torch.load(str(save_path)) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) start_epoch = checkpoint['epoch'] + 1 else: start_epoch = 0 for epoch in range(start_epoch, 60): with tqdm(total=batches_per_epoch, dynamic_ncols=True) as bar: bar.set_description(f"Epoch {epoch}") bar_loss = 0. model.train() optimizer.zero_grad() for i, batch in enumerate(train_loader): batch = batch.cuda() loss = model(batch) loss.backward() optimizer.step() bar.update(1) bar_loss = ((bar_loss * i) + float(loss.detach())) / (i + 1) # Rolling mean loss bar.set_postfix_str(f"Loss: {bar_loss:.3f}") if i == batches_per_epoch - 1: break with tqdm(total=eval_batches_per_epoch, dynamic_ncols=True) as bar: bar.set_description(f"Eval epoch {epoch}") bar_loss = 0. model.eval() with torch.no_grad(): for i, batch in enumerate(test_loader): batch = batch.cuda() loss = model(batch) bar.update(1) bar_loss = ((bar_loss * i) + float(loss.detach())) / (i + 1) # Rolling mean loss bar.set_postfix_str(f"Loss: {bar_loss:.3f}") if i == eval_batches_per_epoch - 1: break torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict() }, str(save_path)) if __name__ == '__main__': main()
[ 6, 7, 8, 10, 11 ]
2,523
e2a50fbd277ab868fbe71f9ff113a68a30b9f893
<mask token> def get_accuracy(logits, targets): _, predictions = torch.max(logits, dim=-1) return torch.mean(predictions.eq(targets).float()) def ModelConvMiniImagenet(out_features, hidden_size=84): return MetaConvModel(3, out_features, hidden_size=hidden_size, feature_size=5 * 5 * hidden_size) <mask token>
<mask token> def get_accuracy(logits, targets): _, predictions = torch.max(logits, dim=-1) return torch.mean(predictions.eq(targets).float()) def ModelConvMiniImagenet(out_features, hidden_size=84): return MetaConvModel(3, out_features, hidden_size=hidden_size, feature_size=5 * 5 * hidden_size) if __name__ == '__main__': classes_num = 5 model = ModelConvMiniImagenet(classes_num) model.load_state_dict(torch.load( 'trained parameters/maml_miniimagenet_5shot_5way.th')) model.zero_grad() dataloader = FSDataLoader() meta_optimizer = torch.optim.Adam(model.parameters(), lr=0.001) accuracy_l = list() loss = nn.CrossEntropyLoss() model.train() num_of_tasks = 100 epochs = 1 with tqdm(dataloader, total=num_of_tasks) as qbar: for idx, batch in enumerate(qbar): model.zero_grad() train_inputs, train_targets = batch['Train'] test_inputs, test_targets = batch['Test'] for _ in range(epochs): for task_idx, (train_input, train_target, test_input, test_target) in enumerate(zip(train_inputs, train_targets, test_inputs, test_targets)): outer_loss = torch.tensor(0.0, device='cuda') accuracy = torch.tensor(0.0, device='cuda') train_logit = model(train_input) inner_loss = F.cross_entropy(train_logit, train_target) params = gradient_update_parameters(model, inner_loss) test_logit = model(test_input, params=params) outer_loss += F.cross_entropy(test_logit, test_target) with torch.no_grad(): accuracy += get_accuracy(test_logit, test_target) outer_loss.div_(1) accuracy.div_(1) outer_loss.backward() meta_optimizer.step() accuracy_l.append(accuracy.item()) if idx > num_of_tasks - 1: break plt.title('MAML miniobjectnet training (100 tasks)') plt.xlabel('Tasks (1 epoch)') plt.ylabel('Accuracy') plt.plot(accuracy_l) plt.show() print(sum(accuracy_l) / len(accuracy_l))
<mask token> os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' <mask token> def get_accuracy(logits, targets): _, predictions = torch.max(logits, dim=-1) return torch.mean(predictions.eq(targets).float()) def ModelConvMiniImagenet(out_features, hidden_size=84): return MetaConvModel(3, out_features, hidden_size=hidden_size, feature_size=5 * 5 * hidden_size) if __name__ == '__main__': classes_num = 5 model = ModelConvMiniImagenet(classes_num) model.load_state_dict(torch.load( 'trained parameters/maml_miniimagenet_5shot_5way.th')) model.zero_grad() dataloader = FSDataLoader() meta_optimizer = torch.optim.Adam(model.parameters(), lr=0.001) accuracy_l = list() loss = nn.CrossEntropyLoss() model.train() num_of_tasks = 100 epochs = 1 with tqdm(dataloader, total=num_of_tasks) as qbar: for idx, batch in enumerate(qbar): model.zero_grad() train_inputs, train_targets = batch['Train'] test_inputs, test_targets = batch['Test'] for _ in range(epochs): for task_idx, (train_input, train_target, test_input, test_target) in enumerate(zip(train_inputs, train_targets, test_inputs, test_targets)): outer_loss = torch.tensor(0.0, device='cuda') accuracy = torch.tensor(0.0, device='cuda') train_logit = model(train_input) inner_loss = F.cross_entropy(train_logit, train_target) params = gradient_update_parameters(model, inner_loss) test_logit = model(test_input, params=params) outer_loss += F.cross_entropy(test_logit, test_target) with torch.no_grad(): accuracy += get_accuracy(test_logit, test_target) outer_loss.div_(1) accuracy.div_(1) outer_loss.backward() meta_optimizer.step() accuracy_l.append(accuracy.item()) if idx > num_of_tasks - 1: break plt.title('MAML miniobjectnet training (100 tasks)') plt.xlabel('Tasks (1 epoch)') plt.ylabel('Accuracy') plt.plot(accuracy_l) plt.show() print(sum(accuracy_l) / len(accuracy_l))
import os os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' import matplotlib.pyplot as plt import torch import torch.nn as nn from tqdm import tqdm import torch.nn.functional as F from torchmeta.utils.gradient_based import gradient_update_parameters from libs.models.maml_model import MetaConvModel from libs.mini_objecta_dataLoader import FSDataLoader def get_accuracy(logits, targets): _, predictions = torch.max(logits, dim=-1) return torch.mean(predictions.eq(targets).float()) def ModelConvMiniImagenet(out_features, hidden_size=84): return MetaConvModel(3, out_features, hidden_size=hidden_size, feature_size=5 * 5 * hidden_size) if __name__ == '__main__': classes_num = 5 model = ModelConvMiniImagenet(classes_num) model.load_state_dict(torch.load( 'trained parameters/maml_miniimagenet_5shot_5way.th')) model.zero_grad() dataloader = FSDataLoader() meta_optimizer = torch.optim.Adam(model.parameters(), lr=0.001) accuracy_l = list() loss = nn.CrossEntropyLoss() model.train() num_of_tasks = 100 epochs = 1 with tqdm(dataloader, total=num_of_tasks) as qbar: for idx, batch in enumerate(qbar): model.zero_grad() train_inputs, train_targets = batch['Train'] test_inputs, test_targets = batch['Test'] for _ in range(epochs): for task_idx, (train_input, train_target, test_input, test_target) in enumerate(zip(train_inputs, train_targets, test_inputs, test_targets)): outer_loss = torch.tensor(0.0, device='cuda') accuracy = torch.tensor(0.0, device='cuda') train_logit = model(train_input) inner_loss = F.cross_entropy(train_logit, train_target) params = gradient_update_parameters(model, inner_loss) test_logit = model(test_input, params=params) outer_loss += F.cross_entropy(test_logit, test_target) with torch.no_grad(): accuracy += get_accuracy(test_logit, test_target) outer_loss.div_(1) accuracy.div_(1) outer_loss.backward() meta_optimizer.step() accuracy_l.append(accuracy.item()) if idx > num_of_tasks - 1: break plt.title('MAML miniobjectnet training (100 tasks)') plt.xlabel('Tasks (1 epoch)') plt.ylabel('Accuracy') plt.plot(accuracy_l) plt.show() print(sum(accuracy_l) / len(accuracy_l))
# from mini_imagenet_dataloader import MiniImageNetDataLoader import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import matplotlib.pyplot as plt import torch import torch.nn as nn from tqdm import tqdm import torch.nn.functional as F from torchmeta.utils.gradient_based import gradient_update_parameters from libs.models.maml_model import MetaConvModel from libs.mini_objecta_dataLoader import FSDataLoader def get_accuracy(logits, targets): _, predictions = torch.max(logits, dim=-1) return torch.mean(predictions.eq(targets).float()) def ModelConvMiniImagenet(out_features, hidden_size=84): return MetaConvModel(3, out_features, hidden_size=hidden_size, feature_size=5 * 5 * hidden_size) if __name__ == "__main__": classes_num = 5 model = ModelConvMiniImagenet(classes_num) model.load_state_dict(torch.load('trained parameters/maml_miniimagenet_5shot_5way.th')) model.zero_grad() dataloader = FSDataLoader() meta_optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) accuracy_l = list() loss = nn.CrossEntropyLoss() model.train() num_of_tasks = 100 epochs = 1 with tqdm(dataloader, total=num_of_tasks) as qbar: for idx, batch in enumerate(qbar): model.zero_grad() train_inputs, train_targets = batch['Train'] test_inputs, test_targets = batch['Test'] for _ in range(epochs): for task_idx, (train_input, train_target, test_input, test_target) in enumerate(zip(train_inputs, train_targets, test_inputs, test_targets)): outer_loss = torch.tensor(0., device='cuda') accuracy = torch.tensor(0., device='cuda') train_logit = model(train_input) inner_loss = F.cross_entropy(train_logit, train_target) params = gradient_update_parameters(model, inner_loss) test_logit = model(test_input , params=params) outer_loss += F.cross_entropy(test_logit, test_target) with torch.no_grad(): accuracy += get_accuracy(test_logit, test_target) outer_loss.div_(1) accuracy.div_(1) outer_loss.backward() meta_optimizer.step() accuracy_l.append(accuracy.item()) if idx > num_of_tasks-1: break plt.title('MAML miniobjectnet training (100 tasks)') plt.xlabel('Tasks (1 epoch)') plt.ylabel('Accuracy') plt.plot(accuracy_l) plt.show() print(sum(accuracy_l) / len(accuracy_l))
[ 2, 3, 4, 5, 6 ]
2,524
8c364a518ab615803ea99520e90ee1dd24d37a8c
<mask token>
<mask token> def load(indices, category='train'): if category == 'train': if max(indices) < len(X_train) and max(indices) < len(y_train): return X_train[indices], y_train[indices] else: l = np.array([a for a in indices if a < len(X_train) and a < len(y_train)], np.int64) return X_train[l], y_train[l] elif category == 'test': return X_test[indices], y_test[indices]
<mask token> pwd = os.path.dirname(os.path.realpath(__file__)) train_data = np.load(os.path.join(pwd, 'purchase2_train.npy'), allow_pickle =True) test_data = np.load(os.path.join(pwd, 'purchase2_test.npy'), allow_pickle=True) train_data = train_data.reshape((1,))[0] test_data = test_data.reshape((1,))[0] X_train = train_data['X'].astype(np.float32) X_test = test_data['X'].astype(np.float32) y_train = train_data['y'].astype(np.int64) y_test = test_data['y'].astype(np.int64) def load(indices, category='train'): if category == 'train': if max(indices) < len(X_train) and max(indices) < len(y_train): return X_train[indices], y_train[indices] else: l = np.array([a for a in indices if a < len(X_train) and a < len(y_train)], np.int64) return X_train[l], y_train[l] elif category == 'test': return X_test[indices], y_test[indices]
import numpy as np import os pwd = os.path.dirname(os.path.realpath(__file__)) train_data = np.load(os.path.join(pwd, 'purchase2_train.npy'), allow_pickle =True) test_data = np.load(os.path.join(pwd, 'purchase2_test.npy'), allow_pickle=True) train_data = train_data.reshape((1,))[0] test_data = test_data.reshape((1,))[0] X_train = train_data['X'].astype(np.float32) X_test = test_data['X'].astype(np.float32) y_train = train_data['y'].astype(np.int64) y_test = test_data['y'].astype(np.int64) def load(indices, category='train'): if category == 'train': if max(indices) < len(X_train) and max(indices) < len(y_train): return X_train[indices], y_train[indices] else: l = np.array([a for a in indices if a < len(X_train) and a < len(y_train)], np.int64) return X_train[l], y_train[l] elif category == 'test': return X_test[indices], y_test[indices]
import numpy as np import os pwd = os.path.dirname(os.path.realpath(__file__)) train_data = np.load(os.path.join(pwd, 'purchase2_train.npy'), allow_pickle=True) test_data = np.load(os.path.join(pwd, 'purchase2_test.npy'), allow_pickle=True) train_data = train_data.reshape((1,))[0] test_data = test_data.reshape((1,))[0] X_train = train_data['X'].astype(np.float32) X_test = test_data['X'].astype(np.float32) y_train = train_data['y'].astype(np.int64) y_test = test_data['y'].astype(np.int64) def load(indices, category='train'): if category == 'train': if max(indices) < len(X_train) and max(indices) < len(y_train): return X_train[indices], y_train[indices] else: l = np.array([a for a in indices if a < len(X_train) and a < len(y_train)],np.int64) return X_train[l], y_train[l] elif category == 'test': return X_test[indices], y_test[indices]
[ 0, 1, 2, 3, 4 ]
2,525
358d4573ff386d6874d5bb5decfe71c71141bf1c
<mask token> def control(q): gs = np.array([pi / 2, 0, 0, 0]) return -k.dot(q - gs) <mask token> def reward_fn(s, a): reward = np.sin(s[0]) + 2 * np.sin(s[0] + s[1]) return reward, False def do_rollout(trial_num): np.random.seed(trial_num) act_hold = 20 hold_count = 0 obs = env.reset() local_lqr = False actions = np.random.randn(1) * 3 local_state_hist = np.zeros((env.num_steps, env.observation_space.shape[0]) ) local_reward_hist = np.zeros((env.num_steps, 1)) local_gate_hist = np.zeros((env.num_steps, 1)) local_action_hist = np.zeros((env.num_steps, 1)) for i in range(env.num_steps): obs = np.array(obs, dtype=np.float32) if sig(net(obs)) > 0.85: actions = np.clip(np.asarray(control(obs)), -max_torque, max_torque ) local_lqr = True local_gate_hist[i] = 1 else: local_gate_hist[i] = 0 if hold_count == act_hold: actions = np.random.randn(1) * 3 hold_count = 0 hold_count += 1 obs, reward, done, _ = env.step(actions) local_action_hist[i, :] = np.copy(actions) local_state_hist[i, :] = np.copy(obs) local_reward_hist[i, :] = np.copy(reward) return (local_action_hist, local_state_hist, local_reward_hist, local_gate_hist, local_lqr) <mask token>
<mask token> assert np.linalg.matrix_rank(Ctr) == 4 <mask token> print(k) def control(q): gs = np.array([pi / 2, 0, 0, 0]) return -k.dot(q - gs) def reward_fn(s, a): reward = np.sin(s[0]) + 2 * np.sin(s[0] + s[1]) done = reward < 2 return reward, done def do_rollout(args): x, trial_num = args th1, th2, dth1, dth2 = x np.random.seed(trial_num) local_reward_hist = np.ones((env.num_steps, 1)) * -1 obs = env.reset(init_vec=[th1, th2, dth1, dth2]) for i in range(env.num_steps): actions = np.clip(np.asarray(control(obs)), -max_torque, max_torque) obs, reward, done, _ = env.step(actions) local_reward_hist[i, :] = np.copy(reward) if done: break return local_reward_hist, i <mask token> samples *= np.array([th1_min - th1_max, th2_min - th2_max, th1dot_min - th1dot_max, th2dot_min - th2dot_max]) samples += np.array([th1_max, th2_max, th1dot_max, th2dot_max]) <mask token> for i, res in enumerate(pool.imap(do_rollout, zip(samples, range(int( num_trials / 2))))): rews, steps = res reward_hist[i, :, :] = rews total_steps += steps X[i, :] = samples[i, :] Y[i] = sum(rews) > env.num_steps * 3 - 10 <mask token> samples *= np.array([th1_min - th1_max, th2_min - th2_max, th1dot_min - th1dot_max, th2dot_min - th2dot_max]) samples += np.array([th1_max, th2_max, th1dot_max, th2dot_max]) <mask token> for i, res in enumerate(pool.imap(do_rollout, zip(samples, range(int( num_trials / 2), int(num_trials))))): rews, steps = res reward_hist[i, :, :] = rews total_steps += steps X[i + int(num_trials / 2), :] = samples[i, :] Y[i + int(num_trials / 2)] = sum(rews) > env.num_steps * 3 - 5 print(time.time() - start) <mask token> plt.close() plt.plot(loss_hist) plt.show() <mask token> for i, j in product(range(n_th), range(n_th)): coords[j, i, :] = np.array([th1_vals[i], th2_vals[j], 0, 0]) <mask token> print(end - start) <mask token> ax.set_title('Theta') ax.set_xlabel('Th1') ax.set_ylabel('Th2') ax.axis([x.min(), x.max(), y.min(), y.max()]) fig.colorbar(c, ax=ax) plt.show() <mask token> for i, j in product(range(n_th), range(n_th)): coords[j, i, :] = np.array([pi / 2, 0, th1dot_vals[i], th2dot_vals[j]]) <mask token> print(end - start) <mask token> ax.set_title('DTheta') ax.set_xlabel('dth1') ax.set_ylabel('dth2') ax.axis([x.min(), x.max(), y.min(), y.max()]) fig.colorbar(c, ax=ax) plt.show() torch.set_default_dtype(torch.float32) def reward_fn(s, a): reward = np.sin(s[0]) + 2 * np.sin(s[0] + s[1]) return reward, False def do_rollout(trial_num): np.random.seed(trial_num) act_hold = 20 hold_count = 0 obs = env.reset() local_lqr = False actions = np.random.randn(1) * 3 local_state_hist = np.zeros((env.num_steps, env.observation_space.shape[0]) ) local_reward_hist = np.zeros((env.num_steps, 1)) local_gate_hist = np.zeros((env.num_steps, 1)) local_action_hist = np.zeros((env.num_steps, 1)) for i in range(env.num_steps): obs = np.array(obs, dtype=np.float32) if sig(net(obs)) > 0.85: actions = np.clip(np.asarray(control(obs)), -max_torque, max_torque ) local_lqr = True local_gate_hist[i] = 1 else: local_gate_hist[i] = 0 if hold_count == act_hold: actions = np.random.randn(1) * 3 hold_count = 0 hold_count += 1 obs, reward, done, _ = env.step(actions) local_action_hist[i, :] = np.copy(actions) local_state_hist[i, :] = np.copy(obs) local_reward_hist[i, :] = np.copy(reward) return (local_action_hist, local_state_hist, local_reward_hist, local_gate_hist, local_lqr) <mask token> for i, res in enumerate(pool.imap(do_rollout, range(num_trials))): acts, obs, rews, gate, lqr_on = res action_hist[i, :, :] = acts state_hist[i, :, :] = obs reward_hist[i, :, :] = rews gate_hist[i, :, :] = gate err_hist[i] = np.sqrt(sum((state_hist[i, -1, :] - np.array([pi / 2, 0, 0, 0])) ** 2)) if lqr_on: lqr_list.append(i) if err_hist[i] < 2: success_list.append(i) print(len(lqr_list)) print(len(success_list)) print((time.time() - global_start) / 60)
<mask token> global_start = time.time() m1 = 1 m2 = 1 l1 = 1 l2 = 2 lc1 = 0.5 lc2 = 1 I1 = 0.083 I2 = 0.33 g = 9.8 dt = 0.01 max_torque = 25 integrator = euler Q = np.identity(4) Q[0, 0] = 1 Q[1, 1] = 1 Q[2, 2] = 1 Q[3, 3] = 1 R = np.identity(2) * 0.01 eval_max_t = 10 th1 = pi / 2 th2 = 0 th1d = 0 th2d = 0 TAU = np.array([[0], [1]]) m11 = m1 * lc1 ** 2 + m2 * (l1 ** 2 + lc2 ** 2 + 2 * l1 * lc2 * cos(th2) ) + I1 + I2 m22 = m2 * lc2 ** 2 + I2 m12 = m2 * (lc2 ** 2 + l1 * lc2 * cos(th2)) + I2 M = np.array([[m11, m12], [m12, m22]]) h1 = -m2 * l1 * lc2 * sin(th2) * th2d ** 2 - 2 * m2 * l1 * lc2 * sin(th2 ) * th2d * th1d h2 = m2 * l1 * lc2 * sin(th2) * th1d ** 2 H = np.array([[h1], [h2]]) phi1 = (m1 * lc1 + m2 * l1) * g * cos(th1) + m2 * lc2 * g * cos(th1 + th2) phi2 = m2 * lc2 * g * cos(th1 + th2) PHI = np.array([[phi1], [phi2]]) Bl = np.linalg.inv(M) @ TAU Blin = np.array([[0, 0], [0, 0], [0, Bl[0].item()], [0, Bl[1].item()]]) DPHI = np.array([[-g * (m1 * lc1 + m2 * l1 + m2 * lc2), -m2 * lc2 * g], [- m2 * lc2 * g, -m2 * lc2 * g]]) Al = -np.linalg.inv(M) @ DPHI Alin = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [Al[0, 0], Al[0, 1], 0, 0], [ Al[1, 0], Al[1, 1], 0, 0]]) Ctr = ctrb(Alin, Blin) assert np.linalg.matrix_rank(Ctr) == 4 K, S, E = lqr(Alin, Blin, Q, R) k = np.array(K[1, :]) print(k) def control(q): gs = np.array([pi / 2, 0, 0, 0]) return -k.dot(q - gs) def reward_fn(s, a): reward = np.sin(s[0]) + 2 * np.sin(s[0] + s[1]) done = reward < 2 return reward, done def do_rollout(args): x, trial_num = args th1, th2, dth1, dth2 = x np.random.seed(trial_num) local_reward_hist = np.ones((env.num_steps, 1)) * -1 obs = env.reset(init_vec=[th1, th2, dth1, dth2]) for i in range(env.num_steps): actions = np.clip(np.asarray(control(obs)), -max_torque, max_torque) obs, reward, done, _ = env.step(actions) local_reward_hist[i, :] = np.copy(reward) if done: break return local_reward_hist, i start = time.time() config = {'init_state': [0, 0, 0, 0], 'max_torque': max_torque, 'init_state_weights': [0, 0, 0, 0], 'max_t': 2.5, 'dt': dt, 'm2': m2, 'm1': m1, 'l1': l1, 'lc1': lc1, 'lc2': lc2, 'i1': I1, 'i2': I2, 'integrator': integrator, 'reward_fn': reward_fn, 'act_hold': 1} env = gym.make('su_acrobot-v0', **config) num_trials = 200000 reward_hist = np.zeros((num_trials, env.num_steps, 1)) X = np.zeros((num_trials, 4), dtype=np.float32) Y = np.zeros((num_trials, 1), dtype=np.float32) th1_min = pi / 2 - 0.5 th1_max = pi / 2 + 0.5 th2_min = -1 th2_max = 1 th1dot_min = -5 th1dot_max = 5 th2dot_min = -10 th2dot_max = 10 samples = np.random.random_sample((int(num_trials / 2), 4)) samples *= np.array([th1_min - th1_max, th2_min - th2_max, th1dot_min - th1dot_max, th2dot_min - th2dot_max]) samples += np.array([th1_max, th2_max, th1dot_max, th2dot_max]) total_steps = 0 pool = Pool() for i, res in enumerate(pool.imap(do_rollout, zip(samples, range(int( num_trials / 2))))): rews, steps = res reward_hist[i, :, :] = rews total_steps += steps X[i, :] = samples[i, :] Y[i] = sum(rews) > env.num_steps * 3 - 10 th1_min = 0 th1_max = 2 * pi th2_min = -pi th2_max = pi th1dot_min = -10 th1dot_max = 10 th2dot_min = -30 th2dot_max = 30 samples = np.random.random_sample((int(num_trials / 2), 4)) samples *= np.array([th1_min - th1_max, th2_min - th2_max, th1dot_min - th1dot_max, th2dot_min - th2dot_max]) samples += np.array([th1_max, th2_max, th1dot_max, th2dot_max]) total_steps = 0 for i, res in enumerate(pool.imap(do_rollout, zip(samples, range(int( num_trials / 2), int(num_trials))))): rews, steps = res reward_hist[i, :, :] = rews total_steps += steps X[i + int(num_trials / 2), :] = samples[i, :] Y[i + int(num_trials / 2)] = sum(rews) > env.num_steps * 3 - 5 print(time.time() - start) <mask token> net = MLP(4, 1, 2, 32) Y0 = np.ones((num_trials, 1), dtype=np.float32) w = 0.01 class_weight = torch.tensor(Y.shape[0] / sum(Y) * w, dtype=torch.float32) loss_hist = fit_model(net, X, Y, 50, batch_size=2048, loss_fn=torch.nn. BCEWithLogitsLoss(pos_weight=class_weight)) plt.close() plt.plot(loss_hist) plt.show() n_thdot = 1 n_th = 1000 th1_vals = np.linspace(0, 2 * pi, n_th) th2_vals = np.linspace(-pi, pi, n_th) th1dot_vals = np.linspace(-10, 10, n_th) th2dot_vals = np.linspace(-30, 30, n_th) sig = torch.nn.Sigmoid() coords = np.zeros((n_th, n_th, 4), dtype=np.float32) <mask token> start = time.time() for i, j in product(range(n_th), range(n_th)): coords[j, i, :] = np.array([th1_vals[i], th2_vals[j], 0, 0]) preds = sig(net(coords.reshape(-1, 4)).reshape(n_th, n_th).detach()) end = time.time() print(end - start) fig, ax = plt.subplots(n_thdot, n_thdot, figsize=(8, 8)) x, y = np.meshgrid(th1_vals, th2_vals) z = preds z = z[:-1, :-1] z_min, z_max = 0, np.abs(z).max() c = ax.pcolormesh(x, y, z, cmap='RdBu', vmin=z_min, vmax=z_max) ax.set_title('Theta') ax.set_xlabel('Th1') ax.set_ylabel('Th2') ax.axis([x.min(), x.max(), y.min(), y.max()]) fig.colorbar(c, ax=ax) plt.show() coords = np.zeros((n_th, n_th, 4), dtype=np.float32) start = time.time() for i, j in product(range(n_th), range(n_th)): coords[j, i, :] = np.array([pi / 2, 0, th1dot_vals[i], th2dot_vals[j]]) preds = sig(net(coords.reshape(-1, 4)).reshape(n_th, n_th).detach()) end = time.time() print(end - start) fig, ax = plt.subplots(n_thdot, n_thdot, figsize=(8, 8)) x, y = np.meshgrid(th1dot_vals, th2dot_vals) z = preds z = z[:-1, :-1] z_min, z_max = 0, np.abs(z).max() c = ax.pcolormesh(x, y, z, cmap='RdBu', vmin=z_min, vmax=z_max) ax.set_title('DTheta') ax.set_xlabel('dth1') ax.set_ylabel('dth2') ax.axis([x.min(), x.max(), y.min(), y.max()]) fig.colorbar(c, ax=ax) plt.show() torch.set_default_dtype(torch.float32) def reward_fn(s, a): reward = np.sin(s[0]) + 2 * np.sin(s[0] + s[1]) return reward, False def do_rollout(trial_num): np.random.seed(trial_num) act_hold = 20 hold_count = 0 obs = env.reset() local_lqr = False actions = np.random.randn(1) * 3 local_state_hist = np.zeros((env.num_steps, env.observation_space.shape[0]) ) local_reward_hist = np.zeros((env.num_steps, 1)) local_gate_hist = np.zeros((env.num_steps, 1)) local_action_hist = np.zeros((env.num_steps, 1)) for i in range(env.num_steps): obs = np.array(obs, dtype=np.float32) if sig(net(obs)) > 0.85: actions = np.clip(np.asarray(control(obs)), -max_torque, max_torque ) local_lqr = True local_gate_hist[i] = 1 else: local_gate_hist[i] = 0 if hold_count == act_hold: actions = np.random.randn(1) * 3 hold_count = 0 hold_count += 1 obs, reward, done, _ = env.step(actions) local_action_hist[i, :] = np.copy(actions) local_state_hist[i, :] = np.copy(obs) local_reward_hist[i, :] = np.copy(reward) return (local_action_hist, local_state_hist, local_reward_hist, local_gate_hist, local_lqr) config = {'init_state': [-pi / 2, 0, 0, 0], 'max_torque': max_torque, 'init_state_weights': [1, 1, 5, 5], 'dt': dt, 'm2': m2, 'm1': m1, 'l1': l1, 'lc1': lc1, 'lc2': lc2, 'i1': I1, 'i2': I2, 'integrator': integrator, 'reward_fn': reward_fn, 'act_hold': 1, 'max_t': 10} env = gym.make('su_acrobot-v0', **config) num_trials = 1000 action_hist = np.zeros((num_trials, env.num_steps, 1)) state_hist = np.zeros((num_trials, env.num_steps, env.observation_space. shape[0])) reward_hist = np.zeros((num_trials, env.num_steps, 1)) gate_hist = np.zeros((num_trials, env.num_steps, 1)) err_hist = np.zeros((num_trials, 1)) lqr_list = [] success_list = [] act_hold = 20 hold_count = 0 obs = env.reset() start = time.time() pool = Pool() for i, res in enumerate(pool.imap(do_rollout, range(num_trials))): acts, obs, rews, gate, lqr_on = res action_hist[i, :, :] = acts state_hist[i, :, :] = obs reward_hist[i, :, :] = rews gate_hist[i, :, :] = gate err_hist[i] = np.sqrt(sum((state_hist[i, -1, :] - np.array([pi / 2, 0, 0, 0])) ** 2)) if lqr_on: lqr_list.append(i) if err_hist[i] < 2: success_list.append(i) print(len(lqr_list)) print(len(success_list)) print((time.time() - global_start) / 60)
import numpy as np from numpy import sin, cos, pi import gym import seagul.envs from seagul.integration import rk4, euler from control import lqr, ctrb from torch.multiprocessing import Pool import matplotlib.pyplot as plt import matplotlib import time global_start = time.time() m1 = 1 m2 = 1 l1 = 1 l2 = 2 lc1 = 0.5 lc2 = 1 I1 = 0.083 I2 = 0.33 g = 9.8 dt = 0.01 max_torque = 25 integrator = euler Q = np.identity(4) Q[0, 0] = 1 Q[1, 1] = 1 Q[2, 2] = 1 Q[3, 3] = 1 R = np.identity(2) * 0.01 eval_max_t = 10 th1 = pi / 2 th2 = 0 th1d = 0 th2d = 0 TAU = np.array([[0], [1]]) m11 = m1 * lc1 ** 2 + m2 * (l1 ** 2 + lc2 ** 2 + 2 * l1 * lc2 * cos(th2) ) + I1 + I2 m22 = m2 * lc2 ** 2 + I2 m12 = m2 * (lc2 ** 2 + l1 * lc2 * cos(th2)) + I2 M = np.array([[m11, m12], [m12, m22]]) h1 = -m2 * l1 * lc2 * sin(th2) * th2d ** 2 - 2 * m2 * l1 * lc2 * sin(th2 ) * th2d * th1d h2 = m2 * l1 * lc2 * sin(th2) * th1d ** 2 H = np.array([[h1], [h2]]) phi1 = (m1 * lc1 + m2 * l1) * g * cos(th1) + m2 * lc2 * g * cos(th1 + th2) phi2 = m2 * lc2 * g * cos(th1 + th2) PHI = np.array([[phi1], [phi2]]) Bl = np.linalg.inv(M) @ TAU Blin = np.array([[0, 0], [0, 0], [0, Bl[0].item()], [0, Bl[1].item()]]) DPHI = np.array([[-g * (m1 * lc1 + m2 * l1 + m2 * lc2), -m2 * lc2 * g], [- m2 * lc2 * g, -m2 * lc2 * g]]) Al = -np.linalg.inv(M) @ DPHI Alin = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [Al[0, 0], Al[0, 1], 0, 0], [ Al[1, 0], Al[1, 1], 0, 0]]) Ctr = ctrb(Alin, Blin) assert np.linalg.matrix_rank(Ctr) == 4 K, S, E = lqr(Alin, Blin, Q, R) k = np.array(K[1, :]) print(k) def control(q): gs = np.array([pi / 2, 0, 0, 0]) return -k.dot(q - gs) def reward_fn(s, a): reward = np.sin(s[0]) + 2 * np.sin(s[0] + s[1]) done = reward < 2 return reward, done def do_rollout(args): x, trial_num = args th1, th2, dth1, dth2 = x np.random.seed(trial_num) local_reward_hist = np.ones((env.num_steps, 1)) * -1 obs = env.reset(init_vec=[th1, th2, dth1, dth2]) for i in range(env.num_steps): actions = np.clip(np.asarray(control(obs)), -max_torque, max_torque) obs, reward, done, _ = env.step(actions) local_reward_hist[i, :] = np.copy(reward) if done: break return local_reward_hist, i start = time.time() config = {'init_state': [0, 0, 0, 0], 'max_torque': max_torque, 'init_state_weights': [0, 0, 0, 0], 'max_t': 2.5, 'dt': dt, 'm2': m2, 'm1': m1, 'l1': l1, 'lc1': lc1, 'lc2': lc2, 'i1': I1, 'i2': I2, 'integrator': integrator, 'reward_fn': reward_fn, 'act_hold': 1} env = gym.make('su_acrobot-v0', **config) num_trials = 200000 reward_hist = np.zeros((num_trials, env.num_steps, 1)) X = np.zeros((num_trials, 4), dtype=np.float32) Y = np.zeros((num_trials, 1), dtype=np.float32) th1_min = pi / 2 - 0.5 th1_max = pi / 2 + 0.5 th2_min = -1 th2_max = 1 th1dot_min = -5 th1dot_max = 5 th2dot_min = -10 th2dot_max = 10 samples = np.random.random_sample((int(num_trials / 2), 4)) samples *= np.array([th1_min - th1_max, th2_min - th2_max, th1dot_min - th1dot_max, th2dot_min - th2dot_max]) samples += np.array([th1_max, th2_max, th1dot_max, th2dot_max]) total_steps = 0 pool = Pool() for i, res in enumerate(pool.imap(do_rollout, zip(samples, range(int( num_trials / 2))))): rews, steps = res reward_hist[i, :, :] = rews total_steps += steps X[i, :] = samples[i, :] Y[i] = sum(rews) > env.num_steps * 3 - 10 th1_min = 0 th1_max = 2 * pi th2_min = -pi th2_max = pi th1dot_min = -10 th1dot_max = 10 th2dot_min = -30 th2dot_max = 30 samples = np.random.random_sample((int(num_trials / 2), 4)) samples *= np.array([th1_min - th1_max, th2_min - th2_max, th1dot_min - th1dot_max, th2dot_min - th2dot_max]) samples += np.array([th1_max, th2_max, th1dot_max, th2dot_max]) total_steps = 0 for i, res in enumerate(pool.imap(do_rollout, zip(samples, range(int( num_trials / 2), int(num_trials))))): rews, steps = res reward_hist[i, :, :] = rews total_steps += steps X[i + int(num_trials / 2), :] = samples[i, :] Y[i + int(num_trials / 2)] = sum(rews) > env.num_steps * 3 - 5 print(time.time() - start) from seagul.nn import MLP, fit_model import torch net = MLP(4, 1, 2, 32) Y0 = np.ones((num_trials, 1), dtype=np.float32) w = 0.01 class_weight = torch.tensor(Y.shape[0] / sum(Y) * w, dtype=torch.float32) loss_hist = fit_model(net, X, Y, 50, batch_size=2048, loss_fn=torch.nn. BCEWithLogitsLoss(pos_weight=class_weight)) plt.close() plt.plot(loss_hist) plt.show() n_thdot = 1 n_th = 1000 th1_vals = np.linspace(0, 2 * pi, n_th) th2_vals = np.linspace(-pi, pi, n_th) th1dot_vals = np.linspace(-10, 10, n_th) th2dot_vals = np.linspace(-30, 30, n_th) sig = torch.nn.Sigmoid() coords = np.zeros((n_th, n_th, 4), dtype=np.float32) from itertools import product start = time.time() for i, j in product(range(n_th), range(n_th)): coords[j, i, :] = np.array([th1_vals[i], th2_vals[j], 0, 0]) preds = sig(net(coords.reshape(-1, 4)).reshape(n_th, n_th).detach()) end = time.time() print(end - start) fig, ax = plt.subplots(n_thdot, n_thdot, figsize=(8, 8)) x, y = np.meshgrid(th1_vals, th2_vals) z = preds z = z[:-1, :-1] z_min, z_max = 0, np.abs(z).max() c = ax.pcolormesh(x, y, z, cmap='RdBu', vmin=z_min, vmax=z_max) ax.set_title('Theta') ax.set_xlabel('Th1') ax.set_ylabel('Th2') ax.axis([x.min(), x.max(), y.min(), y.max()]) fig.colorbar(c, ax=ax) plt.show() coords = np.zeros((n_th, n_th, 4), dtype=np.float32) start = time.time() for i, j in product(range(n_th), range(n_th)): coords[j, i, :] = np.array([pi / 2, 0, th1dot_vals[i], th2dot_vals[j]]) preds = sig(net(coords.reshape(-1, 4)).reshape(n_th, n_th).detach()) end = time.time() print(end - start) fig, ax = plt.subplots(n_thdot, n_thdot, figsize=(8, 8)) x, y = np.meshgrid(th1dot_vals, th2dot_vals) z = preds z = z[:-1, :-1] z_min, z_max = 0, np.abs(z).max() c = ax.pcolormesh(x, y, z, cmap='RdBu', vmin=z_min, vmax=z_max) ax.set_title('DTheta') ax.set_xlabel('dth1') ax.set_ylabel('dth2') ax.axis([x.min(), x.max(), y.min(), y.max()]) fig.colorbar(c, ax=ax) plt.show() torch.set_default_dtype(torch.float32) def reward_fn(s, a): reward = np.sin(s[0]) + 2 * np.sin(s[0] + s[1]) return reward, False def do_rollout(trial_num): np.random.seed(trial_num) act_hold = 20 hold_count = 0 obs = env.reset() local_lqr = False actions = np.random.randn(1) * 3 local_state_hist = np.zeros((env.num_steps, env.observation_space.shape[0]) ) local_reward_hist = np.zeros((env.num_steps, 1)) local_gate_hist = np.zeros((env.num_steps, 1)) local_action_hist = np.zeros((env.num_steps, 1)) for i in range(env.num_steps): obs = np.array(obs, dtype=np.float32) if sig(net(obs)) > 0.85: actions = np.clip(np.asarray(control(obs)), -max_torque, max_torque ) local_lqr = True local_gate_hist[i] = 1 else: local_gate_hist[i] = 0 if hold_count == act_hold: actions = np.random.randn(1) * 3 hold_count = 0 hold_count += 1 obs, reward, done, _ = env.step(actions) local_action_hist[i, :] = np.copy(actions) local_state_hist[i, :] = np.copy(obs) local_reward_hist[i, :] = np.copy(reward) return (local_action_hist, local_state_hist, local_reward_hist, local_gate_hist, local_lqr) config = {'init_state': [-pi / 2, 0, 0, 0], 'max_torque': max_torque, 'init_state_weights': [1, 1, 5, 5], 'dt': dt, 'm2': m2, 'm1': m1, 'l1': l1, 'lc1': lc1, 'lc2': lc2, 'i1': I1, 'i2': I2, 'integrator': integrator, 'reward_fn': reward_fn, 'act_hold': 1, 'max_t': 10} env = gym.make('su_acrobot-v0', **config) num_trials = 1000 action_hist = np.zeros((num_trials, env.num_steps, 1)) state_hist = np.zeros((num_trials, env.num_steps, env.observation_space. shape[0])) reward_hist = np.zeros((num_trials, env.num_steps, 1)) gate_hist = np.zeros((num_trials, env.num_steps, 1)) err_hist = np.zeros((num_trials, 1)) lqr_list = [] success_list = [] act_hold = 20 hold_count = 0 obs = env.reset() start = time.time() pool = Pool() for i, res in enumerate(pool.imap(do_rollout, range(num_trials))): acts, obs, rews, gate, lqr_on = res action_hist[i, :, :] = acts state_hist[i, :, :] = obs reward_hist[i, :, :] = rews gate_hist[i, :, :] = gate err_hist[i] = np.sqrt(sum((state_hist[i, -1, :] - np.array([pi / 2, 0, 0, 0])) ** 2)) if lqr_on: lqr_list.append(i) if err_hist[i] < 2: success_list.append(i) print(len(lqr_list)) print(len(success_list)) print((time.time() - global_start) / 60)
# %% import numpy as np from numpy import sin, cos, pi import gym import seagul.envs from seagul.integration import rk4,euler from control import lqr, ctrb from torch.multiprocessing import Pool import matplotlib.pyplot as plt import matplotlib #matplotlib.use('Qt5Agg') import time global_start = time.time() # %% m1 = 1 m2 = 1 l1 = 1 l2 = 2 lc1 = .5 lc2 = 1 I1 = .083 I2 = .33 g = 9.8 # # m1 = 1 # m2 = 1 # l1 = 1 # l2 = 1 # lc1 = .5 # lc2 = .5 # I1 = .2 # I2 = 1.0 # g = 9.8 dt = .01 max_torque = 25 integrator = euler Q = np.identity(4) Q[0, 0] = 1 Q[1, 1] = 1 Q[2, 2] = 1 Q[3, 3] = 1 # # Q = np.array([[1000, -500, 0,0],[-500, 1000, 0, 0],[0, 0, 1000, -500],[0,0,-500,1000]]) R = np.identity(2) * .01 eval_max_t = 10 th1 = pi / 2 th2 = 0 th1d = 0 th2d = 0 TAU = np.array([[0], [1]]) m11 = m1 * lc1 ** 2 + m2 * (l1 ** 2 + lc2 ** 2 + 2 * l1 * lc2 * cos(th2)) + I1 + I2 m22 = m2 * lc2 ** 2 + I2 m12 = m2 * (lc2 ** 2 + l1 * lc2 * cos(th2)) + I2 M = np.array([[m11, m12], [m12, m22]]) h1 = -m2 * l1 * lc2 * sin(th2) * th2d ** 2 - 2 * m2 * l1 * lc2 * sin(th2) * th2d * th1d h2 = m2 * l1 * lc2 * sin(th2) * th1d ** 2 H = np.array([[h1], [h2]]) phi1 = (m1 * lc1 + m2 * l1) * g * cos(th1) + m2 * lc2 * g * cos(th1 + th2) phi2 = m2 * lc2 * g * cos(th1 + th2) PHI = np.array([[phi1], [phi2]]) Bl = np.linalg.inv(M) @ TAU Blin = np.array([[0, 0], [0, 0], [0, Bl[0].item()], [0, Bl[1].item()]]) DPHI = np.array([[-g * (m1 * lc1 + m2 * l1 + m2 * lc2), -m2 * lc2 * g], [-m2 * lc2 * g, -m2 * lc2 * g]]) Al = -np.linalg.inv(M) @ DPHI Alin = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [Al[0, 0], Al[0, 1], 0, 0], [Al[1, 0], Al[1, 1], 0, 0]]) Ctr = ctrb(Alin, Blin) assert np.linalg.matrix_rank(Ctr) == 4 K, S, E = lqr(Alin, Blin, Q, R) k = np.array(K[1, :]) print(k) def control(q): gs = np.array([pi / 2, 0, 0, 0]) return -k.dot(q - gs) def reward_fn(s, a): reward = np.sin(s[0]) + 2 * np.sin(s[0] + s[1]) done = reward < 2 return reward, done def do_rollout(args): x, trial_num = args th1, th2, dth1, dth2 = x np.random.seed(trial_num) local_reward_hist = np.ones((env.num_steps, 1)) * -1 obs = env.reset(init_vec=[th1, th2, dth1, dth2]) for i in range(env.num_steps): actions = np.clip(np.asarray(control(obs)), -max_torque, max_torque) obs, reward, done, _ = env.step(actions) local_reward_hist[i, :] = np.copy(reward) if done: break return local_reward_hist, i # %%b start = time.time() config = {"init_state": [0, 0, 0, 0], "max_torque": max_torque, "init_state_weights": [0, 0, 0, 0], "max_t" : 2.5, "dt": dt, "m2": m2, "m1": m1, "l1": l1, "lc1": lc1, "lc2": lc2, "i1": I1, "i2": I2, "integrator" : integrator, "reward_fn": reward_fn, "act_hold": 1 } env = gym.make('su_acrobot-v0', **config) num_trials = 200000 reward_hist = np.zeros((num_trials, env.num_steps, 1)) X = np.zeros((num_trials, 4), dtype=np.float32) Y = np.zeros((num_trials, 1), dtype=np.float32) th1_min = pi / 2 - .5 th1_max = pi / 2 + .5 th2_min = -1 th2_max = 1 th1dot_min = -5 th1dot_max = 5 th2dot_min = -10 th2dot_max = 10 samples = np.random.random_sample((int(num_trials/2), 4)) samples *= np.array([th1_min - th1_max, th2_min - th2_max, th1dot_min - th1dot_max, th2dot_min - th2dot_max]) samples += np.array([th1_max, th2_max, th1dot_max, th2dot_max]) total_steps = 0 pool = Pool() # defaults to number of available CPU's for i, res in enumerate(pool.imap(do_rollout, zip(samples, range(int(num_trials/2))))): rews, steps = res reward_hist[i, :, :] = rews total_steps += steps X[i, :] = samples[i, :] Y[i] = sum(rews) > env.num_steps*3 - 10 th1_min = 0 th1_max = 2*pi th2_min = -pi th2_max = pi th1dot_min = -10 th1dot_max = 10 th2dot_min = -30 th2dot_max = 30 samples = np.random.random_sample((int(num_trials/2), 4)) samples *= np.array([th1_min - th1_max, th2_min - th2_max, th1dot_min - th1dot_max, th2dot_min - th2dot_max]) samples += np.array([th1_max, th2_max, th1dot_max, th2dot_max]) total_steps = 0 for i, res in enumerate(pool.imap(do_rollout, zip(samples, range(int(num_trials/2), int(num_trials))))): rews, steps = res reward_hist[i, :, :] = rews total_steps += steps X[i+int(num_trials/2), :] = samples[i, :] Y[i+int(num_trials/2)] = sum(rews) > env.num_steps*3 - 5 print(time.time() - start) # %% from seagul.nn import MLP, fit_model import torch net = MLP(4, 1, 2, 32) # output_activation=torch.nn.Softmax) Y0 = np.ones((num_trials, 1), dtype=np.float32) w = 1e-2 class_weight = torch.tensor(Y.shape[0]/sum(Y)*w, dtype=torch.float32) loss_hist = fit_model(net, X, Y, 50, batch_size=2048, loss_fn=torch.nn.BCEWithLogitsLoss(pos_weight=class_weight)) #loss_hist = fit_model(net, X, Y, 50, batch_size=2048, loss_fn=torch.nn.BCEWithLogitsLoss()) # loss_hist = fit_model(net, X, Y, 100, batch_size=2048) # loss_hist = fit_model(net, X, Y0, 5, batch_size=2048, loss_fn=torch.nn.BCEWithLogitsLoss(pos_weight=class_weight)) plt.close() plt.plot(loss_hist) plt.show() # %% n_thdot = 1 n_th = 1000 th1_vals = np.linspace(0, 2*pi, n_th) th2_vals = np.linspace(-pi, pi, n_th) th1dot_vals = np.linspace(-10, 10, n_th) th2dot_vals = np.linspace(-30, 30, n_th) sig = torch.nn.Sigmoid() coords = np.zeros((n_th, n_th, 4), dtype=np.float32) from itertools import product start = time.time() for i, j in product(range(n_th), range(n_th)): coords[j, i, :] = np.array([th1_vals[i], th2_vals[j], 0, 0]) preds = sig(net(coords.reshape(-1, 4)).reshape(n_th, n_th).detach()) end = time.time() print(end - start) fig, ax = plt.subplots(n_thdot, n_thdot, figsize=(8, 8)) # generate 2 2d grids for the x & y bounds x, y = np.meshgrid(th1_vals, th2_vals) z = preds # x and y are bounds, so z should be the value *inside* those bounds. # Therefore, remove the last value from the z array. z = z[:-1, :-1] z_min, z_max = 0, np.abs(z).max() c = ax.pcolormesh(x, y, z, cmap='RdBu', vmin=z_min, vmax=z_max) ax.set_title('Theta') ax.set_xlabel('Th1') ax.set_ylabel('Th2') # set the limits of the plot to the limits of the data ax.axis([x.min(), x.max(), y.min(), y.max()]) fig.colorbar(c, ax=ax) plt.show() coords = np.zeros((n_th, n_th, 4), dtype=np.float32) start = time.time() for i, j in product(range(n_th), range(n_th)): coords[j, i, :] = np.array([pi/2, 0, th1dot_vals[i], th2dot_vals[j]]) preds = sig(net(coords.reshape(-1, 4)).reshape(n_th, n_th).detach()) end = time.time() print(end - start) fig, ax = plt.subplots(n_thdot, n_thdot, figsize=(8, 8)) # generate 2 2d grids for the x & y bounds x, y = np.meshgrid(th1dot_vals, th2dot_vals) z = preds # x and y are bounds, so z should be the value *inside* those bounds. # Therefore, remove the last value from the z array. z = z[:-1, :-1] z_min, z_max = 0, np.abs(z).max() c = ax.pcolormesh(x, y, z, cmap='RdBu', vmin=z_min, vmax=z_max) ax.set_title('DTheta') ax.set_xlabel('dth1') ax.set_ylabel('dth2') # set the limits of the plot to the limits of the data ax.axis([x.min(), x.max(), y.min(), y.max()]) fig.colorbar(c, ax=ax) plt.show() # %% torch.set_default_dtype(torch.float32) def reward_fn(s, a): reward = np.sin(s[0]) + 2 * np.sin(s[0] + s[1]) return reward, False def do_rollout(trial_num): np.random.seed(trial_num) act_hold = 20 hold_count = 0 obs = env.reset() local_lqr = False actions = np.random.randn(1) * 3 local_state_hist = np.zeros((env.num_steps, env.observation_space.shape[0])) local_reward_hist = np.zeros((env.num_steps, 1)) local_gate_hist = np.zeros((env.num_steps, 1)) local_action_hist = np.zeros((env.num_steps, 1)) for i in range(env.num_steps): obs = np.array(obs, dtype=np.float32) if sig(net(obs)) > .85: actions = np.clip(np.asarray(control(obs)), -max_torque, max_torque) local_lqr = True local_gate_hist[i] = 1 else: local_gate_hist[i] = 0 if hold_count == act_hold: actions = np.random.randn(1) * 3 hold_count = 0 hold_count += 1 obs, reward, done, _ = env.step(actions) local_action_hist[i, :] = np.copy(actions) local_state_hist[i, :] = np.copy(obs) local_reward_hist[i, :] = np.copy(reward) return local_action_hist, local_state_hist, local_reward_hist, local_gate_hist, local_lqr config = {"init_state": [-pi / 2, 0, 0, 0], "max_torque": max_torque, "init_state_weights": [1, 1, 5, 5], "dt": dt, "m2": m2, "m1": m1, "l1": l1, "lc1": lc1, "lc2": lc2, "i1": I1, "i2": I2, "integrator" : integrator, "reward_fn": reward_fn, "act_hold": 1, "max_t" : 10 } env = gym.make('su_acrobot-v0', **config) num_trials = 1000 action_hist = np.zeros((num_trials, env.num_steps, 1)) state_hist = np.zeros((num_trials, env.num_steps, env.observation_space.shape[0])) reward_hist = np.zeros((num_trials, env.num_steps, 1)) gate_hist = np.zeros((num_trials, env.num_steps, 1)) err_hist = np.zeros((num_trials, 1)) lqr_list = [] success_list = [] act_hold = 20 hold_count = 0 obs = env.reset() start = time.time() pool = Pool() # defaults to number of available CPU's for i, res in enumerate(pool.imap(do_rollout,range(num_trials))): acts, obs, rews, gate, lqr_on = res action_hist[i, :, :] = acts state_hist[i, :, :] = obs reward_hist[i, :, :] = rews gate_hist[i, :, :] = gate err_hist[i] = (np.sqrt(sum(((state_hist[i, -1, :] - np.array([pi / 2, 0, 0, 0])) ** 2)))) if lqr_on: lqr_list.append(i) #print(err_hist[i]) #print(reward_hist[i,-1]) if err_hist[i] < 2: success_list.append(i) # # for i in (range(num_trials)): # res = do_rollout(i) # acts, obs, rews, gate, lqr_on = res # action_hist[i, :, :] = acts # state_hist[i, :, :] = obs # reward_hist[i, :, :] = rews # gate_hist[i, :, :] = gate # err_hist[i] = (np.sqrt(sum(((state_hist[i, -1, :] - np.array([pi / 2, 0, 0, 0])) ** 2)))) # if lqr_on: # lqr_list.append(i) # #print(err_hist[i]) # #print(reward_hist[i,-1]) # if err_hist[i] < 2: # success_list.append(i) print(len(lqr_list)) print(len(success_list)) print((time.time() - global_start) / 60)
[ 3, 6, 7, 8, 9 ]
2,526
3086f62d4057812fc7fb4e21a18bc7d0ba786865
<mask token> def predictperson(): level = ['not at all', 'in small does', 'in large does'] percenttats = float(input('percentage of time spent playing video games?')) ffmiles = float(input('frequent flier miles earned per year?')) icecream = float(input('liters of ice cream consumed per year?')) data, datalabels = KNN_1.filel2matrix('datingTestSet2.txt') normMat = KNN_3.autoNorm(data) test_dataset = array([[percenttats, ffmiles, icecream]]) a = clf.classify0(test_dataset, data, 3, datalabels) print(level[a[0] - 1]) <mask token>
<mask token> def datingClassTest(): horatio = 0.1 data, datalabels = KNN_1.filel2matrix('datingTestSet2.txt') normMat = KNN_3.autoNorm(data) ml = normMat.shape[0] numTestset = int(ml * horatio) errorcount = 0 a = clf.classify0(normMat[0:numTestset, :], normMat[numTestset:ml, :], 3, datalabels[numTestset:ml]) for i in range(len(a)): if a[i] != datalabels[i]: errorcount += 1 c = errorcount / 100 return c def predictperson(): level = ['not at all', 'in small does', 'in large does'] percenttats = float(input('percentage of time spent playing video games?')) ffmiles = float(input('frequent flier miles earned per year?')) icecream = float(input('liters of ice cream consumed per year?')) data, datalabels = KNN_1.filel2matrix('datingTestSet2.txt') normMat = KNN_3.autoNorm(data) test_dataset = array([[percenttats, ffmiles, icecream]]) a = clf.classify0(test_dataset, data, 3, datalabels) print(level[a[0] - 1]) <mask token>
<mask token> def datingClassTest(): horatio = 0.1 data, datalabels = KNN_1.filel2matrix('datingTestSet2.txt') normMat = KNN_3.autoNorm(data) ml = normMat.shape[0] numTestset = int(ml * horatio) errorcount = 0 a = clf.classify0(normMat[0:numTestset, :], normMat[numTestset:ml, :], 3, datalabels[numTestset:ml]) for i in range(len(a)): if a[i] != datalabels[i]: errorcount += 1 c = errorcount / 100 return c def predictperson(): level = ['not at all', 'in small does', 'in large does'] percenttats = float(input('percentage of time spent playing video games?')) ffmiles = float(input('frequent flier miles earned per year?')) icecream = float(input('liters of ice cream consumed per year?')) data, datalabels = KNN_1.filel2matrix('datingTestSet2.txt') normMat = KNN_3.autoNorm(data) test_dataset = array([[percenttats, ffmiles, icecream]]) a = clf.classify0(test_dataset, data, 3, datalabels) print(level[a[0] - 1]) predictperson()
from numpy import * import KNN_1 import KNN_3 import KNN_suanfa as clf def datingClassTest(): horatio = 0.1 data, datalabels = KNN_1.filel2matrix('datingTestSet2.txt') normMat = KNN_3.autoNorm(data) ml = normMat.shape[0] numTestset = int(ml * horatio) errorcount = 0 a = clf.classify0(normMat[0:numTestset, :], normMat[numTestset:ml, :], 3, datalabels[numTestset:ml]) for i in range(len(a)): if a[i] != datalabels[i]: errorcount += 1 c = errorcount / 100 return c def predictperson(): level = ['not at all', 'in small does', 'in large does'] percenttats = float(input('percentage of time spent playing video games?')) ffmiles = float(input('frequent flier miles earned per year?')) icecream = float(input('liters of ice cream consumed per year?')) data, datalabels = KNN_1.filel2matrix('datingTestSet2.txt') normMat = KNN_3.autoNorm(data) test_dataset = array([[percenttats, ffmiles, icecream]]) a = clf.classify0(test_dataset, data, 3, datalabels) print(level[a[0] - 1]) predictperson()
from numpy import * import KNN_1 import KNN_3 import KNN_suanfa as clf def datingClassTest(): horatio = 0.1 data, datalabels = KNN_1.filel2matrix("datingTestSet2.txt") normMat = KNN_3.autoNorm(data) ml = normMat.shape[0] numTestset = int(ml*horatio) errorcount = 0 a=clf.classify0(normMat[0:numTestset,:],normMat[numTestset:ml,:],3,datalabels[numTestset:ml]) for i in range(len(a)): if a[i] != datalabels[i]: errorcount += 1 c = errorcount/100 return c def predictperson(): level = ['not at all','in small does','in large does'] percenttats = float(input("percentage of time spent playing video games?")) ffmiles = float(input("frequent flier miles earned per year?")) icecream = float(input("liters of ice cream consumed per year?")) data, datalabels = KNN_1.filel2matrix("datingTestSet2.txt") normMat = KNN_3.autoNorm(data) test_dataset = array([[percenttats,ffmiles,icecream]]) a = clf.classify0(test_dataset,data,3,datalabels) print(level[a[0]-1]) predictperson()
[ 1, 2, 3, 4, 5 ]
2,527
f928eb34155046107c99db8ded11747d5960c767
<mask token> class ProgressBar: <mask token> class ProgressBar1: def __init__(self, width=50): self.pointer = 0 self.width = width def __call__(self, x): self.pointer = int(self.width * (x / 100.0)) return '|' + '#' * self.pointer + '-' * (self.width - self.pointer ) + '| %d %% done' % int(x) class ProgressBar2: def __init__(self, width=50): self.pointer = 0 self.width = width def __call__(self, x): self.pointer = x return '|' + '#' * self.pointer + '-' * (100 - self.pointer ) + '| %d %% done' % int(x) @staticmethod def run(): ProgressBar.progress_test() <mask token>
<mask token> class ProgressBar: @staticmethod def progress_test(): bar_length = 100 for percent in range(0, 101): hashes = '#' * int(percent / 100.0 * bar_length) spaces = ' ' * (bar_length - len(hashes)) sys.stdout.write('\rPercent: [%s] %d%%' % (hashes + spaces, percent)) sys.stdout.flush() time.sleep(0.05) class ProgressBar1: def __init__(self, width=50): self.pointer = 0 self.width = width def __call__(self, x): self.pointer = int(self.width * (x / 100.0)) return '|' + '#' * self.pointer + '-' * (self.width - self.pointer ) + '| %d %% done' % int(x) class ProgressBar2: def __init__(self, width=50): self.pointer = 0 self.width = width def __call__(self, x): self.pointer = x return '|' + '#' * self.pointer + '-' * (100 - self.pointer ) + '| %d %% done' % int(x) @staticmethod def run(): ProgressBar.progress_test() <mask token>
<mask token> class ProgressBar: @staticmethod def progress_test(): bar_length = 100 for percent in range(0, 101): hashes = '#' * int(percent / 100.0 * bar_length) spaces = ' ' * (bar_length - len(hashes)) sys.stdout.write('\rPercent: [%s] %d%%' % (hashes + spaces, percent)) sys.stdout.flush() time.sleep(0.05) class ProgressBar1: def __init__(self, width=50): self.pointer = 0 self.width = width def __call__(self, x): self.pointer = int(self.width * (x / 100.0)) return '|' + '#' * self.pointer + '-' * (self.width - self.pointer ) + '| %d %% done' % int(x) class ProgressBar2: def __init__(self, width=50): self.pointer = 0 self.width = width def __call__(self, x): self.pointer = x return '|' + '#' * self.pointer + '-' * (100 - self.pointer ) + '| %d %% done' % int(x) @staticmethod def run(): ProgressBar.progress_test() if __name__ == '__main__': ProgressBar.run()
import sys import time class ProgressBar: @staticmethod def progress_test(): bar_length = 100 for percent in range(0, 101): hashes = '#' * int(percent / 100.0 * bar_length) spaces = ' ' * (bar_length - len(hashes)) sys.stdout.write('\rPercent: [%s] %d%%' % (hashes + spaces, percent)) sys.stdout.flush() time.sleep(0.05) class ProgressBar1: def __init__(self, width=50): self.pointer = 0 self.width = width def __call__(self, x): self.pointer = int(self.width * (x / 100.0)) return '|' + '#' * self.pointer + '-' * (self.width - self.pointer ) + '| %d %% done' % int(x) class ProgressBar2: def __init__(self, width=50): self.pointer = 0 self.width = width def __call__(self, x): self.pointer = x return '|' + '#' * self.pointer + '-' * (100 - self.pointer ) + '| %d %% done' % int(x) @staticmethod def run(): ProgressBar.progress_test() if __name__ == '__main__': ProgressBar.run()
# -*- coding:utf-8 -*- import sys import time class ProgressBar: @staticmethod def progress_test(): bar_length = 100 for percent in range(0, 101): hashes = '#' * int(percent / 100.0 * bar_length) spaces = ' ' * (bar_length - len(hashes)) sys.stdout.write("\rPercent: [%s] %d%%" % (hashes + spaces, percent)) sys.stdout.flush() time.sleep(0.05) class ProgressBar1: def __init__(self, width=50): self.pointer = 0 self.width = width def __call__(self, x): # print('\t') self.pointer = int(self.width * (x / 100.0)) return "|" + "#" * self.pointer + "-" * (self.width - self.pointer) + "| %d %% done" % int(x) class ProgressBar2: def __init__(self, width=50): self.pointer = 0 self.width = width def __call__(self,x): # print('\r') self.pointer = x return "|" + "#" * self.pointer + "-" * (100 - self.pointer)+ "| %d %% done" % int(x) @staticmethod def run(): # progress_test() ProgressBar.progress_test() # pb = ProgressBar.ProgressBar1() # for i in range(101): # # os.system('cls') # print(pb(i)) # time.sleep(0.02) # # pb = ProgressBar.ProgressBar2() # for i in range(101): # # os.system('cls') # print(pb(i)) # time.sleep(0.02) if __name__ == '__main__': ProgressBar.run()
[ 2, 3, 4, 5, 6 ]
2,528
51b28650f8ae6cbda3d81695acd27744e9bfebd1
<mask token>
<mask token> def main(db_client: DBClient): sns.set_theme() peer_ids = db_client.get_dangling_peer_ids() arrivals = db_client.get_inter_arrival_time(peer_ids) results_df = pd.DataFrame(arrivals, columns=['id', 'peer_id', 'diff_in_s']) results_df = results_df.assign(diff_in_h=results_df.diff_in_s.apply(lambda x: x / 3600)) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5), sharey=True) sns.ecdfplot(ax=ax1, x='diff_in_h', data=results_df) ax1.set_xlim(0, 48) ax1.set_xticks(np.arange(0, 50, step=4)) ax1.set_xlabel('Time in Hours') ax1.set_ylabel('Number of Peers in %') ax1.get_yaxis().set_major_formatter(ticker.FuncFormatter(lambda x, p: '%d' % int(x * 100))) ax1.legend(loc='lower right', labels=[ f'dangling ({fmt_thousands(len(results_df))})']) ax1.title.set_text(f'CDF of Inter Arrival Times of Dangling Peers') labels = [] for agent in known_agents: peer_ids = db_client.get_peer_ids_for_agent_versions([agent]) arrivals = db_client.get_inter_arrival_time(peer_ids) data = pd.DataFrame(arrivals, columns=['id', 'peer_id', 'diff_in_s']) data = data.assign(diff_in_h=data.diff_in_s.apply(lambda x: x / 3600)) labels += [f'{agent} ({fmt_thousands(len(data))})'] sns.ecdfplot(ax=ax2, x='diff_in_h', data=data) ax2.set_xlim(0, 48) ax2.set_xticks(np.arange(0, 50, step=4)) ax2.set_xlabel('Time in Hours') ax2.set_ylabel('Number of Peers in %') ax2.get_yaxis().set_major_formatter(ticker.FuncFormatter(lambda x, p: '%d' % int(x * 100))) ax2.title.set_text(f'CDF of Inter Arrival Times by Agent') ax2.legend(loc='lower right', labels=labels) plt.tight_layout() lib_plot.savefig('cdf-inter-arrival-dangling') plt.show() <mask token>
<mask token> def main(db_client: DBClient): sns.set_theme() peer_ids = db_client.get_dangling_peer_ids() arrivals = db_client.get_inter_arrival_time(peer_ids) results_df = pd.DataFrame(arrivals, columns=['id', 'peer_id', 'diff_in_s']) results_df = results_df.assign(diff_in_h=results_df.diff_in_s.apply(lambda x: x / 3600)) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5), sharey=True) sns.ecdfplot(ax=ax1, x='diff_in_h', data=results_df) ax1.set_xlim(0, 48) ax1.set_xticks(np.arange(0, 50, step=4)) ax1.set_xlabel('Time in Hours') ax1.set_ylabel('Number of Peers in %') ax1.get_yaxis().set_major_formatter(ticker.FuncFormatter(lambda x, p: '%d' % int(x * 100))) ax1.legend(loc='lower right', labels=[ f'dangling ({fmt_thousands(len(results_df))})']) ax1.title.set_text(f'CDF of Inter Arrival Times of Dangling Peers') labels = [] for agent in known_agents: peer_ids = db_client.get_peer_ids_for_agent_versions([agent]) arrivals = db_client.get_inter_arrival_time(peer_ids) data = pd.DataFrame(arrivals, columns=['id', 'peer_id', 'diff_in_s']) data = data.assign(diff_in_h=data.diff_in_s.apply(lambda x: x / 3600)) labels += [f'{agent} ({fmt_thousands(len(data))})'] sns.ecdfplot(ax=ax2, x='diff_in_h', data=data) ax2.set_xlim(0, 48) ax2.set_xticks(np.arange(0, 50, step=4)) ax2.set_xlabel('Time in Hours') ax2.set_ylabel('Number of Peers in %') ax2.get_yaxis().set_major_formatter(ticker.FuncFormatter(lambda x, p: '%d' % int(x * 100))) ax2.title.set_text(f'CDF of Inter Arrival Times by Agent') ax2.legend(loc='lower right', labels=labels) plt.tight_layout() lib_plot.savefig('cdf-inter-arrival-dangling') plt.show() if __name__ == '__main__': client = DBClient() main(client)
import pandas as pd import numpy as np import seaborn as sns from matplotlib import pyplot as plt, ticker from analysis.report import lib_plot from analysis.report.lib_agent import known_agents from analysis.report.lib_fmt import fmt_thousands from lib_db import DBClient def main(db_client: DBClient): sns.set_theme() peer_ids = db_client.get_dangling_peer_ids() arrivals = db_client.get_inter_arrival_time(peer_ids) results_df = pd.DataFrame(arrivals, columns=['id', 'peer_id', 'diff_in_s']) results_df = results_df.assign(diff_in_h=results_df.diff_in_s.apply(lambda x: x / 3600)) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5), sharey=True) sns.ecdfplot(ax=ax1, x='diff_in_h', data=results_df) ax1.set_xlim(0, 48) ax1.set_xticks(np.arange(0, 50, step=4)) ax1.set_xlabel('Time in Hours') ax1.set_ylabel('Number of Peers in %') ax1.get_yaxis().set_major_formatter(ticker.FuncFormatter(lambda x, p: '%d' % int(x * 100))) ax1.legend(loc='lower right', labels=[ f'dangling ({fmt_thousands(len(results_df))})']) ax1.title.set_text(f'CDF of Inter Arrival Times of Dangling Peers') labels = [] for agent in known_agents: peer_ids = db_client.get_peer_ids_for_agent_versions([agent]) arrivals = db_client.get_inter_arrival_time(peer_ids) data = pd.DataFrame(arrivals, columns=['id', 'peer_id', 'diff_in_s']) data = data.assign(diff_in_h=data.diff_in_s.apply(lambda x: x / 3600)) labels += [f'{agent} ({fmt_thousands(len(data))})'] sns.ecdfplot(ax=ax2, x='diff_in_h', data=data) ax2.set_xlim(0, 48) ax2.set_xticks(np.arange(0, 50, step=4)) ax2.set_xlabel('Time in Hours') ax2.set_ylabel('Number of Peers in %') ax2.get_yaxis().set_major_formatter(ticker.FuncFormatter(lambda x, p: '%d' % int(x * 100))) ax2.title.set_text(f'CDF of Inter Arrival Times by Agent') ax2.legend(loc='lower right', labels=labels) plt.tight_layout() lib_plot.savefig('cdf-inter-arrival-dangling') plt.show() if __name__ == '__main__': client = DBClient() main(client)
import pandas as pd import numpy as np import seaborn as sns from matplotlib import pyplot as plt, ticker from analysis.report import lib_plot from analysis.report.lib_agent import known_agents from analysis.report.lib_fmt import fmt_thousands from lib_db import DBClient def main(db_client: DBClient): sns.set_theme() peer_ids = db_client.get_dangling_peer_ids() arrivals = db_client.get_inter_arrival_time(peer_ids) results_df = pd.DataFrame(arrivals, columns=['id', 'peer_id', 'diff_in_s']) results_df = results_df.assign( diff_in_h=results_df.diff_in_s.apply(lambda x: x / 3600), ) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5), sharey=True) sns.ecdfplot(ax=ax1, x="diff_in_h", data=results_df) ax1.set_xlim(0, 48) ax1.set_xticks(np.arange(0, 50, step=4)) ax1.set_xlabel("Time in Hours") ax1.set_ylabel("Number of Peers in %") ax1.get_yaxis().set_major_formatter(ticker.FuncFormatter(lambda x, p: "%d" % int(x * 100))) ax1.legend(loc='lower right', labels=[f"dangling ({fmt_thousands(len(results_df))})"]) ax1.title.set_text(f"CDF of Inter Arrival Times of Dangling Peers") labels = [] for agent in known_agents: peer_ids = db_client.get_peer_ids_for_agent_versions([agent]) arrivals = db_client.get_inter_arrival_time(peer_ids) data = pd.DataFrame(arrivals, columns=['id', 'peer_id', 'diff_in_s']) data = data.assign( diff_in_h=data.diff_in_s.apply(lambda x: x / 3600), ) labels += [f"{agent} ({fmt_thousands(len(data))})"] sns.ecdfplot(ax=ax2, x="diff_in_h", data=data) ax2.set_xlim(0, 48) ax2.set_xticks(np.arange(0, 50, step=4)) ax2.set_xlabel("Time in Hours") ax2.set_ylabel("Number of Peers in %") ax2.get_yaxis().set_major_formatter(ticker.FuncFormatter(lambda x, p: "%d" % int(x * 100))) ax2.title.set_text(f"CDF of Inter Arrival Times by Agent") ax2.legend(loc='lower right', labels=labels) plt.tight_layout() lib_plot.savefig("cdf-inter-arrival-dangling") plt.show() if __name__ == '__main__': client = DBClient() main(client)
[ 0, 1, 2, 3, 4 ]
2,529
bd202e18cb98efc2b62ce4670fadcf70c35a33cb
<mask token> class UploaderThread(object): <mask token> def is_uploading_tourney(self, tourney): return tourney in self.uploading_tourneys <mask token> <mask token> def get_last_successful_upload_time(self, tourney_name): try: with countdowntourney.tourney_open(tourney_name, db_dir ) as tourney: upload_time = tourney.get_last_successful_upload_time() if (upload_time is None or upload_time < self. tourney_upload_start_time.get(tourney_name, 0)): return None else: return upload_time except countdowntourney.TourneyException as e: sys.stderr.write( 'Failed to get last successful upload time: %s\n' % str(e)) return None def get_last_failed_upload(self, tourney_name): try: with countdowntourney.tourney_open(tourney_name, db_dir ) as tourney: failed_upload = tourney.get_last_failed_upload() if failed_upload is not None and failed_upload.get('ts', None ) is not None and failed_upload['ts' ] >= self.tourney_upload_start_time.get(tourney_name, 0): return failed_upload else: return None except countdowntourney.TourneyException as e: sys.stderr.write('Failed to get last failed upload info: %s\n' % str(e)) return None <mask token> def get_tourney_auth(self, tourney): return self.tourney_auth.get(tourney) def set_tourney_auth(self, tourney, username, password): self.tourney_auth[tourney] = {'username': username, 'password': password} def get_upload_button_pressed_time(self, tourney): if tourney not in self.uploading_tourneys: return None else: return self.tourney_upload_start_time.get(tourney, None) def write_log(self, message): sys.stderr.write('%s: %s\r\n' % (time.strftime('%Y-%m-%d %H:%M:%S'), message)) def body(self): while True: uploading_tourneys = self.uploading_tourneys.copy() for tourney_name in uploading_tourneys: now = time.time() last_upload_time = self.tourney_last_upload_attempt_time.get( tourney_name, 0) if now >= last_upload_time + upload_interval_sec: try: self.tourney_last_upload_attempt_time[tourney_name ] = now with countdowntourney.tourney_open(tourney_name, db_dir ) as tourney: game_state = get_game_state(tourney) tourney_unique_id = get_tourney_unique_id(tourney) auth = self.tourney_auth.get(tourney_name, None) if auth: username = auth.get('username') password = auth.get('password') private = auth.get('private', False) else: username = None password = None private = False req = {'username': username, 'password': password, 'private': private, 'unique_id': tourney_unique_id, 'tourney': tourney_name} if (tourney_name not in self. tourney_last_uploaded_game_state or game_state != self. tourney_last_uploaded_game_state[tourney_name] ): req['state'] = game_state rep = make_https_json_request(http_server_host, http_server_port, http_submit_path, req) num_viewers = None if rep.get('success', False): self.tourney_last_uploaded_game_state[ tourney_name] = game_state tourney.log_successful_upload() if 'state' in req: self.write_log( 'Successfully uploaded state for tourney "%s"' % tourney_name) else: self.write_log( 'No change since last upload of tourney "%s"' % tourney_name) num_viewers = rep.get('viewers', None) if num_viewers is not None: self.write_log( 'Server reports %d viewer%s.' % ( num_viewers, 's' if num_viewers != 1 else '')) else: if rep.get('http_failure', False): failure_type = (countdowntourney. UPLOAD_FAIL_TYPE_HTTP) else: failure_type = (countdowntourney. UPLOAD_FAIL_TYPE_REJECTED) tourney.log_failed_upload(failure_type, rep .get('message', '(no message)')) self.write_log( 'Failed to upload state for tourney "%s": %s' % (tourney_name, rep.get('message', '(no message'))) self.tourney_num_viewers[tourney_name ] = num_viewers except countdowntourney.TourneyException as e: self.write_log( "UploaderThread: couldn't open tourney %s: %s" % (tourney_name, str(e))) traceback.print_tb(e.__traceback__) continue except Exception as e: self.write_log( 'Uploader thread threw exception: %s' % str(e)) traceback.print_tb(e.__traceback__) continue time.sleep(1) class UploaderServiceHandler(BaseRequestHandler): def get_fields_from_req(self, req, field_names): field_values = [] for name in field_names: value = req.get(name, None) if value is None: raise FieldNotFoundException() field_values.append(value) return tuple(field_values) def process_request(self, req): global uploader_thread req_type = req.get('type', None) if not req_type: return make_error_response('Request has no request type') req_body = req.get('request', None) if req_body is None: return make_error_response('Request has no body') try: if req_type == 'start_uploading': tourney, username, password, private = (self. get_fields_from_req(req_body, ['tourney', 'username', 'password', 'private'])) uploader_thread.add_tourney_to_upload_list(tourney, username, password, private) rep = make_ok_response() elif req_type == 'stop_uploading': tourney, = self.get_fields_from_req(req_body, ['tourney']) uploader_thread.remove_tourney_from_upload_list(tourney) rep = make_ok_response() elif req_type == 'delete': tourney, username, password = self.get_fields_from_req(req_body , ['tourney', 'username', 'password']) uploader_thread.remove_tourney_from_upload_list(tourney) rep = delete_tourney_from_web(tourney, username, password) uploader_thread.set_tourney_auth(tourney, username, password) elif req_type == 'status': tourney, = self.get_fields_from_req(req_body, ['tourney']) rep = {'success': True} auth = uploader_thread.get_tourney_auth(tourney) rep['publishing'] = uploader_thread.is_uploading_tourney( tourney) rep['viewers'] = uploader_thread.get_num_viewers(tourney) if auth: rep['username'] = auth.get('username', None) rep['password'] = auth.get('password', None) rep['private'] = auth.get('private', False) rep['last_successful_upload_time' ] = uploader_thread.get_last_successful_upload_time(tourney ) rep['last_failed_upload' ] = uploader_thread.get_last_failed_upload(tourney) rep['upload_button_pressed_time' ] = uploader_thread.get_upload_button_pressed_time(tourney) rep['now'] = int(time.time()) else: rep = make_error_response('Unrecognised request type') except FieldNotFoundException: return make_error_response('Request is not valid for type') return rep def handle(self): line = read_line_from_socket(self.request) if line is not None: rep = None try: req = json.loads(line) except Exception as e: rep = make_error_response('Request is not valid JSON') if not rep: rep = self.process_request(req) self.request.sendall((json.dumps(rep) + '\n').encode('utf-8')) self.request.close() class ThreadedTCPServer(socketserver.ThreadingMixIn, socketserver.TCPServer): def __init__(self, addr_port, service_handler): self.allow_reuse_address = True super().__init__(addr_port, service_handler) class TourneyUploaderService(object): def __init__(self, listen_port): global uploader_thread self.listen_port = listen_port self.socket_server = ThreadedTCPServer(('127.0.0.1', listen_port), UploaderServiceHandler) self.server_thread = threading.Thread(target=self.socket_server. serve_forever) if not uploader_thread: uploader_thread = UploaderThread() self.server_thread.daemon = True self.server_thread.start() def shutdown(self): self.socket_server.shutdown()
<mask token> class UploaderThread(object): def __init__(self): self.uploading_tourneys = set() self.tourney_upload_start_time = {} self.tourney_last_upload_attempt_time = {} self.tourney_last_uploaded_game_state = {} self.tourney_num_viewers = {} self.tourney_auth = {} self.thread = threading.Thread(target=self.body) self.thread.daemon = True self.thread.start() def is_uploading_tourney(self, tourney): return tourney in self.uploading_tourneys def add_tourney_to_upload_list(self, tourney, username, password, private): self.uploading_tourneys.add(tourney) self.tourney_auth[tourney] = {'username': username, 'password': password, 'private': private} self.tourney_upload_start_time[tourney] = int(time.time()) if tourney in self.tourney_last_uploaded_game_state: del self.tourney_last_uploaded_game_state[tourney] self.tourney_last_upload_attempt_time[tourney] = 0 def remove_tourney_from_upload_list(self, tourney): self.uploading_tourneys.discard(tourney) def get_last_successful_upload_time(self, tourney_name): try: with countdowntourney.tourney_open(tourney_name, db_dir ) as tourney: upload_time = tourney.get_last_successful_upload_time() if (upload_time is None or upload_time < self. tourney_upload_start_time.get(tourney_name, 0)): return None else: return upload_time except countdowntourney.TourneyException as e: sys.stderr.write( 'Failed to get last successful upload time: %s\n' % str(e)) return None def get_last_failed_upload(self, tourney_name): try: with countdowntourney.tourney_open(tourney_name, db_dir ) as tourney: failed_upload = tourney.get_last_failed_upload() if failed_upload is not None and failed_upload.get('ts', None ) is not None and failed_upload['ts' ] >= self.tourney_upload_start_time.get(tourney_name, 0): return failed_upload else: return None except countdowntourney.TourneyException as e: sys.stderr.write('Failed to get last failed upload info: %s\n' % str(e)) return None def get_num_viewers(self, tourney_name): return self.tourney_num_viewers.get(tourney_name, None) def get_tourney_auth(self, tourney): return self.tourney_auth.get(tourney) def set_tourney_auth(self, tourney, username, password): self.tourney_auth[tourney] = {'username': username, 'password': password} def get_upload_button_pressed_time(self, tourney): if tourney not in self.uploading_tourneys: return None else: return self.tourney_upload_start_time.get(tourney, None) def write_log(self, message): sys.stderr.write('%s: %s\r\n' % (time.strftime('%Y-%m-%d %H:%M:%S'), message)) def body(self): while True: uploading_tourneys = self.uploading_tourneys.copy() for tourney_name in uploading_tourneys: now = time.time() last_upload_time = self.tourney_last_upload_attempt_time.get( tourney_name, 0) if now >= last_upload_time + upload_interval_sec: try: self.tourney_last_upload_attempt_time[tourney_name ] = now with countdowntourney.tourney_open(tourney_name, db_dir ) as tourney: game_state = get_game_state(tourney) tourney_unique_id = get_tourney_unique_id(tourney) auth = self.tourney_auth.get(tourney_name, None) if auth: username = auth.get('username') password = auth.get('password') private = auth.get('private', False) else: username = None password = None private = False req = {'username': username, 'password': password, 'private': private, 'unique_id': tourney_unique_id, 'tourney': tourney_name} if (tourney_name not in self. tourney_last_uploaded_game_state or game_state != self. tourney_last_uploaded_game_state[tourney_name] ): req['state'] = game_state rep = make_https_json_request(http_server_host, http_server_port, http_submit_path, req) num_viewers = None if rep.get('success', False): self.tourney_last_uploaded_game_state[ tourney_name] = game_state tourney.log_successful_upload() if 'state' in req: self.write_log( 'Successfully uploaded state for tourney "%s"' % tourney_name) else: self.write_log( 'No change since last upload of tourney "%s"' % tourney_name) num_viewers = rep.get('viewers', None) if num_viewers is not None: self.write_log( 'Server reports %d viewer%s.' % ( num_viewers, 's' if num_viewers != 1 else '')) else: if rep.get('http_failure', False): failure_type = (countdowntourney. UPLOAD_FAIL_TYPE_HTTP) else: failure_type = (countdowntourney. UPLOAD_FAIL_TYPE_REJECTED) tourney.log_failed_upload(failure_type, rep .get('message', '(no message)')) self.write_log( 'Failed to upload state for tourney "%s": %s' % (tourney_name, rep.get('message', '(no message'))) self.tourney_num_viewers[tourney_name ] = num_viewers except countdowntourney.TourneyException as e: self.write_log( "UploaderThread: couldn't open tourney %s: %s" % (tourney_name, str(e))) traceback.print_tb(e.__traceback__) continue except Exception as e: self.write_log( 'Uploader thread threw exception: %s' % str(e)) traceback.print_tb(e.__traceback__) continue time.sleep(1) class UploaderServiceHandler(BaseRequestHandler): def get_fields_from_req(self, req, field_names): field_values = [] for name in field_names: value = req.get(name, None) if value is None: raise FieldNotFoundException() field_values.append(value) return tuple(field_values) def process_request(self, req): global uploader_thread req_type = req.get('type', None) if not req_type: return make_error_response('Request has no request type') req_body = req.get('request', None) if req_body is None: return make_error_response('Request has no body') try: if req_type == 'start_uploading': tourney, username, password, private = (self. get_fields_from_req(req_body, ['tourney', 'username', 'password', 'private'])) uploader_thread.add_tourney_to_upload_list(tourney, username, password, private) rep = make_ok_response() elif req_type == 'stop_uploading': tourney, = self.get_fields_from_req(req_body, ['tourney']) uploader_thread.remove_tourney_from_upload_list(tourney) rep = make_ok_response() elif req_type == 'delete': tourney, username, password = self.get_fields_from_req(req_body , ['tourney', 'username', 'password']) uploader_thread.remove_tourney_from_upload_list(tourney) rep = delete_tourney_from_web(tourney, username, password) uploader_thread.set_tourney_auth(tourney, username, password) elif req_type == 'status': tourney, = self.get_fields_from_req(req_body, ['tourney']) rep = {'success': True} auth = uploader_thread.get_tourney_auth(tourney) rep['publishing'] = uploader_thread.is_uploading_tourney( tourney) rep['viewers'] = uploader_thread.get_num_viewers(tourney) if auth: rep['username'] = auth.get('username', None) rep['password'] = auth.get('password', None) rep['private'] = auth.get('private', False) rep['last_successful_upload_time' ] = uploader_thread.get_last_successful_upload_time(tourney ) rep['last_failed_upload' ] = uploader_thread.get_last_failed_upload(tourney) rep['upload_button_pressed_time' ] = uploader_thread.get_upload_button_pressed_time(tourney) rep['now'] = int(time.time()) else: rep = make_error_response('Unrecognised request type') except FieldNotFoundException: return make_error_response('Request is not valid for type') return rep def handle(self): line = read_line_from_socket(self.request) if line is not None: rep = None try: req = json.loads(line) except Exception as e: rep = make_error_response('Request is not valid JSON') if not rep: rep = self.process_request(req) self.request.sendall((json.dumps(rep) + '\n').encode('utf-8')) self.request.close() class ThreadedTCPServer(socketserver.ThreadingMixIn, socketserver.TCPServer): def __init__(self, addr_port, service_handler): self.allow_reuse_address = True super().__init__(addr_port, service_handler) class TourneyUploaderService(object): def __init__(self, listen_port): global uploader_thread self.listen_port = listen_port self.socket_server = ThreadedTCPServer(('127.0.0.1', listen_port), UploaderServiceHandler) self.server_thread = threading.Thread(target=self.socket_server. serve_forever) if not uploader_thread: uploader_thread = UploaderThread() self.server_thread.daemon = True self.server_thread.start() def shutdown(self): self.socket_server.shutdown()
<mask token> class FieldNotFoundException(Exception): pass def make_error_response(message): return {'success': False, 'message': message} <mask token> def get_tourney_unique_id(tourney): return tourney.get_unique_id() def delete_tourney_from_web(tourney_name, username, password): req = {'username': username, 'password': password, 'tourney': tourney_name, 'delete': True} return make_https_json_request(http_server_host, http_server_port, http_delete_path, req) <mask token> class UploaderThread(object): def __init__(self): self.uploading_tourneys = set() self.tourney_upload_start_time = {} self.tourney_last_upload_attempt_time = {} self.tourney_last_uploaded_game_state = {} self.tourney_num_viewers = {} self.tourney_auth = {} self.thread = threading.Thread(target=self.body) self.thread.daemon = True self.thread.start() def is_uploading_tourney(self, tourney): return tourney in self.uploading_tourneys def add_tourney_to_upload_list(self, tourney, username, password, private): self.uploading_tourneys.add(tourney) self.tourney_auth[tourney] = {'username': username, 'password': password, 'private': private} self.tourney_upload_start_time[tourney] = int(time.time()) if tourney in self.tourney_last_uploaded_game_state: del self.tourney_last_uploaded_game_state[tourney] self.tourney_last_upload_attempt_time[tourney] = 0 def remove_tourney_from_upload_list(self, tourney): self.uploading_tourneys.discard(tourney) def get_last_successful_upload_time(self, tourney_name): try: with countdowntourney.tourney_open(tourney_name, db_dir ) as tourney: upload_time = tourney.get_last_successful_upload_time() if (upload_time is None or upload_time < self. tourney_upload_start_time.get(tourney_name, 0)): return None else: return upload_time except countdowntourney.TourneyException as e: sys.stderr.write( 'Failed to get last successful upload time: %s\n' % str(e)) return None def get_last_failed_upload(self, tourney_name): try: with countdowntourney.tourney_open(tourney_name, db_dir ) as tourney: failed_upload = tourney.get_last_failed_upload() if failed_upload is not None and failed_upload.get('ts', None ) is not None and failed_upload['ts' ] >= self.tourney_upload_start_time.get(tourney_name, 0): return failed_upload else: return None except countdowntourney.TourneyException as e: sys.stderr.write('Failed to get last failed upload info: %s\n' % str(e)) return None def get_num_viewers(self, tourney_name): return self.tourney_num_viewers.get(tourney_name, None) def get_tourney_auth(self, tourney): return self.tourney_auth.get(tourney) def set_tourney_auth(self, tourney, username, password): self.tourney_auth[tourney] = {'username': username, 'password': password} def get_upload_button_pressed_time(self, tourney): if tourney not in self.uploading_tourneys: return None else: return self.tourney_upload_start_time.get(tourney, None) def write_log(self, message): sys.stderr.write('%s: %s\r\n' % (time.strftime('%Y-%m-%d %H:%M:%S'), message)) def body(self): while True: uploading_tourneys = self.uploading_tourneys.copy() for tourney_name in uploading_tourneys: now = time.time() last_upload_time = self.tourney_last_upload_attempt_time.get( tourney_name, 0) if now >= last_upload_time + upload_interval_sec: try: self.tourney_last_upload_attempt_time[tourney_name ] = now with countdowntourney.tourney_open(tourney_name, db_dir ) as tourney: game_state = get_game_state(tourney) tourney_unique_id = get_tourney_unique_id(tourney) auth = self.tourney_auth.get(tourney_name, None) if auth: username = auth.get('username') password = auth.get('password') private = auth.get('private', False) else: username = None password = None private = False req = {'username': username, 'password': password, 'private': private, 'unique_id': tourney_unique_id, 'tourney': tourney_name} if (tourney_name not in self. tourney_last_uploaded_game_state or game_state != self. tourney_last_uploaded_game_state[tourney_name] ): req['state'] = game_state rep = make_https_json_request(http_server_host, http_server_port, http_submit_path, req) num_viewers = None if rep.get('success', False): self.tourney_last_uploaded_game_state[ tourney_name] = game_state tourney.log_successful_upload() if 'state' in req: self.write_log( 'Successfully uploaded state for tourney "%s"' % tourney_name) else: self.write_log( 'No change since last upload of tourney "%s"' % tourney_name) num_viewers = rep.get('viewers', None) if num_viewers is not None: self.write_log( 'Server reports %d viewer%s.' % ( num_viewers, 's' if num_viewers != 1 else '')) else: if rep.get('http_failure', False): failure_type = (countdowntourney. UPLOAD_FAIL_TYPE_HTTP) else: failure_type = (countdowntourney. UPLOAD_FAIL_TYPE_REJECTED) tourney.log_failed_upload(failure_type, rep .get('message', '(no message)')) self.write_log( 'Failed to upload state for tourney "%s": %s' % (tourney_name, rep.get('message', '(no message'))) self.tourney_num_viewers[tourney_name ] = num_viewers except countdowntourney.TourneyException as e: self.write_log( "UploaderThread: couldn't open tourney %s: %s" % (tourney_name, str(e))) traceback.print_tb(e.__traceback__) continue except Exception as e: self.write_log( 'Uploader thread threw exception: %s' % str(e)) traceback.print_tb(e.__traceback__) continue time.sleep(1) class UploaderServiceHandler(BaseRequestHandler): def get_fields_from_req(self, req, field_names): field_values = [] for name in field_names: value = req.get(name, None) if value is None: raise FieldNotFoundException() field_values.append(value) return tuple(field_values) def process_request(self, req): global uploader_thread req_type = req.get('type', None) if not req_type: return make_error_response('Request has no request type') req_body = req.get('request', None) if req_body is None: return make_error_response('Request has no body') try: if req_type == 'start_uploading': tourney, username, password, private = (self. get_fields_from_req(req_body, ['tourney', 'username', 'password', 'private'])) uploader_thread.add_tourney_to_upload_list(tourney, username, password, private) rep = make_ok_response() elif req_type == 'stop_uploading': tourney, = self.get_fields_from_req(req_body, ['tourney']) uploader_thread.remove_tourney_from_upload_list(tourney) rep = make_ok_response() elif req_type == 'delete': tourney, username, password = self.get_fields_from_req(req_body , ['tourney', 'username', 'password']) uploader_thread.remove_tourney_from_upload_list(tourney) rep = delete_tourney_from_web(tourney, username, password) uploader_thread.set_tourney_auth(tourney, username, password) elif req_type == 'status': tourney, = self.get_fields_from_req(req_body, ['tourney']) rep = {'success': True} auth = uploader_thread.get_tourney_auth(tourney) rep['publishing'] = uploader_thread.is_uploading_tourney( tourney) rep['viewers'] = uploader_thread.get_num_viewers(tourney) if auth: rep['username'] = auth.get('username', None) rep['password'] = auth.get('password', None) rep['private'] = auth.get('private', False) rep['last_successful_upload_time' ] = uploader_thread.get_last_successful_upload_time(tourney ) rep['last_failed_upload' ] = uploader_thread.get_last_failed_upload(tourney) rep['upload_button_pressed_time' ] = uploader_thread.get_upload_button_pressed_time(tourney) rep['now'] = int(time.time()) else: rep = make_error_response('Unrecognised request type') except FieldNotFoundException: return make_error_response('Request is not valid for type') return rep def handle(self): line = read_line_from_socket(self.request) if line is not None: rep = None try: req = json.loads(line) except Exception as e: rep = make_error_response('Request is not valid JSON') if not rep: rep = self.process_request(req) self.request.sendall((json.dumps(rep) + '\n').encode('utf-8')) self.request.close() class ThreadedTCPServer(socketserver.ThreadingMixIn, socketserver.TCPServer): def __init__(self, addr_port, service_handler): self.allow_reuse_address = True super().__init__(addr_port, service_handler) class TourneyUploaderService(object): def __init__(self, listen_port): global uploader_thread self.listen_port = listen_port self.socket_server = ThreadedTCPServer(('127.0.0.1', listen_port), UploaderServiceHandler) self.server_thread = threading.Thread(target=self.socket_server. serve_forever) if not uploader_thread: uploader_thread = UploaderThread() self.server_thread.daemon = True self.server_thread.start() def shutdown(self): self.socket_server.shutdown()
<mask token> if not db_dir: db_dir = os.path.join(os.getcwd(), 'tourneys') <mask token> class FieldNotFoundException(Exception): pass def make_error_response(message): return {'success': False, 'message': message} def make_ok_response(): return {'success': True} def get_game_state(tourney): return tourney2json.get_state_for_upload(tourney) def get_tourney_unique_id(tourney): return tourney.get_unique_id() def delete_tourney_from_web(tourney_name, username, password): req = {'username': username, 'password': password, 'tourney': tourney_name, 'delete': True} return make_https_json_request(http_server_host, http_server_port, http_delete_path, req) def read_line_from_socket(sock): byte_array = b'' b = 0 while b != b'\n': b = sock.recv(1) if b is None or len(b) == 0: return None byte_array += b return byte_array.decode('utf-8') def make_https_json_request(server_host, server_port, path, request): post_data = json.dumps(request) httpcon = None try: httpcon = http.client.HTTPSConnection(host=server_host, port= server_port, timeout=30) httpcon.connect() except Exception as e: if httpcon: httpcon.close() sys.stderr.write('Failed to connect to %s: %s\r\n' % (server_host, str(e))) return {'success': False, 'http_failure': True, 'message': 'Failed to connect to %s: %s. Check your internet connection.' % (server_host, str(e))} try: while path and path[0] == '/': path = path[1:] url = 'https://%s%s/%s' % (server_host, ':' + str(server_port) if server_port else '', path) httpcon.request('POST', url, post_data) except ConnectionError as e: httpcon.close() sys.stderr.write('Failed to send HTTP request to %s: %s\r\n' % (url, str(e))) return {'success': False, 'http_failure': True, 'message': 'Failed to upload game state to server %s: %s. Check your internet connection.' % (url, str(e))} except Exception as e: httpcon.close() sys.stderr.write('Failed to send HTTP request to %s: %s\r\n' % (url, str(e))) return {'success': False, 'http_failure': True, 'message': str(e)} try: response = httpcon.getresponse() except Exception as e: sys.stderr.write('Failed to read response from %s: %s\r\n' % (url, str(e))) httpcon.close() return {'success': False, 'http_failure': True, 'message': str(e)} if response.status != 200: sys.stderr.write( 'Failed to post data to %s: HTTP response %d: %s\r\n' % (url, response.status, response.reason)) rep = {'success': False, 'http_failure': True, 'message': 'Failed to post update to server: HTTP %d: %s' % (response. status, response.reason)} else: response_body = None rep = None try: response_body = response.read() except Exception as e: sys.stderr.write('Failed to read response data from HTTP: ' + str(e) + '\r\n') rep = {'success': False, 'http_failure': True, 'message': str(e)} if response_body is not None: try: rep = json.loads(response_body.decode('utf-8')) if not rep.get('success', False): message = rep.get('message', '(none)') sys.stderr.write('Update failed. Message: ' + message + '\r\n') except Exception as e: sys.stderr.write('Failed to parse server response: ' + str( e) + '\r\n') rep = {'success': False, 'message': 'Server response was invalid JSON: ' + str(e)} httpcon.close() return rep class UploaderThread(object): def __init__(self): self.uploading_tourneys = set() self.tourney_upload_start_time = {} self.tourney_last_upload_attempt_time = {} self.tourney_last_uploaded_game_state = {} self.tourney_num_viewers = {} self.tourney_auth = {} self.thread = threading.Thread(target=self.body) self.thread.daemon = True self.thread.start() def is_uploading_tourney(self, tourney): return tourney in self.uploading_tourneys def add_tourney_to_upload_list(self, tourney, username, password, private): self.uploading_tourneys.add(tourney) self.tourney_auth[tourney] = {'username': username, 'password': password, 'private': private} self.tourney_upload_start_time[tourney] = int(time.time()) if tourney in self.tourney_last_uploaded_game_state: del self.tourney_last_uploaded_game_state[tourney] self.tourney_last_upload_attempt_time[tourney] = 0 def remove_tourney_from_upload_list(self, tourney): self.uploading_tourneys.discard(tourney) def get_last_successful_upload_time(self, tourney_name): try: with countdowntourney.tourney_open(tourney_name, db_dir ) as tourney: upload_time = tourney.get_last_successful_upload_time() if (upload_time is None or upload_time < self. tourney_upload_start_time.get(tourney_name, 0)): return None else: return upload_time except countdowntourney.TourneyException as e: sys.stderr.write( 'Failed to get last successful upload time: %s\n' % str(e)) return None def get_last_failed_upload(self, tourney_name): try: with countdowntourney.tourney_open(tourney_name, db_dir ) as tourney: failed_upload = tourney.get_last_failed_upload() if failed_upload is not None and failed_upload.get('ts', None ) is not None and failed_upload['ts' ] >= self.tourney_upload_start_time.get(tourney_name, 0): return failed_upload else: return None except countdowntourney.TourneyException as e: sys.stderr.write('Failed to get last failed upload info: %s\n' % str(e)) return None def get_num_viewers(self, tourney_name): return self.tourney_num_viewers.get(tourney_name, None) def get_tourney_auth(self, tourney): return self.tourney_auth.get(tourney) def set_tourney_auth(self, tourney, username, password): self.tourney_auth[tourney] = {'username': username, 'password': password} def get_upload_button_pressed_time(self, tourney): if tourney not in self.uploading_tourneys: return None else: return self.tourney_upload_start_time.get(tourney, None) def write_log(self, message): sys.stderr.write('%s: %s\r\n' % (time.strftime('%Y-%m-%d %H:%M:%S'), message)) def body(self): while True: uploading_tourneys = self.uploading_tourneys.copy() for tourney_name in uploading_tourneys: now = time.time() last_upload_time = self.tourney_last_upload_attempt_time.get( tourney_name, 0) if now >= last_upload_time + upload_interval_sec: try: self.tourney_last_upload_attempt_time[tourney_name ] = now with countdowntourney.tourney_open(tourney_name, db_dir ) as tourney: game_state = get_game_state(tourney) tourney_unique_id = get_tourney_unique_id(tourney) auth = self.tourney_auth.get(tourney_name, None) if auth: username = auth.get('username') password = auth.get('password') private = auth.get('private', False) else: username = None password = None private = False req = {'username': username, 'password': password, 'private': private, 'unique_id': tourney_unique_id, 'tourney': tourney_name} if (tourney_name not in self. tourney_last_uploaded_game_state or game_state != self. tourney_last_uploaded_game_state[tourney_name] ): req['state'] = game_state rep = make_https_json_request(http_server_host, http_server_port, http_submit_path, req) num_viewers = None if rep.get('success', False): self.tourney_last_uploaded_game_state[ tourney_name] = game_state tourney.log_successful_upload() if 'state' in req: self.write_log( 'Successfully uploaded state for tourney "%s"' % tourney_name) else: self.write_log( 'No change since last upload of tourney "%s"' % tourney_name) num_viewers = rep.get('viewers', None) if num_viewers is not None: self.write_log( 'Server reports %d viewer%s.' % ( num_viewers, 's' if num_viewers != 1 else '')) else: if rep.get('http_failure', False): failure_type = (countdowntourney. UPLOAD_FAIL_TYPE_HTTP) else: failure_type = (countdowntourney. UPLOAD_FAIL_TYPE_REJECTED) tourney.log_failed_upload(failure_type, rep .get('message', '(no message)')) self.write_log( 'Failed to upload state for tourney "%s": %s' % (tourney_name, rep.get('message', '(no message'))) self.tourney_num_viewers[tourney_name ] = num_viewers except countdowntourney.TourneyException as e: self.write_log( "UploaderThread: couldn't open tourney %s: %s" % (tourney_name, str(e))) traceback.print_tb(e.__traceback__) continue except Exception as e: self.write_log( 'Uploader thread threw exception: %s' % str(e)) traceback.print_tb(e.__traceback__) continue time.sleep(1) class UploaderServiceHandler(BaseRequestHandler): def get_fields_from_req(self, req, field_names): field_values = [] for name in field_names: value = req.get(name, None) if value is None: raise FieldNotFoundException() field_values.append(value) return tuple(field_values) def process_request(self, req): global uploader_thread req_type = req.get('type', None) if not req_type: return make_error_response('Request has no request type') req_body = req.get('request', None) if req_body is None: return make_error_response('Request has no body') try: if req_type == 'start_uploading': tourney, username, password, private = (self. get_fields_from_req(req_body, ['tourney', 'username', 'password', 'private'])) uploader_thread.add_tourney_to_upload_list(tourney, username, password, private) rep = make_ok_response() elif req_type == 'stop_uploading': tourney, = self.get_fields_from_req(req_body, ['tourney']) uploader_thread.remove_tourney_from_upload_list(tourney) rep = make_ok_response() elif req_type == 'delete': tourney, username, password = self.get_fields_from_req(req_body , ['tourney', 'username', 'password']) uploader_thread.remove_tourney_from_upload_list(tourney) rep = delete_tourney_from_web(tourney, username, password) uploader_thread.set_tourney_auth(tourney, username, password) elif req_type == 'status': tourney, = self.get_fields_from_req(req_body, ['tourney']) rep = {'success': True} auth = uploader_thread.get_tourney_auth(tourney) rep['publishing'] = uploader_thread.is_uploading_tourney( tourney) rep['viewers'] = uploader_thread.get_num_viewers(tourney) if auth: rep['username'] = auth.get('username', None) rep['password'] = auth.get('password', None) rep['private'] = auth.get('private', False) rep['last_successful_upload_time' ] = uploader_thread.get_last_successful_upload_time(tourney ) rep['last_failed_upload' ] = uploader_thread.get_last_failed_upload(tourney) rep['upload_button_pressed_time' ] = uploader_thread.get_upload_button_pressed_time(tourney) rep['now'] = int(time.time()) else: rep = make_error_response('Unrecognised request type') except FieldNotFoundException: return make_error_response('Request is not valid for type') return rep def handle(self): line = read_line_from_socket(self.request) if line is not None: rep = None try: req = json.loads(line) except Exception as e: rep = make_error_response('Request is not valid JSON') if not rep: rep = self.process_request(req) self.request.sendall((json.dumps(rep) + '\n').encode('utf-8')) self.request.close() class ThreadedTCPServer(socketserver.ThreadingMixIn, socketserver.TCPServer): def __init__(self, addr_port, service_handler): self.allow_reuse_address = True super().__init__(addr_port, service_handler) class TourneyUploaderService(object): def __init__(self, listen_port): global uploader_thread self.listen_port = listen_port self.socket_server = ThreadedTCPServer(('127.0.0.1', listen_port), UploaderServiceHandler) self.server_thread = threading.Thread(target=self.socket_server. serve_forever) if not uploader_thread: uploader_thread = UploaderThread() self.server_thread.daemon = True self.server_thread.start() def shutdown(self): self.socket_server.shutdown()
#!/usr/bin/python3 # The uploader service listens for connections from localhost on port 3961. # It expects a JSON object on a line by itself as the request. It responds # with another JSON object on a line by itself, then closes the connection. # Atropine CGI scripts can send requests to this service to tell it to: # * Add a tourney to the list of tourneys we're periodically uploading to # greem.co.uk # * Remove a tourney from that list (i.e. stop uploading it) # * Get the upload state of a tourney (are we uploading it, when was the # last successful upload, was the last upload successful, and if not what # went wrong) # # The service is started with atropine.py, and runs alongside the web server # which serves the web interface used by the tournament administrator. At # startup, no tourneys are being uploaded. import sys import os import socketserver from socketserver import BaseRequestHandler import json import threading import time import http.client import traceback http_server_host = "greem.co.uk" http_server_port = None http_submit_path = "/cgi-bin/colive/submit.py" http_delete_path = "/cgi-bin/colive/submit.py" upload_interval_sec = 10 db_dir = os.getenv("TOURNEYSPATH") if not db_dir: db_dir = os.path.join(os.getcwd(), "tourneys") import tourney2json import countdowntourney uploader_thread = None class FieldNotFoundException(Exception): pass def make_error_response(message): return { "success" : False, "message" : message } def make_ok_response(): return { "success" : True } def get_game_state(tourney): return tourney2json.get_state_for_upload(tourney) def get_tourney_unique_id(tourney): return tourney.get_unique_id() def delete_tourney_from_web(tourney_name, username, password): req = { "username" : username, "password" : password, "tourney" : tourney_name, "delete" : True } return make_https_json_request(http_server_host, http_server_port, http_delete_path, req) def read_line_from_socket(sock): byte_array = b''; b = 0 while b != b'\n': b = sock.recv(1) if b is None or len(b) == 0: return None byte_array += b return byte_array.decode("utf-8") def make_https_json_request(server_host, server_port, path, request): post_data = json.dumps(request) httpcon = None try: httpcon = http.client.HTTPSConnection(host=server_host, port=server_port, timeout=30) httpcon.connect() except Exception as e: if httpcon: httpcon.close() sys.stderr.write("Failed to connect to %s: %s\r\n" % (server_host, str(e))) return { "success" : False, "http_failure" : True, "message" : "Failed to connect to %s: %s. Check your internet connection." % (server_host, str(e)) } try: while path and path[0] == '/': path = path[1:] url = "https://%s%s/%s" % (server_host, (":" + str(server_port)) if server_port else "", path) httpcon.request("POST", url, post_data) except ConnectionError as e: httpcon.close() sys.stderr.write("Failed to send HTTP request to %s: %s\r\n" % (url, str(e))) return { "success" : False, "http_failure" : True, "message" : "Failed to upload game state to server %s: %s. Check your internet connection." % (url, str(e)) } except Exception as e: httpcon.close() sys.stderr.write("Failed to send HTTP request to %s: %s\r\n" % (url, str(e))) return { "success" : False, "http_failure" : True, "message" : str(e) } try: response = httpcon.getresponse() except Exception as e: sys.stderr.write("Failed to read response from %s: %s\r\n" % (url, str(e))) httpcon.close() return { "success" : False, "http_failure" : True, "message" : str(e) } if response.status != 200: sys.stderr.write("Failed to post data to %s: HTTP response %d: %s\r\n" % (url, response.status, response.reason)) rep = { "success" : False, "http_failure" : True, "message" : "Failed to post update to server: HTTP %d: %s" % (response.status, response.reason) } else: response_body = None rep = None try: response_body = response.read() except Exception as e: sys.stderr.write("Failed to read response data from HTTP: " + str(e) + "\r\n") rep = { "success" : False, "http_failure" : True, "message" : str(e) } if response_body is not None: try: rep = json.loads(response_body.decode("utf-8")) if not rep.get("success", False): message = rep.get("message", "(none)") sys.stderr.write("Update failed. Message: " + message + "\r\n") except Exception as e: sys.stderr.write("Failed to parse server response: " + str(e) + "\r\n") rep = { "success" : False, "message" : "Server response was invalid JSON: " + str(e) } httpcon.close() return rep class UploaderThread(object): def __init__(self): self.uploading_tourneys = set() self.tourney_upload_start_time = {} self.tourney_last_upload_attempt_time = {} self.tourney_last_uploaded_game_state = {} self.tourney_num_viewers = {} self.tourney_auth = {} self.thread = threading.Thread(target=self.body) self.thread.daemon = True self.thread.start() def is_uploading_tourney(self, tourney): return (tourney in self.uploading_tourneys) def add_tourney_to_upload_list(self, tourney, username, password, private): self.uploading_tourneys.add(tourney) self.tourney_auth[tourney] = { "username" : username, "password" : password, "private" : private } self.tourney_upload_start_time[tourney] = int(time.time()); if tourney in self.tourney_last_uploaded_game_state: del self.tourney_last_uploaded_game_state[tourney] self.tourney_last_upload_attempt_time[tourney] = 0 def remove_tourney_from_upload_list(self, tourney): self.uploading_tourneys.discard(tourney) def get_last_successful_upload_time(self, tourney_name): try: with countdowntourney.tourney_open(tourney_name, db_dir) as tourney: upload_time = tourney.get_last_successful_upload_time() # Don't return this time if it's before the user even pressed # the "start uploading" button" if upload_time is None or upload_time < self.tourney_upload_start_time.get(tourney_name, 0): return None else: return upload_time except countdowntourney.TourneyException as e: sys.stderr.write("Failed to get last successful upload time: %s\n" % (str(e))) return None def get_last_failed_upload(self, tourney_name): try: with countdowntourney.tourney_open(tourney_name, db_dir) as tourney: failed_upload = tourney.get_last_failed_upload() if failed_upload is not None and failed_upload.get("ts", None) is not None and failed_upload["ts"] >= self.tourney_upload_start_time.get(tourney_name, 0): return failed_upload else: return None except countdowntourney.TourneyException as e: sys.stderr.write("Failed to get last failed upload info: %s\n" % (str(e))) return None def get_num_viewers(self, tourney_name): return self.tourney_num_viewers.get(tourney_name, None) def get_tourney_auth(self, tourney): return self.tourney_auth.get(tourney) def set_tourney_auth(self, tourney, username, password): self.tourney_auth[tourney] = { "username" : username, "password" : password } def get_upload_button_pressed_time(self, tourney): if tourney not in self.uploading_tourneys: return None else: return self.tourney_upload_start_time.get(tourney, None) def write_log(self, message): sys.stderr.write("%s: %s\r\n" % (time.strftime("%Y-%m-%d %H:%M:%S"), message)) def body(self): while True: uploading_tourneys = self.uploading_tourneys.copy() for tourney_name in uploading_tourneys: now = time.time() last_upload_time = self.tourney_last_upload_attempt_time.get(tourney_name, 0) if now >= last_upload_time + upload_interval_sec: # Upload this tourney to the web if it's been at least # upload_interval_sec seconds since the previous upload # attempt. try: self.tourney_last_upload_attempt_time[tourney_name] = now with countdowntourney.tourney_open(tourney_name, db_dir) as tourney: game_state = get_game_state(tourney) tourney_unique_id = get_tourney_unique_id(tourney) auth = self.tourney_auth.get(tourney_name, None) if auth: username = auth.get("username") password = auth.get("password") private = auth.get("private", False) else: username = None password = None private = False req = { "username" : username, "password" : password, "private" : private, "unique_id" : tourney_unique_id, "tourney" : tourney_name } # If the game state has changed since the last time # we did a successful upload, include the new game # state, otherwise we just submit a null update # which only checks the server still works and # reads how many current visitors there are. if tourney_name not in self.tourney_last_uploaded_game_state or game_state != self.tourney_last_uploaded_game_state[tourney_name]: req["state"] = game_state # Send the submission to the server & get the reply rep = make_https_json_request(http_server_host, http_server_port, http_submit_path, req) num_viewers = None if rep.get("success", False): self.tourney_last_uploaded_game_state[tourney_name] = game_state tourney.log_successful_upload() if "state" in req: self.write_log("Successfully uploaded state for tourney \"%s\"" % (tourney_name)) else: self.write_log("No change since last upload of tourney \"%s\"" % (tourney_name)) num_viewers = rep.get("viewers", None) if num_viewers is not None: self.write_log("Server reports %d viewer%s." % (num_viewers, "s" if num_viewers != 1 else "")) else: if rep.get("http_failure", False): failure_type = countdowntourney.UPLOAD_FAIL_TYPE_HTTP else: failure_type = countdowntourney.UPLOAD_FAIL_TYPE_REJECTED tourney.log_failed_upload(failure_type, rep.get("message", "(no message)")) self.write_log("Failed to upload state for tourney \"%s\": %s" % (tourney_name, rep.get("message", "(no message"))) self.tourney_num_viewers[tourney_name] = num_viewers except countdowntourney.TourneyException as e: self.write_log("UploaderThread: couldn't open tourney %s: %s" % (tourney_name, str(e))) traceback.print_tb(e.__traceback__) continue except Exception as e: self.write_log("Uploader thread threw exception: %s" % (str(e))) traceback.print_tb(e.__traceback__) continue time.sleep(1) class UploaderServiceHandler(BaseRequestHandler): def get_fields_from_req(self, req, field_names): field_values = [] for name in field_names: value = req.get(name, None) if value is None: raise FieldNotFoundException() field_values.append(value) return tuple(field_values) def process_request(self, req): global uploader_thread req_type = req.get("type", None) if not req_type: return make_error_response("Request has no request type") req_body = req.get("request", None) if req_body is None: return make_error_response("Request has no body") try: if req_type == "start_uploading": (tourney, username, password, private) = self.get_fields_from_req(req_body, ["tourney", "username", "password", "private"]) uploader_thread.add_tourney_to_upload_list(tourney, username, password, private) rep = make_ok_response() elif req_type == "stop_uploading": (tourney,) = self.get_fields_from_req(req_body, ["tourney"]) uploader_thread.remove_tourney_from_upload_list(tourney) rep = make_ok_response() elif req_type == "delete": (tourney, username, password) = self.get_fields_from_req(req_body, ["tourney", "username", "password"]) uploader_thread.remove_tourney_from_upload_list(tourney) rep = delete_tourney_from_web(tourney, username, password) uploader_thread.set_tourney_auth(tourney, username, password) elif req_type == "status": (tourney,) = self.get_fields_from_req(req_body, ["tourney"]) rep = { "success" : True } auth = uploader_thread.get_tourney_auth(tourney) rep["publishing"] = uploader_thread.is_uploading_tourney(tourney) rep["viewers"] = uploader_thread.get_num_viewers(tourney) if auth: rep["username"] = auth.get("username", None) rep["password"] = auth.get("password", None) rep["private"] = auth.get("private", False) rep["last_successful_upload_time"] = uploader_thread.get_last_successful_upload_time(tourney) rep["last_failed_upload"] = uploader_thread.get_last_failed_upload(tourney) rep["upload_button_pressed_time"] = uploader_thread.get_upload_button_pressed_time(tourney) rep["now"] = int(time.time()) else: rep = make_error_response("Unrecognised request type") except FieldNotFoundException: return make_error_response("Request is not valid for type") return rep def handle(self): # Request is expected to be a JSON object, on a line by itself line = read_line_from_socket(self.request) if line is not None: rep = None try: req = json.loads(line) except Exception as e: rep = make_error_response("Request is not valid JSON") if not rep: rep = self.process_request(req) self.request.sendall((json.dumps(rep) + "\n").encode("utf-8")) self.request.close() class ThreadedTCPServer(socketserver.ThreadingMixIn, socketserver.TCPServer): def __init__(self, addr_port, service_handler): self.allow_reuse_address = True super().__init__(addr_port, service_handler) class TourneyUploaderService(object): def __init__(self, listen_port): global uploader_thread self.listen_port = listen_port self.socket_server = ThreadedTCPServer(("127.0.0.1", listen_port), UploaderServiceHandler) self.server_thread = threading.Thread(target=self.socket_server.serve_forever) if not uploader_thread: uploader_thread = UploaderThread() self.server_thread.daemon = True self.server_thread.start() def shutdown(self): self.socket_server.shutdown()
[ 18, 22, 26, 31, 34 ]
2,530
2b141f12bec2006e496bf58a3fcb0167c95ab3b6
<mask token>
<mask token> def get_new_message_list(channel_id: int): with Connection() as cn: token, channel = cn.s.query(SlackChannel.token, SlackChannel.channel ).filter(SlackChannel.id == channel_id).one() user_dict = {user.user: user.other_name for user in cn.s.query( SlackUser).all()} with urllib.request.urlopen( f'https://slack.com/api/channels.history?token={token}&channel={channel}' ) as res: json_dict = json.load(res) print(json_dict) messages = sorted(json_dict['messages'], key=lambda x: x.get('ts', '')) client_msg_id_list = [id_ for id_, in cn.s.query(SlackMessage. client_msg_id).filter(SlackMessage.client_msg_id.in_([message. get('client_msg_id') for message in messages])).all()] message_list = [] insert_msg_id_list = [] for message in messages: if not (message.get('user') and message.get('text') and message .get('client_msg_id')): continue if message.get('client_msg_id') in client_msg_id_list: continue time_stamp = message.get('ts', '') if time_stamp: time_stamp = datetime.fromtimestamp(float(time_stamp), jst ).strftime('%m/%d %H:%M:%S') text = message['text'] for user, name in user_dict.items(): text = text.replace(user, name) message_list.append(user_dict[message['user']] + ':[' + time_stamp + '] ' + text) insert_msg_id_list.append({'client_msg_id': message[ 'client_msg_id']}) cn.s.bulk_insert_mappings(SlackMessage, insert_msg_id_list) cn.s.commit() return message_list
<mask token> jst = timezone(timedelta(hours=+9), 'JST') def get_new_message_list(channel_id: int): with Connection() as cn: token, channel = cn.s.query(SlackChannel.token, SlackChannel.channel ).filter(SlackChannel.id == channel_id).one() user_dict = {user.user: user.other_name for user in cn.s.query( SlackUser).all()} with urllib.request.urlopen( f'https://slack.com/api/channels.history?token={token}&channel={channel}' ) as res: json_dict = json.load(res) print(json_dict) messages = sorted(json_dict['messages'], key=lambda x: x.get('ts', '')) client_msg_id_list = [id_ for id_, in cn.s.query(SlackMessage. client_msg_id).filter(SlackMessage.client_msg_id.in_([message. get('client_msg_id') for message in messages])).all()] message_list = [] insert_msg_id_list = [] for message in messages: if not (message.get('user') and message.get('text') and message .get('client_msg_id')): continue if message.get('client_msg_id') in client_msg_id_list: continue time_stamp = message.get('ts', '') if time_stamp: time_stamp = datetime.fromtimestamp(float(time_stamp), jst ).strftime('%m/%d %H:%M:%S') text = message['text'] for user, name in user_dict.items(): text = text.replace(user, name) message_list.append(user_dict[message['user']] + ':[' + time_stamp + '] ' + text) insert_msg_id_list.append({'client_msg_id': message[ 'client_msg_id']}) cn.s.bulk_insert_mappings(SlackMessage, insert_msg_id_list) cn.s.commit() return message_list
from datetime import datetime, timezone, timedelta import json import urllib.request from mysql_dbcon import Connection from model import SlackChannel, SlackUser, SlackMessage jst = timezone(timedelta(hours=+9), 'JST') def get_new_message_list(channel_id: int): with Connection() as cn: token, channel = cn.s.query(SlackChannel.token, SlackChannel.channel ).filter(SlackChannel.id == channel_id).one() user_dict = {user.user: user.other_name for user in cn.s.query( SlackUser).all()} with urllib.request.urlopen( f'https://slack.com/api/channels.history?token={token}&channel={channel}' ) as res: json_dict = json.load(res) print(json_dict) messages = sorted(json_dict['messages'], key=lambda x: x.get('ts', '')) client_msg_id_list = [id_ for id_, in cn.s.query(SlackMessage. client_msg_id).filter(SlackMessage.client_msg_id.in_([message. get('client_msg_id') for message in messages])).all()] message_list = [] insert_msg_id_list = [] for message in messages: if not (message.get('user') and message.get('text') and message .get('client_msg_id')): continue if message.get('client_msg_id') in client_msg_id_list: continue time_stamp = message.get('ts', '') if time_stamp: time_stamp = datetime.fromtimestamp(float(time_stamp), jst ).strftime('%m/%d %H:%M:%S') text = message['text'] for user, name in user_dict.items(): text = text.replace(user, name) message_list.append(user_dict[message['user']] + ':[' + time_stamp + '] ' + text) insert_msg_id_list.append({'client_msg_id': message[ 'client_msg_id']}) cn.s.bulk_insert_mappings(SlackMessage, insert_msg_id_list) cn.s.commit() return message_list
from datetime import datetime, timezone, timedelta import json import urllib.request from mysql_dbcon import Connection from model import SlackChannel, SlackUser, SlackMessage # TODO set timezone at config jst = timezone(timedelta(hours=+9), 'JST') def get_new_message_list(channel_id: int): with Connection() as cn: token, channel = cn.s.query(SlackChannel.token, SlackChannel.channel).filter( SlackChannel.id == channel_id).one() user_dict = {user.user: user.other_name for user in cn.s.query(SlackUser).all()} with urllib.request.urlopen( f'https://slack.com/api/channels.history?token={token}&channel={channel}') as res: json_dict = json.load(res) print(json_dict) messages = sorted(json_dict['messages'], key=lambda x: x.get('ts', '')) client_msg_id_list = [ id_ for id_, in cn.s.query(SlackMessage.client_msg_id).filter( SlackMessage.client_msg_id.in_([message.get('client_msg_id') for message in messages]) ).all()] message_list = [] insert_msg_id_list = [] for message in messages: if not (message.get('user') and message.get('text') and message.get('client_msg_id')): continue if message.get('client_msg_id') in client_msg_id_list: continue time_stamp = message.get('ts', '') if time_stamp: time_stamp = datetime.fromtimestamp(float(time_stamp), jst).strftime('%m/%d %H:%M:%S') text = message['text'] for user, name in user_dict.items(): text = text.replace(user, name) message_list.append(user_dict[message['user']] + ':[' + time_stamp + '] ' + text) insert_msg_id_list.append({'client_msg_id': message['client_msg_id']}) cn.s.bulk_insert_mappings(SlackMessage, insert_msg_id_list) cn.s.commit() return message_list
[ 0, 1, 2, 3, 4 ]
2,531
fe63d9b0939bc91d2da14e4d966b33575eab5394
<mask token> def v_measure(cluster_labels, true_labels): h_score = homogeneity_score(true_labels, cluster_labels) c_score = completeness_score(true_labels, cluster_labels) v_score = v_measure_score(true_labels, cluster_labels) print('Homogeneity Score: %.6f' % h_score) print('Completeness Score: %.6f' % c_score) print('V Measure Score: %.6f' % v_score) return h_score, c_score, v_score def silhouette_analysis(X, cluster_labels, n_clusters, figname): plt.xlim([-0.1, 1]) plt.ylim([0, len(X) + (n_clusters + 1) * 10]) silhouette_avg = silhouette_score(X, cluster_labels) print('For n_clusters =', n_clusters, 'The average silhouette_score is :', silhouette_avg) sample_silhouette_values = silhouette_samples(X, cluster_labels) y_lower = 10 for i in range(n_clusters): ith_cluster_silhouette_values = sample_silhouette_values[ cluster_labels == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = cm.nipy_spectral(float(i) / n_clusters) plt.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) plt.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) y_lower = y_upper + 10 plt.title('The silhouette plot for the various clusters.') plt.xlabel('The silhouette coefficient values') plt.ylabel('Cluster label') plt.axvline(x=silhouette_avg, color='red', linestyle='--') plt.yticks([]) plt.xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) plt.savefig(figname, format='png') plt.clf() def visualize_cluster(X, cluster_labels, n_clusters, centers, figname): if X.shape[1] < 2: print('Invalid shape for X: ', X.shape) return colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters) plt.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7, c= colors, edgecolor='k') if len(centers) == n_clusters: plt.scatter(centers[:, 0], centers[:, 1], marker='o', c='white', alpha=1, s=200, edgecolor='k') for i, c in enumerate(centers): plt.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50, edgecolor='k') plt.title('The visualization of the clustered data.') plt.xlabel('Feature space for the 1st feature') plt.ylabel('Feature space for the 2nd feature') plt.savefig(figname, format='png') plt.clf() def plot_gallery(title, images, figname, n_col=3, n_row=2, shape=(28, 28), cmap=plt.cm.gray): plt.figure(figsize=(2.0 * n_col, 2.26 * n_row)) plt.suptitle(title, size=16) for i, comp in enumerate(images): plt.subplot(n_row, n_col, i + 1) vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(shape), cmap=cmap, interpolation='nearest', vmin=-vmax, vmax=vmax) plt.xticks(()) plt.yticks(()) plt.savefig(figname, format='png') plt.clf() def create_path(*arg, filename=None): path = os.getcwd() for directory in arg: path = os.path.join(path, directory) if not os.path.exists(path): print("%s doesn't exist, creating..." % path) os.mkdir(path) if filename: path = os.path.join(path, filename) return path def load_data(data_path, split_prop=0.2, is_shuffle=False, is_split=True): pos_X, neg_X = [], [] with open(data_path, 'r') as f: for line in f: instance = list(map(float, line.strip().split(','))) if instance[-1] == 1.0: pos_X.append(instance[:-1]) else: neg_X.append(instance[:-1]) if not is_split: X, y = np.array(pos_X + neg_X), np.array([1] * len(pos_X) + [0] * len(neg_X)) if is_shuffle: indices = list(range(X.shape[0])) shuffle(indices) X, y = X[indices], y[indices] return X, y, [], [] pos_test_size, neg_test_size = int(split_prop * len(pos_X)), int( split_prop * len(neg_X)) pos_train_size, neg_train_size = len(pos_X) - pos_test_size, len(neg_X ) - neg_test_size X_test, y_test = pos_X[:pos_test_size] + neg_X[:neg_test_size], [1 ] * pos_test_size + [0] * neg_test_size X_train, y_train = pos_X[pos_test_size:] + neg_X[neg_test_size:], [1 ] * pos_train_size + [0] * neg_train_size assert len(X_train) == len(y_train) and len(X_test) == len(y_test ), 'Dimention of X and y must be the same.' X_train, X_test, y_train, y_test = np.array(X_train), np.array(X_test ), np.array(y_train), np.array(y_test) if is_shuffle: train_indices = list(range(X_train.shape[0])) shuffle(train_indices) test_indices = list(range(X_test.shape[0])) shuffle(test_indices) X_train, X_test, y_train, y_test = X_train[train_indices], X_test[ test_indices], y_train[train_indices], y_test[test_indices] return X_train, X_test, y_train, y_test def dump_data(): pass <mask token> def plot_learning_curve(train_scores_mean, train_scores_std, val_scores_mean, val_scores_std, train_sizes, ylim=None, title='test', fig_path='fig', format='png'): plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel('Training examples') plt.ylabel('Score') plt.grid(True, linestyle='-.', color='0.3') plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, val_scores_mean - val_scores_std, val_scores_mean + val_scores_std, alpha=0.1, color='g') plt.plot(train_sizes, train_scores_mean, 'o-', color='r', label= 'Training score') plt.plot(train_sizes, val_scores_mean, 'o-', color='g', label= 'Cross-validation score') plt.legend(loc='best') plt.savefig(fig_path + '/' + title + '.' + format, format=format) plt.clf() def plot_and_save(x, ys, labels, title, x_axis, y_axis, axis_range='auto', ylim=None, fig_path='fig', format='png'): if axis_range is None: plt.axis([x[0], x[-1], 0, 1]) elif type(axis_range) == type(list()): plt.axis(axis_range) elif axis_range == 'auto': pass if ylim is not None: plt.ylim(*ylim) plt.xlabel(x_axis) plt.ylabel(y_axis) plt.title(title) lines = [] for y in ys: l, = plt.plot(x, y) lines.append(l) if len(labels) == len(ys): plt.legend(lines, labels, loc='best') plt.grid(True, linestyle='-.', color='0.3') plt.savefig(fig_path + '.' + format, format=format) plt.clf() def print_score(scores, scoring, train=False): if type(scoring) != type([]): if train: print('Train: %0.2f (+/- %0.2f)' % (np.mean(scores[ 'train_score']), np.std(scores['train_score']) * 2)) print('Cross validation: %0.2f (+/- %0.2f)' % (np.mean(scores[ 'test_score']), np.std(scores['test_score']) * 2)) return for s_method in scoring: if train: print('Train: %0.2f (+/- %0.2f)' % (np.mean(scores['train_' + s_method]), np.std(scores['train_' + s_method]) * 2)) print('Cross validation: %0.2f (+/- %0.2f)' % (np.mean(scores[ 'test_' + s_method]), np.std(scores['test_' + s_method]) * 2))
<mask token> def v_measure(cluster_labels, true_labels): h_score = homogeneity_score(true_labels, cluster_labels) c_score = completeness_score(true_labels, cluster_labels) v_score = v_measure_score(true_labels, cluster_labels) print('Homogeneity Score: %.6f' % h_score) print('Completeness Score: %.6f' % c_score) print('V Measure Score: %.6f' % v_score) return h_score, c_score, v_score def silhouette_analysis(X, cluster_labels, n_clusters, figname): plt.xlim([-0.1, 1]) plt.ylim([0, len(X) + (n_clusters + 1) * 10]) silhouette_avg = silhouette_score(X, cluster_labels) print('For n_clusters =', n_clusters, 'The average silhouette_score is :', silhouette_avg) sample_silhouette_values = silhouette_samples(X, cluster_labels) y_lower = 10 for i in range(n_clusters): ith_cluster_silhouette_values = sample_silhouette_values[ cluster_labels == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = cm.nipy_spectral(float(i) / n_clusters) plt.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) plt.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) y_lower = y_upper + 10 plt.title('The silhouette plot for the various clusters.') plt.xlabel('The silhouette coefficient values') plt.ylabel('Cluster label') plt.axvline(x=silhouette_avg, color='red', linestyle='--') plt.yticks([]) plt.xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) plt.savefig(figname, format='png') plt.clf() def visualize_cluster(X, cluster_labels, n_clusters, centers, figname): if X.shape[1] < 2: print('Invalid shape for X: ', X.shape) return colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters) plt.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7, c= colors, edgecolor='k') if len(centers) == n_clusters: plt.scatter(centers[:, 0], centers[:, 1], marker='o', c='white', alpha=1, s=200, edgecolor='k') for i, c in enumerate(centers): plt.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50, edgecolor='k') plt.title('The visualization of the clustered data.') plt.xlabel('Feature space for the 1st feature') plt.ylabel('Feature space for the 2nd feature') plt.savefig(figname, format='png') plt.clf() def plot_gallery(title, images, figname, n_col=3, n_row=2, shape=(28, 28), cmap=plt.cm.gray): plt.figure(figsize=(2.0 * n_col, 2.26 * n_row)) plt.suptitle(title, size=16) for i, comp in enumerate(images): plt.subplot(n_row, n_col, i + 1) vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(shape), cmap=cmap, interpolation='nearest', vmin=-vmax, vmax=vmax) plt.xticks(()) plt.yticks(()) plt.savefig(figname, format='png') plt.clf() def create_path(*arg, filename=None): path = os.getcwd() for directory in arg: path = os.path.join(path, directory) if not os.path.exists(path): print("%s doesn't exist, creating..." % path) os.mkdir(path) if filename: path = os.path.join(path, filename) return path def load_data(data_path, split_prop=0.2, is_shuffle=False, is_split=True): pos_X, neg_X = [], [] with open(data_path, 'r') as f: for line in f: instance = list(map(float, line.strip().split(','))) if instance[-1] == 1.0: pos_X.append(instance[:-1]) else: neg_X.append(instance[:-1]) if not is_split: X, y = np.array(pos_X + neg_X), np.array([1] * len(pos_X) + [0] * len(neg_X)) if is_shuffle: indices = list(range(X.shape[0])) shuffle(indices) X, y = X[indices], y[indices] return X, y, [], [] pos_test_size, neg_test_size = int(split_prop * len(pos_X)), int( split_prop * len(neg_X)) pos_train_size, neg_train_size = len(pos_X) - pos_test_size, len(neg_X ) - neg_test_size X_test, y_test = pos_X[:pos_test_size] + neg_X[:neg_test_size], [1 ] * pos_test_size + [0] * neg_test_size X_train, y_train = pos_X[pos_test_size:] + neg_X[neg_test_size:], [1 ] * pos_train_size + [0] * neg_train_size assert len(X_train) == len(y_train) and len(X_test) == len(y_test ), 'Dimention of X and y must be the same.' X_train, X_test, y_train, y_test = np.array(X_train), np.array(X_test ), np.array(y_train), np.array(y_test) if is_shuffle: train_indices = list(range(X_train.shape[0])) shuffle(train_indices) test_indices = list(range(X_test.shape[0])) shuffle(test_indices) X_train, X_test, y_train, y_test = X_train[train_indices], X_test[ test_indices], y_train[train_indices], y_test[test_indices] return X_train, X_test, y_train, y_test def dump_data(): pass def analyze_data(data_path, threshold=50): data = [] with open(data_path, 'r') as f: for line in f: instance = list(map(float, line.strip().split(','))) data.append(instance) count = [0] * len(data[0]) for instance in data: for i in range(len(instance)): if instance[i] != 0.0: count[i] += 1 total = 0 for c in count: if c >= threshold: total += 1 return count, total def plot_learning_curve(train_scores_mean, train_scores_std, val_scores_mean, val_scores_std, train_sizes, ylim=None, title='test', fig_path='fig', format='png'): plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel('Training examples') plt.ylabel('Score') plt.grid(True, linestyle='-.', color='0.3') plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, val_scores_mean - val_scores_std, val_scores_mean + val_scores_std, alpha=0.1, color='g') plt.plot(train_sizes, train_scores_mean, 'o-', color='r', label= 'Training score') plt.plot(train_sizes, val_scores_mean, 'o-', color='g', label= 'Cross-validation score') plt.legend(loc='best') plt.savefig(fig_path + '/' + title + '.' + format, format=format) plt.clf() def plot_and_save(x, ys, labels, title, x_axis, y_axis, axis_range='auto', ylim=None, fig_path='fig', format='png'): if axis_range is None: plt.axis([x[0], x[-1], 0, 1]) elif type(axis_range) == type(list()): plt.axis(axis_range) elif axis_range == 'auto': pass if ylim is not None: plt.ylim(*ylim) plt.xlabel(x_axis) plt.ylabel(y_axis) plt.title(title) lines = [] for y in ys: l, = plt.plot(x, y) lines.append(l) if len(labels) == len(ys): plt.legend(lines, labels, loc='best') plt.grid(True, linestyle='-.', color='0.3') plt.savefig(fig_path + '.' + format, format=format) plt.clf() def print_score(scores, scoring, train=False): if type(scoring) != type([]): if train: print('Train: %0.2f (+/- %0.2f)' % (np.mean(scores[ 'train_score']), np.std(scores['train_score']) * 2)) print('Cross validation: %0.2f (+/- %0.2f)' % (np.mean(scores[ 'test_score']), np.std(scores['test_score']) * 2)) return for s_method in scoring: if train: print('Train: %0.2f (+/- %0.2f)' % (np.mean(scores['train_' + s_method]), np.std(scores['train_' + s_method]) * 2)) print('Cross validation: %0.2f (+/- %0.2f)' % (np.mean(scores[ 'test_' + s_method]), np.std(scores['test_' + s_method]) * 2))
<mask token> matplotlib.use('Agg') <mask token> warnings.simplefilter('ignore') def v_measure(cluster_labels, true_labels): h_score = homogeneity_score(true_labels, cluster_labels) c_score = completeness_score(true_labels, cluster_labels) v_score = v_measure_score(true_labels, cluster_labels) print('Homogeneity Score: %.6f' % h_score) print('Completeness Score: %.6f' % c_score) print('V Measure Score: %.6f' % v_score) return h_score, c_score, v_score def silhouette_analysis(X, cluster_labels, n_clusters, figname): plt.xlim([-0.1, 1]) plt.ylim([0, len(X) + (n_clusters + 1) * 10]) silhouette_avg = silhouette_score(X, cluster_labels) print('For n_clusters =', n_clusters, 'The average silhouette_score is :', silhouette_avg) sample_silhouette_values = silhouette_samples(X, cluster_labels) y_lower = 10 for i in range(n_clusters): ith_cluster_silhouette_values = sample_silhouette_values[ cluster_labels == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = cm.nipy_spectral(float(i) / n_clusters) plt.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) plt.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) y_lower = y_upper + 10 plt.title('The silhouette plot for the various clusters.') plt.xlabel('The silhouette coefficient values') plt.ylabel('Cluster label') plt.axvline(x=silhouette_avg, color='red', linestyle='--') plt.yticks([]) plt.xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) plt.savefig(figname, format='png') plt.clf() def visualize_cluster(X, cluster_labels, n_clusters, centers, figname): if X.shape[1] < 2: print('Invalid shape for X: ', X.shape) return colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters) plt.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7, c= colors, edgecolor='k') if len(centers) == n_clusters: plt.scatter(centers[:, 0], centers[:, 1], marker='o', c='white', alpha=1, s=200, edgecolor='k') for i, c in enumerate(centers): plt.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50, edgecolor='k') plt.title('The visualization of the clustered data.') plt.xlabel('Feature space for the 1st feature') plt.ylabel('Feature space for the 2nd feature') plt.savefig(figname, format='png') plt.clf() def plot_gallery(title, images, figname, n_col=3, n_row=2, shape=(28, 28), cmap=plt.cm.gray): plt.figure(figsize=(2.0 * n_col, 2.26 * n_row)) plt.suptitle(title, size=16) for i, comp in enumerate(images): plt.subplot(n_row, n_col, i + 1) vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(shape), cmap=cmap, interpolation='nearest', vmin=-vmax, vmax=vmax) plt.xticks(()) plt.yticks(()) plt.savefig(figname, format='png') plt.clf() def create_path(*arg, filename=None): path = os.getcwd() for directory in arg: path = os.path.join(path, directory) if not os.path.exists(path): print("%s doesn't exist, creating..." % path) os.mkdir(path) if filename: path = os.path.join(path, filename) return path def load_data(data_path, split_prop=0.2, is_shuffle=False, is_split=True): pos_X, neg_X = [], [] with open(data_path, 'r') as f: for line in f: instance = list(map(float, line.strip().split(','))) if instance[-1] == 1.0: pos_X.append(instance[:-1]) else: neg_X.append(instance[:-1]) if not is_split: X, y = np.array(pos_X + neg_X), np.array([1] * len(pos_X) + [0] * len(neg_X)) if is_shuffle: indices = list(range(X.shape[0])) shuffle(indices) X, y = X[indices], y[indices] return X, y, [], [] pos_test_size, neg_test_size = int(split_prop * len(pos_X)), int( split_prop * len(neg_X)) pos_train_size, neg_train_size = len(pos_X) - pos_test_size, len(neg_X ) - neg_test_size X_test, y_test = pos_X[:pos_test_size] + neg_X[:neg_test_size], [1 ] * pos_test_size + [0] * neg_test_size X_train, y_train = pos_X[pos_test_size:] + neg_X[neg_test_size:], [1 ] * pos_train_size + [0] * neg_train_size assert len(X_train) == len(y_train) and len(X_test) == len(y_test ), 'Dimention of X and y must be the same.' X_train, X_test, y_train, y_test = np.array(X_train), np.array(X_test ), np.array(y_train), np.array(y_test) if is_shuffle: train_indices = list(range(X_train.shape[0])) shuffle(train_indices) test_indices = list(range(X_test.shape[0])) shuffle(test_indices) X_train, X_test, y_train, y_test = X_train[train_indices], X_test[ test_indices], y_train[train_indices], y_test[test_indices] return X_train, X_test, y_train, y_test def dump_data(): pass def analyze_data(data_path, threshold=50): data = [] with open(data_path, 'r') as f: for line in f: instance = list(map(float, line.strip().split(','))) data.append(instance) count = [0] * len(data[0]) for instance in data: for i in range(len(instance)): if instance[i] != 0.0: count[i] += 1 total = 0 for c in count: if c >= threshold: total += 1 return count, total def plot_learning_curve(train_scores_mean, train_scores_std, val_scores_mean, val_scores_std, train_sizes, ylim=None, title='test', fig_path='fig', format='png'): plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel('Training examples') plt.ylabel('Score') plt.grid(True, linestyle='-.', color='0.3') plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, val_scores_mean - val_scores_std, val_scores_mean + val_scores_std, alpha=0.1, color='g') plt.plot(train_sizes, train_scores_mean, 'o-', color='r', label= 'Training score') plt.plot(train_sizes, val_scores_mean, 'o-', color='g', label= 'Cross-validation score') plt.legend(loc='best') plt.savefig(fig_path + '/' + title + '.' + format, format=format) plt.clf() def plot_and_save(x, ys, labels, title, x_axis, y_axis, axis_range='auto', ylim=None, fig_path='fig', format='png'): if axis_range is None: plt.axis([x[0], x[-1], 0, 1]) elif type(axis_range) == type(list()): plt.axis(axis_range) elif axis_range == 'auto': pass if ylim is not None: plt.ylim(*ylim) plt.xlabel(x_axis) plt.ylabel(y_axis) plt.title(title) lines = [] for y in ys: l, = plt.plot(x, y) lines.append(l) if len(labels) == len(ys): plt.legend(lines, labels, loc='best') plt.grid(True, linestyle='-.', color='0.3') plt.savefig(fig_path + '.' + format, format=format) plt.clf() def print_score(scores, scoring, train=False): if type(scoring) != type([]): if train: print('Train: %0.2f (+/- %0.2f)' % (np.mean(scores[ 'train_score']), np.std(scores['train_score']) * 2)) print('Cross validation: %0.2f (+/- %0.2f)' % (np.mean(scores[ 'test_score']), np.std(scores['test_score']) * 2)) return for s_method in scoring: if train: print('Train: %0.2f (+/- %0.2f)' % (np.mean(scores['train_' + s_method]), np.std(scores['train_' + s_method]) * 2)) print('Cross validation: %0.2f (+/- %0.2f)' % (np.mean(scores[ 'test_' + s_method]), np.std(scores['test_' + s_method]) * 2))
from sklearn.model_selection import train_test_split from sklearn.metrics import silhouette_samples, silhouette_score from sklearn.metrics.cluster import homogeneity_score, completeness_score, v_measure_score from sklearn import datasets from random import shuffle import os import matplotlib matplotlib.use('Agg') import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import warnings warnings.simplefilter('ignore') def v_measure(cluster_labels, true_labels): h_score = homogeneity_score(true_labels, cluster_labels) c_score = completeness_score(true_labels, cluster_labels) v_score = v_measure_score(true_labels, cluster_labels) print('Homogeneity Score: %.6f' % h_score) print('Completeness Score: %.6f' % c_score) print('V Measure Score: %.6f' % v_score) return h_score, c_score, v_score def silhouette_analysis(X, cluster_labels, n_clusters, figname): plt.xlim([-0.1, 1]) plt.ylim([0, len(X) + (n_clusters + 1) * 10]) silhouette_avg = silhouette_score(X, cluster_labels) print('For n_clusters =', n_clusters, 'The average silhouette_score is :', silhouette_avg) sample_silhouette_values = silhouette_samples(X, cluster_labels) y_lower = 10 for i in range(n_clusters): ith_cluster_silhouette_values = sample_silhouette_values[ cluster_labels == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = cm.nipy_spectral(float(i) / n_clusters) plt.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) plt.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) y_lower = y_upper + 10 plt.title('The silhouette plot for the various clusters.') plt.xlabel('The silhouette coefficient values') plt.ylabel('Cluster label') plt.axvline(x=silhouette_avg, color='red', linestyle='--') plt.yticks([]) plt.xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) plt.savefig(figname, format='png') plt.clf() def visualize_cluster(X, cluster_labels, n_clusters, centers, figname): if X.shape[1] < 2: print('Invalid shape for X: ', X.shape) return colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters) plt.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7, c= colors, edgecolor='k') if len(centers) == n_clusters: plt.scatter(centers[:, 0], centers[:, 1], marker='o', c='white', alpha=1, s=200, edgecolor='k') for i, c in enumerate(centers): plt.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50, edgecolor='k') plt.title('The visualization of the clustered data.') plt.xlabel('Feature space for the 1st feature') plt.ylabel('Feature space for the 2nd feature') plt.savefig(figname, format='png') plt.clf() def plot_gallery(title, images, figname, n_col=3, n_row=2, shape=(28, 28), cmap=plt.cm.gray): plt.figure(figsize=(2.0 * n_col, 2.26 * n_row)) plt.suptitle(title, size=16) for i, comp in enumerate(images): plt.subplot(n_row, n_col, i + 1) vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(shape), cmap=cmap, interpolation='nearest', vmin=-vmax, vmax=vmax) plt.xticks(()) plt.yticks(()) plt.savefig(figname, format='png') plt.clf() def create_path(*arg, filename=None): path = os.getcwd() for directory in arg: path = os.path.join(path, directory) if not os.path.exists(path): print("%s doesn't exist, creating..." % path) os.mkdir(path) if filename: path = os.path.join(path, filename) return path def load_data(data_path, split_prop=0.2, is_shuffle=False, is_split=True): pos_X, neg_X = [], [] with open(data_path, 'r') as f: for line in f: instance = list(map(float, line.strip().split(','))) if instance[-1] == 1.0: pos_X.append(instance[:-1]) else: neg_X.append(instance[:-1]) if not is_split: X, y = np.array(pos_X + neg_X), np.array([1] * len(pos_X) + [0] * len(neg_X)) if is_shuffle: indices = list(range(X.shape[0])) shuffle(indices) X, y = X[indices], y[indices] return X, y, [], [] pos_test_size, neg_test_size = int(split_prop * len(pos_X)), int( split_prop * len(neg_X)) pos_train_size, neg_train_size = len(pos_X) - pos_test_size, len(neg_X ) - neg_test_size X_test, y_test = pos_X[:pos_test_size] + neg_X[:neg_test_size], [1 ] * pos_test_size + [0] * neg_test_size X_train, y_train = pos_X[pos_test_size:] + neg_X[neg_test_size:], [1 ] * pos_train_size + [0] * neg_train_size assert len(X_train) == len(y_train) and len(X_test) == len(y_test ), 'Dimention of X and y must be the same.' X_train, X_test, y_train, y_test = np.array(X_train), np.array(X_test ), np.array(y_train), np.array(y_test) if is_shuffle: train_indices = list(range(X_train.shape[0])) shuffle(train_indices) test_indices = list(range(X_test.shape[0])) shuffle(test_indices) X_train, X_test, y_train, y_test = X_train[train_indices], X_test[ test_indices], y_train[train_indices], y_test[test_indices] return X_train, X_test, y_train, y_test def dump_data(): pass def analyze_data(data_path, threshold=50): data = [] with open(data_path, 'r') as f: for line in f: instance = list(map(float, line.strip().split(','))) data.append(instance) count = [0] * len(data[0]) for instance in data: for i in range(len(instance)): if instance[i] != 0.0: count[i] += 1 total = 0 for c in count: if c >= threshold: total += 1 return count, total def plot_learning_curve(train_scores_mean, train_scores_std, val_scores_mean, val_scores_std, train_sizes, ylim=None, title='test', fig_path='fig', format='png'): plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel('Training examples') plt.ylabel('Score') plt.grid(True, linestyle='-.', color='0.3') plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, val_scores_mean - val_scores_std, val_scores_mean + val_scores_std, alpha=0.1, color='g') plt.plot(train_sizes, train_scores_mean, 'o-', color='r', label= 'Training score') plt.plot(train_sizes, val_scores_mean, 'o-', color='g', label= 'Cross-validation score') plt.legend(loc='best') plt.savefig(fig_path + '/' + title + '.' + format, format=format) plt.clf() def plot_and_save(x, ys, labels, title, x_axis, y_axis, axis_range='auto', ylim=None, fig_path='fig', format='png'): if axis_range is None: plt.axis([x[0], x[-1], 0, 1]) elif type(axis_range) == type(list()): plt.axis(axis_range) elif axis_range == 'auto': pass if ylim is not None: plt.ylim(*ylim) plt.xlabel(x_axis) plt.ylabel(y_axis) plt.title(title) lines = [] for y in ys: l, = plt.plot(x, y) lines.append(l) if len(labels) == len(ys): plt.legend(lines, labels, loc='best') plt.grid(True, linestyle='-.', color='0.3') plt.savefig(fig_path + '.' + format, format=format) plt.clf() def print_score(scores, scoring, train=False): if type(scoring) != type([]): if train: print('Train: %0.2f (+/- %0.2f)' % (np.mean(scores[ 'train_score']), np.std(scores['train_score']) * 2)) print('Cross validation: %0.2f (+/- %0.2f)' % (np.mean(scores[ 'test_score']), np.std(scores['test_score']) * 2)) return for s_method in scoring: if train: print('Train: %0.2f (+/- %0.2f)' % (np.mean(scores['train_' + s_method]), np.std(scores['train_' + s_method]) * 2)) print('Cross validation: %0.2f (+/- %0.2f)' % (np.mean(scores[ 'test_' + s_method]), np.std(scores['test_' + s_method]) * 2))
from sklearn.model_selection import train_test_split from sklearn.metrics import silhouette_samples, silhouette_score from sklearn.metrics.cluster import homogeneity_score, completeness_score, v_measure_score from sklearn import datasets from random import shuffle import os import matplotlib matplotlib.use('Agg') import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import warnings warnings.simplefilter("ignore") def v_measure(cluster_labels, true_labels): h_score = homogeneity_score(true_labels, cluster_labels) c_score = completeness_score(true_labels, cluster_labels) v_score = v_measure_score(true_labels, cluster_labels) print("Homogeneity Score: %.6f" % h_score) print("Completeness Score: %.6f" % c_score) print("V Measure Score: %.6f" % v_score) return h_score, c_score, v_score def silhouette_analysis(X, cluster_labels, n_clusters, figname): plt.xlim([-0.1, 1]) plt.ylim([0, len(X) + (n_clusters + 1) * 10]) silhouette_avg = silhouette_score(X, cluster_labels) print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg) # Compute the silhouette scores for each sample sample_silhouette_values = silhouette_samples(X, cluster_labels) y_lower = 10 for i in range(n_clusters): # Aggregate the silhouette scores for samples belonging to # cluster i, and sort them ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = cm.nipy_spectral(float(i) / n_clusters) plt.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) # Label the silhouette plots with their cluster numbers at the middle plt.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) # Compute the new y_lower for next plot y_lower = y_upper + 10 # 10 for the 0 samples plt.title("The silhouette plot for the various clusters.") plt.xlabel("The silhouette coefficient values") plt.ylabel("Cluster label") # The vertical line for average silhouette score of all the values plt.axvline(x=silhouette_avg, color="red", linestyle="--") plt.yticks([]) # Clear the yaxis labels / ticks plt.xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) plt.savefig(figname, format='png') plt.clf() def visualize_cluster(X, cluster_labels, n_clusters, centers, figname): if X.shape[1] < 2: print ("Invalid shape for X: ", X.shape) return colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters) plt.scatter(X[:, 0], X[:, 1], marker='.', s=30, lw=0, alpha=0.7, c=colors, edgecolor='k') # Draw white circles at cluster centers if len(centers) == n_clusters: plt.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=1, s=200, edgecolor='k') for i, c in enumerate(centers): plt.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50, edgecolor='k') plt.title("The visualization of the clustered data.") plt.xlabel("Feature space for the 1st feature") plt.ylabel("Feature space for the 2nd feature") plt.savefig(figname, format='png') plt.clf() def plot_gallery(title, images, figname, n_col=3, n_row=2, shape=(28, 28), cmap=plt.cm.gray): plt.figure(figsize=(2. * n_col, 2.26 * n_row)) plt.suptitle(title, size=16) for i, comp in enumerate(images): plt.subplot(n_row, n_col, i + 1) vmax = max(comp.max(), -comp.min()) plt.imshow(comp.reshape(shape), cmap=cmap, interpolation='nearest', vmin=-vmax, vmax=vmax) plt.xticks(()) plt.yticks(()) #plt.subplots_adjust(0.01, 0.05, 0.99, 0.93, 0.04, 0.) plt.savefig(figname, format='png') plt.clf() #plt.subplots_adjust() def create_path(*arg, filename=None): path = os.getcwd() for directory in arg: path = os.path.join(path, directory) if not os.path.exists(path): print('%s doesn\'t exist, creating...' % path) os.mkdir(path) if filename: path = os.path.join(path, filename) return path def load_data(data_path, split_prop=0.2, is_shuffle=False, is_split=True): pos_X, neg_X = [], [] with open(data_path, 'r') as f: for line in f: instance = list(map(float, line.strip().split(','))) if instance[-1] == 1.0: pos_X.append(instance[:-1]) else: neg_X.append(instance[:-1]) if not is_split: X, y = np.array(pos_X + neg_X), np.array([1] * len(pos_X) + [0] * len(neg_X)) if is_shuffle: indices = list(range(X.shape[0])) shuffle(indices) X, y = X[indices], y[indices] return X, y, [], [] pos_test_size, neg_test_size = int(split_prop * len(pos_X)), int(split_prop * len(neg_X)) pos_train_size, neg_train_size = len(pos_X) - pos_test_size, len(neg_X) - neg_test_size X_test, y_test = pos_X[:pos_test_size] + neg_X[:neg_test_size], [1] * pos_test_size + [0] * neg_test_size X_train, y_train = pos_X[pos_test_size:] + neg_X[neg_test_size:], [1] * pos_train_size + [0] * neg_train_size assert len(X_train) == len(y_train) and len(X_test) == len(y_test), "Dimention of X and y must be the same." X_train, X_test, y_train, y_test = np.array(X_train), np.array(X_test), np.array(y_train), np.array(y_test) if is_shuffle: train_indices = list(range(X_train.shape[0])) shuffle(train_indices) test_indices = list(range(X_test.shape[0])) shuffle(test_indices) X_train, X_test, y_train, y_test = X_train[train_indices], X_test[test_indices], y_train[train_indices], y_test[test_indices] return X_train, X_test, y_train, y_test def dump_data(): #Need implement pass def analyze_data(data_path, threshold=50): data = [] with open(data_path, 'r') as f: for line in f: instance = list(map(float, line.strip().split(','))) data.append(instance) count = [0] * len(data[0]) for instance in data: for i in range(len(instance)): if instance[i] != 0.0: count[i] += 1 total = 0 for c in count: if c >= threshold: total += 1 return count, total def plot_learning_curve(train_scores_mean, train_scores_std, val_scores_mean, val_scores_std, train_sizes, ylim=None, title='test', fig_path='fig', format='png'): plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") plt.grid(True, linestyle = "-.", color = '0.3') plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, val_scores_mean - val_scores_std, val_scores_mean + val_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, val_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") plt.savefig(fig_path + '/' + title + '.' + format, format=format) plt.clf() def plot_and_save(x, ys, labels, title, x_axis, y_axis, axis_range='auto', ylim=None, fig_path='fig', format='png'): if axis_range is None: plt.axis([x[0], x[-1], 0, 1]) elif type(axis_range) == type(list()): plt.axis(axis_range) elif axis_range == 'auto': pass if ylim is not None: plt.ylim(*ylim) plt.xlabel(x_axis) plt.ylabel(y_axis) plt.title(title) lines = [] for y in ys: l, = plt.plot(x, y) lines.append(l) if len(labels) == len(ys): plt.legend(lines, labels, loc="best") plt.grid(True, linestyle = "-.", color = '0.3') plt.savefig(fig_path + '.' + format, format=format) plt.clf() def print_score(scores, scoring, train=False): if type(scoring) != type([]): if train: print("Train: %0.2f (+/- %0.2f)" % (np.mean(scores['train_score']), np.std(scores['train_score']) * 2)) print("Cross validation: %0.2f (+/- %0.2f)" % (np.mean(scores['test_score']), np.std(scores['test_score']) * 2)) return for s_method in scoring: if train: print("Train: %0.2f (+/- %0.2f)" % (np.mean(scores['train_' + s_method]), np.std(scores['train_' + s_method]) * 2)) print("Cross validation: %0.2f (+/- %0.2f)" % (np.mean(scores['test_' + s_method]), np.std(scores['test_' + s_method]) * 2))
[ 10, 11, 12, 13, 14 ]
2,532
a7deec1693c411988445528dceb602bf69e47d21
<mask token>
<mask token> if __name__ == '__main__': game = tools.Game(setup.STATE_DICT, 'menu') game.run()
from source import tools, setup if __name__ == '__main__': game = tools.Game(setup.STATE_DICT, 'menu') game.run()
from source import tools, setup if __name__ == '__main__': game = tools.Game(setup.STATE_DICT, 'menu') game.run()
null
[ 0, 1, 2, 3 ]
2,533
8f709af924820c77290f97731d9f96258c3db095
<mask token>
<mask token> class TaobaoSpider(Spider): <mask token> <mask token> <mask token> <mask token>
<mask token> class TaobaoSpider(Spider): <mask token> <mask token> <mask token> def parse(self, response, **kwargs): pass
<mask token> class TaobaoSpider(Spider): name = 'taobao' allowed_domains = ['www.taobao.com'] start_urls = ['http://www.taobao.com/'] def parse(self, response, **kwargs): pass
from scrapy import Spider, Request from urllib.parse import quote from Product.items import ProductItem class TaobaoSpider(Spider): name = 'taobao' allowed_domains = ['www.taobao.com'] start_urls = ['http://www.taobao.com/'] def parse(self, response, **kwargs): pass
[ 0, 1, 2, 3, 4 ]
2,534
bb335187dc61fae049ca4a9a55a93f856b3c7822
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import os #os.environ['CUDA_VISIBLE_DEVICES'] = '-1' import keras from keras.layers import Dense, Dropout, Input, Embedding, LSTM, Reshape, CuDNNLSTM from keras.models import Model,Sequential from keras.datasets import mnist from tqdm import tqdm from keras.layers.advanced_activations import LeakyReLU from keras.activations import relu from keras.optimizers import adam import numpy as np import tensorflow as tf import random import pickle as pkl import operator import math from sklearn import preprocessing from keras.models import load_model import time from scipy.stats import norm from scipy.io import loadmat from natsort import natsorted from scipy import stats from seaborn import heatmap import loading_data from loading_data import load_train_vitheta_data_1225,load_real_data, load_standardized_data,load_train_data,load_train_data_V,load_train_vitheta_data_V,load_data_with_features,load_standardized_data_with_features #%% #%% # ============================================================================= # ============================================================================= # # save data with V I and theta for 1225 # ============================================================================= # ============================================================================= filename='Raw_data/1225/data' #os.listdir(filename) # pkl_file = open(filename, 'rb') selected_data = pkl.load(pkl_file) pkl_file.close() cosin={} # Reacive={} # keys={} # pf={} cosin['TA']=np.cos((selected_data['L1ANG']-selected_data['C1ANG'])*(np.pi/180)) cosin['TB']=np.cos((selected_data['L2ANG']-selected_data['C2ANG'])*(np.pi/180)) cosin['TC']=np.cos((selected_data['L3ANG']-selected_data['C3ANG'])*(np.pi/180)) # Reacive['A']=selected_data['L1Mag']*selected_data['C1Mag']*(np.sin((selected_data['L1Ang']-selected_data['C1Ang'])*(np.pi/180))) # Reacive['B']=selected_data['L2Mag']*selected_data['C2Mag']*(np.sin((selected_data['L2Ang']-selected_data['C2Ang'])*(np.pi/180))) # Reacive['C']=selected_data['L3Mag']*selected_data['C3Mag']*(np.sin((selected_data['L3Ang']-selected_data['C3Ang'])*(np.pi/180))) # #pf['A']=Active['A']/np.sqrt(np.square(Active['A'])+np.square(Reacive['A'])) #pf['B']=Active['B']/np.sqrt(np.square(Active['B'])+np.square(Reacive['B'])) #pf['C']=Active['C']/np.sqrt(np.square(Active['C'])+np.square(Reacive['C'])) selected_data['TA']=cosin['TA'] selected_data['TB']=cosin['TB'] selected_data['TC']=cosin['TC'] k=['L1MAG','L2MAG', 'L3MAG','C1MAG','C2MAG', 'C3MAG','TA', 'TB', 'TC'] day_data={} for key in k: day_data[key]=selected_data[key] dir='Raw_data/1225/VIT.pkl' output = open(dir, 'wb') pkl.dump(day_data, output) output.close() #%% # ============================================================================= # ============================================================================= # # train data prepreation # ============================================================================= # ============================================================================= #start,SampleNum,N=(0,40,500000) #filename='Raw_data/1225/VIT.pkl' #k=['L1MAG','L2MAG', 'L3MAG','C1MAG','C2MAG', 'C3MAG','TA', 'TB', 'TC'] ##%% #dds=load_standardized_data_with_features(filename,k) ##%% #dd=load_data_with_features(filename,k) #%% # ============================================================================= # ============================================================================= # # real data for 1225 VIT # ============================================================================= # ============================================================================= filename='Raw_data/1225/VIT.pkl' pkl_file = open(filename, 'rb') selected_data_1225_normal = pkl.load(pkl_file) pkl_file.close() #%% # ============================================================================= # ============================================================================= # # data without key # ============================================================================= # ============================================================================= selected_data_1225=[] for f in k: selected_data_1225.append(selected_data_1225_normal[f]) #%% start,SampleNum,N=(0,40,500000) filename='Raw_data/1225/VIT.pkl' k=['L1MAG','L2MAG', 'L3MAG','C1MAG','C2MAG', 'C3MAG','TA', 'TB', 'TC'] tt=load_train_vitheta_data_1225(start,SampleNum,N,filename,k) #%% X_train = tt scores={} probability_mean={} anomalies={} kkk=k[0:1] for idx,key in enumerate(kkk): print(key) X_train_temp=X_train[:,idx] #X_train.reshape(N,3*SampleNum) X_train_temp=X_train_temp.reshape(N,SampleNum,1) id=int(np.floor(idx/3)) mode=k[id*3] # dis_name='dis_sep_onelearn_'+mode+'.h5' # print(dis_name) # # discriminator=load_model(dis_name) rate=1000 shift=N/rate scores[key]=[] for i in range(rate-1): temp=discriminator.predict_on_batch(X_train_temp[int(i*shift):int((i+1)*shift)]) scores[key].append(temp) # print(i) scores[key]=np.array(scores[key]) scores[key]=scores[key].ravel() probability_mean[key]=np.mean(scores[key]) data=scores[key]-probability_mean[key] mu, std = norm.fit(data) zp=3 high=mu+zp*std low=mu-zp*std anomalies[key]=np.union1d(np.where(data>=high)[0], np.where(data<=low)[0]) print(anomalies[key].shape) #%% # ============================================================================= # ============================================================================= # # plot 1225 # ============================================================================= # ============================================================================= def show_1225(events): SampleNum=40 for anom in events: anom=int(anom) print(anom) plt.subplot(221) for i in [0,1,2]: plt.plot(selected_data_1225[i][anom*int(SampleNum/2)-240:(anom*int(SampleNum/2)+240)]) plt.legend('A' 'B' 'C') plt.title('V') plt.subplot(222) for i in [3,4,5]: plt.plot(selected_data_1225[i][anom*int(SampleNum/2)-240:(anom*int(SampleNum/2)+240)]) plt.legend('A' 'B' 'C') plt.title('I') plt.subplot(223) for i in [6,7,8]: plt.plot(selected_data_1225[i][anom*int(SampleNum/2)-240:(anom*int(SampleNum/2)+240)]) plt.legend('A' 'B' 'C') plt.title('T') plt.show() #%% X_train = tt #%% def adam_optimizer(): return adam(lr=0.0002, beta_1=0.5) #%% def create_generator(): generator=Sequential() generator.add(CuDNNLSTM(units=256,input_shape=(100,1),return_sequences=True)) generator.add(LeakyReLU(0.2)) generator.add(CuDNNLSTM(units=512)) generator.add(LeakyReLU(0.2)) generator.add(Dense(units=512)) generator.add(LeakyReLU(0.2)) # # generator.add(LSTM(units=1024)) # generator.add(LeakyReLU(0.2)) generator.add(Dense(units=1*40)) generator.compile(loss='binary_crossentropy', optimizer=adam_optimizer()) return generator g=create_generator() g.summary() #%% def create_discriminator(): discriminator=Sequential() discriminator.add(CuDNNLSTM(units=256,input_shape=(40,1),return_sequences=True)) discriminator.add(LeakyReLU(0.2)) # discriminator.add(Dropout(0.3)) discriminator.add(CuDNNLSTM(units=512)) discriminator.add(LeakyReLU(0.2)) # discriminator.add(Dense(units=512)) discriminator.add(LeakyReLU(0.2)) # discriminator.add(Dropout(0.3)) # # discriminator.add(LSTM(units=256)) # discriminator.add(LeakyReLU(0.2)) discriminator.add(Dense(units=1, activation='sigmoid')) discriminator.compile(loss='binary_crossentropy', optimizer=adam_optimizer()) return discriminator d =create_discriminator() d.summary() #%% def create_gan(discriminator, generator): discriminator.trainable=False gan_input = Input(shape=(100,1)) x = generator(gan_input) x = Reshape((40,1), input_shape=(1*40,1))(x) gan_output= discriminator(x) gan= Model(inputs=gan_input, outputs=gan_output) gan.compile(loss='binary_crossentropy', optimizer='adam') return gan gan = create_gan(d,g) gan.summary() #%% batch_size=5 epochnum=2 #%% start,SampleNum,N=(0,40,500000) #X_train = load_data(start,SampleNum,N) #filename= X_train = tt batch_count = X_train.shape[0] / batch_size ##%% #X_train=X_train.reshape(N,3*SampleNum) #X_train=X_train.reshape(N,SampleNum,3) #%% rnd={} for i in range(epochnum): rnd[i]=np.random.randint(low=0,high=N,size=batch_size) # show(rnd[i]) #%% generator= create_generator() discriminator= create_discriminator() gan = create_gan(discriminator, generator) #%% all_scores=[] def training(generator,discriminator,gan,epochs, batch_size,all_scores): # all_scores=[] scale=1 for e in range(1,epochs+1 ): all_score_temp=[] tik=time.clock() print("Epoch %d" %e) for _ in tqdm(range(batch_size)): #generate random noise as an input to initialize the generator noise= scale*np.random.normal(0,1, [batch_size, 100]) noise=noise.reshape(batch_size,100,1) # Generate fake MNIST images from noised input generated_images = generator.predict(noise) generated_images = generated_images.reshape(batch_size,SampleNum,1) # print(generated_images.shape) # Get a random set of real images # random.seed(0) image_batch =X_train_temp[rnd[e-1]] # print(image_batch.shape) #Construct different batches of real and fake data X= np.concatenate([image_batch, generated_images]) # Labels for generated and real data y_dis=np.zeros(2*batch_size) y_dis[:batch_size]=0.9 #Pre train discriminator on fake and real data before starting the gan. discriminator.trainable=True discriminator.train_on_batch(X, y_dis) #Tricking the noised input of the Generator as real data noise= scale*np.random.normal(0,1, [batch_size, 100]) noise=noise.reshape(batch_size,100,1) y_gen = np.ones(batch_size) # During the training of gan, # the weights of discriminator should be fixed. #We can enforce that by setting the trainable flag discriminator.trainable=False #training the GAN by alternating the training of the Discriminator #and training the chained GAN model with Discriminator’s weights freezed. gan.train_on_batch(noise, y_gen) rate=1000 shift=N/rate all_score_temp=[] for i in range(rate-1): temp=discriminator.predict_on_batch(X_train_temp[int(i*shift):int((i+1)*shift)]) all_score_temp.append(temp) # print(i) all_score_temp=np.array(all_score_temp) all_score_temp=all_score_temp.ravel() all_scores.append(all_score_temp) toc = time.clock() print(toc-tik) #%% kk=['L1MAG'] for idx,key in enumerate(kk): X_train_temp=X_train[:,(idx)] #X_train.reshape(N,3*SampleNum) X_train_temp=X_train_temp.reshape(N,SampleNum,1) tic = time.clock() training(generator,discriminator,gan,epochnum,batch_size,all_scores) toc = time.clock() print(toc-tic) # # gan_name='gan_sep_onelearn_good_09_'+key+'.h5' # gen_name='gen_sep_onelearn_good_09_'+key+'.h5' # dis_name='dis_sep_onelearn_good_09_'+key+'.h5' # print(dis_name) # gan.save(gan_name) # generator.save(gen_name) # discriminator.save(dis_name)
null
null
null
null
[ 0 ]
2,535
b6adb956aed934451fc21e51663be36d08c5b645
import matplotlib.pyplot as plt import matplotlib import matplotlib.colors as colors import matplotlib.cm as cm def plot_hist(data_list): plt.hist(data_list, bins=500) plt.show() return def compare_hits_plot(np_array, compare=False): if compare: clist = list(np_array[:,2]) minima, maxima = min(clist), max(clist) print minima, maxima hits=np_array[np_array[:,2]==1] total_hits=np_array[np_array[:,2]>=1] scatter = plt.scatter(np_array[:,3], np_array[:,1], c=clist, vmin=0, vmax=1, s=8, cmap=cm.winter) plt.ylim(ymin=0, ymax=max(hits[:,3])) plt.colorbar(scatter) plt.axhline(spot_count_cutoff) else: scatter = plt.scatter(np_array[:,3], np_array[:,1]) def pickle_ratio_plot(np_array): clist = list(np_array[:,5]) minima, maxima = min(clist), max(clist) print minima, maxima scatter = plt.scatter(np_array[:,1], np_array[:,2], c=clist, s=8, cmap=cm.winter) plt.colorbar(scatter) plt.axhline(spot_count_cutoff)
null
null
null
null
[ 0 ]
2,536
44c4a1f4b32b45fd95eb8b0a42a718d05d967e04
<mask token>
<mask token> while formula >= 0 and formula <= 3: a = float(input('Enter a:')) min_x = float(input('Enter minx:')) max_x = float(input('Enter maxx:')) step = int(input('Enter steps:')) x = min_x if formula == 1: d = -45 * a ** 2 + 26 * a * x + 7 * x ** 2 if d != 0: for i in range(step): while x <= max_x: G = -7 * (4 * a ** 2 + 15 * a * x - 4 * x ** 2) / d result.append(G) print('x=%.3f \tG=%.3f' % (float(x), G)) x += (max_x - min_x) / (step - 1) break else: print('Err') elif formula == 2: for i in range(step): while x <= max_x: F = 2 ** (40 * a ** 2 - 107 * a * x + 63 * x ** 2) result.append(F) print('x=%.3f \tF=%.3f' % (float(x), F)) x += (max_x - min_x) / (step - 1) break elif formula == 3: for i in range(step): while x <= max_x: Y = log(a ** 2 - 2 * a * x + 3 * x ** 2 + 1) result.append(Y) print('x=%.3f \tY=%.3f' % (float(x), Y)) x += (max_x - min_x) / (step - 1) break else: print('Err') print('Max.res. = ', max(result)) print('Min.res. = ', min(result))
<mask token> result = [] formula = int(input("""For exit press 0 Choose the formula #1 #2 #3: """)) while formula >= 0 and formula <= 3: a = float(input('Enter a:')) min_x = float(input('Enter minx:')) max_x = float(input('Enter maxx:')) step = int(input('Enter steps:')) x = min_x if formula == 1: d = -45 * a ** 2 + 26 * a * x + 7 * x ** 2 if d != 0: for i in range(step): while x <= max_x: G = -7 * (4 * a ** 2 + 15 * a * x - 4 * x ** 2) / d result.append(G) print('x=%.3f \tG=%.3f' % (float(x), G)) x += (max_x - min_x) / (step - 1) break else: print('Err') elif formula == 2: for i in range(step): while x <= max_x: F = 2 ** (40 * a ** 2 - 107 * a * x + 63 * x ** 2) result.append(F) print('x=%.3f \tF=%.3f' % (float(x), F)) x += (max_x - min_x) / (step - 1) break elif formula == 3: for i in range(step): while x <= max_x: Y = log(a ** 2 - 2 * a * x + 3 * x ** 2 + 1) result.append(Y) print('x=%.3f \tY=%.3f' % (float(x), Y)) x += (max_x - min_x) / (step - 1) break else: print('Err') print('Max.res. = ', max(result)) print('Min.res. = ', min(result))
from math import log result = [] formula = int(input("""For exit press 0 Choose the formula #1 #2 #3: """)) while formula >= 0 and formula <= 3: a = float(input('Enter a:')) min_x = float(input('Enter minx:')) max_x = float(input('Enter maxx:')) step = int(input('Enter steps:')) x = min_x if formula == 1: d = -45 * a ** 2 + 26 * a * x + 7 * x ** 2 if d != 0: for i in range(step): while x <= max_x: G = -7 * (4 * a ** 2 + 15 * a * x - 4 * x ** 2) / d result.append(G) print('x=%.3f \tG=%.3f' % (float(x), G)) x += (max_x - min_x) / (step - 1) break else: print('Err') elif formula == 2: for i in range(step): while x <= max_x: F = 2 ** (40 * a ** 2 - 107 * a * x + 63 * x ** 2) result.append(F) print('x=%.3f \tF=%.3f' % (float(x), F)) x += (max_x - min_x) / (step - 1) break elif formula == 3: for i in range(step): while x <= max_x: Y = log(a ** 2 - 2 * a * x + 3 * x ** 2 + 1) result.append(Y) print('x=%.3f \tY=%.3f' % (float(x), Y)) x += (max_x - min_x) / (step - 1) break else: print('Err') print('Max.res. = ', max(result)) print('Min.res. = ', min(result))
from math import log result = [] formula = int(input("For exit press 0\nChoose the formula #1 #2 #3: ")) while (formula >= 0) and (formula <= 3): a = float(input("Enter a:")) min_x = float(input("Enter minx:")) max_x = float(input("Enter maxx:")) step = int(input("Enter steps:")) x = min_x if formula == 1: d = (-45*a**2+26*a*x+7*x**2) if d !=0: for i in range(step): while x <= max_x: G = ((-7*(4*a**2+15*a*x-4*x**2))/d) result.append(G) print("x=%.3f \tG=%.3f" % (float(x), G)) x += (max_x-min_x)/(step-1) break else: print("Err") elif formula == 2: for i in range(step): while x <= max_x: F = (2**(40*(a**2)-107*a*x+63*(x**2))) result.append(F) print("x=%.3f \tF=%.3f" % (float(x), F)) x += (max_x-min_x)/(step-1) break elif formula == 3: for i in range(step): while x <= max_x: Y = log(a**2-2*a*x+3*x**2+1) result.append(Y) print("x=%.3f \tY=%.3f" % (float(x), Y)) x += (max_x-min_x)/(step-1) break else: print("Err") print("Max.res. = ", max(result)) print("Min.res. = ", min(result))
[ 0, 1, 2, 3, 4 ]
2,537
661f94f5770df1026352ee344d0006466662bb3c
def main(): try: contacts = open('contactsLab4.txt', 'r') names = [] birthdates = [] name = contacts.readline() while name != '': names.append(name.rstrip('\n')) date = contacts.readline() birthdates.append(date.rstrip('\n')) name = contacts.readline() contacts.close() display_contacts(names, birthdates) except FileNotFoundError: print('File was not found') except Exception as err: print('Error:', err) def find_season(birthdates): month = birthdates.split('/', 3) month = int(month[0]) if month == 12 or month == 1 or month == 2: season = 'winter' elif month == 3 or month == 4 or month == 5: season = 'spring' elif month == 6 or month == 7 or month == 8: season = 'summer' elif month == 9 or month == 10 or month == 11: season = 'fall' return season <mask token> def get_age(date, birthdates): today = date.split('/') todayMonth = int(today[0]) todayDay = int(today[1]) todayYear = int(today[2]) birthyear = birthdates.split('/') birthMonth = int(birthyear[0]) birthDay = int(birthyear[1]) birthyear = int(birthyear[2]) if todayMonth > birthMonth: age = todayYear - birthyear - 1 else: age = todayYear - birthyear return age <mask token>
def main(): try: contacts = open('contactsLab4.txt', 'r') names = [] birthdates = [] name = contacts.readline() while name != '': names.append(name.rstrip('\n')) date = contacts.readline() birthdates.append(date.rstrip('\n')) name = contacts.readline() contacts.close() display_contacts(names, birthdates) except FileNotFoundError: print('File was not found') except Exception as err: print('Error:', err) def find_season(birthdates): month = birthdates.split('/', 3) month = int(month[0]) if month == 12 or month == 1 or month == 2: season = 'winter' elif month == 3 or month == 4 or month == 5: season = 'spring' elif month == 6 or month == 7 or month == 8: season = 'summer' elif month == 9 or month == 10 or month == 11: season = 'fall' return season <mask token> def get_age(date, birthdates): today = date.split('/') todayMonth = int(today[0]) todayDay = int(today[1]) todayYear = int(today[2]) birthyear = birthdates.split('/') birthMonth = int(birthyear[0]) birthDay = int(birthyear[1]) birthyear = int(birthyear[2]) if todayMonth > birthMonth: age = todayYear - birthyear - 1 else: age = todayYear - birthyear return age def display_contacts(names, birthdates): date = input('Enter current date in format m/d/yyyy: ') print(format('Name', '25'), format('Age', '6'), format('Season', '8'), format('Leap Year', '10')) print(format('----', '25'), format('---', '6'), format('------', '8'), format('---------', '10')) for i in birthdates: age = get_age(date, birthdates) print(age) for i in birthdates: season = find_season(i) print(season) for i in birthdates: year = is_leap_year(i) print(year) for i in range(len(name)): print(format(name[i], '25'), format(str(age[i]), '6'), format( season[i], '8'), format(year[i], '10')) <mask token>
def main(): try: contacts = open('contactsLab4.txt', 'r') names = [] birthdates = [] name = contacts.readline() while name != '': names.append(name.rstrip('\n')) date = contacts.readline() birthdates.append(date.rstrip('\n')) name = contacts.readline() contacts.close() display_contacts(names, birthdates) except FileNotFoundError: print('File was not found') except Exception as err: print('Error:', err) def find_season(birthdates): month = birthdates.split('/', 3) month = int(month[0]) if month == 12 or month == 1 or month == 2: season = 'winter' elif month == 3 or month == 4 or month == 5: season = 'spring' elif month == 6 or month == 7 or month == 8: season = 'summer' elif month == 9 or month == 10 or month == 11: season = 'fall' return season def is_leap_year(birthdates): birthyear = birthdates.split('/') birthyear = int(birthyear[2]) if birthyear % 4 == 0 and birthyear % 100 != 0 or birthyear % 400 == 0: year = 'Yes' else: year = 'No' return year def get_age(date, birthdates): today = date.split('/') todayMonth = int(today[0]) todayDay = int(today[1]) todayYear = int(today[2]) birthyear = birthdates.split('/') birthMonth = int(birthyear[0]) birthDay = int(birthyear[1]) birthyear = int(birthyear[2]) if todayMonth > birthMonth: age = todayYear - birthyear - 1 else: age = todayYear - birthyear return age def display_contacts(names, birthdates): date = input('Enter current date in format m/d/yyyy: ') print(format('Name', '25'), format('Age', '6'), format('Season', '8'), format('Leap Year', '10')) print(format('----', '25'), format('---', '6'), format('------', '8'), format('---------', '10')) for i in birthdates: age = get_age(date, birthdates) print(age) for i in birthdates: season = find_season(i) print(season) for i in birthdates: year = is_leap_year(i) print(year) for i in range(len(name)): print(format(name[i], '25'), format(str(age[i]), '6'), format( season[i], '8'), format(year[i], '10')) <mask token>
def main(): try: contacts = open('contactsLab4.txt', 'r') names = [] birthdates = [] name = contacts.readline() while name != '': names.append(name.rstrip('\n')) date = contacts.readline() birthdates.append(date.rstrip('\n')) name = contacts.readline() contacts.close() display_contacts(names, birthdates) except FileNotFoundError: print('File was not found') except Exception as err: print('Error:', err) def find_season(birthdates): month = birthdates.split('/', 3) month = int(month[0]) if month == 12 or month == 1 or month == 2: season = 'winter' elif month == 3 or month == 4 or month == 5: season = 'spring' elif month == 6 or month == 7 or month == 8: season = 'summer' elif month == 9 or month == 10 or month == 11: season = 'fall' return season def is_leap_year(birthdates): birthyear = birthdates.split('/') birthyear = int(birthyear[2]) if birthyear % 4 == 0 and birthyear % 100 != 0 or birthyear % 400 == 0: year = 'Yes' else: year = 'No' return year def get_age(date, birthdates): today = date.split('/') todayMonth = int(today[0]) todayDay = int(today[1]) todayYear = int(today[2]) birthyear = birthdates.split('/') birthMonth = int(birthyear[0]) birthDay = int(birthyear[1]) birthyear = int(birthyear[2]) if todayMonth > birthMonth: age = todayYear - birthyear - 1 else: age = todayYear - birthyear return age def display_contacts(names, birthdates): date = input('Enter current date in format m/d/yyyy: ') print(format('Name', '25'), format('Age', '6'), format('Season', '8'), format('Leap Year', '10')) print(format('----', '25'), format('---', '6'), format('------', '8'), format('---------', '10')) for i in birthdates: age = get_age(date, birthdates) print(age) for i in birthdates: season = find_season(i) print(season) for i in birthdates: year = is_leap_year(i) print(year) for i in range(len(name)): print(format(name[i], '25'), format(str(age[i]), '6'), format( season[i], '8'), format(year[i], '10')) main()
############################################################### # Yolanda Gunter # Lab 4 # My program uses decisions, repetition, functions, files, lists # and exception handling that will get the input from a file to # run program that asks User for current date, reads a contact file # list that contains names with DOB, calculate each contact's age, # season born in and born in a leap year or not. # Then my program will print the calculated average age of contacts. ############################################################### ######################################################## # Function name: main # Input: contactsLab4.txt file # Output: table of contact, age, birth season & if born leap yr or not # Purpose: This function reads file, makes two lists, converts strings to # integers, calculates ages, season born & if born leap yr or not # then lastly calculats average age of contacts in entire file. ############################################### def main(): # start exception handling try: # Open a file named contactlab4.txt contacts = open('contactsLab4.txt', 'r') # Create empty name list names = [] # Create empty birthday list birthdates = [] # Read file, establish records, strip \n, append to lists, name = contacts.readline() while name != '': names.append(name.rstrip('\n')) date = contacts.readline() birthdates.append(date.rstrip('\n')) name = contacts.readline() # Close the file contacts.close() # Call display_contacts display_contacts(names, birthdates) # Simple exception if file is not found except FileNotFoundError: print("File was not found") except Exception as err: print("Error:", err) ############################################### # Function name: find_season # Input: birthdate # Output: a string as a season # Purpose: Determines which season contact is born ############################################### def find_season(birthdates): month = birthdates.split('/', 3) month = int(month[0]) # Assign contact birth month to a season if month == 12 or month == 1 or month == 2: season = "winter" elif month == 3 or month == 4 or month == 5: season = "spring" elif month == 6 or month == 7 or month == 8: season = "summer" elif month == 9 or month == 10 or month == 11: season = "fall" return season ############################################### # Function name: is_leap_year # Input: birthdate list # Output: value leap year (Yes) or not (No) # Purpose: Determines if birth year is leap year or not. ############################################### def is_leap_year(birthdates): birthyear = birthdates.split('/') birthyear = int(birthyear[2]) # Calculate if User's birth year is a leap year or not if birthyear % 4 == 0 and birthyear % 100 != 0 or \ birthyear % 400 == 0: year = "Yes" else: year = "No" return year ############################################### # Function name: get_age # Input: current date and birthdate list # Output: age of contact # Purpose: Caculates age of contact ############################################### def get_age(date, birthdates): today = date.split('/') todayMonth = int(today[0]) todayDay = int(today[1]) todayYear = int(today[2]) birthyear = birthdates.split('/') birthMonth = int(birthyear[0]) birthDay = int(birthyear[1]) birthyear = int(birthyear[2]) if todayMonth > birthMonth: age = todayYear - birthyear-1 else: age = todayYear - birthyear return age ############################################### # Function name: display_contacts # Input: name and birthdate lists # Output: value leap year (Yes) or not (No) # Purpose: Determines if birth year is leap year or not. ############################################### def display_contacts(names, birthdates): # Get current date date = input('Enter current date in format m/d/yyyy: ') # format display in table format with column headings print(format("Name", '25'), format("Age", '6'), format("Season", '8'), format("Leap Year", '10')) print(format("----", '25'), format("---", '6'), format("------", '8'), format("---------", '10')) # Call functions for i in birthdates: age = get_age(date, birthdates) print(age) for i in birthdates: season = find_season(i) print(season) for i in birthdates: year = is_leap_year(i) print(year) for i in range(len(name)): print(format(name[i], '25'), format(str(age[i]), '6'), format(season[i], '8'), format(year[i], '10')) # Call the main function main()
[ 3, 4, 5, 6, 7 ]
2,538
0016e38d39ed2a4c7a75bed103bc47a5b6fd0e8c
<mask token> def get_text_data(filename): import codecs with open(filename, 'rb') as f: text = f.read() length = len(text) print('got corpus length:', length) return text def model_builder(): c = ct.Can() gru, d1, d2 = c.add(GRU(256, 256)), c.add(LastDimDense(256, 64)), c.add( LastDimDense(64, 256)) def call(i, starting_state=None): i = gru(i, starting_state=starting_state) shape = tf.shape(i) b, t, d = shape[0], shape[1], shape[2] ending_state = i[:, t - 1, :] i = d1(i) i = Act('elu')(i) i = d2(i) i = Act('softmax')(i) return i, ending_state c.set_function(call) return c def feed_gen(): input_text = tf.placeholder(tf.uint8, shape=[None, None]) input_text_float = tf.one_hot(input_text, depth=256, dtype=tf.float32) xhead = input_text_float[:, :-1] gt = input_text_float[:, 1:] y, _ = model(xhead, starting_state=None) def cross_entropy_loss_per_char(pred, gt): def log2(i): return tf.log(i) * 1.442695 return -tf.reduce_sum(log2(pred + 1e-14) * gt, axis=tf.rank(pred) - 1) loss = ct.cross_entropy_loss(y, gt) loss_per_char = cross_entropy_loss_per_char(y, gt) train_step = tf.train.AdamOptimizer(0.001).minimize(loss, var_list= model.get_weights()) def feed(minibatch): nonlocal train_step, loss, input_text sess = ct.get_session() res = sess.run([loss, train_step], feed_dict={input_text: minibatch}) return res[0] starting_state = tf.placeholder(tf.float32, shape=[None, None]) stateful_y, ending_state = model(input_text_float, starting_state= starting_state) stateful_y_init, ending_state_init = model(input_text_float) def stateful_predict(st, i): sess = ct.get_session() if st is None: res = sess.run([stateful_y_init, ending_state_init], feed_dict= {input_text: i}) else: res = sess.run([stateful_y, ending_state], feed_dict={ input_text: i, starting_state: st}) return res def loss_statistics(i): sess = ct.get_session() res = sess.run([loss_per_char], feed_dict={input_text: i}) return res return feed, stateful_predict, loss_statistics def r(ep=100): length = len(corpus) batch_size = 256 mbl = time_steps * batch_size sr = length - mbl - time_steps - 2 for i in range(ep): print('---------------------iter', i, '/', ep) j = np.random.choice(sr) minibatch = corpus[j:j + mbl] minibatch.shape = [batch_size, time_steps] loss = feed(minibatch) print('loss:', loss) if i % 100 == 0: pass class utf8statemachine: def __init__(self): self.state = 0 self.buffer = [] def flush(self): char = str(bytes(self.buffer), 'utf-8') self.buffer = [] return char def bytein(self, b): if self.state == 0: if b & 128 == 0: self.buffer.append(b) return self.flush() if b & 240 == 224: self.state = 2 self.buffer.append(b) return None if b & 224 == 192: self.state = 1 self.buffer.append(b) return None raise NameError('byte should start with 0b0 or 0b110 or 0b1110') if self.state > 0: if b & 192 == 128: self.state -= 1 self.buffer.append(b) else: raise NameError('byte should start with 0b10') if self.state == 0: return self.flush() return None def show2(length=400): import sys, os asc_buf = np.fromstring('\n', dtype='uint8').reshape(1, 1) starting_state = None sm = utf8statemachine() errors = 0 for i in range(length): stateful_y, ending_state = predict(starting_state, asc_buf) dist = stateful_y[0, 0] code = np.random.choice(256, p=dist) try: result = sm.bytein(code) if result is not None: sys.stdout.write(result) asc_buf[0, 0] = code starting_state = ending_state except NameError: errors += 1 if i % 10 == 0: sys.stdout.flush() pass sys.stdout.flush() print('') print('total UTF-8 decoding errors:', errors) def bsa(text): buf = np.fromstring(text, dtype='uint8').reshape(1, len(text)) loss, = loss_stats(buf) simplified = text[0] print(text[0], 'initial') for i in range(1, len(text)): print(text[i], loss[0, i - 1]) if loss[0, i - 1] < 1: simplified += '-' else: simplified += text[i] print('simplified:', simplified) <mask token>
<mask token> def get_text_data(filename): import codecs with open(filename, 'rb') as f: text = f.read() length = len(text) print('got corpus length:', length) return text def model_builder(): c = ct.Can() gru, d1, d2 = c.add(GRU(256, 256)), c.add(LastDimDense(256, 64)), c.add( LastDimDense(64, 256)) def call(i, starting_state=None): i = gru(i, starting_state=starting_state) shape = tf.shape(i) b, t, d = shape[0], shape[1], shape[2] ending_state = i[:, t - 1, :] i = d1(i) i = Act('elu')(i) i = d2(i) i = Act('softmax')(i) return i, ending_state c.set_function(call) return c def feed_gen(): input_text = tf.placeholder(tf.uint8, shape=[None, None]) input_text_float = tf.one_hot(input_text, depth=256, dtype=tf.float32) xhead = input_text_float[:, :-1] gt = input_text_float[:, 1:] y, _ = model(xhead, starting_state=None) def cross_entropy_loss_per_char(pred, gt): def log2(i): return tf.log(i) * 1.442695 return -tf.reduce_sum(log2(pred + 1e-14) * gt, axis=tf.rank(pred) - 1) loss = ct.cross_entropy_loss(y, gt) loss_per_char = cross_entropy_loss_per_char(y, gt) train_step = tf.train.AdamOptimizer(0.001).minimize(loss, var_list= model.get_weights()) def feed(minibatch): nonlocal train_step, loss, input_text sess = ct.get_session() res = sess.run([loss, train_step], feed_dict={input_text: minibatch}) return res[0] starting_state = tf.placeholder(tf.float32, shape=[None, None]) stateful_y, ending_state = model(input_text_float, starting_state= starting_state) stateful_y_init, ending_state_init = model(input_text_float) def stateful_predict(st, i): sess = ct.get_session() if st is None: res = sess.run([stateful_y_init, ending_state_init], feed_dict= {input_text: i}) else: res = sess.run([stateful_y, ending_state], feed_dict={ input_text: i, starting_state: st}) return res def loss_statistics(i): sess = ct.get_session() res = sess.run([loss_per_char], feed_dict={input_text: i}) return res return feed, stateful_predict, loss_statistics def r(ep=100): length = len(corpus) batch_size = 256 mbl = time_steps * batch_size sr = length - mbl - time_steps - 2 for i in range(ep): print('---------------------iter', i, '/', ep) j = np.random.choice(sr) minibatch = corpus[j:j + mbl] minibatch.shape = [batch_size, time_steps] loss = feed(minibatch) print('loss:', loss) if i % 100 == 0: pass class utf8statemachine: def __init__(self): self.state = 0 self.buffer = [] def flush(self): char = str(bytes(self.buffer), 'utf-8') self.buffer = [] return char def bytein(self, b): if self.state == 0: if b & 128 == 0: self.buffer.append(b) return self.flush() if b & 240 == 224: self.state = 2 self.buffer.append(b) return None if b & 224 == 192: self.state = 1 self.buffer.append(b) return None raise NameError('byte should start with 0b0 or 0b110 or 0b1110') if self.state > 0: if b & 192 == 128: self.state -= 1 self.buffer.append(b) else: raise NameError('byte should start with 0b10') if self.state == 0: return self.flush() return None def show2(length=400): import sys, os asc_buf = np.fromstring('\n', dtype='uint8').reshape(1, 1) starting_state = None sm = utf8statemachine() errors = 0 for i in range(length): stateful_y, ending_state = predict(starting_state, asc_buf) dist = stateful_y[0, 0] code = np.random.choice(256, p=dist) try: result = sm.bytein(code) if result is not None: sys.stdout.write(result) asc_buf[0, 0] = code starting_state = ending_state except NameError: errors += 1 if i % 10 == 0: sys.stdout.flush() pass sys.stdout.flush() print('') print('total UTF-8 decoding errors:', errors) def bsa(text): buf = np.fromstring(text, dtype='uint8').reshape(1, len(text)) loss, = loss_stats(buf) simplified = text[0] print(text[0], 'initial') for i in range(1, len(text)): print(text[i], loss[0, i - 1]) if loss[0, i - 1] < 1: simplified += '-' else: simplified += text[i] print('simplified:', simplified) <mask token> if len(argv) < 2: print( '(Error)please provide a filename as the first argument. The file should be in UTF-8 encoding, without BOM.' ) else: text = get_text_data(argv[1]) corpus = np.fromstring(text, dtype='uint8') print('corpus loaded. corpus[0]:', corpus[0], 'text[0]:', text[0]) model = model_builder() feed, predict, loss_stats = feed_gen() sess = ct.get_session() sess.run(tf.global_variables_initializer())
<mask token> time_steps = 16 def get_text_data(filename): import codecs with open(filename, 'rb') as f: text = f.read() length = len(text) print('got corpus length:', length) return text def model_builder(): c = ct.Can() gru, d1, d2 = c.add(GRU(256, 256)), c.add(LastDimDense(256, 64)), c.add( LastDimDense(64, 256)) def call(i, starting_state=None): i = gru(i, starting_state=starting_state) shape = tf.shape(i) b, t, d = shape[0], shape[1], shape[2] ending_state = i[:, t - 1, :] i = d1(i) i = Act('elu')(i) i = d2(i) i = Act('softmax')(i) return i, ending_state c.set_function(call) return c def feed_gen(): input_text = tf.placeholder(tf.uint8, shape=[None, None]) input_text_float = tf.one_hot(input_text, depth=256, dtype=tf.float32) xhead = input_text_float[:, :-1] gt = input_text_float[:, 1:] y, _ = model(xhead, starting_state=None) def cross_entropy_loss_per_char(pred, gt): def log2(i): return tf.log(i) * 1.442695 return -tf.reduce_sum(log2(pred + 1e-14) * gt, axis=tf.rank(pred) - 1) loss = ct.cross_entropy_loss(y, gt) loss_per_char = cross_entropy_loss_per_char(y, gt) train_step = tf.train.AdamOptimizer(0.001).minimize(loss, var_list= model.get_weights()) def feed(minibatch): nonlocal train_step, loss, input_text sess = ct.get_session() res = sess.run([loss, train_step], feed_dict={input_text: minibatch}) return res[0] starting_state = tf.placeholder(tf.float32, shape=[None, None]) stateful_y, ending_state = model(input_text_float, starting_state= starting_state) stateful_y_init, ending_state_init = model(input_text_float) def stateful_predict(st, i): sess = ct.get_session() if st is None: res = sess.run([stateful_y_init, ending_state_init], feed_dict= {input_text: i}) else: res = sess.run([stateful_y, ending_state], feed_dict={ input_text: i, starting_state: st}) return res def loss_statistics(i): sess = ct.get_session() res = sess.run([loss_per_char], feed_dict={input_text: i}) return res return feed, stateful_predict, loss_statistics def r(ep=100): length = len(corpus) batch_size = 256 mbl = time_steps * batch_size sr = length - mbl - time_steps - 2 for i in range(ep): print('---------------------iter', i, '/', ep) j = np.random.choice(sr) minibatch = corpus[j:j + mbl] minibatch.shape = [batch_size, time_steps] loss = feed(minibatch) print('loss:', loss) if i % 100 == 0: pass class utf8statemachine: def __init__(self): self.state = 0 self.buffer = [] def flush(self): char = str(bytes(self.buffer), 'utf-8') self.buffer = [] return char def bytein(self, b): if self.state == 0: if b & 128 == 0: self.buffer.append(b) return self.flush() if b & 240 == 224: self.state = 2 self.buffer.append(b) return None if b & 224 == 192: self.state = 1 self.buffer.append(b) return None raise NameError('byte should start with 0b0 or 0b110 or 0b1110') if self.state > 0: if b & 192 == 128: self.state -= 1 self.buffer.append(b) else: raise NameError('byte should start with 0b10') if self.state == 0: return self.flush() return None def show2(length=400): import sys, os asc_buf = np.fromstring('\n', dtype='uint8').reshape(1, 1) starting_state = None sm = utf8statemachine() errors = 0 for i in range(length): stateful_y, ending_state = predict(starting_state, asc_buf) dist = stateful_y[0, 0] code = np.random.choice(256, p=dist) try: result = sm.bytein(code) if result is not None: sys.stdout.write(result) asc_buf[0, 0] = code starting_state = ending_state except NameError: errors += 1 if i % 10 == 0: sys.stdout.flush() pass sys.stdout.flush() print('') print('total UTF-8 decoding errors:', errors) def bsa(text): buf = np.fromstring(text, dtype='uint8').reshape(1, len(text)) loss, = loss_stats(buf) simplified = text[0] print(text[0], 'initial') for i in range(1, len(text)): print(text[i], loss[0, i - 1]) if loss[0, i - 1] < 1: simplified += '-' else: simplified += text[i] print('simplified:', simplified) argv = sys.argv if len(argv) < 2: print( '(Error)please provide a filename as the first argument. The file should be in UTF-8 encoding, without BOM.' ) else: text = get_text_data(argv[1]) corpus = np.fromstring(text, dtype='uint8') print('corpus loaded. corpus[0]:', corpus[0], 'text[0]:', text[0]) model = model_builder() feed, predict, loss_stats = feed_gen() sess = ct.get_session() sess.run(tf.global_variables_initializer())
import numpy as np import random import sys import canton as ct from canton import * import tensorflow as tf time_steps = 16 def get_text_data(filename): import codecs with open(filename, 'rb') as f: text = f.read() length = len(text) print('got corpus length:', length) return text def model_builder(): c = ct.Can() gru, d1, d2 = c.add(GRU(256, 256)), c.add(LastDimDense(256, 64)), c.add( LastDimDense(64, 256)) def call(i, starting_state=None): i = gru(i, starting_state=starting_state) shape = tf.shape(i) b, t, d = shape[0], shape[1], shape[2] ending_state = i[:, t - 1, :] i = d1(i) i = Act('elu')(i) i = d2(i) i = Act('softmax')(i) return i, ending_state c.set_function(call) return c def feed_gen(): input_text = tf.placeholder(tf.uint8, shape=[None, None]) input_text_float = tf.one_hot(input_text, depth=256, dtype=tf.float32) xhead = input_text_float[:, :-1] gt = input_text_float[:, 1:] y, _ = model(xhead, starting_state=None) def cross_entropy_loss_per_char(pred, gt): def log2(i): return tf.log(i) * 1.442695 return -tf.reduce_sum(log2(pred + 1e-14) * gt, axis=tf.rank(pred) - 1) loss = ct.cross_entropy_loss(y, gt) loss_per_char = cross_entropy_loss_per_char(y, gt) train_step = tf.train.AdamOptimizer(0.001).minimize(loss, var_list= model.get_weights()) def feed(minibatch): nonlocal train_step, loss, input_text sess = ct.get_session() res = sess.run([loss, train_step], feed_dict={input_text: minibatch}) return res[0] starting_state = tf.placeholder(tf.float32, shape=[None, None]) stateful_y, ending_state = model(input_text_float, starting_state= starting_state) stateful_y_init, ending_state_init = model(input_text_float) def stateful_predict(st, i): sess = ct.get_session() if st is None: res = sess.run([stateful_y_init, ending_state_init], feed_dict= {input_text: i}) else: res = sess.run([stateful_y, ending_state], feed_dict={ input_text: i, starting_state: st}) return res def loss_statistics(i): sess = ct.get_session() res = sess.run([loss_per_char], feed_dict={input_text: i}) return res return feed, stateful_predict, loss_statistics def r(ep=100): length = len(corpus) batch_size = 256 mbl = time_steps * batch_size sr = length - mbl - time_steps - 2 for i in range(ep): print('---------------------iter', i, '/', ep) j = np.random.choice(sr) minibatch = corpus[j:j + mbl] minibatch.shape = [batch_size, time_steps] loss = feed(minibatch) print('loss:', loss) if i % 100 == 0: pass class utf8statemachine: def __init__(self): self.state = 0 self.buffer = [] def flush(self): char = str(bytes(self.buffer), 'utf-8') self.buffer = [] return char def bytein(self, b): if self.state == 0: if b & 128 == 0: self.buffer.append(b) return self.flush() if b & 240 == 224: self.state = 2 self.buffer.append(b) return None if b & 224 == 192: self.state = 1 self.buffer.append(b) return None raise NameError('byte should start with 0b0 or 0b110 or 0b1110') if self.state > 0: if b & 192 == 128: self.state -= 1 self.buffer.append(b) else: raise NameError('byte should start with 0b10') if self.state == 0: return self.flush() return None def show2(length=400): import sys, os asc_buf = np.fromstring('\n', dtype='uint8').reshape(1, 1) starting_state = None sm = utf8statemachine() errors = 0 for i in range(length): stateful_y, ending_state = predict(starting_state, asc_buf) dist = stateful_y[0, 0] code = np.random.choice(256, p=dist) try: result = sm.bytein(code) if result is not None: sys.stdout.write(result) asc_buf[0, 0] = code starting_state = ending_state except NameError: errors += 1 if i % 10 == 0: sys.stdout.flush() pass sys.stdout.flush() print('') print('total UTF-8 decoding errors:', errors) def bsa(text): buf = np.fromstring(text, dtype='uint8').reshape(1, len(text)) loss, = loss_stats(buf) simplified = text[0] print(text[0], 'initial') for i in range(1, len(text)): print(text[i], loss[0, i - 1]) if loss[0, i - 1] < 1: simplified += '-' else: simplified += text[i] print('simplified:', simplified) argv = sys.argv if len(argv) < 2: print( '(Error)please provide a filename as the first argument. The file should be in UTF-8 encoding, without BOM.' ) else: text = get_text_data(argv[1]) corpus = np.fromstring(text, dtype='uint8') print('corpus loaded. corpus[0]:', corpus[0], 'text[0]:', text[0]) model = model_builder() feed, predict, loss_stats = feed_gen() sess = ct.get_session() sess.run(tf.global_variables_initializer())
import numpy as np import random import sys import canton as ct from canton import * import tensorflow as tf time_steps = 16 def get_text_data(filename): import codecs with open(filename,'rb') as f: text = f.read() length = len(text) print('got corpus length:', length) return text def model_builder(): c = ct.Can() gru,d1,d2 = ( c.add(GRU(256,256)), c.add(LastDimDense(256,64)), c.add(LastDimDense(64,256)), ) def call(i,starting_state=None): # i is one-hot encoded i = gru(i,starting_state=starting_state) # (batch, time_steps, 512) shape = tf.shape(i) b,t,d = shape[0],shape[1],shape[2] ending_state = i[:,t-1,:] i = d1(i) i = Act('elu')(i) i = d2(i) i = Act('softmax')(i) return i, ending_state c.set_function(call) return c def feed_gen(): input_text = tf.placeholder(tf.uint8, shape=[None, None]) # [batch, timesteps] input_text_float = tf.one_hot(input_text,depth=256,dtype=tf.float32) xhead = input_text_float[:,:-1] # [batch, 0:timesteps-1, 256] gt = input_text_float[:,1:] # [batch, 1:timesteps, 256] y,_ = model(xhead,starting_state=None) # [batch, 1:timesteps, 256] def cross_entropy_loss_per_char(pred,gt): # last dim is one_hot def log2(i): return tf.log(i) * 1.442695 return - tf.reduce_sum(log2(pred+1e-14) * gt, axis=tf.rank(pred)-1) loss = ct.cross_entropy_loss(y,gt) loss_per_char = cross_entropy_loss_per_char(y,gt) train_step = tf.train.AdamOptimizer(1e-3).minimize( loss,var_list=model.get_weights()) def feed(minibatch): nonlocal train_step,loss,input_text sess = ct.get_session() res = sess.run([loss,train_step],feed_dict={input_text:minibatch}) return res[0] # stateful predict: # if we have starting_state for the RNN starting_state = tf.placeholder(tf.float32, shape=[None, None]) stateful_y, ending_state = \ model(input_text_float,starting_state=starting_state) # if we dont have starting state for the RNN stateful_y_init, ending_state_init = \ model(input_text_float) def stateful_predict(st,i): sess = ct.get_session() if st is None: # if swe dont have starting_state for the RNN res = sess.run([stateful_y_init,ending_state_init], feed_dict={input_text:i}) else: res = sess.run([stateful_y,ending_state], feed_dict={input_text:i,starting_state:st}) return res def loss_statistics(i): sess = ct.get_session() res = sess.run([loss_per_char], feed_dict={input_text:i}) return res return feed, stateful_predict, loss_statistics # if you are using IPython: # run r(1000) to train the model # run show2(1000) to generate text def r(ep=100): length = len(corpus) batch_size = 256 mbl = time_steps * batch_size sr = length - mbl - time_steps - 2 for i in range(ep): print('---------------------iter',i,'/',ep) j = np.random.choice(sr) minibatch = corpus[j:j+mbl] minibatch.shape = [batch_size, time_steps] loss = feed(minibatch) print('loss:',loss) if i%100==0 : pass#show2() class utf8statemachine: # byte(int)s in. character out (when ready). raises error when illegal. def __init__(self): self.state=0 self.buffer = [] def flush(self): char = str(bytes(self.buffer),'utf-8') self.buffer = [] return char def bytein(self,b): # assume b is uint. if self.state==0: # normal mode if b & 0b10000000 == 0:# if first bit is 0 self.buffer.append(b) return self.flush() if b & 0b11110000 == 0b11100000: # if starts with 1110 self.state=2 self.buffer.append(b) return None if b & 0b11100000 == 0b11000000: # if starts with 110 self.state=1 self.buffer.append(b) return None raise NameError('byte should start with 0b0 or 0b110 or 0b1110') if self.state>0: if b & 0b11000000 == 0b10000000:# if starts with 10 self.state -=1 self.buffer.append(b) else: raise NameError('byte should start with 0b10') if self.state==0: return self.flush() return None def show2(length=400): import sys,os asc_buf = np.fromstring('\n',dtype='uint8').reshape(1,1) starting_state = None sm = utf8statemachine() errors = 0 # sequentially generate text out of the GRU for i in range(length): stateful_y, ending_state = predict(starting_state,asc_buf) dist = stateful_y[0,0] # last dimension is the probability distribution code = np.random.choice(256, p=dist) # sample a byte from distribution try: result = sm.bytein(code) # put in utf8 state machine if result is not None: # if the state machine spit out a character sys.stdout.write(result) # write to stdout # accept the result if no utf-8 decoding error detected asc_buf[0,0] = code starting_state = ending_state except NameError: # if decoding error # sys.stdout.write('e') errors += 1 # don't accept the results, try sample again next iteration if i%10==0: sys.stdout.flush() pass sys.stdout.flush() print('') print('total UTF-8 decoding errors:',errors) # bullshit analyzer def bsa(text): buf = np.fromstring(text,dtype='uint8').reshape(1,len(text)) # what is the entropy? start from 2nd byte loss, = loss_stats(buf) simplified = text[0] print(text[0],'initial') for i in range(1,len(text)): print(text[i],loss[0,i-1]) if loss[0,i-1] < 1: # discard words that are less than 1-bit simplified+='-' else: simplified+=text[i] print('simplified:',simplified) argv = sys.argv if len(argv)<2: print('(Error)please provide a filename as the first argument. The file should be in UTF-8 encoding, without BOM.') else: text = get_text_data(argv[1]) # the string corpus = np.fromstring(text,dtype='uint8') # the bytes print('corpus loaded. corpus[0]:',corpus[0], 'text[0]:',text[0]) model = model_builder() feed, predict, loss_stats = feed_gen() sess = ct.get_session() sess.run(tf.global_variables_initializer())
[ 10, 11, 12, 13, 14 ]
2,539
d44c76ff7e94bea6e03324c45d139602c724c7be
<mask token>
<mask token> def password_validation(password): return bool(re.search( '^(?=.*[a-z])(?=.*[A-Z])(?=.*\\d)[a-zA-Z\\d]{6,}$', password))
import re def password_validation(password): return bool(re.search( '^(?=.*[a-z])(?=.*[A-Z])(?=.*\\d)[a-zA-Z\\d]{6,}$', password))
import re def password_validation(password): return bool(re.search("^(?=.*[a-z])(?=.*[A-Z])(?=.*\d)[a-zA-Z\d]{6,}$", password))
null
[ 0, 1, 2, 3 ]
2,540
b27e89ff799f26b87a61254e1c4a5f782fcbe605
class Model: <mask token> def derivedVariablesDependsOn(self, models): return [] <mask token> <mask token> def computeSimplifiedDerivedVariables(self, args, time): return [] def initializeState(self): return [] <mask token> <mask token>
class Model: <mask token> def derivedVariablesDependsOn(self, models): return [] def initializeSimplifiedModel(self, timeHistory, stateHistory, derivedVariablesHistory): return False def computeSimplifiedState(self, args, time): return [] def computeSimplifiedDerivedVariables(self, args, time): return [] def initializeState(self): return [] <mask token> <mask token>
class Model: <mask token> def derivedVariablesDependsOn(self, models): return [] def initializeSimplifiedModel(self, timeHistory, stateHistory, derivedVariablesHistory): return False def computeSimplifiedState(self, args, time): return [] def computeSimplifiedDerivedVariables(self, args, time): return [] def initializeState(self): return [] def computeDerivatives(self, t, state, derived, models): return [] <mask token>
class Model: <mask token> def derivedVariablesDependsOn(self, models): return [] def initializeSimplifiedModel(self, timeHistory, stateHistory, derivedVariablesHistory): return False def computeSimplifiedState(self, args, time): return [] def computeSimplifiedDerivedVariables(self, args, time): return [] def initializeState(self): return [] def computeDerivatives(self, t, state, derived, models): return [] def computeDerivedVariables(self, t, state): return []
class Model: def derivativesDependsOn(self, models): return [] def derivedVariablesDependsOn(self, models): return [] def initializeSimplifiedModel(self, timeHistory, stateHistory, derivedVariablesHistory): return False def computeSimplifiedState(self, args, time): return [] def computeSimplifiedDerivedVariables(self, args, time): return [] def initializeState(self): return [] def computeDerivatives(self, t, state, derived, models): return [] def computeDerivedVariables(self, t, state): return []
[ 4, 6, 7, 8, 10 ]
2,541
638e21e1eb1e2e14244628260d9c7ac179983721
<mask token>
<mask token> while len(s) != 1: count += 1 a = 0 for i in range(len(s)): a += int(s[i]) s = str(a) print(count)
s = input() count = 0 while len(s) != 1: count += 1 a = 0 for i in range(len(s)): a += int(s[i]) s = str(a) print(count)
s=input() count=0 while(len(s)!=1): count+=1 a=0 for i in range(len(s)): a+=int(s[i]) s=str(a) print(count)
null
[ 0, 1, 2, 3 ]
2,542
332e2945e34c861b2132f6b42ef59416a38455a5
<mask token> class TestRoomService(BaseTestCase): <mask token> <mask token> <mask token> <mask token> class TestDeviceService(BaseTestCase): """Test the device service""" def test_get_device(self): device = create_simple_device() with self.client: response = self.client.get('api/devices/2') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 200) self.assertEqual(2, data['data']['id']) self.assertEqual('LED1', data['data']['device_name']) self.assertEqual('simpledevices', data['data']['type']) self.assertIn('success', data['status']) def test_get_invalid_device(self): with self.client: response = self.client.get('api/devices/2') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 404) self.assertIn('fail', data['status']) def test_patch_device(self): device = create_rgb_device() patch_data = {'red': 225} with self.client: response = self.client.patch('/api/devices/1', data=json.dumps( patch_data), content_type='application/json') response_data = json.loads(response.data.decode()) self.assertEqual(response_data['data']['device_name'], 'LED Strip1' ) self.assertEqual(response.status_code, 200) self.assertEqual(response_data['data']['red'], 225) self.assertEqual('rgbleds', response_data['data']['type']) self.assertIn('success', response_data['status']) def test_patch_device_invalid_attribute(self): device = create_rgb_device() patch_data = {'purple': 225} with self.client: response = self.client.patch('/api/devices/1', data=json.dumps( patch_data), content_type='application/json') response_data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 400) self.assertIn('fail', response_data['status']) self.assertIn('Attribute does not exist', response_data['message'])
<mask token> class TestRoomService(BaseTestCase): <mask token> <mask token> <mask token> def test_get_all_rooms(self): room1 = create_room() room2 = create_room(room_name='Kitchen') with self.client: response = self.client.get('api/rooms') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 200) self.assertEqual(len(data['data']['rooms']), 2) self.assertEqual(data['data']['rooms'][0]['room_name'], 'Living Room') self.assertEqual(data['data']['rooms'][1]['room_name'], 'Kitchen') self.assertIn('success', data['status']) class TestDeviceService(BaseTestCase): """Test the device service""" def test_get_device(self): device = create_simple_device() with self.client: response = self.client.get('api/devices/2') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 200) self.assertEqual(2, data['data']['id']) self.assertEqual('LED1', data['data']['device_name']) self.assertEqual('simpledevices', data['data']['type']) self.assertIn('success', data['status']) def test_get_invalid_device(self): with self.client: response = self.client.get('api/devices/2') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 404) self.assertIn('fail', data['status']) def test_patch_device(self): device = create_rgb_device() patch_data = {'red': 225} with self.client: response = self.client.patch('/api/devices/1', data=json.dumps( patch_data), content_type='application/json') response_data = json.loads(response.data.decode()) self.assertEqual(response_data['data']['device_name'], 'LED Strip1' ) self.assertEqual(response.status_code, 200) self.assertEqual(response_data['data']['red'], 225) self.assertEqual('rgbleds', response_data['data']['type']) self.assertIn('success', response_data['status']) def test_patch_device_invalid_attribute(self): device = create_rgb_device() patch_data = {'purple': 225} with self.client: response = self.client.patch('/api/devices/1', data=json.dumps( patch_data), content_type='application/json') response_data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 400) self.assertIn('fail', response_data['status']) self.assertIn('Attribute does not exist', response_data['message'])
<mask token> class TestRoomService(BaseTestCase): <mask token> def test_get_room(self): room = create_room() with self.client: response = self.client.get('/api/rooms/1') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 200) self.assertEqual(1, data['data']['id']) self.assertEqual('Living Room', data['data']['room_name']) self.assertIn('success', data['status']) def test_invalid_room(self): with self.client: response = self.client.get('api/rooms/2') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 404) self.assertIn('fail', data['status']) def test_get_all_rooms(self): room1 = create_room() room2 = create_room(room_name='Kitchen') with self.client: response = self.client.get('api/rooms') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 200) self.assertEqual(len(data['data']['rooms']), 2) self.assertEqual(data['data']['rooms'][0]['room_name'], 'Living Room') self.assertEqual(data['data']['rooms'][1]['room_name'], 'Kitchen') self.assertIn('success', data['status']) class TestDeviceService(BaseTestCase): """Test the device service""" def test_get_device(self): device = create_simple_device() with self.client: response = self.client.get('api/devices/2') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 200) self.assertEqual(2, data['data']['id']) self.assertEqual('LED1', data['data']['device_name']) self.assertEqual('simpledevices', data['data']['type']) self.assertIn('success', data['status']) def test_get_invalid_device(self): with self.client: response = self.client.get('api/devices/2') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 404) self.assertIn('fail', data['status']) def test_patch_device(self): device = create_rgb_device() patch_data = {'red': 225} with self.client: response = self.client.patch('/api/devices/1', data=json.dumps( patch_data), content_type='application/json') response_data = json.loads(response.data.decode()) self.assertEqual(response_data['data']['device_name'], 'LED Strip1' ) self.assertEqual(response.status_code, 200) self.assertEqual(response_data['data']['red'], 225) self.assertEqual('rgbleds', response_data['data']['type']) self.assertIn('success', response_data['status']) def test_patch_device_invalid_attribute(self): device = create_rgb_device() patch_data = {'purple': 225} with self.client: response = self.client.patch('/api/devices/1', data=json.dumps( patch_data), content_type='application/json') response_data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 400) self.assertIn('fail', response_data['status']) self.assertIn('Attribute does not exist', response_data['message'])
import unittest import json from app.tests.base import BaseTestCase from app import db from app.tests.utils import create_room, create_simple_device, create_rgb_device class TestRoomService(BaseTestCase): """Test the room service""" def test_get_room(self): room = create_room() with self.client: response = self.client.get('/api/rooms/1') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 200) self.assertEqual(1, data['data']['id']) self.assertEqual('Living Room', data['data']['room_name']) self.assertIn('success', data['status']) def test_invalid_room(self): with self.client: response = self.client.get('api/rooms/2') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 404) self.assertIn('fail', data['status']) def test_get_all_rooms(self): room1 = create_room() room2 = create_room(room_name='Kitchen') with self.client: response = self.client.get('api/rooms') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 200) self.assertEqual(len(data['data']['rooms']), 2) self.assertEqual(data['data']['rooms'][0]['room_name'], 'Living Room') self.assertEqual(data['data']['rooms'][1]['room_name'], 'Kitchen') self.assertIn('success', data['status']) class TestDeviceService(BaseTestCase): """Test the device service""" def test_get_device(self): device = create_simple_device() with self.client: response = self.client.get('api/devices/2') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 200) self.assertEqual(2, data['data']['id']) self.assertEqual('LED1', data['data']['device_name']) self.assertEqual('simpledevices', data['data']['type']) self.assertIn('success', data['status']) def test_get_invalid_device(self): with self.client: response = self.client.get('api/devices/2') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 404) self.assertIn('fail', data['status']) def test_patch_device(self): device = create_rgb_device() patch_data = {'red': 225} with self.client: response = self.client.patch('/api/devices/1', data=json.dumps( patch_data), content_type='application/json') response_data = json.loads(response.data.decode()) self.assertEqual(response_data['data']['device_name'], 'LED Strip1' ) self.assertEqual(response.status_code, 200) self.assertEqual(response_data['data']['red'], 225) self.assertEqual('rgbleds', response_data['data']['type']) self.assertIn('success', response_data['status']) def test_patch_device_invalid_attribute(self): device = create_rgb_device() patch_data = {'purple': 225} with self.client: response = self.client.patch('/api/devices/1', data=json.dumps( patch_data), content_type='application/json') response_data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 400) self.assertIn('fail', response_data['status']) self.assertIn('Attribute does not exist', response_data['message'])
import unittest import json from app.tests.base import BaseTestCase from app import db from app.tests.utils import create_room, create_simple_device, create_rgb_device class TestRoomService(BaseTestCase): """Test the room service""" def test_get_room(self): room = create_room() with self.client: response = self.client.get('/api/rooms/1') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 200) self.assertEqual(1, data['data']['id']) self.assertEqual('Living Room', data['data']['room_name']) self.assertIn('success', data['status']) def test_invalid_room(self): with self.client: response = self.client.get('api/rooms/2') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 404) self.assertIn('fail', data['status']) def test_get_all_rooms(self): room1 = create_room() room2 = create_room(room_name="Kitchen") with self.client: response = self.client.get('api/rooms') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 200) self.assertEqual(len(data['data']['rooms']), 2) self.assertEqual(data['data']['rooms'][0]['room_name'], 'Living Room') self.assertEqual(data['data']['rooms'][1]['room_name'], 'Kitchen') self.assertIn('success', data['status']) class TestDeviceService(BaseTestCase): """Test the device service""" def test_get_device(self): device = create_simple_device() with self.client: response = self.client.get('api/devices/2') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 200) self.assertEqual(2, data['data']['id']) self.assertEqual('LED1', data['data']['device_name']) self.assertEqual('simpledevices', data['data']['type']) self.assertIn('success', data['status']) def test_get_invalid_device(self): with self.client: response = self.client.get('api/devices/2') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 404) self.assertIn('fail', data['status']) def test_patch_device(self): device = create_rgb_device() patch_data = {'red': 225} with self.client: response = self.client.patch( '/api/devices/1', data=json.dumps(patch_data), content_type='application/json' ) response_data = json.loads(response.data.decode()) self.assertEqual(response_data['data']['device_name'], 'LED Strip1') self.assertEqual(response.status_code, 200) self.assertEqual(response_data['data']['red'], 225) self.assertEqual('rgbleds', response_data['data']['type']) self.assertIn('success', response_data['status']) def test_patch_device_invalid_attribute(self): device = create_rgb_device() patch_data = {'purple': 225} with self.client: response = self.client.patch( '/api/devices/1', data=json.dumps(patch_data), content_type='application/json' ) response_data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 400) self.assertIn('fail', response_data['status']) self.assertIn('Attribute does not exist', response_data['message'])
[ 7, 8, 10, 12, 13 ]
2,543
973fc3a973d952cb0f192221dfda63e255e4a8a0
<mask token>
<mask token> def nextsteps(point): for ns in nextsteps2d(point): yield ns if point in portals: yield portals[point] def should_visit(point): return lines[point[0]][point[1]] == '.' <mask token>
<mask token> LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' lines = sys.stdin.readlines() i_max = len(lines) j_max = len(lines[0]) deltas = [((0, 0), (0, 1), (0, 2)), ((0, 1), (0, 2), (0, 0)), ((0, 0), (1, 0), (2, 0)), ((1, 0), (2, 0), (0, 0))] portals = {} for i in range(i_max - 2): for j in range(j_max - 2): for d in deltas: if lines[i + d[0][0]][j + d[0][1]] in LETTERS and lines[i + d[1][0] ][j + d[1][1]] in LETTERS and lines[i + d[2][0]][j + d[2][1] ] == '.': portal = lines[i + d[0][0]][j + d[0][1]] + lines[i + d[1][0]][ j + d[1][1]] this_end = i + d[2][0], j + d[2][1] if portal in portals: other_end = portals.pop(portal) portals[this_end] = other_end portals[other_end] = this_end else: portals[portal] = this_end distance = {} def nextsteps(point): for ns in nextsteps2d(point): yield ns if point in portals: yield portals[point] def should_visit(point): return lines[point[0]][point[1]] == '.' part1 = bfs_visited(origin=portals['AA'], should_visit=should_visit, nextsteps=nextsteps, destination=portals['ZZ']) print(part1) i, j = portals['AA'] origin = i, j, 0 i, j = portals['ZZ'] destination = i, j, 0 def nextsteps_with_recursion(point): i, j, level = point for i1, j1 in nextsteps2d((i, j)): yield i1, j1, level if (i, j) in portals: if i == 2 or j == 2 or i == i_max - 3 or j == j_max - 4: if level > 0: i, j = portals[i, j] yield i, j, level - 1 else: i, j = portals[i, j] yield i, j, level + 1 part2 = bfs_visited(origin=origin, should_visit=should_visit, nextsteps= nextsteps_with_recursion, destination=destination) print(part2)
import sys import queue as q from utils import * LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' lines = sys.stdin.readlines() i_max = len(lines) j_max = len(lines[0]) deltas = [((0, 0), (0, 1), (0, 2)), ((0, 1), (0, 2), (0, 0)), ((0, 0), (1, 0), (2, 0)), ((1, 0), (2, 0), (0, 0))] portals = {} for i in range(i_max - 2): for j in range(j_max - 2): for d in deltas: if lines[i + d[0][0]][j + d[0][1]] in LETTERS and lines[i + d[1][0] ][j + d[1][1]] in LETTERS and lines[i + d[2][0]][j + d[2][1] ] == '.': portal = lines[i + d[0][0]][j + d[0][1]] + lines[i + d[1][0]][ j + d[1][1]] this_end = i + d[2][0], j + d[2][1] if portal in portals: other_end = portals.pop(portal) portals[this_end] = other_end portals[other_end] = this_end else: portals[portal] = this_end distance = {} def nextsteps(point): for ns in nextsteps2d(point): yield ns if point in portals: yield portals[point] def should_visit(point): return lines[point[0]][point[1]] == '.' part1 = bfs_visited(origin=portals['AA'], should_visit=should_visit, nextsteps=nextsteps, destination=portals['ZZ']) print(part1) i, j = portals['AA'] origin = i, j, 0 i, j = portals['ZZ'] destination = i, j, 0 def nextsteps_with_recursion(point): i, j, level = point for i1, j1 in nextsteps2d((i, j)): yield i1, j1, level if (i, j) in portals: if i == 2 or j == 2 or i == i_max - 3 or j == j_max - 4: if level > 0: i, j = portals[i, j] yield i, j, level - 1 else: i, j = portals[i, j] yield i, j, level + 1 part2 = bfs_visited(origin=origin, should_visit=should_visit, nextsteps= nextsteps_with_recursion, destination=destination) print(part2)
import sys import queue as q from utils import * LETTERS = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' lines = sys.stdin.readlines() i_max = len(lines) j_max = len(lines[0]) deltas = [ ((0, 0), (0, 1), (0, 2)), ((0, 1), (0, 2), (0, 0)), ((0, 0), (1, 0), (2, 0)), ((1, 0), (2, 0), (0, 0)), ] portals = {} for i in range(i_max - 2): for j in range(j_max - 2): for d in deltas: if (lines[i+d[0][0]][j+d[0][1]] in LETTERS and lines[i+d[1][0]][j+d[1][1]] in LETTERS and lines[i+d[2][0]][j+d[2][1]] == '.'): portal = lines[i+d[0][0]][j+d[0][1]] + lines[i+d[1][0]][j+d[1][1]] this_end = (i+d[2][0], j+d[2][1]) if portal in portals: other_end = portals.pop(portal) portals[this_end] = other_end portals[other_end] = this_end else: portals[portal] = this_end # Part I distance = {} def nextsteps(point): for ns in nextsteps2d(point): yield ns if point in portals: yield portals[point] def should_visit(point): return lines[point[0]][point[1]] == '.' part1 = bfs_visited( origin=portals['AA'], should_visit=should_visit, nextsteps=nextsteps, destination=portals['ZZ']) print(part1) # Part II i, j = portals['AA'] origin = (i, j, 0) i, j = portals['ZZ'] destination = (i, j, 0) def nextsteps_with_recursion(point): i, j, level = point for i1, j1 in nextsteps2d((i, j)): yield (i1, j1, level) if (i, j) in portals: if i == 2 or j == 2 or i == i_max - 3 or j == j_max - 4: if level > 0: i, j = portals[i, j] yield (i, j, level-1) else: i, j = portals[i, j] yield (i, j, level+1) part2 = bfs_visited( origin=origin, should_visit=should_visit, nextsteps=nextsteps_with_recursion, destination=destination) print(part2)
[ 0, 2, 5, 6, 7 ]
2,544
d3382ead1d98ba2fb15fe3ea277430f1bb07131c
<mask token>
<mask token> print(TSA, V)
l, w, h = map(int, input().split()) TSA = 2 * (l * w + w * h + h * l) V = l * w * h print(TSA, V)
l,w,h=map(int,input().split()) TSA = 2*(l*w + w*h + h*l) V = l*w*h print(TSA,V)
null
[ 0, 1, 2, 3 ]
2,545
addf92a3d4060fa9464a802a4a4378cf9eeadde4
<mask token> class DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos(TeaModel): def __init__(self, value=None, code=None): self.value = value self.code = code <mask token> def to_map(self): _map = super(DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos, self).to_map() if _map is not None: return _map result = dict() if self.value is not None: result['Value'] = self.value if self.code is not None: result['Code'] = self.code return result def from_map(self, m=None): m = m or dict() if m.get('Value') is not None: self.value = m.get('Value') if m.get('Code') is not None: self.code = m.get('Code') return self class DescribeInstanceSpecInfoResponseBody(TeaModel): def __init__(self, instance_spec_infos=None, request_id=None, instance_id=None, version=None, expire_time=None): self.instance_spec_infos = instance_spec_infos self.request_id = request_id self.instance_id = instance_id self.version = version self.expire_time = expire_time def validate(self): if self.instance_spec_infos: for k in self.instance_spec_infos: if k: k.validate() def to_map(self): _map = super(DescribeInstanceSpecInfoResponseBody, self).to_map() if _map is not None: return _map result = dict() result['InstanceSpecInfos'] = [] if self.instance_spec_infos is not None: for k in self.instance_spec_infos: result['InstanceSpecInfos'].append(k.to_map() if k else None) if self.request_id is not None: result['RequestId'] = self.request_id if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.version is not None: result['Version'] = self.version if self.expire_time is not None: result['ExpireTime'] = self.expire_time return result def from_map(self, m=None): m = m or dict() self.instance_spec_infos = [] if m.get('InstanceSpecInfos') is not None: for k in m.get('InstanceSpecInfos'): temp_model = ( DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos()) self.instance_spec_infos.append(temp_model.from_map(k)) if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Version') is not None: self.version = m.get('Version') if m.get('ExpireTime') is not None: self.expire_time = m.get('ExpireTime') return self class DescribeInstanceSpecInfoResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeInstanceSpecInfoResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeInstanceSpecInfoResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeLogServiceStatusRequest(TeaModel): def __init__(self, instance_id=None, region=None, resource_group_id= None, page_number=None, page_size=None, domain_names=None): self.instance_id = instance_id self.region = region self.resource_group_id = resource_group_id self.page_number = page_number self.page_size = page_size self.domain_names = domain_names def validate(self): pass def to_map(self): _map = super(DescribeLogServiceStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.region is not None: result['Region'] = self.region if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id if self.page_number is not None: result['PageNumber'] = self.page_number if self.page_size is not None: result['PageSize'] = self.page_size if self.domain_names is not None: result['DomainNames'] = self.domain_names return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Region') is not None: self.region = m.get('Region') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('DomainNames') is not None: self.domain_names = m.get('DomainNames') return self class DescribeLogServiceStatusResponseBodyDomainStatus(TeaModel): def __init__(self, domain=None, sls_log_active=None): self.domain = domain self.sls_log_active = sls_log_active def validate(self): pass def to_map(self): _map = super(DescribeLogServiceStatusResponseBodyDomainStatus, self ).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.sls_log_active is not None: result['SlsLogActive'] = self.sls_log_active return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('SlsLogActive') is not None: self.sls_log_active = m.get('SlsLogActive') return self class DescribeLogServiceStatusResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, domain_status=None): self.total_count = total_count self.request_id = request_id self.domain_status = domain_status def validate(self): if self.domain_status: for k in self.domain_status: if k: k.validate() def to_map(self): _map = super(DescribeLogServiceStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id result['DomainStatus'] = [] if self.domain_status is not None: for k in self.domain_status: result['DomainStatus'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.domain_status = [] if m.get('DomainStatus') is not None: for k in m.get('DomainStatus'): temp_model = DescribeLogServiceStatusResponseBodyDomainStatus() self.domain_status.append(temp_model.from_map(k)) return self class DescribeLogServiceStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeLogServiceStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeLogServiceStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleCodeConfigRequest(TeaModel): def __init__(self, source_ip=None, lang=None, code_type=None, code_value=None, instance_id=None, resource_group_id=None): self.source_ip = source_ip self.lang = lang self.code_type = code_type self.code_value = code_value self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleCodeConfigRequest, self).to_map() if _map is not None: return _map result = dict() if self.source_ip is not None: result['SourceIp'] = self.source_ip if self.lang is not None: result['Lang'] = self.lang if self.code_type is not None: result['CodeType'] = self.code_type if self.code_value is not None: result['CodeValue'] = self.code_value if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('SourceIp') is not None: self.source_ip = m.get('SourceIp') if m.get('Lang') is not None: self.lang = m.get('Lang') if m.get('CodeType') is not None: self.code_type = m.get('CodeType') if m.get('CodeValue') is not None: self.code_value = m.get('CodeValue') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleCodeConfigResponseBody(TeaModel): def __init__(self, request_id=None, code_configs=None): self.request_id = request_id self.code_configs = code_configs def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleCodeConfigResponseBody, self ).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code_configs is not None: result['CodeConfigs'] = self.code_configs return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('CodeConfigs') is not None: self.code_configs = m.get('CodeConfigs') return self class DescribeProtectionModuleCodeConfigResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleCodeConfigResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleCodeConfigResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleModeRequest(TeaModel): def __init__(self, domain=None, defense_type=None, instance_id=None, resource_group_id=None): self.domain = domain self.defense_type = defense_type self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleModeRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleModeResponseBody(TeaModel): def __init__(self, learn_status=None, request_id=None, mode=None): self.learn_status = learn_status self.request_id = request_id self.mode = mode def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleModeResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.learn_status is not None: result['LearnStatus'] = self.learn_status if self.request_id is not None: result['RequestId'] = self.request_id if self.mode is not None: result['Mode'] = self.mode return result def from_map(self, m=None): m = m or dict() if m.get('LearnStatus') is not None: self.learn_status = m.get('LearnStatus') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Mode') is not None: self.mode = m.get('Mode') return self class DescribeProtectionModuleModeResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleModeResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleModeResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleRulesRequest(TeaModel): def __init__(self, page_size=None, page_number=None, domain=None, defense_type=None, query=None, lang=None, instance_id=None, resource_group_id=None): self.page_size = page_size self.page_number = page_number self.domain = domain self.defense_type = defense_type self.query = query self.lang = lang self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleRulesRequest, self).to_map() if _map is not None: return _map result = dict() if self.page_size is not None: result['PageSize'] = self.page_size if self.page_number is not None: result['PageNumber'] = self.page_number if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.query is not None: result['Query'] = self.query if self.lang is not None: result['Lang'] = self.lang if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Query') is not None: self.query = m.get('Query') if m.get('Lang') is not None: self.lang = m.get('Lang') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleRulesResponseBodyRules(TeaModel): def __init__(self, status=None, time=None, version=None, content=None, rule_id=None): self.status = status self.time = time self.version = version self.content = content self.rule_id = rule_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleRulesResponseBodyRules, self ).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.time is not None: result['Time'] = self.time if self.version is not None: result['Version'] = self.version if self.content is not None: result['Content'] = self.content if self.rule_id is not None: result['RuleId'] = self.rule_id return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('Time') is not None: self.time = m.get('Time') if m.get('Version') is not None: self.version = m.get('Version') if m.get('Content') is not None: self.content = m.get('Content') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') return self class DescribeProtectionModuleRulesResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, rules=None): self.total_count = total_count self.request_id = request_id self.rules = rules def validate(self): if self.rules: for k in self.rules: if k: k.validate() def to_map(self): _map = super(DescribeProtectionModuleRulesResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id result['Rules'] = [] if self.rules is not None: for k in self.rules: result['Rules'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.rules = [] if m.get('Rules') is not None: for k in m.get('Rules'): temp_model = DescribeProtectionModuleRulesResponseBodyRules() self.rules.append(temp_model.from_map(k)) return self class DescribeProtectionModuleRulesResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleRulesResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleRulesResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class DescribeProtectionModuleStatusResponseBody(TeaModel): def __init__(self, request_id=None, module_status=None): self.request_id = request_id self.module_status = module_status def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.module_status is not None: result['ModuleStatus'] = self.module_status return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ModuleStatus') is not None: self.module_status = m.get('ModuleStatus') return self class DescribeProtectionModuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeWafSourceIpSegmentRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeWafSourceIpSegmentRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeWafSourceIpSegmentResponseBody(TeaModel): def __init__(self, request_id=None, ip_v6s=None, ips=None): self.request_id = request_id self.ip_v6s = ip_v6s self.ips = ips def validate(self): pass def to_map(self): _map = super(DescribeWafSourceIpSegmentResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.ip_v6s is not None: result['IpV6s'] = self.ip_v6s if self.ips is not None: result['Ips'] = self.ips return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('IpV6s') is not None: self.ip_v6s = m.get('IpV6s') if m.get('Ips') is not None: self.ips = m.get('Ips') return self class DescribeWafSourceIpSegmentResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeWafSourceIpSegmentResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeWafSourceIpSegmentResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyDomainRequest(TeaModel): def __init__(self, instance_id=None, domain=None, source_ips=None, load_balancing=None, http_port=None, https_port=None, http_2port= None, https_redirect=None, http_to_user_ip=None, is_access_product= None, log_headers=None, cluster_type=None, connection_time=None, read_time=None, write_time=None, access_type=None, cloud_native_instances=None, ip_follow_status=None): self.instance_id = instance_id self.domain = domain self.source_ips = source_ips self.load_balancing = load_balancing self.http_port = http_port self.https_port = https_port self.http_2port = http_2port self.https_redirect = https_redirect self.http_to_user_ip = http_to_user_ip self.is_access_product = is_access_product self.log_headers = log_headers self.cluster_type = cluster_type self.connection_time = connection_time self.read_time = read_time self.write_time = write_time self.access_type = access_type self.cloud_native_instances = cloud_native_instances self.ip_follow_status = ip_follow_status def validate(self): pass def to_map(self): _map = super(ModifyDomainRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.source_ips is not None: result['SourceIps'] = self.source_ips if self.load_balancing is not None: result['LoadBalancing'] = self.load_balancing if self.http_port is not None: result['HttpPort'] = self.http_port if self.https_port is not None: result['HttpsPort'] = self.https_port if self.http_2port is not None: result['Http2Port'] = self.http_2port if self.https_redirect is not None: result['HttpsRedirect'] = self.https_redirect if self.http_to_user_ip is not None: result['HttpToUserIp'] = self.http_to_user_ip if self.is_access_product is not None: result['IsAccessProduct'] = self.is_access_product if self.log_headers is not None: result['LogHeaders'] = self.log_headers if self.cluster_type is not None: result['ClusterType'] = self.cluster_type if self.connection_time is not None: result['ConnectionTime'] = self.connection_time if self.read_time is not None: result['ReadTime'] = self.read_time if self.write_time is not None: result['WriteTime'] = self.write_time if self.access_type is not None: result['AccessType'] = self.access_type if self.cloud_native_instances is not None: result['CloudNativeInstances'] = self.cloud_native_instances if self.ip_follow_status is not None: result['IpFollowStatus'] = self.ip_follow_status return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('SourceIps') is not None: self.source_ips = m.get('SourceIps') if m.get('LoadBalancing') is not None: self.load_balancing = m.get('LoadBalancing') if m.get('HttpPort') is not None: self.http_port = m.get('HttpPort') if m.get('HttpsPort') is not None: self.https_port = m.get('HttpsPort') if m.get('Http2Port') is not None: self.http_2port = m.get('Http2Port') if m.get('HttpsRedirect') is not None: self.https_redirect = m.get('HttpsRedirect') if m.get('HttpToUserIp') is not None: self.http_to_user_ip = m.get('HttpToUserIp') if m.get('IsAccessProduct') is not None: self.is_access_product = m.get('IsAccessProduct') if m.get('LogHeaders') is not None: self.log_headers = m.get('LogHeaders') if m.get('ClusterType') is not None: self.cluster_type = m.get('ClusterType') if m.get('ConnectionTime') is not None: self.connection_time = m.get('ConnectionTime') if m.get('ReadTime') is not None: self.read_time = m.get('ReadTime') if m.get('WriteTime') is not None: self.write_time = m.get('WriteTime') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('CloudNativeInstances') is not None: self.cloud_native_instances = m.get('CloudNativeInstances') if m.get('IpFollowStatus') is not None: self.ip_follow_status = m.get('IpFollowStatus') return self class ModifyDomainResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyDomainResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyDomainResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyDomainResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyDomainResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyDomainIpv6StatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id self.domain = domain self.enabled = enabled def validate(self): pass def to_map(self): _map = super(ModifyDomainIpv6StatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyDomainIpv6StatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyDomainIpv6StatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyDomainIpv6StatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyDomainIpv6StatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyDomainIpv6StatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyLogRetrievalStatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id self.domain = domain self.enabled = enabled def validate(self): pass def to_map(self): _map = super(ModifyLogRetrievalStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyLogRetrievalStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyLogRetrievalStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyLogRetrievalStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyLogRetrievalStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyLogRetrievalStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyLogServiceStatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id self.domain = domain self.enabled = enabled def validate(self): pass def to_map(self): _map = super(ModifyLogServiceStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyLogServiceStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyLogServiceStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyLogServiceStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyLogServiceStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyLogServiceStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleModeRequest(TeaModel): def __init__(self, domain=None, defense_type=None, mode=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.mode = mode self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleModeRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.mode is not None: result['Mode'] = self.mode if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Mode') is not None: self.mode = m.get('Mode') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleModeResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleModeResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleModeResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleModeResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleModeResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleRuleRequest(TeaModel): def __init__(self, domain=None, defense_type=None, rule=None, rule_id= None, lock_version=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.rule = rule self.rule_id = rule_id self.lock_version = lock_version self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleRuleRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.rule is not None: result['Rule'] = self.rule if self.rule_id is not None: result['RuleId'] = self.rule_id if self.lock_version is not None: result['LockVersion'] = self.lock_version if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Rule') is not None: self.rule = m.get('Rule') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('LockVersion') is not None: self.lock_version = m.get('LockVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleRuleResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleRuleResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleRuleResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleRuleResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleRuleResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, module_status=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.module_status = module_status self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.module_status is not None: result['ModuleStatus'] = self.module_status if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('ModuleStatus') is not None: self.module_status = m.get('ModuleStatus') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionRuleCacheStatusRequest(TeaModel): def __init__(self, domain=None, rule_id=None, defense_type=None, instance_id=None): self.domain = domain self.rule_id = rule_id self.defense_type = defense_type self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleCacheStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.rule_id is not None: result['RuleId'] = self.rule_id if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionRuleCacheStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleCacheStatusResponseBody, self).to_map( ) if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionRuleCacheStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionRuleCacheStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionRuleCacheStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionRuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, rule_id=None, rule_status=None, lock_version=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.rule_id = rule_id self.rule_status = rule_status self.lock_version = lock_version self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.rule_id is not None: result['RuleId'] = self.rule_id if self.rule_status is not None: result['RuleStatus'] = self.rule_status if self.lock_version is not None: result['LockVersion'] = self.lock_version if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('RuleStatus') is not None: self.rule_status = m.get('RuleStatus') if m.get('LockVersion') is not None: self.lock_version = m.get('LockVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionRuleStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionRuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionRuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionRuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class SetDomainRuleGroupRequest(TeaModel): def __init__(self, domains=None, rule_group_id=None, waf_version=None, instance_id=None, resource_group_id=None): self.domains = domains self.rule_group_id = rule_group_id self.waf_version = waf_version self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(SetDomainRuleGroupRequest, self).to_map() if _map is not None: return _map result = dict() if self.domains is not None: result['Domains'] = self.domains if self.rule_group_id is not None: result['RuleGroupId'] = self.rule_group_id if self.waf_version is not None: result['WafVersion'] = self.waf_version if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('Domains') is not None: self.domains = m.get('Domains') if m.get('RuleGroupId') is not None: self.rule_group_id = m.get('RuleGroupId') if m.get('WafVersion') is not None: self.waf_version = m.get('WafVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class SetDomainRuleGroupResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(SetDomainRuleGroupResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class SetDomainRuleGroupResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(SetDomainRuleGroupResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = SetDomainRuleGroupResponseBody() self.body = temp_model.from_map(m['body']) return self
<mask token> class DescribeInstanceInfoResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeInstanceInfoResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeInstanceInfoResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeInstanceInfosRequest(TeaModel): def __init__(self, instance_source=None, instance_id=None, resource_group_id=None): self.instance_source = instance_source self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeInstanceInfosRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_source is not None: result['InstanceSource'] = self.instance_source if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceSource') is not None: self.instance_source = m.get('InstanceSource') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeInstanceInfosResponseBodyInstanceInfos(TeaModel): def __init__(self, status=None, end_date=None, remain_day=None, region= None, pay_type=None, in_debt=None, instance_id=None, subscription_type=None, trial=None): self.status = status self.end_date = end_date self.remain_day = remain_day self.region = region self.pay_type = pay_type self.in_debt = in_debt self.instance_id = instance_id self.subscription_type = subscription_type self.trial = trial def validate(self): pass def to_map(self): _map = super(DescribeInstanceInfosResponseBodyInstanceInfos, self ).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.end_date is not None: result['EndDate'] = self.end_date if self.remain_day is not None: result['RemainDay'] = self.remain_day if self.region is not None: result['Region'] = self.region if self.pay_type is not None: result['PayType'] = self.pay_type if self.in_debt is not None: result['InDebt'] = self.in_debt if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.subscription_type is not None: result['SubscriptionType'] = self.subscription_type if self.trial is not None: result['Trial'] = self.trial return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('EndDate') is not None: self.end_date = m.get('EndDate') if m.get('RemainDay') is not None: self.remain_day = m.get('RemainDay') if m.get('Region') is not None: self.region = m.get('Region') if m.get('PayType') is not None: self.pay_type = m.get('PayType') if m.get('InDebt') is not None: self.in_debt = m.get('InDebt') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('SubscriptionType') is not None: self.subscription_type = m.get('SubscriptionType') if m.get('Trial') is not None: self.trial = m.get('Trial') return self class DescribeInstanceInfosResponseBody(TeaModel): def __init__(self, request_id=None, instance_infos=None): self.request_id = request_id self.instance_infos = instance_infos def validate(self): if self.instance_infos: for k in self.instance_infos: if k: k.validate() def to_map(self): _map = super(DescribeInstanceInfosResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id result['InstanceInfos'] = [] if self.instance_infos is not None: for k in self.instance_infos: result['InstanceInfos'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.instance_infos = [] if m.get('InstanceInfos') is not None: for k in m.get('InstanceInfos'): temp_model = DescribeInstanceInfosResponseBodyInstanceInfos() self.instance_infos.append(temp_model.from_map(k)) return self class DescribeInstanceInfosResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeInstanceInfosResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeInstanceInfosResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeInstanceSpecInfoRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeInstanceSpecInfoRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos(TeaModel): def __init__(self, value=None, code=None): self.value = value self.code = code def validate(self): pass def to_map(self): _map = super(DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos, self).to_map() if _map is not None: return _map result = dict() if self.value is not None: result['Value'] = self.value if self.code is not None: result['Code'] = self.code return result def from_map(self, m=None): m = m or dict() if m.get('Value') is not None: self.value = m.get('Value') if m.get('Code') is not None: self.code = m.get('Code') return self class DescribeInstanceSpecInfoResponseBody(TeaModel): def __init__(self, instance_spec_infos=None, request_id=None, instance_id=None, version=None, expire_time=None): self.instance_spec_infos = instance_spec_infos self.request_id = request_id self.instance_id = instance_id self.version = version self.expire_time = expire_time def validate(self): if self.instance_spec_infos: for k in self.instance_spec_infos: if k: k.validate() def to_map(self): _map = super(DescribeInstanceSpecInfoResponseBody, self).to_map() if _map is not None: return _map result = dict() result['InstanceSpecInfos'] = [] if self.instance_spec_infos is not None: for k in self.instance_spec_infos: result['InstanceSpecInfos'].append(k.to_map() if k else None) if self.request_id is not None: result['RequestId'] = self.request_id if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.version is not None: result['Version'] = self.version if self.expire_time is not None: result['ExpireTime'] = self.expire_time return result def from_map(self, m=None): m = m or dict() self.instance_spec_infos = [] if m.get('InstanceSpecInfos') is not None: for k in m.get('InstanceSpecInfos'): temp_model = ( DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos()) self.instance_spec_infos.append(temp_model.from_map(k)) if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Version') is not None: self.version = m.get('Version') if m.get('ExpireTime') is not None: self.expire_time = m.get('ExpireTime') return self class DescribeInstanceSpecInfoResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeInstanceSpecInfoResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeInstanceSpecInfoResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeLogServiceStatusRequest(TeaModel): def __init__(self, instance_id=None, region=None, resource_group_id= None, page_number=None, page_size=None, domain_names=None): self.instance_id = instance_id self.region = region self.resource_group_id = resource_group_id self.page_number = page_number self.page_size = page_size self.domain_names = domain_names def validate(self): pass def to_map(self): _map = super(DescribeLogServiceStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.region is not None: result['Region'] = self.region if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id if self.page_number is not None: result['PageNumber'] = self.page_number if self.page_size is not None: result['PageSize'] = self.page_size if self.domain_names is not None: result['DomainNames'] = self.domain_names return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Region') is not None: self.region = m.get('Region') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('DomainNames') is not None: self.domain_names = m.get('DomainNames') return self class DescribeLogServiceStatusResponseBodyDomainStatus(TeaModel): def __init__(self, domain=None, sls_log_active=None): self.domain = domain self.sls_log_active = sls_log_active def validate(self): pass def to_map(self): _map = super(DescribeLogServiceStatusResponseBodyDomainStatus, self ).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.sls_log_active is not None: result['SlsLogActive'] = self.sls_log_active return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('SlsLogActive') is not None: self.sls_log_active = m.get('SlsLogActive') return self class DescribeLogServiceStatusResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, domain_status=None): self.total_count = total_count self.request_id = request_id self.domain_status = domain_status def validate(self): if self.domain_status: for k in self.domain_status: if k: k.validate() def to_map(self): _map = super(DescribeLogServiceStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id result['DomainStatus'] = [] if self.domain_status is not None: for k in self.domain_status: result['DomainStatus'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.domain_status = [] if m.get('DomainStatus') is not None: for k in m.get('DomainStatus'): temp_model = DescribeLogServiceStatusResponseBodyDomainStatus() self.domain_status.append(temp_model.from_map(k)) return self class DescribeLogServiceStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeLogServiceStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeLogServiceStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleCodeConfigRequest(TeaModel): def __init__(self, source_ip=None, lang=None, code_type=None, code_value=None, instance_id=None, resource_group_id=None): self.source_ip = source_ip self.lang = lang self.code_type = code_type self.code_value = code_value self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleCodeConfigRequest, self).to_map() if _map is not None: return _map result = dict() if self.source_ip is not None: result['SourceIp'] = self.source_ip if self.lang is not None: result['Lang'] = self.lang if self.code_type is not None: result['CodeType'] = self.code_type if self.code_value is not None: result['CodeValue'] = self.code_value if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('SourceIp') is not None: self.source_ip = m.get('SourceIp') if m.get('Lang') is not None: self.lang = m.get('Lang') if m.get('CodeType') is not None: self.code_type = m.get('CodeType') if m.get('CodeValue') is not None: self.code_value = m.get('CodeValue') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleCodeConfigResponseBody(TeaModel): def __init__(self, request_id=None, code_configs=None): self.request_id = request_id self.code_configs = code_configs def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleCodeConfigResponseBody, self ).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code_configs is not None: result['CodeConfigs'] = self.code_configs return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('CodeConfigs') is not None: self.code_configs = m.get('CodeConfigs') return self class DescribeProtectionModuleCodeConfigResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleCodeConfigResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleCodeConfigResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleModeRequest(TeaModel): def __init__(self, domain=None, defense_type=None, instance_id=None, resource_group_id=None): self.domain = domain self.defense_type = defense_type self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleModeRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleModeResponseBody(TeaModel): def __init__(self, learn_status=None, request_id=None, mode=None): self.learn_status = learn_status self.request_id = request_id self.mode = mode def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleModeResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.learn_status is not None: result['LearnStatus'] = self.learn_status if self.request_id is not None: result['RequestId'] = self.request_id if self.mode is not None: result['Mode'] = self.mode return result def from_map(self, m=None): m = m or dict() if m.get('LearnStatus') is not None: self.learn_status = m.get('LearnStatus') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Mode') is not None: self.mode = m.get('Mode') return self class DescribeProtectionModuleModeResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleModeResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleModeResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleRulesRequest(TeaModel): def __init__(self, page_size=None, page_number=None, domain=None, defense_type=None, query=None, lang=None, instance_id=None, resource_group_id=None): self.page_size = page_size self.page_number = page_number self.domain = domain self.defense_type = defense_type self.query = query self.lang = lang self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleRulesRequest, self).to_map() if _map is not None: return _map result = dict() if self.page_size is not None: result['PageSize'] = self.page_size if self.page_number is not None: result['PageNumber'] = self.page_number if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.query is not None: result['Query'] = self.query if self.lang is not None: result['Lang'] = self.lang if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Query') is not None: self.query = m.get('Query') if m.get('Lang') is not None: self.lang = m.get('Lang') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleRulesResponseBodyRules(TeaModel): def __init__(self, status=None, time=None, version=None, content=None, rule_id=None): self.status = status self.time = time self.version = version self.content = content self.rule_id = rule_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleRulesResponseBodyRules, self ).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.time is not None: result['Time'] = self.time if self.version is not None: result['Version'] = self.version if self.content is not None: result['Content'] = self.content if self.rule_id is not None: result['RuleId'] = self.rule_id return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('Time') is not None: self.time = m.get('Time') if m.get('Version') is not None: self.version = m.get('Version') if m.get('Content') is not None: self.content = m.get('Content') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') return self class DescribeProtectionModuleRulesResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, rules=None): self.total_count = total_count self.request_id = request_id self.rules = rules def validate(self): if self.rules: for k in self.rules: if k: k.validate() def to_map(self): _map = super(DescribeProtectionModuleRulesResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id result['Rules'] = [] if self.rules is not None: for k in self.rules: result['Rules'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.rules = [] if m.get('Rules') is not None: for k in m.get('Rules'): temp_model = DescribeProtectionModuleRulesResponseBodyRules() self.rules.append(temp_model.from_map(k)) return self class DescribeProtectionModuleRulesResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleRulesResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleRulesResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class DescribeProtectionModuleStatusResponseBody(TeaModel): def __init__(self, request_id=None, module_status=None): self.request_id = request_id self.module_status = module_status def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.module_status is not None: result['ModuleStatus'] = self.module_status return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ModuleStatus') is not None: self.module_status = m.get('ModuleStatus') return self class DescribeProtectionModuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeWafSourceIpSegmentRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeWafSourceIpSegmentRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeWafSourceIpSegmentResponseBody(TeaModel): def __init__(self, request_id=None, ip_v6s=None, ips=None): self.request_id = request_id self.ip_v6s = ip_v6s self.ips = ips def validate(self): pass def to_map(self): _map = super(DescribeWafSourceIpSegmentResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.ip_v6s is not None: result['IpV6s'] = self.ip_v6s if self.ips is not None: result['Ips'] = self.ips return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('IpV6s') is not None: self.ip_v6s = m.get('IpV6s') if m.get('Ips') is not None: self.ips = m.get('Ips') return self class DescribeWafSourceIpSegmentResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeWafSourceIpSegmentResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeWafSourceIpSegmentResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyDomainRequest(TeaModel): def __init__(self, instance_id=None, domain=None, source_ips=None, load_balancing=None, http_port=None, https_port=None, http_2port= None, https_redirect=None, http_to_user_ip=None, is_access_product= None, log_headers=None, cluster_type=None, connection_time=None, read_time=None, write_time=None, access_type=None, cloud_native_instances=None, ip_follow_status=None): self.instance_id = instance_id self.domain = domain self.source_ips = source_ips self.load_balancing = load_balancing self.http_port = http_port self.https_port = https_port self.http_2port = http_2port self.https_redirect = https_redirect self.http_to_user_ip = http_to_user_ip self.is_access_product = is_access_product self.log_headers = log_headers self.cluster_type = cluster_type self.connection_time = connection_time self.read_time = read_time self.write_time = write_time self.access_type = access_type self.cloud_native_instances = cloud_native_instances self.ip_follow_status = ip_follow_status def validate(self): pass def to_map(self): _map = super(ModifyDomainRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.source_ips is not None: result['SourceIps'] = self.source_ips if self.load_balancing is not None: result['LoadBalancing'] = self.load_balancing if self.http_port is not None: result['HttpPort'] = self.http_port if self.https_port is not None: result['HttpsPort'] = self.https_port if self.http_2port is not None: result['Http2Port'] = self.http_2port if self.https_redirect is not None: result['HttpsRedirect'] = self.https_redirect if self.http_to_user_ip is not None: result['HttpToUserIp'] = self.http_to_user_ip if self.is_access_product is not None: result['IsAccessProduct'] = self.is_access_product if self.log_headers is not None: result['LogHeaders'] = self.log_headers if self.cluster_type is not None: result['ClusterType'] = self.cluster_type if self.connection_time is not None: result['ConnectionTime'] = self.connection_time if self.read_time is not None: result['ReadTime'] = self.read_time if self.write_time is not None: result['WriteTime'] = self.write_time if self.access_type is not None: result['AccessType'] = self.access_type if self.cloud_native_instances is not None: result['CloudNativeInstances'] = self.cloud_native_instances if self.ip_follow_status is not None: result['IpFollowStatus'] = self.ip_follow_status return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('SourceIps') is not None: self.source_ips = m.get('SourceIps') if m.get('LoadBalancing') is not None: self.load_balancing = m.get('LoadBalancing') if m.get('HttpPort') is not None: self.http_port = m.get('HttpPort') if m.get('HttpsPort') is not None: self.https_port = m.get('HttpsPort') if m.get('Http2Port') is not None: self.http_2port = m.get('Http2Port') if m.get('HttpsRedirect') is not None: self.https_redirect = m.get('HttpsRedirect') if m.get('HttpToUserIp') is not None: self.http_to_user_ip = m.get('HttpToUserIp') if m.get('IsAccessProduct') is not None: self.is_access_product = m.get('IsAccessProduct') if m.get('LogHeaders') is not None: self.log_headers = m.get('LogHeaders') if m.get('ClusterType') is not None: self.cluster_type = m.get('ClusterType') if m.get('ConnectionTime') is not None: self.connection_time = m.get('ConnectionTime') if m.get('ReadTime') is not None: self.read_time = m.get('ReadTime') if m.get('WriteTime') is not None: self.write_time = m.get('WriteTime') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('CloudNativeInstances') is not None: self.cloud_native_instances = m.get('CloudNativeInstances') if m.get('IpFollowStatus') is not None: self.ip_follow_status = m.get('IpFollowStatus') return self class ModifyDomainResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyDomainResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyDomainResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyDomainResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyDomainResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyDomainIpv6StatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id self.domain = domain self.enabled = enabled def validate(self): pass def to_map(self): _map = super(ModifyDomainIpv6StatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyDomainIpv6StatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyDomainIpv6StatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyDomainIpv6StatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyDomainIpv6StatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyDomainIpv6StatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyLogRetrievalStatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id self.domain = domain self.enabled = enabled def validate(self): pass def to_map(self): _map = super(ModifyLogRetrievalStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyLogRetrievalStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyLogRetrievalStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyLogRetrievalStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyLogRetrievalStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyLogRetrievalStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyLogServiceStatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id self.domain = domain self.enabled = enabled def validate(self): pass def to_map(self): _map = super(ModifyLogServiceStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyLogServiceStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyLogServiceStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyLogServiceStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyLogServiceStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyLogServiceStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleModeRequest(TeaModel): def __init__(self, domain=None, defense_type=None, mode=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.mode = mode self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleModeRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.mode is not None: result['Mode'] = self.mode if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Mode') is not None: self.mode = m.get('Mode') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleModeResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleModeResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleModeResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleModeResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleModeResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleRuleRequest(TeaModel): def __init__(self, domain=None, defense_type=None, rule=None, rule_id= None, lock_version=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.rule = rule self.rule_id = rule_id self.lock_version = lock_version self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleRuleRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.rule is not None: result['Rule'] = self.rule if self.rule_id is not None: result['RuleId'] = self.rule_id if self.lock_version is not None: result['LockVersion'] = self.lock_version if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Rule') is not None: self.rule = m.get('Rule') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('LockVersion') is not None: self.lock_version = m.get('LockVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleRuleResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleRuleResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleRuleResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleRuleResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleRuleResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, module_status=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.module_status = module_status self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.module_status is not None: result['ModuleStatus'] = self.module_status if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('ModuleStatus') is not None: self.module_status = m.get('ModuleStatus') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionRuleCacheStatusRequest(TeaModel): def __init__(self, domain=None, rule_id=None, defense_type=None, instance_id=None): self.domain = domain self.rule_id = rule_id self.defense_type = defense_type self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleCacheStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.rule_id is not None: result['RuleId'] = self.rule_id if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionRuleCacheStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleCacheStatusResponseBody, self).to_map( ) if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionRuleCacheStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionRuleCacheStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionRuleCacheStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionRuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, rule_id=None, rule_status=None, lock_version=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.rule_id = rule_id self.rule_status = rule_status self.lock_version = lock_version self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.rule_id is not None: result['RuleId'] = self.rule_id if self.rule_status is not None: result['RuleStatus'] = self.rule_status if self.lock_version is not None: result['LockVersion'] = self.lock_version if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('RuleStatus') is not None: self.rule_status = m.get('RuleStatus') if m.get('LockVersion') is not None: self.lock_version = m.get('LockVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionRuleStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionRuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionRuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionRuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class SetDomainRuleGroupRequest(TeaModel): def __init__(self, domains=None, rule_group_id=None, waf_version=None, instance_id=None, resource_group_id=None): self.domains = domains self.rule_group_id = rule_group_id self.waf_version = waf_version self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(SetDomainRuleGroupRequest, self).to_map() if _map is not None: return _map result = dict() if self.domains is not None: result['Domains'] = self.domains if self.rule_group_id is not None: result['RuleGroupId'] = self.rule_group_id if self.waf_version is not None: result['WafVersion'] = self.waf_version if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('Domains') is not None: self.domains = m.get('Domains') if m.get('RuleGroupId') is not None: self.rule_group_id = m.get('RuleGroupId') if m.get('WafVersion') is not None: self.waf_version = m.get('WafVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class SetDomainRuleGroupResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(SetDomainRuleGroupResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class SetDomainRuleGroupResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(SetDomainRuleGroupResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = SetDomainRuleGroupResponseBody() self.body = temp_model.from_map(m['body']) return self
<mask token> class DescribeCertificatesResponseBody(TeaModel): def __init__(self, request_id=None, certificates=None): self.request_id = request_id self.certificates = certificates <mask token> <mask token> <mask token> class DescribeCertificatesResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeCertificatesResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeCertificatesResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeCertMatchStatusRequest(TeaModel): def __init__(self, domain=None, certificate=None, private_key=None, instance_id=None): self.domain = domain self.certificate = certificate self.private_key = private_key self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(DescribeCertMatchStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.certificate is not None: result['Certificate'] = self.certificate if self.private_key is not None: result['PrivateKey'] = self.private_key if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Certificate') is not None: self.certificate = m.get('Certificate') if m.get('PrivateKey') is not None: self.private_key = m.get('PrivateKey') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class DescribeCertMatchStatusResponseBody(TeaModel): def __init__(self, request_id=None, match_status=None): self.request_id = request_id self.match_status = match_status def validate(self): pass def to_map(self): _map = super(DescribeCertMatchStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.match_status is not None: result['MatchStatus'] = self.match_status return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('MatchStatus') is not None: self.match_status = m.get('MatchStatus') return self class DescribeCertMatchStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeCertMatchStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeCertMatchStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainRequest(TeaModel): def __init__(self, instance_id=None, domain=None): self.instance_id = instance_id self.domain = domain def validate(self): pass def to_map(self): _map = super(DescribeDomainRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') return self class DescribeDomainResponseBodyDomainCloudNativeInstancesProtocolPortConfigs( TeaModel): def __init__(self, protocol=None, ports=None): self.protocol = protocol self.ports = ports def validate(self): pass def to_map(self): _map = super( DescribeDomainResponseBodyDomainCloudNativeInstancesProtocolPortConfigs , self).to_map() if _map is not None: return _map result = dict() if self.protocol is not None: result['Protocol'] = self.protocol if self.ports is not None: result['Ports'] = self.ports return result def from_map(self, m=None): m = m or dict() if m.get('Protocol') is not None: self.protocol = m.get('Protocol') if m.get('Ports') is not None: self.ports = m.get('Ports') return self class DescribeDomainResponseBodyDomainCloudNativeInstances(TeaModel): def __init__(self, protocol_port_configs=None, redirection_type_name= None, cloud_native_product_name=None, instance_id=None, ipaddress_list=None): self.protocol_port_configs = protocol_port_configs self.redirection_type_name = redirection_type_name self.cloud_native_product_name = cloud_native_product_name self.instance_id = instance_id self.ipaddress_list = ipaddress_list def validate(self): if self.protocol_port_configs: for k in self.protocol_port_configs: if k: k.validate() def to_map(self): _map = super(DescribeDomainResponseBodyDomainCloudNativeInstances, self ).to_map() if _map is not None: return _map result = dict() result['ProtocolPortConfigs'] = [] if self.protocol_port_configs is not None: for k in self.protocol_port_configs: result['ProtocolPortConfigs'].append(k.to_map() if k else None) if self.redirection_type_name is not None: result['RedirectionTypeName'] = self.redirection_type_name if self.cloud_native_product_name is not None: result['CloudNativeProductName'] = self.cloud_native_product_name if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.ipaddress_list is not None: result['IPAddressList'] = self.ipaddress_list return result def from_map(self, m=None): m = m or dict() self.protocol_port_configs = [] if m.get('ProtocolPortConfigs') is not None: for k in m.get('ProtocolPortConfigs'): temp_model = ( DescribeDomainResponseBodyDomainCloudNativeInstancesProtocolPortConfigs ()) self.protocol_port_configs.append(temp_model.from_map(k)) if m.get('RedirectionTypeName') is not None: self.redirection_type_name = m.get('RedirectionTypeName') if m.get('CloudNativeProductName') is not None: self.cloud_native_product_name = m.get('CloudNativeProductName') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('IPAddressList') is not None: self.ipaddress_list = m.get('IPAddressList') return self class DescribeDomainResponseBodyDomainLogHeaders(TeaModel): def __init__(self, k=None, v=None): self.k = k self.v = v def validate(self): pass def to_map(self): _map = super(DescribeDomainResponseBodyDomainLogHeaders, self).to_map() if _map is not None: return _map result = dict() if self.k is not None: result['k'] = self.k if self.v is not None: result['v'] = self.v return result def from_map(self, m=None): m = m or dict() if m.get('k') is not None: self.k = m.get('k') if m.get('v') is not None: self.v = m.get('v') return self class DescribeDomainResponseBodyDomain(TeaModel): def __init__(self, http_2port=None, cloud_native_instances=None, http_to_user_ip=None, http_port=None, log_headers=None, is_access_product=None, access_headers=None, access_header_mode= None, https_redirect=None, load_balancing=None, ip_follow_status= None, access_type=None, version=None, cluster_type=None, read_time= None, write_time=None, resource_group_id=None, cname=None, source_ips=None, connection_time=None, https_port=None): self.http_2port = http_2port self.cloud_native_instances = cloud_native_instances self.http_to_user_ip = http_to_user_ip self.http_port = http_port self.log_headers = log_headers self.is_access_product = is_access_product self.access_headers = access_headers self.access_header_mode = access_header_mode self.https_redirect = https_redirect self.load_balancing = load_balancing self.ip_follow_status = ip_follow_status self.access_type = access_type self.version = version self.cluster_type = cluster_type self.read_time = read_time self.write_time = write_time self.resource_group_id = resource_group_id self.cname = cname self.source_ips = source_ips self.connection_time = connection_time self.https_port = https_port def validate(self): if self.cloud_native_instances: for k in self.cloud_native_instances: if k: k.validate() if self.log_headers: for k in self.log_headers: if k: k.validate() def to_map(self): _map = super(DescribeDomainResponseBodyDomain, self).to_map() if _map is not None: return _map result = dict() if self.http_2port is not None: result['Http2Port'] = self.http_2port result['CloudNativeInstances'] = [] if self.cloud_native_instances is not None: for k in self.cloud_native_instances: result['CloudNativeInstances'].append(k.to_map() if k else None ) if self.http_to_user_ip is not None: result['HttpToUserIp'] = self.http_to_user_ip if self.http_port is not None: result['HttpPort'] = self.http_port result['LogHeaders'] = [] if self.log_headers is not None: for k in self.log_headers: result['LogHeaders'].append(k.to_map() if k else None) if self.is_access_product is not None: result['IsAccessProduct'] = self.is_access_product if self.access_headers is not None: result['AccessHeaders'] = self.access_headers if self.access_header_mode is not None: result['AccessHeaderMode'] = self.access_header_mode if self.https_redirect is not None: result['HttpsRedirect'] = self.https_redirect if self.load_balancing is not None: result['LoadBalancing'] = self.load_balancing if self.ip_follow_status is not None: result['IpFollowStatus'] = self.ip_follow_status if self.access_type is not None: result['AccessType'] = self.access_type if self.version is not None: result['Version'] = self.version if self.cluster_type is not None: result['ClusterType'] = self.cluster_type if self.read_time is not None: result['ReadTime'] = self.read_time if self.write_time is not None: result['WriteTime'] = self.write_time if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id if self.cname is not None: result['Cname'] = self.cname if self.source_ips is not None: result['SourceIps'] = self.source_ips if self.connection_time is not None: result['ConnectionTime'] = self.connection_time if self.https_port is not None: result['HttpsPort'] = self.https_port return result def from_map(self, m=None): m = m or dict() if m.get('Http2Port') is not None: self.http_2port = m.get('Http2Port') self.cloud_native_instances = [] if m.get('CloudNativeInstances') is not None: for k in m.get('CloudNativeInstances'): temp_model = ( DescribeDomainResponseBodyDomainCloudNativeInstances()) self.cloud_native_instances.append(temp_model.from_map(k)) if m.get('HttpToUserIp') is not None: self.http_to_user_ip = m.get('HttpToUserIp') if m.get('HttpPort') is not None: self.http_port = m.get('HttpPort') self.log_headers = [] if m.get('LogHeaders') is not None: for k in m.get('LogHeaders'): temp_model = DescribeDomainResponseBodyDomainLogHeaders() self.log_headers.append(temp_model.from_map(k)) if m.get('IsAccessProduct') is not None: self.is_access_product = m.get('IsAccessProduct') if m.get('AccessHeaders') is not None: self.access_headers = m.get('AccessHeaders') if m.get('AccessHeaderMode') is not None: self.access_header_mode = m.get('AccessHeaderMode') if m.get('HttpsRedirect') is not None: self.https_redirect = m.get('HttpsRedirect') if m.get('LoadBalancing') is not None: self.load_balancing = m.get('LoadBalancing') if m.get('IpFollowStatus') is not None: self.ip_follow_status = m.get('IpFollowStatus') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('Version') is not None: self.version = m.get('Version') if m.get('ClusterType') is not None: self.cluster_type = m.get('ClusterType') if m.get('ReadTime') is not None: self.read_time = m.get('ReadTime') if m.get('WriteTime') is not None: self.write_time = m.get('WriteTime') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') if m.get('Cname') is not None: self.cname = m.get('Cname') if m.get('SourceIps') is not None: self.source_ips = m.get('SourceIps') if m.get('ConnectionTime') is not None: self.connection_time = m.get('ConnectionTime') if m.get('HttpsPort') is not None: self.https_port = m.get('HttpsPort') return self class DescribeDomainResponseBody(TeaModel): def __init__(self, request_id=None, domain=None): self.request_id = request_id self.domain = domain def validate(self): if self.domain: self.domain.validate() def to_map(self): _map = super(DescribeDomainResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.domain is not None: result['Domain'] = self.domain.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Domain') is not None: temp_model = DescribeDomainResponseBodyDomain() self.domain = temp_model.from_map(m['Domain']) return self class DescribeDomainResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainAdvanceConfigsRequest(TeaModel): def __init__(self, instance_id=None, domain_list=None, resource_group_id=None): self.instance_id = instance_id self.domain_list = domain_list self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeDomainAdvanceConfigsRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain_list is not None: result['DomainList'] = self.domain_list if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('DomainList') is not None: self.domain_list = m.get('DomainList') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeDomainAdvanceConfigsResponseBodyDomainConfigsProfile(TeaModel): def __init__(self, http_2port=None, ipv_6status=None, http_port=None, gslbstatus=None, rs=None, vip_service_status=None, cluster_type= None, exclusive_vip_status=None, cname=None, cert_status=None, https_port=None, resolved_type=None): self.http_2port = http_2port self.ipv_6status = ipv_6status self.http_port = http_port self.gslbstatus = gslbstatus self.rs = rs self.vip_service_status = vip_service_status self.cluster_type = cluster_type self.exclusive_vip_status = exclusive_vip_status self.cname = cname self.cert_status = cert_status self.https_port = https_port self.resolved_type = resolved_type def validate(self): pass def to_map(self): _map = super( DescribeDomainAdvanceConfigsResponseBodyDomainConfigsProfile, self ).to_map() if _map is not None: return _map result = dict() if self.http_2port is not None: result['Http2Port'] = self.http_2port if self.ipv_6status is not None: result['Ipv6Status'] = self.ipv_6status if self.http_port is not None: result['HttpPort'] = self.http_port if self.gslbstatus is not None: result['GSLBStatus'] = self.gslbstatus if self.rs is not None: result['Rs'] = self.rs if self.vip_service_status is not None: result['VipServiceStatus'] = self.vip_service_status if self.cluster_type is not None: result['ClusterType'] = self.cluster_type if self.exclusive_vip_status is not None: result['ExclusiveVipStatus'] = self.exclusive_vip_status if self.cname is not None: result['Cname'] = self.cname if self.cert_status is not None: result['CertStatus'] = self.cert_status if self.https_port is not None: result['HttpsPort'] = self.https_port if self.resolved_type is not None: result['ResolvedType'] = self.resolved_type return result def from_map(self, m=None): m = m or dict() if m.get('Http2Port') is not None: self.http_2port = m.get('Http2Port') if m.get('Ipv6Status') is not None: self.ipv_6status = m.get('Ipv6Status') if m.get('HttpPort') is not None: self.http_port = m.get('HttpPort') if m.get('GSLBStatus') is not None: self.gslbstatus = m.get('GSLBStatus') if m.get('Rs') is not None: self.rs = m.get('Rs') if m.get('VipServiceStatus') is not None: self.vip_service_status = m.get('VipServiceStatus') if m.get('ClusterType') is not None: self.cluster_type = m.get('ClusterType') if m.get('ExclusiveVipStatus') is not None: self.exclusive_vip_status = m.get('ExclusiveVipStatus') if m.get('Cname') is not None: self.cname = m.get('Cname') if m.get('CertStatus') is not None: self.cert_status = m.get('CertStatus') if m.get('HttpsPort') is not None: self.https_port = m.get('HttpsPort') if m.get('ResolvedType') is not None: self.resolved_type = m.get('ResolvedType') return self class DescribeDomainAdvanceConfigsResponseBodyDomainConfigs(TeaModel): def __init__(self, profile=None, domain=None): self.profile = profile self.domain = domain def validate(self): if self.profile: self.profile.validate() def to_map(self): _map = super(DescribeDomainAdvanceConfigsResponseBodyDomainConfigs, self).to_map() if _map is not None: return _map result = dict() if self.profile is not None: result['Profile'] = self.profile.to_map() if self.domain is not None: result['Domain'] = self.domain return result def from_map(self, m=None): m = m or dict() if m.get('Profile') is not None: temp_model = ( DescribeDomainAdvanceConfigsResponseBodyDomainConfigsProfile()) self.profile = temp_model.from_map(m['Profile']) if m.get('Domain') is not None: self.domain = m.get('Domain') return self class DescribeDomainAdvanceConfigsResponseBody(TeaModel): def __init__(self, request_id=None, domain_configs=None): self.request_id = request_id self.domain_configs = domain_configs def validate(self): if self.domain_configs: for k in self.domain_configs: if k: k.validate() def to_map(self): _map = super(DescribeDomainAdvanceConfigsResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id result['DomainConfigs'] = [] if self.domain_configs is not None: for k in self.domain_configs: result['DomainConfigs'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.domain_configs = [] if m.get('DomainConfigs') is not None: for k in m.get('DomainConfigs'): temp_model = ( DescribeDomainAdvanceConfigsResponseBodyDomainConfigs()) self.domain_configs.append(temp_model.from_map(k)) return self class DescribeDomainAdvanceConfigsResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainAdvanceConfigsResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainAdvanceConfigsResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainBasicConfigsRequest(TeaModel): def __init__(self, instance_id=None, domain_key=None, access_type=None, cloud_native_product_id=None, page_number=None, page_size=None, resource_group_id=None): self.instance_id = instance_id self.domain_key = domain_key self.access_type = access_type self.cloud_native_product_id = cloud_native_product_id self.page_number = page_number self.page_size = page_size self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeDomainBasicConfigsRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain_key is not None: result['DomainKey'] = self.domain_key if self.access_type is not None: result['AccessType'] = self.access_type if self.cloud_native_product_id is not None: result['CloudNativeProductId'] = self.cloud_native_product_id if self.page_number is not None: result['PageNumber'] = self.page_number if self.page_size is not None: result['PageSize'] = self.page_size if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('DomainKey') is not None: self.domain_key = m.get('DomainKey') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('CloudNativeProductId') is not None: self.cloud_native_product_id = m.get('CloudNativeProductId') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeDomainBasicConfigsResponseBodyDomainConfigs(TeaModel): def __init__(self, status=None, domain=None, owner=None, cc_mode=None, cc_status=None, access_type=None, version=None, acl_status=None, waf_status=None, waf_mode=None): self.status = status self.domain = domain self.owner = owner self.cc_mode = cc_mode self.cc_status = cc_status self.access_type = access_type self.version = version self.acl_status = acl_status self.waf_status = waf_status self.waf_mode = waf_mode def validate(self): pass def to_map(self): _map = super(DescribeDomainBasicConfigsResponseBodyDomainConfigs, self ).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.domain is not None: result['Domain'] = self.domain if self.owner is not None: result['Owner'] = self.owner if self.cc_mode is not None: result['CcMode'] = self.cc_mode if self.cc_status is not None: result['CcStatus'] = self.cc_status if self.access_type is not None: result['AccessType'] = self.access_type if self.version is not None: result['Version'] = self.version if self.acl_status is not None: result['AclStatus'] = self.acl_status if self.waf_status is not None: result['WafStatus'] = self.waf_status if self.waf_mode is not None: result['WafMode'] = self.waf_mode return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Owner') is not None: self.owner = m.get('Owner') if m.get('CcMode') is not None: self.cc_mode = m.get('CcMode') if m.get('CcStatus') is not None: self.cc_status = m.get('CcStatus') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('Version') is not None: self.version = m.get('Version') if m.get('AclStatus') is not None: self.acl_status = m.get('AclStatus') if m.get('WafStatus') is not None: self.waf_status = m.get('WafStatus') if m.get('WafMode') is not None: self.waf_mode = m.get('WafMode') return self class DescribeDomainBasicConfigsResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, domain_configs=None): self.total_count = total_count self.request_id = request_id self.domain_configs = domain_configs def validate(self): if self.domain_configs: for k in self.domain_configs: if k: k.validate() def to_map(self): _map = super(DescribeDomainBasicConfigsResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id result['DomainConfigs'] = [] if self.domain_configs is not None: for k in self.domain_configs: result['DomainConfigs'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.domain_configs = [] if m.get('DomainConfigs') is not None: for k in m.get('DomainConfigs'): temp_model = ( DescribeDomainBasicConfigsResponseBodyDomainConfigs()) self.domain_configs.append(temp_model.from_map(k)) return self class DescribeDomainBasicConfigsResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainBasicConfigsResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainBasicConfigsResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainListRequest(TeaModel): def __init__(self, resource_group_id=None, instance_id=None, domain_name=None, page_number=None, page_size=None, is_sub=None, domain_names=None): self.resource_group_id = resource_group_id self.instance_id = instance_id self.domain_name = domain_name self.page_number = page_number self.page_size = page_size self.is_sub = is_sub self.domain_names = domain_names def validate(self): pass def to_map(self): _map = super(DescribeDomainListRequest, self).to_map() if _map is not None: return _map result = dict() if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain_name is not None: result['DomainName'] = self.domain_name if self.page_number is not None: result['PageNumber'] = self.page_number if self.page_size is not None: result['PageSize'] = self.page_size if self.is_sub is not None: result['IsSub'] = self.is_sub if self.domain_names is not None: result['DomainNames'] = self.domain_names return result def from_map(self, m=None): m = m or dict() if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('DomainName') is not None: self.domain_name = m.get('DomainName') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('IsSub') is not None: self.is_sub = m.get('IsSub') if m.get('DomainNames') is not None: self.domain_names = m.get('DomainNames') return self class DescribeDomainListResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, domain_names=None): self.total_count = total_count self.request_id = request_id self.domain_names = domain_names def validate(self): pass def to_map(self): _map = super(DescribeDomainListResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id if self.domain_names is not None: result['DomainNames'] = self.domain_names return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('DomainNames') is not None: self.domain_names = m.get('DomainNames') return self class DescribeDomainListResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainListResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainListResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainNamesRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeDomainNamesRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeDomainNamesResponseBody(TeaModel): def __init__(self, request_id=None, domain_names=None): self.request_id = request_id self.domain_names = domain_names def validate(self): pass def to_map(self): _map = super(DescribeDomainNamesResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.domain_names is not None: result['DomainNames'] = self.domain_names return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('DomainNames') is not None: self.domain_names = m.get('DomainNames') return self class DescribeDomainNamesResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainNamesResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainNamesResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainRuleGroupRequest(TeaModel): def __init__(self, domain=None, instance_id=None): self.domain = domain self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(DescribeDomainRuleGroupRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class DescribeDomainRuleGroupResponseBody(TeaModel): def __init__(self, rule_group_id=None, request_id=None): self.rule_group_id = rule_group_id self.request_id = request_id def validate(self): pass def to_map(self): _map = super(DescribeDomainRuleGroupResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.rule_group_id is not None: result['RuleGroupId'] = self.rule_group_id if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RuleGroupId') is not None: self.rule_group_id = m.get('RuleGroupId') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class DescribeDomainRuleGroupResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainRuleGroupResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainRuleGroupResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeInstanceInfoRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeInstanceInfoRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeInstanceInfoResponseBodyInstanceInfo(TeaModel): def __init__(self, status=None, end_date=None, version=None, remain_day =None, region=None, pay_type=None, in_debt=None, instance_id=None, subscription_type=None, trial=None): self.status = status self.end_date = end_date self.version = version self.remain_day = remain_day self.region = region self.pay_type = pay_type self.in_debt = in_debt self.instance_id = instance_id self.subscription_type = subscription_type self.trial = trial def validate(self): pass def to_map(self): _map = super(DescribeInstanceInfoResponseBodyInstanceInfo, self ).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.end_date is not None: result['EndDate'] = self.end_date if self.version is not None: result['Version'] = self.version if self.remain_day is not None: result['RemainDay'] = self.remain_day if self.region is not None: result['Region'] = self.region if self.pay_type is not None: result['PayType'] = self.pay_type if self.in_debt is not None: result['InDebt'] = self.in_debt if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.subscription_type is not None: result['SubscriptionType'] = self.subscription_type if self.trial is not None: result['Trial'] = self.trial return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('EndDate') is not None: self.end_date = m.get('EndDate') if m.get('Version') is not None: self.version = m.get('Version') if m.get('RemainDay') is not None: self.remain_day = m.get('RemainDay') if m.get('Region') is not None: self.region = m.get('Region') if m.get('PayType') is not None: self.pay_type = m.get('PayType') if m.get('InDebt') is not None: self.in_debt = m.get('InDebt') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('SubscriptionType') is not None: self.subscription_type = m.get('SubscriptionType') if m.get('Trial') is not None: self.trial = m.get('Trial') return self class DescribeInstanceInfoResponseBody(TeaModel): def __init__(self, request_id=None, instance_info=None): self.request_id = request_id self.instance_info = instance_info def validate(self): if self.instance_info: self.instance_info.validate() def to_map(self): _map = super(DescribeInstanceInfoResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.instance_info is not None: result['InstanceInfo'] = self.instance_info.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('InstanceInfo') is not None: temp_model = DescribeInstanceInfoResponseBodyInstanceInfo() self.instance_info = temp_model.from_map(m['InstanceInfo']) return self class DescribeInstanceInfoResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeInstanceInfoResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeInstanceInfoResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeInstanceInfosRequest(TeaModel): def __init__(self, instance_source=None, instance_id=None, resource_group_id=None): self.instance_source = instance_source self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeInstanceInfosRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_source is not None: result['InstanceSource'] = self.instance_source if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceSource') is not None: self.instance_source = m.get('InstanceSource') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeInstanceInfosResponseBodyInstanceInfos(TeaModel): def __init__(self, status=None, end_date=None, remain_day=None, region= None, pay_type=None, in_debt=None, instance_id=None, subscription_type=None, trial=None): self.status = status self.end_date = end_date self.remain_day = remain_day self.region = region self.pay_type = pay_type self.in_debt = in_debt self.instance_id = instance_id self.subscription_type = subscription_type self.trial = trial def validate(self): pass def to_map(self): _map = super(DescribeInstanceInfosResponseBodyInstanceInfos, self ).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.end_date is not None: result['EndDate'] = self.end_date if self.remain_day is not None: result['RemainDay'] = self.remain_day if self.region is not None: result['Region'] = self.region if self.pay_type is not None: result['PayType'] = self.pay_type if self.in_debt is not None: result['InDebt'] = self.in_debt if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.subscription_type is not None: result['SubscriptionType'] = self.subscription_type if self.trial is not None: result['Trial'] = self.trial return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('EndDate') is not None: self.end_date = m.get('EndDate') if m.get('RemainDay') is not None: self.remain_day = m.get('RemainDay') if m.get('Region') is not None: self.region = m.get('Region') if m.get('PayType') is not None: self.pay_type = m.get('PayType') if m.get('InDebt') is not None: self.in_debt = m.get('InDebt') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('SubscriptionType') is not None: self.subscription_type = m.get('SubscriptionType') if m.get('Trial') is not None: self.trial = m.get('Trial') return self class DescribeInstanceInfosResponseBody(TeaModel): def __init__(self, request_id=None, instance_infos=None): self.request_id = request_id self.instance_infos = instance_infos def validate(self): if self.instance_infos: for k in self.instance_infos: if k: k.validate() def to_map(self): _map = super(DescribeInstanceInfosResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id result['InstanceInfos'] = [] if self.instance_infos is not None: for k in self.instance_infos: result['InstanceInfos'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.instance_infos = [] if m.get('InstanceInfos') is not None: for k in m.get('InstanceInfos'): temp_model = DescribeInstanceInfosResponseBodyInstanceInfos() self.instance_infos.append(temp_model.from_map(k)) return self class DescribeInstanceInfosResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeInstanceInfosResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeInstanceInfosResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeInstanceSpecInfoRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeInstanceSpecInfoRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos(TeaModel): def __init__(self, value=None, code=None): self.value = value self.code = code def validate(self): pass def to_map(self): _map = super(DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos, self).to_map() if _map is not None: return _map result = dict() if self.value is not None: result['Value'] = self.value if self.code is not None: result['Code'] = self.code return result def from_map(self, m=None): m = m or dict() if m.get('Value') is not None: self.value = m.get('Value') if m.get('Code') is not None: self.code = m.get('Code') return self class DescribeInstanceSpecInfoResponseBody(TeaModel): def __init__(self, instance_spec_infos=None, request_id=None, instance_id=None, version=None, expire_time=None): self.instance_spec_infos = instance_spec_infos self.request_id = request_id self.instance_id = instance_id self.version = version self.expire_time = expire_time def validate(self): if self.instance_spec_infos: for k in self.instance_spec_infos: if k: k.validate() def to_map(self): _map = super(DescribeInstanceSpecInfoResponseBody, self).to_map() if _map is not None: return _map result = dict() result['InstanceSpecInfos'] = [] if self.instance_spec_infos is not None: for k in self.instance_spec_infos: result['InstanceSpecInfos'].append(k.to_map() if k else None) if self.request_id is not None: result['RequestId'] = self.request_id if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.version is not None: result['Version'] = self.version if self.expire_time is not None: result['ExpireTime'] = self.expire_time return result def from_map(self, m=None): m = m or dict() self.instance_spec_infos = [] if m.get('InstanceSpecInfos') is not None: for k in m.get('InstanceSpecInfos'): temp_model = ( DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos()) self.instance_spec_infos.append(temp_model.from_map(k)) if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Version') is not None: self.version = m.get('Version') if m.get('ExpireTime') is not None: self.expire_time = m.get('ExpireTime') return self class DescribeInstanceSpecInfoResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeInstanceSpecInfoResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeInstanceSpecInfoResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeLogServiceStatusRequest(TeaModel): def __init__(self, instance_id=None, region=None, resource_group_id= None, page_number=None, page_size=None, domain_names=None): self.instance_id = instance_id self.region = region self.resource_group_id = resource_group_id self.page_number = page_number self.page_size = page_size self.domain_names = domain_names def validate(self): pass def to_map(self): _map = super(DescribeLogServiceStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.region is not None: result['Region'] = self.region if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id if self.page_number is not None: result['PageNumber'] = self.page_number if self.page_size is not None: result['PageSize'] = self.page_size if self.domain_names is not None: result['DomainNames'] = self.domain_names return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Region') is not None: self.region = m.get('Region') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('DomainNames') is not None: self.domain_names = m.get('DomainNames') return self class DescribeLogServiceStatusResponseBodyDomainStatus(TeaModel): def __init__(self, domain=None, sls_log_active=None): self.domain = domain self.sls_log_active = sls_log_active def validate(self): pass def to_map(self): _map = super(DescribeLogServiceStatusResponseBodyDomainStatus, self ).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.sls_log_active is not None: result['SlsLogActive'] = self.sls_log_active return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('SlsLogActive') is not None: self.sls_log_active = m.get('SlsLogActive') return self class DescribeLogServiceStatusResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, domain_status=None): self.total_count = total_count self.request_id = request_id self.domain_status = domain_status def validate(self): if self.domain_status: for k in self.domain_status: if k: k.validate() def to_map(self): _map = super(DescribeLogServiceStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id result['DomainStatus'] = [] if self.domain_status is not None: for k in self.domain_status: result['DomainStatus'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.domain_status = [] if m.get('DomainStatus') is not None: for k in m.get('DomainStatus'): temp_model = DescribeLogServiceStatusResponseBodyDomainStatus() self.domain_status.append(temp_model.from_map(k)) return self class DescribeLogServiceStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeLogServiceStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeLogServiceStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleCodeConfigRequest(TeaModel): def __init__(self, source_ip=None, lang=None, code_type=None, code_value=None, instance_id=None, resource_group_id=None): self.source_ip = source_ip self.lang = lang self.code_type = code_type self.code_value = code_value self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleCodeConfigRequest, self).to_map() if _map is not None: return _map result = dict() if self.source_ip is not None: result['SourceIp'] = self.source_ip if self.lang is not None: result['Lang'] = self.lang if self.code_type is not None: result['CodeType'] = self.code_type if self.code_value is not None: result['CodeValue'] = self.code_value if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('SourceIp') is not None: self.source_ip = m.get('SourceIp') if m.get('Lang') is not None: self.lang = m.get('Lang') if m.get('CodeType') is not None: self.code_type = m.get('CodeType') if m.get('CodeValue') is not None: self.code_value = m.get('CodeValue') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleCodeConfigResponseBody(TeaModel): def __init__(self, request_id=None, code_configs=None): self.request_id = request_id self.code_configs = code_configs def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleCodeConfigResponseBody, self ).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code_configs is not None: result['CodeConfigs'] = self.code_configs return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('CodeConfigs') is not None: self.code_configs = m.get('CodeConfigs') return self class DescribeProtectionModuleCodeConfigResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleCodeConfigResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleCodeConfigResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleModeRequest(TeaModel): def __init__(self, domain=None, defense_type=None, instance_id=None, resource_group_id=None): self.domain = domain self.defense_type = defense_type self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleModeRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleModeResponseBody(TeaModel): def __init__(self, learn_status=None, request_id=None, mode=None): self.learn_status = learn_status self.request_id = request_id self.mode = mode def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleModeResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.learn_status is not None: result['LearnStatus'] = self.learn_status if self.request_id is not None: result['RequestId'] = self.request_id if self.mode is not None: result['Mode'] = self.mode return result def from_map(self, m=None): m = m or dict() if m.get('LearnStatus') is not None: self.learn_status = m.get('LearnStatus') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Mode') is not None: self.mode = m.get('Mode') return self class DescribeProtectionModuleModeResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleModeResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleModeResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleRulesRequest(TeaModel): def __init__(self, page_size=None, page_number=None, domain=None, defense_type=None, query=None, lang=None, instance_id=None, resource_group_id=None): self.page_size = page_size self.page_number = page_number self.domain = domain self.defense_type = defense_type self.query = query self.lang = lang self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleRulesRequest, self).to_map() if _map is not None: return _map result = dict() if self.page_size is not None: result['PageSize'] = self.page_size if self.page_number is not None: result['PageNumber'] = self.page_number if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.query is not None: result['Query'] = self.query if self.lang is not None: result['Lang'] = self.lang if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Query') is not None: self.query = m.get('Query') if m.get('Lang') is not None: self.lang = m.get('Lang') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleRulesResponseBodyRules(TeaModel): def __init__(self, status=None, time=None, version=None, content=None, rule_id=None): self.status = status self.time = time self.version = version self.content = content self.rule_id = rule_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleRulesResponseBodyRules, self ).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.time is not None: result['Time'] = self.time if self.version is not None: result['Version'] = self.version if self.content is not None: result['Content'] = self.content if self.rule_id is not None: result['RuleId'] = self.rule_id return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('Time') is not None: self.time = m.get('Time') if m.get('Version') is not None: self.version = m.get('Version') if m.get('Content') is not None: self.content = m.get('Content') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') return self class DescribeProtectionModuleRulesResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, rules=None): self.total_count = total_count self.request_id = request_id self.rules = rules def validate(self): if self.rules: for k in self.rules: if k: k.validate() def to_map(self): _map = super(DescribeProtectionModuleRulesResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id result['Rules'] = [] if self.rules is not None: for k in self.rules: result['Rules'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.rules = [] if m.get('Rules') is not None: for k in m.get('Rules'): temp_model = DescribeProtectionModuleRulesResponseBodyRules() self.rules.append(temp_model.from_map(k)) return self class DescribeProtectionModuleRulesResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleRulesResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleRulesResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class DescribeProtectionModuleStatusResponseBody(TeaModel): def __init__(self, request_id=None, module_status=None): self.request_id = request_id self.module_status = module_status def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.module_status is not None: result['ModuleStatus'] = self.module_status return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ModuleStatus') is not None: self.module_status = m.get('ModuleStatus') return self class DescribeProtectionModuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeWafSourceIpSegmentRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeWafSourceIpSegmentRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeWafSourceIpSegmentResponseBody(TeaModel): def __init__(self, request_id=None, ip_v6s=None, ips=None): self.request_id = request_id self.ip_v6s = ip_v6s self.ips = ips def validate(self): pass def to_map(self): _map = super(DescribeWafSourceIpSegmentResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.ip_v6s is not None: result['IpV6s'] = self.ip_v6s if self.ips is not None: result['Ips'] = self.ips return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('IpV6s') is not None: self.ip_v6s = m.get('IpV6s') if m.get('Ips') is not None: self.ips = m.get('Ips') return self class DescribeWafSourceIpSegmentResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeWafSourceIpSegmentResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeWafSourceIpSegmentResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyDomainRequest(TeaModel): def __init__(self, instance_id=None, domain=None, source_ips=None, load_balancing=None, http_port=None, https_port=None, http_2port= None, https_redirect=None, http_to_user_ip=None, is_access_product= None, log_headers=None, cluster_type=None, connection_time=None, read_time=None, write_time=None, access_type=None, cloud_native_instances=None, ip_follow_status=None): self.instance_id = instance_id self.domain = domain self.source_ips = source_ips self.load_balancing = load_balancing self.http_port = http_port self.https_port = https_port self.http_2port = http_2port self.https_redirect = https_redirect self.http_to_user_ip = http_to_user_ip self.is_access_product = is_access_product self.log_headers = log_headers self.cluster_type = cluster_type self.connection_time = connection_time self.read_time = read_time self.write_time = write_time self.access_type = access_type self.cloud_native_instances = cloud_native_instances self.ip_follow_status = ip_follow_status def validate(self): pass def to_map(self): _map = super(ModifyDomainRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.source_ips is not None: result['SourceIps'] = self.source_ips if self.load_balancing is not None: result['LoadBalancing'] = self.load_balancing if self.http_port is not None: result['HttpPort'] = self.http_port if self.https_port is not None: result['HttpsPort'] = self.https_port if self.http_2port is not None: result['Http2Port'] = self.http_2port if self.https_redirect is not None: result['HttpsRedirect'] = self.https_redirect if self.http_to_user_ip is not None: result['HttpToUserIp'] = self.http_to_user_ip if self.is_access_product is not None: result['IsAccessProduct'] = self.is_access_product if self.log_headers is not None: result['LogHeaders'] = self.log_headers if self.cluster_type is not None: result['ClusterType'] = self.cluster_type if self.connection_time is not None: result['ConnectionTime'] = self.connection_time if self.read_time is not None: result['ReadTime'] = self.read_time if self.write_time is not None: result['WriteTime'] = self.write_time if self.access_type is not None: result['AccessType'] = self.access_type if self.cloud_native_instances is not None: result['CloudNativeInstances'] = self.cloud_native_instances if self.ip_follow_status is not None: result['IpFollowStatus'] = self.ip_follow_status return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('SourceIps') is not None: self.source_ips = m.get('SourceIps') if m.get('LoadBalancing') is not None: self.load_balancing = m.get('LoadBalancing') if m.get('HttpPort') is not None: self.http_port = m.get('HttpPort') if m.get('HttpsPort') is not None: self.https_port = m.get('HttpsPort') if m.get('Http2Port') is not None: self.http_2port = m.get('Http2Port') if m.get('HttpsRedirect') is not None: self.https_redirect = m.get('HttpsRedirect') if m.get('HttpToUserIp') is not None: self.http_to_user_ip = m.get('HttpToUserIp') if m.get('IsAccessProduct') is not None: self.is_access_product = m.get('IsAccessProduct') if m.get('LogHeaders') is not None: self.log_headers = m.get('LogHeaders') if m.get('ClusterType') is not None: self.cluster_type = m.get('ClusterType') if m.get('ConnectionTime') is not None: self.connection_time = m.get('ConnectionTime') if m.get('ReadTime') is not None: self.read_time = m.get('ReadTime') if m.get('WriteTime') is not None: self.write_time = m.get('WriteTime') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('CloudNativeInstances') is not None: self.cloud_native_instances = m.get('CloudNativeInstances') if m.get('IpFollowStatus') is not None: self.ip_follow_status = m.get('IpFollowStatus') return self class ModifyDomainResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyDomainResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyDomainResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyDomainResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyDomainResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyDomainIpv6StatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id self.domain = domain self.enabled = enabled def validate(self): pass def to_map(self): _map = super(ModifyDomainIpv6StatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyDomainIpv6StatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyDomainIpv6StatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyDomainIpv6StatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyDomainIpv6StatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyDomainIpv6StatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyLogRetrievalStatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id self.domain = domain self.enabled = enabled def validate(self): pass def to_map(self): _map = super(ModifyLogRetrievalStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyLogRetrievalStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyLogRetrievalStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyLogRetrievalStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyLogRetrievalStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyLogRetrievalStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyLogServiceStatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id self.domain = domain self.enabled = enabled def validate(self): pass def to_map(self): _map = super(ModifyLogServiceStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyLogServiceStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyLogServiceStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyLogServiceStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyLogServiceStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyLogServiceStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleModeRequest(TeaModel): def __init__(self, domain=None, defense_type=None, mode=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.mode = mode self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleModeRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.mode is not None: result['Mode'] = self.mode if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Mode') is not None: self.mode = m.get('Mode') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleModeResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleModeResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleModeResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleModeResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleModeResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleRuleRequest(TeaModel): def __init__(self, domain=None, defense_type=None, rule=None, rule_id= None, lock_version=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.rule = rule self.rule_id = rule_id self.lock_version = lock_version self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleRuleRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.rule is not None: result['Rule'] = self.rule if self.rule_id is not None: result['RuleId'] = self.rule_id if self.lock_version is not None: result['LockVersion'] = self.lock_version if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Rule') is not None: self.rule = m.get('Rule') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('LockVersion') is not None: self.lock_version = m.get('LockVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleRuleResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleRuleResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleRuleResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleRuleResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleRuleResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, module_status=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.module_status = module_status self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.module_status is not None: result['ModuleStatus'] = self.module_status if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('ModuleStatus') is not None: self.module_status = m.get('ModuleStatus') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionRuleCacheStatusRequest(TeaModel): def __init__(self, domain=None, rule_id=None, defense_type=None, instance_id=None): self.domain = domain self.rule_id = rule_id self.defense_type = defense_type self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleCacheStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.rule_id is not None: result['RuleId'] = self.rule_id if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionRuleCacheStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleCacheStatusResponseBody, self).to_map( ) if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionRuleCacheStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionRuleCacheStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionRuleCacheStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionRuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, rule_id=None, rule_status=None, lock_version=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.rule_id = rule_id self.rule_status = rule_status self.lock_version = lock_version self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.rule_id is not None: result['RuleId'] = self.rule_id if self.rule_status is not None: result['RuleStatus'] = self.rule_status if self.lock_version is not None: result['LockVersion'] = self.lock_version if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('RuleStatus') is not None: self.rule_status = m.get('RuleStatus') if m.get('LockVersion') is not None: self.lock_version = m.get('LockVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionRuleStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionRuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionRuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionRuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class SetDomainRuleGroupRequest(TeaModel): def __init__(self, domains=None, rule_group_id=None, waf_version=None, instance_id=None, resource_group_id=None): self.domains = domains self.rule_group_id = rule_group_id self.waf_version = waf_version self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(SetDomainRuleGroupRequest, self).to_map() if _map is not None: return _map result = dict() if self.domains is not None: result['Domains'] = self.domains if self.rule_group_id is not None: result['RuleGroupId'] = self.rule_group_id if self.waf_version is not None: result['WafVersion'] = self.waf_version if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('Domains') is not None: self.domains = m.get('Domains') if m.get('RuleGroupId') is not None: self.rule_group_id = m.get('RuleGroupId') if m.get('WafVersion') is not None: self.waf_version = m.get('WafVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class SetDomainRuleGroupResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(SetDomainRuleGroupResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class SetDomainRuleGroupResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(SetDomainRuleGroupResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = SetDomainRuleGroupResponseBody() self.body = temp_model.from_map(m['body']) return self
<mask token> class DescribeCertificatesResponseBody(TeaModel): def __init__(self, request_id=None, certificates=None): self.request_id = request_id self.certificates = certificates <mask token> <mask token> def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.certificates = [] if m.get('Certificates') is not None: for k in m.get('Certificates'): temp_model = DescribeCertificatesResponseBodyCertificates() self.certificates.append(temp_model.from_map(k)) return self class DescribeCertificatesResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeCertificatesResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeCertificatesResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeCertMatchStatusRequest(TeaModel): def __init__(self, domain=None, certificate=None, private_key=None, instance_id=None): self.domain = domain self.certificate = certificate self.private_key = private_key self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(DescribeCertMatchStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.certificate is not None: result['Certificate'] = self.certificate if self.private_key is not None: result['PrivateKey'] = self.private_key if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Certificate') is not None: self.certificate = m.get('Certificate') if m.get('PrivateKey') is not None: self.private_key = m.get('PrivateKey') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class DescribeCertMatchStatusResponseBody(TeaModel): def __init__(self, request_id=None, match_status=None): self.request_id = request_id self.match_status = match_status def validate(self): pass def to_map(self): _map = super(DescribeCertMatchStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.match_status is not None: result['MatchStatus'] = self.match_status return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('MatchStatus') is not None: self.match_status = m.get('MatchStatus') return self class DescribeCertMatchStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeCertMatchStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeCertMatchStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainRequest(TeaModel): def __init__(self, instance_id=None, domain=None): self.instance_id = instance_id self.domain = domain def validate(self): pass def to_map(self): _map = super(DescribeDomainRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') return self class DescribeDomainResponseBodyDomainCloudNativeInstancesProtocolPortConfigs( TeaModel): def __init__(self, protocol=None, ports=None): self.protocol = protocol self.ports = ports def validate(self): pass def to_map(self): _map = super( DescribeDomainResponseBodyDomainCloudNativeInstancesProtocolPortConfigs , self).to_map() if _map is not None: return _map result = dict() if self.protocol is not None: result['Protocol'] = self.protocol if self.ports is not None: result['Ports'] = self.ports return result def from_map(self, m=None): m = m or dict() if m.get('Protocol') is not None: self.protocol = m.get('Protocol') if m.get('Ports') is not None: self.ports = m.get('Ports') return self class DescribeDomainResponseBodyDomainCloudNativeInstances(TeaModel): def __init__(self, protocol_port_configs=None, redirection_type_name= None, cloud_native_product_name=None, instance_id=None, ipaddress_list=None): self.protocol_port_configs = protocol_port_configs self.redirection_type_name = redirection_type_name self.cloud_native_product_name = cloud_native_product_name self.instance_id = instance_id self.ipaddress_list = ipaddress_list def validate(self): if self.protocol_port_configs: for k in self.protocol_port_configs: if k: k.validate() def to_map(self): _map = super(DescribeDomainResponseBodyDomainCloudNativeInstances, self ).to_map() if _map is not None: return _map result = dict() result['ProtocolPortConfigs'] = [] if self.protocol_port_configs is not None: for k in self.protocol_port_configs: result['ProtocolPortConfigs'].append(k.to_map() if k else None) if self.redirection_type_name is not None: result['RedirectionTypeName'] = self.redirection_type_name if self.cloud_native_product_name is not None: result['CloudNativeProductName'] = self.cloud_native_product_name if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.ipaddress_list is not None: result['IPAddressList'] = self.ipaddress_list return result def from_map(self, m=None): m = m or dict() self.protocol_port_configs = [] if m.get('ProtocolPortConfigs') is not None: for k in m.get('ProtocolPortConfigs'): temp_model = ( DescribeDomainResponseBodyDomainCloudNativeInstancesProtocolPortConfigs ()) self.protocol_port_configs.append(temp_model.from_map(k)) if m.get('RedirectionTypeName') is not None: self.redirection_type_name = m.get('RedirectionTypeName') if m.get('CloudNativeProductName') is not None: self.cloud_native_product_name = m.get('CloudNativeProductName') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('IPAddressList') is not None: self.ipaddress_list = m.get('IPAddressList') return self class DescribeDomainResponseBodyDomainLogHeaders(TeaModel): def __init__(self, k=None, v=None): self.k = k self.v = v def validate(self): pass def to_map(self): _map = super(DescribeDomainResponseBodyDomainLogHeaders, self).to_map() if _map is not None: return _map result = dict() if self.k is not None: result['k'] = self.k if self.v is not None: result['v'] = self.v return result def from_map(self, m=None): m = m or dict() if m.get('k') is not None: self.k = m.get('k') if m.get('v') is not None: self.v = m.get('v') return self class DescribeDomainResponseBodyDomain(TeaModel): def __init__(self, http_2port=None, cloud_native_instances=None, http_to_user_ip=None, http_port=None, log_headers=None, is_access_product=None, access_headers=None, access_header_mode= None, https_redirect=None, load_balancing=None, ip_follow_status= None, access_type=None, version=None, cluster_type=None, read_time= None, write_time=None, resource_group_id=None, cname=None, source_ips=None, connection_time=None, https_port=None): self.http_2port = http_2port self.cloud_native_instances = cloud_native_instances self.http_to_user_ip = http_to_user_ip self.http_port = http_port self.log_headers = log_headers self.is_access_product = is_access_product self.access_headers = access_headers self.access_header_mode = access_header_mode self.https_redirect = https_redirect self.load_balancing = load_balancing self.ip_follow_status = ip_follow_status self.access_type = access_type self.version = version self.cluster_type = cluster_type self.read_time = read_time self.write_time = write_time self.resource_group_id = resource_group_id self.cname = cname self.source_ips = source_ips self.connection_time = connection_time self.https_port = https_port def validate(self): if self.cloud_native_instances: for k in self.cloud_native_instances: if k: k.validate() if self.log_headers: for k in self.log_headers: if k: k.validate() def to_map(self): _map = super(DescribeDomainResponseBodyDomain, self).to_map() if _map is not None: return _map result = dict() if self.http_2port is not None: result['Http2Port'] = self.http_2port result['CloudNativeInstances'] = [] if self.cloud_native_instances is not None: for k in self.cloud_native_instances: result['CloudNativeInstances'].append(k.to_map() if k else None ) if self.http_to_user_ip is not None: result['HttpToUserIp'] = self.http_to_user_ip if self.http_port is not None: result['HttpPort'] = self.http_port result['LogHeaders'] = [] if self.log_headers is not None: for k in self.log_headers: result['LogHeaders'].append(k.to_map() if k else None) if self.is_access_product is not None: result['IsAccessProduct'] = self.is_access_product if self.access_headers is not None: result['AccessHeaders'] = self.access_headers if self.access_header_mode is not None: result['AccessHeaderMode'] = self.access_header_mode if self.https_redirect is not None: result['HttpsRedirect'] = self.https_redirect if self.load_balancing is not None: result['LoadBalancing'] = self.load_balancing if self.ip_follow_status is not None: result['IpFollowStatus'] = self.ip_follow_status if self.access_type is not None: result['AccessType'] = self.access_type if self.version is not None: result['Version'] = self.version if self.cluster_type is not None: result['ClusterType'] = self.cluster_type if self.read_time is not None: result['ReadTime'] = self.read_time if self.write_time is not None: result['WriteTime'] = self.write_time if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id if self.cname is not None: result['Cname'] = self.cname if self.source_ips is not None: result['SourceIps'] = self.source_ips if self.connection_time is not None: result['ConnectionTime'] = self.connection_time if self.https_port is not None: result['HttpsPort'] = self.https_port return result def from_map(self, m=None): m = m or dict() if m.get('Http2Port') is not None: self.http_2port = m.get('Http2Port') self.cloud_native_instances = [] if m.get('CloudNativeInstances') is not None: for k in m.get('CloudNativeInstances'): temp_model = ( DescribeDomainResponseBodyDomainCloudNativeInstances()) self.cloud_native_instances.append(temp_model.from_map(k)) if m.get('HttpToUserIp') is not None: self.http_to_user_ip = m.get('HttpToUserIp') if m.get('HttpPort') is not None: self.http_port = m.get('HttpPort') self.log_headers = [] if m.get('LogHeaders') is not None: for k in m.get('LogHeaders'): temp_model = DescribeDomainResponseBodyDomainLogHeaders() self.log_headers.append(temp_model.from_map(k)) if m.get('IsAccessProduct') is not None: self.is_access_product = m.get('IsAccessProduct') if m.get('AccessHeaders') is not None: self.access_headers = m.get('AccessHeaders') if m.get('AccessHeaderMode') is not None: self.access_header_mode = m.get('AccessHeaderMode') if m.get('HttpsRedirect') is not None: self.https_redirect = m.get('HttpsRedirect') if m.get('LoadBalancing') is not None: self.load_balancing = m.get('LoadBalancing') if m.get('IpFollowStatus') is not None: self.ip_follow_status = m.get('IpFollowStatus') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('Version') is not None: self.version = m.get('Version') if m.get('ClusterType') is not None: self.cluster_type = m.get('ClusterType') if m.get('ReadTime') is not None: self.read_time = m.get('ReadTime') if m.get('WriteTime') is not None: self.write_time = m.get('WriteTime') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') if m.get('Cname') is not None: self.cname = m.get('Cname') if m.get('SourceIps') is not None: self.source_ips = m.get('SourceIps') if m.get('ConnectionTime') is not None: self.connection_time = m.get('ConnectionTime') if m.get('HttpsPort') is not None: self.https_port = m.get('HttpsPort') return self class DescribeDomainResponseBody(TeaModel): def __init__(self, request_id=None, domain=None): self.request_id = request_id self.domain = domain def validate(self): if self.domain: self.domain.validate() def to_map(self): _map = super(DescribeDomainResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.domain is not None: result['Domain'] = self.domain.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Domain') is not None: temp_model = DescribeDomainResponseBodyDomain() self.domain = temp_model.from_map(m['Domain']) return self class DescribeDomainResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainAdvanceConfigsRequest(TeaModel): def __init__(self, instance_id=None, domain_list=None, resource_group_id=None): self.instance_id = instance_id self.domain_list = domain_list self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeDomainAdvanceConfigsRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain_list is not None: result['DomainList'] = self.domain_list if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('DomainList') is not None: self.domain_list = m.get('DomainList') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeDomainAdvanceConfigsResponseBodyDomainConfigsProfile(TeaModel): def __init__(self, http_2port=None, ipv_6status=None, http_port=None, gslbstatus=None, rs=None, vip_service_status=None, cluster_type= None, exclusive_vip_status=None, cname=None, cert_status=None, https_port=None, resolved_type=None): self.http_2port = http_2port self.ipv_6status = ipv_6status self.http_port = http_port self.gslbstatus = gslbstatus self.rs = rs self.vip_service_status = vip_service_status self.cluster_type = cluster_type self.exclusive_vip_status = exclusive_vip_status self.cname = cname self.cert_status = cert_status self.https_port = https_port self.resolved_type = resolved_type def validate(self): pass def to_map(self): _map = super( DescribeDomainAdvanceConfigsResponseBodyDomainConfigsProfile, self ).to_map() if _map is not None: return _map result = dict() if self.http_2port is not None: result['Http2Port'] = self.http_2port if self.ipv_6status is not None: result['Ipv6Status'] = self.ipv_6status if self.http_port is not None: result['HttpPort'] = self.http_port if self.gslbstatus is not None: result['GSLBStatus'] = self.gslbstatus if self.rs is not None: result['Rs'] = self.rs if self.vip_service_status is not None: result['VipServiceStatus'] = self.vip_service_status if self.cluster_type is not None: result['ClusterType'] = self.cluster_type if self.exclusive_vip_status is not None: result['ExclusiveVipStatus'] = self.exclusive_vip_status if self.cname is not None: result['Cname'] = self.cname if self.cert_status is not None: result['CertStatus'] = self.cert_status if self.https_port is not None: result['HttpsPort'] = self.https_port if self.resolved_type is not None: result['ResolvedType'] = self.resolved_type return result def from_map(self, m=None): m = m or dict() if m.get('Http2Port') is not None: self.http_2port = m.get('Http2Port') if m.get('Ipv6Status') is not None: self.ipv_6status = m.get('Ipv6Status') if m.get('HttpPort') is not None: self.http_port = m.get('HttpPort') if m.get('GSLBStatus') is not None: self.gslbstatus = m.get('GSLBStatus') if m.get('Rs') is not None: self.rs = m.get('Rs') if m.get('VipServiceStatus') is not None: self.vip_service_status = m.get('VipServiceStatus') if m.get('ClusterType') is not None: self.cluster_type = m.get('ClusterType') if m.get('ExclusiveVipStatus') is not None: self.exclusive_vip_status = m.get('ExclusiveVipStatus') if m.get('Cname') is not None: self.cname = m.get('Cname') if m.get('CertStatus') is not None: self.cert_status = m.get('CertStatus') if m.get('HttpsPort') is not None: self.https_port = m.get('HttpsPort') if m.get('ResolvedType') is not None: self.resolved_type = m.get('ResolvedType') return self class DescribeDomainAdvanceConfigsResponseBodyDomainConfigs(TeaModel): def __init__(self, profile=None, domain=None): self.profile = profile self.domain = domain def validate(self): if self.profile: self.profile.validate() def to_map(self): _map = super(DescribeDomainAdvanceConfigsResponseBodyDomainConfigs, self).to_map() if _map is not None: return _map result = dict() if self.profile is not None: result['Profile'] = self.profile.to_map() if self.domain is not None: result['Domain'] = self.domain return result def from_map(self, m=None): m = m or dict() if m.get('Profile') is not None: temp_model = ( DescribeDomainAdvanceConfigsResponseBodyDomainConfigsProfile()) self.profile = temp_model.from_map(m['Profile']) if m.get('Domain') is not None: self.domain = m.get('Domain') return self class DescribeDomainAdvanceConfigsResponseBody(TeaModel): def __init__(self, request_id=None, domain_configs=None): self.request_id = request_id self.domain_configs = domain_configs def validate(self): if self.domain_configs: for k in self.domain_configs: if k: k.validate() def to_map(self): _map = super(DescribeDomainAdvanceConfigsResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id result['DomainConfigs'] = [] if self.domain_configs is not None: for k in self.domain_configs: result['DomainConfigs'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.domain_configs = [] if m.get('DomainConfigs') is not None: for k in m.get('DomainConfigs'): temp_model = ( DescribeDomainAdvanceConfigsResponseBodyDomainConfigs()) self.domain_configs.append(temp_model.from_map(k)) return self class DescribeDomainAdvanceConfigsResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainAdvanceConfigsResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainAdvanceConfigsResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainBasicConfigsRequest(TeaModel): def __init__(self, instance_id=None, domain_key=None, access_type=None, cloud_native_product_id=None, page_number=None, page_size=None, resource_group_id=None): self.instance_id = instance_id self.domain_key = domain_key self.access_type = access_type self.cloud_native_product_id = cloud_native_product_id self.page_number = page_number self.page_size = page_size self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeDomainBasicConfigsRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain_key is not None: result['DomainKey'] = self.domain_key if self.access_type is not None: result['AccessType'] = self.access_type if self.cloud_native_product_id is not None: result['CloudNativeProductId'] = self.cloud_native_product_id if self.page_number is not None: result['PageNumber'] = self.page_number if self.page_size is not None: result['PageSize'] = self.page_size if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('DomainKey') is not None: self.domain_key = m.get('DomainKey') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('CloudNativeProductId') is not None: self.cloud_native_product_id = m.get('CloudNativeProductId') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeDomainBasicConfigsResponseBodyDomainConfigs(TeaModel): def __init__(self, status=None, domain=None, owner=None, cc_mode=None, cc_status=None, access_type=None, version=None, acl_status=None, waf_status=None, waf_mode=None): self.status = status self.domain = domain self.owner = owner self.cc_mode = cc_mode self.cc_status = cc_status self.access_type = access_type self.version = version self.acl_status = acl_status self.waf_status = waf_status self.waf_mode = waf_mode def validate(self): pass def to_map(self): _map = super(DescribeDomainBasicConfigsResponseBodyDomainConfigs, self ).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.domain is not None: result['Domain'] = self.domain if self.owner is not None: result['Owner'] = self.owner if self.cc_mode is not None: result['CcMode'] = self.cc_mode if self.cc_status is not None: result['CcStatus'] = self.cc_status if self.access_type is not None: result['AccessType'] = self.access_type if self.version is not None: result['Version'] = self.version if self.acl_status is not None: result['AclStatus'] = self.acl_status if self.waf_status is not None: result['WafStatus'] = self.waf_status if self.waf_mode is not None: result['WafMode'] = self.waf_mode return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Owner') is not None: self.owner = m.get('Owner') if m.get('CcMode') is not None: self.cc_mode = m.get('CcMode') if m.get('CcStatus') is not None: self.cc_status = m.get('CcStatus') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('Version') is not None: self.version = m.get('Version') if m.get('AclStatus') is not None: self.acl_status = m.get('AclStatus') if m.get('WafStatus') is not None: self.waf_status = m.get('WafStatus') if m.get('WafMode') is not None: self.waf_mode = m.get('WafMode') return self class DescribeDomainBasicConfigsResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, domain_configs=None): self.total_count = total_count self.request_id = request_id self.domain_configs = domain_configs def validate(self): if self.domain_configs: for k in self.domain_configs: if k: k.validate() def to_map(self): _map = super(DescribeDomainBasicConfigsResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id result['DomainConfigs'] = [] if self.domain_configs is not None: for k in self.domain_configs: result['DomainConfigs'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.domain_configs = [] if m.get('DomainConfigs') is not None: for k in m.get('DomainConfigs'): temp_model = ( DescribeDomainBasicConfigsResponseBodyDomainConfigs()) self.domain_configs.append(temp_model.from_map(k)) return self class DescribeDomainBasicConfigsResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainBasicConfigsResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainBasicConfigsResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainListRequest(TeaModel): def __init__(self, resource_group_id=None, instance_id=None, domain_name=None, page_number=None, page_size=None, is_sub=None, domain_names=None): self.resource_group_id = resource_group_id self.instance_id = instance_id self.domain_name = domain_name self.page_number = page_number self.page_size = page_size self.is_sub = is_sub self.domain_names = domain_names def validate(self): pass def to_map(self): _map = super(DescribeDomainListRequest, self).to_map() if _map is not None: return _map result = dict() if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain_name is not None: result['DomainName'] = self.domain_name if self.page_number is not None: result['PageNumber'] = self.page_number if self.page_size is not None: result['PageSize'] = self.page_size if self.is_sub is not None: result['IsSub'] = self.is_sub if self.domain_names is not None: result['DomainNames'] = self.domain_names return result def from_map(self, m=None): m = m or dict() if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('DomainName') is not None: self.domain_name = m.get('DomainName') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('IsSub') is not None: self.is_sub = m.get('IsSub') if m.get('DomainNames') is not None: self.domain_names = m.get('DomainNames') return self class DescribeDomainListResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, domain_names=None): self.total_count = total_count self.request_id = request_id self.domain_names = domain_names def validate(self): pass def to_map(self): _map = super(DescribeDomainListResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id if self.domain_names is not None: result['DomainNames'] = self.domain_names return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('DomainNames') is not None: self.domain_names = m.get('DomainNames') return self class DescribeDomainListResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainListResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainListResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainNamesRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeDomainNamesRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeDomainNamesResponseBody(TeaModel): def __init__(self, request_id=None, domain_names=None): self.request_id = request_id self.domain_names = domain_names def validate(self): pass def to_map(self): _map = super(DescribeDomainNamesResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.domain_names is not None: result['DomainNames'] = self.domain_names return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('DomainNames') is not None: self.domain_names = m.get('DomainNames') return self class DescribeDomainNamesResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainNamesResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainNamesResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainRuleGroupRequest(TeaModel): def __init__(self, domain=None, instance_id=None): self.domain = domain self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(DescribeDomainRuleGroupRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class DescribeDomainRuleGroupResponseBody(TeaModel): def __init__(self, rule_group_id=None, request_id=None): self.rule_group_id = rule_group_id self.request_id = request_id def validate(self): pass def to_map(self): _map = super(DescribeDomainRuleGroupResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.rule_group_id is not None: result['RuleGroupId'] = self.rule_group_id if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RuleGroupId') is not None: self.rule_group_id = m.get('RuleGroupId') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class DescribeDomainRuleGroupResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainRuleGroupResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainRuleGroupResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeInstanceInfoRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeInstanceInfoRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeInstanceInfoResponseBodyInstanceInfo(TeaModel): def __init__(self, status=None, end_date=None, version=None, remain_day =None, region=None, pay_type=None, in_debt=None, instance_id=None, subscription_type=None, trial=None): self.status = status self.end_date = end_date self.version = version self.remain_day = remain_day self.region = region self.pay_type = pay_type self.in_debt = in_debt self.instance_id = instance_id self.subscription_type = subscription_type self.trial = trial def validate(self): pass def to_map(self): _map = super(DescribeInstanceInfoResponseBodyInstanceInfo, self ).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.end_date is not None: result['EndDate'] = self.end_date if self.version is not None: result['Version'] = self.version if self.remain_day is not None: result['RemainDay'] = self.remain_day if self.region is not None: result['Region'] = self.region if self.pay_type is not None: result['PayType'] = self.pay_type if self.in_debt is not None: result['InDebt'] = self.in_debt if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.subscription_type is not None: result['SubscriptionType'] = self.subscription_type if self.trial is not None: result['Trial'] = self.trial return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('EndDate') is not None: self.end_date = m.get('EndDate') if m.get('Version') is not None: self.version = m.get('Version') if m.get('RemainDay') is not None: self.remain_day = m.get('RemainDay') if m.get('Region') is not None: self.region = m.get('Region') if m.get('PayType') is not None: self.pay_type = m.get('PayType') if m.get('InDebt') is not None: self.in_debt = m.get('InDebt') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('SubscriptionType') is not None: self.subscription_type = m.get('SubscriptionType') if m.get('Trial') is not None: self.trial = m.get('Trial') return self class DescribeInstanceInfoResponseBody(TeaModel): def __init__(self, request_id=None, instance_info=None): self.request_id = request_id self.instance_info = instance_info def validate(self): if self.instance_info: self.instance_info.validate() def to_map(self): _map = super(DescribeInstanceInfoResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.instance_info is not None: result['InstanceInfo'] = self.instance_info.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('InstanceInfo') is not None: temp_model = DescribeInstanceInfoResponseBodyInstanceInfo() self.instance_info = temp_model.from_map(m['InstanceInfo']) return self class DescribeInstanceInfoResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeInstanceInfoResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeInstanceInfoResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeInstanceInfosRequest(TeaModel): def __init__(self, instance_source=None, instance_id=None, resource_group_id=None): self.instance_source = instance_source self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeInstanceInfosRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_source is not None: result['InstanceSource'] = self.instance_source if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceSource') is not None: self.instance_source = m.get('InstanceSource') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeInstanceInfosResponseBodyInstanceInfos(TeaModel): def __init__(self, status=None, end_date=None, remain_day=None, region= None, pay_type=None, in_debt=None, instance_id=None, subscription_type=None, trial=None): self.status = status self.end_date = end_date self.remain_day = remain_day self.region = region self.pay_type = pay_type self.in_debt = in_debt self.instance_id = instance_id self.subscription_type = subscription_type self.trial = trial def validate(self): pass def to_map(self): _map = super(DescribeInstanceInfosResponseBodyInstanceInfos, self ).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.end_date is not None: result['EndDate'] = self.end_date if self.remain_day is not None: result['RemainDay'] = self.remain_day if self.region is not None: result['Region'] = self.region if self.pay_type is not None: result['PayType'] = self.pay_type if self.in_debt is not None: result['InDebt'] = self.in_debt if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.subscription_type is not None: result['SubscriptionType'] = self.subscription_type if self.trial is not None: result['Trial'] = self.trial return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('EndDate') is not None: self.end_date = m.get('EndDate') if m.get('RemainDay') is not None: self.remain_day = m.get('RemainDay') if m.get('Region') is not None: self.region = m.get('Region') if m.get('PayType') is not None: self.pay_type = m.get('PayType') if m.get('InDebt') is not None: self.in_debt = m.get('InDebt') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('SubscriptionType') is not None: self.subscription_type = m.get('SubscriptionType') if m.get('Trial') is not None: self.trial = m.get('Trial') return self class DescribeInstanceInfosResponseBody(TeaModel): def __init__(self, request_id=None, instance_infos=None): self.request_id = request_id self.instance_infos = instance_infos def validate(self): if self.instance_infos: for k in self.instance_infos: if k: k.validate() def to_map(self): _map = super(DescribeInstanceInfosResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id result['InstanceInfos'] = [] if self.instance_infos is not None: for k in self.instance_infos: result['InstanceInfos'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.instance_infos = [] if m.get('InstanceInfos') is not None: for k in m.get('InstanceInfos'): temp_model = DescribeInstanceInfosResponseBodyInstanceInfos() self.instance_infos.append(temp_model.from_map(k)) return self class DescribeInstanceInfosResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeInstanceInfosResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeInstanceInfosResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeInstanceSpecInfoRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeInstanceSpecInfoRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos(TeaModel): def __init__(self, value=None, code=None): self.value = value self.code = code def validate(self): pass def to_map(self): _map = super(DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos, self).to_map() if _map is not None: return _map result = dict() if self.value is not None: result['Value'] = self.value if self.code is not None: result['Code'] = self.code return result def from_map(self, m=None): m = m or dict() if m.get('Value') is not None: self.value = m.get('Value') if m.get('Code') is not None: self.code = m.get('Code') return self class DescribeInstanceSpecInfoResponseBody(TeaModel): def __init__(self, instance_spec_infos=None, request_id=None, instance_id=None, version=None, expire_time=None): self.instance_spec_infos = instance_spec_infos self.request_id = request_id self.instance_id = instance_id self.version = version self.expire_time = expire_time def validate(self): if self.instance_spec_infos: for k in self.instance_spec_infos: if k: k.validate() def to_map(self): _map = super(DescribeInstanceSpecInfoResponseBody, self).to_map() if _map is not None: return _map result = dict() result['InstanceSpecInfos'] = [] if self.instance_spec_infos is not None: for k in self.instance_spec_infos: result['InstanceSpecInfos'].append(k.to_map() if k else None) if self.request_id is not None: result['RequestId'] = self.request_id if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.version is not None: result['Version'] = self.version if self.expire_time is not None: result['ExpireTime'] = self.expire_time return result def from_map(self, m=None): m = m or dict() self.instance_spec_infos = [] if m.get('InstanceSpecInfos') is not None: for k in m.get('InstanceSpecInfos'): temp_model = ( DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos()) self.instance_spec_infos.append(temp_model.from_map(k)) if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Version') is not None: self.version = m.get('Version') if m.get('ExpireTime') is not None: self.expire_time = m.get('ExpireTime') return self class DescribeInstanceSpecInfoResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeInstanceSpecInfoResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeInstanceSpecInfoResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeLogServiceStatusRequest(TeaModel): def __init__(self, instance_id=None, region=None, resource_group_id= None, page_number=None, page_size=None, domain_names=None): self.instance_id = instance_id self.region = region self.resource_group_id = resource_group_id self.page_number = page_number self.page_size = page_size self.domain_names = domain_names def validate(self): pass def to_map(self): _map = super(DescribeLogServiceStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.region is not None: result['Region'] = self.region if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id if self.page_number is not None: result['PageNumber'] = self.page_number if self.page_size is not None: result['PageSize'] = self.page_size if self.domain_names is not None: result['DomainNames'] = self.domain_names return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Region') is not None: self.region = m.get('Region') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('DomainNames') is not None: self.domain_names = m.get('DomainNames') return self class DescribeLogServiceStatusResponseBodyDomainStatus(TeaModel): def __init__(self, domain=None, sls_log_active=None): self.domain = domain self.sls_log_active = sls_log_active def validate(self): pass def to_map(self): _map = super(DescribeLogServiceStatusResponseBodyDomainStatus, self ).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.sls_log_active is not None: result['SlsLogActive'] = self.sls_log_active return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('SlsLogActive') is not None: self.sls_log_active = m.get('SlsLogActive') return self class DescribeLogServiceStatusResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, domain_status=None): self.total_count = total_count self.request_id = request_id self.domain_status = domain_status def validate(self): if self.domain_status: for k in self.domain_status: if k: k.validate() def to_map(self): _map = super(DescribeLogServiceStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id result['DomainStatus'] = [] if self.domain_status is not None: for k in self.domain_status: result['DomainStatus'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.domain_status = [] if m.get('DomainStatus') is not None: for k in m.get('DomainStatus'): temp_model = DescribeLogServiceStatusResponseBodyDomainStatus() self.domain_status.append(temp_model.from_map(k)) return self class DescribeLogServiceStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeLogServiceStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeLogServiceStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleCodeConfigRequest(TeaModel): def __init__(self, source_ip=None, lang=None, code_type=None, code_value=None, instance_id=None, resource_group_id=None): self.source_ip = source_ip self.lang = lang self.code_type = code_type self.code_value = code_value self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleCodeConfigRequest, self).to_map() if _map is not None: return _map result = dict() if self.source_ip is not None: result['SourceIp'] = self.source_ip if self.lang is not None: result['Lang'] = self.lang if self.code_type is not None: result['CodeType'] = self.code_type if self.code_value is not None: result['CodeValue'] = self.code_value if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('SourceIp') is not None: self.source_ip = m.get('SourceIp') if m.get('Lang') is not None: self.lang = m.get('Lang') if m.get('CodeType') is not None: self.code_type = m.get('CodeType') if m.get('CodeValue') is not None: self.code_value = m.get('CodeValue') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleCodeConfigResponseBody(TeaModel): def __init__(self, request_id=None, code_configs=None): self.request_id = request_id self.code_configs = code_configs def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleCodeConfigResponseBody, self ).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code_configs is not None: result['CodeConfigs'] = self.code_configs return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('CodeConfigs') is not None: self.code_configs = m.get('CodeConfigs') return self class DescribeProtectionModuleCodeConfigResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleCodeConfigResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleCodeConfigResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleModeRequest(TeaModel): def __init__(self, domain=None, defense_type=None, instance_id=None, resource_group_id=None): self.domain = domain self.defense_type = defense_type self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleModeRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleModeResponseBody(TeaModel): def __init__(self, learn_status=None, request_id=None, mode=None): self.learn_status = learn_status self.request_id = request_id self.mode = mode def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleModeResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.learn_status is not None: result['LearnStatus'] = self.learn_status if self.request_id is not None: result['RequestId'] = self.request_id if self.mode is not None: result['Mode'] = self.mode return result def from_map(self, m=None): m = m or dict() if m.get('LearnStatus') is not None: self.learn_status = m.get('LearnStatus') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Mode') is not None: self.mode = m.get('Mode') return self class DescribeProtectionModuleModeResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleModeResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleModeResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleRulesRequest(TeaModel): def __init__(self, page_size=None, page_number=None, domain=None, defense_type=None, query=None, lang=None, instance_id=None, resource_group_id=None): self.page_size = page_size self.page_number = page_number self.domain = domain self.defense_type = defense_type self.query = query self.lang = lang self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleRulesRequest, self).to_map() if _map is not None: return _map result = dict() if self.page_size is not None: result['PageSize'] = self.page_size if self.page_number is not None: result['PageNumber'] = self.page_number if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.query is not None: result['Query'] = self.query if self.lang is not None: result['Lang'] = self.lang if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Query') is not None: self.query = m.get('Query') if m.get('Lang') is not None: self.lang = m.get('Lang') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleRulesResponseBodyRules(TeaModel): def __init__(self, status=None, time=None, version=None, content=None, rule_id=None): self.status = status self.time = time self.version = version self.content = content self.rule_id = rule_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleRulesResponseBodyRules, self ).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.time is not None: result['Time'] = self.time if self.version is not None: result['Version'] = self.version if self.content is not None: result['Content'] = self.content if self.rule_id is not None: result['RuleId'] = self.rule_id return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('Time') is not None: self.time = m.get('Time') if m.get('Version') is not None: self.version = m.get('Version') if m.get('Content') is not None: self.content = m.get('Content') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') return self class DescribeProtectionModuleRulesResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, rules=None): self.total_count = total_count self.request_id = request_id self.rules = rules def validate(self): if self.rules: for k in self.rules: if k: k.validate() def to_map(self): _map = super(DescribeProtectionModuleRulesResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id result['Rules'] = [] if self.rules is not None: for k in self.rules: result['Rules'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.rules = [] if m.get('Rules') is not None: for k in m.get('Rules'): temp_model = DescribeProtectionModuleRulesResponseBodyRules() self.rules.append(temp_model.from_map(k)) return self class DescribeProtectionModuleRulesResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleRulesResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleRulesResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class DescribeProtectionModuleStatusResponseBody(TeaModel): def __init__(self, request_id=None, module_status=None): self.request_id = request_id self.module_status = module_status def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.module_status is not None: result['ModuleStatus'] = self.module_status return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ModuleStatus') is not None: self.module_status = m.get('ModuleStatus') return self class DescribeProtectionModuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeWafSourceIpSegmentRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(DescribeWafSourceIpSegmentRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeWafSourceIpSegmentResponseBody(TeaModel): def __init__(self, request_id=None, ip_v6s=None, ips=None): self.request_id = request_id self.ip_v6s = ip_v6s self.ips = ips def validate(self): pass def to_map(self): _map = super(DescribeWafSourceIpSegmentResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.ip_v6s is not None: result['IpV6s'] = self.ip_v6s if self.ips is not None: result['Ips'] = self.ips return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('IpV6s') is not None: self.ip_v6s = m.get('IpV6s') if m.get('Ips') is not None: self.ips = m.get('Ips') return self class DescribeWafSourceIpSegmentResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeWafSourceIpSegmentResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeWafSourceIpSegmentResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyDomainRequest(TeaModel): def __init__(self, instance_id=None, domain=None, source_ips=None, load_balancing=None, http_port=None, https_port=None, http_2port= None, https_redirect=None, http_to_user_ip=None, is_access_product= None, log_headers=None, cluster_type=None, connection_time=None, read_time=None, write_time=None, access_type=None, cloud_native_instances=None, ip_follow_status=None): self.instance_id = instance_id self.domain = domain self.source_ips = source_ips self.load_balancing = load_balancing self.http_port = http_port self.https_port = https_port self.http_2port = http_2port self.https_redirect = https_redirect self.http_to_user_ip = http_to_user_ip self.is_access_product = is_access_product self.log_headers = log_headers self.cluster_type = cluster_type self.connection_time = connection_time self.read_time = read_time self.write_time = write_time self.access_type = access_type self.cloud_native_instances = cloud_native_instances self.ip_follow_status = ip_follow_status def validate(self): pass def to_map(self): _map = super(ModifyDomainRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.source_ips is not None: result['SourceIps'] = self.source_ips if self.load_balancing is not None: result['LoadBalancing'] = self.load_balancing if self.http_port is not None: result['HttpPort'] = self.http_port if self.https_port is not None: result['HttpsPort'] = self.https_port if self.http_2port is not None: result['Http2Port'] = self.http_2port if self.https_redirect is not None: result['HttpsRedirect'] = self.https_redirect if self.http_to_user_ip is not None: result['HttpToUserIp'] = self.http_to_user_ip if self.is_access_product is not None: result['IsAccessProduct'] = self.is_access_product if self.log_headers is not None: result['LogHeaders'] = self.log_headers if self.cluster_type is not None: result['ClusterType'] = self.cluster_type if self.connection_time is not None: result['ConnectionTime'] = self.connection_time if self.read_time is not None: result['ReadTime'] = self.read_time if self.write_time is not None: result['WriteTime'] = self.write_time if self.access_type is not None: result['AccessType'] = self.access_type if self.cloud_native_instances is not None: result['CloudNativeInstances'] = self.cloud_native_instances if self.ip_follow_status is not None: result['IpFollowStatus'] = self.ip_follow_status return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('SourceIps') is not None: self.source_ips = m.get('SourceIps') if m.get('LoadBalancing') is not None: self.load_balancing = m.get('LoadBalancing') if m.get('HttpPort') is not None: self.http_port = m.get('HttpPort') if m.get('HttpsPort') is not None: self.https_port = m.get('HttpsPort') if m.get('Http2Port') is not None: self.http_2port = m.get('Http2Port') if m.get('HttpsRedirect') is not None: self.https_redirect = m.get('HttpsRedirect') if m.get('HttpToUserIp') is not None: self.http_to_user_ip = m.get('HttpToUserIp') if m.get('IsAccessProduct') is not None: self.is_access_product = m.get('IsAccessProduct') if m.get('LogHeaders') is not None: self.log_headers = m.get('LogHeaders') if m.get('ClusterType') is not None: self.cluster_type = m.get('ClusterType') if m.get('ConnectionTime') is not None: self.connection_time = m.get('ConnectionTime') if m.get('ReadTime') is not None: self.read_time = m.get('ReadTime') if m.get('WriteTime') is not None: self.write_time = m.get('WriteTime') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('CloudNativeInstances') is not None: self.cloud_native_instances = m.get('CloudNativeInstances') if m.get('IpFollowStatus') is not None: self.ip_follow_status = m.get('IpFollowStatus') return self class ModifyDomainResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyDomainResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyDomainResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyDomainResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyDomainResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyDomainIpv6StatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id self.domain = domain self.enabled = enabled def validate(self): pass def to_map(self): _map = super(ModifyDomainIpv6StatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyDomainIpv6StatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyDomainIpv6StatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyDomainIpv6StatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyDomainIpv6StatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyDomainIpv6StatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyLogRetrievalStatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id self.domain = domain self.enabled = enabled def validate(self): pass def to_map(self): _map = super(ModifyLogRetrievalStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyLogRetrievalStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyLogRetrievalStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyLogRetrievalStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyLogRetrievalStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyLogRetrievalStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyLogServiceStatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id self.domain = domain self.enabled = enabled def validate(self): pass def to_map(self): _map = super(ModifyLogServiceStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyLogServiceStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyLogServiceStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyLogServiceStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyLogServiceStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyLogServiceStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleModeRequest(TeaModel): def __init__(self, domain=None, defense_type=None, mode=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.mode = mode self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleModeRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.mode is not None: result['Mode'] = self.mode if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Mode') is not None: self.mode = m.get('Mode') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleModeResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleModeResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleModeResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleModeResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleModeResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleRuleRequest(TeaModel): def __init__(self, domain=None, defense_type=None, rule=None, rule_id= None, lock_version=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.rule = rule self.rule_id = rule_id self.lock_version = lock_version self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleRuleRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.rule is not None: result['Rule'] = self.rule if self.rule_id is not None: result['RuleId'] = self.rule_id if self.lock_version is not None: result['LockVersion'] = self.lock_version if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Rule') is not None: self.rule = m.get('Rule') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('LockVersion') is not None: self.lock_version = m.get('LockVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleRuleResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleRuleResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleRuleResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleRuleResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleRuleResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, module_status=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.module_status = module_status self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.module_status is not None: result['ModuleStatus'] = self.module_status if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('ModuleStatus') is not None: self.module_status = m.get('ModuleStatus') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionRuleCacheStatusRequest(TeaModel): def __init__(self, domain=None, rule_id=None, defense_type=None, instance_id=None): self.domain = domain self.rule_id = rule_id self.defense_type = defense_type self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleCacheStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.rule_id is not None: result['RuleId'] = self.rule_id if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionRuleCacheStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleCacheStatusResponseBody, self).to_map( ) if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionRuleCacheStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionRuleCacheStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionRuleCacheStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionRuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, rule_id=None, rule_status=None, lock_version=None, instance_id=None): self.domain = domain self.defense_type = defense_type self.rule_id = rule_id self.rule_status = rule_status self.lock_version = lock_version self.instance_id = instance_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.rule_id is not None: result['RuleId'] = self.rule_id if self.rule_status is not None: result['RuleStatus'] = self.rule_status if self.lock_version is not None: result['LockVersion'] = self.lock_version if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('RuleStatus') is not None: self.rule_status = m.get('RuleStatus') if m.get('LockVersion') is not None: self.lock_version = m.get('LockVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionRuleStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionRuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionRuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionRuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class SetDomainRuleGroupRequest(TeaModel): def __init__(self, domains=None, rule_group_id=None, waf_version=None, instance_id=None, resource_group_id=None): self.domains = domains self.rule_group_id = rule_group_id self.waf_version = waf_version self.instance_id = instance_id self.resource_group_id = resource_group_id def validate(self): pass def to_map(self): _map = super(SetDomainRuleGroupRequest, self).to_map() if _map is not None: return _map result = dict() if self.domains is not None: result['Domains'] = self.domains if self.rule_group_id is not None: result['RuleGroupId'] = self.rule_group_id if self.waf_version is not None: result['WafVersion'] = self.waf_version if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('Domains') is not None: self.domains = m.get('Domains') if m.get('RuleGroupId') is not None: self.rule_group_id = m.get('RuleGroupId') if m.get('WafVersion') is not None: self.waf_version = m.get('WafVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class SetDomainRuleGroupResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id def validate(self): pass def to_map(self): _map = super(SetDomainRuleGroupResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class SetDomainRuleGroupResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers self.body = body def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(SetDomainRuleGroupResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = SetDomainRuleGroupResponseBody() self.body = temp_model.from_map(m['body']) return self
# -*- coding: utf-8 -*- # This file is auto-generated, don't edit it. Thanks. from Tea.model import TeaModel class CreateCertificateRequest(TeaModel): def __init__(self, domain=None, certificate=None, private_key=None, certificate_name=None, instance_id=None): self.domain = domain # type: str self.certificate = certificate # type: str self.private_key = private_key # type: str self.certificate_name = certificate_name # type: str self.instance_id = instance_id # type: str def validate(self): pass def to_map(self): _map = super(CreateCertificateRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.certificate is not None: result['Certificate'] = self.certificate if self.private_key is not None: result['PrivateKey'] = self.private_key if self.certificate_name is not None: result['CertificateName'] = self.certificate_name if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Certificate') is not None: self.certificate = m.get('Certificate') if m.get('PrivateKey') is not None: self.private_key = m.get('PrivateKey') if m.get('CertificateName') is not None: self.certificate_name = m.get('CertificateName') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class CreateCertificateResponseBody(TeaModel): def __init__(self, request_id=None, certificate_id=None): self.request_id = request_id # type: str self.certificate_id = certificate_id # type: long def validate(self): pass def to_map(self): _map = super(CreateCertificateResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.certificate_id is not None: result['CertificateId'] = self.certificate_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('CertificateId') is not None: self.certificate_id = m.get('CertificateId') return self class CreateCertificateResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: CreateCertificateResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(CreateCertificateResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = CreateCertificateResponseBody() self.body = temp_model.from_map(m['body']) return self class CreateCertificateByCertificateIdRequest(TeaModel): def __init__(self, domain=None, certificate_id=None, instance_id=None): self.domain = domain # type: str self.certificate_id = certificate_id # type: long self.instance_id = instance_id # type: str def validate(self): pass def to_map(self): _map = super(CreateCertificateByCertificateIdRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.certificate_id is not None: result['CertificateId'] = self.certificate_id if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('CertificateId') is not None: self.certificate_id = m.get('CertificateId') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class CreateCertificateByCertificateIdResponseBody(TeaModel): def __init__(self, request_id=None, certificate_id=None): self.request_id = request_id # type: str self.certificate_id = certificate_id # type: long def validate(self): pass def to_map(self): _map = super(CreateCertificateByCertificateIdResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.certificate_id is not None: result['CertificateId'] = self.certificate_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('CertificateId') is not None: self.certificate_id = m.get('CertificateId') return self class CreateCertificateByCertificateIdResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: CreateCertificateByCertificateIdResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(CreateCertificateByCertificateIdResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = CreateCertificateByCertificateIdResponseBody() self.body = temp_model.from_map(m['body']) return self class CreateDomainRequest(TeaModel): def __init__(self, instance_id=None, domain=None, source_ips=None, is_access_product=None, access_header_mode=None, access_headers=None, load_balancing=None, log_headers=None, http_port=None, https_port=None, http_2port=None, http_to_user_ip=None, https_redirect=None, cluster_type=None, resource_group_id=None, connection_time=None, read_time=None, write_time=None, access_type=None, cloud_native_instances=None, ip_follow_status=None): self.instance_id = instance_id # type: str self.domain = domain # type: str self.source_ips = source_ips # type: str self.is_access_product = is_access_product # type: int self.access_header_mode = access_header_mode # type: int self.access_headers = access_headers # type: str self.load_balancing = load_balancing # type: int self.log_headers = log_headers # type: str self.http_port = http_port # type: str self.https_port = https_port # type: str self.http_2port = http_2port # type: str self.http_to_user_ip = http_to_user_ip # type: int self.https_redirect = https_redirect # type: int self.cluster_type = cluster_type # type: int self.resource_group_id = resource_group_id # type: str self.connection_time = connection_time # type: int self.read_time = read_time # type: int self.write_time = write_time # type: int self.access_type = access_type # type: str self.cloud_native_instances = cloud_native_instances # type: str self.ip_follow_status = ip_follow_status # type: int def validate(self): pass def to_map(self): _map = super(CreateDomainRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.source_ips is not None: result['SourceIps'] = self.source_ips if self.is_access_product is not None: result['IsAccessProduct'] = self.is_access_product if self.access_header_mode is not None: result['AccessHeaderMode'] = self.access_header_mode if self.access_headers is not None: result['AccessHeaders'] = self.access_headers if self.load_balancing is not None: result['LoadBalancing'] = self.load_balancing if self.log_headers is not None: result['LogHeaders'] = self.log_headers if self.http_port is not None: result['HttpPort'] = self.http_port if self.https_port is not None: result['HttpsPort'] = self.https_port if self.http_2port is not None: result['Http2Port'] = self.http_2port if self.http_to_user_ip is not None: result['HttpToUserIp'] = self.http_to_user_ip if self.https_redirect is not None: result['HttpsRedirect'] = self.https_redirect if self.cluster_type is not None: result['ClusterType'] = self.cluster_type if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id if self.connection_time is not None: result['ConnectionTime'] = self.connection_time if self.read_time is not None: result['ReadTime'] = self.read_time if self.write_time is not None: result['WriteTime'] = self.write_time if self.access_type is not None: result['AccessType'] = self.access_type if self.cloud_native_instances is not None: result['CloudNativeInstances'] = self.cloud_native_instances if self.ip_follow_status is not None: result['IpFollowStatus'] = self.ip_follow_status return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('SourceIps') is not None: self.source_ips = m.get('SourceIps') if m.get('IsAccessProduct') is not None: self.is_access_product = m.get('IsAccessProduct') if m.get('AccessHeaderMode') is not None: self.access_header_mode = m.get('AccessHeaderMode') if m.get('AccessHeaders') is not None: self.access_headers = m.get('AccessHeaders') if m.get('LoadBalancing') is not None: self.load_balancing = m.get('LoadBalancing') if m.get('LogHeaders') is not None: self.log_headers = m.get('LogHeaders') if m.get('HttpPort') is not None: self.http_port = m.get('HttpPort') if m.get('HttpsPort') is not None: self.https_port = m.get('HttpsPort') if m.get('Http2Port') is not None: self.http_2port = m.get('Http2Port') if m.get('HttpToUserIp') is not None: self.http_to_user_ip = m.get('HttpToUserIp') if m.get('HttpsRedirect') is not None: self.https_redirect = m.get('HttpsRedirect') if m.get('ClusterType') is not None: self.cluster_type = m.get('ClusterType') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') if m.get('ConnectionTime') is not None: self.connection_time = m.get('ConnectionTime') if m.get('ReadTime') is not None: self.read_time = m.get('ReadTime') if m.get('WriteTime') is not None: self.write_time = m.get('WriteTime') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('CloudNativeInstances') is not None: self.cloud_native_instances = m.get('CloudNativeInstances') if m.get('IpFollowStatus') is not None: self.ip_follow_status = m.get('IpFollowStatus') return self class CreateDomainResponseBody(TeaModel): def __init__(self, request_id=None, cname=None): self.request_id = request_id # type: str self.cname = cname # type: str def validate(self): pass def to_map(self): _map = super(CreateDomainResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.cname is not None: result['Cname'] = self.cname return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Cname') is not None: self.cname = m.get('Cname') return self class CreateDomainResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: CreateDomainResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(CreateDomainResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = CreateDomainResponseBody() self.body = temp_model.from_map(m['body']) return self class CreateProtectionModuleRuleRequest(TeaModel): def __init__(self, domain=None, defense_type=None, rule=None, instance_id=None): self.domain = domain # type: str self.defense_type = defense_type # type: str self.rule = rule # type: str self.instance_id = instance_id # type: str def validate(self): pass def to_map(self): _map = super(CreateProtectionModuleRuleRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.rule is not None: result['Rule'] = self.rule if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Rule') is not None: self.rule = m.get('Rule') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class CreateProtectionModuleRuleResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(CreateProtectionModuleRuleResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class CreateProtectionModuleRuleResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: CreateProtectionModuleRuleResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(CreateProtectionModuleRuleResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = CreateProtectionModuleRuleResponseBody() self.body = temp_model.from_map(m['body']) return self class DeleteDomainRequest(TeaModel): def __init__(self, instance_id=None, domain=None): self.instance_id = instance_id # type: str self.domain = domain # type: str def validate(self): pass def to_map(self): _map = super(DeleteDomainRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') return self class DeleteDomainResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(DeleteDomainResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class DeleteDomainResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DeleteDomainResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DeleteDomainResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DeleteDomainResponseBody() self.body = temp_model.from_map(m['body']) return self class DeleteInstanceRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id # type: str self.resource_group_id = resource_group_id # type: str def validate(self): pass def to_map(self): _map = super(DeleteInstanceRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DeleteInstanceResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(DeleteInstanceResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class DeleteInstanceResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DeleteInstanceResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DeleteInstanceResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DeleteInstanceResponseBody() self.body = temp_model.from_map(m['body']) return self class DeleteProtectionModuleRuleRequest(TeaModel): def __init__(self, domain=None, defense_type=None, rule_id=None, instance_id=None): self.domain = domain # type: str self.defense_type = defense_type # type: str self.rule_id = rule_id # type: long self.instance_id = instance_id # type: str def validate(self): pass def to_map(self): _map = super(DeleteProtectionModuleRuleRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.rule_id is not None: result['RuleId'] = self.rule_id if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class DeleteProtectionModuleRuleResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(DeleteProtectionModuleRuleResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class DeleteProtectionModuleRuleResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DeleteProtectionModuleRuleResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DeleteProtectionModuleRuleResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DeleteProtectionModuleRuleResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeCertificatesRequest(TeaModel): def __init__(self, instance_id=None, domain=None): self.instance_id = instance_id # type: str self.domain = domain # type: str def validate(self): pass def to_map(self): _map = super(DescribeCertificatesRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') return self class DescribeCertificatesResponseBodyCertificates(TeaModel): def __init__(self, certificate_name=None, common_name=None, sans=None, is_using=None, certificate_id=None): self.certificate_name = certificate_name # type: str self.common_name = common_name # type: str self.sans = sans # type: list[str] self.is_using = is_using # type: bool self.certificate_id = certificate_id # type: long def validate(self): pass def to_map(self): _map = super(DescribeCertificatesResponseBodyCertificates, self).to_map() if _map is not None: return _map result = dict() if self.certificate_name is not None: result['CertificateName'] = self.certificate_name if self.common_name is not None: result['CommonName'] = self.common_name if self.sans is not None: result['Sans'] = self.sans if self.is_using is not None: result['IsUsing'] = self.is_using if self.certificate_id is not None: result['CertificateId'] = self.certificate_id return result def from_map(self, m=None): m = m or dict() if m.get('CertificateName') is not None: self.certificate_name = m.get('CertificateName') if m.get('CommonName') is not None: self.common_name = m.get('CommonName') if m.get('Sans') is not None: self.sans = m.get('Sans') if m.get('IsUsing') is not None: self.is_using = m.get('IsUsing') if m.get('CertificateId') is not None: self.certificate_id = m.get('CertificateId') return self class DescribeCertificatesResponseBody(TeaModel): def __init__(self, request_id=None, certificates=None): self.request_id = request_id # type: str self.certificates = certificates # type: list[DescribeCertificatesResponseBodyCertificates] def validate(self): if self.certificates: for k in self.certificates: if k: k.validate() def to_map(self): _map = super(DescribeCertificatesResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id result['Certificates'] = [] if self.certificates is not None: for k in self.certificates: result['Certificates'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.certificates = [] if m.get('Certificates') is not None: for k in m.get('Certificates'): temp_model = DescribeCertificatesResponseBodyCertificates() self.certificates.append(temp_model.from_map(k)) return self class DescribeCertificatesResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeCertificatesResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeCertificatesResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeCertificatesResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeCertMatchStatusRequest(TeaModel): def __init__(self, domain=None, certificate=None, private_key=None, instance_id=None): self.domain = domain # type: str self.certificate = certificate # type: str self.private_key = private_key # type: str self.instance_id = instance_id # type: str def validate(self): pass def to_map(self): _map = super(DescribeCertMatchStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.certificate is not None: result['Certificate'] = self.certificate if self.private_key is not None: result['PrivateKey'] = self.private_key if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Certificate') is not None: self.certificate = m.get('Certificate') if m.get('PrivateKey') is not None: self.private_key = m.get('PrivateKey') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class DescribeCertMatchStatusResponseBody(TeaModel): def __init__(self, request_id=None, match_status=None): self.request_id = request_id # type: str self.match_status = match_status # type: bool def validate(self): pass def to_map(self): _map = super(DescribeCertMatchStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.match_status is not None: result['MatchStatus'] = self.match_status return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('MatchStatus') is not None: self.match_status = m.get('MatchStatus') return self class DescribeCertMatchStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeCertMatchStatusResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeCertMatchStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeCertMatchStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainRequest(TeaModel): def __init__(self, instance_id=None, domain=None): self.instance_id = instance_id # type: str self.domain = domain # type: str def validate(self): pass def to_map(self): _map = super(DescribeDomainRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') return self class DescribeDomainResponseBodyDomainCloudNativeInstancesProtocolPortConfigs(TeaModel): def __init__(self, protocol=None, ports=None): self.protocol = protocol # type: str self.ports = ports # type: str def validate(self): pass def to_map(self): _map = super(DescribeDomainResponseBodyDomainCloudNativeInstancesProtocolPortConfigs, self).to_map() if _map is not None: return _map result = dict() if self.protocol is not None: result['Protocol'] = self.protocol if self.ports is not None: result['Ports'] = self.ports return result def from_map(self, m=None): m = m or dict() if m.get('Protocol') is not None: self.protocol = m.get('Protocol') if m.get('Ports') is not None: self.ports = m.get('Ports') return self class DescribeDomainResponseBodyDomainCloudNativeInstances(TeaModel): def __init__(self, protocol_port_configs=None, redirection_type_name=None, cloud_native_product_name=None, instance_id=None, ipaddress_list=None): self.protocol_port_configs = protocol_port_configs # type: list[DescribeDomainResponseBodyDomainCloudNativeInstancesProtocolPortConfigs] self.redirection_type_name = redirection_type_name # type: str self.cloud_native_product_name = cloud_native_product_name # type: str self.instance_id = instance_id # type: str self.ipaddress_list = ipaddress_list # type: str def validate(self): if self.protocol_port_configs: for k in self.protocol_port_configs: if k: k.validate() def to_map(self): _map = super(DescribeDomainResponseBodyDomainCloudNativeInstances, self).to_map() if _map is not None: return _map result = dict() result['ProtocolPortConfigs'] = [] if self.protocol_port_configs is not None: for k in self.protocol_port_configs: result['ProtocolPortConfigs'].append(k.to_map() if k else None) if self.redirection_type_name is not None: result['RedirectionTypeName'] = self.redirection_type_name if self.cloud_native_product_name is not None: result['CloudNativeProductName'] = self.cloud_native_product_name if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.ipaddress_list is not None: result['IPAddressList'] = self.ipaddress_list return result def from_map(self, m=None): m = m or dict() self.protocol_port_configs = [] if m.get('ProtocolPortConfigs') is not None: for k in m.get('ProtocolPortConfigs'): temp_model = DescribeDomainResponseBodyDomainCloudNativeInstancesProtocolPortConfigs() self.protocol_port_configs.append(temp_model.from_map(k)) if m.get('RedirectionTypeName') is not None: self.redirection_type_name = m.get('RedirectionTypeName') if m.get('CloudNativeProductName') is not None: self.cloud_native_product_name = m.get('CloudNativeProductName') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('IPAddressList') is not None: self.ipaddress_list = m.get('IPAddressList') return self class DescribeDomainResponseBodyDomainLogHeaders(TeaModel): def __init__(self, k=None, v=None): self.k = k # type: str self.v = v # type: str def validate(self): pass def to_map(self): _map = super(DescribeDomainResponseBodyDomainLogHeaders, self).to_map() if _map is not None: return _map result = dict() if self.k is not None: result['k'] = self.k if self.v is not None: result['v'] = self.v return result def from_map(self, m=None): m = m or dict() if m.get('k') is not None: self.k = m.get('k') if m.get('v') is not None: self.v = m.get('v') return self class DescribeDomainResponseBodyDomain(TeaModel): def __init__(self, http_2port=None, cloud_native_instances=None, http_to_user_ip=None, http_port=None, log_headers=None, is_access_product=None, access_headers=None, access_header_mode=None, https_redirect=None, load_balancing=None, ip_follow_status=None, access_type=None, version=None, cluster_type=None, read_time=None, write_time=None, resource_group_id=None, cname=None, source_ips=None, connection_time=None, https_port=None): self.http_2port = http_2port # type: list[str] self.cloud_native_instances = cloud_native_instances # type: list[DescribeDomainResponseBodyDomainCloudNativeInstances] self.http_to_user_ip = http_to_user_ip # type: int self.http_port = http_port # type: list[str] self.log_headers = log_headers # type: list[DescribeDomainResponseBodyDomainLogHeaders] self.is_access_product = is_access_product # type: int self.access_headers = access_headers # type: list[str] self.access_header_mode = access_header_mode # type: int self.https_redirect = https_redirect # type: int self.load_balancing = load_balancing # type: int self.ip_follow_status = ip_follow_status # type: int self.access_type = access_type # type: str self.version = version # type: long self.cluster_type = cluster_type # type: int self.read_time = read_time # type: int self.write_time = write_time # type: int self.resource_group_id = resource_group_id # type: str self.cname = cname # type: str self.source_ips = source_ips # type: list[str] self.connection_time = connection_time # type: int self.https_port = https_port # type: list[str] def validate(self): if self.cloud_native_instances: for k in self.cloud_native_instances: if k: k.validate() if self.log_headers: for k in self.log_headers: if k: k.validate() def to_map(self): _map = super(DescribeDomainResponseBodyDomain, self).to_map() if _map is not None: return _map result = dict() if self.http_2port is not None: result['Http2Port'] = self.http_2port result['CloudNativeInstances'] = [] if self.cloud_native_instances is not None: for k in self.cloud_native_instances: result['CloudNativeInstances'].append(k.to_map() if k else None) if self.http_to_user_ip is not None: result['HttpToUserIp'] = self.http_to_user_ip if self.http_port is not None: result['HttpPort'] = self.http_port result['LogHeaders'] = [] if self.log_headers is not None: for k in self.log_headers: result['LogHeaders'].append(k.to_map() if k else None) if self.is_access_product is not None: result['IsAccessProduct'] = self.is_access_product if self.access_headers is not None: result['AccessHeaders'] = self.access_headers if self.access_header_mode is not None: result['AccessHeaderMode'] = self.access_header_mode if self.https_redirect is not None: result['HttpsRedirect'] = self.https_redirect if self.load_balancing is not None: result['LoadBalancing'] = self.load_balancing if self.ip_follow_status is not None: result['IpFollowStatus'] = self.ip_follow_status if self.access_type is not None: result['AccessType'] = self.access_type if self.version is not None: result['Version'] = self.version if self.cluster_type is not None: result['ClusterType'] = self.cluster_type if self.read_time is not None: result['ReadTime'] = self.read_time if self.write_time is not None: result['WriteTime'] = self.write_time if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id if self.cname is not None: result['Cname'] = self.cname if self.source_ips is not None: result['SourceIps'] = self.source_ips if self.connection_time is not None: result['ConnectionTime'] = self.connection_time if self.https_port is not None: result['HttpsPort'] = self.https_port return result def from_map(self, m=None): m = m or dict() if m.get('Http2Port') is not None: self.http_2port = m.get('Http2Port') self.cloud_native_instances = [] if m.get('CloudNativeInstances') is not None: for k in m.get('CloudNativeInstances'): temp_model = DescribeDomainResponseBodyDomainCloudNativeInstances() self.cloud_native_instances.append(temp_model.from_map(k)) if m.get('HttpToUserIp') is not None: self.http_to_user_ip = m.get('HttpToUserIp') if m.get('HttpPort') is not None: self.http_port = m.get('HttpPort') self.log_headers = [] if m.get('LogHeaders') is not None: for k in m.get('LogHeaders'): temp_model = DescribeDomainResponseBodyDomainLogHeaders() self.log_headers.append(temp_model.from_map(k)) if m.get('IsAccessProduct') is not None: self.is_access_product = m.get('IsAccessProduct') if m.get('AccessHeaders') is not None: self.access_headers = m.get('AccessHeaders') if m.get('AccessHeaderMode') is not None: self.access_header_mode = m.get('AccessHeaderMode') if m.get('HttpsRedirect') is not None: self.https_redirect = m.get('HttpsRedirect') if m.get('LoadBalancing') is not None: self.load_balancing = m.get('LoadBalancing') if m.get('IpFollowStatus') is not None: self.ip_follow_status = m.get('IpFollowStatus') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('Version') is not None: self.version = m.get('Version') if m.get('ClusterType') is not None: self.cluster_type = m.get('ClusterType') if m.get('ReadTime') is not None: self.read_time = m.get('ReadTime') if m.get('WriteTime') is not None: self.write_time = m.get('WriteTime') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') if m.get('Cname') is not None: self.cname = m.get('Cname') if m.get('SourceIps') is not None: self.source_ips = m.get('SourceIps') if m.get('ConnectionTime') is not None: self.connection_time = m.get('ConnectionTime') if m.get('HttpsPort') is not None: self.https_port = m.get('HttpsPort') return self class DescribeDomainResponseBody(TeaModel): def __init__(self, request_id=None, domain=None): self.request_id = request_id # type: str self.domain = domain # type: DescribeDomainResponseBodyDomain def validate(self): if self.domain: self.domain.validate() def to_map(self): _map = super(DescribeDomainResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.domain is not None: result['Domain'] = self.domain.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Domain') is not None: temp_model = DescribeDomainResponseBodyDomain() self.domain = temp_model.from_map(m['Domain']) return self class DescribeDomainResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeDomainResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainAdvanceConfigsRequest(TeaModel): def __init__(self, instance_id=None, domain_list=None, resource_group_id=None): self.instance_id = instance_id # type: str self.domain_list = domain_list # type: str self.resource_group_id = resource_group_id # type: str def validate(self): pass def to_map(self): _map = super(DescribeDomainAdvanceConfigsRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain_list is not None: result['DomainList'] = self.domain_list if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('DomainList') is not None: self.domain_list = m.get('DomainList') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeDomainAdvanceConfigsResponseBodyDomainConfigsProfile(TeaModel): def __init__(self, http_2port=None, ipv_6status=None, http_port=None, gslbstatus=None, rs=None, vip_service_status=None, cluster_type=None, exclusive_vip_status=None, cname=None, cert_status=None, https_port=None, resolved_type=None): self.http_2port = http_2port # type: str self.ipv_6status = ipv_6status # type: int self.http_port = http_port # type: str self.gslbstatus = gslbstatus # type: str self.rs = rs # type: str self.vip_service_status = vip_service_status # type: int self.cluster_type = cluster_type # type: int self.exclusive_vip_status = exclusive_vip_status # type: int self.cname = cname # type: str self.cert_status = cert_status # type: int self.https_port = https_port # type: str self.resolved_type = resolved_type # type: int def validate(self): pass def to_map(self): _map = super(DescribeDomainAdvanceConfigsResponseBodyDomainConfigsProfile, self).to_map() if _map is not None: return _map result = dict() if self.http_2port is not None: result['Http2Port'] = self.http_2port if self.ipv_6status is not None: result['Ipv6Status'] = self.ipv_6status if self.http_port is not None: result['HttpPort'] = self.http_port if self.gslbstatus is not None: result['GSLBStatus'] = self.gslbstatus if self.rs is not None: result['Rs'] = self.rs if self.vip_service_status is not None: result['VipServiceStatus'] = self.vip_service_status if self.cluster_type is not None: result['ClusterType'] = self.cluster_type if self.exclusive_vip_status is not None: result['ExclusiveVipStatus'] = self.exclusive_vip_status if self.cname is not None: result['Cname'] = self.cname if self.cert_status is not None: result['CertStatus'] = self.cert_status if self.https_port is not None: result['HttpsPort'] = self.https_port if self.resolved_type is not None: result['ResolvedType'] = self.resolved_type return result def from_map(self, m=None): m = m or dict() if m.get('Http2Port') is not None: self.http_2port = m.get('Http2Port') if m.get('Ipv6Status') is not None: self.ipv_6status = m.get('Ipv6Status') if m.get('HttpPort') is not None: self.http_port = m.get('HttpPort') if m.get('GSLBStatus') is not None: self.gslbstatus = m.get('GSLBStatus') if m.get('Rs') is not None: self.rs = m.get('Rs') if m.get('VipServiceStatus') is not None: self.vip_service_status = m.get('VipServiceStatus') if m.get('ClusterType') is not None: self.cluster_type = m.get('ClusterType') if m.get('ExclusiveVipStatus') is not None: self.exclusive_vip_status = m.get('ExclusiveVipStatus') if m.get('Cname') is not None: self.cname = m.get('Cname') if m.get('CertStatus') is not None: self.cert_status = m.get('CertStatus') if m.get('HttpsPort') is not None: self.https_port = m.get('HttpsPort') if m.get('ResolvedType') is not None: self.resolved_type = m.get('ResolvedType') return self class DescribeDomainAdvanceConfigsResponseBodyDomainConfigs(TeaModel): def __init__(self, profile=None, domain=None): self.profile = profile # type: DescribeDomainAdvanceConfigsResponseBodyDomainConfigsProfile self.domain = domain # type: str def validate(self): if self.profile: self.profile.validate() def to_map(self): _map = super(DescribeDomainAdvanceConfigsResponseBodyDomainConfigs, self).to_map() if _map is not None: return _map result = dict() if self.profile is not None: result['Profile'] = self.profile.to_map() if self.domain is not None: result['Domain'] = self.domain return result def from_map(self, m=None): m = m or dict() if m.get('Profile') is not None: temp_model = DescribeDomainAdvanceConfigsResponseBodyDomainConfigsProfile() self.profile = temp_model.from_map(m['Profile']) if m.get('Domain') is not None: self.domain = m.get('Domain') return self class DescribeDomainAdvanceConfigsResponseBody(TeaModel): def __init__(self, request_id=None, domain_configs=None): self.request_id = request_id # type: str self.domain_configs = domain_configs # type: list[DescribeDomainAdvanceConfigsResponseBodyDomainConfigs] def validate(self): if self.domain_configs: for k in self.domain_configs: if k: k.validate() def to_map(self): _map = super(DescribeDomainAdvanceConfigsResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id result['DomainConfigs'] = [] if self.domain_configs is not None: for k in self.domain_configs: result['DomainConfigs'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.domain_configs = [] if m.get('DomainConfigs') is not None: for k in m.get('DomainConfigs'): temp_model = DescribeDomainAdvanceConfigsResponseBodyDomainConfigs() self.domain_configs.append(temp_model.from_map(k)) return self class DescribeDomainAdvanceConfigsResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeDomainAdvanceConfigsResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainAdvanceConfigsResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainAdvanceConfigsResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainBasicConfigsRequest(TeaModel): def __init__(self, instance_id=None, domain_key=None, access_type=None, cloud_native_product_id=None, page_number=None, page_size=None, resource_group_id=None): self.instance_id = instance_id # type: str self.domain_key = domain_key # type: str self.access_type = access_type # type: str self.cloud_native_product_id = cloud_native_product_id # type: int self.page_number = page_number # type: int self.page_size = page_size # type: int self.resource_group_id = resource_group_id # type: str def validate(self): pass def to_map(self): _map = super(DescribeDomainBasicConfigsRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain_key is not None: result['DomainKey'] = self.domain_key if self.access_type is not None: result['AccessType'] = self.access_type if self.cloud_native_product_id is not None: result['CloudNativeProductId'] = self.cloud_native_product_id if self.page_number is not None: result['PageNumber'] = self.page_number if self.page_size is not None: result['PageSize'] = self.page_size if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('DomainKey') is not None: self.domain_key = m.get('DomainKey') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('CloudNativeProductId') is not None: self.cloud_native_product_id = m.get('CloudNativeProductId') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeDomainBasicConfigsResponseBodyDomainConfigs(TeaModel): def __init__(self, status=None, domain=None, owner=None, cc_mode=None, cc_status=None, access_type=None, version=None, acl_status=None, waf_status=None, waf_mode=None): self.status = status # type: int self.domain = domain # type: str self.owner = owner # type: str self.cc_mode = cc_mode # type: int self.cc_status = cc_status # type: int self.access_type = access_type # type: str self.version = version # type: long self.acl_status = acl_status # type: int self.waf_status = waf_status # type: int self.waf_mode = waf_mode # type: int def validate(self): pass def to_map(self): _map = super(DescribeDomainBasicConfigsResponseBodyDomainConfigs, self).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.domain is not None: result['Domain'] = self.domain if self.owner is not None: result['Owner'] = self.owner if self.cc_mode is not None: result['CcMode'] = self.cc_mode if self.cc_status is not None: result['CcStatus'] = self.cc_status if self.access_type is not None: result['AccessType'] = self.access_type if self.version is not None: result['Version'] = self.version if self.acl_status is not None: result['AclStatus'] = self.acl_status if self.waf_status is not None: result['WafStatus'] = self.waf_status if self.waf_mode is not None: result['WafMode'] = self.waf_mode return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Owner') is not None: self.owner = m.get('Owner') if m.get('CcMode') is not None: self.cc_mode = m.get('CcMode') if m.get('CcStatus') is not None: self.cc_status = m.get('CcStatus') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('Version') is not None: self.version = m.get('Version') if m.get('AclStatus') is not None: self.acl_status = m.get('AclStatus') if m.get('WafStatus') is not None: self.waf_status = m.get('WafStatus') if m.get('WafMode') is not None: self.waf_mode = m.get('WafMode') return self class DescribeDomainBasicConfigsResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, domain_configs=None): self.total_count = total_count # type: int self.request_id = request_id # type: str self.domain_configs = domain_configs # type: list[DescribeDomainBasicConfigsResponseBodyDomainConfigs] def validate(self): if self.domain_configs: for k in self.domain_configs: if k: k.validate() def to_map(self): _map = super(DescribeDomainBasicConfigsResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id result['DomainConfigs'] = [] if self.domain_configs is not None: for k in self.domain_configs: result['DomainConfigs'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.domain_configs = [] if m.get('DomainConfigs') is not None: for k in m.get('DomainConfigs'): temp_model = DescribeDomainBasicConfigsResponseBodyDomainConfigs() self.domain_configs.append(temp_model.from_map(k)) return self class DescribeDomainBasicConfigsResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeDomainBasicConfigsResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainBasicConfigsResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainBasicConfigsResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainListRequest(TeaModel): def __init__(self, resource_group_id=None, instance_id=None, domain_name=None, page_number=None, page_size=None, is_sub=None, domain_names=None): self.resource_group_id = resource_group_id # type: str self.instance_id = instance_id # type: str self.domain_name = domain_name # type: str self.page_number = page_number # type: int self.page_size = page_size # type: int self.is_sub = is_sub # type: int self.domain_names = domain_names # type: list[str] def validate(self): pass def to_map(self): _map = super(DescribeDomainListRequest, self).to_map() if _map is not None: return _map result = dict() if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain_name is not None: result['DomainName'] = self.domain_name if self.page_number is not None: result['PageNumber'] = self.page_number if self.page_size is not None: result['PageSize'] = self.page_size if self.is_sub is not None: result['IsSub'] = self.is_sub if self.domain_names is not None: result['DomainNames'] = self.domain_names return result def from_map(self, m=None): m = m or dict() if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('DomainName') is not None: self.domain_name = m.get('DomainName') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('IsSub') is not None: self.is_sub = m.get('IsSub') if m.get('DomainNames') is not None: self.domain_names = m.get('DomainNames') return self class DescribeDomainListResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, domain_names=None): self.total_count = total_count # type: int self.request_id = request_id # type: str self.domain_names = domain_names # type: list[str] def validate(self): pass def to_map(self): _map = super(DescribeDomainListResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id if self.domain_names is not None: result['DomainNames'] = self.domain_names return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('DomainNames') is not None: self.domain_names = m.get('DomainNames') return self class DescribeDomainListResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeDomainListResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainListResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainListResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainNamesRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id # type: str self.resource_group_id = resource_group_id # type: str def validate(self): pass def to_map(self): _map = super(DescribeDomainNamesRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeDomainNamesResponseBody(TeaModel): def __init__(self, request_id=None, domain_names=None): self.request_id = request_id # type: str self.domain_names = domain_names # type: list[str] def validate(self): pass def to_map(self): _map = super(DescribeDomainNamesResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.domain_names is not None: result['DomainNames'] = self.domain_names return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('DomainNames') is not None: self.domain_names = m.get('DomainNames') return self class DescribeDomainNamesResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeDomainNamesResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainNamesResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainNamesResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeDomainRuleGroupRequest(TeaModel): def __init__(self, domain=None, instance_id=None): self.domain = domain # type: str self.instance_id = instance_id # type: str def validate(self): pass def to_map(self): _map = super(DescribeDomainRuleGroupRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class DescribeDomainRuleGroupResponseBody(TeaModel): def __init__(self, rule_group_id=None, request_id=None): self.rule_group_id = rule_group_id # type: long self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(DescribeDomainRuleGroupResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.rule_group_id is not None: result['RuleGroupId'] = self.rule_group_id if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RuleGroupId') is not None: self.rule_group_id = m.get('RuleGroupId') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class DescribeDomainRuleGroupResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeDomainRuleGroupResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeDomainRuleGroupResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeDomainRuleGroupResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeInstanceInfoRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id # type: str self.resource_group_id = resource_group_id # type: str def validate(self): pass def to_map(self): _map = super(DescribeInstanceInfoRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeInstanceInfoResponseBodyInstanceInfo(TeaModel): def __init__(self, status=None, end_date=None, version=None, remain_day=None, region=None, pay_type=None, in_debt=None, instance_id=None, subscription_type=None, trial=None): self.status = status # type: int self.end_date = end_date # type: long self.version = version # type: str self.remain_day = remain_day # type: int self.region = region # type: str self.pay_type = pay_type # type: int self.in_debt = in_debt # type: int self.instance_id = instance_id # type: str self.subscription_type = subscription_type # type: str self.trial = trial # type: int def validate(self): pass def to_map(self): _map = super(DescribeInstanceInfoResponseBodyInstanceInfo, self).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.end_date is not None: result['EndDate'] = self.end_date if self.version is not None: result['Version'] = self.version if self.remain_day is not None: result['RemainDay'] = self.remain_day if self.region is not None: result['Region'] = self.region if self.pay_type is not None: result['PayType'] = self.pay_type if self.in_debt is not None: result['InDebt'] = self.in_debt if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.subscription_type is not None: result['SubscriptionType'] = self.subscription_type if self.trial is not None: result['Trial'] = self.trial return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('EndDate') is not None: self.end_date = m.get('EndDate') if m.get('Version') is not None: self.version = m.get('Version') if m.get('RemainDay') is not None: self.remain_day = m.get('RemainDay') if m.get('Region') is not None: self.region = m.get('Region') if m.get('PayType') is not None: self.pay_type = m.get('PayType') if m.get('InDebt') is not None: self.in_debt = m.get('InDebt') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('SubscriptionType') is not None: self.subscription_type = m.get('SubscriptionType') if m.get('Trial') is not None: self.trial = m.get('Trial') return self class DescribeInstanceInfoResponseBody(TeaModel): def __init__(self, request_id=None, instance_info=None): self.request_id = request_id # type: str self.instance_info = instance_info # type: DescribeInstanceInfoResponseBodyInstanceInfo def validate(self): if self.instance_info: self.instance_info.validate() def to_map(self): _map = super(DescribeInstanceInfoResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.instance_info is not None: result['InstanceInfo'] = self.instance_info.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('InstanceInfo') is not None: temp_model = DescribeInstanceInfoResponseBodyInstanceInfo() self.instance_info = temp_model.from_map(m['InstanceInfo']) return self class DescribeInstanceInfoResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeInstanceInfoResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeInstanceInfoResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeInstanceInfoResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeInstanceInfosRequest(TeaModel): def __init__(self, instance_source=None, instance_id=None, resource_group_id=None): self.instance_source = instance_source # type: str self.instance_id = instance_id # type: str self.resource_group_id = resource_group_id # type: str def validate(self): pass def to_map(self): _map = super(DescribeInstanceInfosRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_source is not None: result['InstanceSource'] = self.instance_source if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceSource') is not None: self.instance_source = m.get('InstanceSource') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeInstanceInfosResponseBodyInstanceInfos(TeaModel): def __init__(self, status=None, end_date=None, remain_day=None, region=None, pay_type=None, in_debt=None, instance_id=None, subscription_type=None, trial=None): self.status = status # type: int self.end_date = end_date # type: long self.remain_day = remain_day # type: int self.region = region # type: str self.pay_type = pay_type # type: int self.in_debt = in_debt # type: int self.instance_id = instance_id # type: str self.subscription_type = subscription_type # type: str self.trial = trial # type: int def validate(self): pass def to_map(self): _map = super(DescribeInstanceInfosResponseBodyInstanceInfos, self).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.end_date is not None: result['EndDate'] = self.end_date if self.remain_day is not None: result['RemainDay'] = self.remain_day if self.region is not None: result['Region'] = self.region if self.pay_type is not None: result['PayType'] = self.pay_type if self.in_debt is not None: result['InDebt'] = self.in_debt if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.subscription_type is not None: result['SubscriptionType'] = self.subscription_type if self.trial is not None: result['Trial'] = self.trial return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('EndDate') is not None: self.end_date = m.get('EndDate') if m.get('RemainDay') is not None: self.remain_day = m.get('RemainDay') if m.get('Region') is not None: self.region = m.get('Region') if m.get('PayType') is not None: self.pay_type = m.get('PayType') if m.get('InDebt') is not None: self.in_debt = m.get('InDebt') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('SubscriptionType') is not None: self.subscription_type = m.get('SubscriptionType') if m.get('Trial') is not None: self.trial = m.get('Trial') return self class DescribeInstanceInfosResponseBody(TeaModel): def __init__(self, request_id=None, instance_infos=None): self.request_id = request_id # type: str self.instance_infos = instance_infos # type: list[DescribeInstanceInfosResponseBodyInstanceInfos] def validate(self): if self.instance_infos: for k in self.instance_infos: if k: k.validate() def to_map(self): _map = super(DescribeInstanceInfosResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id result['InstanceInfos'] = [] if self.instance_infos is not None: for k in self.instance_infos: result['InstanceInfos'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.instance_infos = [] if m.get('InstanceInfos') is not None: for k in m.get('InstanceInfos'): temp_model = DescribeInstanceInfosResponseBodyInstanceInfos() self.instance_infos.append(temp_model.from_map(k)) return self class DescribeInstanceInfosResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeInstanceInfosResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeInstanceInfosResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeInstanceInfosResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeInstanceSpecInfoRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id # type: str self.resource_group_id = resource_group_id # type: str def validate(self): pass def to_map(self): _map = super(DescribeInstanceSpecInfoRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos(TeaModel): def __init__(self, value=None, code=None): self.value = value # type: str self.code = code # type: str def validate(self): pass def to_map(self): _map = super(DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos, self).to_map() if _map is not None: return _map result = dict() if self.value is not None: result['Value'] = self.value if self.code is not None: result['Code'] = self.code return result def from_map(self, m=None): m = m or dict() if m.get('Value') is not None: self.value = m.get('Value') if m.get('Code') is not None: self.code = m.get('Code') return self class DescribeInstanceSpecInfoResponseBody(TeaModel): def __init__(self, instance_spec_infos=None, request_id=None, instance_id=None, version=None, expire_time=None): self.instance_spec_infos = instance_spec_infos # type: list[DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos] self.request_id = request_id # type: str self.instance_id = instance_id # type: str self.version = version # type: str self.expire_time = expire_time # type: long def validate(self): if self.instance_spec_infos: for k in self.instance_spec_infos: if k: k.validate() def to_map(self): _map = super(DescribeInstanceSpecInfoResponseBody, self).to_map() if _map is not None: return _map result = dict() result['InstanceSpecInfos'] = [] if self.instance_spec_infos is not None: for k in self.instance_spec_infos: result['InstanceSpecInfos'].append(k.to_map() if k else None) if self.request_id is not None: result['RequestId'] = self.request_id if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.version is not None: result['Version'] = self.version if self.expire_time is not None: result['ExpireTime'] = self.expire_time return result def from_map(self, m=None): m = m or dict() self.instance_spec_infos = [] if m.get('InstanceSpecInfos') is not None: for k in m.get('InstanceSpecInfos'): temp_model = DescribeInstanceSpecInfoResponseBodyInstanceSpecInfos() self.instance_spec_infos.append(temp_model.from_map(k)) if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Version') is not None: self.version = m.get('Version') if m.get('ExpireTime') is not None: self.expire_time = m.get('ExpireTime') return self class DescribeInstanceSpecInfoResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeInstanceSpecInfoResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeInstanceSpecInfoResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeInstanceSpecInfoResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeLogServiceStatusRequest(TeaModel): def __init__(self, instance_id=None, region=None, resource_group_id=None, page_number=None, page_size=None, domain_names=None): self.instance_id = instance_id # type: str self.region = region # type: str self.resource_group_id = resource_group_id # type: str self.page_number = page_number # type: int self.page_size = page_size # type: int self.domain_names = domain_names # type: list[str] def validate(self): pass def to_map(self): _map = super(DescribeLogServiceStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.region is not None: result['Region'] = self.region if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id if self.page_number is not None: result['PageNumber'] = self.page_number if self.page_size is not None: result['PageSize'] = self.page_size if self.domain_names is not None: result['DomainNames'] = self.domain_names return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Region') is not None: self.region = m.get('Region') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('DomainNames') is not None: self.domain_names = m.get('DomainNames') return self class DescribeLogServiceStatusResponseBodyDomainStatus(TeaModel): def __init__(self, domain=None, sls_log_active=None): self.domain = domain # type: str self.sls_log_active = sls_log_active # type: int def validate(self): pass def to_map(self): _map = super(DescribeLogServiceStatusResponseBodyDomainStatus, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.sls_log_active is not None: result['SlsLogActive'] = self.sls_log_active return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('SlsLogActive') is not None: self.sls_log_active = m.get('SlsLogActive') return self class DescribeLogServiceStatusResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, domain_status=None): self.total_count = total_count # type: int self.request_id = request_id # type: str self.domain_status = domain_status # type: list[DescribeLogServiceStatusResponseBodyDomainStatus] def validate(self): if self.domain_status: for k in self.domain_status: if k: k.validate() def to_map(self): _map = super(DescribeLogServiceStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id result['DomainStatus'] = [] if self.domain_status is not None: for k in self.domain_status: result['DomainStatus'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.domain_status = [] if m.get('DomainStatus') is not None: for k in m.get('DomainStatus'): temp_model = DescribeLogServiceStatusResponseBodyDomainStatus() self.domain_status.append(temp_model.from_map(k)) return self class DescribeLogServiceStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeLogServiceStatusResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeLogServiceStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeLogServiceStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleCodeConfigRequest(TeaModel): def __init__(self, source_ip=None, lang=None, code_type=None, code_value=None, instance_id=None, resource_group_id=None): self.source_ip = source_ip # type: str self.lang = lang # type: str self.code_type = code_type # type: int self.code_value = code_value # type: int self.instance_id = instance_id # type: str self.resource_group_id = resource_group_id # type: str def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleCodeConfigRequest, self).to_map() if _map is not None: return _map result = dict() if self.source_ip is not None: result['SourceIp'] = self.source_ip if self.lang is not None: result['Lang'] = self.lang if self.code_type is not None: result['CodeType'] = self.code_type if self.code_value is not None: result['CodeValue'] = self.code_value if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('SourceIp') is not None: self.source_ip = m.get('SourceIp') if m.get('Lang') is not None: self.lang = m.get('Lang') if m.get('CodeType') is not None: self.code_type = m.get('CodeType') if m.get('CodeValue') is not None: self.code_value = m.get('CodeValue') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleCodeConfigResponseBody(TeaModel): def __init__(self, request_id=None, code_configs=None): self.request_id = request_id # type: str self.code_configs = code_configs # type: str def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleCodeConfigResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.code_configs is not None: result['CodeConfigs'] = self.code_configs return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('CodeConfigs') is not None: self.code_configs = m.get('CodeConfigs') return self class DescribeProtectionModuleCodeConfigResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeProtectionModuleCodeConfigResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleCodeConfigResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleCodeConfigResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleModeRequest(TeaModel): def __init__(self, domain=None, defense_type=None, instance_id=None, resource_group_id=None): self.domain = domain # type: str self.defense_type = defense_type # type: str self.instance_id = instance_id # type: str self.resource_group_id = resource_group_id # type: str def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleModeRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleModeResponseBody(TeaModel): def __init__(self, learn_status=None, request_id=None, mode=None): self.learn_status = learn_status # type: int self.request_id = request_id # type: str self.mode = mode # type: int def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleModeResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.learn_status is not None: result['LearnStatus'] = self.learn_status if self.request_id is not None: result['RequestId'] = self.request_id if self.mode is not None: result['Mode'] = self.mode return result def from_map(self, m=None): m = m or dict() if m.get('LearnStatus') is not None: self.learn_status = m.get('LearnStatus') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('Mode') is not None: self.mode = m.get('Mode') return self class DescribeProtectionModuleModeResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeProtectionModuleModeResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleModeResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleModeResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleRulesRequest(TeaModel): def __init__(self, page_size=None, page_number=None, domain=None, defense_type=None, query=None, lang=None, instance_id=None, resource_group_id=None): self.page_size = page_size # type: int self.page_number = page_number # type: int self.domain = domain # type: str self.defense_type = defense_type # type: str self.query = query # type: str self.lang = lang # type: str self.instance_id = instance_id # type: str self.resource_group_id = resource_group_id # type: str def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleRulesRequest, self).to_map() if _map is not None: return _map result = dict() if self.page_size is not None: result['PageSize'] = self.page_size if self.page_number is not None: result['PageNumber'] = self.page_number if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.query is not None: result['Query'] = self.query if self.lang is not None: result['Lang'] = self.lang if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Query') is not None: self.query = m.get('Query') if m.get('Lang') is not None: self.lang = m.get('Lang') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeProtectionModuleRulesResponseBodyRules(TeaModel): def __init__(self, status=None, time=None, version=None, content=None, rule_id=None): self.status = status # type: long self.time = time # type: long self.version = version # type: long self.content = content # type: dict[str, any] self.rule_id = rule_id # type: long def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleRulesResponseBodyRules, self).to_map() if _map is not None: return _map result = dict() if self.status is not None: result['Status'] = self.status if self.time is not None: result['Time'] = self.time if self.version is not None: result['Version'] = self.version if self.content is not None: result['Content'] = self.content if self.rule_id is not None: result['RuleId'] = self.rule_id return result def from_map(self, m=None): m = m or dict() if m.get('Status') is not None: self.status = m.get('Status') if m.get('Time') is not None: self.time = m.get('Time') if m.get('Version') is not None: self.version = m.get('Version') if m.get('Content') is not None: self.content = m.get('Content') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') return self class DescribeProtectionModuleRulesResponseBody(TeaModel): def __init__(self, total_count=None, request_id=None, rules=None): self.total_count = total_count # type: int self.request_id = request_id # type: str self.rules = rules # type: list[DescribeProtectionModuleRulesResponseBodyRules] def validate(self): if self.rules: for k in self.rules: if k: k.validate() def to_map(self): _map = super(DescribeProtectionModuleRulesResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.total_count is not None: result['TotalCount'] = self.total_count if self.request_id is not None: result['RequestId'] = self.request_id result['Rules'] = [] if self.rules is not None: for k in self.rules: result['Rules'].append(k.to_map() if k else None) return result def from_map(self, m=None): m = m or dict() if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.rules = [] if m.get('Rules') is not None: for k in m.get('Rules'): temp_model = DescribeProtectionModuleRulesResponseBodyRules() self.rules.append(temp_model.from_map(k)) return self class DescribeProtectionModuleRulesResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeProtectionModuleRulesResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleRulesResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleRulesResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeProtectionModuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, instance_id=None): self.domain = domain # type: str self.defense_type = defense_type # type: str self.instance_id = instance_id # type: str def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class DescribeProtectionModuleStatusResponseBody(TeaModel): def __init__(self, request_id=None, module_status=None): self.request_id = request_id # type: str self.module_status = module_status # type: int def validate(self): pass def to_map(self): _map = super(DescribeProtectionModuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.module_status is not None: result['ModuleStatus'] = self.module_status return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ModuleStatus') is not None: self.module_status = m.get('ModuleStatus') return self class DescribeProtectionModuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeProtectionModuleStatusResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeProtectionModuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeProtectionModuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class DescribeWafSourceIpSegmentRequest(TeaModel): def __init__(self, instance_id=None, resource_group_id=None): self.instance_id = instance_id # type: str self.resource_group_id = resource_group_id # type: str def validate(self): pass def to_map(self): _map = super(DescribeWafSourceIpSegmentRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class DescribeWafSourceIpSegmentResponseBody(TeaModel): def __init__(self, request_id=None, ip_v6s=None, ips=None): self.request_id = request_id # type: str self.ip_v6s = ip_v6s # type: str self.ips = ips # type: str def validate(self): pass def to_map(self): _map = super(DescribeWafSourceIpSegmentResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id if self.ip_v6s is not None: result['IpV6s'] = self.ip_v6s if self.ips is not None: result['Ips'] = self.ips return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('IpV6s') is not None: self.ip_v6s = m.get('IpV6s') if m.get('Ips') is not None: self.ips = m.get('Ips') return self class DescribeWafSourceIpSegmentResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: DescribeWafSourceIpSegmentResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(DescribeWafSourceIpSegmentResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = DescribeWafSourceIpSegmentResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyDomainRequest(TeaModel): def __init__(self, instance_id=None, domain=None, source_ips=None, load_balancing=None, http_port=None, https_port=None, http_2port=None, https_redirect=None, http_to_user_ip=None, is_access_product=None, log_headers=None, cluster_type=None, connection_time=None, read_time=None, write_time=None, access_type=None, cloud_native_instances=None, ip_follow_status=None): self.instance_id = instance_id # type: str self.domain = domain # type: str self.source_ips = source_ips # type: str self.load_balancing = load_balancing # type: int self.http_port = http_port # type: str self.https_port = https_port # type: str self.http_2port = http_2port # type: str self.https_redirect = https_redirect # type: int self.http_to_user_ip = http_to_user_ip # type: int self.is_access_product = is_access_product # type: int self.log_headers = log_headers # type: str self.cluster_type = cluster_type # type: int self.connection_time = connection_time # type: int self.read_time = read_time # type: int self.write_time = write_time # type: int self.access_type = access_type # type: str self.cloud_native_instances = cloud_native_instances # type: str self.ip_follow_status = ip_follow_status # type: int def validate(self): pass def to_map(self): _map = super(ModifyDomainRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.source_ips is not None: result['SourceIps'] = self.source_ips if self.load_balancing is not None: result['LoadBalancing'] = self.load_balancing if self.http_port is not None: result['HttpPort'] = self.http_port if self.https_port is not None: result['HttpsPort'] = self.https_port if self.http_2port is not None: result['Http2Port'] = self.http_2port if self.https_redirect is not None: result['HttpsRedirect'] = self.https_redirect if self.http_to_user_ip is not None: result['HttpToUserIp'] = self.http_to_user_ip if self.is_access_product is not None: result['IsAccessProduct'] = self.is_access_product if self.log_headers is not None: result['LogHeaders'] = self.log_headers if self.cluster_type is not None: result['ClusterType'] = self.cluster_type if self.connection_time is not None: result['ConnectionTime'] = self.connection_time if self.read_time is not None: result['ReadTime'] = self.read_time if self.write_time is not None: result['WriteTime'] = self.write_time if self.access_type is not None: result['AccessType'] = self.access_type if self.cloud_native_instances is not None: result['CloudNativeInstances'] = self.cloud_native_instances if self.ip_follow_status is not None: result['IpFollowStatus'] = self.ip_follow_status return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('SourceIps') is not None: self.source_ips = m.get('SourceIps') if m.get('LoadBalancing') is not None: self.load_balancing = m.get('LoadBalancing') if m.get('HttpPort') is not None: self.http_port = m.get('HttpPort') if m.get('HttpsPort') is not None: self.https_port = m.get('HttpsPort') if m.get('Http2Port') is not None: self.http_2port = m.get('Http2Port') if m.get('HttpsRedirect') is not None: self.https_redirect = m.get('HttpsRedirect') if m.get('HttpToUserIp') is not None: self.http_to_user_ip = m.get('HttpToUserIp') if m.get('IsAccessProduct') is not None: self.is_access_product = m.get('IsAccessProduct') if m.get('LogHeaders') is not None: self.log_headers = m.get('LogHeaders') if m.get('ClusterType') is not None: self.cluster_type = m.get('ClusterType') if m.get('ConnectionTime') is not None: self.connection_time = m.get('ConnectionTime') if m.get('ReadTime') is not None: self.read_time = m.get('ReadTime') if m.get('WriteTime') is not None: self.write_time = m.get('WriteTime') if m.get('AccessType') is not None: self.access_type = m.get('AccessType') if m.get('CloudNativeInstances') is not None: self.cloud_native_instances = m.get('CloudNativeInstances') if m.get('IpFollowStatus') is not None: self.ip_follow_status = m.get('IpFollowStatus') return self class ModifyDomainResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(ModifyDomainResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyDomainResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: ModifyDomainResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyDomainResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyDomainResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyDomainIpv6StatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id # type: str self.domain = domain # type: str self.enabled = enabled # type: str def validate(self): pass def to_map(self): _map = super(ModifyDomainIpv6StatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyDomainIpv6StatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(ModifyDomainIpv6StatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyDomainIpv6StatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: ModifyDomainIpv6StatusResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyDomainIpv6StatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyDomainIpv6StatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyLogRetrievalStatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id # type: str self.domain = domain # type: str self.enabled = enabled # type: int def validate(self): pass def to_map(self): _map = super(ModifyLogRetrievalStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyLogRetrievalStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(ModifyLogRetrievalStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyLogRetrievalStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: ModifyLogRetrievalStatusResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyLogRetrievalStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyLogRetrievalStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyLogServiceStatusRequest(TeaModel): def __init__(self, instance_id=None, domain=None, enabled=None): self.instance_id = instance_id # type: str self.domain = domain # type: str self.enabled = enabled # type: int def validate(self): pass def to_map(self): _map = super(ModifyLogServiceStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.domain is not None: result['Domain'] = self.domain if self.enabled is not None: result['Enabled'] = self.enabled return result def from_map(self, m=None): m = m or dict() if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('Enabled') is not None: self.enabled = m.get('Enabled') return self class ModifyLogServiceStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(ModifyLogServiceStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyLogServiceStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: ModifyLogServiceStatusResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyLogServiceStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyLogServiceStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleModeRequest(TeaModel): def __init__(self, domain=None, defense_type=None, mode=None, instance_id=None): self.domain = domain # type: str self.defense_type = defense_type # type: str self.mode = mode # type: int self.instance_id = instance_id # type: str def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleModeRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.mode is not None: result['Mode'] = self.mode if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Mode') is not None: self.mode = m.get('Mode') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleModeResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleModeResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleModeResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: ModifyProtectionModuleModeResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleModeResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleModeResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleRuleRequest(TeaModel): def __init__(self, domain=None, defense_type=None, rule=None, rule_id=None, lock_version=None, instance_id=None): self.domain = domain # type: str self.defense_type = defense_type # type: str self.rule = rule # type: str self.rule_id = rule_id # type: long self.lock_version = lock_version # type: long self.instance_id = instance_id # type: str def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleRuleRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.rule is not None: result['Rule'] = self.rule if self.rule_id is not None: result['RuleId'] = self.rule_id if self.lock_version is not None: result['LockVersion'] = self.lock_version if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('Rule') is not None: self.rule = m.get('Rule') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('LockVersion') is not None: self.lock_version = m.get('LockVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleRuleResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleRuleResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleRuleResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: ModifyProtectionModuleRuleResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleRuleResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleRuleResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionModuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, module_status=None, instance_id=None): self.domain = domain # type: str self.defense_type = defense_type # type: str self.module_status = module_status # type: int self.instance_id = instance_id # type: str def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.module_status is not None: result['ModuleStatus'] = self.module_status if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('ModuleStatus') is not None: self.module_status = m.get('ModuleStatus') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionModuleStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(ModifyProtectionModuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionModuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: ModifyProtectionModuleStatusResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionModuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionModuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionRuleCacheStatusRequest(TeaModel): def __init__(self, domain=None, rule_id=None, defense_type=None, instance_id=None): self.domain = domain # type: str self.rule_id = rule_id # type: long self.defense_type = defense_type # type: str self.instance_id = instance_id # type: str def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleCacheStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.rule_id is not None: result['RuleId'] = self.rule_id if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionRuleCacheStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleCacheStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionRuleCacheStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: ModifyProtectionRuleCacheStatusResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionRuleCacheStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionRuleCacheStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class ModifyProtectionRuleStatusRequest(TeaModel): def __init__(self, domain=None, defense_type=None, rule_id=None, rule_status=None, lock_version=None, instance_id=None): self.domain = domain # type: str self.defense_type = defense_type # type: str self.rule_id = rule_id # type: long self.rule_status = rule_status # type: int self.lock_version = lock_version # type: long self.instance_id = instance_id # type: str def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleStatusRequest, self).to_map() if _map is not None: return _map result = dict() if self.domain is not None: result['Domain'] = self.domain if self.defense_type is not None: result['DefenseType'] = self.defense_type if self.rule_id is not None: result['RuleId'] = self.rule_id if self.rule_status is not None: result['RuleStatus'] = self.rule_status if self.lock_version is not None: result['LockVersion'] = self.lock_version if self.instance_id is not None: result['InstanceId'] = self.instance_id return result def from_map(self, m=None): m = m or dict() if m.get('Domain') is not None: self.domain = m.get('Domain') if m.get('DefenseType') is not None: self.defense_type = m.get('DefenseType') if m.get('RuleId') is not None: self.rule_id = m.get('RuleId') if m.get('RuleStatus') is not None: self.rule_status = m.get('RuleStatus') if m.get('LockVersion') is not None: self.lock_version = m.get('LockVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') return self class ModifyProtectionRuleStatusResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(ModifyProtectionRuleStatusResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class ModifyProtectionRuleStatusResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: ModifyProtectionRuleStatusResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(ModifyProtectionRuleStatusResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = ModifyProtectionRuleStatusResponseBody() self.body = temp_model.from_map(m['body']) return self class SetDomainRuleGroupRequest(TeaModel): def __init__(self, domains=None, rule_group_id=None, waf_version=None, instance_id=None, resource_group_id=None): self.domains = domains # type: str self.rule_group_id = rule_group_id # type: long self.waf_version = waf_version # type: long self.instance_id = instance_id # type: str self.resource_group_id = resource_group_id # type: str def validate(self): pass def to_map(self): _map = super(SetDomainRuleGroupRequest, self).to_map() if _map is not None: return _map result = dict() if self.domains is not None: result['Domains'] = self.domains if self.rule_group_id is not None: result['RuleGroupId'] = self.rule_group_id if self.waf_version is not None: result['WafVersion'] = self.waf_version if self.instance_id is not None: result['InstanceId'] = self.instance_id if self.resource_group_id is not None: result['ResourceGroupId'] = self.resource_group_id return result def from_map(self, m=None): m = m or dict() if m.get('Domains') is not None: self.domains = m.get('Domains') if m.get('RuleGroupId') is not None: self.rule_group_id = m.get('RuleGroupId') if m.get('WafVersion') is not None: self.waf_version = m.get('WafVersion') if m.get('InstanceId') is not None: self.instance_id = m.get('InstanceId') if m.get('ResourceGroupId') is not None: self.resource_group_id = m.get('ResourceGroupId') return self class SetDomainRuleGroupResponseBody(TeaModel): def __init__(self, request_id=None): self.request_id = request_id # type: str def validate(self): pass def to_map(self): _map = super(SetDomainRuleGroupResponseBody, self).to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id return result def from_map(self, m=None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') return self class SetDomainRuleGroupResponse(TeaModel): def __init__(self, headers=None, body=None): self.headers = headers # type: dict[str, str] self.body = body # type: SetDomainRuleGroupResponseBody def validate(self): self.validate_required(self.headers, 'headers') self.validate_required(self.body, 'body') if self.body: self.body.validate() def to_map(self): _map = super(SetDomainRuleGroupResponse, self).to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.body is not None: result['body'] = self.body.to_map() return result def from_map(self, m=None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('body') is not None: temp_model = SetDomainRuleGroupResponseBody() self.body = temp_model.from_map(m['body']) return self
[ 264, 295, 457, 458, 577 ]
2,546
9976eb2dd84448b37b81629d352f4a7490ab2316
import argparse import sys def get_precision_values(input_file): prec_values = [] all_precs = [] means = [] medians = [] methods = [] with open(input_file) as lines: for line in lines: if "RESULTS_AGGREGATION" in line: tokens = line.strip().split(',') methods.append(tokens[1]) mean, median, prec = float(tokens[2]), float(tokens[3]), float(tokens[4]) prec_values.append(prec) means.append(mean) medians.append(median) if "RESULTS_PREC" in line: tokens = line.strip().split(',') all_precs.append([float(t) for t in tokens[1:]]) print len(methods), len(prec_values), len(means), len(medians), len(all_precs) return methods, prec_values, means, medians, all_precs def naming(methods): newnames = [] for m in methods: if m=='jaccard': newnames.append('JACCARD') if m=='cosine': newnames.append('COSINE') if m=='stacking': newnames.append('COMBINATION') if m=='stacking_rrf': newnames.append('STACK-RRF') if m=='oneclass': newnames.append('ONECLASS') if m=='bayesian_tfidf': newnames.append('BAYESIANSETS') if m=='bayesian_bin': newnames.append('BS-BIN') if m=='pu_learning': newnames.append('PULEARNING') if m=='classifier': newnames.append('TWOCLASS') return newnames def _filter(methods, precs, means, medians, all_precs): newmethods = [] newprecs = [] newmeans = [] newmedians = [] newall_precs = [] for i in xrange(len(methods)): if (methods[i]!='STACK-RRF') and (methods[i]!='BS-BIN'): newmethods.append(methods[i]) newprecs.append(precs[i]) newmeans.append(means[i]) newmedians.append(medians[i]) newall_precs.append(all_precs[i]) return newmethods, newprecs, newmeans, newmedians, newall_precs def prepare_data(infile, domain, outputdir): methods, precs, means, medians, all_precs = get_precision_values(infile) # Filter some results methods = naming(methods) methods, precs, means, medians, all_precs = _filter(methods, precs, means, medians, all_precs) # P@K fname = outputdir + "/prec_" + domain + ".csv" with open(fname, 'w') as f: f.write(','.join(methods) + '\n') f.write(','.join([str(p) for p in precs]) + '\n') k = (len(all_precs[0])-1)/2 diff_precs = [all_precs[i][k]-precs[i] for i in xrange(len(precs))] f.write(','.join([str(p) for p in diff_precs]) + '\n') # Variable K fname = outputdir + "/k_" + domain + ".csv" with open(fname, 'w') as f: for i in xrange(len(methods)): if methods[i]=='COMBINATION': stacking_precs = all_precs[i] interval = len(stacking_precs)/10+1 k = interval line1 = "1" line2 = str(stacking_precs[0]) while k<=len(stacking_precs): if k>1: line1 += ',' + str(k) line2 += ',' + str(stacking_precs[k-1]) k += interval if (k-len(stacking_precs))<interval: line1 += ',' + str(len(stacking_precs)) line2 += ',' + str(stacking_precs[-1]) f.write(line1 + '\n') f.write(line2 + '\n') # mean@K fname = outputdir + "/mean_" + domain + ".csv" with open(fname, 'w') as f: f.write(','.join(methods) + '\n') f.write(','.join([str(p) for p in means]) + '\n') # P@K fname = outputdir + "/median_" + domain + ".csv" with open(fname, 'w') as f: f.write(','.join(methods) + '\n') f.write(','.join([str(p) for p in medians]) + '\n') def main(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--inputfile", help="input file with data to plot", type=str) parser.add_argument("-o", "--outputdir", help="output directory", type=str) #parser.add_argument("-t", "--plottype", help="plot type: ['prec', 'median', 'mean']", type=str) parser.add_argument("-d", "--domain", help="domain name", type=str) args = parser.parse_args() prepare_data(args.inputfile, args.domain, args.outputdir) if __name__=='__main__': main()
null
null
null
null
[ 0 ]
2,547
895ece0b8d45cd64e43f8ddc54824f7647254185
<mask token> @app.route('/') def home_page(): year = datetime.datetime.today().year return render_template('index.html', current_year=year) @app.route('/guess/<name>') def guesser(name): person = Person(name=name) return render_template('guess.html', name=person.name, gender=person. gender, age=person.age, country=person.country) <mask token> @app.route('/post/<int:id>') def blog_post(id): requested_post = None for post in post_objects: if post.id == id: requested_post = post return render_template('post.html', post=requested_post) <mask token>
<mask token> for post in all_posts: post_obj = Post(post['id'], post['title'], post['subtitle'], post['body']) post_objects.append(post_obj) @app.route('/') def home_page(): year = datetime.datetime.today().year return render_template('index.html', current_year=year) @app.route('/guess/<name>') def guesser(name): person = Person(name=name) return render_template('guess.html', name=person.name, gender=person. gender, age=person.age, country=person.country) @app.route('/blog') def blog(): return render_template('blog.html', posts=post_objects) @app.route('/post/<int:id>') def blog_post(id): requested_post = None for post in post_objects: if post.id == id: requested_post = post return render_template('post.html', post=requested_post) if __name__ == '__main__': app.run(debug=True)
<mask token> app = Flask(__name__) all_posts = all_posts = requests.get( 'https://api.npoint.io/5abcca6f4e39b4955965').json() post_objects = [] for post in all_posts: post_obj = Post(post['id'], post['title'], post['subtitle'], post['body']) post_objects.append(post_obj) @app.route('/') def home_page(): year = datetime.datetime.today().year return render_template('index.html', current_year=year) @app.route('/guess/<name>') def guesser(name): person = Person(name=name) return render_template('guess.html', name=person.name, gender=person. gender, age=person.age, country=person.country) @app.route('/blog') def blog(): return render_template('blog.html', posts=post_objects) @app.route('/post/<int:id>') def blog_post(id): requested_post = None for post in post_objects: if post.id == id: requested_post = post return render_template('post.html', post=requested_post) if __name__ == '__main__': app.run(debug=True)
from flask import Flask from flask import render_template import datetime from person import Person import requests from post import Post app = Flask(__name__) all_posts = all_posts = requests.get( 'https://api.npoint.io/5abcca6f4e39b4955965').json() post_objects = [] for post in all_posts: post_obj = Post(post['id'], post['title'], post['subtitle'], post['body']) post_objects.append(post_obj) @app.route('/') def home_page(): year = datetime.datetime.today().year return render_template('index.html', current_year=year) @app.route('/guess/<name>') def guesser(name): person = Person(name=name) return render_template('guess.html', name=person.name, gender=person. gender, age=person.age, country=person.country) @app.route('/blog') def blog(): return render_template('blog.html', posts=post_objects) @app.route('/post/<int:id>') def blog_post(id): requested_post = None for post in post_objects: if post.id == id: requested_post = post return render_template('post.html', post=requested_post) if __name__ == '__main__': app.run(debug=True)
from flask import Flask from flask import render_template import datetime from person import Person import requests from post import Post app = Flask(__name__) all_posts = all_posts = requests.get( "https://api.npoint.io/5abcca6f4e39b4955965").json() post_objects = [] for post in all_posts: post_obj = Post(post["id"], post["title"], post["subtitle"], post["body"]) post_objects.append(post_obj) @app.route('/') def home_page(): year = datetime.datetime.today().year return render_template("index.html", current_year=year) @app.route('/guess/<name>') def guesser(name): person = Person(name=name) return render_template("guess.html", name=person.name, gender=person.gender, age=person.age, country=person.country, ) @app.route('/blog') def blog(): return render_template("blog.html", posts=post_objects) @app.route('/post/<int:id>') def blog_post(id): requested_post = None for post in post_objects: if post.id == id: requested_post = post return render_template("post.html", post=requested_post) if __name__ == "__main__": app.run(debug=True)
[ 3, 5, 6, 7, 8 ]
2,548
6097840cdf4b42efaca3e197f88703d927abe889
<mask token>
<mask token> with open('./all-news.json') as f: allNews = json.load(f) <mask token> with open('./recent-news.js', 'w') as f: f.write("document.write('\\\n") f.write('<ul>\\\n') for value in allNews.values(): f.write('<li>\\\n') date, content = value['date'], value['content'] date = date.replace("'", "\\'") content = content.replace("'", "\\'") f.write(date + ' - ' + content + '\\\n') f.write('</li>\\\n') recent_news_counter += 1 if recent_news_counter >= RECENT_NEWS_COUNT: break f.write('</ul>\\\n') f.write("');") with open('./all-news.js', 'w') as f: f.write("document.write('\\\n") f.write('<ul>\\\n') for value in allNews.values(): f.write('<li>\\\n') date, content = value['date'], value['content'] date = date.replace("'", "\\'") content = content.replace("'", "\\'") f.write(date + ' - ' + content + '\\\n') f.write('</li>\\\n') f.write('</ul>\\\n') f.write("');")
RECENT_NEWS_COUNT = 5 <mask token> with open('./all-news.json') as f: allNews = json.load(f) recent_news_counter = 0 with open('./recent-news.js', 'w') as f: f.write("document.write('\\\n") f.write('<ul>\\\n') for value in allNews.values(): f.write('<li>\\\n') date, content = value['date'], value['content'] date = date.replace("'", "\\'") content = content.replace("'", "\\'") f.write(date + ' - ' + content + '\\\n') f.write('</li>\\\n') recent_news_counter += 1 if recent_news_counter >= RECENT_NEWS_COUNT: break f.write('</ul>\\\n') f.write("');") with open('./all-news.js', 'w') as f: f.write("document.write('\\\n") f.write('<ul>\\\n') for value in allNews.values(): f.write('<li>\\\n') date, content = value['date'], value['content'] date = date.replace("'", "\\'") content = content.replace("'", "\\'") f.write(date + ' - ' + content + '\\\n') f.write('</li>\\\n') f.write('</ul>\\\n') f.write("');")
RECENT_NEWS_COUNT = 5 import json with open('./all-news.json') as f: allNews = json.load(f) recent_news_counter = 0 with open('./recent-news.js', 'w') as f: f.write("document.write('\\\n") f.write('<ul>\\\n') for value in allNews.values(): f.write('<li>\\\n') date, content = value['date'], value['content'] date = date.replace("'", "\\'") content = content.replace("'", "\\'") f.write(date + ' - ' + content + '\\\n') f.write('</li>\\\n') recent_news_counter += 1 if recent_news_counter >= RECENT_NEWS_COUNT: break f.write('</ul>\\\n') f.write("');") with open('./all-news.js', 'w') as f: f.write("document.write('\\\n") f.write('<ul>\\\n') for value in allNews.values(): f.write('<li>\\\n') date, content = value['date'], value['content'] date = date.replace("'", "\\'") content = content.replace("'", "\\'") f.write(date + ' - ' + content + '\\\n') f.write('</li>\\\n') f.write('</ul>\\\n') f.write("');")
# written by Mohammad Shahrad @UBC RECENT_NEWS_COUNT = 5 import json with open("./all-news.json") as f: allNews = json.load(f) recent_news_counter = 0 with open("./recent-news.js", "w") as f: f.write("document.write('\\\n") f.write("<ul>\\\n") for value in allNews.values(): f.write("<li>\\\n") date, content = value["date"], value["content"] date = date.replace("'", "\\'") content = content.replace("'", "\\'") f.write(date + " - " + content + "\\\n") f.write("</li>\\\n") recent_news_counter += 1 if recent_news_counter >= RECENT_NEWS_COUNT: break f.write("</ul>\\\n") f.write("');") with open("./all-news.js", "w") as f: f.write("document.write('\\\n") f.write("<ul>\\\n") for value in allNews.values(): f.write("<li>\\\n") date, content = value["date"], value["content"] date = date.replace("'", "\\'") content = content.replace("'", "\\'") f.write(date + " - " + content + "\\\n") f.write("</li>\\\n") f.write("</ul>\\\n") f.write("');")
[ 0, 1, 2, 3, 4 ]
2,549
3bc009271c7dd34ad09bcef81214387b63dfac59
<mask token> class Ensambler(object): <mask token> <mask token> def first_pass(self): for line in self.fileLines: self.clean_line(line) self.get_label() self.get_operands() if self.num_ope == 1: if self.instruction in mne.v_jump: if self.instruction == 'JP': self.x = self.TS[operands[0]] print('l') print(self.x) if self.operands[0] in mne.v_jump: self.instruction = self.instruction + ' ' + self.operands[0 ] + ',' + self.operands[1] if self.operands[0][1:-1].isnumeric(): self.instruction = self.instruction + ' ' + self.operands[0 ] + ',' + self.operands[1] if self.num_ope == 1: if self.instruction in mne.v_jump: self.operands[0] = 'nn' self.instruction = (self.instruction + ' ' + self. operands[0]) code, size = mne.map_mnem.get(self.instruction, 'Error' )('0000') self.cl += size else: print(self.instruction) print(self.CO) print(self.cl) print(self.TS) def Second_pass(self): for line in self.fileLines: self.clean_line(line) self.get_label() self.get_operands() if self.instruction in mne.v_jump: if len(self.operands) == 2: aux = self.operands[1] else: aux = self.operands[0] if aux in self.TS.keys(): self.x = self.TS[aux] self.instruction = self.instruction + ' ' + 'nn' code, size = mne.map_mnem.get(self.instruction, 'Error')( str(self.x)) self.CO.append(code) else: print('Error') else: if self.num_ope == 2: self.instruction = self.instruction + ' ' + self.operands[0 ] + ',' + self.operands[1] if self.num_ope == 1: self.instruction = self.instruction + ' ' + self.operands[0 ] code, size = mne.map_mnem.get(self.instruction, 'Error')() self.CO.append(code) print(self.CO) <mask token> def get_label(self): label = self.instruction.split(':') if len(label) > 1: if label[0] in mne.v_ops or label[0] in mne.map_mnem: print('Error etiqueta invalida') self.TS[label[0].strip()] = self.cl del label[0] self.instruction = label[0] def get_operands(self): line = self.instruction.split() self.operands = [operand for operand in line] self.instruction = self.operands[0] del self.operands[0] self.num_ope = len(self.operands) <mask token>
<mask token> class Ensambler(object): def __init__(self, fileName): self.fileName = fileName self.fileLines = [] self.cl = 0 self.size = 0 self.code = '' self.instruction = '' self.num_ope = 0 self.operands = [] self.TS = {} self.CO = [] self.x = 0 def leerArchivo(self): file = open(self.fileName, 'r') for line in file: line = line.replace('\n', '') line = line.replace('\t', '') self.fileLines.append(line) file.close() def first_pass(self): for line in self.fileLines: self.clean_line(line) self.get_label() self.get_operands() if self.num_ope == 1: if self.instruction in mne.v_jump: if self.instruction == 'JP': self.x = self.TS[operands[0]] print('l') print(self.x) if self.operands[0] in mne.v_jump: self.instruction = self.instruction + ' ' + self.operands[0 ] + ',' + self.operands[1] if self.operands[0][1:-1].isnumeric(): self.instruction = self.instruction + ' ' + self.operands[0 ] + ',' + self.operands[1] if self.num_ope == 1: if self.instruction in mne.v_jump: self.operands[0] = 'nn' self.instruction = (self.instruction + ' ' + self. operands[0]) code, size = mne.map_mnem.get(self.instruction, 'Error' )('0000') self.cl += size else: print(self.instruction) print(self.CO) print(self.cl) print(self.TS) def Second_pass(self): for line in self.fileLines: self.clean_line(line) self.get_label() self.get_operands() if self.instruction in mne.v_jump: if len(self.operands) == 2: aux = self.operands[1] else: aux = self.operands[0] if aux in self.TS.keys(): self.x = self.TS[aux] self.instruction = self.instruction + ' ' + 'nn' code, size = mne.map_mnem.get(self.instruction, 'Error')( str(self.x)) self.CO.append(code) else: print('Error') else: if self.num_ope == 2: self.instruction = self.instruction + ' ' + self.operands[0 ] + ',' + self.operands[1] if self.num_ope == 1: self.instruction = self.instruction + ' ' + self.operands[0 ] code, size = mne.map_mnem.get(self.instruction, 'Error')() self.CO.append(code) print(self.CO) def clean_line(self, line): line = line.split(';') self.instruction = line[0].upper().replace(',', '') def get_label(self): label = self.instruction.split(':') if len(label) > 1: if label[0] in mne.v_ops or label[0] in mne.map_mnem: print('Error etiqueta invalida') self.TS[label[0].strip()] = self.cl del label[0] self.instruction = label[0] def get_operands(self): line = self.instruction.split() self.operands = [operand for operand in line] self.instruction = self.operands[0] del self.operands[0] self.num_ope = len(self.operands) <mask token>
<mask token> class Ensambler(object): def __init__(self, fileName): self.fileName = fileName self.fileLines = [] self.cl = 0 self.size = 0 self.code = '' self.instruction = '' self.num_ope = 0 self.operands = [] self.TS = {} self.CO = [] self.x = 0 def leerArchivo(self): file = open(self.fileName, 'r') for line in file: line = line.replace('\n', '') line = line.replace('\t', '') self.fileLines.append(line) file.close() def first_pass(self): for line in self.fileLines: self.clean_line(line) self.get_label() self.get_operands() if self.num_ope == 1: if self.instruction in mne.v_jump: if self.instruction == 'JP': self.x = self.TS[operands[0]] print('l') print(self.x) if self.operands[0] in mne.v_jump: self.instruction = self.instruction + ' ' + self.operands[0 ] + ',' + self.operands[1] if self.operands[0][1:-1].isnumeric(): self.instruction = self.instruction + ' ' + self.operands[0 ] + ',' + self.operands[1] if self.num_ope == 1: if self.instruction in mne.v_jump: self.operands[0] = 'nn' self.instruction = (self.instruction + ' ' + self. operands[0]) code, size = mne.map_mnem.get(self.instruction, 'Error' )('0000') self.cl += size else: print(self.instruction) print(self.CO) print(self.cl) print(self.TS) def Second_pass(self): for line in self.fileLines: self.clean_line(line) self.get_label() self.get_operands() if self.instruction in mne.v_jump: if len(self.operands) == 2: aux = self.operands[1] else: aux = self.operands[0] if aux in self.TS.keys(): self.x = self.TS[aux] self.instruction = self.instruction + ' ' + 'nn' code, size = mne.map_mnem.get(self.instruction, 'Error')( str(self.x)) self.CO.append(code) else: print('Error') else: if self.num_ope == 2: self.instruction = self.instruction + ' ' + self.operands[0 ] + ',' + self.operands[1] if self.num_ope == 1: self.instruction = self.instruction + ' ' + self.operands[0 ] code, size = mne.map_mnem.get(self.instruction, 'Error')() self.CO.append(code) print(self.CO) def clean_line(self, line): line = line.split(';') self.instruction = line[0].upper().replace(',', '') def get_label(self): label = self.instruction.split(':') if len(label) > 1: if label[0] in mne.v_ops or label[0] in mne.map_mnem: print('Error etiqueta invalida') self.TS[label[0].strip()] = self.cl del label[0] self.instruction = label[0] def get_operands(self): line = self.instruction.split() self.operands = [operand for operand in line] self.instruction = self.operands[0] del self.operands[0] self.num_ope = len(self.operands) <mask token> aux.leerArchivo() aux.first_pass() aux.Second_pass()
import mnemonicos as mne class Ensambler(object): def __init__(self, fileName): self.fileName = fileName self.fileLines = [] self.cl = 0 self.size = 0 self.code = '' self.instruction = '' self.num_ope = 0 self.operands = [] self.TS = {} self.CO = [] self.x = 0 def leerArchivo(self): file = open(self.fileName, 'r') for line in file: line = line.replace('\n', '') line = line.replace('\t', '') self.fileLines.append(line) file.close() def first_pass(self): for line in self.fileLines: self.clean_line(line) self.get_label() self.get_operands() if self.num_ope == 1: if self.instruction in mne.v_jump: if self.instruction == 'JP': self.x = self.TS[operands[0]] print('l') print(self.x) if self.operands[0] in mne.v_jump: self.instruction = self.instruction + ' ' + self.operands[0 ] + ',' + self.operands[1] if self.operands[0][1:-1].isnumeric(): self.instruction = self.instruction + ' ' + self.operands[0 ] + ',' + self.operands[1] if self.num_ope == 1: if self.instruction in mne.v_jump: self.operands[0] = 'nn' self.instruction = (self.instruction + ' ' + self. operands[0]) code, size = mne.map_mnem.get(self.instruction, 'Error' )('0000') self.cl += size else: print(self.instruction) print(self.CO) print(self.cl) print(self.TS) def Second_pass(self): for line in self.fileLines: self.clean_line(line) self.get_label() self.get_operands() if self.instruction in mne.v_jump: if len(self.operands) == 2: aux = self.operands[1] else: aux = self.operands[0] if aux in self.TS.keys(): self.x = self.TS[aux] self.instruction = self.instruction + ' ' + 'nn' code, size = mne.map_mnem.get(self.instruction, 'Error')( str(self.x)) self.CO.append(code) else: print('Error') else: if self.num_ope == 2: self.instruction = self.instruction + ' ' + self.operands[0 ] + ',' + self.operands[1] if self.num_ope == 1: self.instruction = self.instruction + ' ' + self.operands[0 ] code, size = mne.map_mnem.get(self.instruction, 'Error')() self.CO.append(code) print(self.CO) def clean_line(self, line): line = line.split(';') self.instruction = line[0].upper().replace(',', '') def get_label(self): label = self.instruction.split(':') if len(label) > 1: if label[0] in mne.v_ops or label[0] in mne.map_mnem: print('Error etiqueta invalida') self.TS[label[0].strip()] = self.cl del label[0] self.instruction = label[0] def get_operands(self): line = self.instruction.split() self.operands = [operand for operand in line] self.instruction = self.operands[0] del self.operands[0] self.num_ope = len(self.operands) aux = Ensambler('1.txt') aux.leerArchivo() aux.first_pass() aux.Second_pass()
#from tkinter import Tk, Text, INSERT import mnemonicos as mne class Ensambler(object): def __init__(self, fileName): #Nombre del archivo self.fileName = fileName #Lineas del Archivo self.fileLines = [] #Contador de Localidades self.cl = 0 #Tamaño self.size = 0 #Opcode self.code = "" #Intruccion self.instruction = "" #Contador de operadores self.num_ope = 0 #Operandos self.operands = [] # Tabla de simbolos self.TS = {} # Codigo Objeto self.CO = [] #Aux self.x = 0 #self.window = Tk() #self.window.geometry('400x50') def leerArchivo(self): file = open(self.fileName, "r") for line in file: line = line.replace("\n", "") line = line.replace("\t", "") self.fileLines.append(line) file.close() #Primera Pasada def first_pass(self): for line in self.fileLines: self.clean_line(line) self.get_label() self.get_operands() if self.num_ope == 1: if self.instruction in mne.v_jump: if self.instruction == "JP": self.x = self.TS[operands[0]] print("l") print(self.x) if self.operands[0] in mne.v_jump: self.instruction = self.instruction + " " + self.operands[0]+","+self.operands[1] if self.operands[0][1:-1].isnumeric(): self.instruction = self.instruction + " " + self.operands[0]+","+self.operands[1] if self.num_ope == 1: if self.instruction in mne.v_jump: self.operands[0] = "nn" self.instruction = self.instruction + " " + self.operands[0] code, size = mne.map_mnem.get(self.instruction,"Error")("0000") self.cl += size else: #Valida si no es opcode valido print(self.instruction) #code, size = mne.map_mnem.get(self.instruction,"Error")() #lst = "CL: " + str(self.cl) + " Code: " + code #self.CO.append(code) print(self.CO) print(self.cl) print(self.TS) def Second_pass(self): for line in self.fileLines: self.clean_line(line) self.get_label() self.get_operands() if self.instruction in mne.v_jump: if len(self.operands) == 2: aux = self.operands[1] else: aux = self.operands[0] if aux in self.TS.keys(): self.x = self.TS[aux] self.instruction = self.instruction + " " + "nn" code, size = mne.map_mnem.get(self.instruction,"Error")(str(self.x)) self.CO.append(code) else: print("Error") else: if self.num_ope == 2: self.instruction = self.instruction + " " + self.operands[0]+","+self.operands[1] if self.num_ope == 1: self.instruction = self.instruction + " " + self.operands[0] code, size = mne.map_mnem.get(self.instruction,"Error")() self.CO.append(code) print(self.CO) #Quitar Comentarios def clean_line(self,line): line = line.split(";") self.instruction = line[0].upper().replace(",","") # Obtener y guardar etiqueta si existe def get_label(self): label = self.instruction.split(":") if len(label) > 1: if label[0] in mne.v_ops or label[0] in mne.map_mnem: print("Error etiqueta invalida") #Quitar espacio al inicio self.TS[label[0].strip()] = self.cl del label[0] self.instruction = label[0] #Obtener los operandos y la instruccion def get_operands(self): line = self.instruction.split() self.operands = [operand for operand in line] self.instruction = self.operands[0] del self.operands[0] self.num_ope = len(self.operands) aux = Ensambler("1.txt") aux.leerArchivo() aux.first_pass() aux.Second_pass()
[ 5, 8, 9, 11, 12 ]
2,550
380a28958fc6d1b403b29ede229860bf5f709572
<mask token> class LoginPageTests(RegistrationBaseTestCase): def test_can_open_whatsapp_login_page(self): self.assertTrue(self.login_page.is_title_matches()) self.assertTrue(self.login_page.is_instruction_title_matches()) def test_checkbox_remember_me_is_checked_by_default(self): self.assertTrue(self.login_page.is_remember_me_selected()) <mask token> def test_can_uncheck_and_check_again_checkbox_remember_me(self): self.login_page.remember_me = False self.assertFalse(self.login_page.is_remember_me_selected()) self.login_page.remember_me = True self.assertTrue(self.login_page.is_remember_me_selected()) def test_can_manually_login_successfully(self): base_page = BasePage(self.driver) base_page.load() time.sleep(8) self.assertTrue(base_page.is_title_matches()) self.assertTrue(base_page.is_welcome_page_available()) self.assertTrue(base_page.is_nav_bar_page_available()) self.assertTrue(base_page.is_search_page_available()) self.assertTrue(base_page.is_pane_page_available()) self.assertFalse(base_page.is_chat_page_available()) class LogoutTest(RegistrationBaseTestCase): def test_can_logout_successfully_after_login(self): header_page = HeaderPage(self.driver) time.sleep(8) self.assertTrue(header_page.is_welcome_page_available()) self.assertTrue(header_page.is_nav_bar_page_available()) header_page.logout() self.assertTrue(self.login_page.is_title_matches()) self.assertTrue(self.login_page.is_instruction_title_matches()) <mask token>
<mask token> class RegistrationBaseTestCase(TestCase): <mask token> def tearDown(self): self.driver.close() class LoginPageTests(RegistrationBaseTestCase): def test_can_open_whatsapp_login_page(self): self.assertTrue(self.login_page.is_title_matches()) self.assertTrue(self.login_page.is_instruction_title_matches()) def test_checkbox_remember_me_is_checked_by_default(self): self.assertTrue(self.login_page.is_remember_me_selected()) def test_can_uncheck_checkbox_remember_me(self): self.login_page.remember_me = False self.assertFalse(self.login_page.is_remember_me_selected()) def test_can_uncheck_and_check_again_checkbox_remember_me(self): self.login_page.remember_me = False self.assertFalse(self.login_page.is_remember_me_selected()) self.login_page.remember_me = True self.assertTrue(self.login_page.is_remember_me_selected()) def test_can_manually_login_successfully(self): base_page = BasePage(self.driver) base_page.load() time.sleep(8) self.assertTrue(base_page.is_title_matches()) self.assertTrue(base_page.is_welcome_page_available()) self.assertTrue(base_page.is_nav_bar_page_available()) self.assertTrue(base_page.is_search_page_available()) self.assertTrue(base_page.is_pane_page_available()) self.assertFalse(base_page.is_chat_page_available()) class LogoutTest(RegistrationBaseTestCase): def test_can_logout_successfully_after_login(self): header_page = HeaderPage(self.driver) time.sleep(8) self.assertTrue(header_page.is_welcome_page_available()) self.assertTrue(header_page.is_nav_bar_page_available()) header_page.logout() self.assertTrue(self.login_page.is_title_matches()) self.assertTrue(self.login_page.is_instruction_title_matches()) <mask token>
<mask token> class RegistrationBaseTestCase(TestCase): def setUp(self): self.driver = webdriver.Firefox() self.driver.maximize_window() self.login_page = LoginPage(self.driver) self.login_page.load() def tearDown(self): self.driver.close() class LoginPageTests(RegistrationBaseTestCase): def test_can_open_whatsapp_login_page(self): self.assertTrue(self.login_page.is_title_matches()) self.assertTrue(self.login_page.is_instruction_title_matches()) def test_checkbox_remember_me_is_checked_by_default(self): self.assertTrue(self.login_page.is_remember_me_selected()) def test_can_uncheck_checkbox_remember_me(self): self.login_page.remember_me = False self.assertFalse(self.login_page.is_remember_me_selected()) def test_can_uncheck_and_check_again_checkbox_remember_me(self): self.login_page.remember_me = False self.assertFalse(self.login_page.is_remember_me_selected()) self.login_page.remember_me = True self.assertTrue(self.login_page.is_remember_me_selected()) def test_can_manually_login_successfully(self): base_page = BasePage(self.driver) base_page.load() time.sleep(8) self.assertTrue(base_page.is_title_matches()) self.assertTrue(base_page.is_welcome_page_available()) self.assertTrue(base_page.is_nav_bar_page_available()) self.assertTrue(base_page.is_search_page_available()) self.assertTrue(base_page.is_pane_page_available()) self.assertFalse(base_page.is_chat_page_available()) class LogoutTest(RegistrationBaseTestCase): def test_can_logout_successfully_after_login(self): header_page = HeaderPage(self.driver) time.sleep(8) self.assertTrue(header_page.is_welcome_page_available()) self.assertTrue(header_page.is_nav_bar_page_available()) header_page.logout() self.assertTrue(self.login_page.is_title_matches()) self.assertTrue(self.login_page.is_instruction_title_matches()) <mask token>
import time import unittest from unittest import TestCase from selenium import webdriver from simon.accounts.pages import LoginPage from simon.header.pages import HeaderPage from simon.pages import BasePage class RegistrationBaseTestCase(TestCase): def setUp(self): self.driver = webdriver.Firefox() self.driver.maximize_window() self.login_page = LoginPage(self.driver) self.login_page.load() def tearDown(self): self.driver.close() class LoginPageTests(RegistrationBaseTestCase): def test_can_open_whatsapp_login_page(self): self.assertTrue(self.login_page.is_title_matches()) self.assertTrue(self.login_page.is_instruction_title_matches()) def test_checkbox_remember_me_is_checked_by_default(self): self.assertTrue(self.login_page.is_remember_me_selected()) def test_can_uncheck_checkbox_remember_me(self): self.login_page.remember_me = False self.assertFalse(self.login_page.is_remember_me_selected()) def test_can_uncheck_and_check_again_checkbox_remember_me(self): self.login_page.remember_me = False self.assertFalse(self.login_page.is_remember_me_selected()) self.login_page.remember_me = True self.assertTrue(self.login_page.is_remember_me_selected()) def test_can_manually_login_successfully(self): base_page = BasePage(self.driver) base_page.load() time.sleep(8) self.assertTrue(base_page.is_title_matches()) self.assertTrue(base_page.is_welcome_page_available()) self.assertTrue(base_page.is_nav_bar_page_available()) self.assertTrue(base_page.is_search_page_available()) self.assertTrue(base_page.is_pane_page_available()) self.assertFalse(base_page.is_chat_page_available()) class LogoutTest(RegistrationBaseTestCase): def test_can_logout_successfully_after_login(self): header_page = HeaderPage(self.driver) time.sleep(8) self.assertTrue(header_page.is_welcome_page_available()) self.assertTrue(header_page.is_nav_bar_page_available()) header_page.logout() self.assertTrue(self.login_page.is_title_matches()) self.assertTrue(self.login_page.is_instruction_title_matches()) if __name__ == '__main__': unittest.main()
import time import unittest from unittest import TestCase from selenium import webdriver from simon.accounts.pages import LoginPage from simon.header.pages import HeaderPage from simon.pages import BasePage class RegistrationBaseTestCase(TestCase): def setUp(self): self.driver = webdriver.Firefox() self.driver.maximize_window() self.login_page = LoginPage(self.driver) self.login_page.load() def tearDown(self): self.driver.close() class LoginPageTests(RegistrationBaseTestCase): def test_can_open_whatsapp_login_page(self): self.assertTrue(self.login_page.is_title_matches()) self.assertTrue(self.login_page.is_instruction_title_matches()) def test_checkbox_remember_me_is_checked_by_default(self): self.assertTrue(self.login_page.is_remember_me_selected()) def test_can_uncheck_checkbox_remember_me(self): self.login_page.remember_me = False self.assertFalse(self.login_page.is_remember_me_selected()) def test_can_uncheck_and_check_again_checkbox_remember_me(self): self.login_page.remember_me = False self.assertFalse(self.login_page.is_remember_me_selected()) self.login_page.remember_me = True self.assertTrue(self.login_page.is_remember_me_selected()) def test_can_manually_login_successfully(self): base_page = BasePage(self.driver) base_page.load() # time for you to read QR code and access whatsapp time.sleep(8) self.assertTrue(base_page.is_title_matches()) self.assertTrue(base_page.is_welcome_page_available()) self.assertTrue(base_page.is_nav_bar_page_available()) self.assertTrue(base_page.is_search_page_available()) self.assertTrue(base_page.is_pane_page_available()) # chat is only available after you click on a person to open the chat self.assertFalse(base_page.is_chat_page_available()) class LogoutTest(RegistrationBaseTestCase): def test_can_logout_successfully_after_login(self): header_page = HeaderPage(self.driver) # time for you to read QR code and access whatsapp time.sleep(8) self.assertTrue(header_page.is_welcome_page_available()) self.assertTrue(header_page.is_nav_bar_page_available()) header_page.logout() self.assertTrue(self.login_page.is_title_matches()) self.assertTrue(self.login_page.is_instruction_title_matches()) if __name__ == "__main__": unittest.main()
[ 7, 10, 11, 13, 14 ]
2,551
486cfc4bb4b46d78715b11cba44656e8ba077c9b
<mask token> class TestTransliteratePackage(unittest.TestCase): <mask token> def test_romanize_royin_basic(self): for word in _BASIC_TESTS: expect = _BASIC_TESTS[word] self.assertEqual(romanize(word, engine='royin'), expect) def test_romanize_royin_consistency(self): for word, part1, part2 in _CONSISTENCY_TESTS: self.assertEqual(romanize(word, engine='royin'), romanize(part1, engine='royin') + romanize(part2, engine='royin')) def test_romanize_thai2rom(self): self.assertEqual(romanize('แมว', engine='thai2rom'), 'maeo') self.assertEqual(romanize('บ้านไร่', engine='thai2rom'), 'banrai') self.assertEqual(romanize('สุนัข', engine='thai2rom'), 'sunak') self.assertEqual(romanize('นก', engine='thai2rom'), 'nok') self.assertEqual(romanize('ความอิ่ม', engine='thai2rom'), 'khwam-im') self.assertEqual(romanize('กานต์ ณรงค์', engine='thai2rom'), 'kan narong') self.assertEqual(romanize('สกุนต์', engine='thai2rom'), 'sakun') self.assertEqual(romanize('ชารินทร์', engine='thai2rom'), 'charin') def test_thai2rom_prepare_sequence(self): transliterater = ThaiTransliterator() UNK_TOKEN = 1 END_TOKEN = 3 self.assertListEqual(transliterater._prepare_sequence_in('A').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertListEqual(transliterater._prepare_sequence_in('♥').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertNotEqual(transliterater._prepare_sequence_in('ก').cpu(). detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) <mask token> def test_pronunciate(self): self.assertEqual(pronunciate(''), '') remove('thai_w2p') self.assertIsNotNone(pronunciate('คน', engine='w2p')) self.assertIsNotNone(pronunciate('แมว', engine='w2p')) self.assertIsNotNone(pronunciate('มข.', engine='w2p')) self.assertIsNotNone(pronunciate('มช.', engine='w2p')) self.assertIsNotNone(pronunciate('jks', engine='w2p')) <mask token>
<mask token> class TestTransliteratePackage(unittest.TestCase): <mask token> def test_romanize_royin_basic(self): for word in _BASIC_TESTS: expect = _BASIC_TESTS[word] self.assertEqual(romanize(word, engine='royin'), expect) def test_romanize_royin_consistency(self): for word, part1, part2 in _CONSISTENCY_TESTS: self.assertEqual(romanize(word, engine='royin'), romanize(part1, engine='royin') + romanize(part2, engine='royin')) def test_romanize_thai2rom(self): self.assertEqual(romanize('แมว', engine='thai2rom'), 'maeo') self.assertEqual(romanize('บ้านไร่', engine='thai2rom'), 'banrai') self.assertEqual(romanize('สุนัข', engine='thai2rom'), 'sunak') self.assertEqual(romanize('นก', engine='thai2rom'), 'nok') self.assertEqual(romanize('ความอิ่ม', engine='thai2rom'), 'khwam-im') self.assertEqual(romanize('กานต์ ณรงค์', engine='thai2rom'), 'kan narong') self.assertEqual(romanize('สกุนต์', engine='thai2rom'), 'sakun') self.assertEqual(romanize('ชารินทร์', engine='thai2rom'), 'charin') def test_thai2rom_prepare_sequence(self): transliterater = ThaiTransliterator() UNK_TOKEN = 1 END_TOKEN = 3 self.assertListEqual(transliterater._prepare_sequence_in('A').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertListEqual(transliterater._prepare_sequence_in('♥').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertNotEqual(transliterater._prepare_sequence_in('ก').cpu(). detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) <mask token> def test_pronunciate(self): self.assertEqual(pronunciate(''), '') remove('thai_w2p') self.assertIsNotNone(pronunciate('คน', engine='w2p')) self.assertIsNotNone(pronunciate('แมว', engine='w2p')) self.assertIsNotNone(pronunciate('มข.', engine='w2p')) self.assertIsNotNone(pronunciate('มช.', engine='w2p')) self.assertIsNotNone(pronunciate('jks', engine='w2p')) def test_puan(self): self.assertEqual(puan('นาริน'), 'นิน-รา') self.assertEqual(puan('นาริน', False), 'นินรา') self.assertEqual(puan('แสงดีนะ'), 'แสง-ดะ-นี') self.assertEqual(puan('แสงดีนะ', False), 'แสงดะนี') with self.assertRaises(ValueError): self.assertEqual(puan('สวัสดีครับ'), 'สวัสดีครับ')
<mask token> class TestTransliteratePackage(unittest.TestCase): def test_romanize(self): self.assertEqual(romanize(None), '') self.assertEqual(romanize(''), '') self.assertEqual(romanize('แมว'), 'maeo') self.assertEqual(romanize('แมว', engine='tltk'), 'maeo') def test_romanize_royin_basic(self): for word in _BASIC_TESTS: expect = _BASIC_TESTS[word] self.assertEqual(romanize(word, engine='royin'), expect) def test_romanize_royin_consistency(self): for word, part1, part2 in _CONSISTENCY_TESTS: self.assertEqual(romanize(word, engine='royin'), romanize(part1, engine='royin') + romanize(part2, engine='royin')) def test_romanize_thai2rom(self): self.assertEqual(romanize('แมว', engine='thai2rom'), 'maeo') self.assertEqual(romanize('บ้านไร่', engine='thai2rom'), 'banrai') self.assertEqual(romanize('สุนัข', engine='thai2rom'), 'sunak') self.assertEqual(romanize('นก', engine='thai2rom'), 'nok') self.assertEqual(romanize('ความอิ่ม', engine='thai2rom'), 'khwam-im') self.assertEqual(romanize('กานต์ ณรงค์', engine='thai2rom'), 'kan narong') self.assertEqual(romanize('สกุนต์', engine='thai2rom'), 'sakun') self.assertEqual(romanize('ชารินทร์', engine='thai2rom'), 'charin') def test_thai2rom_prepare_sequence(self): transliterater = ThaiTransliterator() UNK_TOKEN = 1 END_TOKEN = 3 self.assertListEqual(transliterater._prepare_sequence_in('A').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertListEqual(transliterater._prepare_sequence_in('♥').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertNotEqual(transliterater._prepare_sequence_in('ก').cpu(). detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) def test_transliterate(self): self.assertEqual(transliterate(''), '') self.assertEqual(transliterate('แมว', 'pyicu'), 'mæw') self.assertEqual(transliterate('คน', engine='ipa'), 'kʰon') self.assertIsNotNone(transliterate('คน', engine='thaig2p')) self.assertIsNotNone(transliterate('แมว', engine='thaig2p')) self.assertIsNotNone(transliterate('คน', engine='tltk_g2p')) self.assertIsNotNone(transliterate('แมว', engine='tltk_g2p')) self.assertIsNotNone(transliterate('คน', engine='tltk_ipa')) self.assertIsNotNone(transliterate('แมว', engine='tltk_ipa')) self.assertIsNotNone(trans_list('คน')) self.assertIsNotNone(xsampa_list('คน')) def test_pronunciate(self): self.assertEqual(pronunciate(''), '') remove('thai_w2p') self.assertIsNotNone(pronunciate('คน', engine='w2p')) self.assertIsNotNone(pronunciate('แมว', engine='w2p')) self.assertIsNotNone(pronunciate('มข.', engine='w2p')) self.assertIsNotNone(pronunciate('มช.', engine='w2p')) self.assertIsNotNone(pronunciate('jks', engine='w2p')) def test_puan(self): self.assertEqual(puan('นาริน'), 'นิน-รา') self.assertEqual(puan('นาริน', False), 'นินรา') self.assertEqual(puan('แสงดีนะ'), 'แสง-ดะ-นี') self.assertEqual(puan('แสงดีนะ', False), 'แสงดะนี') with self.assertRaises(ValueError): self.assertEqual(puan('สวัสดีครับ'), 'สวัสดีครับ')
import unittest import torch from pythainlp.transliterate import romanize, transliterate, pronunciate, puan from pythainlp.transliterate.ipa import trans_list, xsampa_list from pythainlp.transliterate.thai2rom import ThaiTransliterator from pythainlp.corpus import remove _BASIC_TESTS = {None: '', '': '', 'abc': 'abc', 'หมอก': 'mok', 'หาย': 'hai', 'แมว': 'maeo', 'เดือน': 'duean', 'ดำ': 'dam', 'ดู': 'du', 'บัว': 'bua', 'กก': 'kok', 'พร': 'phon', 'กร': 'kon', 'กรร': 'kan', 'กรรม': 'kam', 'ฝ้าย': 'fai', 'นพพร': 'nopphon', 'อัก': 'ak'} _CONSISTENCY_TESTS = [('ตากใบ', 'ตาก', 'ใบ')] class TestTransliteratePackage(unittest.TestCase): def test_romanize(self): self.assertEqual(romanize(None), '') self.assertEqual(romanize(''), '') self.assertEqual(romanize('แมว'), 'maeo') self.assertEqual(romanize('แมว', engine='tltk'), 'maeo') def test_romanize_royin_basic(self): for word in _BASIC_TESTS: expect = _BASIC_TESTS[word] self.assertEqual(romanize(word, engine='royin'), expect) def test_romanize_royin_consistency(self): for word, part1, part2 in _CONSISTENCY_TESTS: self.assertEqual(romanize(word, engine='royin'), romanize(part1, engine='royin') + romanize(part2, engine='royin')) def test_romanize_thai2rom(self): self.assertEqual(romanize('แมว', engine='thai2rom'), 'maeo') self.assertEqual(romanize('บ้านไร่', engine='thai2rom'), 'banrai') self.assertEqual(romanize('สุนัข', engine='thai2rom'), 'sunak') self.assertEqual(romanize('นก', engine='thai2rom'), 'nok') self.assertEqual(romanize('ความอิ่ม', engine='thai2rom'), 'khwam-im') self.assertEqual(romanize('กานต์ ณรงค์', engine='thai2rom'), 'kan narong') self.assertEqual(romanize('สกุนต์', engine='thai2rom'), 'sakun') self.assertEqual(romanize('ชารินทร์', engine='thai2rom'), 'charin') def test_thai2rom_prepare_sequence(self): transliterater = ThaiTransliterator() UNK_TOKEN = 1 END_TOKEN = 3 self.assertListEqual(transliterater._prepare_sequence_in('A').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertListEqual(transliterater._prepare_sequence_in('♥').cpu() .detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) self.assertNotEqual(transliterater._prepare_sequence_in('ก').cpu(). detach().numpy().tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long).cpu().detach().numpy().tolist()) def test_transliterate(self): self.assertEqual(transliterate(''), '') self.assertEqual(transliterate('แมว', 'pyicu'), 'mæw') self.assertEqual(transliterate('คน', engine='ipa'), 'kʰon') self.assertIsNotNone(transliterate('คน', engine='thaig2p')) self.assertIsNotNone(transliterate('แมว', engine='thaig2p')) self.assertIsNotNone(transliterate('คน', engine='tltk_g2p')) self.assertIsNotNone(transliterate('แมว', engine='tltk_g2p')) self.assertIsNotNone(transliterate('คน', engine='tltk_ipa')) self.assertIsNotNone(transliterate('แมว', engine='tltk_ipa')) self.assertIsNotNone(trans_list('คน')) self.assertIsNotNone(xsampa_list('คน')) def test_pronunciate(self): self.assertEqual(pronunciate(''), '') remove('thai_w2p') self.assertIsNotNone(pronunciate('คน', engine='w2p')) self.assertIsNotNone(pronunciate('แมว', engine='w2p')) self.assertIsNotNone(pronunciate('มข.', engine='w2p')) self.assertIsNotNone(pronunciate('มช.', engine='w2p')) self.assertIsNotNone(pronunciate('jks', engine='w2p')) def test_puan(self): self.assertEqual(puan('นาริน'), 'นิน-รา') self.assertEqual(puan('นาริน', False), 'นินรา') self.assertEqual(puan('แสงดีนะ'), 'แสง-ดะ-นี') self.assertEqual(puan('แสงดีนะ', False), 'แสงดะนี') with self.assertRaises(ValueError): self.assertEqual(puan('สวัสดีครับ'), 'สวัสดีครับ')
# -*- coding: utf-8 -*- import unittest import torch from pythainlp.transliterate import romanize, transliterate, pronunciate, puan from pythainlp.transliterate.ipa import trans_list, xsampa_list from pythainlp.transliterate.thai2rom import ThaiTransliterator from pythainlp.corpus import remove _BASIC_TESTS = { None: "", "": "", "abc": "abc", "หมอก": "mok", "หาย": "hai", "แมว": "maeo", "เดือน": "duean", "ดำ": "dam", "ดู": "du", "บัว": "bua", "กก": "kok", "พร": "phon", "กร": "kon", "กรร": "kan", "กรรม": "kam", # "กรม": "krom", # failed "ฝ้าย": "fai", "นพพร": "nopphon", "อัก": "ak", # "ทีปกร": "thipakon", # failed # "ธรรพ์": "than", # failed # "ธรรม": "tham", # failed # "มหา": "maha", # failed # "หยาก": "yak", # failed # "อยาก": "yak", # failed # "ยมก": "yamok", # failed # "กลัว": "klua", # failed # "บ้านไร่": "banrai", # failed # "ชารินทร์": "charin", # failed } # these are set of two-syllable words, # to test if the transliteration/romanization is consistent, say # romanize(1+2) = romanize(1) + romanize(2) _CONSISTENCY_TESTS = [ # ("กระจก", "กระ", "จก"), # failed # ("ระเบิด", "ระ", "เบิด"), # failed # ("หยากไย่", "หยาก", "ไย่"), # failed ("ตากใบ", "ตาก", "ใบ"), # ("จัดสรร", "จัด", "สรร"), # failed ] class TestTransliteratePackage(unittest.TestCase): def test_romanize(self): self.assertEqual(romanize(None), "") self.assertEqual(romanize(""), "") self.assertEqual(romanize("แมว"), "maeo") self.assertEqual(romanize("แมว", engine="tltk"), "maeo") def test_romanize_royin_basic(self): for word in _BASIC_TESTS: expect = _BASIC_TESTS[word] self.assertEqual(romanize(word, engine="royin"), expect) def test_romanize_royin_consistency(self): for word, part1, part2 in _CONSISTENCY_TESTS: self.assertEqual( romanize(word, engine="royin"), ( romanize(part1, engine="royin") + romanize(part2, engine="royin") ), ) def test_romanize_thai2rom(self): self.assertEqual(romanize("แมว", engine="thai2rom"), "maeo") self.assertEqual(romanize("บ้านไร่", engine="thai2rom"), "banrai") self.assertEqual(romanize("สุนัข", engine="thai2rom"), "sunak") self.assertEqual(romanize("นก", engine="thai2rom"), "nok") self.assertEqual(romanize("ความอิ่ม", engine="thai2rom"), "khwam-im") self.assertEqual( romanize("กานต์ ณรงค์", engine="thai2rom"), "kan narong" ) self.assertEqual(romanize("สกุนต์", engine="thai2rom"), "sakun") self.assertEqual(romanize("ชารินทร์", engine="thai2rom"), "charin") def test_thai2rom_prepare_sequence(self): transliterater = ThaiTransliterator() UNK_TOKEN = 1 # UNK_TOKEN or <UNK> is represented by 1 END_TOKEN = 3 # END_TOKEN or <end> is represented by 3 self.assertListEqual( transliterater._prepare_sequence_in("A") .cpu() .detach() .numpy() .tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long) .cpu() .detach() .numpy() .tolist(), ) self.assertListEqual( transliterater._prepare_sequence_in("♥") .cpu() .detach() .numpy() .tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long) .cpu() .detach() .numpy() .tolist(), ) self.assertNotEqual( transliterater._prepare_sequence_in("ก") .cpu() .detach() .numpy() .tolist(), torch.tensor([UNK_TOKEN, END_TOKEN], dtype=torch.long) .cpu() .detach() .numpy() .tolist(), ) def test_transliterate(self): self.assertEqual(transliterate(""), "") self.assertEqual(transliterate("แมว", "pyicu"), "mæw") self.assertEqual(transliterate("คน", engine="ipa"), "kʰon") self.assertIsNotNone(transliterate("คน", engine="thaig2p")) self.assertIsNotNone(transliterate("แมว", engine="thaig2p")) self.assertIsNotNone(transliterate("คน", engine="tltk_g2p")) self.assertIsNotNone(transliterate("แมว", engine="tltk_g2p")) self.assertIsNotNone(transliterate("คน", engine="tltk_ipa")) self.assertIsNotNone(transliterate("แมว", engine="tltk_ipa")) self.assertIsNotNone(trans_list("คน")) self.assertIsNotNone(xsampa_list("คน")) def test_pronunciate(self): self.assertEqual(pronunciate(""), "") remove("thai_w2p") self.assertIsNotNone(pronunciate("คน", engine="w2p")) self.assertIsNotNone(pronunciate("แมว", engine="w2p")) self.assertIsNotNone(pronunciate("มข.", engine="w2p")) self.assertIsNotNone(pronunciate("มช.", engine="w2p")) self.assertIsNotNone(pronunciate("jks", engine="w2p")) def test_puan(self): self.assertEqual(puan("นาริน"), "นิน-รา") self.assertEqual(puan("นาริน", False), "นินรา") self.assertEqual(puan("แสงดีนะ"), "แสง-ดะ-นี") self.assertEqual(puan("แสงดีนะ", False), "แสงดะนี") with self.assertRaises(ValueError): self.assertEqual(puan("สวัสดีครับ"), "สวัสดีครับ")
[ 6, 7, 9, 11, 12 ]
2,552
38c78a51a50ee9844aec8b8cdcdd42b858748518
<mask token> class AttendanceDetailView(DetailView): model = Attendance template_name = 'attendance_detail.html' <mask token> class AttendanceCreateView(CreateView): model = Attendance template_name = 'attendance_new.html' fields = ['group', 'disciple'] def get_context_data(self, *args, **kwargs): groups_choices = ['ИУ1', 'ИУ2', 'ИУ3', 'ИУ4', 'ИУ5', 'ИУ6', 'ИУ7', 'ИУ8'] context = super(AttendanceCreateView, self).get_context_data(*args, **kwargs) context['students'] = CustomUser.objects.filter(student_group='ИУ6') context['disciples'] = Disciple.objects.all() context['groups'] = groups_choices return context def form_valid(self, form): obj = form.save(commit=False) obj.author = self.request.user obj.date = timezone.now() fname = f'Журнал-{obj.disciple.name}-{timezone.now()}.csv' form_data = self.request.POST print(form_data) obj.save() print(form, dir(form)) return super().form_valid(form)
<mask token> class AttendanceListView(ListView): <mask token> <mask token> <mask token> class AttendanceDetailView(DetailView): model = Attendance template_name = 'attendance_detail.html' <mask token> class AttendanceCreateView(CreateView): model = Attendance template_name = 'attendance_new.html' fields = ['group', 'disciple'] def get_context_data(self, *args, **kwargs): groups_choices = ['ИУ1', 'ИУ2', 'ИУ3', 'ИУ4', 'ИУ5', 'ИУ6', 'ИУ7', 'ИУ8'] context = super(AttendanceCreateView, self).get_context_data(*args, **kwargs) context['students'] = CustomUser.objects.filter(student_group='ИУ6') context['disciples'] = Disciple.objects.all() context['groups'] = groups_choices return context def form_valid(self, form): obj = form.save(commit=False) obj.author = self.request.user obj.date = timezone.now() fname = f'Журнал-{obj.disciple.name}-{timezone.now()}.csv' form_data = self.request.POST print(form_data) obj.save() print(form, dir(form)) return super().form_valid(form)
<mask token> class AttendanceListView(ListView): <mask token> <mask token> def get_queryset(self): return self.model.objects.order_by('-date') class AttendanceDetailView(DetailView): model = Attendance template_name = 'attendance_detail.html' <mask token> class AttendanceCreateView(CreateView): model = Attendance template_name = 'attendance_new.html' fields = ['group', 'disciple'] def get_context_data(self, *args, **kwargs): groups_choices = ['ИУ1', 'ИУ2', 'ИУ3', 'ИУ4', 'ИУ5', 'ИУ6', 'ИУ7', 'ИУ8'] context = super(AttendanceCreateView, self).get_context_data(*args, **kwargs) context['students'] = CustomUser.objects.filter(student_group='ИУ6') context['disciples'] = Disciple.objects.all() context['groups'] = groups_choices return context def form_valid(self, form): obj = form.save(commit=False) obj.author = self.request.user obj.date = timezone.now() fname = f'Журнал-{obj.disciple.name}-{timezone.now()}.csv' form_data = self.request.POST print(form_data) obj.save() print(form, dir(form)) return super().form_valid(form)
<mask token> class AttendanceListView(ListView): model = Attendance template_name = 'attendance_list.html' def get_queryset(self): return self.model.objects.order_by('-date') class AttendanceDetailView(DetailView): model = Attendance template_name = 'attendance_detail.html' <mask token> class AttendanceCreateView(CreateView): model = Attendance template_name = 'attendance_new.html' fields = ['group', 'disciple'] def get_context_data(self, *args, **kwargs): groups_choices = ['ИУ1', 'ИУ2', 'ИУ3', 'ИУ4', 'ИУ5', 'ИУ6', 'ИУ7', 'ИУ8'] context = super(AttendanceCreateView, self).get_context_data(*args, **kwargs) context['students'] = CustomUser.objects.filter(student_group='ИУ6') context['disciples'] = Disciple.objects.all() context['groups'] = groups_choices return context def form_valid(self, form): obj = form.save(commit=False) obj.author = self.request.user obj.date = timezone.now() fname = f'Журнал-{obj.disciple.name}-{timezone.now()}.csv' form_data = self.request.POST print(form_data) obj.save() print(form, dir(form)) return super().form_valid(form)
from django.shortcuts import render from django.views.generic import ListView, DetailView from django.views.generic.edit import CreateView, UpdateView from django.urls import reverse_lazy from django.utils import timezone from time import time import json from .models import Attendance, Disciple from users.models import CustomUser class AttendanceListView(ListView): model = Attendance template_name = 'attendance_list.html' def get_queryset(self): return self.model.objects.order_by('-date') class AttendanceDetailView(DetailView): model = Attendance template_name = 'attendance_detail.html' """ class AttendanceCreateView(CreateView): model = Attendance template_name = 'attendance_new.html' fields = ['title', 'document'] def form_valid(self, form): obj = form.save(commit=False) obj.author = self.request.user obj.date = timezone.now() obj.save() return super().form_valid(form) """ class AttendanceCreateView(CreateView): model = Attendance template_name = 'attendance_new.html' fields = ['group', 'disciple'] def get_context_data(self, *args, **kwargs): groups_choices = [ 'ИУ1', 'ИУ2', 'ИУ3', 'ИУ4', 'ИУ5', 'ИУ6', 'ИУ7', 'ИУ8', ] context = super(AttendanceCreateView, self).get_context_data(*args, **kwargs) context['students'] = CustomUser.objects.filter(student_group='ИУ6') context['disciples'] = Disciple.objects.all() context['groups'] = groups_choices return context def form_valid(self, form): obj = form.save(commit=False) obj.author = self.request.user obj.date = timezone.now() #obj.disciple = fname = f'Журнал-{obj.disciple.name}-{timezone.now()}.csv' #print(fname) form_data = self.request.POST print(form_data) #Process form_data; mk csv_file based on it; save it to obj.document #obj.document = doc obj.save() print(form, dir(form)) return super().form_valid(form)
[ 6, 7, 8, 9, 11 ]
2,553
7644dcd956e1ad179f42e44870864386744c6cdf
<mask token> class LoginForm(forms.Form): username = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control'})) password = forms.CharField(widget=forms.PasswordInput(attrs={'class': 'form-control'}))
<mask token> class SignUpForm(forms.Form): <mask token> <mask token> <mask token> <mask token> <mask token> <mask token> class Meta: model = AuthUser fields = ('username', 'email', 'password1', 'password2', 'first_name', 'last_name') class LoginForm(forms.Form): username = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control'})) password = forms.CharField(widget=forms.PasswordInput(attrs={'class': 'form-control'}))
<mask token> class SignUpForm(forms.Form): username = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control'})) email = forms.EmailField(widget=forms.EmailInput(attrs={'class': 'form-control'})) password1 = forms.CharField(widget=forms.PasswordInput(attrs={'class': 'form-control'})) password2 = forms.CharField(widget=forms.PasswordInput(attrs={'class': 'form-control'})) first_name = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control'})) last_name = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control'})) class Meta: model = AuthUser fields = ('username', 'email', 'password1', 'password2', 'first_name', 'last_name') class LoginForm(forms.Form): username = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control'})) password = forms.CharField(widget=forms.PasswordInput(attrs={'class': 'form-control'}))
from django import forms from django.contrib.auth.forms import UserCreationForm from .models import AuthUser class SignUpForm(forms.Form): username = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control'})) email = forms.EmailField(widget=forms.EmailInput(attrs={'class': 'form-control'})) password1 = forms.CharField(widget=forms.PasswordInput(attrs={'class': 'form-control'})) password2 = forms.CharField(widget=forms.PasswordInput(attrs={'class': 'form-control'})) first_name = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control'})) last_name = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control'})) class Meta: model = AuthUser fields = ('username', 'email', 'password1', 'password2', 'first_name', 'last_name') class LoginForm(forms.Form): username = forms.CharField(widget=forms.TextInput(attrs={'class': 'form-control'})) password = forms.CharField(widget=forms.PasswordInput(attrs={'class': 'form-control'}))
from django import forms from django.contrib.auth.forms import UserCreationForm from .models import AuthUser class SignUpForm(forms.Form): username = forms.CharField(widget=forms.TextInput(attrs={'class':'form-control'})) email = forms.EmailField(widget=forms.EmailInput(attrs={'class':'form-control'})) password1 = forms.CharField(widget=forms.PasswordInput(attrs={'class':'form-control'})) password2 = forms.CharField(widget=forms.PasswordInput(attrs={'class':'form-control'})) first_name = forms.CharField(widget=forms.TextInput(attrs={'class':'form-control'})) last_name = forms.CharField(widget=forms.TextInput(attrs={'class':'form-control'})) class Meta: model = AuthUser fields = ('username','email', 'password1', 'password2', 'first_name', 'last_name' ) class LoginForm(forms.Form): username = forms.CharField(widget=forms.TextInput(attrs={'class':'form-control'})) password = forms.CharField(widget=forms.PasswordInput(attrs={'class':'form-control'}))
[ 2, 3, 4, 5, 6 ]
2,554
4d58926e812789768fdf5be59bd54f9b66850e57
<mask token>
<mask token> from . import utilities from . import stats from . import signal from . import plot from . import docopt
""" The epitome package is a set of command-line tools for analyzing MRI data, and a set of scriptuit modules for stitching them (and others) together. """ from . import utilities from . import stats from . import signal from . import plot from . import docopt
null
null
[ 0, 1, 2 ]
2,555
f59db28b669a41051cc6d0d4b8e14d1c7b0edd11
<mask token>
<mask token> app_user_one.get_user_info() app_user_one.change_status('in job market') app_user_one.get_user_info() <mask token> app_user_two.get_user_info() <mask token> new_post.get_post_info()
<mask token> app_user_one = user.User('[email protected]', 'Riks R', 'ppp1', 'student') app_user_one.get_user_info() app_user_one.change_status('in job market') app_user_one.get_user_info() app_user_two = user.User('[email protected]', 'Bobby L', 'zz1', 'student') app_user_two.get_user_info() new_post = Post('Going for it', app_user_two.name) new_post.get_post_info()
import user from post import Post app_user_one = user.User('[email protected]', 'Riks R', 'ppp1', 'student') app_user_one.get_user_info() app_user_one.change_status('in job market') app_user_one.get_user_info() app_user_two = user.User('[email protected]', 'Bobby L', 'zz1', 'student') app_user_two.get_user_info() new_post = Post('Going for it', app_user_two.name) new_post.get_post_info()
import user # or from user import User from post import Post app_user_one = user.User("[email protected]", "Riks R", "ppp1", "student") app_user_one.get_user_info() app_user_one.change_status("in job market") app_user_one.get_user_info() app_user_two = user.User("[email protected]", "Bobby L", "zz1", "student") app_user_two.get_user_info() new_post = Post("Going for it", app_user_two.name) new_post.get_post_info()
[ 0, 1, 2, 3, 4 ]
2,556
a65ab0faf08c13f007a132fb92f358a35834fdb7
<mask token>
<mask token> for x in xs: dist += min(x, K - x) print(dist * 2)
N = int(input()) K = int(input()) xs = list(map(int, input().split())) dist = 0 for x in xs: dist += min(x, K - x) print(dist * 2)
N = int(input()) K = int(input()) xs = list(map(int, input().split())) dist = 0 for x in xs: dist += min(x, K-x) print(dist*2)
null
[ 0, 1, 2, 3 ]
2,557
9f8065dfdfe07985244e18d92b59e1c045388a72
<mask token> def distance(x1, y1, x2, y2): return ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)) ** 0.5 <mask token>
<mask token> def distance(x1, y1, x2, y2): return ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)) ** 0.5 <mask token> turtle.penup() turtle.goto(x1, y1) turtle.pendown() turtle.write('Point 1') turtle.goto(x2, y2) turtle.write('Point 2') turtle.penup() turtle.goto((x1 + x2) / 2, (y1 + y2) / 2) turtle.write('Distance') turtle.done()
<mask token> def distance(x1, y1, x2, y2): return ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)) ** 0.5 x1, y1 = eval(input('Enter x1 and y1 for point 1: ')) x2, y2 = eval(input('Enter x2 and y2 for point 2: ')) distanceBetweenPoints = distance(x1, y1, x2, y2) turtle.penup() turtle.goto(x1, y1) turtle.pendown() turtle.write('Point 1') turtle.goto(x2, y2) turtle.write('Point 2') turtle.penup() turtle.goto((x1 + x2) / 2, (y1 + y2) / 2) turtle.write('Distance') turtle.done()
import turtle def distance(x1, y1, x2, y2): return ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)) ** 0.5 x1, y1 = eval(input('Enter x1 and y1 for point 1: ')) x2, y2 = eval(input('Enter x2 and y2 for point 2: ')) distanceBetweenPoints = distance(x1, y1, x2, y2) turtle.penup() turtle.goto(x1, y1) turtle.pendown() turtle.write('Point 1') turtle.goto(x2, y2) turtle.write('Point 2') turtle.penup() turtle.goto((x1 + x2) / 2, (y1 + y2) / 2) turtle.write('Distance') turtle.done()
import turtle def distance(x1, y1, x2, y2): return ((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)) ** 0.5 x1, y1 = eval(input("Enter x1 and y1 for point 1: ")) x2, y2 = eval(input("Enter x2 and y2 for point 2: ")) distanceBetweenPoints = distance(x1, y1, x2, y2) turtle.penup() turtle.goto(x1, y1) turtle.pendown() turtle.write("Point 1") turtle.goto(x2, y2) turtle.write("Point 2") #Center of line turtle.penup() turtle.goto((x1 + x2) / 2, (y1 + y2) / 2) turtle.write("Distance") turtle.done()
[ 1, 2, 3, 4, 5 ]
2,558
e73c4a99c421b3eca08c941ff1f83cb03faee97d
<mask token> class Product(Model): __tablename__ = 'products' id = Column(Integer, primary_key=True) name = Column(String(80), nullable=False) description = Column(String(120)) img = Column(String(80), nullable=False) category = Column(String(50), nullable=False) price = Column(Float, nullable=False) def __repr__(self): return '<Product {} /n Description {}>'.format(self.name, self. description) class ProductUser(Model): __tablename__ = 'productusers' id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey('users.id'), nullable=False) product_id = Column(Integer, ForeignKey('products.id'), nullable=False) user = relationship('User', backref='productuser') product = relationship('Product', backref='productuser') def __repr__(self): return '<ProductUser userID: {} productID: {} >'.format(self. user_id, self.product_id)
<mask token> class User(Model): <mask token> <mask token> <mask token> <mask token> <mask token> def __repr__(self): return '<User {}>'.format(self.username) class Product(Model): __tablename__ = 'products' id = Column(Integer, primary_key=True) name = Column(String(80), nullable=False) description = Column(String(120)) img = Column(String(80), nullable=False) category = Column(String(50), nullable=False) price = Column(Float, nullable=False) def __repr__(self): return '<Product {} /n Description {}>'.format(self.name, self. description) class ProductUser(Model): __tablename__ = 'productusers' id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey('users.id'), nullable=False) product_id = Column(Integer, ForeignKey('products.id'), nullable=False) user = relationship('User', backref='productuser') product = relationship('Product', backref='productuser') def __repr__(self): return '<ProductUser userID: {} productID: {} >'.format(self. user_id, self.product_id)
<mask token> class User(Model): __tablename__ = 'users' id = Column(Integer, primary_key=True) type = Column(String(80), unique=False, nullable=False) email = Column(String(120), unique=True, nullable=False) password = Column(String(80), unique=False, nullable=True) def __repr__(self): return '<User {}>'.format(self.username) class Product(Model): __tablename__ = 'products' id = Column(Integer, primary_key=True) name = Column(String(80), nullable=False) description = Column(String(120)) img = Column(String(80), nullable=False) category = Column(String(50), nullable=False) price = Column(Float, nullable=False) def __repr__(self): return '<Product {} /n Description {}>'.format(self.name, self. description) class ProductUser(Model): __tablename__ = 'productusers' id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey('users.id'), nullable=False) product_id = Column(Integer, ForeignKey('products.id'), nullable=False) user = relationship('User', backref='productuser') product = relationship('Product', backref='productuser') def __repr__(self): return '<ProductUser userID: {} productID: {} >'.format(self. user_id, self.product_id)
<mask token> Model = declarative_base() class User(Model): __tablename__ = 'users' id = Column(Integer, primary_key=True) type = Column(String(80), unique=False, nullable=False) email = Column(String(120), unique=True, nullable=False) password = Column(String(80), unique=False, nullable=True) def __repr__(self): return '<User {}>'.format(self.username) class Product(Model): __tablename__ = 'products' id = Column(Integer, primary_key=True) name = Column(String(80), nullable=False) description = Column(String(120)) img = Column(String(80), nullable=False) category = Column(String(50), nullable=False) price = Column(Float, nullable=False) def __repr__(self): return '<Product {} /n Description {}>'.format(self.name, self. description) class ProductUser(Model): __tablename__ = 'productusers' id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey('users.id'), nullable=False) product_id = Column(Integer, ForeignKey('products.id'), nullable=False) user = relationship('User', backref='productuser') product = relationship('Product', backref='productuser') def __repr__(self): return '<ProductUser userID: {} productID: {} >'.format(self. user_id, self.product_id)
from sqlalchemy import Column, ForeignKey from sqlalchemy.types import Integer, Text, String, DateTime, Float from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship Model = declarative_base() class User(Model): __tablename__ = "users" id = Column(Integer, primary_key=True) type = Column(String(80), unique=False, nullable=False) email = Column(String(120), unique=True, nullable=False) password = Column(String(80), unique=False, nullable=True) # joined = Column(DateTime, # unique=False, # nullable=False) # join_date=datetime.now() def __repr__(self): return '<User {}>'.format(self.username) class Product(Model): __tablename__ = "products" id = Column(Integer, primary_key=True) name = Column(String(80), nullable=False) description = Column(String(120)) img = Column(String(80), nullable=False) category = Column(String(50), nullable=False) price = Column(Float, nullable=False) def __repr__(self): return '<Product {} /n Description {}>'.format(self.name, self.description) class ProductUser(Model): __tablename__ = "productusers" id = Column(Integer, primary_key=True) user_id = Column(Integer, ForeignKey('users.id'), nullable=False) product_id = Column(Integer, ForeignKey('products.id'), nullable=False) user = relationship("User", backref="productuser") product = relationship("Product", backref="productuser") def __repr__(self): return '<ProductUser userID: {} productID: {} >'.format(self.user_id, self.product_id)
[ 6, 8, 9, 10, 12 ]
2,559
a6eab1e5e7985de917d707c904fcd90f223c108c
#!/home/liud/anaconda3/envs/python/bin/python # -*- coding: utf-8 -*- ''' 线性回归 公式:W = 1/(xTx) * xT * y ''' #导入的包 import numpy as np from numpy import linalg from numpy import corrcoef from sklearn import linear_model import matplotlib.pyplot as plt #加载数据 def loadDataSet(filename): xList = [] yList = [] with open(filename) as fn: for i in fn: x = i.rstrip().split("\t") #x = map(eval, x) 此函数eval容易造成恶意输入 x = map(eval, x) xList.append(x[: -1]) yList.append(float(x[-1])) return xList, yList ''' def loadDataSet(filename): numFeat = len(open(filename).readline().split("\t")) - 1 dataMat = [] labelMat= [] fr = open(filename) for line in fr.readlines(): lineArr = [] curLine = line.strip().split("\t") for i in range(numFeat): lineArr.append(float(curLine[i])) dataMat.append(lineArr) labelMat.append(float(curLine[-1])) return dataMat, labelMat ''' #计算最佳拟合直线,得到模型参数 def standRegress(xList, yList): xArr = np.array(xList) yArr = np.transpose([yList]) #将yList转化成列向量 xTx = np.dot(xArr.T, xArr) if linalg.det(xTx) == 0: #判断是否为非奇异矩阵 print "这个矩阵是奇异矩阵,行列式为0" return ws = np.dot(np.linalg.inv(xTx), np.dot(xArr.T, yArr)) return ws #sklearn的写法 def sklearn_standRegress(xList, yList): clf = linear_model.LinearRegression(fit_intercept = False) #加载线性回归模型,且让w0 = 0(w0指的是intercept) clf.fit(xList, yList) #拟合 #print clf.intercept_ return np.transpose([clf.coef_]) #返回系数的列向量形式 #展示结果 def show(xList, yList, w): xArr = np.array(xList) yArr = np.transpose([yList]) fig = plt.figure() #创建一幅图 ax = fig.add_subplot(1, 1, 1) ax.scatter(xArr[:, 1:2].flatten(), yArr.flatten()) xCopy = xArr.copy() xCopy.sort(0) yPredict = np.dot(xCopy, w) #print yPredict.flatten() ax.plot(xCopy[:, 1], yPredict.flatten()) plt.show() #主函数 def main(): xList, yList = loadDataSet("/home/liud/PycharmProjects/Machine_Learning/Regression/data/ex0.txt") _, n = np.shape(xList) ws = np.zeros((n, 1)) while(1): print '请输入你选择的方式(1.sklearn;2.regression自己实现的线性回归)' selectStyle = raw_input() if selectStyle == '1': # sklearn的实现 ws = sklearn_standRegress(xList, yList) break elif selectStyle == '2': # 自己按理解实现 ws = standRegress(xList, yList) break else: print '错误输入,请重新输入' print "最小二乘法得出的回归系数: \n", ws show(xList, yList, ws) yPredict = np.dot(xList, ws) print "相关性:", corrcoef(yPredict.T.tolist(), yList) #corrcoef中的两个参数尽可能的类型相似,yList是list,因此yPredict是numpy.ndarray且为二维的列向量。 if __name__ == '__main__': main() print 'Success'
null
null
null
null
[ 0 ]
2,560
0ebf5646ee9693b7d0c1de61436e05b3725b2c9f
<mask token>
<mask token> host = 'datavis.cauuh8vzeelb.us-east-1.rds.amazonaws.com' database = 'top5' user = 'teamwonder' password = 'visproject' Gentrifying = [10002, 10003, 10009, 10026, 10027, 10029, 10030, 10031, 10032, 10033, 10034, 10035, 10037, 10039, 10040, 10454, 10455, 10456, 10457, 10458, 10459, 10460, 10474, 11102, 11103, 11105, 11106, 11206, 11211, 11212, 11213, 11216, 11220, 11221, 11222, 11225, 11232, 11233, 11237, 11249, 11370] Non_Gentrifying = [10451, 10452, 10453, 10463, 10468, 10472, 10473, 11204, 11208, 11214, 11223, 11224, 11239] Higher_Income = [83, 7020, 7030, 7114, 10000, 10001, 10004, 10005, 10006, 10007, 10010, 10011, 10012, 10013, 10014, 10016, 10017, 10018, 10019, 10020, 10021, 10022, 10023, 10024, 10025, 10028, 10036, 10038, 10041, 10044, 10045, 10048, 10055, 10065, 10069, 10075, 10103, 10104, 10105, 10107, 10111, 10112, 10118, 10119, 10120, 10121, 10122, 10123, 10128, 10129, 10153, 10154, 10155, 10158, 10162, 10165, 10166, 10167, 10168, 10169, 10170, 10171, 10172, 10173, 10177, 10178, 10179, 10270, 10271, 10278, 10279, 10280, 10281, 10282, 10301, 10302, 10303, 10304, 10305, 10306, 10307, 10308, 10309, 10310, 10312, 10314, 10461, 10462, 10464, 10465, 10466, 10467, 10469, 10470, 10471, 10475, 10507, 10704, 10803, 11001, 11004, 11005, 11040, 11101, 11104, 11109, 11201, 11203, 11205, 11207, 11209, 11210, 11215, 11217, 11218, 11219, 11226, 11228, 11229, 11230, 11231, 11234, 11235, 11236, 11238, 11241, 11242, 11251, 11354, 11355, 11356, 11357, 11358, 11359, 11360, 11361, 11362, 11363, 11364, 11365, 11366, 11367, 11368, 11369, 11371, 11372, 11373, 11374, 11375, 11377, 11378, 11379, 11385, 11411, 11412, 11413, 11414, 11415, 11416, 11417, 11418, 11419, 11420, 11421, 11422, 11423, 11426, 11427, 11428, 11429, 11430, 11432, 11433, 11434, 11435, 11436, 11530, 11691, 11692, 11693, 11694, 11695, 11697] con = psycopg2.connect(host=host, database=database, user=user, password= password) cur = con.cursor()
import psycopg2 host = 'datavis.cauuh8vzeelb.us-east-1.rds.amazonaws.com' database = 'top5' user = 'teamwonder' password = 'visproject' Gentrifying = [10002, 10003, 10009, 10026, 10027, 10029, 10030, 10031, 10032, 10033, 10034, 10035, 10037, 10039, 10040, 10454, 10455, 10456, 10457, 10458, 10459, 10460, 10474, 11102, 11103, 11105, 11106, 11206, 11211, 11212, 11213, 11216, 11220, 11221, 11222, 11225, 11232, 11233, 11237, 11249, 11370] Non_Gentrifying = [10451, 10452, 10453, 10463, 10468, 10472, 10473, 11204, 11208, 11214, 11223, 11224, 11239] Higher_Income = [83, 7020, 7030, 7114, 10000, 10001, 10004, 10005, 10006, 10007, 10010, 10011, 10012, 10013, 10014, 10016, 10017, 10018, 10019, 10020, 10021, 10022, 10023, 10024, 10025, 10028, 10036, 10038, 10041, 10044, 10045, 10048, 10055, 10065, 10069, 10075, 10103, 10104, 10105, 10107, 10111, 10112, 10118, 10119, 10120, 10121, 10122, 10123, 10128, 10129, 10153, 10154, 10155, 10158, 10162, 10165, 10166, 10167, 10168, 10169, 10170, 10171, 10172, 10173, 10177, 10178, 10179, 10270, 10271, 10278, 10279, 10280, 10281, 10282, 10301, 10302, 10303, 10304, 10305, 10306, 10307, 10308, 10309, 10310, 10312, 10314, 10461, 10462, 10464, 10465, 10466, 10467, 10469, 10470, 10471, 10475, 10507, 10704, 10803, 11001, 11004, 11005, 11040, 11101, 11104, 11109, 11201, 11203, 11205, 11207, 11209, 11210, 11215, 11217, 11218, 11219, 11226, 11228, 11229, 11230, 11231, 11234, 11235, 11236, 11238, 11241, 11242, 11251, 11354, 11355, 11356, 11357, 11358, 11359, 11360, 11361, 11362, 11363, 11364, 11365, 11366, 11367, 11368, 11369, 11371, 11372, 11373, 11374, 11375, 11377, 11378, 11379, 11385, 11411, 11412, 11413, 11414, 11415, 11416, 11417, 11418, 11419, 11420, 11421, 11422, 11423, 11426, 11427, 11428, 11429, 11430, 11432, 11433, 11434, 11435, 11436, 11530, 11691, 11692, 11693, 11694, 11695, 11697] con = psycopg2.connect(host=host, database=database, user=user, password= password) cur = con.cursor()
import psycopg2 host = "datavis.cauuh8vzeelb.us-east-1.rds.amazonaws.com" database = "top5" user = "teamwonder" password = "visproject" Gentrifying = [10002,10003,10009,10026,10027,10029,10030,10031,10032,10033,10034,10035,10037,10039,10040,10454,10455,10456,10457,10458,10459,10460,10474,11102,11103,11105,11106,11206,11211,11212,11213,11216,11220,11221,11222,11225,11232,11233,11237,11249,11370] Non_Gentrifying = [10451,10452,10453,10463,10468,10472,10473,11204,11208,11214,11223,11224,11239] Higher_Income = [83,7020,7030,7114,10000,10001,10004,10005,10006,10007,10010,10011,10012,10013,10014,10016,10017,10018,10019,10020,10021,10022,10023,10024,10025,10028,10036,10038,10041,10044,10045,10048,10055,10065,10069,10075,10103,10104,10105,10107,10111,10112,10118,10119,10120,10121,10122,10123,10128,10129,10153,10154,10155,10158,10162,10165,10166,10167,10168,10169,10170,10171,10172,10173,10177,10178,10179,10270,10271,10278,10279,10280,10281,10282,10301,10302,10303,10304,10305,10306,10307,10308,10309,10310,10312,10314,10461,10462,10464,10465,10466,10467,10469,10470,10471,10475,10507,10704,10803,11001,11004,11005,11040,11101,11104,11109,11201,11203,11205,11207,11209,11210,11215,11217,11218,11219,11226,11228,11229,11230,11231,11234,11235,11236,11238,11241,11242,11251,11354,11355,11356,11357,11358,11359,11360,11361,11362,11363,11364,11365,11366,11367,11368,11369,11371,11372,11373,11374,11375,11377,11378,11379,11385,11411,11412,11413,11414,11415,11416,11417,11418,11419,11420,11421,11422,11423,11426,11427,11428,11429,11430,11432,11433,11434,11435,11436,11530,11691,11692,11693,11694,11695,11697] con = psycopg2.connect(host=host, database=database, user=user, password=password) cur = con.cursor()
null
[ 0, 1, 2, 3 ]
2,561
e8ba1ae98b247eaf90d83339e5fdc27287a70c73
<mask token>
<mask token> class Container(containers.DeclarativeContainer): <mask token> <mask token> <mask token>
<mask token> class Container(containers.DeclarativeContainer): config = providers.Configuration() cache_repository = providers.Singleton(MemcachedRepository, host=config .host, port=config.port) fibonacci_service = providers.Factory(FibonacciService, cache_repository=cache_repository)
from dependency_injector import containers, providers from src.repositories import MemcachedRepository from src.services import FibonacciService class Container(containers.DeclarativeContainer): config = providers.Configuration() cache_repository = providers.Singleton(MemcachedRepository, host=config .host, port=config.port) fibonacci_service = providers.Factory(FibonacciService, cache_repository=cache_repository)
from dependency_injector import containers, providers from src.repositories import MemcachedRepository from src.services import FibonacciService class Container(containers.DeclarativeContainer): config = providers.Configuration() cache_repository = providers.Singleton(MemcachedRepository, host=config.host, port=config.port) fibonacci_service = providers.Factory( FibonacciService, cache_repository=cache_repository, )
[ 0, 1, 2, 3, 4 ]
2,562
99c60befed32a9aa80b6e66b682d9f475e05a8d1
<mask token> def handler(event, data): if event == _IRQ_SCAN_RESULT: addr_type, addr, adv_type, rssi, adv_data = data print(addr_type, memoryview(addr), adv_type, rssi, memoryview(adv_data) ) for i in addr: print('{0:x}'.format(i)) print(byteToMac(addr)) if addr == memoryview(bytearray(b'@\xe8\xe7\x85=\xed')): print('device found') elif event == _IRQ_SCAN_DONE: print('scan complete') pass def onAdd(addBT): memoryview(addBT) def onDelete(delBT): print('onDelete') <mask token>
<mask token> bt.active(True) <mask token> def byteToMac(addr): m = memoryview(addr) a = '{:0>2X}:{:0>2X}:{:0>2X}:{:0>2X}:{:0>2X}:{:0>2X}'.format(m[0], m[1], m[2], m[3], m[4], m[5]) return a def handler(event, data): if event == _IRQ_SCAN_RESULT: addr_type, addr, adv_type, rssi, adv_data = data print(addr_type, memoryview(addr), adv_type, rssi, memoryview(adv_data) ) for i in addr: print('{0:x}'.format(i)) print(byteToMac(addr)) if addr == memoryview(bytearray(b'@\xe8\xe7\x85=\xed')): print('device found') elif event == _IRQ_SCAN_DONE: print('scan complete') pass def onAdd(addBT): memoryview(addBT) def onDelete(delBT): print('onDelete') bt.irq(handler) <mask token> ap.active(True) ap.config(essid='Test', password='1234', authmode=0) <mask token> while True: webserver.webserver(s, onAdd, onDelete) print('scanning soon') if time.time() - lastscan > 10: print('scanning now...') bt.gap_scan(10000) lastscan = time.time()
<mask token> bt = BLE() bt.active(True) _IRQ_SCAN_RESULT = const(5) _IRQ_SCAN_DONE = const(6) def byteToMac(addr): m = memoryview(addr) a = '{:0>2X}:{:0>2X}:{:0>2X}:{:0>2X}:{:0>2X}:{:0>2X}'.format(m[0], m[1], m[2], m[3], m[4], m[5]) return a def handler(event, data): if event == _IRQ_SCAN_RESULT: addr_type, addr, adv_type, rssi, adv_data = data print(addr_type, memoryview(addr), adv_type, rssi, memoryview(adv_data) ) for i in addr: print('{0:x}'.format(i)) print(byteToMac(addr)) if addr == memoryview(bytearray(b'@\xe8\xe7\x85=\xed')): print('device found') elif event == _IRQ_SCAN_DONE: print('scan complete') pass def onAdd(addBT): memoryview(addBT) def onDelete(delBT): print('onDelete') bt.irq(handler) ap = network.WLAN(network.AP_IF) ap.active(True) ap.config(essid='Test', password='1234', authmode=0) s = webserver.webserverstart() lastscan = 0 while True: webserver.webserver(s, onAdd, onDelete) print('scanning soon') if time.time() - lastscan > 10: print('scanning now...') bt.gap_scan(10000) lastscan = time.time()
import gc import network import lib.gate as gate import time from micropython import const from ubluetooth import BLE import lib.webserver as webserver bt = BLE() bt.active(True) _IRQ_SCAN_RESULT = const(5) _IRQ_SCAN_DONE = const(6) def byteToMac(addr): m = memoryview(addr) a = '{:0>2X}:{:0>2X}:{:0>2X}:{:0>2X}:{:0>2X}:{:0>2X}'.format(m[0], m[1], m[2], m[3], m[4], m[5]) return a def handler(event, data): if event == _IRQ_SCAN_RESULT: addr_type, addr, adv_type, rssi, adv_data = data print(addr_type, memoryview(addr), adv_type, rssi, memoryview(adv_data) ) for i in addr: print('{0:x}'.format(i)) print(byteToMac(addr)) if addr == memoryview(bytearray(b'@\xe8\xe7\x85=\xed')): print('device found') elif event == _IRQ_SCAN_DONE: print('scan complete') pass def onAdd(addBT): memoryview(addBT) def onDelete(delBT): print('onDelete') bt.irq(handler) ap = network.WLAN(network.AP_IF) ap.active(True) ap.config(essid='Test', password='1234', authmode=0) s = webserver.webserverstart() lastscan = 0 while True: webserver.webserver(s, onAdd, onDelete) print('scanning soon') if time.time() - lastscan > 10: print('scanning now...') bt.gap_scan(10000) lastscan = time.time()
import gc import network import lib.gate as gate import time from micropython import const from ubluetooth import BLE import lib.webserver as webserver bt = BLE() bt.active(True) _IRQ_SCAN_RESULT = const(5) _IRQ_SCAN_DONE = const(6) def byteToMac(addr): m = memoryview(addr) a = "{:0>2X}:{:0>2X}:{:0>2X}:{:0>2X}:{:0>2X}:{:0>2X}".format(m[0],m[1],m[2],m[3],m[4],m[5]) return a def handler(event, data): if event == _IRQ_SCAN_RESULT: # A single scan result. addr_type, addr, adv_type, rssi, adv_data = data print(addr_type,memoryview(addr) , adv_type, rssi,memoryview( adv_data)) for i in addr: print("{0:x}".format(i)) print(byteToMac(addr)) if addr == memoryview(bytearray(b'\x40\xe8\xe7\x85\x3d\xed')): print("device found") elif event == _IRQ_SCAN_DONE: # Scan duration finished or manually stopped. print("scan complete") pass def onAdd(addBT): memoryview(addBT) def onDelete(delBT): print("onDelete") bt.irq(handler) ap = network.WLAN(network.AP_IF) ap.active(True) ap.config(essid="Test", password="1234",authmode= 0) s = webserver.webserverstart() lastscan = 0 while True: webserver.webserver(s, onAdd, onDelete) print("scanning soon") if time.time() - lastscan > 10: print("scanning now...") bt.gap_scan(10000) lastscan = time.time()
[ 3, 5, 6, 7, 8 ]
2,563
d932ab84848c9a8ca8bb23a57424b8f6190b6260
<mask token> class LogPlugin(Plugin): <mask token> <mask token> def search(self, message, query, *additional_queries): chat_history = read_lines_from_file('chatlog.log') chat_history.reverse() found_line = None for line in chat_history: if query in line: found_line = line for additional_query in additional_queries: if additional_query not in line: found_line = None break if found_line: break if found_line: self.send_message(message.From, line) return def replay(self, message, startTime, endTime=None): start_time = None end_time = None try: start_time = datetime.strptime(startTime, '%Y-%m-%d,%H:%M') if endTime: end_time = datetime.strptime(endTime, '%Y-%m-%d,%H:%M') except Exception as e: self.send_message(message.From, 'Expects inputs in the format: !chatreplay <yyyy-mm-dd,hh:mm> [<yyyyy-mm-dd,hh:mm>] ; ' + str(e)) return chat_history = read_lines_from_file('chatlog.log') for line in chat_history: line_tokens = line.split(' : ') line_time = None try: line_time = datetime.strptime(line_tokens[0], '%Y-%m-%d %H:%M:%S.%f') except: continue delta = line_time - start_time delta_seconds = (delta.microseconds + (delta.seconds + delta. days * 24 * 3600) * 10 ** 6) / 10 ** 6 if line_time > start_time and (end_time and line_time < end_time ) or not end_time and abs(delta_seconds) < 10: self.send_message(message.From, line) time.sleep(1) self.send_message(message.From, 'Done replay.')
<mask token> class LogPlugin(Plugin): def initialize(self): self.add_trigger(on_message) self.add_command('!chatsearch', self.search) self.add_command('!chatreplay', self.replay) <mask token> def search(self, message, query, *additional_queries): chat_history = read_lines_from_file('chatlog.log') chat_history.reverse() found_line = None for line in chat_history: if query in line: found_line = line for additional_query in additional_queries: if additional_query not in line: found_line = None break if found_line: break if found_line: self.send_message(message.From, line) return def replay(self, message, startTime, endTime=None): start_time = None end_time = None try: start_time = datetime.strptime(startTime, '%Y-%m-%d,%H:%M') if endTime: end_time = datetime.strptime(endTime, '%Y-%m-%d,%H:%M') except Exception as e: self.send_message(message.From, 'Expects inputs in the format: !chatreplay <yyyy-mm-dd,hh:mm> [<yyyyy-mm-dd,hh:mm>] ; ' + str(e)) return chat_history = read_lines_from_file('chatlog.log') for line in chat_history: line_tokens = line.split(' : ') line_time = None try: line_time = datetime.strptime(line_tokens[0], '%Y-%m-%d %H:%M:%S.%f') except: continue delta = line_time - start_time delta_seconds = (delta.microseconds + (delta.seconds + delta. days * 24 * 3600) * 10 ** 6) / 10 ** 6 if line_time > start_time and (end_time and line_time < end_time ) or not end_time and abs(delta_seconds) < 10: self.send_message(message.From, line) time.sleep(1) self.send_message(message.From, 'Done replay.')
<mask token> class LogPlugin(Plugin): def initialize(self): self.add_trigger(on_message) self.add_command('!chatsearch', self.search) self.add_command('!chatreplay', self.replay) def run(self, message): append_to_file(str(datetime.now()) + ' : ' + message.From + ' : ' + message.Body + '\n', 'chatlog.log') def search(self, message, query, *additional_queries): chat_history = read_lines_from_file('chatlog.log') chat_history.reverse() found_line = None for line in chat_history: if query in line: found_line = line for additional_query in additional_queries: if additional_query not in line: found_line = None break if found_line: break if found_line: self.send_message(message.From, line) return def replay(self, message, startTime, endTime=None): start_time = None end_time = None try: start_time = datetime.strptime(startTime, '%Y-%m-%d,%H:%M') if endTime: end_time = datetime.strptime(endTime, '%Y-%m-%d,%H:%M') except Exception as e: self.send_message(message.From, 'Expects inputs in the format: !chatreplay <yyyy-mm-dd,hh:mm> [<yyyyy-mm-dd,hh:mm>] ; ' + str(e)) return chat_history = read_lines_from_file('chatlog.log') for line in chat_history: line_tokens = line.split(' : ') line_time = None try: line_time = datetime.strptime(line_tokens[0], '%Y-%m-%d %H:%M:%S.%f') except: continue delta = line_time - start_time delta_seconds = (delta.microseconds + (delta.seconds + delta. days * 24 * 3600) * 10 ** 6) / 10 ** 6 if line_time > start_time and (end_time and line_time < end_time ) or not end_time and abs(delta_seconds) < 10: self.send_message(message.From, line) time.sleep(1) self.send_message(message.From, 'Done replay.')
from base_plugin import * from plugin_utils import * from datetime import datetime import time class LogPlugin(Plugin): def initialize(self): self.add_trigger(on_message) self.add_command('!chatsearch', self.search) self.add_command('!chatreplay', self.replay) def run(self, message): append_to_file(str(datetime.now()) + ' : ' + message.From + ' : ' + message.Body + '\n', 'chatlog.log') def search(self, message, query, *additional_queries): chat_history = read_lines_from_file('chatlog.log') chat_history.reverse() found_line = None for line in chat_history: if query in line: found_line = line for additional_query in additional_queries: if additional_query not in line: found_line = None break if found_line: break if found_line: self.send_message(message.From, line) return def replay(self, message, startTime, endTime=None): start_time = None end_time = None try: start_time = datetime.strptime(startTime, '%Y-%m-%d,%H:%M') if endTime: end_time = datetime.strptime(endTime, '%Y-%m-%d,%H:%M') except Exception as e: self.send_message(message.From, 'Expects inputs in the format: !chatreplay <yyyy-mm-dd,hh:mm> [<yyyyy-mm-dd,hh:mm>] ; ' + str(e)) return chat_history = read_lines_from_file('chatlog.log') for line in chat_history: line_tokens = line.split(' : ') line_time = None try: line_time = datetime.strptime(line_tokens[0], '%Y-%m-%d %H:%M:%S.%f') except: continue delta = line_time - start_time delta_seconds = (delta.microseconds + (delta.seconds + delta. days * 24 * 3600) * 10 ** 6) / 10 ** 6 if line_time > start_time and (end_time and line_time < end_time ) or not end_time and abs(delta_seconds) < 10: self.send_message(message.From, line) time.sleep(1) self.send_message(message.From, 'Done replay.')
from base_plugin import * from plugin_utils import * from datetime import datetime import time class LogPlugin(Plugin): def initialize(self): self.add_trigger(on_message) self.add_command("!chatsearch", self.search) self.add_command("!chatreplay", self.replay) def run(self, message): append_to_file(str(datetime.now()) + " : " + message.From + " : " + message.Body + '\n', "chatlog.log") def search(self, message, query, *additional_queries): chat_history = read_lines_from_file("chatlog.log") chat_history.reverse() found_line = None for line in chat_history: if query in line: found_line = line for additional_query in additional_queries: if additional_query not in line: found_line = None break if found_line: break if found_line: self.send_message(message.From, line) return def replay(self, message, startTime, endTime = None): start_time = None end_time = None try: start_time = datetime.strptime(startTime, "%Y-%m-%d,%H:%M") if endTime: end_time = datetime.strptime(endTime, "%Y-%m-%d,%H:%M") except Exception as e: self.send_message(message.From, "Expects inputs in the format: !chatreplay <yyyy-mm-dd,hh:mm> [<yyyyy-mm-dd,hh:mm>] ; " + str(e)) return chat_history = read_lines_from_file("chatlog.log") for line in chat_history: line_tokens = line.split(" : ") line_time = None try: line_time = datetime.strptime(line_tokens[0], "%Y-%m-%d %H:%M:%S.%f") except: continue #2.6 compatibility. delta = (line_time - start_time) delta_seconds = (delta.microseconds + (delta.seconds + delta.days * 24 * 3600) * 10**6) / 10**6 if ((line_time > start_time ) \ and ( end_time and line_time < end_time )) \ or (not end_time and abs(delta_seconds) < 10): self.send_message(message.From, line) time.sleep(1) self.send_message(message.From, "Done replay.")
[ 3, 4, 5, 6, 7 ]
2,564
40b3cacf55f6c5056c3541d70d8b2c0e2cc7d01b
<mask token> class NURBS: <mask token> <mask token> def addKnot(self, knot: float) ->None: self._knots.append(knot) def pointCount(self) ->int: return len(self._points) <mask token> def _N(self, i: int, n: int, u: float) ->float: if n == 0: if self._knots[i] <= u <= self._knots[i + 1]: return 1 return 0 else: Nin1u = self._N(i, n - 1, u) Ni1n1u = self._N(i + 1, n - 1, u) if Nin1u == 0.0: a = 0.0 else: a = self._F(i, n, u) * Nin1u if Ni1n1u == 0.0: b = 0.0 else: b = self._G(i, n, u) * Ni1n1u return a + b <mask token> def _G(self, i: int, n: int, u: float) ->float: denom = self._knots[i + n + 1] - self._knots[i] if denom == 0: return 0.0 return (self._knots[i + n + 1] - u) / denom
<mask token> class NURBS: <mask token> <mask token> def addKnot(self, knot: float) ->None: self._knots.append(knot) def pointCount(self) ->int: return len(self._points) def calculate(self, segments: int) ->List[complex]: while len(self._weights) < len(self._points): self._weights.append(1.0) ret = [] for n in range(0, segments): u = self._knots[0] + (self._knots[-1] - self._knots[0]) * n / ( segments - 1) nku = [] for m in range(0, len(self._points)): nku.append(self._weights[m] * self._N(m, self._degree, u)) point = complex(0, 0) denom = sum(nku) for m in range(0, len(self._points)): if nku[m] != 0.0 and denom != 0.0: r_iku = nku[m] / denom if r_iku != 0.0: point += self._points[m] * r_iku ret.append(point) return ret def _N(self, i: int, n: int, u: float) ->float: if n == 0: if self._knots[i] <= u <= self._knots[i + 1]: return 1 return 0 else: Nin1u = self._N(i, n - 1, u) Ni1n1u = self._N(i + 1, n - 1, u) if Nin1u == 0.0: a = 0.0 else: a = self._F(i, n, u) * Nin1u if Ni1n1u == 0.0: b = 0.0 else: b = self._G(i, n, u) * Ni1n1u return a + b def _F(self, i: int, n: int, u: float) ->float: denom = self._knots[i + n] - self._knots[i] if denom == 0.0: return 0.0 return (u - self._knots[i]) / denom def _G(self, i: int, n: int, u: float) ->float: denom = self._knots[i + n + 1] - self._knots[i] if denom == 0: return 0.0 return (self._knots[i + n + 1] - u) / denom
<mask token> class NURBS: def __init__(self, degree: int) ->None: self._degree = degree self._points = [] self._weights = [] self._knots = [] <mask token> def addKnot(self, knot: float) ->None: self._knots.append(knot) def pointCount(self) ->int: return len(self._points) def calculate(self, segments: int) ->List[complex]: while len(self._weights) < len(self._points): self._weights.append(1.0) ret = [] for n in range(0, segments): u = self._knots[0] + (self._knots[-1] - self._knots[0]) * n / ( segments - 1) nku = [] for m in range(0, len(self._points)): nku.append(self._weights[m] * self._N(m, self._degree, u)) point = complex(0, 0) denom = sum(nku) for m in range(0, len(self._points)): if nku[m] != 0.0 and denom != 0.0: r_iku = nku[m] / denom if r_iku != 0.0: point += self._points[m] * r_iku ret.append(point) return ret def _N(self, i: int, n: int, u: float) ->float: if n == 0: if self._knots[i] <= u <= self._knots[i + 1]: return 1 return 0 else: Nin1u = self._N(i, n - 1, u) Ni1n1u = self._N(i + 1, n - 1, u) if Nin1u == 0.0: a = 0.0 else: a = self._F(i, n, u) * Nin1u if Ni1n1u == 0.0: b = 0.0 else: b = self._G(i, n, u) * Ni1n1u return a + b def _F(self, i: int, n: int, u: float) ->float: denom = self._knots[i + n] - self._knots[i] if denom == 0.0: return 0.0 return (u - self._knots[i]) / denom def _G(self, i: int, n: int, u: float) ->float: denom = self._knots[i + n + 1] - self._knots[i] if denom == 0: return 0.0 return (self._knots[i + n + 1] - u) / denom
<mask token> class NURBS: def __init__(self, degree: int) ->None: self._degree = degree self._points = [] self._weights = [] self._knots = [] def addPoint(self, p: complex) ->None: self._points.append(p) def addKnot(self, knot: float) ->None: self._knots.append(knot) def pointCount(self) ->int: return len(self._points) def calculate(self, segments: int) ->List[complex]: while len(self._weights) < len(self._points): self._weights.append(1.0) ret = [] for n in range(0, segments): u = self._knots[0] + (self._knots[-1] - self._knots[0]) * n / ( segments - 1) nku = [] for m in range(0, len(self._points)): nku.append(self._weights[m] * self._N(m, self._degree, u)) point = complex(0, 0) denom = sum(nku) for m in range(0, len(self._points)): if nku[m] != 0.0 and denom != 0.0: r_iku = nku[m] / denom if r_iku != 0.0: point += self._points[m] * r_iku ret.append(point) return ret def _N(self, i: int, n: int, u: float) ->float: if n == 0: if self._knots[i] <= u <= self._knots[i + 1]: return 1 return 0 else: Nin1u = self._N(i, n - 1, u) Ni1n1u = self._N(i + 1, n - 1, u) if Nin1u == 0.0: a = 0.0 else: a = self._F(i, n, u) * Nin1u if Ni1n1u == 0.0: b = 0.0 else: b = self._G(i, n, u) * Ni1n1u return a + b def _F(self, i: int, n: int, u: float) ->float: denom = self._knots[i + n] - self._knots[i] if denom == 0.0: return 0.0 return (u - self._knots[i]) / denom def _G(self, i: int, n: int, u: float) ->float: denom = self._knots[i + n + 1] - self._knots[i] if denom == 0: return 0.0 return (self._knots[i + n + 1] - u) / denom
from typing import List class NURBS: def __init__(self, degree: int) -> None: self._degree = degree self._points = [] # type: List[complex] self._weights = [] # type: List[float] self._knots = [] # type: List[float] def addPoint(self, p: complex) -> None: self._points.append(p) def addKnot(self, knot: float) -> None: self._knots.append(knot) def pointCount(self) -> int: return len(self._points) def calculate(self, segments: int) -> List[complex]: while len(self._weights) < len(self._points): self._weights.append(1.0) ret = [] for n in range(0, segments): u = self._knots[0] + (self._knots[-1] - self._knots[0]) * n / (segments - 1) nku = [] for m in range(0, len(self._points)): nku.append(self._weights[m] * self._N(m, self._degree, u)) point = complex(0, 0) denom = sum(nku) for m in range(0, len(self._points)): if nku[m] != 0.0 and denom != 0.0: r_iku = nku[m] / denom if r_iku != 0.0: point += self._points[m] * r_iku ret.append(point) return ret def _N(self, i: int, n: int, u: float) -> float: if n == 0: if self._knots[i] <= u <= self._knots[i+1]: return 1 return 0 else: Nin1u = self._N(i, n - 1, u) Ni1n1u = self._N(i + 1, n - 1, u) if Nin1u == 0.0: a = 0.0 else: a = self._F(i, n, u) * Nin1u if Ni1n1u == 0.0: b = 0.0 else: b = self._G(i, n, u) * Ni1n1u return a + b def _F(self, i: int, n: int, u: float) -> float: denom = self._knots[i + n] - self._knots[i] if denom == 0.0: return 0.0 return (u - self._knots[i]) / denom def _G(self, i: int, n: int, u: float) -> float: denom = self._knots[i + n + 1] - self._knots[i] if denom == 0: return 0.0 return (self._knots[i + n + 1] - u) / denom
[ 5, 7, 8, 9, 11 ]
2,565
426002bf900e23fd9b1d32c484350ac854228459
<mask token> def test_translit_long(): assert codecs.encode(data, 'translit/long') == u'GBP :-( woof meaaw' def test_translit_short(): assert codecs.encode(data, 'translit/short') == u'GBP :-( woof meaw' <mask token> def test_translit_long_ascii(): data.encode('translit/long/ascii') == b'GBP :-( woof meaaw' def test_translit_short_ascii(): data.encode('translit/short/ascii') == b'GBP :-( woof meaw' def test_translit_one_ascii(): try: codecs.encode(data, 'translit/one/ascii') assert False except UnicodeEncodeError: assert True assert codecs.encode(data, 'translit/one/ascii', 'replace' ) == b'? ? woof meaw' <mask token> def test_zero_width_space(): try: char = codecs.encode(u'\u200b', 'translit/long') assert char == u'' except TypeError: assert False
<mask token> def test_translit_long(): assert codecs.encode(data, 'translit/long') == u'GBP :-( woof meaaw' def test_translit_short(): assert codecs.encode(data, 'translit/short') == u'GBP :-( woof meaw' <mask token> def test_translit_long_ascii(): data.encode('translit/long/ascii') == b'GBP :-( woof meaaw' def test_translit_short_ascii(): data.encode('translit/short/ascii') == b'GBP :-( woof meaw' def test_translit_one_ascii(): try: codecs.encode(data, 'translit/one/ascii') assert False except UnicodeEncodeError: assert True assert codecs.encode(data, 'translit/one/ascii', 'replace' ) == b'? ? woof meaw' def test_ascii_level_characters_remain(): assert codecs.encode(u"'", 'translit/long') == u"'" def test_zero_width_space(): try: char = codecs.encode(u'\u200b', 'translit/long') assert char == u'' except TypeError: assert False
<mask token> def test_translit_long(): assert codecs.encode(data, 'translit/long') == u'GBP :-( woof meaaw' def test_translit_short(): assert codecs.encode(data, 'translit/short') == u'GBP :-( woof meaw' def test_translit_one(): assert codecs.encode(data, 'translit/one') == u'£ ☹ woof meaw' def test_translit_long_ascii(): data.encode('translit/long/ascii') == b'GBP :-( woof meaaw' def test_translit_short_ascii(): data.encode('translit/short/ascii') == b'GBP :-( woof meaw' def test_translit_one_ascii(): try: codecs.encode(data, 'translit/one/ascii') assert False except UnicodeEncodeError: assert True assert codecs.encode(data, 'translit/one/ascii', 'replace' ) == b'? ? woof meaw' def test_ascii_level_characters_remain(): assert codecs.encode(u"'", 'translit/long') == u"'" def test_zero_width_space(): try: char = codecs.encode(u'\u200b', 'translit/long') assert char == u'' except TypeError: assert False
<mask token> def test_default(): assert codecs.encode(data, 'transliterate') == u'GBP :-( woof meaaw' def test_translit_long(): assert codecs.encode(data, 'translit/long') == u'GBP :-( woof meaaw' def test_translit_short(): assert codecs.encode(data, 'translit/short') == u'GBP :-( woof meaw' def test_translit_one(): assert codecs.encode(data, 'translit/one') == u'£ ☹ woof meaw' def test_translit_long_ascii(): data.encode('translit/long/ascii') == b'GBP :-( woof meaaw' def test_translit_short_ascii(): data.encode('translit/short/ascii') == b'GBP :-( woof meaw' def test_translit_one_ascii(): try: codecs.encode(data, 'translit/one/ascii') assert False except UnicodeEncodeError: assert True assert codecs.encode(data, 'translit/one/ascii', 'replace' ) == b'? ? woof meaw' def test_ascii_level_characters_remain(): assert codecs.encode(u"'", 'translit/long') == u"'" def test_zero_width_space(): try: char = codecs.encode(u'\u200b', 'translit/long') assert char == u'' except TypeError: assert False
# -*- coding: utf-8 -*- """Very basic codec tests. :copyright: the translitcodec authors and developers, see AUTHORS. :license: MIT, see LICENSE for more details. """ import codecs import translitcodec data = u'£ ☹ wøóf méåw' def test_default(): assert codecs.encode(data, 'transliterate') == u'GBP :-( woof meaaw' def test_translit_long(): assert codecs.encode(data, 'translit/long') == u'GBP :-( woof meaaw' def test_translit_short(): assert codecs.encode(data, 'translit/short') == u'GBP :-( woof meaw' def test_translit_one(): assert codecs.encode(data, 'translit/one') == u'\u00a3 \u2639 woof meaw' def test_translit_long_ascii(): data.encode('translit/long/ascii') == b'GBP :-( woof meaaw' def test_translit_short_ascii(): data.encode('translit/short/ascii') == b'GBP :-( woof meaw' def test_translit_one_ascii(): try: codecs.encode(data, 'translit/one/ascii') assert False except UnicodeEncodeError: assert True assert codecs.encode(data, 'translit/one/ascii', 'replace') == b'? ? woof meaw' def test_ascii_level_characters_remain(): assert codecs.encode(u"'", 'translit/long') == u"'" def test_zero_width_space(): try: char = codecs.encode(u'\u200b', 'translit/long') assert char == u'' except TypeError: assert False
[ 6, 7, 8, 9, 12 ]
2,566
6ff4aff5811d2bd7ad150d7e8f925308d120ef74
<mask token> class User(UserMixin, db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64)) email = db.Column(db.String(64), unique=True, index=True) username = db.Column(db.String(64), unique=True, index=True) password_hash = db.Column(db.String(128)) games = db.relationship('Game', secondary='game_players') @property def password(self): raise AttributeError('password is not a readable attribute') @password.setter def password(self, password): self.password_hash = generate_password_hash(password) def verify_password(self, password): return check_password_hash(self.password_hash, password) <mask token> class Game(db.Model): __tablename__ = 'games' id = db.Column(db.Integer, primary_key=True) admin_id = db.Column(db.Integer, db.ForeignKey('users.id')) admin = db.relationship('User', backref='admin', lazy='joined') name = db.Column(db.String(64)) description = db.Column(db.String(100)) date = db.Column(db.Date()) time = db.Column(db.Time()) field = db.Column(db.String(100), nullable=True) players = db.relationship('User', secondary='game_players') def __init__(self, **kwargs): super(Game, self).__init__(**kwargs) self.players.append(self.admin) class GamePlayer(db.Model): __tablename__ = 'game_players' id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.Integer, db.ForeignKey('users.id')) game_id = db.Column(db.Integer, db.ForeignKey('games.id')) user = db.relationship('User', backref='user', lazy='joined') game = db.relationship('Game', backref='game', lazy='joined') class RegistrationForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) username = StringField('Username', validators=[DataRequired(), Length(1, 64), Regexp('^[A-Za-z][A-Za-z0-9_.]*$', 0, 'Usernames must have only letters, numbers, dots or underscores')]) name = StringField('Name', validators=[DataRequired(), Length(1, 64)]) password = PasswordField('Password', validators=[DataRequired()]) password2 = PasswordField('Confirm password', validators=[DataRequired( ), EqualTo('password', message='Passwords must match.')]) submit = SubmitField('Register') def validate_email(self, field): if User.query.filter_by(email=field.data.lower()).first(): raise ValidationError('Email alreadu registered') def validate_username(self, field): if User.query.filter_by(username=field.data).first(): raise ValidationError('Username already taken') class LoginForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) password = PasswordField('Password', validators=[DataRequired()]) remember_me = BooleanField('Keep me logged in') submit = SubmitField('Log In') class NewGameForm(FlaskForm): name = StringField('Name', validators=[DataRequired()]) description = TextAreaField('Description', validators=[DataRequired()]) date = DateField('Date', validators=[DataRequired()], format='%Y-%m-%d') time = TimeField('Time', format='%H:%M') field = StringField('Field', validators=[DataRequired()]) submit = SubmitField('Create New Game') <mask token>
<mask token> class User(UserMixin, db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64)) email = db.Column(db.String(64), unique=True, index=True) username = db.Column(db.String(64), unique=True, index=True) password_hash = db.Column(db.String(128)) games = db.relationship('Game', secondary='game_players') @property def password(self): raise AttributeError('password is not a readable attribute') @password.setter def password(self, password): self.password_hash = generate_password_hash(password) def verify_password(self, password): return check_password_hash(self.password_hash, password) <mask token> class Game(db.Model): __tablename__ = 'games' id = db.Column(db.Integer, primary_key=True) admin_id = db.Column(db.Integer, db.ForeignKey('users.id')) admin = db.relationship('User', backref='admin', lazy='joined') name = db.Column(db.String(64)) description = db.Column(db.String(100)) date = db.Column(db.Date()) time = db.Column(db.Time()) field = db.Column(db.String(100), nullable=True) players = db.relationship('User', secondary='game_players') def __init__(self, **kwargs): super(Game, self).__init__(**kwargs) self.players.append(self.admin) class GamePlayer(db.Model): __tablename__ = 'game_players' id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.Integer, db.ForeignKey('users.id')) game_id = db.Column(db.Integer, db.ForeignKey('games.id')) user = db.relationship('User', backref='user', lazy='joined') game = db.relationship('Game', backref='game', lazy='joined') class RegistrationForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) username = StringField('Username', validators=[DataRequired(), Length(1, 64), Regexp('^[A-Za-z][A-Za-z0-9_.]*$', 0, 'Usernames must have only letters, numbers, dots or underscores')]) name = StringField('Name', validators=[DataRequired(), Length(1, 64)]) password = PasswordField('Password', validators=[DataRequired()]) password2 = PasswordField('Confirm password', validators=[DataRequired( ), EqualTo('password', message='Passwords must match.')]) submit = SubmitField('Register') def validate_email(self, field): if User.query.filter_by(email=field.data.lower()).first(): raise ValidationError('Email alreadu registered') def validate_username(self, field): if User.query.filter_by(username=field.data).first(): raise ValidationError('Username already taken') class LoginForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) password = PasswordField('Password', validators=[DataRequired()]) remember_me = BooleanField('Keep me logged in') submit = SubmitField('Log In') class NewGameForm(FlaskForm): name = StringField('Name', validators=[DataRequired()]) description = TextAreaField('Description', validators=[DataRequired()]) date = DateField('Date', validators=[DataRequired()], format='%Y-%m-%d') time = TimeField('Time', format='%H:%M') field = StringField('Field', validators=[DataRequired()]) submit = SubmitField('Create New Game') <mask token> @app.route('/login', methods=['GET', 'POST']) def user_login(): form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data.lower()).first() if user is not None and user.verify_password(form.password.data): login_user(user, form.remember_me.data) next = request.args.get('next') if next is None or not next.startswith('/'): next = url_for('index') return redirect(next) flash('Invalid email or password') return render_template('login.html', form=form) <mask token>
<mask token> class User(UserMixin, db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64)) email = db.Column(db.String(64), unique=True, index=True) username = db.Column(db.String(64), unique=True, index=True) password_hash = db.Column(db.String(128)) games = db.relationship('Game', secondary='game_players') @property def password(self): raise AttributeError('password is not a readable attribute') @password.setter def password(self, password): self.password_hash = generate_password_hash(password) def verify_password(self, password): return check_password_hash(self.password_hash, password) <mask token> class Game(db.Model): __tablename__ = 'games' id = db.Column(db.Integer, primary_key=True) admin_id = db.Column(db.Integer, db.ForeignKey('users.id')) admin = db.relationship('User', backref='admin', lazy='joined') name = db.Column(db.String(64)) description = db.Column(db.String(100)) date = db.Column(db.Date()) time = db.Column(db.Time()) field = db.Column(db.String(100), nullable=True) players = db.relationship('User', secondary='game_players') def __init__(self, **kwargs): super(Game, self).__init__(**kwargs) self.players.append(self.admin) class GamePlayer(db.Model): __tablename__ = 'game_players' id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.Integer, db.ForeignKey('users.id')) game_id = db.Column(db.Integer, db.ForeignKey('games.id')) user = db.relationship('User', backref='user', lazy='joined') game = db.relationship('Game', backref='game', lazy='joined') class RegistrationForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) username = StringField('Username', validators=[DataRequired(), Length(1, 64), Regexp('^[A-Za-z][A-Za-z0-9_.]*$', 0, 'Usernames must have only letters, numbers, dots or underscores')]) name = StringField('Name', validators=[DataRequired(), Length(1, 64)]) password = PasswordField('Password', validators=[DataRequired()]) password2 = PasswordField('Confirm password', validators=[DataRequired( ), EqualTo('password', message='Passwords must match.')]) submit = SubmitField('Register') def validate_email(self, field): if User.query.filter_by(email=field.data.lower()).first(): raise ValidationError('Email alreadu registered') def validate_username(self, field): if User.query.filter_by(username=field.data).first(): raise ValidationError('Username already taken') class LoginForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) password = PasswordField('Password', validators=[DataRequired()]) remember_me = BooleanField('Keep me logged in') submit = SubmitField('Log In') class NewGameForm(FlaskForm): name = StringField('Name', validators=[DataRequired()]) description = TextAreaField('Description', validators=[DataRequired()]) date = DateField('Date', validators=[DataRequired()], format='%Y-%m-%d') time = TimeField('Time', format='%H:%M') field = StringField('Field', validators=[DataRequired()]) submit = SubmitField('Create New Game') <mask token> @app.route('/') @app.route('/games') @login_required def index(): game_player = GamePlayer.query.filter_by(user=current_user).all() games = list(map(render_player_game, game_player)) return render_template('index.html', games=games) <mask token> @app.route('/games/<int:id>/quit') @login_required def game_quit(id): game = Game.query.get(id) if game: if current_user in game.players: game.players.remove(current_user) db.session.commit() flash('You were removed succesfully', 'sucess') else: flash('You were not in this game', 'warning') else: flash("The game you're trying to quit does not exist", 'warning') return redirect(url_for('game_details', id=id)) <mask token> @app.route('/login', methods=['GET', 'POST']) def user_login(): form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data.lower()).first() if user is not None and user.verify_password(form.password.data): login_user(user, form.remember_me.data) next = request.args.get('next') if next is None or not next.startswith('/'): next = url_for('index') return redirect(next) flash('Invalid email or password') return render_template('login.html', form=form) <mask token>
<mask token> class User(UserMixin, db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64)) email = db.Column(db.String(64), unique=True, index=True) username = db.Column(db.String(64), unique=True, index=True) password_hash = db.Column(db.String(128)) games = db.relationship('Game', secondary='game_players') @property def password(self): raise AttributeError('password is not a readable attribute') @password.setter def password(self, password): self.password_hash = generate_password_hash(password) def verify_password(self, password): return check_password_hash(self.password_hash, password) @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) class Game(db.Model): __tablename__ = 'games' id = db.Column(db.Integer, primary_key=True) admin_id = db.Column(db.Integer, db.ForeignKey('users.id')) admin = db.relationship('User', backref='admin', lazy='joined') name = db.Column(db.String(64)) description = db.Column(db.String(100)) date = db.Column(db.Date()) time = db.Column(db.Time()) field = db.Column(db.String(100), nullable=True) players = db.relationship('User', secondary='game_players') def __init__(self, **kwargs): super(Game, self).__init__(**kwargs) self.players.append(self.admin) class GamePlayer(db.Model): __tablename__ = 'game_players' id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.Integer, db.ForeignKey('users.id')) game_id = db.Column(db.Integer, db.ForeignKey('games.id')) user = db.relationship('User', backref='user', lazy='joined') game = db.relationship('Game', backref='game', lazy='joined') class RegistrationForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) username = StringField('Username', validators=[DataRequired(), Length(1, 64), Regexp('^[A-Za-z][A-Za-z0-9_.]*$', 0, 'Usernames must have only letters, numbers, dots or underscores')]) name = StringField('Name', validators=[DataRequired(), Length(1, 64)]) password = PasswordField('Password', validators=[DataRequired()]) password2 = PasswordField('Confirm password', validators=[DataRequired( ), EqualTo('password', message='Passwords must match.')]) submit = SubmitField('Register') def validate_email(self, field): if User.query.filter_by(email=field.data.lower()).first(): raise ValidationError('Email alreadu registered') def validate_username(self, field): if User.query.filter_by(username=field.data).first(): raise ValidationError('Username already taken') class LoginForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) password = PasswordField('Password', validators=[DataRequired()]) remember_me = BooleanField('Keep me logged in') submit = SubmitField('Log In') class NewGameForm(FlaskForm): name = StringField('Name', validators=[DataRequired()]) description = TextAreaField('Description', validators=[DataRequired()]) date = DateField('Date', validators=[DataRequired()], format='%Y-%m-%d') time = TimeField('Time', format='%H:%M') field = StringField('Field', validators=[DataRequired()]) submit = SubmitField('Create New Game') def render_player_game(game_player): game = game_player.game game_rendered = {'date': game.date, 'time': game.time, 'name': game. name, 'field': game.field, 'id': game.id} return game_rendered @app.route('/') @app.route('/games') @login_required def index(): game_player = GamePlayer.query.filter_by(user=current_user).all() games = list(map(render_player_game, game_player)) return render_template('index.html', games=games) @app.route('/games/join') @app.route('/games/<int:id>') def game_details(id=None): game = Game.query.get(id) return render_template('game_details.html', game=game) @app.route('/games/<int:id>/join') @login_required def game_join(id): game = Game.query.get(id) if game: if current_user not in game.players: game.players.append(current_user) db.session.commit() flash('You were added succesfully', 'sucess') else: flash('You already were in this game', 'warning') else: flash("The game you're trying to enter does not exist", 'warning') return redirect(url_for('game_details', id=id)) @app.route('/games/<int:id>/quit') @login_required def game_quit(id): game = Game.query.get(id) if game: if current_user in game.players: game.players.remove(current_user) db.session.commit() flash('You were removed succesfully', 'sucess') else: flash('You were not in this game', 'warning') else: flash("The game you're trying to quit does not exist", 'warning') return redirect(url_for('game_details', id=id)) @app.route('/games/new', methods=['GET', 'POST']) @login_required def new_game(): form = NewGameForm() if form.validate_on_submit(): new_game = Game(admin=current_user, name=form.name.data, description=form.description.data, date=form.date.data, time= form.time.data, field=form.field.data) db.session.add(new_game) db.session.commit() flash('Your game was created succesfully', 'success') return redirect(url_for('game_details', id=new_game.id)) return render_template('new_game.html', form=form) <mask token> @app.route('/login', methods=['GET', 'POST']) def user_login(): form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data.lower()).first() if user is not None and user.verify_password(form.password.data): login_user(user, form.remember_me.data) next = request.args.get('next') if next is None or not next.startswith('/'): next = url_for('index') return redirect(next) flash('Invalid email or password') return render_template('login.html', form=form) @app.route('/logout') @login_required def user_logout(): logout_user() flash('You have been logged out.') return redirect(url_for('index')) @app.route('/test') def test(): return render_template('layout.html', title='Test')
# Imports import os from flask import Flask, redirect, render_template, url_for, request, flash from flask_login import LoginManager, login_user, logout_user, login_required, current_user # Import - Database from flask_sqlalchemy import SQLAlchemy # Import - Models from werkzeug.security import generate_password_hash, check_password_hash from flask_login import UserMixin # Import - Forms from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, BooleanField, SubmitField, ValidationError, DateField, TimeField, TextAreaField, IntegerField from wtforms.validators import DataRequired, Length, Email, Regexp, EqualTo # Config basedir = os.path.abspath(os.path.dirname(__file__)) app = Flask(__name__) app.config['SECRET_KEY'] = os.environ.get('SECRET_KEY') app.config['SQLALCHEMY_DATABASE_URI'] =\ 'sqlite:///' + os.path.join(basedir, 'data.sqlite') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False # Setup db = SQLAlchemy(app) login_manager = LoginManager(app) login_manager.login_view = 'user_login' # Models class User(UserMixin, db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64)) email = db.Column(db.String(64), unique=True, index=True) username = db.Column(db.String(64), unique=True, index=True) password_hash = db.Column(db.String(128)) games = db.relationship('Game', secondary="game_players") @property def password(self): raise AttributeError('password is not a readable attribute') @password.setter def password(self, password): self.password_hash = generate_password_hash(password) def verify_password(self, password): return check_password_hash(self.password_hash, password) @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) class Game(db.Model): __tablename__ = 'games' id = db.Column(db.Integer, primary_key=True) admin_id = db.Column(db.Integer, db.ForeignKey('users.id')) admin = db.relationship('User', backref='admin', lazy='joined') name = db.Column(db.String(64)) description = db.Column(db.String(100)) date = db.Column(db.Date()) time = db.Column(db.Time()) field = db.Column(db.String(100), nullable=True) players = db.relationship('User', secondary="game_players") def __init__(self, **kwargs): super(Game, self).__init__(**kwargs) self.players.append(self.admin) class GamePlayer(db.Model): __tablename__ = 'game_players' id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.Integer, db.ForeignKey('users.id')) game_id = db.Column(db.Integer, db.ForeignKey('games.id')) user = db.relationship('User', backref='user', lazy='joined') game = db.relationship('Game', backref='game', lazy='joined') # Forms # Forms - User class RegistrationForm(FlaskForm): email = StringField('Email', validators=[ DataRequired(), Length(1, 64), Email()]) username = StringField('Username', validators=[ DataRequired(), Length(1, 64), Regexp('^[A-Za-z][A-Za-z0-9_.]*$', 0, 'Usernames must have only letters, numbers, dots or ' 'underscores') ]) name = StringField('Name', validators=[DataRequired(), Length(1, 64)]) password = PasswordField('Password', validators=[DataRequired()]) password2 = PasswordField('Confirm password', validators=[ DataRequired(), EqualTo('password', message='Passwords must match.')]) submit = SubmitField('Register') def validate_email(self, field): if User.query.filter_by(email=field.data.lower()).first(): raise ValidationError('Email alreadu registered') def validate_username(self, field): if User.query.filter_by(username=field.data).first(): raise ValidationError('Username already taken') class LoginForm(FlaskForm): email = StringField('Email', validators=[DataRequired(), Length(1, 64), Email()]) password = PasswordField('Password', validators=[DataRequired()]) remember_me = BooleanField('Keep me logged in') submit = SubmitField('Log In') # Forms - Games class NewGameForm(FlaskForm): name = StringField('Name', validators=[DataRequired()]) description = TextAreaField('Description', validators=[DataRequired()]) date = DateField('Date', validators=[ DataRequired()], format='%Y-%m-%d') time = TimeField('Time', format='%H:%M') field = StringField('Field', validators=[DataRequired()]) submit = SubmitField('Create New Game') # Utils functions def render_player_game(game_player): game = game_player.game game_rendered = { 'date': game.date, 'time': game.time, 'name': game.name, 'field': game.field, 'id': game.id } return game_rendered # Routes # Routes - Games @app.route('/') @app.route('/games') @login_required def index(): # Show all the games the user is in and a button to join game and another to create one game_player = GamePlayer.query.filter_by(user=current_user).all() games = list(map(render_player_game, game_player)) return render_template('index.html', games=games) @app.route('/games/join') @app.route('/games/<int:id>') def game_details(id=None): # Show the game details and players # The admin has the same page, but with extra commands to remove, add... game = Game.query.get(id) return render_template('game_details.html', game=game) @app.route('/games/<int:id>/join') @login_required def game_join(id): game = Game.query.get(id) if game: if current_user not in game.players: game.players.append(current_user) db.session.commit() flash('You were added succesfully', 'sucess') else: flash('You already were in this game', 'warning') else: flash("The game you're trying to enter does not exist", 'warning') return redirect(url_for('game_details', id=id)) @app.route('/games/<int:id>/quit') @login_required def game_quit(id): game = Game.query.get(id) if game: if current_user in game.players: game.players.remove(current_user) db.session.commit() flash('You were removed succesfully', 'sucess') else: flash('You were not in this game', 'warning') else: flash("The game you're trying to quit does not exist", 'warning') return redirect(url_for('game_details', id=id)) @app.route('/games/new', methods=['GET', 'POST']) @login_required def new_game(): # A form to create a new game form = NewGameForm() if form.validate_on_submit(): new_game = Game( admin=current_user, name=form.name.data, description=form.description.data, date=form.date.data, time=form.time.data, field=form.field.data, ) db.session.add(new_game) db.session.commit() flash('Your game was created succesfully', 'success') return redirect(url_for('game_details', id=new_game.id)) return render_template('new_game.html', form=form) # Routes - User @app.route('/register', methods=['GET', 'POST']) def user_register(): form = RegistrationForm() if form.validate_on_submit(): user = User( email=form.email.data.lower(), username=form.username.data, password=form.password.data, name=form.name.data ) db.session.add(user) db.session.commit() login_user(user) return redirect(url_for('index')) return render_template('register.html', form=form) @app.route('/login', methods=['GET', 'POST']) def user_login(): form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data.lower()).first() if user is not None and user.verify_password(form.password.data): login_user(user, form.remember_me.data) next = request.args.get('next') if next is None or not next.startswith('/'): next = url_for('index') return redirect(next) flash('Invalid email or password') return render_template('login.html', form=form) @app.route('/logout') @login_required def user_logout(): logout_user() flash('You have been logged out.') return redirect(url_for('index')) @app.route('/test') def test(): return render_template('layout.html', title='Test')
[ 18, 19, 21, 28, 32 ]
2,567
b1fe7e318c361930c8ad00758bcb86597fd8f3bd
<mask token>
<mask token> while True: answer = zfile.read(nothing).decode('utf-8') comments += zfile.getinfo(nothing).comment.decode('utf-8') print(answer) findRet = re.findall(target, answer) if len(findRet) == 0: break nothing = findRet[0] + '.txt' print('answer is ...') print(comments)
<mask token> zfile = zipfile.ZipFile('./channel.zip') <mask token> comments = '' nothing = '90052.txt' target = '[0-9]+' while True: answer = zfile.read(nothing).decode('utf-8') comments += zfile.getinfo(nothing).comment.decode('utf-8') print(answer) findRet = re.findall(target, answer) if len(findRet) == 0: break nothing = findRet[0] + '.txt' print('answer is ...') print(comments)
<mask token> import zipfile import re zfile = zipfile.ZipFile('./channel.zip') <mask token> comments = '' nothing = '90052.txt' target = '[0-9]+' while True: answer = zfile.read(nothing).decode('utf-8') comments += zfile.getinfo(nothing).comment.decode('utf-8') print(answer) findRet = re.findall(target, answer) if len(findRet) == 0: break nothing = findRet[0] + '.txt' print('answer is ...') print(comments)
''''''''''''''''''''''''''''' > Filename: lv6.py > Author: Kadrick, BoGwon Kang > Created at: 2021/10/11 16:07 > Description: zip ''''''''''''''''''''''''''''' import zipfile import re # open zipfile zfile = zipfile.ZipFile('./channel.zip') # check list ''' print(zfile.namelist()) print(zfile.read("readme.txt")) print(zfile.read("90052.txt")) ''' # follow nothing & collect the comments comments = "" nothing = "90052.txt" target = r"[0-9]+" while True: answer = zfile.read(nothing).decode('utf-8') # collect comment comments += zfile.getinfo(nothing).comment.decode('utf-8') print(answer) findRet = re.findall(target, answer) if len(findRet) == 0: break nothing = findRet[0] + ".txt" print("answer is ...") print(comments)
[ 0, 1, 2, 3, 4 ]
2,568
0e1ea8c7fba90c1b5d18eaa399b91f237d4defee
<mask token>
<mask token> while m != 0: m = int(input()) if m > maximum: maximum = m count = 1 elif m == maximum: count += 1 print(count)
count = 0 maximum = -1 m = -1 while m != 0: m = int(input()) if m > maximum: maximum = m count = 1 elif m == maximum: count += 1 print(count)
count = 0 maximum = -1 m = -1 while m != 0: m = int(input()) if m > maximum: maximum = m count = 1 elif m == maximum: count += 1 print(count)
null
[ 0, 1, 2, 3 ]
2,569
b3f376f4aec81cae853f996a74062e32bb4a8fa3
<mask token> class s3Obj: <mask token> <mask token>
<mask token> class s3Obj: <mask token> def getACL(self, client_s3): """ get ACL info and update the object """ try: response = client_s3.get_object_acl(Bucket=self.bucket_name, Key=self.name) for permission in response['Grants']: self.acl.append(permission['Permission']) except botocore.exceptions.ClientError as e: raise
<mask token> class s3Obj: def __init__(self, name, bucket_name, size, last_modified, storage_class): self.name = name self.size = size self.last_modified = last_modified self.storage_class = storage_class self.bucket_name = bucket_name self.acl = [] def getACL(self, client_s3): """ get ACL info and update the object """ try: response = client_s3.get_object_acl(Bucket=self.bucket_name, Key=self.name) for permission in response['Grants']: self.acl.append(permission['Permission']) except botocore.exceptions.ClientError as e: raise
import botocore class s3Obj: def __init__(self, name, bucket_name, size, last_modified, storage_class): self.name = name self.size = size self.last_modified = last_modified self.storage_class = storage_class self.bucket_name = bucket_name self.acl = [] def getACL(self, client_s3): """ get ACL info and update the object """ try: response = client_s3.get_object_acl(Bucket=self.bucket_name, Key=self.name) for permission in response['Grants']: self.acl.append(permission['Permission']) except botocore.exceptions.ClientError as e: raise
import botocore class s3Obj: def __init__(self, name, bucket_name, size, last_modified, storage_class): self.name = name self.size = size self.last_modified = last_modified self.storage_class = storage_class self.bucket_name = bucket_name self.acl = [] def getACL(self, client_s3): ''' get ACL info and update the object ''' try: response = client_s3.get_object_acl(Bucket=self.bucket_name, Key=self.name) for permission in response['Grants']: self.acl.append(permission['Permission']) except botocore.exceptions.ClientError as e: raise
[ 1, 2, 3, 4, 5 ]
2,570
8c6b7032c85354740d59aa91108ad8b5279e1d45
#! /usr/bin/env python t = int(raw_input()) for i in xrange(1, t+1): N = raw_input() N1 = N track = set() if N == '0': print "Case #%s: " % i + "INSOMNIA" continue count = 2 while len(track) !=10: temp = set(x for x in N1) track = temp | track N1 = str(count*int(N)) count +=1 print "Case #%s: %d" % (i, int(N1) - int(N))
null
null
null
null
[ 0 ]
2,571
f8b04f374e1c55d4985be793939f0ff9393c29e0
<mask token> class Solution: <mask token> def refined(self, nums, i, a, ans): if i >= len(nums): if len(a) == len(ans) and self.isMoreCompetitive(a, ans) == False: return False, None elif len(a) != len(ans): return False, None else: return True, a elif i < len(nums) and len(ans) - len(a) <= len(nums) - i: boolA, respA = self.refined(nums, i + 1, a + [nums[i]], ans) boolB, respB = self.refined(nums, i + 1, a, ans) if boolA == True and boolB == True: if self.isMoreCompetitive(respA, respB): return True, respA else: return True, respB elif boolA == True: return boolA, respA elif boolB == True: return True, respB else: return False, None else: return False, None <mask token> <mask token>
<mask token> class Solution: def isMoreCompetitive(self, a, b): if len(a) != len(b): print("Error, len()'s do not match'") return 'Error' for i in range(len(a)): if a[i] == b[i]: continue elif a[i] < b[i]: return True else: return False return False def refined(self, nums, i, a, ans): if i >= len(nums): if len(a) == len(ans) and self.isMoreCompetitive(a, ans) == False: return False, None elif len(a) != len(ans): return False, None else: return True, a elif i < len(nums) and len(ans) - len(a) <= len(nums) - i: boolA, respA = self.refined(nums, i + 1, a + [nums[i]], ans) boolB, respB = self.refined(nums, i + 1, a, ans) if boolA == True and boolB == True: if self.isMoreCompetitive(respA, respB): return True, respA else: return True, respB elif boolA == True: return boolA, respA elif boolB == True: return True, respB else: return False, None else: return False, None <mask token> <mask token>
<mask token> class Solution: def isMoreCompetitive(self, a, b): if len(a) != len(b): print("Error, len()'s do not match'") return 'Error' for i in range(len(a)): if a[i] == b[i]: continue elif a[i] < b[i]: return True else: return False return False def refined(self, nums, i, a, ans): if i >= len(nums): if len(a) == len(ans) and self.isMoreCompetitive(a, ans) == False: return False, None elif len(a) != len(ans): return False, None else: return True, a elif i < len(nums) and len(ans) - len(a) <= len(nums) - i: boolA, respA = self.refined(nums, i + 1, a + [nums[i]], ans) boolB, respB = self.refined(nums, i + 1, a, ans) if boolA == True and boolB == True: if self.isMoreCompetitive(respA, respB): return True, respA else: return True, respB elif boolA == True: return boolA, respA elif boolB == True: return True, respB else: return False, None else: return False, None def mostCompetitive(self, nums, k): if len(nums) < k: print('length mismatch @ init') return False ans = list(nums[0:k]) tmp = list(nums[0:k]) i = k while i < len(nums): del tmp[0] tmp.append(nums[i]) if self.isMoreCompetitive(tmp, ans): ans = list(tmp) i += 1 shouldContinue = True idx = 0 foundAnswer, updateAns = self.refined(nums, 0, [], ans) if foundAnswer == True: return updateAns return ans <mask token>
<mask token> class Solution: def isMoreCompetitive(self, a, b): if len(a) != len(b): print("Error, len()'s do not match'") return 'Error' for i in range(len(a)): if a[i] == b[i]: continue elif a[i] < b[i]: return True else: return False return False def refined(self, nums, i, a, ans): if i >= len(nums): if len(a) == len(ans) and self.isMoreCompetitive(a, ans) == False: return False, None elif len(a) != len(ans): return False, None else: return True, a elif i < len(nums) and len(ans) - len(a) <= len(nums) - i: boolA, respA = self.refined(nums, i + 1, a + [nums[i]], ans) boolB, respB = self.refined(nums, i + 1, a, ans) if boolA == True and boolB == True: if self.isMoreCompetitive(respA, respB): return True, respA else: return True, respB elif boolA == True: return boolA, respA elif boolB == True: return True, respB else: return False, None else: return False, None def mostCompetitive(self, nums, k): if len(nums) < k: print('length mismatch @ init') return False ans = list(nums[0:k]) tmp = list(nums[0:k]) i = k while i < len(nums): del tmp[0] tmp.append(nums[i]) if self.isMoreCompetitive(tmp, ans): ans = list(tmp) i += 1 shouldContinue = True idx = 0 foundAnswer, updateAns = self.refined(nums, 0, [], ans) if foundAnswer == True: return updateAns return ans if __name__ == '__main__': s = Solution() print(s.mostCompetitive([3, 5, 2, 6], 2)) print(s.mostCompetitive([2, 4, 3, 3, 5, 4, 9, 6], 4)) print(s.mostCompetitive([84, 10, 71, 23, 66, 61, 62, 64, 34, 41, 80, 25, 91, 43, 4, 75, 65, 13, 37, 41, 46, 90, 55, 8, 85, 61, 95, 71], 24)) print(s.mostCompetitive([2, 4, 3, 3, 5, 4, 9, 6], 4)) [11, 52, 57, 91, 47, 95, 86, 46, 87, 47, 70, 56, 54, 61, 89, 44, 3, 73, 1, 7, 87, 48, 17, 25, 49, 54, 6, 72, 97, 62, 16, 11, 47, 34, 68, 58, 14, 36, 46, 65, 2, 15] 18
''' Given []int, most mostCompetitive subsequence is a sublist of nums. So we calculate a score, score is ∀ x ∈ nums, score += x_n - x_n-1 You can remove as many elements are you need to. What is the mostCompetitive subsequence that you can come up with? [1,3,5] [1,3,4] ← More competitive [1,2,5] ← More competitive [1,3,4] This is true b/c we evaluate on the first point where the two differ. 1) We care about creating lists that contain as small of numbers as possible. The numbers don't need to be in order, they just need to be small. We care about all numbers, s.t. we can create a subsequence of k or more behind them. Get all possible sub-sequences, with length k or more. If more than k, iterate through how we can remove the largest elements. We should also keep track of the smallest number that corresponds to a valid sequence? I'm leaning towards a brute force method. 1) Find all sequences of length k. Store the most competitive. So we should write a function that compares two sequences to see which is more competitive. Do one run, with subsequence == k. Then try to beat that run. Keep track of what the 'winning' subsequence is, and iterate through possible values. So two iterations. [2,4,3,3,5,4,9,6] | k = 4 ( ) ans = 2,4,3,3 [2,4,3,3,5,4,9,6] | k = 4 ( ) 2,4,3,3 ^ idx = 0 Once we have 'beaten' it, out of the remaining elements, remove the max element until length of sublist is workable. [2, 3, 3, ] 1) Write isMoreCompetitive 2) First pass → get most competitive with sliding window len = k 3) Second + pass. If we make a change/'win', re-run again. If re-run and no change, we are done. ''' ''' To Review: def mostCompetitive(self, nums, k): to_remove = len(nums) - k stack = [] for x in nums: while stack and x < stack[-1] and to_remove: to_remove -= 1 stack.pop() stack.append(x) for _ in range(to_remove): stack.pop() return stack ''' class Solution: # is a more competitive than b? def isMoreCompetitive(self, a, b): if len(a) != len(b): print("Error, len()'s do not match'") return "Error" for i in range(len(a)): if a[i] == b[i]: continue elif a[i] < b[i]: return True else: return False return False def refined(self, nums, i, a, ans): if i >= len(nums): if len(a) == len(ans) and self.isMoreCompetitive(a, ans) == False: return False, None elif len(a) != len(ans): return False, None else: return True, a elif i < len(nums) and len(ans)-len(a) <= len(nums)-i : boolA, respA = self.refined(nums, i+1, a+[nums[i]], ans) boolB, respB = self.refined(nums, i+1, a, ans) if boolA == True and boolB == True: if self.isMoreCompetitive(respA, respB): return True, respA else: return True, respB elif boolA == True: return boolA, respA elif boolB == True: return True, respB else: return False, None else: return False, None def mostCompetitive(self, nums, k): if len(nums) < k : print("length mismatch @ init") return False ans = list(nums[0:k]) tmp = list(nums[0:k]) i = k # Initial pass while i < len(nums): # print(tmp) del tmp[0] # print(tmp) tmp.append(nums[i]) # print(tmp) if self.isMoreCompetitive(tmp, ans): ans = list(tmp) i += 1 # print("ans: {}, tmp:{}".format(ans, tmp)) # print("") # Pass 2 shouldContinue = True idx = 0 foundAnswer, updateAns = self.refined(nums, 0, [], ans) if foundAnswer == True: return updateAns return ans if __name__ == '__main__': s = Solution() print(s.mostCompetitive([3,5,2,6], 2)) print(s.mostCompetitive([2,4,3,3,5,4,9,6], 4)) print(s.mostCompetitive([84,10,71,23,66,61,62,64,34,41,80,25,91,43,4,75,65,13,37,41,46,90,55,8,85,61,95,71], 24)) print(s.mostCompetitive([2,4,3,3,5,4,9,6], 4)) [11,52,57,91,47,95,86,46,87,47,70,56,54,61,89,44,3,73,1,7,87,48,17,25,49,54,6,72,97,62,16,11,47,34,68,58,14,36,46,65,2,15] 18
[ 2, 3, 4, 5, 6 ]
2,572
4411c81351ac76d72512faaa6b498cd577815691
<mask token>
def factorial(n): """returns n!""" return 1 if n < 2 else n * factorial(n - 1) <mask token>
def factorial(n): """returns n!""" return 1 if n < 2 else n * factorial(n - 1) <mask token> print(list(map(fact, range(6)))) print([fact(n) for n in range(6)]) print(list(map(factorial, filter(lambda n: n % 2, range(6))))) print([factorial(n) for n in range(6) if n % 2])
def factorial(n): """returns n!""" return 1 if n < 2 else n * factorial(n - 1) fact = factorial print(list(map(fact, range(6)))) print([fact(n) for n in range(6)]) print(list(map(factorial, filter(lambda n: n % 2, range(6))))) print([factorial(n) for n in range(6) if n % 2])
# 把函数视作对象 def factorial(n): """returns n!""" return 1 if n < 2 else n * factorial(n - 1) fact = factorial print(list(map(fact, range(6)))) # 构建 0! 和 5! 的一个阶乘列表。 print([fact(n) for n in range(6)]) # 使用列表推导执行相同的操作。 # filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。 # 该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False, # 最后将返回 True 的元素放到新列表中。 print(list(map(factorial, filter(lambda n: n % 2, range(6))))) # 使用 map 和 filter 计算直到 5! 的奇数阶乘列表。 print([factorial(n) for n in range(6) if n % 2]) # 使用列表推导做相同的工作,换掉 map 和 filter,并避免了使用 lambda 表达式。
[ 0, 1, 2, 3, 4 ]
2,573
3ab1de77147f6abfabeea10f2a4e85686edffd6f
<mask token>
<mask token> class Migration(migrations.Migration): <mask token> <mask token>
<mask token> class Migration(migrations.Migration): dependencies = [('autotasks', '0017_auto_20210210_1512')] operations = [migrations.AddField(model_name='automatedtask', name= 'run_asap_after_missed', field=models.BooleanField(default=False))]
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [('autotasks', '0017_auto_20210210_1512')] operations = [migrations.AddField(model_name='automatedtask', name= 'run_asap_after_missed', field=models.BooleanField(default=False))]
# Generated by Django 3.1.7 on 2021-02-24 05:37 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('autotasks', '0017_auto_20210210_1512'), ] operations = [ migrations.AddField( model_name='automatedtask', name='run_asap_after_missed', field=models.BooleanField(default=False), ), ]
[ 0, 1, 2, 3, 4 ]
2,574
d1ee33ce6fb071aae800b0597a09e7039a209ec8
<mask token>
<mask token> def reverse(string): if len(string) == 0: return temp = string[0] reverse(string[1:]) print(temp, end='') <mask token>
<mask token> def reverse(string): if len(string) == 0: return temp = string[0] reverse(string[1:]) print(temp, end='') <mask token> reverse(string)
<mask token> def reverse(string): if len(string) == 0: return temp = string[0] reverse(string[1:]) print(temp, end='') string = input() reverse(string)
# -*- coding: utf-8 -*- """ Created on Wed Mar 24 20:59:36 2021 @author: Abeg """ #factorial using recursion """def factorial(n): if n==0 or n==1: return 1 elif n==2: return n else: return n*factorial(n-1) n=int(input("enter the no")) print(factorial(n))""" #fibonancci using recursion """def fiborecursively(n): if n<=1: return n else: return(fiborecursively(n-1) + fiborecursively(n-2)) for i in range(0,10): print(fiborecursively(i))""" #reverse a string with recursion def reverse(string): if len(string) == 0: return temp = string[0] reverse(string[1:]) print(temp,end="") string=(input()) reverse(string)
[ 0, 1, 2, 3, 4 ]
2,575
7277b045f85d58383f26ab0d3299feb166f45e36
<mask token>
while True: print('Light Levels:' + input.light_level()) if input.light_level() < 6: light.set_all(light.rgb(255, 0, 255)) elif input.light_level() < 13: light.set_all(light.rgb(255, 0, 0)) else: light.clear()
while True: print("Light Levels:" + input.light_level()) if input.light_level() < 6: light.set_all(light.rgb(255, 0, 255)) elif input.light_level() < 13: light.set_all(light.rgb(255, 0, 0)) else: light.clear()
null
null
[ 0, 1, 2 ]
2,576
ee0f90b84df73ae5783ca0b8a52fe6fe9c979f15
<mask token> @app.route('/unlock') def web_unlock(): if not (request.args.get('token') and request.args.get('state')): return 'Error' else: with shelve.open('Settings.conf') as settings: if 'token' in settings: token = settings['token'] else: return 'System not setup !' if request.args.get('token') != token: return 'Invalid Token' if request.args.get('state') == 'open': lock.unlock() elif request.args.get('state') == 'close': lock.lock() elif request.args.get('state') == 'switch': lock.switch() else: return 'Invalid State' return 'Done' @app.route('/state') def web_state(): return str(lock.state()) <mask token>
<mask token> @app.route('/unlock') def web_unlock(): if not (request.args.get('token') and request.args.get('state')): return 'Error' else: with shelve.open('Settings.conf') as settings: if 'token' in settings: token = settings['token'] else: return 'System not setup !' if request.args.get('token') != token: return 'Invalid Token' if request.args.get('state') == 'open': lock.unlock() elif request.args.get('state') == 'close': lock.lock() elif request.args.get('state') == 'switch': lock.switch() else: return 'Invalid State' return 'Done' @app.route('/state') def web_state(): return str(lock.state()) if __name__ == '__main__': app.run(debug=True, port=5000, host='0.0.0.0')
<mask token> app = Flask(__name__) @app.route('/unlock') def web_unlock(): if not (request.args.get('token') and request.args.get('state')): return 'Error' else: with shelve.open('Settings.conf') as settings: if 'token' in settings: token = settings['token'] else: return 'System not setup !' if request.args.get('token') != token: return 'Invalid Token' if request.args.get('state') == 'open': lock.unlock() elif request.args.get('state') == 'close': lock.lock() elif request.args.get('state') == 'switch': lock.switch() else: return 'Invalid State' return 'Done' @app.route('/state') def web_state(): return str(lock.state()) if __name__ == '__main__': app.run(debug=True, port=5000, host='0.0.0.0')
from flask import request, Flask import lock, shelve app = Flask(__name__) @app.route('/unlock') def web_unlock(): if not (request.args.get('token') and request.args.get('state')): return 'Error' else: with shelve.open('Settings.conf') as settings: if 'token' in settings: token = settings['token'] else: return 'System not setup !' if request.args.get('token') != token: return 'Invalid Token' if request.args.get('state') == 'open': lock.unlock() elif request.args.get('state') == 'close': lock.lock() elif request.args.get('state') == 'switch': lock.switch() else: return 'Invalid State' return 'Done' @app.route('/state') def web_state(): return str(lock.state()) if __name__ == '__main__': app.run(debug=True, port=5000, host='0.0.0.0')
from flask import request, Flask import lock, shelve app = Flask(__name__) @app.route("/unlock") def web_unlock(): if not (request.args.get("token") and request.args.get("state")): return "Error" else: with shelve.open("Settings.conf") as settings: if "token" in settings: token = settings["token"] else: return "System not setup !" if request.args.get("token") != token: return "Invalid Token" if request.args.get("state") == "open": lock.unlock() elif request.args.get("state") == "close": lock.lock() elif request.args.get("state") == "switch": lock.switch() else: return "Invalid State" return "Done" @app.route("/state") def web_state(): return str(lock.state()) if __name__ == "__main__": app.run(debug=True, port=5000, host="0.0.0.0")
[ 2, 3, 4, 5, 6 ]
2,577
11dfb09286b8a5742550b5300c776ed82e69ead5
<mask token> @app.route('/') def addRegion(): return render_template('Website WordCount.html') <mask token>
<mask token> @app.route('/') def addRegion(): return render_template('Website WordCount.html') @app.route('/output_data', methods=['POST', 'GET']) def output_data(): unique_links = [] link_len = {} out_arr = [] if request.method == 'POST': url = request.form['url'] main = re.sub('([\\w:///.]+com|info|in|org)([\\w///?/=/&/_-]*)', '\\1', url, 0, re.MULTILINE | re.UNICODE | re.IGNORECASE) req = Request(main, headers={'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Ubuntu/11.04 Chromium/12.0.742.112 Chrome/12.0.742.112 Safari/534.30' }) sample = urlopen(req) soap = bs(sample, 'lxml') for data in soap.find_all('a', href=True): links = data['href'] links = links if links.startswith(main) else str(main) + str(links ) if links.startswith('/') else str(main) + '/' + str(links) if links in unique_links: continue unique_links.append(links) req = Request(links, headers={'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Ubuntu/11.04 Chromium/12.0.742.112 Chrome/12.0.742.112 Safari/534.30' }) sample1 = urlopen(req) soap1 = bs(sample1, 'lxml') [x.extract() for x in soap1.findAll(['script', 'style'])] data = soap1.text stri = re.sub('[.,/!"@:+*&^%~#=-_]', '', data) stri = stri.split() num_word = len(stri) if num_word < 5: continue link_len['link'] = links link_len['wordCount'] = num_word out_arr.append(link_len) print(out_arr) return out_arr if __name__ == '__main__': app.run(debug=True, host='192.168.43.164')
<mask token> app = Flask(__name__) @app.route('/') def addRegion(): return render_template('Website WordCount.html') @app.route('/output_data', methods=['POST', 'GET']) def output_data(): unique_links = [] link_len = {} out_arr = [] if request.method == 'POST': url = request.form['url'] main = re.sub('([\\w:///.]+com|info|in|org)([\\w///?/=/&/_-]*)', '\\1', url, 0, re.MULTILINE | re.UNICODE | re.IGNORECASE) req = Request(main, headers={'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Ubuntu/11.04 Chromium/12.0.742.112 Chrome/12.0.742.112 Safari/534.30' }) sample = urlopen(req) soap = bs(sample, 'lxml') for data in soap.find_all('a', href=True): links = data['href'] links = links if links.startswith(main) else str(main) + str(links ) if links.startswith('/') else str(main) + '/' + str(links) if links in unique_links: continue unique_links.append(links) req = Request(links, headers={'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Ubuntu/11.04 Chromium/12.0.742.112 Chrome/12.0.742.112 Safari/534.30' }) sample1 = urlopen(req) soap1 = bs(sample1, 'lxml') [x.extract() for x in soap1.findAll(['script', 'style'])] data = soap1.text stri = re.sub('[.,/!"@:+*&^%~#=-_]', '', data) stri = stri.split() num_word = len(stri) if num_word < 5: continue link_len['link'] = links link_len['wordCount'] = num_word out_arr.append(link_len) print(out_arr) return out_arr if __name__ == '__main__': app.run(debug=True, host='192.168.43.164')
from flask import request, Flask, render_template from bs4 import BeautifulSoup as bs from urllib.request import Request, urlopen import re app = Flask(__name__) @app.route('/') def addRegion(): return render_template('Website WordCount.html') @app.route('/output_data', methods=['POST', 'GET']) def output_data(): unique_links = [] link_len = {} out_arr = [] if request.method == 'POST': url = request.form['url'] main = re.sub('([\\w:///.]+com|info|in|org)([\\w///?/=/&/_-]*)', '\\1', url, 0, re.MULTILINE | re.UNICODE | re.IGNORECASE) req = Request(main, headers={'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Ubuntu/11.04 Chromium/12.0.742.112 Chrome/12.0.742.112 Safari/534.30' }) sample = urlopen(req) soap = bs(sample, 'lxml') for data in soap.find_all('a', href=True): links = data['href'] links = links if links.startswith(main) else str(main) + str(links ) if links.startswith('/') else str(main) + '/' + str(links) if links in unique_links: continue unique_links.append(links) req = Request(links, headers={'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Ubuntu/11.04 Chromium/12.0.742.112 Chrome/12.0.742.112 Safari/534.30' }) sample1 = urlopen(req) soap1 = bs(sample1, 'lxml') [x.extract() for x in soap1.findAll(['script', 'style'])] data = soap1.text stri = re.sub('[.,/!"@:+*&^%~#=-_]', '', data) stri = stri.split() num_word = len(stri) if num_word < 5: continue link_len['link'] = links link_len['wordCount'] = num_word out_arr.append(link_len) print(out_arr) return out_arr if __name__ == '__main__': app.run(debug=True, host='192.168.43.164')
from flask import request,Flask, render_template from bs4 import BeautifulSoup as bs from urllib.request import Request,urlopen import re app = Flask(__name__) @app.route('/') def addRegion(): return render_template('Website WordCount.html') @app.route('/output_data', methods=['POST','GET']) def output_data(): unique_links=[] link_len={} out_arr=[] if request.method == 'POST': url = request.form['url'] main = re.sub(r"([\w:///.]+com|info|in|org)([\w///?/=/&/_-]*)",r"\1",url,0, re.MULTILINE | re.UNICODE | re.IGNORECASE) req =Request(main, headers={'User-Agent' : "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Ubuntu/11.04 Chromium/12.0.742.112 Chrome/12.0.742.112 Safari/534.30"}) sample=urlopen(req) soap=bs(sample,"lxml") for data in soap.find_all('a', href=True): links=data['href'] links=links if links.startswith(main) else (str(main)+str(links) if links.startswith( '/' ) else str(main)+"/"+str(links)) if(links in unique_links): continue unique_links.append(links) req =Request(links, headers={'User-Agent' : "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/534.30 (KHTML, like Gecko) Ubuntu/11.04 Chromium/12.0.742.112 Chrome/12.0.742.112 Safari/534.30"}) sample1=urlopen(req) soap1=bs(sample1,"lxml") [x.extract() for x in soap1.findAll(['script', 'style'])] data=soap1.text stri=re.sub('[.,/!"@:+*&^%~#=-_]','',data) stri=stri.split() num_word=len(stri) if(num_word<5): continue link_len['link']=links link_len['wordCount']=num_word out_arr.append(link_len) print(out_arr) return(out_arr) if __name__ == '__main__': app.run(debug = True,host='192.168.43.164')
[ 1, 3, 4, 5, 6 ]
2,578
74f3b4001a0520a25a314ff537719b679ba0fca4
<mask token> class DecompFactors(object): <mask token> def __init__(self, control, params, state, fluxes, met_data): """ Parameters ---------- control : integers, structure model control flags params: floats, structure model parameters state: floats, structure model state fluxes : floats, structure model fluxes met_data : floats, dictionary meteorological forcing data """ self.params = params self.fluxes = fluxes self.control = control self.state = state self.met_data = met_data self.wb = WaterBalance(self.control, self.params, self.state, self. fluxes, self.met_data) <mask token> def soil_temp_factor(self, project_day): """Soil-temperature activity factor (A9). Parameters: ----------- project_day : int current simulation day (index) Returns: -------- tfac : float soil temperature factor [degC] """ tsoil = self.met_data['tsoil'][project_day] if float_gt(tsoil, 0.0): tfac = 0.0326 + 0.00351 * tsoil ** 1.652 - (tsoil / 41.748) ** 7.19 if float_lt(tfac, 0.0): tfac = 0.0 else: tfac = 0.0 return tfac
<mask token> class DecompFactors(object): """ Calculate C and N litter production rates """ def __init__(self, control, params, state, fluxes, met_data): """ Parameters ---------- control : integers, structure model control flags params: floats, structure model parameters state: floats, structure model state fluxes : floats, structure model fluxes met_data : floats, dictionary meteorological forcing data """ self.params = params self.fluxes = fluxes self.control = control self.state = state self.met_data = met_data self.wb = WaterBalance(self.control, self.params, self.state, self. fluxes, self.met_data) def decay_rates(self, project_day): """ Model decay rates - temperature dependency (i.e. increase with temp) [See section A8 in Comins and McMurtrie 1993]. Parameters: ----------- project_day : int current simulation day (index) """ tempact = self.soil_temp_factor(project_day) wtfac = self.wb.calculate_soil_water_fac(topsoil=True) self.params.decayrate[0] = self.params.kdec1 * math.exp(-3.0 * self .params.ligshoot) * tempact * wtfac self.params.decayrate[1] = self.params.kdec2 * tempact * wtfac self.params.decayrate[2] = self.params.kdec3 * math.exp(-3.0 * self .params.ligroot) * tempact * wtfac self.params.decayrate[3] = self.params.kdec4 * tempact * wtfac self.params.decayrate[4] = self.params.kdec5 * (1.0 - 0.75 * self. params.finesoil) * tempact * wtfac self.params.decayrate[5] = self.params.kdec6 * tempact * wtfac self.params.decayrate[6] = self.params.kdec7 * tempact * wtfac def soil_temp_factor(self, project_day): """Soil-temperature activity factor (A9). Parameters: ----------- project_day : int current simulation day (index) Returns: -------- tfac : float soil temperature factor [degC] """ tsoil = self.met_data['tsoil'][project_day] if float_gt(tsoil, 0.0): tfac = 0.0326 + 0.00351 * tsoil ** 1.652 - (tsoil / 41.748) ** 7.19 if float_lt(tfac, 0.0): tfac = 0.0 else: tfac = 0.0 return tfac
<mask token> __author__ = 'Martin De Kauwe' __version__ = '1.0 (25.02.2011)' __email__ = '[email protected]' class DecompFactors(object): """ Calculate C and N litter production rates """ def __init__(self, control, params, state, fluxes, met_data): """ Parameters ---------- control : integers, structure model control flags params: floats, structure model parameters state: floats, structure model state fluxes : floats, structure model fluxes met_data : floats, dictionary meteorological forcing data """ self.params = params self.fluxes = fluxes self.control = control self.state = state self.met_data = met_data self.wb = WaterBalance(self.control, self.params, self.state, self. fluxes, self.met_data) def decay_rates(self, project_day): """ Model decay rates - temperature dependency (i.e. increase with temp) [See section A8 in Comins and McMurtrie 1993]. Parameters: ----------- project_day : int current simulation day (index) """ tempact = self.soil_temp_factor(project_day) wtfac = self.wb.calculate_soil_water_fac(topsoil=True) self.params.decayrate[0] = self.params.kdec1 * math.exp(-3.0 * self .params.ligshoot) * tempact * wtfac self.params.decayrate[1] = self.params.kdec2 * tempact * wtfac self.params.decayrate[2] = self.params.kdec3 * math.exp(-3.0 * self .params.ligroot) * tempact * wtfac self.params.decayrate[3] = self.params.kdec4 * tempact * wtfac self.params.decayrate[4] = self.params.kdec5 * (1.0 - 0.75 * self. params.finesoil) * tempact * wtfac self.params.decayrate[5] = self.params.kdec6 * tempact * wtfac self.params.decayrate[6] = self.params.kdec7 * tempact * wtfac def soil_temp_factor(self, project_day): """Soil-temperature activity factor (A9). Parameters: ----------- project_day : int current simulation day (index) Returns: -------- tfac : float soil temperature factor [degC] """ tsoil = self.met_data['tsoil'][project_day] if float_gt(tsoil, 0.0): tfac = 0.0326 + 0.00351 * tsoil ** 1.652 - (tsoil / 41.748) ** 7.19 if float_lt(tfac, 0.0): tfac = 0.0 else: tfac = 0.0 return tfac
<mask token> import math from water_balance import WaterBalance from utilities import float_eq, float_lt, float_le, float_gt, float_ge, clip __author__ = 'Martin De Kauwe' __version__ = '1.0 (25.02.2011)' __email__ = '[email protected]' class DecompFactors(object): """ Calculate C and N litter production rates """ def __init__(self, control, params, state, fluxes, met_data): """ Parameters ---------- control : integers, structure model control flags params: floats, structure model parameters state: floats, structure model state fluxes : floats, structure model fluxes met_data : floats, dictionary meteorological forcing data """ self.params = params self.fluxes = fluxes self.control = control self.state = state self.met_data = met_data self.wb = WaterBalance(self.control, self.params, self.state, self. fluxes, self.met_data) def decay_rates(self, project_day): """ Model decay rates - temperature dependency (i.e. increase with temp) [See section A8 in Comins and McMurtrie 1993]. Parameters: ----------- project_day : int current simulation day (index) """ tempact = self.soil_temp_factor(project_day) wtfac = self.wb.calculate_soil_water_fac(topsoil=True) self.params.decayrate[0] = self.params.kdec1 * math.exp(-3.0 * self .params.ligshoot) * tempact * wtfac self.params.decayrate[1] = self.params.kdec2 * tempact * wtfac self.params.decayrate[2] = self.params.kdec3 * math.exp(-3.0 * self .params.ligroot) * tempact * wtfac self.params.decayrate[3] = self.params.kdec4 * tempact * wtfac self.params.decayrate[4] = self.params.kdec5 * (1.0 - 0.75 * self. params.finesoil) * tempact * wtfac self.params.decayrate[5] = self.params.kdec6 * tempact * wtfac self.params.decayrate[6] = self.params.kdec7 * tempact * wtfac def soil_temp_factor(self, project_day): """Soil-temperature activity factor (A9). Parameters: ----------- project_day : int current simulation day (index) Returns: -------- tfac : float soil temperature factor [degC] """ tsoil = self.met_data['tsoil'][project_day] if float_gt(tsoil, 0.0): tfac = 0.0326 + 0.00351 * tsoil ** 1.652 - (tsoil / 41.748) ** 7.19 if float_lt(tfac, 0.0): tfac = 0.0 else: tfac = 0.0 return tfac
""" Soil and water decomposition rates """ import math from water_balance import WaterBalance from utilities import float_eq, float_lt, float_le, float_gt, float_ge, clip __author__ = "Martin De Kauwe" __version__ = "1.0 (25.02.2011)" __email__ = "[email protected]" class DecompFactors(object): """ Calculate C and N litter production rates """ def __init__(self, control, params, state, fluxes, met_data): """ Parameters ---------- control : integers, structure model control flags params: floats, structure model parameters state: floats, structure model state fluxes : floats, structure model fluxes met_data : floats, dictionary meteorological forcing data """ self.params = params self.fluxes = fluxes self.control = control self.state = state self.met_data = met_data self.wb = WaterBalance(self.control, self.params, self.state, self.fluxes, self.met_data) def decay_rates(self, project_day): """ Model decay rates - temperature dependency (i.e. increase with temp) [See section A8 in Comins and McMurtrie 1993]. Parameters: ----------- project_day : int current simulation day (index) """ # temperature and water factors for decomposition tempact = self.soil_temp_factor(project_day) wtfac = self.wb.calculate_soil_water_fac(topsoil=True) # decay rate of surface structural pool self.params.decayrate[0] = (self.params.kdec1 * math.exp(-3. * self.params.ligshoot) * tempact * wtfac) # decay rate of surface metabolic pool self.params.decayrate[1] = self.params.kdec2 * tempact * wtfac # decay rate of soil structural pool self.params.decayrate[2] = (self.params.kdec3 * math.exp(-3. * self.params.ligroot) * tempact * wtfac) # decay rate of soil metabolic pool self.params.decayrate[3] = self.params.kdec4 * tempact * wtfac # decay rate of active pool self.params.decayrate[4] = (self.params.kdec5 * (1.0 - 0.75 * self.params.finesoil) * tempact * wtfac) # decay rate of slow pool self.params.decayrate[5] = self.params.kdec6 * tempact * wtfac # decay rate of passive pool self.params.decayrate[6] = self.params.kdec7 * tempact * wtfac def soil_temp_factor(self, project_day): """Soil-temperature activity factor (A9). Parameters: ----------- project_day : int current simulation day (index) Returns: -------- tfac : float soil temperature factor [degC] """ tsoil = self.met_data['tsoil'][project_day] if float_gt(tsoil, 0.0): tfac = (0.0326 + 0.00351 * tsoil**1.652 - (tsoil / 41.748)**7.19) if float_lt(tfac, 0.0): tfac = 0.0 else: # negative number cannot be raised to a fractional power # number would need to be complex tfac = 0.0 return tfac
[ 3, 5, 6, 7, 8 ]
2,579
19ab44cec863560513aadd88b5fd4bb40f75e371
<mask token> class TestInterpreter(unittest.TestCase): <mask token> def test_HelloWorld(self): result = run_program( """ ++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+. +++++++..+++.>++.<<+++++++++++++++.>.+++.------.- -------.>+.>.""" ) self.assertEquals(result, 'Hello World!') def test_Squares(self): result = run_program( """ ++++[>+++++<-]>[<+++++>-]+<+[>[>+>+<<-]++>>[<<+>> -]>>>[-]++>[-]+>>>+[[-]++++++>>>]<<<[[<++++++++<+ +>>-]+<.<[>----<-]<]<<[>>>>>[>>>[-]+++++++++<[>-< -]+++++++++>[-[<->-]+[<<<]]<[>+<-]>]<<-]<<-]""" ) expected_result = '\n'.join([str(x ** 2) for x in range(101)]) self.assertEquals(result, expected_result) def test_ROT13(self): result = run_program( """ -,+[-[>>++++[>++++++++<-]<+<-[>+>+>-[>>>]<[[>+<-] >>+>]<<<<<-]]>>>[-]+>--[-[<->+++[-]]]<[++++++++++ ++<[>-[>+>>]>[+[<+>-]>+>>]<<<<<-]>>[<+>-]>[-[-<<[ -]>>]<<[<<->>-]>>]<<[<<+>>-]]<[-]<.[-]<-,+]""" , 'applesauce') self.assertEquals(result, 'nccyrfnhpr') def test_Clean(self): self.assertRaises(Exception, brainfuck.clean, '[[]') self.assertRaises(Exception, brainfuck.clean, '][') <mask token>
<mask token> class TestInterpreter(unittest.TestCase): def setUp(self): brainfuck.set_cell_size() def test_HelloWorld(self): result = run_program( """ ++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+. +++++++..+++.>++.<<+++++++++++++++.>.+++.------.- -------.>+.>.""" ) self.assertEquals(result, 'Hello World!') def test_Squares(self): result = run_program( """ ++++[>+++++<-]>[<+++++>-]+<+[>[>+>+<<-]++>>[<<+>> -]>>>[-]++>[-]+>>>+[[-]++++++>>>]<<<[[<++++++++<+ +>>-]+<.<[>----<-]<]<<[>>>>>[>>>[-]+++++++++<[>-< -]+++++++++>[-[<->-]+[<<<]]<[>+<-]>]<<-]<<-]""" ) expected_result = '\n'.join([str(x ** 2) for x in range(101)]) self.assertEquals(result, expected_result) def test_ROT13(self): result = run_program( """ -,+[-[>>++++[>++++++++<-]<+<-[>+>+>-[>>>]<[[>+<-] >>+>]<<<<<-]]>>>[-]+>--[-[<->+++[-]]]<[++++++++++ ++<[>-[>+>>]>[+[<+>-]>+>>]<<<<<-]>>[<+>-]>[-[-<<[ -]>>]<<[<<->>-]>>]<<[<<+>>-]]<[-]<.[-]<-,+]""" , 'applesauce') self.assertEquals(result, 'nccyrfnhpr') def test_Clean(self): self.assertRaises(Exception, brainfuck.clean, '[[]') self.assertRaises(Exception, brainfuck.clean, '][') <mask token>
<mask token> def run_program(program, input=None): old_stdout = sys.stdout old_stdin = sys.stdin try: out = StringIO() sys.stdout = out if input is not None: input = StringIO(input) sys.stdin = input brainfuck.brainfuck(program) finally: sys.stdout = old_stdout sys.stdin = old_stdin return out.getvalue().strip() class TestInterpreter(unittest.TestCase): def setUp(self): brainfuck.set_cell_size() def test_HelloWorld(self): result = run_program( """ ++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+. +++++++..+++.>++.<<+++++++++++++++.>.+++.------.- -------.>+.>.""" ) self.assertEquals(result, 'Hello World!') def test_Squares(self): result = run_program( """ ++++[>+++++<-]>[<+++++>-]+<+[>[>+>+<<-]++>>[<<+>> -]>>>[-]++>[-]+>>>+[[-]++++++>>>]<<<[[<++++++++<+ +>>-]+<.<[>----<-]<]<<[>>>>>[>>>[-]+++++++++<[>-< -]+++++++++>[-[<->-]+[<<<]]<[>+<-]>]<<-]<<-]""" ) expected_result = '\n'.join([str(x ** 2) for x in range(101)]) self.assertEquals(result, expected_result) def test_ROT13(self): result = run_program( """ -,+[-[>>++++[>++++++++<-]<+<-[>+>+>-[>>>]<[[>+<-] >>+>]<<<<<-]]>>>[-]+>--[-[<->+++[-]]]<[++++++++++ ++<[>-[>+>>]>[+[<+>-]>+>>]<<<<<-]>>[<+>-]>[-[-<<[ -]>>]<<[<<->>-]>>]<<[<<+>>-]]<[-]<.[-]<-,+]""" , 'applesauce') self.assertEquals(result, 'nccyrfnhpr') def test_Clean(self): self.assertRaises(Exception, brainfuck.clean, '[[]') self.assertRaises(Exception, brainfuck.clean, '][') if __name__ == '__main__': unittest.main()
import unittest import brainfuck import sys from StringIO import StringIO def run_program(program, input=None): old_stdout = sys.stdout old_stdin = sys.stdin try: out = StringIO() sys.stdout = out if input is not None: input = StringIO(input) sys.stdin = input brainfuck.brainfuck(program) finally: sys.stdout = old_stdout sys.stdin = old_stdin return out.getvalue().strip() class TestInterpreter(unittest.TestCase): def setUp(self): brainfuck.set_cell_size() def test_HelloWorld(self): result = run_program( """ ++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+. +++++++..+++.>++.<<+++++++++++++++.>.+++.------.- -------.>+.>.""" ) self.assertEquals(result, 'Hello World!') def test_Squares(self): result = run_program( """ ++++[>+++++<-]>[<+++++>-]+<+[>[>+>+<<-]++>>[<<+>> -]>>>[-]++>[-]+>>>+[[-]++++++>>>]<<<[[<++++++++<+ +>>-]+<.<[>----<-]<]<<[>>>>>[>>>[-]+++++++++<[>-< -]+++++++++>[-[<->-]+[<<<]]<[>+<-]>]<<-]<<-]""" ) expected_result = '\n'.join([str(x ** 2) for x in range(101)]) self.assertEquals(result, expected_result) def test_ROT13(self): result = run_program( """ -,+[-[>>++++[>++++++++<-]<+<-[>+>+>-[>>>]<[[>+<-] >>+>]<<<<<-]]>>>[-]+>--[-[<->+++[-]]]<[++++++++++ ++<[>-[>+>>]>[+[<+>-]>+>>]<<<<<-]>>[<+>-]>[-[-<<[ -]>>]<<[<<->>-]>>]<<[<<+>>-]]<[-]<.[-]<-,+]""" , 'applesauce') self.assertEquals(result, 'nccyrfnhpr') def test_Clean(self): self.assertRaises(Exception, brainfuck.clean, '[[]') self.assertRaises(Exception, brainfuck.clean, '][') if __name__ == '__main__': unittest.main()
import unittest import brainfuck import sys from StringIO import StringIO def run_program(program, input = None): old_stdout = sys.stdout old_stdin = sys.stdin try: out = StringIO() sys.stdout = out if input is not None: input = StringIO(input) sys.stdin = input brainfuck.brainfuck(program) finally: sys.stdout = old_stdout sys.stdin = old_stdin return out.getvalue().strip() class TestInterpreter(unittest.TestCase): def setUp(self): brainfuck.set_cell_size() def test_HelloWorld(self): result = run_program(""" ++++++++++[>+++++++>++++++++++>+++>+<<<<-]>++.>+. +++++++..+++.>++.<<+++++++++++++++.>.+++.------.- -------.>+.>.""") self.assertEquals(result, "Hello World!") def test_Squares(self): result = run_program(""" ++++[>+++++<-]>[<+++++>-]+<+[>[>+>+<<-]++>>[<<+>> -]>>>[-]++>[-]+>>>+[[-]++++++>>>]<<<[[<++++++++<+ +>>-]+<.<[>----<-]<]<<[>>>>>[>>>[-]+++++++++<[>-< -]+++++++++>[-[<->-]+[<<<]]<[>+<-]>]<<-]<<-]""") expected_result = "\n".join([str(x**2) for x in range(101)]) self.assertEquals(result, expected_result) def test_ROT13(self): result = run_program(""" -,+[-[>>++++[>++++++++<-]<+<-[>+>+>-[>>>]<[[>+<-] >>+>]<<<<<-]]>>>[-]+>--[-[<->+++[-]]]<[++++++++++ ++<[>-[>+>>]>[+[<+>-]>+>>]<<<<<-]>>[<+>-]>[-[-<<[ -]>>]<<[<<->>-]>>]<<[<<+>>-]]<[-]<.[-]<-,+]""", "applesauce") self.assertEquals(result, "nccyrfnhpr") def test_Clean(self): self.assertRaises(Exception, brainfuck.clean, "[[]") self.assertRaises(Exception, brainfuck.clean, "][") if __name__ == '__main__': unittest.main()
[ 5, 6, 8, 9, 10 ]
2,580
a7e2b016131dfdb75e537e86875e1b2f19fb3d9d
<mask token> class ClusterTestCase(unittest.TestCase): <mask token> <mask token>
<mask token> class ClusterTestCase(unittest.TestCase): def test_cluster(self): n = 10 experiments, outcomes = utilities.load_flu_data() data = outcomes['infected fraction R1'][0:n, :] distances = clusterer.calculate_cid(data) self.assertEqual(distances.shape, (n, n)) clusterer.plot_dendrogram(distances) plt.draw() assignment = clusterer.apply_agglomerative_clustering(distances, 2) self.assertEqual(assignment.shape, (10,)) distances = clusterer.calculate_cid(data, condensed_form=True) self.assertEqual(distances.shape, sum(np.arange(0, n))) clusterer.plot_dendrogram(distances) plt.draw() plt.close('all') <mask token>
<mask token> class ClusterTestCase(unittest.TestCase): def test_cluster(self): n = 10 experiments, outcomes = utilities.load_flu_data() data = outcomes['infected fraction R1'][0:n, :] distances = clusterer.calculate_cid(data) self.assertEqual(distances.shape, (n, n)) clusterer.plot_dendrogram(distances) plt.draw() assignment = clusterer.apply_agglomerative_clustering(distances, 2) self.assertEqual(assignment.shape, (10,)) distances = clusterer.calculate_cid(data, condensed_form=True) self.assertEqual(distances.shape, sum(np.arange(0, n))) clusterer.plot_dendrogram(distances) plt.draw() plt.close('all') if __name__ == '__main__': unittest.main()
import matplotlib.pyplot as plt import numpy as np import unittest from ema_workbench.analysis import clusterer from test import utilities class ClusterTestCase(unittest.TestCase): def test_cluster(self): n = 10 experiments, outcomes = utilities.load_flu_data() data = outcomes['infected fraction R1'][0:n, :] distances = clusterer.calculate_cid(data) self.assertEqual(distances.shape, (n, n)) clusterer.plot_dendrogram(distances) plt.draw() assignment = clusterer.apply_agglomerative_clustering(distances, 2) self.assertEqual(assignment.shape, (10,)) distances = clusterer.calculate_cid(data, condensed_form=True) self.assertEqual(distances.shape, sum(np.arange(0, n))) clusterer.plot_dendrogram(distances) plt.draw() plt.close('all') if __name__ == '__main__': unittest.main()
import matplotlib.pyplot as plt import numpy as np import unittest from ema_workbench.analysis import clusterer from test import utilities class ClusterTestCase(unittest.TestCase): def test_cluster(self): n = 10 experiments, outcomes = utilities.load_flu_data() data = outcomes["infected fraction R1"][0:n, :] distances = clusterer.calculate_cid(data) self.assertEqual(distances.shape, (n, n)) clusterer.plot_dendrogram(distances) plt.draw() assignment = clusterer.apply_agglomerative_clustering(distances, 2) self.assertEqual(assignment.shape, (10,)) distances = clusterer.calculate_cid(data, condensed_form=True) self.assertEqual(distances.shape, sum(np.arange(0, n))) clusterer.plot_dendrogram(distances) plt.draw() plt.close("all") if __name__ == "__main__": unittest.main()
[ 1, 2, 3, 4, 5 ]
2,581
538e582df7bfcf281973a5296adc14ca067be0a5
<mask token>
<mask token> admin.autodiscover() <mask token> urlpatterns += staticfiles_urlpatterns() urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
<mask token> admin.autodiscover() urlpatterns = patterns('', ('', include(application.urls)), url('^admin/', include(admin.site.urls)), url('^logout$', logout, name='logout')) urlpatterns += staticfiles_urlpatterns() urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
from django.conf.urls import patterns, include, url from django.contrib.auth.views import login, logout from django.contrib import admin from magmag_core.app import application from django.contrib.staticfiles.urls import staticfiles_urlpatterns from django.conf.urls.static import static from magmag import settings admin.autodiscover() urlpatterns = patterns('', ('', include(application.urls)), url('^admin/', include(admin.site.urls)), url('^logout$', logout, name='logout')) urlpatterns += staticfiles_urlpatterns() urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
# -*- coding: utf-8 -*- from django.conf.urls import patterns, include, url from django.contrib.auth.views import login, logout from django.contrib import admin from magmag_core.app import application from django.contrib.staticfiles.urls import staticfiles_urlpatterns from django.conf.urls.static import static from magmag import settings admin.autodiscover() urlpatterns = patterns('', # Examples: # url(r'^$', 'magmag.views.home', name='home'), # url(r'^blog/', include('blog.urls')), (r'', include(application.urls)), url(r'^admin/', include(admin.site.urls)), url(r'^logout$', logout,name='logout' ), ) urlpatterns += staticfiles_urlpatterns() urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
[ 0, 1, 2, 3, 4 ]
2,582
e3631a2a003f98fbf05c45a019250e76d3366949
<mask token> def predict_babelnet(input_path: str, output_path: str, resources_path: str ) ->None: global mfs_counter """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <BABELSynset>" format (e.g. "d000.s000.t000 bn:01234567n"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ print('>>>> BABELNET PREDICTION') prediction_results, sentences_xml_elements = __predict(input_path, resources_path) vocab_label_bn = create_mapping_dictionary(resources_path, mode='bn') correctly_saved = 0 filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] filename = filename[:-3] + 'babelnet.gold.key.txt' for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[ index], resources_path, output_path, prediction_results[index][ 0][0], vocab=vocab_label_bn, enable_coarse_grained=1, vocab_for_coarse=None) print('Successfully saved {} out of {}'.format(correctly_saved, len( prediction_results))) del prediction_results print('Of these, {} were MFS'.format(mfs_counter)) mfs_counter = 0 return def predict_wordnet_domains(input_path: str, output_path: str, resources_path: str) ->None: """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <wordnetDomain>" format (e.g. "d000.s000.t000 sport"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ global mfs_counter print('>>>> WORDNET DOMAINS PREDICTION') prediction_results, sentences_xml_elements = __predict(input_path, resources_path) vocab_label_wndmn = create_mapping_dictionary(resources_path, mode='wndmn') correctly_saved = 0 bn2wndom = get_bn2wndomains() filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] filename = filename[:-3] + 'wndomains.gold.key.txt' for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[ index], resources_path, output_path, prediction_results[index][ 1][0], vocab=vocab_label_wndmn, enable_coarse_grained=2, vocab_for_coarse=bn2wndom) print('Successfully saved {} out of {}'.format(correctly_saved, len( prediction_results))) del prediction_results print('Of these, {} were MFS'.format(mfs_counter)) mfs_counter = 0 return def predict_lexicographer(input_path: str, output_path: str, resources_path: str) ->None: """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <lexicographerId>" format (e.g. "d000.s000.t000 noun.animal"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ global mfs_counter print('>>>> LEXICOGRAPHER PREDICTION') prediction_results, sentences_xml_elements = __predict(input_path, resources_path) vocab_label_lex = create_mapping_dictionary(resources_path, mode='lex') correctly_saved = 0 filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] bn2lex = get_bn2lex() filename = filename[:-3] + 'lexicon.gold.key.txt' for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[ index], resources_path, output_path, prediction_results[index][ 2][0], vocab=vocab_label_lex, enable_coarse_grained=3, vocab_for_coarse=bn2lex) print('Successfully saved {} out of {}'.format(correctly_saved, len( prediction_results))) del prediction_results print('Of these, {} were MFS'.format(mfs_counter)) mfs_counter = 0 return <mask token> def __write_result(filename: str, frase, resources_path: str, outputh_path: str, predictions, vocab=None, enable_coarse_grained: int=1, vocab_for_coarse=None) ->int: """ Write results in the file system :param filename: the name of the file to save :param frase: the object from which recover the sentence :param resources_path: the path of the resources folder containing your model and stuff you might need. :param output_path: the path of the output file (where you save your predictions) :param predictions: the predictions made by the system :param vocab: the vocab needed for giving a sense :param enable_coarse_grained: changes the flow of the function from fine-grained to coarse-grained. Default to 1. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :param vocab_for_coarse: The vocab in support of mode 2 or 3 :return: 1 if succeeds """ global mfs_counter bn2wn = get_bn2wn() lemma2wn = reload_word_mapping(resources_path + '/mapping/lemma2wn.txt') to_write = [] for index, parola in enumerate(frase): name = parola.xpath('name()') if name == 'instance': id = parola.get('id') list_of_possible_senses_first_step = lemma2wn.get(parola.text) if not list_of_possible_senses_first_step: the_actual_meaning = MFS(parola, bn2wn, vocab2= vocab_for_coarse, pred_case=enable_coarse_grained) mfs_counter += 1 to_write.append((id, the_actual_meaning)) continue list_of_possible_senses_bn_version = convert_from_wnlist_2_bnlist( list_of_possible_senses_first_step, bn2wn) candidates, list_of_possible_senses_bn_version = ( create_custom_label(list_of_possible_senses_bn_version, parola.text, vocab, predictions[index], enable_coarse_grained=enable_coarse_grained)) the_actual_meaning = None if candidates: argmax = np.argmax(candidates) the_actual_meaning = list_of_possible_senses_bn_version[argmax] else: mfs_counter += 1 the_actual_meaning = MFS(parola, bn2wn, vocab2= vocab_for_coarse, pred_case=enable_coarse_grained) to_write.append((id, the_actual_meaning)) with open(outputh_path + '/' + filename, 'a') as test_saving: for tupla in to_write: test_saving.write(tupla[0] + ' ' + tupla[1] + '\n') del to_write del lemma2wn del bn2wn return 1 def MFS(parola, vocab: Dict, vocab2: Dict=None, pred_case: int=1) ->str: """ Returns the sense by applying the Most Frequent Sense (MFS) strategy :param parola: the Element object to which associate a sense :param vocab: the vocab needed for giving a sense :param vocab2: default to None. The other vocabulary to use if coarse-grained mode is enabled. Has to be populated if enable_coarse_grained :param pred_case: whether to adopt a "rollback" strategy such as MFS or not. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :return: the chosen sense with the MFS technique """ pos = parola.get('pos') pos_input = __decide_pos(pos) wordnet_object = wordnet.synsets(parola.get('lemma'), pos=pos_input) try: wordnet_object = wordnet_object[0] except: print(wordnet_object) print(parola.text) wn_synset = 'wn:' + str(wordnet_object.offset()).zfill(8 ) + wordnet_object.pos() the_actual_meaning = next(key for key, value in vocab.items() if wn_synset in value) to_return = __extrapolate_value_for_MFS(the_actual_meaning, vocab= vocab2, pred_case=pred_case) return to_return def __extrapolate_value_for_MFS(value: object, pred_case: int=1, vocab: Dict=None) ->str: """ Taking either a List or String in input, that represents the found Babelnet ID, this function handles it and return a string that contains the value of the prediction :param value: The Value from which to extrapolate the actual meaning found :param pred_case: whether to adopt a "rollback" strategy such as MFS or not. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :param vocab: The vocab in support of mode 2 or 3. :return: the actual meaning found with MFS """ the_meaning_to_explot = __type_checker(value) if pred_case == 1: return the_meaning_to_explot if pred_case == 2: to_return = vocab.get(the_meaning_to_explot) return to_return[0] if to_return else 'factotum' if pred_case == 3: to_return = vocab.get(the_meaning_to_explot) return to_return[0] def __type_checker(value: object) ->str: """ Checks the type of the object and, accordingly, returns it :param value: the value to examinate :return: a string that is the value expected """ if type(value) == str: return value if type(value) == list: return value[0] <mask token>
<mask token> def predict_babelnet(input_path: str, output_path: str, resources_path: str ) ->None: global mfs_counter """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <BABELSynset>" format (e.g. "d000.s000.t000 bn:01234567n"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ print('>>>> BABELNET PREDICTION') prediction_results, sentences_xml_elements = __predict(input_path, resources_path) vocab_label_bn = create_mapping_dictionary(resources_path, mode='bn') correctly_saved = 0 filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] filename = filename[:-3] + 'babelnet.gold.key.txt' for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[ index], resources_path, output_path, prediction_results[index][ 0][0], vocab=vocab_label_bn, enable_coarse_grained=1, vocab_for_coarse=None) print('Successfully saved {} out of {}'.format(correctly_saved, len( prediction_results))) del prediction_results print('Of these, {} were MFS'.format(mfs_counter)) mfs_counter = 0 return def predict_wordnet_domains(input_path: str, output_path: str, resources_path: str) ->None: """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <wordnetDomain>" format (e.g. "d000.s000.t000 sport"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ global mfs_counter print('>>>> WORDNET DOMAINS PREDICTION') prediction_results, sentences_xml_elements = __predict(input_path, resources_path) vocab_label_wndmn = create_mapping_dictionary(resources_path, mode='wndmn') correctly_saved = 0 bn2wndom = get_bn2wndomains() filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] filename = filename[:-3] + 'wndomains.gold.key.txt' for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[ index], resources_path, output_path, prediction_results[index][ 1][0], vocab=vocab_label_wndmn, enable_coarse_grained=2, vocab_for_coarse=bn2wndom) print('Successfully saved {} out of {}'.format(correctly_saved, len( prediction_results))) del prediction_results print('Of these, {} were MFS'.format(mfs_counter)) mfs_counter = 0 return def predict_lexicographer(input_path: str, output_path: str, resources_path: str) ->None: """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <lexicographerId>" format (e.g. "d000.s000.t000 noun.animal"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ global mfs_counter print('>>>> LEXICOGRAPHER PREDICTION') prediction_results, sentences_xml_elements = __predict(input_path, resources_path) vocab_label_lex = create_mapping_dictionary(resources_path, mode='lex') correctly_saved = 0 filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] bn2lex = get_bn2lex() filename = filename[:-3] + 'lexicon.gold.key.txt' for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[ index], resources_path, output_path, prediction_results[index][ 2][0], vocab=vocab_label_lex, enable_coarse_grained=3, vocab_for_coarse=bn2lex) print('Successfully saved {} out of {}'.format(correctly_saved, len( prediction_results))) del prediction_results print('Of these, {} were MFS'.format(mfs_counter)) mfs_counter = 0 return def __predict(input_path: str, resources_path: str) ->Tuple: """ Actually predicts a sentence and returns the predictions in the requested formats :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: The actual prediction by the network """ train, etree_data = load_dataset(input_path) train = [dato for dato in train if dato] vocab_label_wndmn = create_mapping_dictionary(resources_path, mode='wndmn') vocab_label_bn = create_mapping_dictionary(resources_path, mode='bn') vocab_label_lex = create_mapping_dictionary(resources_path, mode='lex') modello = WSD(resources_path + '/vocabularies/bert_vocab.txt', [len( vocab_label_bn), len(vocab_label_wndmn), len(vocab_label_lex)], dropout=0.1, recurrent_dropout=0.1, learning_rate=0.0003) tokenizatore = modello.tokenizatore modello.model.load_weights(resources_path + '/saved_model/model_20_2.14.h5' ) to_return = [] sentences_xml_elements = etree_data.xpath('/*/*/*') for sentence in train: feature_1, feature_2, feature_3 = ( convert_sentence_to_features_no_padding(sentence, tokenizatore)) results = modello.model.predict({'input_word_ids': feature_1, 'input_mask': feature_2, 'segment_ids': feature_3}, verbose=1) to_return.append(results) del vocab_label_lex del vocab_label_wndmn del vocab_label_bn return to_return, sentences_xml_elements def __write_result(filename: str, frase, resources_path: str, outputh_path: str, predictions, vocab=None, enable_coarse_grained: int=1, vocab_for_coarse=None) ->int: """ Write results in the file system :param filename: the name of the file to save :param frase: the object from which recover the sentence :param resources_path: the path of the resources folder containing your model and stuff you might need. :param output_path: the path of the output file (where you save your predictions) :param predictions: the predictions made by the system :param vocab: the vocab needed for giving a sense :param enable_coarse_grained: changes the flow of the function from fine-grained to coarse-grained. Default to 1. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :param vocab_for_coarse: The vocab in support of mode 2 or 3 :return: 1 if succeeds """ global mfs_counter bn2wn = get_bn2wn() lemma2wn = reload_word_mapping(resources_path + '/mapping/lemma2wn.txt') to_write = [] for index, parola in enumerate(frase): name = parola.xpath('name()') if name == 'instance': id = parola.get('id') list_of_possible_senses_first_step = lemma2wn.get(parola.text) if not list_of_possible_senses_first_step: the_actual_meaning = MFS(parola, bn2wn, vocab2= vocab_for_coarse, pred_case=enable_coarse_grained) mfs_counter += 1 to_write.append((id, the_actual_meaning)) continue list_of_possible_senses_bn_version = convert_from_wnlist_2_bnlist( list_of_possible_senses_first_step, bn2wn) candidates, list_of_possible_senses_bn_version = ( create_custom_label(list_of_possible_senses_bn_version, parola.text, vocab, predictions[index], enable_coarse_grained=enable_coarse_grained)) the_actual_meaning = None if candidates: argmax = np.argmax(candidates) the_actual_meaning = list_of_possible_senses_bn_version[argmax] else: mfs_counter += 1 the_actual_meaning = MFS(parola, bn2wn, vocab2= vocab_for_coarse, pred_case=enable_coarse_grained) to_write.append((id, the_actual_meaning)) with open(outputh_path + '/' + filename, 'a') as test_saving: for tupla in to_write: test_saving.write(tupla[0] + ' ' + tupla[1] + '\n') del to_write del lemma2wn del bn2wn return 1 def MFS(parola, vocab: Dict, vocab2: Dict=None, pred_case: int=1) ->str: """ Returns the sense by applying the Most Frequent Sense (MFS) strategy :param parola: the Element object to which associate a sense :param vocab: the vocab needed for giving a sense :param vocab2: default to None. The other vocabulary to use if coarse-grained mode is enabled. Has to be populated if enable_coarse_grained :param pred_case: whether to adopt a "rollback" strategy such as MFS or not. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :return: the chosen sense with the MFS technique """ pos = parola.get('pos') pos_input = __decide_pos(pos) wordnet_object = wordnet.synsets(parola.get('lemma'), pos=pos_input) try: wordnet_object = wordnet_object[0] except: print(wordnet_object) print(parola.text) wn_synset = 'wn:' + str(wordnet_object.offset()).zfill(8 ) + wordnet_object.pos() the_actual_meaning = next(key for key, value in vocab.items() if wn_synset in value) to_return = __extrapolate_value_for_MFS(the_actual_meaning, vocab= vocab2, pred_case=pred_case) return to_return def __extrapolate_value_for_MFS(value: object, pred_case: int=1, vocab: Dict=None) ->str: """ Taking either a List or String in input, that represents the found Babelnet ID, this function handles it and return a string that contains the value of the prediction :param value: The Value from which to extrapolate the actual meaning found :param pred_case: whether to adopt a "rollback" strategy such as MFS or not. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :param vocab: The vocab in support of mode 2 or 3. :return: the actual meaning found with MFS """ the_meaning_to_explot = __type_checker(value) if pred_case == 1: return the_meaning_to_explot if pred_case == 2: to_return = vocab.get(the_meaning_to_explot) return to_return[0] if to_return else 'factotum' if pred_case == 3: to_return = vocab.get(the_meaning_to_explot) return to_return[0] def __type_checker(value: object) ->str: """ Checks the type of the object and, accordingly, returns it :param value: the value to examinate :return: a string that is the value expected """ if type(value) == str: return value if type(value) == list: return value[0] def __decide_pos(pos: str) ->str: """ Decides the WN representation of the given pos in input :param pos: the pos to interpret with WordNet :return: the WN representation of the given pos """ to_return = None if pos == 'NOUN': to_return = 'n' if pos == 'VERB': to_return = 'v' if pos == 'ADJ': to_return = 'a' if pos == 'ADV': to_return = 'r' return to_return def convert_from_wnlist_2_bnlist(list_of_bn: List, vocab: Dict) ->List: """ Cast the given list (which contains only WN ids) to Babelnet IDs :param list_of_bn: the list to cast :param vocab: the vocabulary to use to perform the conversion :return: the converted list """ list_of_possible_senses_bn_version = [] for candidate in list_of_bn: is_it_here = next(key for key, value in vocab.items() if candidate in value) if is_it_here: list_of_possible_senses_bn_version.append(is_it_here if type( is_it_here) == str else is_it_here[0]) return list_of_possible_senses_bn_version <mask token>
<mask token> def predict_babelnet(input_path: str, output_path: str, resources_path: str ) ->None: global mfs_counter """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <BABELSynset>" format (e.g. "d000.s000.t000 bn:01234567n"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ print('>>>> BABELNET PREDICTION') prediction_results, sentences_xml_elements = __predict(input_path, resources_path) vocab_label_bn = create_mapping_dictionary(resources_path, mode='bn') correctly_saved = 0 filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] filename = filename[:-3] + 'babelnet.gold.key.txt' for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[ index], resources_path, output_path, prediction_results[index][ 0][0], vocab=vocab_label_bn, enable_coarse_grained=1, vocab_for_coarse=None) print('Successfully saved {} out of {}'.format(correctly_saved, len( prediction_results))) del prediction_results print('Of these, {} were MFS'.format(mfs_counter)) mfs_counter = 0 return def predict_wordnet_domains(input_path: str, output_path: str, resources_path: str) ->None: """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <wordnetDomain>" format (e.g. "d000.s000.t000 sport"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ global mfs_counter print('>>>> WORDNET DOMAINS PREDICTION') prediction_results, sentences_xml_elements = __predict(input_path, resources_path) vocab_label_wndmn = create_mapping_dictionary(resources_path, mode='wndmn') correctly_saved = 0 bn2wndom = get_bn2wndomains() filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] filename = filename[:-3] + 'wndomains.gold.key.txt' for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[ index], resources_path, output_path, prediction_results[index][ 1][0], vocab=vocab_label_wndmn, enable_coarse_grained=2, vocab_for_coarse=bn2wndom) print('Successfully saved {} out of {}'.format(correctly_saved, len( prediction_results))) del prediction_results print('Of these, {} were MFS'.format(mfs_counter)) mfs_counter = 0 return def predict_lexicographer(input_path: str, output_path: str, resources_path: str) ->None: """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <lexicographerId>" format (e.g. "d000.s000.t000 noun.animal"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ global mfs_counter print('>>>> LEXICOGRAPHER PREDICTION') prediction_results, sentences_xml_elements = __predict(input_path, resources_path) vocab_label_lex = create_mapping_dictionary(resources_path, mode='lex') correctly_saved = 0 filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] bn2lex = get_bn2lex() filename = filename[:-3] + 'lexicon.gold.key.txt' for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[ index], resources_path, output_path, prediction_results[index][ 2][0], vocab=vocab_label_lex, enable_coarse_grained=3, vocab_for_coarse=bn2lex) print('Successfully saved {} out of {}'.format(correctly_saved, len( prediction_results))) del prediction_results print('Of these, {} were MFS'.format(mfs_counter)) mfs_counter = 0 return def __predict(input_path: str, resources_path: str) ->Tuple: """ Actually predicts a sentence and returns the predictions in the requested formats :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: The actual prediction by the network """ train, etree_data = load_dataset(input_path) train = [dato for dato in train if dato] vocab_label_wndmn = create_mapping_dictionary(resources_path, mode='wndmn') vocab_label_bn = create_mapping_dictionary(resources_path, mode='bn') vocab_label_lex = create_mapping_dictionary(resources_path, mode='lex') modello = WSD(resources_path + '/vocabularies/bert_vocab.txt', [len( vocab_label_bn), len(vocab_label_wndmn), len(vocab_label_lex)], dropout=0.1, recurrent_dropout=0.1, learning_rate=0.0003) tokenizatore = modello.tokenizatore modello.model.load_weights(resources_path + '/saved_model/model_20_2.14.h5' ) to_return = [] sentences_xml_elements = etree_data.xpath('/*/*/*') for sentence in train: feature_1, feature_2, feature_3 = ( convert_sentence_to_features_no_padding(sentence, tokenizatore)) results = modello.model.predict({'input_word_ids': feature_1, 'input_mask': feature_2, 'segment_ids': feature_3}, verbose=1) to_return.append(results) del vocab_label_lex del vocab_label_wndmn del vocab_label_bn return to_return, sentences_xml_elements def __write_result(filename: str, frase, resources_path: str, outputh_path: str, predictions, vocab=None, enable_coarse_grained: int=1, vocab_for_coarse=None) ->int: """ Write results in the file system :param filename: the name of the file to save :param frase: the object from which recover the sentence :param resources_path: the path of the resources folder containing your model and stuff you might need. :param output_path: the path of the output file (where you save your predictions) :param predictions: the predictions made by the system :param vocab: the vocab needed for giving a sense :param enable_coarse_grained: changes the flow of the function from fine-grained to coarse-grained. Default to 1. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :param vocab_for_coarse: The vocab in support of mode 2 or 3 :return: 1 if succeeds """ global mfs_counter bn2wn = get_bn2wn() lemma2wn = reload_word_mapping(resources_path + '/mapping/lemma2wn.txt') to_write = [] for index, parola in enumerate(frase): name = parola.xpath('name()') if name == 'instance': id = parola.get('id') list_of_possible_senses_first_step = lemma2wn.get(parola.text) if not list_of_possible_senses_first_step: the_actual_meaning = MFS(parola, bn2wn, vocab2= vocab_for_coarse, pred_case=enable_coarse_grained) mfs_counter += 1 to_write.append((id, the_actual_meaning)) continue list_of_possible_senses_bn_version = convert_from_wnlist_2_bnlist( list_of_possible_senses_first_step, bn2wn) candidates, list_of_possible_senses_bn_version = ( create_custom_label(list_of_possible_senses_bn_version, parola.text, vocab, predictions[index], enable_coarse_grained=enable_coarse_grained)) the_actual_meaning = None if candidates: argmax = np.argmax(candidates) the_actual_meaning = list_of_possible_senses_bn_version[argmax] else: mfs_counter += 1 the_actual_meaning = MFS(parola, bn2wn, vocab2= vocab_for_coarse, pred_case=enable_coarse_grained) to_write.append((id, the_actual_meaning)) with open(outputh_path + '/' + filename, 'a') as test_saving: for tupla in to_write: test_saving.write(tupla[0] + ' ' + tupla[1] + '\n') del to_write del lemma2wn del bn2wn return 1 def MFS(parola, vocab: Dict, vocab2: Dict=None, pred_case: int=1) ->str: """ Returns the sense by applying the Most Frequent Sense (MFS) strategy :param parola: the Element object to which associate a sense :param vocab: the vocab needed for giving a sense :param vocab2: default to None. The other vocabulary to use if coarse-grained mode is enabled. Has to be populated if enable_coarse_grained :param pred_case: whether to adopt a "rollback" strategy such as MFS or not. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :return: the chosen sense with the MFS technique """ pos = parola.get('pos') pos_input = __decide_pos(pos) wordnet_object = wordnet.synsets(parola.get('lemma'), pos=pos_input) try: wordnet_object = wordnet_object[0] except: print(wordnet_object) print(parola.text) wn_synset = 'wn:' + str(wordnet_object.offset()).zfill(8 ) + wordnet_object.pos() the_actual_meaning = next(key for key, value in vocab.items() if wn_synset in value) to_return = __extrapolate_value_for_MFS(the_actual_meaning, vocab= vocab2, pred_case=pred_case) return to_return def __extrapolate_value_for_MFS(value: object, pred_case: int=1, vocab: Dict=None) ->str: """ Taking either a List or String in input, that represents the found Babelnet ID, this function handles it and return a string that contains the value of the prediction :param value: The Value from which to extrapolate the actual meaning found :param pred_case: whether to adopt a "rollback" strategy such as MFS or not. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :param vocab: The vocab in support of mode 2 or 3. :return: the actual meaning found with MFS """ the_meaning_to_explot = __type_checker(value) if pred_case == 1: return the_meaning_to_explot if pred_case == 2: to_return = vocab.get(the_meaning_to_explot) return to_return[0] if to_return else 'factotum' if pred_case == 3: to_return = vocab.get(the_meaning_to_explot) return to_return[0] def __type_checker(value: object) ->str: """ Checks the type of the object and, accordingly, returns it :param value: the value to examinate :return: a string that is the value expected """ if type(value) == str: return value if type(value) == list: return value[0] def __decide_pos(pos: str) ->str: """ Decides the WN representation of the given pos in input :param pos: the pos to interpret with WordNet :return: the WN representation of the given pos """ to_return = None if pos == 'NOUN': to_return = 'n' if pos == 'VERB': to_return = 'v' if pos == 'ADJ': to_return = 'a' if pos == 'ADV': to_return = 'r' return to_return def convert_from_wnlist_2_bnlist(list_of_bn: List, vocab: Dict) ->List: """ Cast the given list (which contains only WN ids) to Babelnet IDs :param list_of_bn: the list to cast :param vocab: the vocabulary to use to perform the conversion :return: the converted list """ list_of_possible_senses_bn_version = [] for candidate in list_of_bn: is_it_here = next(key for key, value in vocab.items() if candidate in value) if is_it_here: list_of_possible_senses_bn_version.append(is_it_here if type( is_it_here) == str else is_it_here[0]) return list_of_possible_senses_bn_version def create_custom_label(list_of_possible_senses: List, word: str, vocab: Dict, predictions, enable_coarse_grained: int=1) ->List: """ Converts the list of babelnet IDS to a number and outputs the converted list :param list_of_possible_senses: the list that contains all the babelnet's IDs :param word: the word for which we are predicting the sense in a specific moment :param vocab: the vocabulary Word -> Serial to exploit for the conversion :param predictions: the predictions made by the system :param enable_coarse_grained: changes the flow of the function from fine-grained to coarse-grained. Default to None. Possible values: 1 --> The flow will still be the same 2,3 -> Flow will change, triggering the first step for the coarse-grained approach. :return: a List with the IDs converted """ to_return = [] list_of_indices_to_delete = [] for indice in range(len(list_of_possible_senses)): new_string = word + '_' + list_of_possible_senses[indice ] if enable_coarse_grained == 1 else list_of_possible_senses[indice ] conversion = None try: conversion = int(vocab[new_string]) to_return.append(predictions[conversion]) except: list_of_indices_to_delete.append(indice) continue if list_of_indices_to_delete: list_of_possible_senses = [list_of_possible_senses[prov_index] for prov_index in range(len(list_of_possible_senses)) if prov_index not in list_of_indices_to_delete] return to_return, list_of_possible_senses <mask token>
<mask token> mfs_counter = 0 def predict_babelnet(input_path: str, output_path: str, resources_path: str ) ->None: global mfs_counter """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <BABELSynset>" format (e.g. "d000.s000.t000 bn:01234567n"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ print('>>>> BABELNET PREDICTION') prediction_results, sentences_xml_elements = __predict(input_path, resources_path) vocab_label_bn = create_mapping_dictionary(resources_path, mode='bn') correctly_saved = 0 filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] filename = filename[:-3] + 'babelnet.gold.key.txt' for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[ index], resources_path, output_path, prediction_results[index][ 0][0], vocab=vocab_label_bn, enable_coarse_grained=1, vocab_for_coarse=None) print('Successfully saved {} out of {}'.format(correctly_saved, len( prediction_results))) del prediction_results print('Of these, {} were MFS'.format(mfs_counter)) mfs_counter = 0 return def predict_wordnet_domains(input_path: str, output_path: str, resources_path: str) ->None: """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <wordnetDomain>" format (e.g. "d000.s000.t000 sport"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ global mfs_counter print('>>>> WORDNET DOMAINS PREDICTION') prediction_results, sentences_xml_elements = __predict(input_path, resources_path) vocab_label_wndmn = create_mapping_dictionary(resources_path, mode='wndmn') correctly_saved = 0 bn2wndom = get_bn2wndomains() filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] filename = filename[:-3] + 'wndomains.gold.key.txt' for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[ index], resources_path, output_path, prediction_results[index][ 1][0], vocab=vocab_label_wndmn, enable_coarse_grained=2, vocab_for_coarse=bn2wndom) print('Successfully saved {} out of {}'.format(correctly_saved, len( prediction_results))) del prediction_results print('Of these, {} were MFS'.format(mfs_counter)) mfs_counter = 0 return def predict_lexicographer(input_path: str, output_path: str, resources_path: str) ->None: """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <lexicographerId>" format (e.g. "d000.s000.t000 noun.animal"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ global mfs_counter print('>>>> LEXICOGRAPHER PREDICTION') prediction_results, sentences_xml_elements = __predict(input_path, resources_path) vocab_label_lex = create_mapping_dictionary(resources_path, mode='lex') correctly_saved = 0 filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] bn2lex = get_bn2lex() filename = filename[:-3] + 'lexicon.gold.key.txt' for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[ index], resources_path, output_path, prediction_results[index][ 2][0], vocab=vocab_label_lex, enable_coarse_grained=3, vocab_for_coarse=bn2lex) print('Successfully saved {} out of {}'.format(correctly_saved, len( prediction_results))) del prediction_results print('Of these, {} were MFS'.format(mfs_counter)) mfs_counter = 0 return def __predict(input_path: str, resources_path: str) ->Tuple: """ Actually predicts a sentence and returns the predictions in the requested formats :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: The actual prediction by the network """ train, etree_data = load_dataset(input_path) train = [dato for dato in train if dato] vocab_label_wndmn = create_mapping_dictionary(resources_path, mode='wndmn') vocab_label_bn = create_mapping_dictionary(resources_path, mode='bn') vocab_label_lex = create_mapping_dictionary(resources_path, mode='lex') modello = WSD(resources_path + '/vocabularies/bert_vocab.txt', [len( vocab_label_bn), len(vocab_label_wndmn), len(vocab_label_lex)], dropout=0.1, recurrent_dropout=0.1, learning_rate=0.0003) tokenizatore = modello.tokenizatore modello.model.load_weights(resources_path + '/saved_model/model_20_2.14.h5' ) to_return = [] sentences_xml_elements = etree_data.xpath('/*/*/*') for sentence in train: feature_1, feature_2, feature_3 = ( convert_sentence_to_features_no_padding(sentence, tokenizatore)) results = modello.model.predict({'input_word_ids': feature_1, 'input_mask': feature_2, 'segment_ids': feature_3}, verbose=1) to_return.append(results) del vocab_label_lex del vocab_label_wndmn del vocab_label_bn return to_return, sentences_xml_elements def __write_result(filename: str, frase, resources_path: str, outputh_path: str, predictions, vocab=None, enable_coarse_grained: int=1, vocab_for_coarse=None) ->int: """ Write results in the file system :param filename: the name of the file to save :param frase: the object from which recover the sentence :param resources_path: the path of the resources folder containing your model and stuff you might need. :param output_path: the path of the output file (where you save your predictions) :param predictions: the predictions made by the system :param vocab: the vocab needed for giving a sense :param enable_coarse_grained: changes the flow of the function from fine-grained to coarse-grained. Default to 1. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :param vocab_for_coarse: The vocab in support of mode 2 or 3 :return: 1 if succeeds """ global mfs_counter bn2wn = get_bn2wn() lemma2wn = reload_word_mapping(resources_path + '/mapping/lemma2wn.txt') to_write = [] for index, parola in enumerate(frase): name = parola.xpath('name()') if name == 'instance': id = parola.get('id') list_of_possible_senses_first_step = lemma2wn.get(parola.text) if not list_of_possible_senses_first_step: the_actual_meaning = MFS(parola, bn2wn, vocab2= vocab_for_coarse, pred_case=enable_coarse_grained) mfs_counter += 1 to_write.append((id, the_actual_meaning)) continue list_of_possible_senses_bn_version = convert_from_wnlist_2_bnlist( list_of_possible_senses_first_step, bn2wn) candidates, list_of_possible_senses_bn_version = ( create_custom_label(list_of_possible_senses_bn_version, parola.text, vocab, predictions[index], enable_coarse_grained=enable_coarse_grained)) the_actual_meaning = None if candidates: argmax = np.argmax(candidates) the_actual_meaning = list_of_possible_senses_bn_version[argmax] else: mfs_counter += 1 the_actual_meaning = MFS(parola, bn2wn, vocab2= vocab_for_coarse, pred_case=enable_coarse_grained) to_write.append((id, the_actual_meaning)) with open(outputh_path + '/' + filename, 'a') as test_saving: for tupla in to_write: test_saving.write(tupla[0] + ' ' + tupla[1] + '\n') del to_write del lemma2wn del bn2wn return 1 def MFS(parola, vocab: Dict, vocab2: Dict=None, pred_case: int=1) ->str: """ Returns the sense by applying the Most Frequent Sense (MFS) strategy :param parola: the Element object to which associate a sense :param vocab: the vocab needed for giving a sense :param vocab2: default to None. The other vocabulary to use if coarse-grained mode is enabled. Has to be populated if enable_coarse_grained :param pred_case: whether to adopt a "rollback" strategy such as MFS or not. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :return: the chosen sense with the MFS technique """ pos = parola.get('pos') pos_input = __decide_pos(pos) wordnet_object = wordnet.synsets(parola.get('lemma'), pos=pos_input) try: wordnet_object = wordnet_object[0] except: print(wordnet_object) print(parola.text) wn_synset = 'wn:' + str(wordnet_object.offset()).zfill(8 ) + wordnet_object.pos() the_actual_meaning = next(key for key, value in vocab.items() if wn_synset in value) to_return = __extrapolate_value_for_MFS(the_actual_meaning, vocab= vocab2, pred_case=pred_case) return to_return def __extrapolate_value_for_MFS(value: object, pred_case: int=1, vocab: Dict=None) ->str: """ Taking either a List or String in input, that represents the found Babelnet ID, this function handles it and return a string that contains the value of the prediction :param value: The Value from which to extrapolate the actual meaning found :param pred_case: whether to adopt a "rollback" strategy such as MFS or not. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :param vocab: The vocab in support of mode 2 or 3. :return: the actual meaning found with MFS """ the_meaning_to_explot = __type_checker(value) if pred_case == 1: return the_meaning_to_explot if pred_case == 2: to_return = vocab.get(the_meaning_to_explot) return to_return[0] if to_return else 'factotum' if pred_case == 3: to_return = vocab.get(the_meaning_to_explot) return to_return[0] def __type_checker(value: object) ->str: """ Checks the type of the object and, accordingly, returns it :param value: the value to examinate :return: a string that is the value expected """ if type(value) == str: return value if type(value) == list: return value[0] def __decide_pos(pos: str) ->str: """ Decides the WN representation of the given pos in input :param pos: the pos to interpret with WordNet :return: the WN representation of the given pos """ to_return = None if pos == 'NOUN': to_return = 'n' if pos == 'VERB': to_return = 'v' if pos == 'ADJ': to_return = 'a' if pos == 'ADV': to_return = 'r' return to_return def convert_from_wnlist_2_bnlist(list_of_bn: List, vocab: Dict) ->List: """ Cast the given list (which contains only WN ids) to Babelnet IDs :param list_of_bn: the list to cast :param vocab: the vocabulary to use to perform the conversion :return: the converted list """ list_of_possible_senses_bn_version = [] for candidate in list_of_bn: is_it_here = next(key for key, value in vocab.items() if candidate in value) if is_it_here: list_of_possible_senses_bn_version.append(is_it_here if type( is_it_here) == str else is_it_here[0]) return list_of_possible_senses_bn_version def create_custom_label(list_of_possible_senses: List, word: str, vocab: Dict, predictions, enable_coarse_grained: int=1) ->List: """ Converts the list of babelnet IDS to a number and outputs the converted list :param list_of_possible_senses: the list that contains all the babelnet's IDs :param word: the word for which we are predicting the sense in a specific moment :param vocab: the vocabulary Word -> Serial to exploit for the conversion :param predictions: the predictions made by the system :param enable_coarse_grained: changes the flow of the function from fine-grained to coarse-grained. Default to None. Possible values: 1 --> The flow will still be the same 2,3 -> Flow will change, triggering the first step for the coarse-grained approach. :return: a List with the IDs converted """ to_return = [] list_of_indices_to_delete = [] for indice in range(len(list_of_possible_senses)): new_string = word + '_' + list_of_possible_senses[indice ] if enable_coarse_grained == 1 else list_of_possible_senses[indice ] conversion = None try: conversion = int(vocab[new_string]) to_return.append(predictions[conversion]) except: list_of_indices_to_delete.append(indice) continue if list_of_indices_to_delete: list_of_possible_senses = [list_of_possible_senses[prov_index] for prov_index in range(len(list_of_possible_senses)) if prov_index not in list_of_indices_to_delete] return to_return, list_of_possible_senses if __name__ == '__main__': predict_babelnet( '/Users/gimmi/Desktop/Università/MAGISTRALE/NLP/nlp-finalproject/dataset/test/senseval3.data.xml' , '../output', '/Users/gimmi/Desktop/Università/MAGISTRALE/NLP/nlp-finalproject/resources' )
from model import WSD from data_preprocessing import load_dataset, create_mapping_dictionary, reload_word_mapping,get_bn2wn,get_bn2wndomains, get_bn2lex from typing import List, Dict, Tuple from prova import convert_sentence_to_features_no_padding import numpy as np import os from nltk.corpus import wordnet mfs_counter = 0 def predict_babelnet(input_path : str, output_path : str, resources_path : str) -> None: global mfs_counter """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <BABELSynset>" format (e.g. "d000.s000.t000 bn:01234567n"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ print(">>>> BABELNET PREDICTION") prediction_results, sentences_xml_elements = __predict(input_path,resources_path) vocab_label_bn = create_mapping_dictionary(resources_path, mode='bn') correctly_saved = 0 filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] filename = filename[:-3]+"babelnet.gold.key.txt" for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[index], resources_path, output_path, prediction_results[index][0][0], vocab=vocab_label_bn, enable_coarse_grained=1, vocab_for_coarse=None) print("Successfully saved {} out of {}".format(correctly_saved, len(prediction_results))) del prediction_results print("Of these, {} were MFS".format(mfs_counter)) mfs_counter = 0 return def predict_wordnet_domains(input_path : str, output_path : str, resources_path : str) -> None: """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <wordnetDomain>" format (e.g. "d000.s000.t000 sport"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ global mfs_counter print(">>>> WORDNET DOMAINS PREDICTION") prediction_results, sentences_xml_elements = __predict(input_path,resources_path) vocab_label_wndmn = create_mapping_dictionary(resources_path, mode='wndmn') correctly_saved = 0 bn2wndom = get_bn2wndomains() filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] filename = filename[:-3]+"wndomains.gold.key.txt" for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[index], resources_path, output_path, prediction_results[index][1][0], vocab=vocab_label_wndmn, enable_coarse_grained=2, vocab_for_coarse=bn2wndom) print("Successfully saved {} out of {}".format(correctly_saved, len(prediction_results))) del prediction_results print("Of these, {} were MFS".format(mfs_counter)) mfs_counter = 0 return def predict_lexicographer(input_path : str, output_path : str, resources_path : str) -> None: """ DO NOT MODIFY THE SIGNATURE! This is the skeleton of the prediction function. The predict function will build your model, load the weights from the checkpoint and write a new file (output_path) with your predictions in the "<id> <lexicographerId>" format (e.g. "d000.s000.t000 noun.animal"). The resources folder should contain everything you need to make the predictions. It is the "resources" folder in your submission. N.B. DO NOT HARD CODE PATHS IN HERE. Use resource_path instead, otherwise we will not be able to run the code. If you don't know what HARD CODING means see: https://en.wikipedia.org/wiki/Hard_coding :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: None """ global mfs_counter print(">>>> LEXICOGRAPHER PREDICTION") prediction_results, sentences_xml_elements = __predict(input_path, resources_path) vocab_label_lex = create_mapping_dictionary(resources_path, mode='lex') correctly_saved = 0 filename = os.path.normpath(input_path) filename = filename.split(os.sep)[-1] bn2lex = get_bn2lex() filename = filename[:-3] + "lexicon.gold.key.txt" for index in range(len(prediction_results)): correctly_saved += __write_result(filename, sentences_xml_elements[index], resources_path,output_path, prediction_results[index][2][0], vocab= vocab_label_lex, enable_coarse_grained=3, vocab_for_coarse=bn2lex) print("Successfully saved {} out of {}".format(correctly_saved, len(prediction_results))) del prediction_results print("Of these, {} were MFS".format(mfs_counter)) mfs_counter = 0 return def __predict(input_path : str, resources_path : str) -> Tuple: """ Actually predicts a sentence and returns the predictions in the requested formats :param input_path: the path of the input file to predict in the same format as Raganato's framework (XML files you downloaded). :param output_path: the path of the output file (where you save your predictions) :param resources_path: the path of the resources folder containing your model and stuff you might need. :return: The actual prediction by the network """ train, etree_data = load_dataset(input_path) train = [dato for dato in train if dato] vocab_label_wndmn = create_mapping_dictionary(resources_path, mode='wndmn') vocab_label_bn = create_mapping_dictionary(resources_path, mode='bn') vocab_label_lex = create_mapping_dictionary(resources_path, mode='lex') modello = WSD(resources_path+"/vocabularies/bert_vocab.txt", [len(vocab_label_bn), len(vocab_label_wndmn), len(vocab_label_lex)], dropout=0.1, recurrent_dropout=0.1,learning_rate=0.0003) tokenizatore = modello.tokenizatore modello.model.load_weights(resources_path+"/saved_model/model_20_2.14.h5") to_return = [] sentences_xml_elements = etree_data.xpath("/*/*/*") for sentence in train: feature_1, feature_2, feature_3 = convert_sentence_to_features_no_padding(sentence,tokenizatore) results = modello.model.predict( {'input_word_ids': feature_1, 'input_mask': feature_2, 'segment_ids': feature_3}, verbose=1 ) to_return.append(results) del vocab_label_lex del vocab_label_wndmn del vocab_label_bn return to_return, sentences_xml_elements def __write_result(filename: str, frase, resources_path: str, outputh_path: str, predictions, vocab = None, enable_coarse_grained: int = 1, vocab_for_coarse = None) -> int: """ Write results in the file system :param filename: the name of the file to save :param frase: the object from which recover the sentence :param resources_path: the path of the resources folder containing your model and stuff you might need. :param output_path: the path of the output file (where you save your predictions) :param predictions: the predictions made by the system :param vocab: the vocab needed for giving a sense :param enable_coarse_grained: changes the flow of the function from fine-grained to coarse-grained. Default to 1. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :param vocab_for_coarse: The vocab in support of mode 2 or 3 :return: 1 if succeeds """ global mfs_counter bn2wn = get_bn2wn() lemma2wn = reload_word_mapping(resources_path+"/mapping/lemma2wn.txt") to_write = [] for index, parola in enumerate(frase): name = parola.xpath('name()') if name == 'instance': id = parola.get('id') list_of_possible_senses_first_step = lemma2wn.get(parola.text) if not list_of_possible_senses_first_step: # MFS the_actual_meaning = MFS(parola, bn2wn, vocab2=vocab_for_coarse, pred_case=enable_coarse_grained) mfs_counter += 1 to_write.append((id, the_actual_meaning)) continue list_of_possible_senses_bn_version = convert_from_wnlist_2_bnlist(list_of_possible_senses_first_step, bn2wn) candidates,list_of_possible_senses_bn_version = create_custom_label(list_of_possible_senses_bn_version, parola.text, vocab, predictions[index], enable_coarse_grained=enable_coarse_grained) the_actual_meaning = None if candidates: argmax = np.argmax(candidates) the_actual_meaning = list_of_possible_senses_bn_version[argmax] else: #MFS mfs_counter += 1 the_actual_meaning = MFS(parola, bn2wn, vocab2=vocab_for_coarse, pred_case=enable_coarse_grained) to_write.append((id, the_actual_meaning)) with open(outputh_path + "/"+filename, "a") as test_saving: for tupla in to_write: test_saving.write(tupla[0] + " " + tupla[1]+"\n") del to_write del lemma2wn del bn2wn return 1 def MFS(parola, vocab: Dict, vocab2:Dict = None, pred_case: int = 1) -> str: """ Returns the sense by applying the Most Frequent Sense (MFS) strategy :param parola: the Element object to which associate a sense :param vocab: the vocab needed for giving a sense :param vocab2: default to None. The other vocabulary to use if coarse-grained mode is enabled. Has to be populated if enable_coarse_grained :param pred_case: whether to adopt a "rollback" strategy such as MFS or not. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :return: the chosen sense with the MFS technique """ pos = parola.get('pos') pos_input = __decide_pos(pos) wordnet_object = wordnet.synsets(parola.get('lemma'), pos=pos_input) try: wordnet_object = wordnet_object[0] except: print(wordnet_object) print(parola.text) wn_synset = "wn:" + str(wordnet_object.offset()).zfill(8) + wordnet_object.pos() the_actual_meaning = next(key for key, value in vocab.items() if wn_synset in value) to_return = __extrapolate_value_for_MFS(the_actual_meaning,vocab=vocab2, pred_case=pred_case) return to_return def __extrapolate_value_for_MFS(value: object, pred_case: int = 1, vocab: Dict = None) -> str: """ Taking either a List or String in input, that represents the found Babelnet ID, this function handles it and return a string that contains the value of the prediction :param value: The Value from which to extrapolate the actual meaning found :param pred_case: whether to adopt a "rollback" strategy such as MFS or not. Possible values: 1 --> Means I'm predicting with Babelnet. No extra precautions needed 2 --> Means I'm predicting with WordNet Domains. Need to consult the vocab. If I don't find anything, the empty class "factotum" is returned instead 3 --> Means I'm predicting with Lexicon. Need to consult the vocab. :param vocab: The vocab in support of mode 2 or 3. :return: the actual meaning found with MFS """ the_meaning_to_explot = __type_checker(value) if pred_case == 1: return the_meaning_to_explot if pred_case == 2: to_return = vocab.get(the_meaning_to_explot) return to_return[0] if to_return else "factotum" if pred_case == 3: to_return = vocab.get(the_meaning_to_explot) return to_return[0] def __type_checker(value: object) -> str: """ Checks the type of the object and, accordingly, returns it :param value: the value to examinate :return: a string that is the value expected """ if type(value) == str: return value if type(value) == list: return value[0] def __decide_pos(pos: str) -> str: """ Decides the WN representation of the given pos in input :param pos: the pos to interpret with WordNet :return: the WN representation of the given pos """ to_return = None if pos == 'NOUN': to_return = "n" if pos == 'VERB': to_return = 'v' if pos == 'ADJ': to_return = 'a' if pos == 'ADV': to_return = 'r' return to_return def convert_from_wnlist_2_bnlist(list_of_bn: List, vocab: Dict) -> List: """ Cast the given list (which contains only WN ids) to Babelnet IDs :param list_of_bn: the list to cast :param vocab: the vocabulary to use to perform the conversion :return: the converted list """ list_of_possible_senses_bn_version = [] for candidate in list_of_bn: is_it_here = next(key for key, value in vocab.items() if candidate in value) if is_it_here: list_of_possible_senses_bn_version.append(is_it_here if type(is_it_here) == str else is_it_here[0]) return list_of_possible_senses_bn_version def create_custom_label(list_of_possible_senses: List, word: str, vocab: Dict, predictions, enable_coarse_grained: int = 1) -> List: """ Converts the list of babelnet IDS to a number and outputs the converted list :param list_of_possible_senses: the list that contains all the babelnet's IDs :param word: the word for which we are predicting the sense in a specific moment :param vocab: the vocabulary Word -> Serial to exploit for the conversion :param predictions: the predictions made by the system :param enable_coarse_grained: changes the flow of the function from fine-grained to coarse-grained. Default to None. Possible values: 1 --> The flow will still be the same 2,3 -> Flow will change, triggering the first step for the coarse-grained approach. :return: a List with the IDs converted """ to_return = [] list_of_indices_to_delete = [] for indice in range(len(list_of_possible_senses)): new_string = word + "_" + list_of_possible_senses[indice] if enable_coarse_grained == 1 else list_of_possible_senses[indice] conversion = None try: conversion = int(vocab[new_string]) to_return.append(predictions[conversion]) except: list_of_indices_to_delete.append(indice) continue if list_of_indices_to_delete: list_of_possible_senses = [list_of_possible_senses[prov_index] for prov_index in range(len(list_of_possible_senses)) if prov_index not in list_of_indices_to_delete] return to_return, list_of_possible_senses if __name__ == "__main__": predict_babelnet("/Users/gimmi/Desktop/Università/MAGISTRALE/NLP/nlp-finalproject/dataset/test/senseval3.data.xml", "../output", "/Users/gimmi/Desktop/Università/MAGISTRALE/NLP/nlp-finalproject/resources") #predict_wordnet_domains("/Users/gimmi/Desktop/Università/MAGISTRALE/NLP/nlp-finalproject/dataset/test/senseval3.data.xml", "../output", "/Users/gimmi/Desktop/Università/MAGISTRALE/NLP/nlp-finalproject/resources") #predict_lexicographer("/Users/gimmi/Desktop/Università/MAGISTRALE/NLP/nlp-finalproject/dataset/test/senseval3.data.xml", "../output", "/Users/gimmi/Desktop/Università/MAGISTRALE/NLP/nlp-finalproject/resources")
[ 7, 10, 11, 13, 15 ]
2,583
7bb9455e6f0c15ab0be6963cff06ff41df73e6e0
<mask token> class Config(object): def __init__(self, name=None): """ Load config for colin. :param name: str (name of the config file (without .json), default is "default" """ self.name = name or 'default' config_path = os.path.join(get_config_directory(), self.name + JSON) try: with open(config_path, mode='r') as config_file: self.config_dict = json.load(config_file) except Exception as ex: raise ColinConfigException("Config file '{}' cannot be loaded." .format(config_path)) def get_checks(self, target_type, group=None, severity=None, tags=None): """ Get all checks for given type/group/severity/tags. :param target_type: TargetType enum :param group: str (if not group, get checks from all groups/directories) :param severity: str (optional x required) :param tags: list of str :return: list of check instances """ check_files = self._get_check_files(group=group, severity=severity) groups = {} for group, check_files in iteritems(check_files): checks = [] for severity, check_file in check_files: check_classes = load_check_implementation(path=check_file, severity=severity) for check_class in check_classes: if is_compatible(target_type, check_class, severity, tags): checks.append(check_class) groups[group] = checks return groups <mask token> <mask token> def _get_check_groups(self, group=None): """ Get check group to validate :param group: str (if None, all from the config will be used) :return: list of str (group names) """ groups = [g for g in self.config_dict] if group: if group in groups: check_groups = [group] else: check_groups = [] else: check_groups = groups return check_groups def _get_check_files(self, group=None, severity=None): """ Get file names with checks filtered by group and severity. :param group: str (if None, all groups will be used) :param severity: str (if None, all severities will be used) :return: list of str (absolute paths) """ groups = {} for g in self._get_check_groups(group): check_files = [] for sev, files in iteritems(self.config_dict[g]): if not severity or severity == sev: check_files += Config.get_check_files(group=g, names= files, severity=sev) groups[g] = check_files return groups <mask token>
<mask token> class Config(object): def __init__(self, name=None): """ Load config for colin. :param name: str (name of the config file (without .json), default is "default" """ self.name = name or 'default' config_path = os.path.join(get_config_directory(), self.name + JSON) try: with open(config_path, mode='r') as config_file: self.config_dict = json.load(config_file) except Exception as ex: raise ColinConfigException("Config file '{}' cannot be loaded." .format(config_path)) def get_checks(self, target_type, group=None, severity=None, tags=None): """ Get all checks for given type/group/severity/tags. :param target_type: TargetType enum :param group: str (if not group, get checks from all groups/directories) :param severity: str (optional x required) :param tags: list of str :return: list of check instances """ check_files = self._get_check_files(group=group, severity=severity) groups = {} for group, check_files in iteritems(check_files): checks = [] for severity, check_file in check_files: check_classes = load_check_implementation(path=check_file, severity=severity) for check_class in check_classes: if is_compatible(target_type, check_class, severity, tags): checks.append(check_class) groups[group] = checks return groups @staticmethod def get_check_file(group, name): """ Get the check file from given group with given name. :param group: str :param name: str :return: str (path) """ return os.path.join(get_checks_path(), group, name + '.py') <mask token> def _get_check_groups(self, group=None): """ Get check group to validate :param group: str (if None, all from the config will be used) :return: list of str (group names) """ groups = [g for g in self.config_dict] if group: if group in groups: check_groups = [group] else: check_groups = [] else: check_groups = groups return check_groups def _get_check_files(self, group=None, severity=None): """ Get file names with checks filtered by group and severity. :param group: str (if None, all groups will be used) :param severity: str (if None, all severities will be used) :return: list of str (absolute paths) """ groups = {} for g in self._get_check_groups(group): check_files = [] for sev, files in iteritems(self.config_dict[g]): if not severity or severity == sev: check_files += Config.get_check_files(group=g, names= files, severity=sev) groups[g] = check_files return groups <mask token>
<mask token> class Config(object): def __init__(self, name=None): """ Load config for colin. :param name: str (name of the config file (without .json), default is "default" """ self.name = name or 'default' config_path = os.path.join(get_config_directory(), self.name + JSON) try: with open(config_path, mode='r') as config_file: self.config_dict = json.load(config_file) except Exception as ex: raise ColinConfigException("Config file '{}' cannot be loaded." .format(config_path)) def get_checks(self, target_type, group=None, severity=None, tags=None): """ Get all checks for given type/group/severity/tags. :param target_type: TargetType enum :param group: str (if not group, get checks from all groups/directories) :param severity: str (optional x required) :param tags: list of str :return: list of check instances """ check_files = self._get_check_files(group=group, severity=severity) groups = {} for group, check_files in iteritems(check_files): checks = [] for severity, check_file in check_files: check_classes = load_check_implementation(path=check_file, severity=severity) for check_class in check_classes: if is_compatible(target_type, check_class, severity, tags): checks.append(check_class) groups[group] = checks return groups @staticmethod def get_check_file(group, name): """ Get the check file from given group with given name. :param group: str :param name: str :return: str (path) """ return os.path.join(get_checks_path(), group, name + '.py') @staticmethod def get_check_files(group, names, severity): """ Get the check files from given group with given names. :param severity: str :param group: str :param names: list of str :return: list of str (paths) """ check_files = [] for f in names: check_file = Config.get_check_file(group=group, name=f) check_files.append((severity, check_file)) return check_files def _get_check_groups(self, group=None): """ Get check group to validate :param group: str (if None, all from the config will be used) :return: list of str (group names) """ groups = [g for g in self.config_dict] if group: if group in groups: check_groups = [group] else: check_groups = [] else: check_groups = groups return check_groups def _get_check_files(self, group=None, severity=None): """ Get file names with checks filtered by group and severity. :param group: str (if None, all groups will be used) :param severity: str (if None, all severities will be used) :return: list of str (absolute paths) """ groups = {} for g in self._get_check_groups(group): check_files = [] for sev, files in iteritems(self.config_dict[g]): if not severity or severity == sev: check_files += Config.get_check_files(group=g, names= files, severity=sev) groups[g] = check_files return groups <mask token>
<mask token> class Config(object): def __init__(self, name=None): """ Load config for colin. :param name: str (name of the config file (without .json), default is "default" """ self.name = name or 'default' config_path = os.path.join(get_config_directory(), self.name + JSON) try: with open(config_path, mode='r') as config_file: self.config_dict = json.load(config_file) except Exception as ex: raise ColinConfigException("Config file '{}' cannot be loaded." .format(config_path)) def get_checks(self, target_type, group=None, severity=None, tags=None): """ Get all checks for given type/group/severity/tags. :param target_type: TargetType enum :param group: str (if not group, get checks from all groups/directories) :param severity: str (optional x required) :param tags: list of str :return: list of check instances """ check_files = self._get_check_files(group=group, severity=severity) groups = {} for group, check_files in iteritems(check_files): checks = [] for severity, check_file in check_files: check_classes = load_check_implementation(path=check_file, severity=severity) for check_class in check_classes: if is_compatible(target_type, check_class, severity, tags): checks.append(check_class) groups[group] = checks return groups @staticmethod def get_check_file(group, name): """ Get the check file from given group with given name. :param group: str :param name: str :return: str (path) """ return os.path.join(get_checks_path(), group, name + '.py') @staticmethod def get_check_files(group, names, severity): """ Get the check files from given group with given names. :param severity: str :param group: str :param names: list of str :return: list of str (paths) """ check_files = [] for f in names: check_file = Config.get_check_file(group=group, name=f) check_files.append((severity, check_file)) return check_files def _get_check_groups(self, group=None): """ Get check group to validate :param group: str (if None, all from the config will be used) :return: list of str (group names) """ groups = [g for g in self.config_dict] if group: if group in groups: check_groups = [group] else: check_groups = [] else: check_groups = groups return check_groups def _get_check_files(self, group=None, severity=None): """ Get file names with checks filtered by group and severity. :param group: str (if None, all groups will be used) :param severity: str (if None, all severities will be used) :return: list of str (absolute paths) """ groups = {} for g in self._get_check_groups(group): check_files = [] for sev, files in iteritems(self.config_dict[g]): if not severity or severity == sev: check_files += Config.get_check_files(group=g, names= files, severity=sev) groups[g] = check_files return groups def get_checks_path(): """ Get path to checks. :return: str (absolute path of directory with checks) """ rel_path = os.path.join(os.pardir, os.pardir, os.pardir, 'checks') return os.path.abspath(os.path.join(__file__, rel_path)) <mask token>
import json import os from six import iteritems from ..exceptions import ColinConfigException from ..constant import CONFIG_DIRECTORY, JSON from ..loader import load_check_implementation from ..target import is_compatible class Config(object): def __init__(self, name=None): """ Load config for colin. :param name: str (name of the config file (without .json), default is "default" """ self.name = name or "default" config_path = os.path.join(get_config_directory(), self.name + JSON) try: with open(config_path, mode='r') as config_file: self.config_dict = json.load(config_file) except Exception as ex: raise ColinConfigException("Config file '{}' cannot be loaded.".format(config_path)) def get_checks(self, target_type, group=None, severity=None, tags=None): """ Get all checks for given type/group/severity/tags. :param target_type: TargetType enum :param group: str (if not group, get checks from all groups/directories) :param severity: str (optional x required) :param tags: list of str :return: list of check instances """ check_files = self._get_check_files(group=group, severity=severity) groups = {} for (group, check_files) in iteritems(check_files): checks = [] for severity, check_file in check_files: check_classes = load_check_implementation(path=check_file, severity=severity) for check_class in check_classes: if is_compatible(target_type, check_class, severity, tags): checks.append(check_class) groups[group] = checks return groups @staticmethod def get_check_file(group, name): """ Get the check file from given group with given name. :param group: str :param name: str :return: str (path) """ return os.path.join(get_checks_path(), group, name + ".py") @staticmethod def get_check_files(group, names, severity): """ Get the check files from given group with given names. :param severity: str :param group: str :param names: list of str :return: list of str (paths) """ check_files = [] for f in names: check_file = Config.get_check_file(group=group, name=f) check_files.append((severity, check_file)) return check_files def _get_check_groups(self, group=None): """ Get check group to validate :param group: str (if None, all from the config will be used) :return: list of str (group names) """ groups = [g for g in self.config_dict] if group: if group in groups: check_groups = [group] else: check_groups = [] else: check_groups = groups return check_groups def _get_check_files(self, group=None, severity=None): """ Get file names with checks filtered by group and severity. :param group: str (if None, all groups will be used) :param severity: str (if None, all severities will be used) :return: list of str (absolute paths) """ groups = {} for g in self._get_check_groups(group): check_files = [] for sev, files in iteritems(self.config_dict[g]): if (not severity) or severity == sev: check_files += Config.get_check_files(group=g, names=files, severity=sev) groups[g] = check_files return groups def get_checks_path(): """ Get path to checks. :return: str (absolute path of directory with checks) """ rel_path = os.path.join(os.pardir, os.pardir, os.pardir, "checks") return os.path.abspath(os.path.join(__file__, rel_path)) def get_config_directory(): """ Get the directory with config files :return: str """ local_share = os.path.join(os.path.expanduser("~"), ".local", CONFIG_DIRECTORY) if os.path.isdir(local_share) and os.path.exists(local_share): return local_share usr_local_share = os.path.join("/usr/local", CONFIG_DIRECTORY) if os.path.isdir(usr_local_share) and os.path.exists(usr_local_share): return usr_local_share raise ColinConfigException("Config directory cannot be found.")
[ 5, 6, 7, 8, 11 ]
2,584
de003440be513d53b87f526ea95c0fbbc4a9f66f
<mask token>
<mask token> def getlessonlist(): path = os.path.expanduser('~/.buzzers') dirs = os.walk(os.path.expanduser('~/.buzzers/lessons')) lessons = [] for root, d, fs in dirs: fullfs = [(root + '/' + f) for f in fs] lessons.extend(fs) return lessons
<mask token> def savelesson(text): os.path.expanduser('~/.buzzers/lessons') def getlessonlist(): path = os.path.expanduser('~/.buzzers') dirs = os.walk(os.path.expanduser('~/.buzzers/lessons')) lessons = [] for root, d, fs in dirs: fullfs = [(root + '/' + f) for f in fs] lessons.extend(fs) return lessons
import os def savelesson(text): os.path.expanduser('~/.buzzers/lessons') def getlessonlist(): path = os.path.expanduser('~/.buzzers') dirs = os.walk(os.path.expanduser('~/.buzzers/lessons')) lessons = [] for root, d, fs in dirs: fullfs = [(root + '/' + f) for f in fs] lessons.extend(fs) return lessons
import os def savelesson(text): os.path.expanduser("~/.buzzers/lessons") def getlessonlist(): path = os.path.expanduser("~/.buzzers") dirs = os.walk(os.path.expanduser("~/.buzzers/lessons")) #"/home/loadquo/files/lhsgghc/Programs/PCSoftware/src/admin/lessons") lessons = [] for root, d, fs in dirs: fullfs = [root +"/"+ f for f in fs] lessons.extend(fs) return lessons
[ 0, 1, 2, 3, 4 ]
2,585
1a979933eb02e9d12dc034021448cbade59abc48
<mask token> class RosEnvImg(RosEnvAbs): <mask token> <mask token> def get_observation_(self): """ Function returns state that will be fed to the rl-agent It includes the laserscan and the waypoint information stored in an image. :return: state """ obs = np.zeros(self.STATE_SIZE, dtype=np.float) obs[:, :, 0] = np.array(self.input_img_.data).reshape(self. STATE_SIZE[0:2]) if self.debug_: self.debugger_.show_input_occ_grid(self.input_img_) self.debugger_.show_input_image(obs[:, :, 0]) return obs
<mask token> class RosEnvImg(RosEnvAbs): <mask token> def __init__(self, ns, state_collector, execution_mode, task_mode, state_size, observation_space, stack_offset, action_size, action_space, debug, goal_radius, wp_radius, robot_radius, reward_fnc): state_collector.set_state_mode(0) super(RosEnvImg, self).__init__(ns, state_collector, execution_mode, task_mode, state_size, observation_space, stack_offset, action_size, action_space, debug, goal_radius, wp_radius, robot_radius, reward_fnc) def get_observation_(self): """ Function returns state that will be fed to the rl-agent It includes the laserscan and the waypoint information stored in an image. :return: state """ obs = np.zeros(self.STATE_SIZE, dtype=np.float) obs[:, :, 0] = np.array(self.input_img_.data).reshape(self. STATE_SIZE[0:2]) if self.debug_: self.debugger_.show_input_occ_grid(self.input_img_) self.debugger_.show_input_image(obs[:, :, 0]) return obs
<mask token> class RosEnvImg(RosEnvAbs): """ This (abstract) class is a simulation environment wrapper for the X-Image Representation. """ def __init__(self, ns, state_collector, execution_mode, task_mode, state_size, observation_space, stack_offset, action_size, action_space, debug, goal_radius, wp_radius, robot_radius, reward_fnc): state_collector.set_state_mode(0) super(RosEnvImg, self).__init__(ns, state_collector, execution_mode, task_mode, state_size, observation_space, stack_offset, action_size, action_space, debug, goal_radius, wp_radius, robot_radius, reward_fnc) def get_observation_(self): """ Function returns state that will be fed to the rl-agent It includes the laserscan and the waypoint information stored in an image. :return: state """ obs = np.zeros(self.STATE_SIZE, dtype=np.float) obs[:, :, 0] = np.array(self.input_img_.data).reshape(self. STATE_SIZE[0:2]) if self.debug_: self.debugger_.show_input_occ_grid(self.input_img_) self.debugger_.show_input_image(obs[:, :, 0]) return obs
<mask token> import numpy as np from rl_agent.env_wrapper.ros_env import RosEnvAbs import rospy class RosEnvImg(RosEnvAbs): """ This (abstract) class is a simulation environment wrapper for the X-Image Representation. """ def __init__(self, ns, state_collector, execution_mode, task_mode, state_size, observation_space, stack_offset, action_size, action_space, debug, goal_radius, wp_radius, robot_radius, reward_fnc): state_collector.set_state_mode(0) super(RosEnvImg, self).__init__(ns, state_collector, execution_mode, task_mode, state_size, observation_space, stack_offset, action_size, action_space, debug, goal_radius, wp_radius, robot_radius, reward_fnc) def get_observation_(self): """ Function returns state that will be fed to the rl-agent It includes the laserscan and the waypoint information stored in an image. :return: state """ obs = np.zeros(self.STATE_SIZE, dtype=np.float) obs[:, :, 0] = np.array(self.input_img_.data).reshape(self. STATE_SIZE[0:2]) if self.debug_: self.debugger_.show_input_occ_grid(self.input_img_) self.debugger_.show_input_image(obs[:, :, 0]) return obs
''' @name: ros_env_img.py @brief: This (abstract) class is a simulation environment wrapper for the X-Image Representation. @author: Ronja Gueldenring @version: 3.5 @date: 2019/04/05 ''' # python relevant import numpy as np # custom classes from rl_agent.env_wrapper.ros_env import RosEnvAbs # ros-relevant import rospy class RosEnvImg(RosEnvAbs): ''' This (abstract) class is a simulation environment wrapper for the X-Image Representation. ''' def __init__(self, ns, state_collector, execution_mode, task_mode, state_size, observation_space, stack_offset, action_size, action_space, debug, goal_radius, wp_radius, robot_radius, reward_fnc): state_collector.set_state_mode(0) super(RosEnvImg, self).__init__(ns, state_collector, execution_mode, task_mode, state_size, observation_space, stack_offset, action_size, action_space, debug, goal_radius, wp_radius, robot_radius, reward_fnc) def get_observation_(self): """ Function returns state that will be fed to the rl-agent It includes the laserscan and the waypoint information stored in an image. :return: state """ obs = np.zeros(self.STATE_SIZE, dtype=np.float) obs[:,:,0] = np.array(self.input_img_.data).reshape((self.STATE_SIZE[0:2])) if self.debug_: self.debugger_.show_input_occ_grid(self.input_img_) self.debugger_.show_input_image(obs[:,:,0]) return obs
[ 2, 3, 4, 5, 6 ]
2,586
74e70056ddfd8963a254f1a789a9058554c5489e
<mask token>
<mask token> class BertBasedTODModel(nn.Module): <mask token> def forward(self, input_ids, attention_mask, token_type_ids): sequence_output, cls = self.bert_model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) intent_preds = self.intent_classifier(cls) slot_preds = self.slot_classifier(sequence_output) return intent_preds, slot_preds
<mask token> class BertBasedTODModel(nn.Module): def __init__(self, bert_type, num_intent_labels, num_slot_labels): super(BertBasedTODModel, self).__init__() self.bert_model = BertModel.from_pretrained(bert_type) self.num_intent_labels = num_intent_labels self.num_slot_labels = num_slot_labels self.bert_output_dim = 768 self.intent_classifier = nn.Sequential(nn.Dropout(0.2), nn.Linear( self.bert_output_dim, self.num_intent_labels)) self.slot_classifier = nn.Sequential(nn.Dropout(0.2), nn.Linear( self.bert_output_dim, self.num_slot_labels)) def forward(self, input_ids, attention_mask, token_type_ids): sequence_output, cls = self.bert_model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) intent_preds = self.intent_classifier(cls) slot_preds = self.slot_classifier(sequence_output) return intent_preds, slot_preds
import torch.nn as nn from transformers import BertModel class BertBasedTODModel(nn.Module): def __init__(self, bert_type, num_intent_labels, num_slot_labels): super(BertBasedTODModel, self).__init__() self.bert_model = BertModel.from_pretrained(bert_type) self.num_intent_labels = num_intent_labels self.num_slot_labels = num_slot_labels self.bert_output_dim = 768 self.intent_classifier = nn.Sequential(nn.Dropout(0.2), nn.Linear( self.bert_output_dim, self.num_intent_labels)) self.slot_classifier = nn.Sequential(nn.Dropout(0.2), nn.Linear( self.bert_output_dim, self.num_slot_labels)) def forward(self, input_ids, attention_mask, token_type_ids): sequence_output, cls = self.bert_model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) intent_preds = self.intent_classifier(cls) slot_preds = self.slot_classifier(sequence_output) return intent_preds, slot_preds
import torch.nn as nn from transformers import BertModel class BertBasedTODModel(nn.Module): def __init__(self, bert_type, num_intent_labels, num_slot_labels): super(BertBasedTODModel, self).__init__() self.bert_model = BertModel.from_pretrained(bert_type) self.num_intent_labels = num_intent_labels self.num_slot_labels = num_slot_labels self.bert_output_dim = 768 self.intent_classifier = nn.Sequential(nn.Dropout(0.2), nn.Linear(self.bert_output_dim, self.num_intent_labels)) self.slot_classifier = nn.Sequential(nn.Dropout(0.2), nn.Linear(self.bert_output_dim, self.num_slot_labels)) def forward(self, input_ids, attention_mask, token_type_ids): sequence_output, cls = self.bert_model(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) intent_preds = self.intent_classifier(cls) slot_preds = self.slot_classifier(sequence_output) return intent_preds, slot_preds
[ 0, 2, 3, 4, 5 ]
2,587
6050e83e73faaf40cbd5455efd3ad01e4e131188
<mask token>
<mask token> while a != 0: t = a % 10 s = s + t a = a // 10 print(s)
a = int(input()) s = 0 t = 0 while a != 0: t = a % 10 s = s + t a = a // 10 print(s)
a=int(input()) s=0 t=0 while(a!=0): t=a%10 s=s+t a=a//10 print(s)
null
[ 0, 1, 2, 3 ]
2,588
700d876dd45548b74b563ed86f8124fa666e1739
a=10 b=20 c=400 d=100 e=500 f=30 z=a+b+c+d+e+f print "The total sum is",z print "variable d added" print "Variable e added" print "Variable f is equal to 30" print "You are coming from test branch" print "Your are very new in this branch"
null
null
null
null
[ 0 ]
2,589
9cb4e550a0d19b44ec8357882f353b04748b213b
<mask token>
class Config(object): <mask token> <mask token>
class Config(object): <mask token> def get(self, section, name): return self.config_dict[section][name]
class Config(object): def __init__(self): self.config_dict = {'data_path': {'vocab_path': '../data/rumor/cnews.vocab.txt', 'trainingSet_path': '../data/rumor/train_list.txt', 'valSet_path': '../data/rumor/val_list.txt', 'testingSet_path': '../data/rumor/test_list.txt'}, 'CNN_training_rule': { 'embedding_dim': 64, 'seq_length': 200, 'num_classes': 2, 'conv1_num_filters': 128, 'conv1_kernel_size': 1, 'conv2_num_filters': 128, 'conv2_kernel_size': 1, 'vocab_size': 5000, 'hidden_dim': 256, 'dropout_keep_prob': 0.5, 'learning_rate': 0.001, 'batch_size': 64, 'epochs': 5, 'print_per_batch': 50, 'save_per_batch': 500}, 'LSTM': { 'seq_length': 300, 'num_classes': 2, 'vocab_size': 5000, 'batch_size': 64}, 'result': {'CNN_model_path': 'CNN_model.h5', 'LSTM_model_path': 'LSTM_model.h5'}} def get(self, section, name): return self.config_dict[section][name]
# -*- coding: utf-8 -*- class Config(object): def __init__(self): self.config_dict = { "data_path": { # "vocab_path": "../data/cnews/cnews.vocab.txt", "vocab_path": "../data/rumor/cnews.vocab.txt", # "trainingSet_path": "../data/cnews/cnews.train.txt", "trainingSet_path": "../data/rumor/train_list.txt", # "valSet_path": "../data/cnews/cnews.val.txt", "valSet_path": "../data/rumor/val_list.txt", # "testingSet_path": "../data/cnews/cnews.test.txt", "testingSet_path": "../data/rumor/test_list.txt" }, "CNN_training_rule": { "embedding_dim": 64, "seq_length": 200, "num_classes": 2, "conv1_num_filters": 128, "conv1_kernel_size": 1, "conv2_num_filters": 128, "conv2_kernel_size": 1, "vocab_size": 5000, "hidden_dim": 256, "dropout_keep_prob": 0.5, "learning_rate": 1e-3, "batch_size": 64, "epochs": 5, "print_per_batch": 50, "save_per_batch": 500 }, "LSTM": { "seq_length": 300, "num_classes": 2, "vocab_size": 5000, "batch_size": 64 }, "result": { "CNN_model_path": "CNN_model.h5", "LSTM_model_path": "LSTM_model.h5" } } def get(self, section, name): return self.config_dict[section][name]
[ 0, 1, 2, 3, 4 ]
2,590
2aee4af2e5a5c3f59dde4d9dd46f8d124a32fb27
<mask token> def basic_block_coverage(r2, translation_blocks): """ Calculate the basic block coverage based on the covered TBs. Returns a set of *covered* basic block start addresses """ covered_bbs = set() for func_addr in function_addrs(r2): graph = r2.cmdj('agj 0x%x' % func_addr) assert len(graph) == 1 graph = graph[0] for tb_start_addr, tb_end_addr in translation_blocks: for bb in graph['blocks']: bb_start_addr = bb['offset'] bb_end_addr = bb_start_addr + bb['size'] if (bb_end_addr >= tb_start_addr >= bb_start_addr or bb_start_addr <= tb_end_addr <= bb_end_addr): covered_bbs.add(bb_start_addr) return covered_bbs def render_functions(r2, covered_bbs, output_dir): """ Renders SVG graphs of each of the functions in the program. Basic blocks that were executed by S2E are coloured green. The resulting SVG images are written to `output_dir`. """ for func_addr in function_addrs(r2): func_name = r2.cmdj('agj 0x%x' % func_addr)[0]['name'] dot_str = r2.cmd('ag 0x%x' % func_addr) dot = pydot.graph_from_dot_data(dot_str) if not dot: continue else: dot = dot[0] for node in dot.get_nodes(): node_name = node.get_name() try: if node_name.startswith('"'): node_name = node_name[1:-1] node_addr = int(node_name, 16) except ValueError: continue if node_addr in covered_bbs: node.set_fillcolor('darkolivegreen2') svg_path = os.path.join(output_dir, '%s_0x%x.svg' % (func_name, func_addr)) with open(svg_path, 'wb') as f: svg = dot.create_svg() f.write(svg) <mask token>
<mask token> def function_addrs(r2): """ Yield a list of all the function's start addresses. """ for addr in r2.cmdj('aflqj'): yield int(addr, 16) <mask token> def basic_block_coverage(r2, translation_blocks): """ Calculate the basic block coverage based on the covered TBs. Returns a set of *covered* basic block start addresses """ covered_bbs = set() for func_addr in function_addrs(r2): graph = r2.cmdj('agj 0x%x' % func_addr) assert len(graph) == 1 graph = graph[0] for tb_start_addr, tb_end_addr in translation_blocks: for bb in graph['blocks']: bb_start_addr = bb['offset'] bb_end_addr = bb_start_addr + bb['size'] if (bb_end_addr >= tb_start_addr >= bb_start_addr or bb_start_addr <= tb_end_addr <= bb_end_addr): covered_bbs.add(bb_start_addr) return covered_bbs def render_functions(r2, covered_bbs, output_dir): """ Renders SVG graphs of each of the functions in the program. Basic blocks that were executed by S2E are coloured green. The resulting SVG images are written to `output_dir`. """ for func_addr in function_addrs(r2): func_name = r2.cmdj('agj 0x%x' % func_addr)[0]['name'] dot_str = r2.cmd('ag 0x%x' % func_addr) dot = pydot.graph_from_dot_data(dot_str) if not dot: continue else: dot = dot[0] for node in dot.get_nodes(): node_name = node.get_name() try: if node_name.startswith('"'): node_name = node_name[1:-1] node_addr = int(node_name, 16) except ValueError: continue if node_addr in covered_bbs: node.set_fillcolor('darkolivegreen2') svg_path = os.path.join(output_dir, '%s_0x%x.svg' % (func_name, func_addr)) with open(svg_path, 'wb') as f: svg = dot.create_svg() f.write(svg) <mask token>
<mask token> def function_addrs(r2): """ Yield a list of all the function's start addresses. """ for addr in r2.cmdj('aflqj'): yield int(addr, 16) <mask token> def basic_block_coverage(r2, translation_blocks): """ Calculate the basic block coverage based on the covered TBs. Returns a set of *covered* basic block start addresses """ covered_bbs = set() for func_addr in function_addrs(r2): graph = r2.cmdj('agj 0x%x' % func_addr) assert len(graph) == 1 graph = graph[0] for tb_start_addr, tb_end_addr in translation_blocks: for bb in graph['blocks']: bb_start_addr = bb['offset'] bb_end_addr = bb_start_addr + bb['size'] if (bb_end_addr >= tb_start_addr >= bb_start_addr or bb_start_addr <= tb_end_addr <= bb_end_addr): covered_bbs.add(bb_start_addr) return covered_bbs def render_functions(r2, covered_bbs, output_dir): """ Renders SVG graphs of each of the functions in the program. Basic blocks that were executed by S2E are coloured green. The resulting SVG images are written to `output_dir`. """ for func_addr in function_addrs(r2): func_name = r2.cmdj('agj 0x%x' % func_addr)[0]['name'] dot_str = r2.cmd('ag 0x%x' % func_addr) dot = pydot.graph_from_dot_data(dot_str) if not dot: continue else: dot = dot[0] for node in dot.get_nodes(): node_name = node.get_name() try: if node_name.startswith('"'): node_name = node_name[1:-1] node_addr = int(node_name, 16) except ValueError: continue if node_addr in covered_bbs: node.set_fillcolor('darkolivegreen2') svg_path = os.path.join(output_dir, '%s_0x%x.svg' % (func_name, func_addr)) with open(svg_path, 'wb') as f: svg = dot.create_svg() f.write(svg) def generate_graph(s2e_output_dir, s2e_num, project_name): """ Generate the PNG graph for the analysis in the output_dir """ s2e_env_path = S2E_settings.S2E_ENVIRONMENT_FOLDER_PATH output_dir = os.path.join(s2e_output_dir, 'functions') os.makedirs(output_dir) if not os.path.isfile(os.path.join(s2e_env_path, 's2e.yaml')): print('ERROR: %s is not an S2E environment' % s2e_env_path) return project_path = os.path.join(s2e_env_path, 'projects', project_name) if not os.path.isdir(project_path): print('ERROR: %s is not a valid project' % project_name) return if not os.path.isdir(output_dir): print('ERROR: %s is not a valid output directory' % output_dir) return s2e_last_path = os.path.join(project_path, 's2e-last') if not os.path.isdir(s2e_last_path): print('ERROR: %s has no s2e-last' % project_name) return tb_coverage_files = glob.glob(os.path.join(s2e_last_path, '*', 'tbcoverage-*.json')) + glob.glob(os.path.join(s2e_last_path, 'tbcoverage-*.json')) if not tb_coverage_files: print( 'ERROR: No translation block coverage files found in s2e-last. Did you enable the ``TranslationBlockCoverage`` plugin in s2e-config.lua?' ) return covered_tbs = set() for tb_coverage_file in tb_coverage_files: tb_coverage_data = parse_tb_file(tb_coverage_file, project_name) if not tb_coverage_data: continue covered_tbs.update((start, end) for start, end, _ in tb_coverage_data) r2 = r2pipe.open(os.path.join(project_path, project_name)) r2.cmd('aaa') covered_bbs = basic_block_coverage(r2, covered_tbs) render_functions(r2, covered_bbs, output_dir) base_path = os.path.join(project_name, 's2e-out-%d' % s2e_num, 'functions') return [[file_[0:-4], os.path.join(base_path, file_)] for file_ in os. listdir(output_dir)]
<mask token> from __future__ import print_function import glob import json import os import pydot import r2pipe import s2e_web.S2E_settings as S2E_settings def function_addrs(r2): """ Yield a list of all the function's start addresses. """ for addr in r2.cmdj('aflqj'): yield int(addr, 16) def parse_tb_file(path, module): """ Parse a translation block coverage file generated by S2E's ``TranslationBlockCoverage`` plugin. """ with open(path, 'r') as f: try: tb_coverage_data = json.load(f) except Exception: print('WARN: Failed to parse translation block JSON file %s' % path ) return None if not tb_coverage_data: print('WARN: Translation block JSON file %s is empty' % path) return None if module not in tb_coverage_data: print('WARN: Target %s not found in translation block JSON file %s' % (module, path)) return None return tb_coverage_data[module] def basic_block_coverage(r2, translation_blocks): """ Calculate the basic block coverage based on the covered TBs. Returns a set of *covered* basic block start addresses """ covered_bbs = set() for func_addr in function_addrs(r2): graph = r2.cmdj('agj 0x%x' % func_addr) assert len(graph) == 1 graph = graph[0] for tb_start_addr, tb_end_addr in translation_blocks: for bb in graph['blocks']: bb_start_addr = bb['offset'] bb_end_addr = bb_start_addr + bb['size'] if (bb_end_addr >= tb_start_addr >= bb_start_addr or bb_start_addr <= tb_end_addr <= bb_end_addr): covered_bbs.add(bb_start_addr) return covered_bbs def render_functions(r2, covered_bbs, output_dir): """ Renders SVG graphs of each of the functions in the program. Basic blocks that were executed by S2E are coloured green. The resulting SVG images are written to `output_dir`. """ for func_addr in function_addrs(r2): func_name = r2.cmdj('agj 0x%x' % func_addr)[0]['name'] dot_str = r2.cmd('ag 0x%x' % func_addr) dot = pydot.graph_from_dot_data(dot_str) if not dot: continue else: dot = dot[0] for node in dot.get_nodes(): node_name = node.get_name() try: if node_name.startswith('"'): node_name = node_name[1:-1] node_addr = int(node_name, 16) except ValueError: continue if node_addr in covered_bbs: node.set_fillcolor('darkolivegreen2') svg_path = os.path.join(output_dir, '%s_0x%x.svg' % (func_name, func_addr)) with open(svg_path, 'wb') as f: svg = dot.create_svg() f.write(svg) def generate_graph(s2e_output_dir, s2e_num, project_name): """ Generate the PNG graph for the analysis in the output_dir """ s2e_env_path = S2E_settings.S2E_ENVIRONMENT_FOLDER_PATH output_dir = os.path.join(s2e_output_dir, 'functions') os.makedirs(output_dir) if not os.path.isfile(os.path.join(s2e_env_path, 's2e.yaml')): print('ERROR: %s is not an S2E environment' % s2e_env_path) return project_path = os.path.join(s2e_env_path, 'projects', project_name) if not os.path.isdir(project_path): print('ERROR: %s is not a valid project' % project_name) return if not os.path.isdir(output_dir): print('ERROR: %s is not a valid output directory' % output_dir) return s2e_last_path = os.path.join(project_path, 's2e-last') if not os.path.isdir(s2e_last_path): print('ERROR: %s has no s2e-last' % project_name) return tb_coverage_files = glob.glob(os.path.join(s2e_last_path, '*', 'tbcoverage-*.json')) + glob.glob(os.path.join(s2e_last_path, 'tbcoverage-*.json')) if not tb_coverage_files: print( 'ERROR: No translation block coverage files found in s2e-last. Did you enable the ``TranslationBlockCoverage`` plugin in s2e-config.lua?' ) return covered_tbs = set() for tb_coverage_file in tb_coverage_files: tb_coverage_data = parse_tb_file(tb_coverage_file, project_name) if not tb_coverage_data: continue covered_tbs.update((start, end) for start, end, _ in tb_coverage_data) r2 = r2pipe.open(os.path.join(project_path, project_name)) r2.cmd('aaa') covered_bbs = basic_block_coverage(r2, covered_tbs) render_functions(r2, covered_bbs, output_dir) base_path = os.path.join(project_name, 's2e-out-%d' % s2e_num, 'functions') return [[file_[0:-4], os.path.join(base_path, file_)] for file_ in os. listdir(output_dir)]
""" Copyright (C) Adrian Herrera, 2017 You will need to install r2pipe and pydot: ``` pip install r2pipe pydot ``` """ from __future__ import print_function import glob import json import os import pydot import r2pipe import s2e_web.S2E_settings as S2E_settings def function_addrs(r2): """ Yield a list of all the function's start addresses. """ for addr in r2.cmdj('aflqj'): yield int(addr, 16) def parse_tb_file(path, module): """ Parse a translation block coverage file generated by S2E's ``TranslationBlockCoverage`` plugin. """ with open(path, 'r') as f: try: tb_coverage_data = json.load(f) except Exception: print('WARN: Failed to parse translation block JSON file %s' % path) return None if not tb_coverage_data: print('WARN: Translation block JSON file %s is empty' % path) return None if module not in tb_coverage_data: print('WARN: Target %s not found in translation block JSON file %s' % (module, path)) return None return tb_coverage_data[module] def basic_block_coverage(r2, translation_blocks): """ Calculate the basic block coverage based on the covered TBs. Returns a set of *covered* basic block start addresses """ covered_bbs = set() for func_addr in function_addrs(r2): graph = r2.cmdj('agj 0x%x' % func_addr) assert len(graph) == 1 graph = graph[0] for tb_start_addr, tb_end_addr in translation_blocks: for bb in graph['blocks']: bb_start_addr = bb['offset'] bb_end_addr = bb_start_addr + bb['size'] # Check if the translation block falls within a basic block OR # a basic block falls within a translation block if (bb_end_addr >= tb_start_addr >= bb_start_addr or bb_start_addr <= tb_end_addr <= bb_end_addr): covered_bbs.add(bb_start_addr) return covered_bbs def render_functions(r2, covered_bbs, output_dir): """ Renders SVG graphs of each of the functions in the program. Basic blocks that were executed by S2E are coloured green. The resulting SVG images are written to `output_dir`. """ for func_addr in function_addrs(r2): # Get the function name func_name = r2.cmdj('agj 0x%x' % func_addr)[0]['name'] dot_str = r2.cmd('ag 0x%x' % func_addr) dot = pydot.graph_from_dot_data(dot_str) if not dot: continue else: dot = dot[0] for node in dot.get_nodes(): node_name = node.get_name() try: # XXX This is very hacky - need something more robust if node_name.startswith('"'): node_name = node_name[1:-1] node_addr = int(node_name, 16) except ValueError: # Node name is not a hex string continue if node_addr in covered_bbs: node.set_fillcolor('darkolivegreen2') svg_path = os.path.join(output_dir, '%s_0x%x.svg' % (func_name, func_addr)) with open(svg_path, 'wb') as f: svg = dot.create_svg() f.write(svg) def generate_graph(s2e_output_dir, s2e_num, project_name): """ Generate the PNG graph for the analysis in the output_dir """ s2e_env_path = S2E_settings.S2E_ENVIRONMENT_FOLDER_PATH output_dir = os.path.join(s2e_output_dir, 'functions') os.makedirs(output_dir) # Check that the given S2E environment is legitimate if not os.path.isfile(os.path.join(s2e_env_path, 's2e.yaml')): print('ERROR: %s is not an S2E environment' % s2e_env_path) return # Check that the given project exists in the environment project_path = os.path.join(s2e_env_path, 'projects', project_name) if not os.path.isdir(project_path): print('ERROR: %s is not a valid project' % project_name) return # Check that the output directory exists if not os.path.isdir(output_dir): print('ERROR: %s is not a valid output directory' % output_dir) return # Check that the project has been executed at least once s2e_last_path = os.path.join(project_path, 's2e-last') if not os.path.isdir(s2e_last_path): print('ERROR: %s has no s2e-last' % project_name) return # Get all the TB coverage files tb_coverage_files = glob.glob(os.path.join(s2e_last_path, '*', 'tbcoverage-*.json')) + \ glob.glob(os.path.join(s2e_last_path, 'tbcoverage-*.json')) if not tb_coverage_files: print('ERROR: No translation block coverage files found in s2e-last. ' 'Did you enable the ``TranslationBlockCoverage`` plugin in ' 's2e-config.lua?') return # Parse the TB coverage files covered_tbs = set() for tb_coverage_file in tb_coverage_files: # XXX A project can have a different name to the target program tb_coverage_data = parse_tb_file(tb_coverage_file, project_name) if not tb_coverage_data: continue covered_tbs.update((start, end) for start, end, _ in tb_coverage_data) # Open the program in Radare and do the initial analysis # XXX A project can have a different name to the target program r2 = r2pipe.open(os.path.join(project_path, project_name)) r2.cmd('aaa') # Calculate the basic block coverage and render the information as a set # of PNG images for each function covered_bbs = basic_block_coverage(r2, covered_tbs) render_functions(r2, covered_bbs, output_dir) base_path = os.path.join(project_name, 's2e-out-%d' % s2e_num, 'functions') return [[file_[0:-4], os.path.join(base_path, file_)] for file_ in os.listdir(output_dir)]
[ 2, 3, 4, 6, 7 ]
2,591
779ef8942bfb55bf017a8da9dfe34c03ac574a9a
<mask token> class ElementarySortTest(unittest.TestCase): <mask token> def test_insertion_sort(self): insertion = Insertion() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() insertion.sort(expected) self.assertEqual(expected, actual) self.assertLess(insertion.compares, (self.n ** 2 - self.n) / 2) self.assertLess(insertion.swaps, (self.n ** 2 - self.n) / 2) def test_insertion_sort_sub_array(self): insertion = Insertion() input = Utilities.generate_random_array(self.n) low = math.floor(0.1 * self.n) high = math.floor(0.9 * self.n) insertion.sort(input, low, high) self.assertTrue(Utilities.is_sorted(input, low, high)) self.assertFalse(Utilities.is_sorted(input, 0, len(input))) def test_selection_sort(self): selection = Selection() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() selection.sort(expected) self.assertEqual(expected, actual) self.assertEqual(499500, selection.compares) self.assertGreaterEqual(selection.swaps, 999) self.assertLessEqual(selection.swaps, 1000) def test_shell_sort(self): shell = Shell() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() shell.sort(expected) self.assertEqual(expected, actual) self.assertLess(13000, shell.compares) self.assertLess(8000, shell.swaps) <mask token>
<mask token> class ElementarySortTest(unittest.TestCase): def setUp(self): self.n = 1000 def test_insertion_sort(self): insertion = Insertion() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() insertion.sort(expected) self.assertEqual(expected, actual) self.assertLess(insertion.compares, (self.n ** 2 - self.n) / 2) self.assertLess(insertion.swaps, (self.n ** 2 - self.n) / 2) def test_insertion_sort_sub_array(self): insertion = Insertion() input = Utilities.generate_random_array(self.n) low = math.floor(0.1 * self.n) high = math.floor(0.9 * self.n) insertion.sort(input, low, high) self.assertTrue(Utilities.is_sorted(input, low, high)) self.assertFalse(Utilities.is_sorted(input, 0, len(input))) def test_selection_sort(self): selection = Selection() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() selection.sort(expected) self.assertEqual(expected, actual) self.assertEqual(499500, selection.compares) self.assertGreaterEqual(selection.swaps, 999) self.assertLessEqual(selection.swaps, 1000) def test_shell_sort(self): shell = Shell() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() shell.sort(expected) self.assertEqual(expected, actual) self.assertLess(13000, shell.compares) self.assertLess(8000, shell.swaps) <mask token>
<mask token> class ElementarySortTest(unittest.TestCase): def setUp(self): self.n = 1000 def test_insertion_sort(self): insertion = Insertion() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() insertion.sort(expected) self.assertEqual(expected, actual) self.assertLess(insertion.compares, (self.n ** 2 - self.n) / 2) self.assertLess(insertion.swaps, (self.n ** 2 - self.n) / 2) def test_insertion_sort_sub_array(self): insertion = Insertion() input = Utilities.generate_random_array(self.n) low = math.floor(0.1 * self.n) high = math.floor(0.9 * self.n) insertion.sort(input, low, high) self.assertTrue(Utilities.is_sorted(input, low, high)) self.assertFalse(Utilities.is_sorted(input, 0, len(input))) def test_selection_sort(self): selection = Selection() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() selection.sort(expected) self.assertEqual(expected, actual) self.assertEqual(499500, selection.compares) self.assertGreaterEqual(selection.swaps, 999) self.assertLessEqual(selection.swaps, 1000) def test_shell_sort(self): shell = Shell() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() shell.sort(expected) self.assertEqual(expected, actual) self.assertLess(13000, shell.compares) self.assertLess(8000, shell.swaps) if __name__ == '__main__': unittest.main()
import unittest import math from python.src.sort.insertion import Insertion from python.src.sort.selection import Selection from python.src.sort.shell import Shell from python.test.util.utilities import Utilities class ElementarySortTest(unittest.TestCase): def setUp(self): self.n = 1000 def test_insertion_sort(self): insertion = Insertion() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() insertion.sort(expected) self.assertEqual(expected, actual) self.assertLess(insertion.compares, (self.n ** 2 - self.n) / 2) self.assertLess(insertion.swaps, (self.n ** 2 - self.n) / 2) def test_insertion_sort_sub_array(self): insertion = Insertion() input = Utilities.generate_random_array(self.n) low = math.floor(0.1 * self.n) high = math.floor(0.9 * self.n) insertion.sort(input, low, high) self.assertTrue(Utilities.is_sorted(input, low, high)) self.assertFalse(Utilities.is_sorted(input, 0, len(input))) def test_selection_sort(self): selection = Selection() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() selection.sort(expected) self.assertEqual(expected, actual) self.assertEqual(499500, selection.compares) self.assertGreaterEqual(selection.swaps, 999) self.assertLessEqual(selection.swaps, 1000) def test_shell_sort(self): shell = Shell() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() shell.sort(expected) self.assertEqual(expected, actual) self.assertLess(13000, shell.compares) self.assertLess(8000, shell.swaps) if __name__ == '__main__': unittest.main()
import unittest import math from python.src.sort.insertion import Insertion from python.src.sort.selection import Selection from python.src.sort.shell import Shell from python.test.util.utilities import Utilities class ElementarySortTest(unittest.TestCase): def setUp(self): self.n = 1000 def test_insertion_sort(self): insertion = Insertion() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() insertion.sort(expected) self.assertEqual(expected, actual) self.assertLess(insertion.compares, (self.n**2 - self.n) / 2) self.assertLess(insertion.swaps, (self.n**2 - self.n) / 2) def test_insertion_sort_sub_array(self): insertion = Insertion() input = Utilities.generate_random_array(self.n) low = math.floor(0.1 * self.n) high = math.floor(0.9 * self.n) insertion.sort(input, low, high) self.assertTrue(Utilities.is_sorted(input, low, high)) self.assertFalse(Utilities.is_sorted(input, 0, len(input))) def test_selection_sort(self): selection = Selection() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() selection.sort(expected) self.assertEqual(expected, actual) self.assertEqual(499500, selection.compares) self.assertGreaterEqual(selection.swaps, 999) self.assertLessEqual(selection.swaps, 1000) def test_shell_sort(self): shell = Shell() actual = Utilities.generate_random_array(self.n) expected = list(actual) actual.sort() shell.sort(expected) self.assertEqual(expected, actual) self.assertLess(13000, shell.compares) self.assertLess(8000, shell.swaps) if __name__ == '__main__': unittest.main()
[ 5, 6, 7, 8, 9 ]
2,592
c8aa93a33a6513129b4980180c4eb8d5d5eb3b5b
<mask token>
<mask token> urlpatterns = [path('', views.index, name='index'), path('login', Login. as_view(), name='login'), path('logout', logout, name='logout'), path( 'cart/', views.cart, name='cart'), path('order/', views.order, name= 'order'), path('check-out', views.CheckOut, name='checkout'), path( 'track/', views.tracker, name='tracker'), path('search/', views.search, name='search'), path('checkout/', views.check, name='checkout'), path( 'productview/', views.proview, name='see')]
from django.contrib import admin from django.urls import path from . import views from .views import index from .views import Login, logout from .views import CheckOut urlpatterns = [path('', views.index, name='index'), path('login', Login. as_view(), name='login'), path('logout', logout, name='logout'), path( 'cart/', views.cart, name='cart'), path('order/', views.order, name= 'order'), path('check-out', views.CheckOut, name='checkout'), path( 'track/', views.tracker, name='tracker'), path('search/', views.search, name='search'), path('checkout/', views.check, name='checkout'), path( 'productview/', views.proview, name='see')]
from django.contrib import admin from django.urls import path from . import views from .views import index from .views import Login , logout from .views import CheckOut urlpatterns = [ path("",views.index, name="index"), path('login', Login.as_view(), name='login'), path('logout', logout , name='logout'), path("cart/",views.cart , name="cart"), path("order/",views.order , name="order"), path('check-out', views.CheckOut , name='checkout'), path("track/",views.tracker, name="tracker"), path("search/",views.search, name="search"), path("checkout/",views.check, name="checkout"), path("productview/",views.proview, name="see"), ]
null
[ 0, 1, 2, 3 ]
2,593
0ae9ad7af26e3d19f2d3967c02611503c32aea70
<mask token> class Config(object): <mask token> def __init__(self): self._opts = {} for opt, value in self._DEFAULT.items(): if not weechat.config_is_set_plugin(opt): weechat.config_set_plugin(opt, value) self.update() def update(self): for opt in self._DEFAULT.keys(): self._opts[opt] = weechat.config_get_plugin(opt) def __getitem__(self, key): return self._opts[key] <mask token>
<mask token> class Config(object): _DEFAULT = {'url': 'http://localhost:9999/notify', 'title': 'IRC Notification', 'activate_label': '', 'sound': ''} def __init__(self): self._opts = {} for opt, value in self._DEFAULT.items(): if not weechat.config_is_set_plugin(opt): weechat.config_set_plugin(opt, value) self.update() def update(self): for opt in self._DEFAULT.keys(): self._opts[opt] = weechat.config_get_plugin(opt) def __getitem__(self, key): return self._opts[key] def config_cb(data, option, value): cfg.update() return weechat.WEECHAT_RC_OK def send_notify(**kwargs): data = json.dumps(kwargs) req = urllib2.Request(cfg['url'], data, {'Content-Type': 'application/json'}) f = urllib2.urlopen(req) response = f.read() f.close() <mask token>
<mask token> class Config(object): _DEFAULT = {'url': 'http://localhost:9999/notify', 'title': 'IRC Notification', 'activate_label': '', 'sound': ''} def __init__(self): self._opts = {} for opt, value in self._DEFAULT.items(): if not weechat.config_is_set_plugin(opt): weechat.config_set_plugin(opt, value) self.update() def update(self): for opt in self._DEFAULT.keys(): self._opts[opt] = weechat.config_get_plugin(opt) def __getitem__(self, key): return self._opts[key] def config_cb(data, option, value): cfg.update() return weechat.WEECHAT_RC_OK def send_notify(**kwargs): data = json.dumps(kwargs) req = urllib2.Request(cfg['url'], data, {'Content-Type': 'application/json'}) f = urllib2.urlopen(req) response = f.read() f.close() <mask token> def handle_msg(data, pbuffer, date, tags, displayed, highlight, prefix, message ): highlight = bool(highlight) buffer_type = weechat.buffer_get_string(pbuffer, 'localvar_type') buffer_name = weechat.buffer_get_string(pbuffer, 'short_name') away = weechat.buffer_get_string(pbuffer, 'localvar_away') if buffer_type == 'private': notify('Private message from {}'.format(buffer_name), message) elif buffer_type == 'channel' and highlight: notify('Highlight {}@{}'.format(prefix, buffer_name), message) return weechat.WEECHAT_RC_OK <mask token>
<mask token> class Config(object): _DEFAULT = {'url': 'http://localhost:9999/notify', 'title': 'IRC Notification', 'activate_label': '', 'sound': ''} def __init__(self): self._opts = {} for opt, value in self._DEFAULT.items(): if not weechat.config_is_set_plugin(opt): weechat.config_set_plugin(opt, value) self.update() def update(self): for opt in self._DEFAULT.keys(): self._opts[opt] = weechat.config_get_plugin(opt) def __getitem__(self, key): return self._opts[key] def config_cb(data, option, value): cfg.update() return weechat.WEECHAT_RC_OK def send_notify(**kwargs): data = json.dumps(kwargs) req = urllib2.Request(cfg['url'], data, {'Content-Type': 'application/json'}) f = urllib2.urlopen(req) response = f.read() f.close() def notify(subtitle, message): opt = {} if cfg['activate_label']: opt['activate'] = cfg['activate_label'] if cfg['sound']: opt['sound'] = cfg['sound'] send_notify(title=cfg['title'], subtitle=subtitle, message=message, **opt) def handle_msg(data, pbuffer, date, tags, displayed, highlight, prefix, message ): highlight = bool(highlight) buffer_type = weechat.buffer_get_string(pbuffer, 'localvar_type') buffer_name = weechat.buffer_get_string(pbuffer, 'short_name') away = weechat.buffer_get_string(pbuffer, 'localvar_away') if buffer_type == 'private': notify('Private message from {}'.format(buffer_name), message) elif buffer_type == 'channel' and highlight: notify('Highlight {}@{}'.format(prefix, buffer_name), message) return weechat.WEECHAT_RC_OK <mask token>
# -*- coding: utf-8 -*- # # Copyright (C) 2015 Brandon Bennett <[email protected]> # # Send a notification via notifyserver (https://github.com/nemith/notifyserver) # on highlight/private message or new DCC. # # History: # # 2015-02-07, Brandon Bennett <[email protected]>: # version 0.1: initial release # SCRIPT_NAME = 'notifyserver' SCRIPT_AUTHOR = 'Brandon Bennett <[email protected]>' SCRIPT_VERSION = '0.1' SCRIPT_LICENSE = 'MIT' SCRIPT_DESC = 'Send a notification to a notifyserver on highlight/private message or new DCC' import_ok = True try: import weechat except: print('This script must be run under WeeChat.') print('Get WeeChat now at: http://www.weechat.org/') import_ok = False try: import json, urllib2 except ImportError as message: print('Missing package(s) for %s: %s' % (SCRIPT_NAME, message)) import_ok = False cfg = None class Config(object): _DEFAULT = { 'url' : 'http://localhost:9999/notify', 'title': 'IRC Notification', 'activate_label': "", 'sound': "", } def __init__(self): self._opts = {} for opt, value in self._DEFAULT.items(): if not weechat.config_is_set_plugin(opt): weechat.config_set_plugin(opt, value) self.update() def update(self): for opt in self._DEFAULT.keys(): self._opts[opt] = weechat.config_get_plugin(opt) def __getitem__(self, key): return self._opts[key] def config_cb(data, option, value): cfg.update() return weechat.WEECHAT_RC_OK def send_notify(**kwargs): data = json.dumps(kwargs) req = urllib2.Request(cfg['url'], data, {'Content-Type': 'application/json'}) f = urllib2.urlopen(req) response = f.read() f.close() def notify(subtitle, message): opt = {} if cfg['activate_label']: opt['activate'] = cfg['activate_label'] if cfg['sound']: opt['sound'] = cfg['sound'] send_notify( title=cfg['title'], subtitle=subtitle, message=message, **opt) def handle_msg(data, pbuffer, date, tags, displayed, highlight, prefix, message): highlight = bool(highlight) buffer_type = weechat.buffer_get_string(pbuffer, "localvar_type") buffer_name = weechat.buffer_get_string(pbuffer, "short_name") away = weechat.buffer_get_string(pbuffer, "localvar_away") if buffer_type == 'private': notify("Private message from {}".format(buffer_name), message) elif buffer_type == 'channel' and highlight: notify("Highlight {}@{}".format(prefix, buffer_name), message) return weechat.WEECHAT_RC_OK if __name__ == '__main__' and import_ok: if weechat.register(SCRIPT_NAME, SCRIPT_AUTHOR, SCRIPT_VERSION, SCRIPT_LICENSE, SCRIPT_DESC, '', ''): cfg = Config() weechat.hook_config("plugins.var.python." + SCRIPT_NAME + ".*", "config_cb", "") weechat.hook_print("", "", "", 1, "handle_msg", "")
[ 4, 7, 8, 9, 12 ]
2,594
9731f45b19d40a031216f8a430c09764fd34e984
<mask token> def get_blogs_common_data(request, blogs_all_list): page_num = request.GET.get('page', 1) paginator = Paginator(blogs_all_list, settings.BLOGS_PER_PAGE) page_of_blogs = paginator.get_page(page_num) current_page_num = page_of_blogs.number page_range = list(range(max(1, current_page_num - 2), min(paginator. num_pages + 1, current_page_num + 3))) if page_range[0] != 1: page_range.insert(0, 1) if page_range[1] - page_range[0] >= 2: page_range.insert(1, '...') if page_range[-1] != paginator.num_pages: page_range.append(paginator.num_pages) if page_range[-1] - page_range[-2] >= 2: page_range.insert(-1, '...') blog_dates = dict() all_dates = Blog.objects.dates('created_time', 'month', order='DESC') for blogs_date in all_dates: blogs_count = Blog.objects.filter(created_time__year=blogs_date. year, created_time__month=blogs_date.month).count() blog_dates[blogs_date] = blogs_count context = dict() context['blogs'] = page_of_blogs context['page_range'] = page_range context['blog_types'] = BlogType.objects.all() context['blog_dates'] = blog_dates return context def blog_list(request): blogs_all_list = Blog.objects.all() context = get_blogs_common_data(request, blogs_all_list) return render(request, 'blog/blog_list.html', context) <mask token> def blog_detail(request, blog_pk): blog = get_object_or_404(Blog, pk=blog_pk) read_cookie_key = read_statistics_once_read(request, blog) context = dict() context['blog'] = blog context['blog_author'] = blog.author.get_nickname_or_username() context['login_form'] = LoginForm() context['pre_blog'] = Blog.objects.filter(created_time__gt=blog. created_time).last() context['next_blog'] = Blog.objects.filter(created_time__lt=blog. created_time).first() context['blog_dates'] = Blog.objects.dates('created_time', 'month', order='DESC') response = render(request, 'blog/blog_detail.html', context) response.set_cookie(read_cookie_key, 'true') return response
<mask token> def get_blogs_common_data(request, blogs_all_list): page_num = request.GET.get('page', 1) paginator = Paginator(blogs_all_list, settings.BLOGS_PER_PAGE) page_of_blogs = paginator.get_page(page_num) current_page_num = page_of_blogs.number page_range = list(range(max(1, current_page_num - 2), min(paginator. num_pages + 1, current_page_num + 3))) if page_range[0] != 1: page_range.insert(0, 1) if page_range[1] - page_range[0] >= 2: page_range.insert(1, '...') if page_range[-1] != paginator.num_pages: page_range.append(paginator.num_pages) if page_range[-1] - page_range[-2] >= 2: page_range.insert(-1, '...') blog_dates = dict() all_dates = Blog.objects.dates('created_time', 'month', order='DESC') for blogs_date in all_dates: blogs_count = Blog.objects.filter(created_time__year=blogs_date. year, created_time__month=blogs_date.month).count() blog_dates[blogs_date] = blogs_count context = dict() context['blogs'] = page_of_blogs context['page_range'] = page_range context['blog_types'] = BlogType.objects.all() context['blog_dates'] = blog_dates return context def blog_list(request): blogs_all_list = Blog.objects.all() context = get_blogs_common_data(request, blogs_all_list) return render(request, 'blog/blog_list.html', context) def blogs_with_type(request, blog_type_pk): blog_type = get_object_or_404(BlogType, pk=blog_type_pk) blogs_all_list = Blog.objects.filter(blog_type=blog_type) context = get_blogs_common_data(request, blogs_all_list) context['blog_type'] = blog_type return render(request, 'blog/blogs_with_type.html', context) <mask token> def blog_detail(request, blog_pk): blog = get_object_or_404(Blog, pk=blog_pk) read_cookie_key = read_statistics_once_read(request, blog) context = dict() context['blog'] = blog context['blog_author'] = blog.author.get_nickname_or_username() context['login_form'] = LoginForm() context['pre_blog'] = Blog.objects.filter(created_time__gt=blog. created_time).last() context['next_blog'] = Blog.objects.filter(created_time__lt=blog. created_time).first() context['blog_dates'] = Blog.objects.dates('created_time', 'month', order='DESC') response = render(request, 'blog/blog_detail.html', context) response.set_cookie(read_cookie_key, 'true') return response
<mask token> def get_blogs_common_data(request, blogs_all_list): page_num = request.GET.get('page', 1) paginator = Paginator(blogs_all_list, settings.BLOGS_PER_PAGE) page_of_blogs = paginator.get_page(page_num) current_page_num = page_of_blogs.number page_range = list(range(max(1, current_page_num - 2), min(paginator. num_pages + 1, current_page_num + 3))) if page_range[0] != 1: page_range.insert(0, 1) if page_range[1] - page_range[0] >= 2: page_range.insert(1, '...') if page_range[-1] != paginator.num_pages: page_range.append(paginator.num_pages) if page_range[-1] - page_range[-2] >= 2: page_range.insert(-1, '...') blog_dates = dict() all_dates = Blog.objects.dates('created_time', 'month', order='DESC') for blogs_date in all_dates: blogs_count = Blog.objects.filter(created_time__year=blogs_date. year, created_time__month=blogs_date.month).count() blog_dates[blogs_date] = blogs_count context = dict() context['blogs'] = page_of_blogs context['page_range'] = page_range context['blog_types'] = BlogType.objects.all() context['blog_dates'] = blog_dates return context def blog_list(request): blogs_all_list = Blog.objects.all() context = get_blogs_common_data(request, blogs_all_list) return render(request, 'blog/blog_list.html', context) def blogs_with_type(request, blog_type_pk): blog_type = get_object_or_404(BlogType, pk=blog_type_pk) blogs_all_list = Blog.objects.filter(blog_type=blog_type) context = get_blogs_common_data(request, blogs_all_list) context['blog_type'] = blog_type return render(request, 'blog/blogs_with_type.html', context) def blogs_with_date(request, year, month): blogs_all_list = Blog.objects.filter(created_time__year=year, created_time__month=month) context = get_blogs_common_data(request, blogs_all_list) context['blogs_with_date'] = '%s年%s' % (year, month) return render(request, 'blog/blogs_with_date.html', context) def blog_detail(request, blog_pk): blog = get_object_or_404(Blog, pk=blog_pk) read_cookie_key = read_statistics_once_read(request, blog) context = dict() context['blog'] = blog context['blog_author'] = blog.author.get_nickname_or_username() context['login_form'] = LoginForm() context['pre_blog'] = Blog.objects.filter(created_time__gt=blog. created_time).last() context['next_blog'] = Blog.objects.filter(created_time__lt=blog. created_time).first() context['blog_dates'] = Blog.objects.dates('created_time', 'month', order='DESC') response = render(request, 'blog/blog_detail.html', context) response.set_cookie(read_cookie_key, 'true') return response
from django.shortcuts import render, get_object_or_404 from django.core.paginator import Paginator from .models import Blog, BlogType from django.conf import settings from read_statistics.utils import read_statistics_once_read from user.forms import LoginForm def get_blogs_common_data(request, blogs_all_list): page_num = request.GET.get('page', 1) paginator = Paginator(blogs_all_list, settings.BLOGS_PER_PAGE) page_of_blogs = paginator.get_page(page_num) current_page_num = page_of_blogs.number page_range = list(range(max(1, current_page_num - 2), min(paginator. num_pages + 1, current_page_num + 3))) if page_range[0] != 1: page_range.insert(0, 1) if page_range[1] - page_range[0] >= 2: page_range.insert(1, '...') if page_range[-1] != paginator.num_pages: page_range.append(paginator.num_pages) if page_range[-1] - page_range[-2] >= 2: page_range.insert(-1, '...') blog_dates = dict() all_dates = Blog.objects.dates('created_time', 'month', order='DESC') for blogs_date in all_dates: blogs_count = Blog.objects.filter(created_time__year=blogs_date. year, created_time__month=blogs_date.month).count() blog_dates[blogs_date] = blogs_count context = dict() context['blogs'] = page_of_blogs context['page_range'] = page_range context['blog_types'] = BlogType.objects.all() context['blog_dates'] = blog_dates return context def blog_list(request): blogs_all_list = Blog.objects.all() context = get_blogs_common_data(request, blogs_all_list) return render(request, 'blog/blog_list.html', context) def blogs_with_type(request, blog_type_pk): blog_type = get_object_or_404(BlogType, pk=blog_type_pk) blogs_all_list = Blog.objects.filter(blog_type=blog_type) context = get_blogs_common_data(request, blogs_all_list) context['blog_type'] = blog_type return render(request, 'blog/blogs_with_type.html', context) def blogs_with_date(request, year, month): blogs_all_list = Blog.objects.filter(created_time__year=year, created_time__month=month) context = get_blogs_common_data(request, blogs_all_list) context['blogs_with_date'] = '%s年%s' % (year, month) return render(request, 'blog/blogs_with_date.html', context) def blog_detail(request, blog_pk): blog = get_object_or_404(Blog, pk=blog_pk) read_cookie_key = read_statistics_once_read(request, blog) context = dict() context['blog'] = blog context['blog_author'] = blog.author.get_nickname_or_username() context['login_form'] = LoginForm() context['pre_blog'] = Blog.objects.filter(created_time__gt=blog. created_time).last() context['next_blog'] = Blog.objects.filter(created_time__lt=blog. created_time).first() context['blog_dates'] = Blog.objects.dates('created_time', 'month', order='DESC') response = render(request, 'blog/blog_detail.html', context) response.set_cookie(read_cookie_key, 'true') return response
from django.shortcuts import render, get_object_or_404 from django.core.paginator import Paginator from .models import Blog, BlogType from django.conf import settings from read_statistics.utils import read_statistics_once_read from user.forms import LoginForm # Create your views here. #分页函数 def get_blogs_common_data(request, blogs_all_list): # 分页器 page_num = request.GET.get('page', 1) paginator = Paginator(blogs_all_list, settings.BLOGS_PER_PAGE) page_of_blogs = paginator.get_page(page_num) current_page_num = page_of_blogs.number page_range = list(range(max(1, current_page_num - 2), min(paginator.num_pages + 1, current_page_num + 3))) if page_range[0] != 1: page_range.insert(0, 1) if page_range[1] - page_range[0] >= 2: page_range.insert(1, '...') if page_range[-1] != paginator.num_pages: page_range.append(paginator.num_pages) if page_range[-1] - page_range[-2] >= 2: page_range.insert(-1, '...') # 获取日期归档的博客统计数量 blog_dates = dict() all_dates = Blog.objects.dates('created_time', 'month', order='DESC') for blogs_date in all_dates: blogs_count = Blog.objects.filter(created_time__year=blogs_date.year, created_time__month=blogs_date.month).count() blog_dates[blogs_date] = blogs_count # 获取公共的数据 context = dict() context['blogs'] = page_of_blogs context['page_range'] = page_range # 运用annotate方法给对象添加注释 #context['blog_types'] = BlogType.objects.annotate(blog_count=Count('blog')) context['blog_types'] = BlogType.objects.all() context['blog_dates'] = blog_dates return context def blog_list(request): blogs_all_list = Blog.objects.all() context = get_blogs_common_data(request, blogs_all_list) return render(request, 'blog/blog_list.html', context) def blogs_with_type(request, blog_type_pk): blog_type = get_object_or_404(BlogType, pk=blog_type_pk) blogs_all_list = Blog.objects.filter(blog_type=blog_type) context = get_blogs_common_data(request, blogs_all_list) context['blog_type'] = blog_type return render(request, 'blog/blogs_with_type.html', context) def blogs_with_date(request, year, month): blogs_all_list = Blog.objects.filter(created_time__year=year, created_time__month=month) context = get_blogs_common_data(request, blogs_all_list) context['blogs_with_date'] = '%s年%s' % (year, month) return render(request, 'blog/blogs_with_date.html', context) def blog_detail(request, blog_pk): blog = get_object_or_404(Blog, pk=blog_pk) read_cookie_key = read_statistics_once_read(request, blog) context = dict() context['blog'] = blog context['blog_author'] = blog.author.get_nickname_or_username() context['login_form'] = LoginForm() context['pre_blog'] = Blog.objects.filter(created_time__gt=blog.created_time).last() context['next_blog'] = Blog.objects.filter(created_time__lt=blog.created_time).first() context['blog_dates'] = Blog.objects.dates('created_time', 'month', order='DESC') response = render(request, 'blog/blog_detail.html', context) response.set_cookie(read_cookie_key, 'true') return response
[ 3, 4, 5, 6, 7 ]
2,595
db684185c2b0a26cb101dc40090c84b64c554eeb
<mask token> def main(): parser = argparse.ArgumentParser(description='Filling In The Gaps program') parser.add_argument('-d', '--dir', help='Directory path.', dest= 'dir_path', required=True) parser.add_argument('--file-prefix', required=True, help= 'File name prefix.') parser.add_argument('-c', action='store_true', dest='create_tt', help= 'Create test tree.') args = parser.parse_args() if args.create_tt: create_test_files(args.dir_path, args.file_prefix) prev_num = 0 for filename in os.listdir(args.dir_path): if re.match('{0}\\d{{3}}'.format(args.file_prefix), filename): curr_num = int(filename.split(args.file_prefix)[1]) expected_num = prev_num + 1 if curr_num != expected_num: old_path = os.path.join(args.dir_path, filename) new_path = os.path.join(args.dir_path, '{}{:03d}'.format( args.file_prefix, expected_num)) shutil.move(old_path, new_path) curr_num = expected_num prev_num = curr_num <mask token>
<mask token> def create_test_file(filename): with open(filename, 'w') as f: f.write('foobar') def create_test_files(test_dir, file_prefix): if os.path.exists(test_dir): shutil.rmtree(test_dir) os.mkdir(test_dir) for i in range(1, 10): if i in [2, 8]: i += 1 testfile_path = os.path.join(test_dir, '{}{:03d}'.format( file_prefix, i)) create_test_file(testfile_path) def main(): parser = argparse.ArgumentParser(description='Filling In The Gaps program') parser.add_argument('-d', '--dir', help='Directory path.', dest= 'dir_path', required=True) parser.add_argument('--file-prefix', required=True, help= 'File name prefix.') parser.add_argument('-c', action='store_true', dest='create_tt', help= 'Create test tree.') args = parser.parse_args() if args.create_tt: create_test_files(args.dir_path, args.file_prefix) prev_num = 0 for filename in os.listdir(args.dir_path): if re.match('{0}\\d{{3}}'.format(args.file_prefix), filename): curr_num = int(filename.split(args.file_prefix)[1]) expected_num = prev_num + 1 if curr_num != expected_num: old_path = os.path.join(args.dir_path, filename) new_path = os.path.join(args.dir_path, '{}{:03d}'.format( args.file_prefix, expected_num)) shutil.move(old_path, new_path) curr_num = expected_num prev_num = curr_num <mask token>
<mask token> def create_test_file(filename): with open(filename, 'w') as f: f.write('foobar') def create_test_files(test_dir, file_prefix): if os.path.exists(test_dir): shutil.rmtree(test_dir) os.mkdir(test_dir) for i in range(1, 10): if i in [2, 8]: i += 1 testfile_path = os.path.join(test_dir, '{}{:03d}'.format( file_prefix, i)) create_test_file(testfile_path) def main(): parser = argparse.ArgumentParser(description='Filling In The Gaps program') parser.add_argument('-d', '--dir', help='Directory path.', dest= 'dir_path', required=True) parser.add_argument('--file-prefix', required=True, help= 'File name prefix.') parser.add_argument('-c', action='store_true', dest='create_tt', help= 'Create test tree.') args = parser.parse_args() if args.create_tt: create_test_files(args.dir_path, args.file_prefix) prev_num = 0 for filename in os.listdir(args.dir_path): if re.match('{0}\\d{{3}}'.format(args.file_prefix), filename): curr_num = int(filename.split(args.file_prefix)[1]) expected_num = prev_num + 1 if curr_num != expected_num: old_path = os.path.join(args.dir_path, filename) new_path = os.path.join(args.dir_path, '{}{:03d}'.format( args.file_prefix, expected_num)) shutil.move(old_path, new_path) curr_num = expected_num prev_num = curr_num if __name__ == '__main__': main()
import os import shutil import re import argparse def create_test_file(filename): with open(filename, 'w') as f: f.write('foobar') def create_test_files(test_dir, file_prefix): if os.path.exists(test_dir): shutil.rmtree(test_dir) os.mkdir(test_dir) for i in range(1, 10): if i in [2, 8]: i += 1 testfile_path = os.path.join(test_dir, '{}{:03d}'.format( file_prefix, i)) create_test_file(testfile_path) def main(): parser = argparse.ArgumentParser(description='Filling In The Gaps program') parser.add_argument('-d', '--dir', help='Directory path.', dest= 'dir_path', required=True) parser.add_argument('--file-prefix', required=True, help= 'File name prefix.') parser.add_argument('-c', action='store_true', dest='create_tt', help= 'Create test tree.') args = parser.parse_args() if args.create_tt: create_test_files(args.dir_path, args.file_prefix) prev_num = 0 for filename in os.listdir(args.dir_path): if re.match('{0}\\d{{3}}'.format(args.file_prefix), filename): curr_num = int(filename.split(args.file_prefix)[1]) expected_num = prev_num + 1 if curr_num != expected_num: old_path = os.path.join(args.dir_path, filename) new_path = os.path.join(args.dir_path, '{}{:03d}'.format( args.file_prefix, expected_num)) shutil.move(old_path, new_path) curr_num = expected_num prev_num = curr_num if __name__ == '__main__': main()
#! python3 import os import shutil import re import argparse def create_test_file(filename): with open(filename, "w") as f: f.write("foobar") def create_test_files(test_dir, file_prefix): if os.path.exists(test_dir): shutil.rmtree(test_dir) os.mkdir(test_dir) for i in range(1, 10): # Introduce gaps if i in [2, 8]: i += 1 testfile_path = os.path.join(test_dir, "{}{:03d}".format(file_prefix, i)) create_test_file(testfile_path) def main(): parser = argparse.ArgumentParser(description='Filling In The Gaps program') parser.add_argument('-d', '--dir', help="Directory path.", dest='dir_path', required=True) parser.add_argument('--file-prefix', required=True, help='File name prefix.') parser.add_argument('-c', action='store_true', dest='create_tt', help='Create test tree.') args = parser.parse_args() if args.create_tt: create_test_files(args.dir_path, args.file_prefix) prev_num = 0 for filename in os.listdir(args.dir_path): if re.match(r"{0}\d{{3}}".format(args.file_prefix), filename): curr_num = int(filename.split(args.file_prefix)[1]) expected_num = prev_num + 1 if curr_num != expected_num: old_path = os.path.join(args.dir_path, filename) new_path = os.path.join(args.dir_path, "{}{:03d}".format( args.file_prefix, expected_num)) shutil.move(old_path, new_path) curr_num = expected_num prev_num = curr_num if __name__ == "__main__": main()
[ 1, 3, 4, 5, 6 ]
2,596
a6ee2be7bed59b419fa66fd6cfe4b5fff3fac260
<mask token>
<mask token> try: from setuptools import setup, find_packages except ImportError: from distutils.core import setup, find_packages setup(name='stripe-requests', version='1.9.1-dev', description= 'Stripe python bindings using requests', author='Allan Lei', author_email='[email protected]', url= 'https://github.com/allanlei/stripe-requests', license=open('LICENSE'). read(), packages=find_packages(), package_data={'stripe': [ 'data/ca-certificates.crt']}, install_requires=[ 'requests >= 1.2.0, < 1.3.0'], test_suite='stripe.tests', classifiers=( 'Intended Audience :: Developers', 'Natural Language :: English', 'Programming Language :: Python', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.1', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: Implementation :: PyPy'))
import os import sys try: from setuptools import setup, find_packages except ImportError: from distutils.core import setup, find_packages setup(name='stripe-requests', version='1.9.1-dev', description= 'Stripe python bindings using requests', author='Allan Lei', author_email='[email protected]', url= 'https://github.com/allanlei/stripe-requests', license=open('LICENSE'). read(), packages=find_packages(), package_data={'stripe': [ 'data/ca-certificates.crt']}, install_requires=[ 'requests >= 1.2.0, < 1.3.0'], test_suite='stripe.tests', classifiers=( 'Intended Audience :: Developers', 'Natural Language :: English', 'Programming Language :: Python', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.1', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: Implementation :: PyPy'))
import os import sys try: from setuptools import setup, find_packages except ImportError: from distutils.core import setup, find_packages setup( name='stripe-requests', version='1.9.1-dev', description='Stripe python bindings using requests', author='Allan Lei', author_email='[email protected]', url='https://github.com/allanlei/stripe-requests', license=open('LICENSE').read(), packages=find_packages(), package_data={'stripe': ['data/ca-certificates.crt']}, install_requires=[ 'requests >= 1.2.0, < 1.3.0', ], test_suite='stripe.tests', classifiers=( 'Intended Audience :: Developers', 'Natural Language :: English', 'Programming Language :: Python', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.1', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: Implementation :: PyPy', ), )
null
[ 0, 1, 2, 3 ]
2,597
8edca4c50e48734073e80de85088964837247696
<mask token> class SentimenView(generics.RetrieveUpdateDestroyAPIView): serializer_class = SentimenSerializer queryset = Sentiment.objects.all()
<mask token> class HistoryListView(generics.GenericAPIView): <mask token> def post(self, request): serializer_class = self.serializer_class(data=request.data) serializer_class.is_valid(raise_exception=True) return Response(serializer_class.data, status=status.HTTP_200_OK) class HistoryView(generics.RetrieveUpdateDestroyAPIView): serializer_class = HistorySerializer queryset = Sentiment.objects.all() class SentimenListView(generics.ListCreateAPIView): queryset = Sentiment.objects.all() serializer_class = SentimenSerializer(many=True) class SentimenView(generics.RetrieveUpdateDestroyAPIView): serializer_class = SentimenSerializer queryset = Sentiment.objects.all()
<mask token> class HistoryListView(generics.GenericAPIView): serializer_class = HistorySerializer def post(self, request): serializer_class = self.serializer_class(data=request.data) serializer_class.is_valid(raise_exception=True) return Response(serializer_class.data, status=status.HTTP_200_OK) class HistoryView(generics.RetrieveUpdateDestroyAPIView): serializer_class = HistorySerializer queryset = Sentiment.objects.all() class SentimenListView(generics.ListCreateAPIView): queryset = Sentiment.objects.all() serializer_class = SentimenSerializer(many=True) class SentimenView(generics.RetrieveUpdateDestroyAPIView): serializer_class = SentimenSerializer queryset = Sentiment.objects.all()
<mask token> class HistoryMyList(generics.ListCreateAPIView): <mask token> <mask token> class HistoryListView(generics.GenericAPIView): serializer_class = HistorySerializer def post(self, request): serializer_class = self.serializer_class(data=request.data) serializer_class.is_valid(raise_exception=True) return Response(serializer_class.data, status=status.HTTP_200_OK) class HistoryView(generics.RetrieveUpdateDestroyAPIView): serializer_class = HistorySerializer queryset = Sentiment.objects.all() class SentimenListView(generics.ListCreateAPIView): queryset = Sentiment.objects.all() serializer_class = SentimenSerializer(many=True) class SentimenView(generics.RetrieveUpdateDestroyAPIView): serializer_class = SentimenSerializer queryset = Sentiment.objects.all()
from django.shortcuts import render from rest_framework.response import Response from .serializers import * from rest_framework import generics, status class HistoryMyList(generics.ListCreateAPIView): serializer_class = HistorySer queryset = History.objects.all() class HistoryListView(generics.GenericAPIView): serializer_class = HistorySerializer def post(self, request): serializer_class = self.serializer_class(data=request.data) serializer_class.is_valid(raise_exception=True) return Response(serializer_class.data, status=status.HTTP_200_OK) class HistoryView(generics.RetrieveUpdateDestroyAPIView): serializer_class = HistorySerializer queryset = Sentiment.objects.all() class SentimenListView(generics.ListCreateAPIView): queryset = Sentiment.objects.all() serializer_class = SentimenSerializer(many=True) class SentimenView(generics.RetrieveUpdateDestroyAPIView): serializer_class = SentimenSerializer queryset = Sentiment.objects.all()
[ 2, 8, 9, 10, 13 ]
2,598
19f17044d48c8cc0f9d366cde7edc846ff343462
<mask token> def search(query, finalIndexPath): listOfDicts = list() queryList = set() tempList = query.strip().lower().replace("'", '').split(' ') for word in tempList: if word not in stopWords: queryList.add(word) print('Cleaned query tokens:') print(queryList, '\n') queryList = list(queryList) for word in queryList: charPath = word[0] jsonFilePath = str(Path(finalIndexPath) / charPath / word) + '.json' try: with open(jsonFilePath, 'r') as file: data = file.read() jsonObj = json.loads(data) docsDict = jsonObj['docList'] listOfDicts.append(docsDict) except: pass return intersectDicts(listOfDicts) def getDocURLs(intersectedDocs, indexPath, cacheURLs): listUrls = list() for docID in intersectedDocs: if docID in cacheURLs: fileUrl = cacheURLs[docID] listUrls.append((fileUrl, intersectedDocs[docID])) return listUrls def intersectDicts(listOfDicts): if len(listOfDicts) == 1: return listOfDicts[0] intersection = {} for dictItem in listOfDicts: for doc in dictItem: if doc not in intersection: intersection[doc] = dictItem[doc] else: intersection[doc] += dictItem[doc] print('intersection = ', intersection) return intersection def flaskBackendQuery(queryUser, cacheURLs): indexPath = GLOBALS.FINAL_INDEX if queryUser.strip() == '': print('Query needs to be at least one character') unsortedDocs = search(queryUser, indexPath) unsortedURLs = getDocURLs(unsortedDocs, indexPath, cacheURLs) sortedURLs = sorted(unsortedURLs, key=lambda x: x[1], reverse=True) return sortedURLs[0:10] <mask token>
<mask token> def search(query, finalIndexPath): listOfDicts = list() queryList = set() tempList = query.strip().lower().replace("'", '').split(' ') for word in tempList: if word not in stopWords: queryList.add(word) print('Cleaned query tokens:') print(queryList, '\n') queryList = list(queryList) for word in queryList: charPath = word[0] jsonFilePath = str(Path(finalIndexPath) / charPath / word) + '.json' try: with open(jsonFilePath, 'r') as file: data = file.read() jsonObj = json.loads(data) docsDict = jsonObj['docList'] listOfDicts.append(docsDict) except: pass return intersectDicts(listOfDicts) def getDocURLs(intersectedDocs, indexPath, cacheURLs): listUrls = list() for docID in intersectedDocs: if docID in cacheURLs: fileUrl = cacheURLs[docID] listUrls.append((fileUrl, intersectedDocs[docID])) return listUrls def intersectDicts(listOfDicts): if len(listOfDicts) == 1: return listOfDicts[0] intersection = {} for dictItem in listOfDicts: for doc in dictItem: if doc not in intersection: intersection[doc] = dictItem[doc] else: intersection[doc] += dictItem[doc] print('intersection = ', intersection) return intersection def flaskBackendQuery(queryUser, cacheURLs): indexPath = GLOBALS.FINAL_INDEX if queryUser.strip() == '': print('Query needs to be at least one character') unsortedDocs = search(queryUser, indexPath) unsortedURLs = getDocURLs(unsortedDocs, indexPath, cacheURLs) sortedURLs = sorted(unsortedURLs, key=lambda x: x[1], reverse=True) return sortedURLs[0:10] if __name__ == '__main__': indexPath = 'C:\\1_Repos\\developer' finalIndexPath = 'C:\\1_Repos\\developer' query = input('Enter a search query: ') if query.strip() == '': print('Query needs to be at least one character') unsortedDocs = search(query, finalIndexPath) unsortedURLs = getDocURLs(unsortedDocs, indexPath) sortedURLs = sorted(unsortedURLs, key=lambda x: x[1], reverse=True) print(f"\n------------ Top 5 Docs for '{query}' ------------\n") for i, doc in enumerate(sortedURLs): if i > 5: break print(doc[0], ' = ', doc[1]) print('\n------------ DONE! ------------\n')
<mask token> stopWords = {'a', 'about', 'above', 'after', 'again', 'against', 'all', 'am', 'an', 'and', 'any', 'are', "aren't", 'as', 'at', 'be', 'because', 'been', 'before', 'being', 'below', 'between', 'both', 'but', 'by', "can't", 'cannot', 'could', "couldn't", 'did', "didn't", 'do', 'does', "doesn't", 'doing', "don't", 'down', 'during', 'each', 'few', 'for', 'from', 'further', 'had', "hadn't", 'has', "hasn't", 'have', "haven't", 'having', 'he', "he'd", "he'll", "he's", 'her', 'here', "here's", 'hers', 'herself', 'him', 'himself', 'his', 'how', "how's", 'i', "i'd", "i'll", "i'm", "i've", 'if', 'in', 'into', 'is', "isn't", 'it', "it's", 'its', 'itself', "let's", 'me', 'more', 'most', "mustn't", 'my', 'myself', 'no', 'nor', 'not', 'of', 'off', 'on', 'once', 'only', 'or', 'other', 'ought', 'our', 'ours', 'ourselves', 'out', 'over', 'own', 'same', "shan't", 'she', "she'd", "she'll", "she's", 'should', "shouldn't", 'so', 'some', 'such', 'than', 'that', "that's", 'the', 'their', 'theirs', 'them', 'themselves', 'then', 'there', "there's", 'these', 'they', "they'd", "they'll", "they're", "they've", 'this', 'those', 'through', 'to', 'too', 'under', 'until', 'up', 'very', 'was', "wasn't", 'we', "we'd", "we'll", "we're", "we've", 'were', "weren't", 'what', "what's", 'when', "when's", 'where', "where's", 'which', 'while', 'who', "who's", 'whom', 'why', "why's", 'with', "won't", 'would', "wouldn't", 'you', "you'd", "you'll", "you're", "you've", 'your', 'yours', 'yourself', 'yourselves'} def search(query, finalIndexPath): listOfDicts = list() queryList = set() tempList = query.strip().lower().replace("'", '').split(' ') for word in tempList: if word not in stopWords: queryList.add(word) print('Cleaned query tokens:') print(queryList, '\n') queryList = list(queryList) for word in queryList: charPath = word[0] jsonFilePath = str(Path(finalIndexPath) / charPath / word) + '.json' try: with open(jsonFilePath, 'r') as file: data = file.read() jsonObj = json.loads(data) docsDict = jsonObj['docList'] listOfDicts.append(docsDict) except: pass return intersectDicts(listOfDicts) def getDocURLs(intersectedDocs, indexPath, cacheURLs): listUrls = list() for docID in intersectedDocs: if docID in cacheURLs: fileUrl = cacheURLs[docID] listUrls.append((fileUrl, intersectedDocs[docID])) return listUrls def intersectDicts(listOfDicts): if len(listOfDicts) == 1: return listOfDicts[0] intersection = {} for dictItem in listOfDicts: for doc in dictItem: if doc not in intersection: intersection[doc] = dictItem[doc] else: intersection[doc] += dictItem[doc] print('intersection = ', intersection) return intersection def flaskBackendQuery(queryUser, cacheURLs): indexPath = GLOBALS.FINAL_INDEX if queryUser.strip() == '': print('Query needs to be at least one character') unsortedDocs = search(queryUser, indexPath) unsortedURLs = getDocURLs(unsortedDocs, indexPath, cacheURLs) sortedURLs = sorted(unsortedURLs, key=lambda x: x[1], reverse=True) return sortedURLs[0:10] if __name__ == '__main__': indexPath = 'C:\\1_Repos\\developer' finalIndexPath = 'C:\\1_Repos\\developer' query = input('Enter a search query: ') if query.strip() == '': print('Query needs to be at least one character') unsortedDocs = search(query, finalIndexPath) unsortedURLs = getDocURLs(unsortedDocs, indexPath) sortedURLs = sorted(unsortedURLs, key=lambda x: x[1], reverse=True) print(f"\n------------ Top 5 Docs for '{query}' ------------\n") for i, doc in enumerate(sortedURLs): if i > 5: break print(doc[0], ' = ', doc[1]) print('\n------------ DONE! ------------\n')
from multiprocessing import Pool from pathlib import Path import os import re import json import string import math import GLOBALS stopWords = {'a', 'about', 'above', 'after', 'again', 'against', 'all', 'am', 'an', 'and', 'any', 'are', "aren't", 'as', 'at', 'be', 'because', 'been', 'before', 'being', 'below', 'between', 'both', 'but', 'by', "can't", 'cannot', 'could', "couldn't", 'did', "didn't", 'do', 'does', "doesn't", 'doing', "don't", 'down', 'during', 'each', 'few', 'for', 'from', 'further', 'had', "hadn't", 'has', "hasn't", 'have', "haven't", 'having', 'he', "he'd", "he'll", "he's", 'her', 'here', "here's", 'hers', 'herself', 'him', 'himself', 'his', 'how', "how's", 'i', "i'd", "i'll", "i'm", "i've", 'if', 'in', 'into', 'is', "isn't", 'it', "it's", 'its', 'itself', "let's", 'me', 'more', 'most', "mustn't", 'my', 'myself', 'no', 'nor', 'not', 'of', 'off', 'on', 'once', 'only', 'or', 'other', 'ought', 'our', 'ours', 'ourselves', 'out', 'over', 'own', 'same', "shan't", 'she', "she'd", "she'll", "she's", 'should', "shouldn't", 'so', 'some', 'such', 'than', 'that', "that's", 'the', 'their', 'theirs', 'them', 'themselves', 'then', 'there', "there's", 'these', 'they', "they'd", "they'll", "they're", "they've", 'this', 'those', 'through', 'to', 'too', 'under', 'until', 'up', 'very', 'was', "wasn't", 'we', "we'd", "we'll", "we're", "we've", 'were', "weren't", 'what', "what's", 'when', "when's", 'where', "where's", 'which', 'while', 'who', "who's", 'whom', 'why', "why's", 'with', "won't", 'would', "wouldn't", 'you', "you'd", "you'll", "you're", "you've", 'your', 'yours', 'yourself', 'yourselves'} def search(query, finalIndexPath): listOfDicts = list() queryList = set() tempList = query.strip().lower().replace("'", '').split(' ') for word in tempList: if word not in stopWords: queryList.add(word) print('Cleaned query tokens:') print(queryList, '\n') queryList = list(queryList) for word in queryList: charPath = word[0] jsonFilePath = str(Path(finalIndexPath) / charPath / word) + '.json' try: with open(jsonFilePath, 'r') as file: data = file.read() jsonObj = json.loads(data) docsDict = jsonObj['docList'] listOfDicts.append(docsDict) except: pass return intersectDicts(listOfDicts) def getDocURLs(intersectedDocs, indexPath, cacheURLs): listUrls = list() for docID in intersectedDocs: if docID in cacheURLs: fileUrl = cacheURLs[docID] listUrls.append((fileUrl, intersectedDocs[docID])) return listUrls def intersectDicts(listOfDicts): if len(listOfDicts) == 1: return listOfDicts[0] intersection = {} for dictItem in listOfDicts: for doc in dictItem: if doc not in intersection: intersection[doc] = dictItem[doc] else: intersection[doc] += dictItem[doc] print('intersection = ', intersection) return intersection def flaskBackendQuery(queryUser, cacheURLs): indexPath = GLOBALS.FINAL_INDEX if queryUser.strip() == '': print('Query needs to be at least one character') unsortedDocs = search(queryUser, indexPath) unsortedURLs = getDocURLs(unsortedDocs, indexPath, cacheURLs) sortedURLs = sorted(unsortedURLs, key=lambda x: x[1], reverse=True) return sortedURLs[0:10] if __name__ == '__main__': indexPath = 'C:\\1_Repos\\developer' finalIndexPath = 'C:\\1_Repos\\developer' query = input('Enter a search query: ') if query.strip() == '': print('Query needs to be at least one character') unsortedDocs = search(query, finalIndexPath) unsortedURLs = getDocURLs(unsortedDocs, indexPath) sortedURLs = sorted(unsortedURLs, key=lambda x: x[1], reverse=True) print(f"\n------------ Top 5 Docs for '{query}' ------------\n") for i, doc in enumerate(sortedURLs): if i > 5: break print(doc[0], ' = ', doc[1]) print('\n------------ DONE! ------------\n')
from multiprocessing import Pool from pathlib import Path import os import re import json import string import math import GLOBALS stopWords = {"a", "about", "above", "after", "again", "against", "all", "am", "an", "and", "any", "are", "aren't", "as", "at", "be", "because", "been", "before", "being", "below", "between", "both", "but", "by", "can't", "cannot", "could", "couldn't", "did", "didn't", "do", "does", "doesn't", "doing", "don't", "down", "during", "each", "few", "for", "from", "further", "had", "hadn't", "has", "hasn't", "have", "haven't", "having", "he", "he'd", "he'll", "he's", "her", "here", "here's", "hers", "herself", "him", "himself", "his", "how", "how's", "i", "i'd", "i'll", "i'm", "i've", "if", "in", "into", "is", "isn't", "it", "it's", "its", "itself", "let's", "me", "more", "most", "mustn't", "my", "myself", "no", "nor", "not", "of", "off", "on", "once", "only", "or", "other", "ought", "our", "ours", "ourselves", "out", "over", "own", "same", "shan't", "she", "she'd", "she'll", "she's", "should", "shouldn't", "so", "some", "such", "than", "that", "that's", "the", "their", "theirs", "them", "themselves", "then", "there", "there's", "these", "they", "they'd", "they'll", "they're", "they've", "this", "those", "through", "to", "too", "under", "until", "up", "very", "was", "wasn't", "we", "we'd", "we'll", "we're", "we've", "were", "weren't", "what", "what's", "when", "when's", "where", "where's", "which", "while", "who", "who's", "whom", "why", "why's", "with", "won't", "would", "wouldn't", "you", "you'd", "you'll", "you're", "you've", "your", "yours", "yourself", "yourselves"} # Main Functions (aka functions called in __main__) # Takes in query as str. Returns list of docs that match the OR query (inclusive) def search(query, finalIndexPath): listOfDicts = list() queryList = set() # We use set() to remove duplicate terms, and we won't have to open a file twice tempList = query.strip().lower().replace("'", "").split(" ") for word in tempList: if word not in stopWords: queryList.add(word) print("Cleaned query tokens:") print(queryList, "\n") # query tokens with stopwords removed and replacing apostrohe and lower() #convert set to list to enumerate queryList = list(queryList) for word in queryList: charPath = word[0] #Get 1st char of current word, use to find subdir # Get the file path of the final_indexed token.json file jsonFilePath = str(Path(finalIndexPath) / charPath / word) + ".json" try: with open(jsonFilePath, "r") as file: data = file.read() jsonObj = json.loads(data) docsDict = jsonObj["docList"] listOfDicts.append(docsDict) except: pass return intersectDicts(listOfDicts) def getDocURLs(intersectedDocs, indexPath, cacheURLs): listUrls = list() # holds unique file paths of .json files # # hashTablePath = Path(indexPath) / "hashurls.txt" # with open(hashTablePath, "r") as file: # data = file.read() # hashSet = json.loads(data) for docID in intersectedDocs: if(docID in cacheURLs): fileUrl = cacheURLs[docID] listUrls.append( (fileUrl, intersectedDocs[docID]) ) return listUrls # Helper Functions (aka functions called by other functions) # Returns unique dict of file urls from hashurl.txt (or hasthtable.txt) def intersectDicts(listOfDicts): if len(listOfDicts) == 1: return listOfDicts[0] intersection = {} for dictItem in listOfDicts: for doc in dictItem: if doc not in intersection: intersection[doc] = dictItem[doc] # else: intersection[doc] += dictItem[doc] #adding tfidf weights print("intersection = ", intersection) return intersection def flaskBackendQuery(queryUser, cacheURLs): indexPath = GLOBALS.FINAL_INDEX if (queryUser.strip() == ""): print("Query needs to be at least one character") unsortedDocs = search(queryUser, indexPath) #list of dictionaries # Change filepaths to website URLs for displaying unsortedURLs = getDocURLs(unsortedDocs, indexPath, cacheURLs) # Sort docs by the TF-IDF score sortedURLs = sorted(unsortedURLs, key=lambda x: x[1], reverse=True) #highest scores shown first return sortedURLs[0:10] #return 10 results if __name__ == '__main__': ##### # Aljon # finalIndexPath = "C:\\Users\\aljon\\Documents\\CS_121\\Assignment_3\\CS121_InvertedIndex\\final_index" # indexPath = "C:\\Users\\aljon\\Documents\\CS_121\\Assignment_3\\CS121_InvertedIndex\\index" # William # folderPath = "C:\\1_Repos\\developer\\partial_indexes" # folderPath = "C:\\Anaconda3\\envs\\Projects\\developer\\partial_indexes" indexPath = "C:\\1_Repos\\developer" finalIndexPath = "C:\\1_Repos\\developer" # Jerome #folderPath = "C:\\Users\\arkse\\Desktop\\CS121_InvertedIndex\\DEV" # Art # windows #folderPath = "C:\\Users\\aghar\\Downloads\\DEV" # linux #folderPath = "/home/anon/Downloads/DEV" ##### # Get query from user query = input("Enter a search query: ") if(query.strip() == ""): print("Query needs to be at least one character") # Fetch all results of query, intersect them to follow Bool-AND logic unsortedDocs = search(query, finalIndexPath) # Change filepaths to website URLs for displaying unsortedURLs = getDocURLs(unsortedDocs, indexPath) # Sort docs by the TF-IDF score sortedURLs = sorted(unsortedURLs, key=lambda x: x[1], reverse=True) # Print top 5 ranked file-urls for given query print(f"\n------------ Top 5 Docs for '{query}' ------------\n") for i, doc in enumerate(sortedURLs): if (i > 5): break print(doc[0], " = ", doc[1]) print("\n------------ DONE! ------------\n")
[ 4, 5, 6, 7, 8 ]
2,599
5f242ae801a239dde6a22e4fb68b4ef4b2459be6
<mask token> def adVector(v, w): n = len(v) r = [] for k in range(n): r += [lc.cplxsum(v[k], w[k])] return r <mask token> def MultEscalarVector(v, w): n = len(w) r = [] for k in range(n): r += [lc.cplxproduct(v, w[k])] return r def sumaMatrix(v, w): m = len(w) n = len(v[0]) fila = [] r = [fila] * m for j in range(m): fila = [] r[j] = fila for k in range(n): r += [lc.cplxsum(v[j][k], w[j][k])] return r def invAdMtx(v): m = len(v) n = len(v[0]) r = [n] * m for j in range(m): fila = [] r[j] = fila for k in range(n): r[j] += [lc.cplxproduct((-1, 0), v[j][k])] return r def MultEscMtx(v, w): m = len(w) n = len(w[0]) r = [n] * m for j in range(n): fila = [] r[j] = fila for k in range(m): r[j] += [lc.cplxproduct(v, w[j][k])] return r <mask token> def ProdMtx(A, B): m = len(A) n = len(A[0]) fila = [(0, 0)] * n r = [fila] * m for j in range(m): fila = [(0, 0)] * n r[j] = fila for k in range(n): r[j][k] = lc.cplxproduct(A[j][k], B[j][k]) return r def MtxVec(A, B): m = len(A) n = len(A[0]) fila = [(0, 0)] * n r = [fila] * m for j in range(m): fila = [(0, 0)] * n r[j] = fila for k in range(n): r[j][k] = lc.cplxproduct(A[j][k], B[j][k]) return r def vectorPrInt(v): r = int(lc.cplxmod(v) ** 2) return r def vectorNorm(v): r = int(lc.cplxmod(v)) return r def disV(v, w): ele = 0 s = 0 for i in range(len(v)): ele = v[i] - w[i] ele = ele ** 2 s += ele n = s ** (1 / 2) return n <mask token>
<mask token> def adVector(v, w): n = len(v) r = [] for k in range(n): r += [lc.cplxsum(v[k], w[k])] return r <mask token> def MultEscalarVector(v, w): n = len(w) r = [] for k in range(n): r += [lc.cplxproduct(v, w[k])] return r def sumaMatrix(v, w): m = len(w) n = len(v[0]) fila = [] r = [fila] * m for j in range(m): fila = [] r[j] = fila for k in range(n): r += [lc.cplxsum(v[j][k], w[j][k])] return r def invAdMtx(v): m = len(v) n = len(v[0]) r = [n] * m for j in range(m): fila = [] r[j] = fila for k in range(n): r[j] += [lc.cplxproduct((-1, 0), v[j][k])] return r def MultEscMtx(v, w): m = len(w) n = len(w[0]) r = [n] * m for j in range(n): fila = [] r[j] = fila for k in range(m): r[j] += [lc.cplxproduct(v, w[j][k])] return r def trMtx(v): m = len(v) n = len(v[0]) r = [n] * m for j in range(n): fila = [] r[j] = fila for k in range(m): r[j] += [v[k][j]] return r <mask token> def ProdMtx(A, B): m = len(A) n = len(A[0]) fila = [(0, 0)] * n r = [fila] * m for j in range(m): fila = [(0, 0)] * n r[j] = fila for k in range(n): r[j][k] = lc.cplxproduct(A[j][k], B[j][k]) return r def MtxVec(A, B): m = len(A) n = len(A[0]) fila = [(0, 0)] * n r = [fila] * m for j in range(m): fila = [(0, 0)] * n r[j] = fila for k in range(n): r[j][k] = lc.cplxproduct(A[j][k], B[j][k]) return r def vectorPrInt(v): r = int(lc.cplxmod(v) ** 2) return r def vectorNorm(v): r = int(lc.cplxmod(v)) return r def disV(v, w): ele = 0 s = 0 for i in range(len(v)): ele = v[i] - w[i] ele = ele ** 2 s += ele n = s ** (1 / 2) return n def hermMtx(v): if adjMtx(v) == v: return True <mask token>
<mask token> def adVector(v, w): n = len(v) r = [] for k in range(n): r += [lc.cplxsum(v[k], w[k])] return r def invVector(v): n = len(v) r = [] for k in range(n): r += [lc.cplxproduct((-1, 0), v[k])] return r def MultEscalarVector(v, w): n = len(w) r = [] for k in range(n): r += [lc.cplxproduct(v, w[k])] return r def sumaMatrix(v, w): m = len(w) n = len(v[0]) fila = [] r = [fila] * m for j in range(m): fila = [] r[j] = fila for k in range(n): r += [lc.cplxsum(v[j][k], w[j][k])] return r def invAdMtx(v): m = len(v) n = len(v[0]) r = [n] * m for j in range(m): fila = [] r[j] = fila for k in range(n): r[j] += [lc.cplxproduct((-1, 0), v[j][k])] return r def MultEscMtx(v, w): m = len(w) n = len(w[0]) r = [n] * m for j in range(n): fila = [] r[j] = fila for k in range(m): r[j] += [lc.cplxproduct(v, w[j][k])] return r def trMtx(v): m = len(v) n = len(v[0]) r = [n] * m for j in range(n): fila = [] r[j] = fila for k in range(m): r[j] += [v[k][j]] return r <mask token> def ProdMtx(A, B): m = len(A) n = len(A[0]) fila = [(0, 0)] * n r = [fila] * m for j in range(m): fila = [(0, 0)] * n r[j] = fila for k in range(n): r[j][k] = lc.cplxproduct(A[j][k], B[j][k]) return r def MtxVec(A, B): m = len(A) n = len(A[0]) fila = [(0, 0)] * n r = [fila] * m for j in range(m): fila = [(0, 0)] * n r[j] = fila for k in range(n): r[j][k] = lc.cplxproduct(A[j][k], B[j][k]) return r def vectorPrInt(v): r = int(lc.cplxmod(v) ** 2) return r def vectorNorm(v): r = int(lc.cplxmod(v)) return r def disV(v, w): ele = 0 s = 0 for i in range(len(v)): ele = v[i] - w[i] ele = ele ** 2 s += ele n = s ** (1 / 2) return n def hermMtx(v): if adjMtx(v) == v: return True <mask token>
<mask token> def adVector(v, w): n = len(v) r = [] for k in range(n): r += [lc.cplxsum(v[k], w[k])] return r def invVector(v): n = len(v) r = [] for k in range(n): r += [lc.cplxproduct((-1, 0), v[k])] return r def MultEscalarVector(v, w): n = len(w) r = [] for k in range(n): r += [lc.cplxproduct(v, w[k])] return r def sumaMatrix(v, w): m = len(w) n = len(v[0]) fila = [] r = [fila] * m for j in range(m): fila = [] r[j] = fila for k in range(n): r += [lc.cplxsum(v[j][k], w[j][k])] return r def invAdMtx(v): m = len(v) n = len(v[0]) r = [n] * m for j in range(m): fila = [] r[j] = fila for k in range(n): r[j] += [lc.cplxproduct((-1, 0), v[j][k])] return r def MultEscMtx(v, w): m = len(w) n = len(w[0]) r = [n] * m for j in range(n): fila = [] r[j] = fila for k in range(m): r[j] += [lc.cplxproduct(v, w[j][k])] return r def trMtx(v): m = len(v) n = len(v[0]) r = [n] * m for j in range(n): fila = [] r[j] = fila for k in range(m): r[j] += [v[k][j]] return r <mask token> def ProdMtx(A, B): m = len(A) n = len(A[0]) fila = [(0, 0)] * n r = [fila] * m for j in range(m): fila = [(0, 0)] * n r[j] = fila for k in range(n): r[j][k] = lc.cplxproduct(A[j][k], B[j][k]) return r def MtxVec(A, B): m = len(A) n = len(A[0]) fila = [(0, 0)] * n r = [fila] * m for j in range(m): fila = [(0, 0)] * n r[j] = fila for k in range(n): r[j][k] = lc.cplxproduct(A[j][k], B[j][k]) return r def vectorPrInt(v): r = int(lc.cplxmod(v) ** 2) return r def vectorNorm(v): r = int(lc.cplxmod(v)) return r def disV(v, w): ele = 0 s = 0 for i in range(len(v)): ele = v[i] - w[i] ele = ele ** 2 s += ele n = s ** (1 / 2) return n def hermMtx(v): if adjMtx(v) == v: return True def vectorTsorProduct(A, B): na = len(A) nb = len(B) nr = nb * na R = [(0, 0)] * nr index = 0 for j in range(na): for k in range(nb): R[index] = MultEscalarVector(A[j], B[k]) index = index + 1 return R
import Libcplx as lc # 1.Adición de vectores complejos def adVector(v, w): n = len(v) r = [] for k in range(n): r += [lc.cplxsum(v[k], w[k])] return r # 2.Inverso (aditivo) de un vector complejo def invVector(v): n = len(v) r = [] for k in range(n): r += [lc.cplxproduct((-1, 0), v[k])] return r # 3.Multiplicación de un escalar complejo def MultEscalarVector(v, w): n = len(w) r = [] for k in range(n): r += [lc.cplxproduct(v, w[k])] return r # 4.Adición de matrices complejas def sumaMatrix(v, w): m = len(w) n = len(v[0]) fila = [] r = [fila] * m for j in range(m): fila = [] r[j] = fila for k in range(n): r += [lc.cplxsum(v[j][k], w[j][k])] return r # 5.Inversa (aditiva) de una matriz compleja def invAdMtx(v): m = len(v) n = len(v[0]) r = [n] * m for j in range(m): fila = [] r[j] = fila for k in range(n): r[j] += [lc.cplxproduct((-1,0), v[j][k])] return r # 6. Multiplicación de un escalar por una matriz compleja def MultEscMtx(v, w): m = len(w) n = len(w[0]) r = [n] * m for j in range(n): fila = [] r[j] = fila for k in range(m): r[j] += [lc.cplxproduct(v, w[j][k])] return r # 7. Transpuesta de una matriz/vector def trMtx(v): m = len(v) n = len(v[0]) r = [n] * m for j in range(n): fila = [] r[j] = fila for k in range(m): r[j] += [v[k][j]] return r # 8. Conjugada de una matriz/vector def conjMtx(A): m = len(A) n = len(A[0]) r = [n] * m for j in range(n): fila = [] r[j] = fila for k in range(m): r[j] += [lc.cplxconj((-1,0), A[j][k])] return r # 9.Adjunta (daga) de una matriz/vector def adjMtx(A): n = len(A) m = len(A[0]) r = [n] * m for j in range(n): fila = [] * n r[j] = fila for k in range(m): r[j] += [lc.cplxconj((-1,0), A[k][j])] return r # 10.Producto de dos matrices (de tamaños compatibles) def ProdMtx(A, B): m = len(A) n = len(A[0]) fila = [(0, 0)] * n r = [fila] * m for j in range(m): fila = [(0, 0)] * n r[j] = fila for k in range(n): r[j][k] = lc.cplxproduct(A[j][k], B[j][k]) return r # 11. Función para calcular la "acción" de una matriz sobre un vector def MtxVec(A, B): m = len(A) n = len(A[0]) fila = [(0, 0)] * n r = [fila] * m for j in range(m): fila = [(0, 0)] * n r[j] = fila for k in range(n): r[j][k] = lc.cplxproduct(A[j][k], B[j][k]) return r # 12. Producto interno de dos vectores def vectorPrInt(v): r = int(lc.cplxmod(v) ** 2) return r # 13. Norma de un vector def vectorNorm(v): r = int(lc.cplxmod(v)) return r # 14. Distancia entre dos vectores def disV(v,w): ele = 0 s = 0 for i in range(len(v)): ele = v[i]-w[i] ele = ele**2 s += ele n = s ** (1/2) return n # 15. Revisar si una matriz es unitaria # 16. Revisar si una matriz es Hermitiana def hermMtx(v): if adjMtx(v) == v: return True # 17. Producto tensor de dos matrices/vectores def vectorTsorProduct(A, B): na = len(A) nb = len(B) nr = nb * na R = [(0, 0)] * nr index = 0 for j in range(na): for k in range(nb): R[index] = MultEscalarVector(A[j], B[k]) index = index + 1 return R # print(adVector(v,w)) # print(invVector(v)) # print(MultEscalarVector(v,w)) # print(sumaMatrix(v,w)) # print(InvAdMtx(v,w)) # print(MultEscMtx(v,w)) # print(trMtx(v))
[ 10, 12, 13, 14, 18 ]