url
stringlengths 61
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 75
75
| comments_url
stringlengths 70
70
| events_url
stringlengths 68
68
| html_url
stringlengths 49
51
| id
int64 1.14B
1.87B
| node_id
stringlengths 18
19
| number
int64 3.74k
6.19k
| title
stringlengths 1
290
| user
dict | labels
list | state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
list | milestone
dict | comments
sequence | created_at
timestamp[s] | updated_at
timestamp[s] | closed_at
timestamp[s] | author_association
stringclasses 3
values | active_lock_reason
null | body
stringlengths 2
33.9k
⌀ | reactions
dict | timeline_url
stringlengths 70
70
| performed_via_github_app
null | state_reason
stringclasses 3
values | draft
bool 2
classes | pull_request
dict | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/5674 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5674/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5674/comments | https://api.github.com/repos/huggingface/datasets/issues/5674/events | https://github.com/huggingface/datasets/issues/5674 | 1,641,084,105 | I_kwDODunzps5h0PTJ | 5,674 | Stored XSS | {
"login": "Fadavvi",
"id": 21213484,
"node_id": "MDQ6VXNlcjIxMjEzNDg0",
"avatar_url": "https://avatars.githubusercontent.com/u/21213484?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Fadavvi",
"html_url": "https://github.com/Fadavvi",
"followers_url": "https://api.github.com/users/Fadavvi/followers",
"following_url": "https://api.github.com/users/Fadavvi/following{/other_user}",
"gists_url": "https://api.github.com/users/Fadavvi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Fadavvi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Fadavvi/subscriptions",
"organizations_url": "https://api.github.com/users/Fadavvi/orgs",
"repos_url": "https://api.github.com/users/Fadavvi/repos",
"events_url": "https://api.github.com/users/Fadavvi/events{/privacy}",
"received_events_url": "https://api.github.com/users/Fadavvi/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi! You can contact `[email protected]` to report this vulnerability."
] | 2023-03-26T20:55:58 | 2023-03-27T21:01:55 | 2023-03-27T21:01:55 | NONE | null | ### Describe the bug
I found a Stored XSS on a page that can be publicly accessible to all visitors. But I didn't find a suitable place to report.
Please guide me on this.
### Steps to reproduce the bug
Due to security restrictions, I don't want to publish it publicly.
### Expected behavior
User inputs must be sanitized before rendering.
### Environment info
https://huggingface.co/ Web UI | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5674/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5674/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5673 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5673/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5673/comments | https://api.github.com/repos/huggingface/datasets/issues/5673/events | https://github.com/huggingface/datasets/pull/5673 | 1,641,066,352 | PR_kwDODunzps5M6wc3 | 5,673 | Pass down storage options | {
"login": "dwyatte",
"id": 2512762,
"node_id": "MDQ6VXNlcjI1MTI3NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/2512762?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/dwyatte",
"html_url": "https://github.com/dwyatte",
"followers_url": "https://api.github.com/users/dwyatte/followers",
"following_url": "https://api.github.com/users/dwyatte/following{/other_user}",
"gists_url": "https://api.github.com/users/dwyatte/gists{/gist_id}",
"starred_url": "https://api.github.com/users/dwyatte/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dwyatte/subscriptions",
"organizations_url": "https://api.github.com/users/dwyatte/orgs",
"repos_url": "https://api.github.com/users/dwyatte/repos",
"events_url": "https://api.github.com/users/dwyatte/events{/privacy}",
"received_events_url": "https://api.github.com/users/dwyatte/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"> download_and_prepare is not called when streaming a dataset, so we may need to have storage_options in the DatasetBuilder.__init__ ? This way it could also be passed later to as_streaming_dataset and the StreamingDownloadManager\r\n\r\n> Currently the storage_options parameter in download_and_prepare are for the target filesystem where the dataset must be downloaded and prepared as arrow files\r\n\r\nAh, I noted this when looking for ways to plumb down `storage_options` although I think I was looking at adding to `BuilderConfig`. The `DatasetBuilder` constructor looks more appropriate for this, will get that added in a future commit",
"Noting as experimental SGTM. The only tests I can think of to add at the moment would be mocks that assert the storage options get passed all the way down using `mock.assert_called_with` but if Hugging Face has some S3/GCS buckets for testing, maybe those would be better in a future PR. Let me know what you think",
"I think adding tests with the mockfs fixture will do the job. Tests and docs can be added when request_etag and is_remote_url support fsspec (right now they would fail with mockfs).\r\n\r\nLet's see in a subsequent PR, this is exciting ! :)",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009217 / 0.011353 (-0.002136) | 0.006275 / 0.011008 (-0.004733) | 0.124361 / 0.038508 (0.085853) | 0.035680 / 0.023109 (0.012570) | 0.395255 / 0.275898 (0.119357) | 0.426104 / 0.323480 (0.102624) | 0.006822 / 0.007986 (-0.001163) | 0.004467 / 0.004328 (0.000138) | 0.099404 / 0.004250 (0.095153) | 0.051919 / 0.037052 (0.014867) | 0.388286 / 0.258489 (0.129797) | 0.426361 / 0.293841 (0.132520) | 0.053100 / 0.128546 (-0.075446) | 0.019453 / 0.075646 (-0.056194) | 0.433139 / 0.419271 (0.013867) | 0.063240 / 0.043533 (0.019707) | 0.381175 / 0.255139 (0.126036) | 0.411686 / 0.283200 (0.128487) | 0.104843 / 0.141683 (-0.036840) | 1.853582 / 1.452155 (0.401427) | 1.935644 / 1.492716 (0.442928) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218969 / 0.018006 (0.200963) | 0.515011 / 0.000490 (0.514522) | 0.004017 / 0.000200 (0.003818) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028975 / 0.037411 (-0.008437) | 0.125239 / 0.014526 (0.110713) | 0.131371 / 0.176557 (-0.045185) | 0.203864 / 0.737135 (-0.533271) | 0.140784 / 0.296338 (-0.155554) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.620701 / 0.215209 (0.405492) | 6.263557 / 2.077655 (4.185903) | 2.510058 / 1.504120 (1.005938) | 2.085892 / 1.541195 (0.544697) | 2.170362 / 1.468490 (0.701872) | 1.325600 / 4.584777 (-3.259177) | 5.583355 / 3.745712 (1.837642) | 5.092791 / 5.269862 (-0.177071) | 2.814766 / 4.565676 (-1.750911) | 0.153568 / 0.424275 (-0.270707) | 0.014850 / 0.007607 (0.007243) | 0.787011 / 0.226044 (0.560967) | 7.948813 / 2.268929 (5.679885) | 3.320831 / 55.444624 (-52.123793) | 2.526327 / 6.876477 (-4.350150) | 2.691651 / 2.142072 (0.549579) | 1.521199 / 4.805227 (-3.284028) | 0.269738 / 6.500664 (-6.230926) | 0.082959 / 0.075469 (0.007490) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.740056 / 1.841788 (-0.101732) | 17.699732 / 8.074308 (9.625424) | 22.450689 / 10.191392 (12.259297) | 0.229350 / 0.680424 (-0.451073) | 0.027486 / 0.534201 (-0.506715) | 0.536153 / 0.579283 (-0.043130) | 0.608166 / 0.434364 (0.173802) | 0.629144 / 0.540337 (0.088807) | 0.732671 / 1.386936 (-0.654265) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010147 / 0.011353 (-0.001206) | 0.006484 / 0.011008 (-0.004524) | 0.098664 / 0.038508 (0.060156) | 0.036400 / 0.023109 (0.013291) | 0.432895 / 0.275898 (0.156997) | 0.466433 / 0.323480 (0.142954) | 0.008102 / 0.007986 (0.000117) | 0.004554 / 0.004328 (0.000225) | 0.100466 / 0.004250 (0.096216) | 0.054066 / 0.037052 (0.017013) | 0.439177 / 0.258489 (0.180688) | 0.502907 / 0.293841 (0.209066) | 0.059210 / 0.128546 (-0.069336) | 0.020220 / 0.075646 (-0.055426) | 0.124671 / 0.419271 (-0.294600) | 0.064278 / 0.043533 (0.020746) | 0.435659 / 0.255139 (0.180520) | 0.459670 / 0.283200 (0.176471) | 0.115574 / 0.141683 (-0.026109) | 1.826360 / 1.452155 (0.374205) | 1.943199 / 1.492716 (0.450483) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238463 / 0.018006 (0.220457) | 0.534889 / 0.000490 (0.534400) | 0.000404 / 0.000200 (0.000204) | 0.000092 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033210 / 0.037411 (-0.004201) | 0.133529 / 0.014526 (0.119003) | 0.143813 / 0.176557 (-0.032743) | 0.213079 / 0.737135 (-0.524056) | 0.148427 / 0.296338 (-0.147912) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.656819 / 0.215209 (0.441610) | 6.414860 / 2.077655 (4.337205) | 2.756182 / 1.504120 (1.252062) | 2.405268 / 1.541195 (0.864073) | 2.436418 / 1.468490 (0.967928) | 1.289828 / 4.584777 (-3.294949) | 5.572731 / 3.745712 (1.827018) | 3.185432 / 5.269862 (-2.084429) | 2.093220 / 4.565676 (-2.472457) | 0.144817 / 0.424275 (-0.279458) | 0.015674 / 0.007607 (0.008067) | 0.801238 / 0.226044 (0.575194) | 7.955925 / 2.268929 (5.686996) | 3.605670 / 55.444624 (-51.838955) | 2.837568 / 6.876477 (-4.038908) | 2.873848 / 2.142072 (0.731775) | 1.493512 / 4.805227 (-3.311715) | 0.266251 / 6.500664 (-6.234413) | 0.082417 / 0.075469 (0.006948) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.608685 / 1.841788 (-0.233103) | 18.587875 / 8.074308 (10.513567) | 21.786119 / 10.191392 (11.594727) | 0.261748 / 0.680424 (-0.418675) | 0.026228 / 0.534201 (-0.507973) | 0.553538 / 0.579283 (-0.025745) | 0.599780 / 0.434364 (0.165416) | 0.665663 / 0.540337 (0.125325) | 0.792785 / 1.386936 (-0.594151) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1520e017a9bb6f80e82a38b578213e418ad7e845 \"CML watermark\")\n"
] | 2023-03-26T20:09:37 | 2023-03-28T15:03:38 | 2023-03-28T14:54:17 | CONTRIBUTOR | null | Remove implementation-specific kwargs from `file_utils.fsspec_get` and `file_utils.fsspec_head`, instead allowing them to be passed down via `storage_options`. This fixes an issue where s3fs did not recognize a timeout arg as well as fixes an issue mentioned in https://github.com/huggingface/datasets/issues/5281 by allowing users to pass down `storage_options` all the way from `datasets.load_dataset` to support implementation-specific credentials
Supports something like the following to provide credentials explicitly instead of relying on boto's methods of locating them
```
load_dataset(..., data_files=["s3://..."], storage_options={"profile": "..."})
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5673/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5673/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5673",
"html_url": "https://github.com/huggingface/datasets/pull/5673",
"diff_url": "https://github.com/huggingface/datasets/pull/5673.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5673.patch",
"merged_at": "2023-03-28T14:54:17"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5672 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5672/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5672/comments | https://api.github.com/repos/huggingface/datasets/issues/5672/events | https://github.com/huggingface/datasets/issues/5672 | 1,641,005,322 | I_kwDODunzps5hz8EK | 5,672 | Pushing dataset to hub crash | {
"login": "tzvc",
"id": 14275989,
"node_id": "MDQ6VXNlcjE0Mjc1OTg5",
"avatar_url": "https://avatars.githubusercontent.com/u/14275989?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tzvc",
"html_url": "https://github.com/tzvc",
"followers_url": "https://api.github.com/users/tzvc/followers",
"following_url": "https://api.github.com/users/tzvc/following{/other_user}",
"gists_url": "https://api.github.com/users/tzvc/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tzvc/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tzvc/subscriptions",
"organizations_url": "https://api.github.com/users/tzvc/orgs",
"repos_url": "https://api.github.com/users/tzvc/repos",
"events_url": "https://api.github.com/users/tzvc/events{/privacy}",
"received_events_url": "https://api.github.com/users/tzvc/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi ! It's been fixed by https://github.com/huggingface/datasets/pull/5598. We're doing a new release tomorrow with the fix and you'll be able to push your 100k images ;)\r\n\r\nBasically `push_to_hub` used to fail if the remote repository already exists and has a README.md without dataset_info in the YAML tags.\r\n\r\nIn the meantime you can install datasets from source",
"Hi @lhoestq ,\r\n\r\nWhat version of datasets library fix this case? I am using the last `v2.10.1` and I get the same error.",
"We just released 2.11 which includes a fix :)"
] | 2023-03-26T17:42:13 | 2023-03-30T08:11:05 | 2023-03-30T08:11:05 | NONE | null | ### Describe the bug
Uploading a dataset with `push_to_hub()` fails without error description.
### Steps to reproduce the bug
Hey there,
I've built a image dataset of 100k images + text pair as described here https://huggingface.co/docs/datasets/image_dataset#imagefolder
Now I'm trying to push it to the hub but I'm running into issues. First, I tried doing it via git directly, I added all the files in git lfs and pushed but I got hit with an error saying huggingface only accept up to 10k files in a folder.
So I'm now trying with the `push_to_hub()` func as follow:
```python
from datasets import load_dataset
import os
dataset = load_dataset("imagefolder", data_dir="./data", split="train")
dataset.push_to_hub("tzvc/organization-logos", token=os.environ.get('HF_TOKEN'))
```
But again, this produces an error:
```
Resolving data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████| 100212/100212 [00:00<00:00, 439108.61it/s]
Downloading and preparing dataset imagefolder/default to /home/contact_theochampion/.cache/huggingface/datasets/imagefolder/default-20567ffc703aa314/0.0.0/37fbb85cc714a338bea574ac6c7d0b5be5aff46c1862c1989b20e0771199e93f...
Downloading data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████| 100211/100211 [00:00<00:00, 149323.73it/s]
Downloading data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 15947.92it/s]
Extracting data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 2245.34it/s]
Dataset imagefolder downloaded and prepared to /home/contact_theochampion/.cache/huggingface/datasets/imagefolder/default-20567ffc703aa314/0.0.0/37fbb85cc714a338bea574ac6c7d0b5be5aff46c1862c1989b20e0771199e93f. Subsequent calls will reuse this data.
Resuming upload of the dataset shards.
Pushing dataset shards to the dataset hub: 100%|██████████████████████████████████████████████████████████████████████████████████████████████| 14/14 [00:31<00:00, 2.24s/it]
Downloading metadata: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 118/118 [00:00<00:00, 225kB/s]
Traceback (most recent call last):
File "/home/contact_theochampion/organization-logos/push_to_hub.py", line 5, in <module>
dataset.push_to_hub("tzvc/organization-logos", token=os.environ.get('HF_TOKEN'))
File "/home/contact_theochampion/.local/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 5245, in push_to_hub
repo_info = dataset_infos[next(iter(dataset_infos))]
StopIteration
```
What could be happening here ?
### Expected behavior
The dataset is pushed to the hub
### Environment info
- `datasets` version: 2.10.1
- Platform: Linux-5.10.0-21-cloud-amd64-x86_64-with-glibc2.31
- Python version: 3.9.2
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5672/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5672/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5671 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5671/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5671/comments | https://api.github.com/repos/huggingface/datasets/issues/5671/events | https://github.com/huggingface/datasets/issues/5671 | 1,640,840,012 | I_kwDODunzps5hzTtM | 5,671 | How to use `load_dataset('glue', 'cola')` | {
"login": "makinzm",
"id": 40193664,
"node_id": "MDQ6VXNlcjQwMTkzNjY0",
"avatar_url": "https://avatars.githubusercontent.com/u/40193664?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/makinzm",
"html_url": "https://github.com/makinzm",
"followers_url": "https://api.github.com/users/makinzm/followers",
"following_url": "https://api.github.com/users/makinzm/following{/other_user}",
"gists_url": "https://api.github.com/users/makinzm/gists{/gist_id}",
"starred_url": "https://api.github.com/users/makinzm/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/makinzm/subscriptions",
"organizations_url": "https://api.github.com/users/makinzm/orgs",
"repos_url": "https://api.github.com/users/makinzm/repos",
"events_url": "https://api.github.com/users/makinzm/events{/privacy}",
"received_events_url": "https://api.github.com/users/makinzm/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Sounds like an issue with incompatible `transformers` dependencies versions.\r\n\r\nCan you try to update `transformers` ?\r\n\r\nEDIT: I checked the `transformers` dependencies and it seems like you need `tokenizers>=0.10.1,<0.11` with `transformers==4.5.1`\r\n\r\nEDIT2: this old version of `datasets` seems to import `transformers` but it's no longer the case, so you could also simply update `datasets` and `transformers` won't be imported",
"Thank you for advising me to update these libraries versions.\r\n\r\nI can implement codes using `datasets==2.10.1` and `transformers==4.27.3`"
] | 2023-03-26T09:40:34 | 2023-03-28T07:43:44 | 2023-03-28T07:43:43 | NONE | null | ### Describe the bug
I'm new to use HuggingFace datasets but I cannot use `load_dataset('glue', 'cola')`.
- I was stacked by the following problem:
```python
from datasets import load_dataset
cola_dataset = load_dataset('glue', 'cola')
---------------------------------------------------------------------------
InvalidVersion Traceback (most recent call last)
File <timed exec>:1
(Omit because of long error message)
File /usr/local/lib/python3.8/site-packages/packaging/version.py:197, in Version.__init__(self, version)
195 match = self._regex.search(version)
196 if not match:
--> 197 raise InvalidVersion(f"Invalid version: '{version}'")
199 # Store the parsed out pieces of the version
200 self._version = _Version(
201 epoch=int(match.group("epoch")) if match.group("epoch") else 0,
202 release=tuple(int(i) for i in match.group("release").split(".")),
(...)
208 local=_parse_local_version(match.group("local")),
209 )
InvalidVersion: Invalid version: '0.10.1,<0.11'
```
- You can check this full error message in my repository: [MLOps-Basics/week_0_project_setup/experimental_notebooks/data_exploration.ipynb](https://github.com/makinzm/MLOps-Basics/blob/eabab4b837880607d9968d3fa687c70177b2affd/week_0_project_setup/experimental_notebooks/data_exploration.ipynb)
### Steps to reproduce the bug
- This is my repository to reproduce: [MLOps-Basics/week_0_project_setup](https://github.com/makinzm/MLOps-Basics/tree/eabab4b837880607d9968d3fa687c70177b2affd/week_0_project_setup)
1. cd `/DockerImage` and command `docker build . -t week0`
2. cd `/` and command `docker-compose up`
3. Run `experimental_notebooks/data_exploration.ipynb`
----
Just to be sure, I wrote down Dockerfile and requirements.txt
- Dockerfile
```Dockerfile
FROM python:3.8
WORKDIR /root/working
RUN apt-get update && \
apt-get install -y python3-dev python3-pip python3-venv && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
COPY requirements.txt .
RUN pip3 install --no-cache-dir jupyter notebook && pip install --no-cache-dir -r requirements.txt
CMD ["bash"]
```
- requirements.txt
```txt
pytorch-lightning==1.2.10
datasets==1.6.2
transformers==4.5.1
scikit-learn==0.24.2
```
### Expected behavior
There is no bug to implement `load_dataset('glue', 'cola')`
### Environment info
I already wrote it. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5671/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5671/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5670 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5670/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5670/comments | https://api.github.com/repos/huggingface/datasets/issues/5670/events | https://github.com/huggingface/datasets/issues/5670 | 1,640,607,045 | I_kwDODunzps5hya1F | 5,670 | Unable to load multi class classification datasets | {
"login": "ysahil97",
"id": 19690506,
"node_id": "MDQ6VXNlcjE5NjkwNTA2",
"avatar_url": "https://avatars.githubusercontent.com/u/19690506?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ysahil97",
"html_url": "https://github.com/ysahil97",
"followers_url": "https://api.github.com/users/ysahil97/followers",
"following_url": "https://api.github.com/users/ysahil97/following{/other_user}",
"gists_url": "https://api.github.com/users/ysahil97/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ysahil97/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ysahil97/subscriptions",
"organizations_url": "https://api.github.com/users/ysahil97/orgs",
"repos_url": "https://api.github.com/users/ysahil97/repos",
"events_url": "https://api.github.com/users/ysahil97/events{/privacy}",
"received_events_url": "https://api.github.com/users/ysahil97/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi ! This sounds related to https://github.com/huggingface/datasets/issues/5406\r\n\r\nUpdating `datasets` fixes the issue ;)",
"Thanks @lhoestq!\r\n\r\nI'll close this issue now."
] | 2023-03-25T18:06:15 | 2023-03-27T22:54:56 | 2023-03-27T22:54:56 | NONE | null | ### Describe the bug
I've been playing around with huggingface library, mostly with `datasets` and wanted to download the multi class classification datasets to fine tune BERT on this task. ([link](https://huggingface.co/docs/transformers/training#train-with-pytorch-trainer)).
While loading the dataset, I'm getting the following error snippet.
```
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[44], line 3
1 from datasets import load_dataset
----> 3 imdb_dataset = load_dataset("yelp_review_full")
4 imdb_dataset
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/load.py:1719, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs)
1716 ignore_verifications = ignore_verifications or save_infos
1718 # Create a dataset builder
-> 1719 builder_instance = load_dataset_builder(
1720 path=path,
1721 name=name,
1722 data_dir=data_dir,
1723 data_files=data_files,
1724 cache_dir=cache_dir,
1725 features=features,
1726 download_config=download_config,
1727 download_mode=download_mode,
1728 revision=revision,
1729 use_auth_token=use_auth_token,
1730 **config_kwargs,
1731 )
1733 # Return iterable dataset in case of streaming
1734 if streaming:
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/load.py:1523, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, **config_kwargs)
1520 raise ValueError(error_msg)
1522 # Instantiate the dataset builder
-> 1523 builder_instance: DatasetBuilder = builder_cls(
1524 cache_dir=cache_dir,
1525 config_name=config_name,
1526 data_dir=data_dir,
1527 data_files=data_files,
1528 hash=hash,
1529 features=features,
1530 use_auth_token=use_auth_token,
1531 **builder_kwargs,
1532 **config_kwargs,
1533 )
1535 return builder_instance
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/builder.py:1292, in GeneratorBasedBuilder.__init__(self, writer_batch_size, *args, **kwargs)
1291 def __init__(self, *args, writer_batch_size=None, **kwargs):
-> 1292 super().__init__(*args, **kwargs)
1293 # Batch size used by the ArrowWriter
1294 # It defines the number of samples that are kept in memory before writing them
1295 # and also the length of the arrow chunks
1296 # None means that the ArrowWriter will use its default value
1297 self._writer_batch_size = writer_batch_size or self.DEFAULT_WRITER_BATCH_SIZE
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/builder.py:312, in DatasetBuilder.__init__(self, cache_dir, config_name, hash, base_path, info, features, use_auth_token, repo_id, data_files, data_dir, name, **config_kwargs)
309 # prepare info: DatasetInfo are a standardized dataclass across all datasets
310 # Prefill datasetinfo
311 if info is None:
--> 312 info = self.get_exported_dataset_info()
313 info.update(self._info())
314 info.builder_name = self.name
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/builder.py:412, in DatasetBuilder.get_exported_dataset_info(self)
400 def get_exported_dataset_info(self) -> DatasetInfo:
401 """Empty DatasetInfo if doesn't exist
402
403 Example:
(...)
410 ```
411 """
--> 412 return self.get_all_exported_dataset_infos().get(self.config.name, DatasetInfo())
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/builder.py:398, in DatasetBuilder.get_all_exported_dataset_infos(cls)
385 @classmethod
386 def get_all_exported_dataset_infos(cls) -> DatasetInfosDict:
387 """Empty dict if doesn't exist
388
389 Example:
(...)
396 ```
397 """
--> 398 return DatasetInfosDict.from_directory(cls.get_imported_module_dir())
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/info.py:370, in DatasetInfosDict.from_directory(cls, dataset_infos_dir)
368 dataset_metadata = DatasetMetadata.from_readme(Path(dataset_infos_dir) / "README.md")
369 if "dataset_info" in dataset_metadata:
--> 370 return cls.from_metadata(dataset_metadata)
371 if os.path.exists(os.path.join(dataset_infos_dir, config.DATASETDICT_INFOS_FILENAME)):
372 # this is just to have backward compatibility with dataset_infos.json files
373 with open(os.path.join(dataset_infos_dir, config.DATASETDICT_INFOS_FILENAME), encoding="utf-8") as f:
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/info.py:396, in DatasetInfosDict.from_metadata(cls, dataset_metadata)
387 return cls(
388 {
389 dataset_info_yaml_dict.get("config_name", "default"): DatasetInfo._from_yaml_dict(
(...)
393 }
394 )
395 else:
--> 396 dataset_info = DatasetInfo._from_yaml_dict(dataset_metadata["dataset_info"])
397 dataset_info.config_name = dataset_metadata["dataset_info"].get("config_name", "default")
398 return cls({dataset_info.config_name: dataset_info})
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/info.py:332, in DatasetInfo._from_yaml_dict(cls, yaml_data)
330 yaml_data = copy.deepcopy(yaml_data)
331 if yaml_data.get("features") is not None:
--> 332 yaml_data["features"] = Features._from_yaml_list(yaml_data["features"])
333 if yaml_data.get("splits") is not None:
334 yaml_data["splits"] = SplitDict._from_yaml_list(yaml_data["splits"])
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/features/features.py:1745, in Features._from_yaml_list(cls, yaml_data)
1742 else:
1743 raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}")
-> 1745 return cls.from_dict(from_yaml_inner(yaml_data))
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/features/features.py:1741, in Features._from_yaml_list.<locals>.from_yaml_inner(obj)
1739 elif isinstance(obj, list):
1740 names = [_feature.pop("name") for _feature in obj]
-> 1741 return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)}
1742 else:
1743 raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}")
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/features/features.py:1741, in <dictcomp>(.0)
1739 elif isinstance(obj, list):
1740 names = [_feature.pop("name") for _feature in obj]
-> 1741 return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)}
1742 else:
1743 raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}")
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/features/features.py:1736, in Features._from_yaml_list.<locals>.from_yaml_inner(obj)
1734 return {"_type": snakecase_to_camelcase(obj["dtype"])}
1735 else:
-> 1736 return from_yaml_inner(obj["dtype"])
1737 else:
1738 return {"_type": snakecase_to_camelcase(_type), **unsimplify(obj)[_type]}
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/features/features.py:1738, in Features._from_yaml_list.<locals>.from_yaml_inner(obj)
1736 return from_yaml_inner(obj["dtype"])
1737 else:
-> 1738 return {"_type": snakecase_to_camelcase(_type), **unsimplify(obj)[_type]}
1739 elif isinstance(obj, list):
1740 names = [_feature.pop("name") for _feature in obj]
File /work/pi_adrozdov_umass_edu/syerawar_umass_edu/envs/vadops/lib/python3.10/site-packages/datasets/features/features.py:1706, in Features._from_yaml_list.<locals>.unsimplify(feature)
1704 if isinstance(feature.get("class_label"), dict) and isinstance(feature["class_label"].get("names"), dict):
1705 label_ids = sorted(feature["class_label"]["names"])
-> 1706 if label_ids and label_ids != list(range(label_ids[-1] + 1)):
1707 raise ValueError(
1708 f"ClassLabel expected a value for all label ids [0:{label_ids[-1] + 1}] but some ids are missing."
1709 )
1710 feature["class_label"]["names"] = [feature["class_label"]["names"][label_id] for label_id in label_ids]
TypeError: can only concatenate str (not "int") to str
```
The same issue happens when I try to load `go-emotions` multi class classification dataset. Could somebody guide me on how to fix this issue?
### Steps to reproduce the bug
Run the following code snippet in a python script/ notebook cell:
```
from datasets import load_dataset
yelp_dataset = load_dataset("yelp_review_full")
yelp_dataset
```
### Expected behavior
The dataset should be loaded perfectly, which showing the train, test and unsupervised splits with the basic data statistics
### Environment info
- `datasets` version: 2.6.1
- Platform: Linux-5.4.0-124-generic-x86_64-with-glibc2.31
- Python version: 3.10.9
- PyArrow version: 8.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5670/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5670/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5669 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5669/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5669/comments | https://api.github.com/repos/huggingface/datasets/issues/5669/events | https://github.com/huggingface/datasets/issues/5669 | 1,638,070,046 | I_kwDODunzps5hovce | 5,669 | Almost identical datasets, huge performance difference | {
"login": "eli-osherovich",
"id": 2437102,
"node_id": "MDQ6VXNlcjI0MzcxMDI=",
"avatar_url": "https://avatars.githubusercontent.com/u/2437102?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/eli-osherovich",
"html_url": "https://github.com/eli-osherovich",
"followers_url": "https://api.github.com/users/eli-osherovich/followers",
"following_url": "https://api.github.com/users/eli-osherovich/following{/other_user}",
"gists_url": "https://api.github.com/users/eli-osherovich/gists{/gist_id}",
"starred_url": "https://api.github.com/users/eli-osherovich/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/eli-osherovich/subscriptions",
"organizations_url": "https://api.github.com/users/eli-osherovich/orgs",
"repos_url": "https://api.github.com/users/eli-osherovich/repos",
"events_url": "https://api.github.com/users/eli-osherovich/events{/privacy}",
"received_events_url": "https://api.github.com/users/eli-osherovich/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Do I miss something here?",
"Hi! \r\n\r\nThe first dataset stores images as bytes (the \"image\" column type is `datasets.Image()`) and decodes them as `PIL.Image` objects and the second dataset stores them as variable-length lists (the \"image\" column type is `datasets.Sequence(...)`)), so I guess going from `arrow bytes -> NumPy -> decoding as PIL.Image -> PyTorch` is faster than going from `arrow list -> NumPy -> PyTorch`. \r\n\r\nTo store image bytes in the second example, you can do the following:\r\n\r\n```python\r\ndef transform(example):\r\n example[\"image2\"] = cv2.imread(example[\"image_file_path\"])\r\n return example\r\n\r\nfeatures = dataset.features.copy()\r\ndel features[\"image\"]\r\nfeatures[\"image2\"] = datasets.Image()\r\ndataset2 = dataset.map(transform, remove_columns=[\"image\"], features=features)\r\n\r\nfor x in DataLoader(dataset2.with_format(\"torch\"), batch_size=16, shuffle=True, num_workers=8):\r\n pass\r\n```",
"Thanks, @mariosasko. I could not understand why a (decoded) sequence should be MUCH slower than an encoded image (that must be decoded every time). At any rate, I tried you suggestion. It made the `map` step to run extremely slow (consumes all the 16GB of memory and starts swapping)\r\n\r\nI tried also the easiest (as I see it) scenario, where images are kept as bytes, but it made things even worse: not only it was extremely slow, but also crashes\r\n\r\n```python\r\n\r\ndef transform(example):\r\n example[\"image2\"] = cv2.imread(example[\"image_file_path\"]).tobytes()\r\n return example\r\n\r\ndataset2 = dataset.map(transform, remove_columns=[\"image\"])\r\n\r\nfor x in DataLoader(dataset2.with_format(\"torch\"), batch_size=16, shuffle=True, num_workers=8):\r\n pass\r\n\r\n\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nOutput exceeds the size limit. Open the full output data in a text editor\r\n---------------------------------------------------------------------------\r\nRuntimeError Traceback (most recent call last)\r\nFile ~/virtenvs/py310/lib/python3.10/site-packages/torch/utils/data/dataloader.py:1133, in _MultiProcessingDataLoaderIter._try_get_data(self, timeout)\r\n 1132 try:\r\n-> 1133 data = self._data_queue.get(timeout=timeout)\r\n 1134 return (True, data)\r\n\r\nFile ~/virtenvs/py310/lib/python3.10/multiprocessing/queues.py:113, in Queue.get(self, block, timeout)\r\n 112 timeout = deadline - time.monotonic()\r\n--> 113 if not self._poll(timeout):\r\n 114 raise Empty\r\n\r\nFile ~/virtenvs/py310/lib/python3.10/multiprocessing/connection.py:257, in _ConnectionBase.poll(self, timeout)\r\n 256 self._check_readable()\r\n--> 257 return self._poll(timeout)\r\n\r\nFile ~/virtenvs/py310/lib/python3.10/multiprocessing/connection.py:424, in Connection._poll(self, timeout)\r\n 423 def _poll(self, timeout):\r\n--> 424 r = wait([self], timeout)\r\n 425 return bool(r)\r\n\r\nFile ~/virtenvs/py310/lib/python3.10/multiprocessing/connection.py:931, in wait(object_list, timeout)\r\n 930 while True:\r\n--> 931 ready = selector.select(timeout)\r\n 932 if ready:\r\n...\r\n-> 1146 raise RuntimeError('DataLoader worker (pid(s) {}) exited unexpectedly'.format(pids_str)) from e\r\n 1147 if isinstance(e, queue.Empty):\r\n 1148 return (False, None)\r\n\r\nRuntimeError: DataLoader worker (pid(s) 195393) exited unexpectedly\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nResource temporarily unavailable (src/thread.cpp:269)\r\nResource temporarily unavailable (src/thread.cpp:269)\r\n```\r\n",
"Correction: the `beans` dataset stores the image file paths, not the bytes.\r\n\r\nFor your use case, I think it makes more sense to use `with_tranform` than `map` and lazily decode images with `cv2.imread` when indexing an example/batch:\r\n```python\r\nimport cv2\r\n\r\ndef transform(batch):\r\n batch[\"image2\"] = np.stack([cv2.imread(image_file_path) for image_file_path in batch[\"image_file_path\"]])\r\n return batch\r\n\r\ndataset = dataset.with_transform(transform)\r\n```\r\n",
"This is incorrect.\n\nDid you try to run it? dataset[0] returns a tensor of numbers. dataset2[0]\nreturns the same tensor, but after a few long seconds. Looping over a\nthousand of images cannot take 15 minutes.\n\nOn Fri, 24 Mar 2023 at 19:28 Mario Šaško ***@***.***> wrote:\n\n> Correction: the beans dataset stores the image file paths, not the bytes.\n>\n> For your use case, I think it makes more sense to use with_tranform than\n> map and lazily decode images with cv2.imread when accessing an\n> example/batch:\n>\n> import cv2\n> def transform(batch):\n> batch[\"image2\"] = np.stack([cv2.imread(image_file_path) for image_file_path in batch[\"image_file_path\"]])\n> return batch\n> dataset = dataset.with_transform(transform)\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/5669#issuecomment-1483084347>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/AASS73SHRWXIQX6SCYCJ7ITW5XDUDANCNFSM6AAAAAAWFSHWEM>\n> .\n> You are receiving this because you authored the thread.Message ID:\n> ***@***.***>\n>\n",
"I updated the transform with the NumPy -> PyTorch conversion.\r\n\r\nI'm sharing the entire code:\r\n```python\r\nimport cv2\r\nimport numpy as np\r\nimport datasets\r\nimport torch\r\nfrom datasets import load_dataset\r\nfrom torch.utils.data import DataLoader\r\n\r\ndataset = load_dataset(\"beans\", split=\"train\")\r\n\r\ndef transform(batch):\r\n # # Pillow decodes as RGB\r\n # batch[\"image\"] = torch.stack([torch.from_numpy(cv2.cvtColor(cv2.imread(image_file_path), cv2.COLOR_BGR2RGB)) for image_file_path in batch[\"image_file_path\"]])\r\n batch[\"image\"] = torch.stack([torch.from_numpy(cv2.imread(image_file_path)) for image_file_path in batch[\"image_file_path\"]])\r\n batch[\"labels\"] = torch.tensor(batch[\"labels\"])\r\n return batch\r\n\r\ndataset2 = dataset.cast_column(\"image\", datasets.Image(decode=False)).with_transform(transform)\r\n\r\nfor x in DataLoader(dataset2, batch_size=16, shuffle=True, num_workers=8):\r\n pass\r\n```\r\n\r\nThis code is ≈ 10% faster on my machine than the default decoding with Pillow and `.with_format(\"torch\")`.",
"Thanks, @mariosasko \r\nMy question remain unanswered though. Why is the `map`ed dataset so slow? My understanding is that a dataset of numpy arrays should be must faster than a dataset that has to decode images into numpy arrays every time one accesses an item. "
] | 2023-03-23T18:20:20 | 2023-04-09T18:56:23 | null | CONTRIBUTOR | null | ### Describe the bug
I am struggling to understand (huge) performance difference between two datasets that are almost identical.
### Steps to reproduce the bug
# Fast (normal) dataset speed:
```python
import cv2
from datasets import load_dataset
from torch.utils.data import DataLoader
dataset = load_dataset("beans", split="train")
for x in DataLoader(dataset.with_format("torch"), batch_size=16, shuffle=True, num_workers=8):
pass
```
The above pass over the dataset takes about 1.5 seconds on my computer.
However, if I re-create (almost) the same dataset, the sweep takes HUGE amount of time: 15 minutes. Steps to reproduce:
```python
def transform(example):
example["image2"] = cv2.imread(example["image_file_path"])
return example
dataset2 = dataset.map(transform, remove_columns=["image"])
for x in DataLoader(dataset2.with_format("torch"), batch_size=16, shuffle=True, num_workers=8):
pass
```
### Expected behavior
Same timings
### Environment info
python==3.10.9
datasets==2.10.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5669/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5669/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5668 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5668/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5668/comments | https://api.github.com/repos/huggingface/datasets/issues/5668/events | https://github.com/huggingface/datasets/pull/5668 | 1,638,018,598 | PR_kwDODunzps5MwuIp | 5,668 | Support for downloading only provided split | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5668). All of your documentation changes will be reflected on that endpoint.",
"My previous comment didn't create the retro-link in the PR. I write it here again.\r\n\r\nYou can check the context and the discussions we had about this feature enhancement in this PR:\r\n- #2249"
] | 2023-03-23T17:53:39 | 2023-03-24T06:43:14 | null | CONTRIBUTOR | null | We can pass split to `_split_generators()`.
But I'm not sure if it's possible to solve cache issues, mostly with `dataset_info.json` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5668/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5668/timeline | null | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5668",
"html_url": "https://github.com/huggingface/datasets/pull/5668",
"diff_url": "https://github.com/huggingface/datasets/pull/5668.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5668.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5667 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5667/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5667/comments | https://api.github.com/repos/huggingface/datasets/issues/5667/events | https://github.com/huggingface/datasets/pull/5667 | 1,637,789,361 | PR_kwDODunzps5Mv8Im | 5,667 | Jax requires jaxlib | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008592 / 0.011353 (-0.002761) | 0.005182 / 0.011008 (-0.005826) | 0.097916 / 0.038508 (0.059408) | 0.034612 / 0.023109 (0.011503) | 0.313760 / 0.275898 (0.037862) | 0.353422 / 0.323480 (0.029942) | 0.005880 / 0.007986 (-0.002106) | 0.004123 / 0.004328 (-0.000205) | 0.073634 / 0.004250 (0.069384) | 0.049349 / 0.037052 (0.012297) | 0.317381 / 0.258489 (0.058892) | 0.365821 / 0.293841 (0.071980) | 0.036482 / 0.128546 (-0.092065) | 0.012126 / 0.075646 (-0.063521) | 0.334640 / 0.419271 (-0.084631) | 0.050551 / 0.043533 (0.007018) | 0.310472 / 0.255139 (0.055333) | 0.349049 / 0.283200 (0.065850) | 0.101343 / 0.141683 (-0.040340) | 1.447903 / 1.452155 (-0.004252) | 1.518793 / 1.492716 (0.026077) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210971 / 0.018006 (0.192965) | 0.449471 / 0.000490 (0.448982) | 0.003596 / 0.000200 (0.003396) | 0.000084 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027386 / 0.037411 (-0.010025) | 0.112683 / 0.014526 (0.098157) | 0.117603 / 0.176557 (-0.058954) | 0.174186 / 0.737135 (-0.562949) | 0.123510 / 0.296338 (-0.172829) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422595 / 0.215209 (0.207386) | 4.224713 / 2.077655 (2.147058) | 2.006359 / 1.504120 (0.502240) | 1.823767 / 1.541195 (0.282572) | 1.898340 / 1.468490 (0.429849) | 0.721656 / 4.584777 (-3.863121) | 3.823498 / 3.745712 (0.077785) | 2.172380 / 5.269862 (-3.097481) | 1.469773 / 4.565676 (-3.095904) | 0.086978 / 0.424275 (-0.337297) | 0.012642 / 0.007607 (0.005035) | 0.517830 / 0.226044 (0.291785) | 5.171150 / 2.268929 (2.902221) | 2.495238 / 55.444624 (-52.949386) | 2.114380 / 6.876477 (-4.762097) | 2.274329 / 2.142072 (0.132257) | 0.863855 / 4.805227 (-3.941372) | 0.174127 / 6.500664 (-6.326537) | 0.065939 / 0.075469 (-0.009530) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.208831 / 1.841788 (-0.632957) | 15.016704 / 8.074308 (6.942396) | 14.721231 / 10.191392 (4.529839) | 0.144140 / 0.680424 (-0.536284) | 0.017781 / 0.534201 (-0.516420) | 0.425679 / 0.579283 (-0.153604) | 0.416747 / 0.434364 (-0.017617) | 0.490160 / 0.540337 (-0.050177) | 0.583639 / 1.386936 (-0.803297) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007670 / 0.011353 (-0.003683) | 0.005383 / 0.011008 (-0.005626) | 0.075756 / 0.038508 (0.037248) | 0.033373 / 0.023109 (0.010263) | 0.341017 / 0.275898 (0.065119) | 0.378890 / 0.323480 (0.055410) | 0.005945 / 0.007986 (-0.002040) | 0.004179 / 0.004328 (-0.000150) | 0.074588 / 0.004250 (0.070337) | 0.048564 / 0.037052 (0.011511) | 0.338774 / 0.258489 (0.080285) | 0.391081 / 0.293841 (0.097240) | 0.036659 / 0.128546 (-0.091887) | 0.012241 / 0.075646 (-0.063406) | 0.086910 / 0.419271 (-0.332361) | 0.049745 / 0.043533 (0.006212) | 0.332810 / 0.255139 (0.077671) | 0.360317 / 0.283200 (0.077117) | 0.103399 / 0.141683 (-0.038283) | 1.456754 / 1.452155 (0.004599) | 1.542644 / 1.492716 (0.049928) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207182 / 0.018006 (0.189176) | 0.455659 / 0.000490 (0.455169) | 0.003609 / 0.000200 (0.003409) | 0.000092 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029556 / 0.037411 (-0.007856) | 0.114215 / 0.014526 (0.099690) | 0.127721 / 0.176557 (-0.048836) | 0.177070 / 0.737135 (-0.560065) | 0.128840 / 0.296338 (-0.167499) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428176 / 0.215209 (0.212967) | 4.274324 / 2.077655 (2.196669) | 2.020058 / 1.504120 (0.515938) | 1.823343 / 1.541195 (0.282148) | 1.924688 / 1.468490 (0.456198) | 0.719195 / 4.584777 (-3.865582) | 3.760445 / 3.745712 (0.014733) | 2.133813 / 5.269862 (-3.136049) | 1.364876 / 4.565676 (-3.200801) | 0.087523 / 0.424275 (-0.336752) | 0.013712 / 0.007607 (0.006105) | 0.528403 / 0.226044 (0.302359) | 5.307780 / 2.268929 (3.038851) | 2.496747 / 55.444624 (-52.947877) | 2.169136 / 6.876477 (-4.707341) | 2.235719 / 2.142072 (0.093646) | 0.875281 / 4.805227 (-3.929946) | 0.172369 / 6.500664 (-6.328295) | 0.064667 / 0.075469 (-0.010802) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.262594 / 1.841788 (-0.579193) | 15.182681 / 8.074308 (7.108373) | 14.725663 / 10.191392 (4.534271) | 0.180961 / 0.680424 (-0.499462) | 0.017632 / 0.534201 (-0.516569) | 0.427531 / 0.579283 (-0.151752) | 0.431741 / 0.434364 (-0.002622) | 0.503251 / 0.540337 (-0.037087) | 0.597423 / 1.386936 (-0.789513) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f4cf224dcb1043a272971ed331a214cf65c504be \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009761 / 0.011353 (-0.001592) | 0.006779 / 0.011008 (-0.004229) | 0.132786 / 0.038508 (0.094277) | 0.037721 / 0.023109 (0.014611) | 0.435685 / 0.275898 (0.159787) | 0.447488 / 0.323480 (0.124009) | 0.006848 / 0.007986 (-0.001137) | 0.005099 / 0.004328 (0.000771) | 0.097384 / 0.004250 (0.093133) | 0.056663 / 0.037052 (0.019610) | 0.463407 / 0.258489 (0.204918) | 0.502544 / 0.293841 (0.208703) | 0.053817 / 0.128546 (-0.074729) | 0.020253 / 0.075646 (-0.055393) | 0.446653 / 0.419271 (0.027382) | 0.064465 / 0.043533 (0.020932) | 0.455375 / 0.255139 (0.200236) | 0.458378 / 0.283200 (0.175178) | 0.109124 / 0.141683 (-0.032559) | 1.957338 / 1.452155 (0.505184) | 1.960391 / 1.492716 (0.467674) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219566 / 0.018006 (0.201560) | 0.558181 / 0.000490 (0.557691) | 0.004678 / 0.000200 (0.004478) | 0.000125 / 0.000054 (0.000071) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032643 / 0.037411 (-0.004768) | 0.147375 / 0.014526 (0.132849) | 0.130821 / 0.176557 (-0.045736) | 0.203202 / 0.737135 (-0.533933) | 0.145186 / 0.296338 (-0.151153) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.665773 / 0.215209 (0.450564) | 6.674021 / 2.077655 (4.596366) | 2.662372 / 1.504120 (1.158253) | 2.333327 / 1.541195 (0.792132) | 2.221413 / 1.468490 (0.752923) | 1.287001 / 4.584777 (-3.297776) | 5.534326 / 3.745712 (1.788614) | 3.188809 / 5.269862 (-2.081052) | 2.261717 / 4.565676 (-2.303960) | 0.151910 / 0.424275 (-0.272366) | 0.020509 / 0.007607 (0.012902) | 0.863608 / 0.226044 (0.637564) | 8.442155 / 2.268929 (6.173227) | 3.438260 / 55.444624 (-52.006364) | 2.692503 / 6.876477 (-4.183974) | 2.810997 / 2.142072 (0.668925) | 1.477345 / 4.805227 (-3.327882) | 0.261942 / 6.500664 (-6.238722) | 0.086347 / 0.075469 (0.010878) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.529072 / 1.841788 (-0.312716) | 17.213019 / 8.074308 (9.138711) | 21.887309 / 10.191392 (11.695917) | 0.259660 / 0.680424 (-0.420763) | 0.027916 / 0.534201 (-0.506285) | 0.554103 / 0.579283 (-0.025180) | 0.614566 / 0.434364 (0.180202) | 0.700456 / 0.540337 (0.160119) | 0.756860 / 1.386936 (-0.630077) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009267 / 0.011353 (-0.002086) | 0.006414 / 0.011008 (-0.004594) | 0.102404 / 0.038508 (0.063896) | 0.034885 / 0.023109 (0.011776) | 0.413191 / 0.275898 (0.137293) | 0.483901 / 0.323480 (0.160422) | 0.006614 / 0.007986 (-0.001372) | 0.004608 / 0.004328 (0.000280) | 0.096717 / 0.004250 (0.092467) | 0.055123 / 0.037052 (0.018071) | 0.417786 / 0.258489 (0.159297) | 0.490886 / 0.293841 (0.197045) | 0.056951 / 0.128546 (-0.071595) | 0.021073 / 0.075646 (-0.054574) | 0.116576 / 0.419271 (-0.302695) | 0.063968 / 0.043533 (0.020435) | 0.420495 / 0.255139 (0.165356) | 0.449667 / 0.283200 (0.166467) | 0.115318 / 0.141683 (-0.026365) | 1.899398 / 1.452155 (0.447243) | 1.992175 / 1.492716 (0.499459) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233076 / 0.018006 (0.215070) | 0.518377 / 0.000490 (0.517887) | 0.000809 / 0.000200 (0.000609) | 0.000101 / 0.000054 (0.000047) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030951 / 0.037411 (-0.006460) | 0.134940 / 0.014526 (0.120414) | 0.147789 / 0.176557 (-0.028767) | 0.205854 / 0.737135 (-0.531281) | 0.146726 / 0.296338 (-0.149613) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.648006 / 0.215209 (0.432797) | 6.416688 / 2.077655 (4.339033) | 2.696462 / 1.504120 (1.192342) | 2.293071 / 1.541195 (0.751877) | 2.319426 / 1.468490 (0.850935) | 1.332398 / 4.584777 (-3.252379) | 5.706956 / 3.745712 (1.961244) | 4.464473 / 5.269862 (-0.805388) | 2.817364 / 4.565676 (-1.748312) | 0.157595 / 0.424275 (-0.266680) | 0.015721 / 0.007607 (0.008114) | 0.806055 / 0.226044 (0.580010) | 7.927795 / 2.268929 (5.658866) | 3.461251 / 55.444624 (-51.983373) | 2.664466 / 6.876477 (-4.212010) | 2.660041 / 2.142072 (0.517968) | 1.531135 / 4.805227 (-3.274092) | 0.260293 / 6.500664 (-6.240371) | 0.077440 / 0.075469 (0.001971) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.687325 / 1.841788 (-0.154463) | 17.905080 / 8.074308 (9.830772) | 21.046794 / 10.191392 (10.855402) | 0.245335 / 0.680424 (-0.435089) | 0.026830 / 0.534201 (-0.507371) | 0.510798 / 0.579283 (-0.068485) | 0.590041 / 0.434364 (0.155677) | 0.607440 / 0.540337 (0.067102) | 0.725030 / 1.386936 (-0.661906) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#91dcb3636e410a249177f5e0508ed101ad7ee25b \"CML watermark\")\n",
"I self-assigned #5666 and I was working on it... without success: https://github.com/huggingface/datasets/tree/fix-5666\r\n\r\nI think your approach is the right one because installation of jax is not trivial...\r\n\r\nNext time it would be better that you self-assign an issue before working on it, so that we avoid duplicate work... :sweat_smile: ",
"Oh sorry I forgot to self assign this time",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008436 / 0.011353 (-0.002917) | 0.005702 / 0.011008 (-0.005306) | 0.113518 / 0.038508 (0.075010) | 0.039639 / 0.023109 (0.016530) | 0.353200 / 0.275898 (0.077302) | 0.382428 / 0.323480 (0.058948) | 0.007419 / 0.007986 (-0.000566) | 0.005640 / 0.004328 (0.001311) | 0.083905 / 0.004250 (0.079655) | 0.053258 / 0.037052 (0.016205) | 0.371069 / 0.258489 (0.112580) | 0.390439 / 0.293841 (0.096598) | 0.042679 / 0.128546 (-0.085867) | 0.013438 / 0.075646 (-0.062208) | 0.390116 / 0.419271 (-0.029155) | 0.068782 / 0.043533 (0.025249) | 0.352620 / 0.255139 (0.097481) | 0.371939 / 0.283200 (0.088739) | 0.126157 / 0.141683 (-0.015525) | 1.694638 / 1.452155 (0.242484) | 1.799211 / 1.492716 (0.306495) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260099 / 0.018006 (0.242092) | 0.489852 / 0.000490 (0.489362) | 0.012549 / 0.000200 (0.012349) | 0.000275 / 0.000054 (0.000221) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032235 / 0.037411 (-0.005177) | 0.125325 / 0.014526 (0.110799) | 0.137242 / 0.176557 (-0.039315) | 0.206566 / 0.737135 (-0.530570) | 0.143260 / 0.296338 (-0.153078) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.478510 / 0.215209 (0.263301) | 4.746439 / 2.077655 (2.668784) | 2.195072 / 1.504120 (0.690952) | 1.958163 / 1.541195 (0.416969) | 2.028566 / 1.468490 (0.560075) | 0.821289 / 4.584777 (-3.763488) | 4.765529 / 3.745712 (1.019817) | 2.378753 / 5.269862 (-2.891108) | 1.514776 / 4.565676 (-3.050900) | 0.100673 / 0.424275 (-0.323602) | 0.014720 / 0.007607 (0.007113) | 0.606388 / 0.226044 (0.380343) | 5.975285 / 2.268929 (3.706357) | 2.866762 / 55.444624 (-52.577862) | 2.392132 / 6.876477 (-4.484345) | 2.546487 / 2.142072 (0.404415) | 0.982394 / 4.805227 (-3.822833) | 0.201195 / 6.500664 (-6.299469) | 0.077781 / 0.075469 (0.002312) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.420613 / 1.841788 (-0.421174) | 17.743030 / 8.074308 (9.668722) | 16.752344 / 10.191392 (6.560951) | 0.167464 / 0.680424 (-0.512960) | 0.020908 / 0.534201 (-0.513293) | 0.502919 / 0.579283 (-0.076364) | 0.506375 / 0.434364 (0.072011) | 0.602695 / 0.540337 (0.062358) | 0.689398 / 1.386936 (-0.697538) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008713 / 0.011353 (-0.002640) | 0.006152 / 0.011008 (-0.004856) | 0.091264 / 0.038508 (0.052756) | 0.040284 / 0.023109 (0.017174) | 0.417598 / 0.275898 (0.141700) | 0.460141 / 0.323480 (0.136661) | 0.006589 / 0.007986 (-0.001397) | 0.004671 / 0.004328 (0.000343) | 0.089360 / 0.004250 (0.085110) | 0.055113 / 0.037052 (0.018061) | 0.415241 / 0.258489 (0.156752) | 0.470566 / 0.293841 (0.176725) | 0.042963 / 0.128546 (-0.085584) | 0.014421 / 0.075646 (-0.061225) | 0.106333 / 0.419271 (-0.312939) | 0.057810 / 0.043533 (0.014277) | 0.417889 / 0.255139 (0.162750) | 0.444236 / 0.283200 (0.161036) | 0.119508 / 0.141683 (-0.022175) | 1.736209 / 1.452155 (0.284055) | 1.790319 / 1.492716 (0.297602) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219184 / 0.018006 (0.201178) | 0.493931 / 0.000490 (0.493441) | 0.006727 / 0.000200 (0.006527) | 0.000103 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034415 / 0.037411 (-0.002996) | 0.132165 / 0.014526 (0.117639) | 0.143138 / 0.176557 (-0.033418) | 0.200052 / 0.737135 (-0.537083) | 0.148906 / 0.296338 (-0.147433) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.483686 / 0.215209 (0.268476) | 4.849874 / 2.077655 (2.772220) | 2.374276 / 1.504120 (0.870156) | 2.168334 / 1.541195 (0.627139) | 2.285983 / 1.468490 (0.817493) | 0.833041 / 4.584777 (-3.751735) | 4.665915 / 3.745712 (0.920203) | 4.543559 / 5.269862 (-0.726302) | 2.246926 / 4.565676 (-2.318750) | 0.098490 / 0.424275 (-0.325785) | 0.014934 / 0.007607 (0.007327) | 0.591878 / 0.226044 (0.365834) | 6.039852 / 2.268929 (3.770923) | 2.881244 / 55.444624 (-52.563381) | 2.486297 / 6.876477 (-4.390179) | 2.564642 / 2.142072 (0.422569) | 0.985684 / 4.805227 (-3.819543) | 0.199101 / 6.500664 (-6.301563) | 0.078138 / 0.075469 (0.002669) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.647744 / 1.841788 (-0.194043) | 18.986464 / 8.074308 (10.912156) | 17.246575 / 10.191392 (7.055183) | 0.219151 / 0.680424 (-0.461273) | 0.022219 / 0.534201 (-0.511982) | 0.547207 / 0.579283 (-0.032076) | 0.525943 / 0.434364 (0.091579) | 0.616909 / 0.540337 (0.076572) | 0.757423 / 1.386936 (-0.629513) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f423b69cd4371bd03bb819c60450534f8850ad61 \"CML watermark\")\n"
] | 2023-03-23T15:41:09 | 2023-03-23T16:23:11 | 2023-03-23T16:14:52 | MEMBER | null | close https://github.com/huggingface/datasets/issues/5666 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5667/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5667/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5667",
"html_url": "https://github.com/huggingface/datasets/pull/5667",
"diff_url": "https://github.com/huggingface/datasets/pull/5667.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5667.patch",
"merged_at": "2023-03-23T16:14:52"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5666 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5666/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5666/comments | https://api.github.com/repos/huggingface/datasets/issues/5666/events | https://github.com/huggingface/datasets/issues/5666 | 1,637,675,062 | I_kwDODunzps5hnPA2 | 5,666 | Support tensorflow 2.12.0 in CI | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-03-23T14:37:51 | 2023-03-23T16:14:54 | 2023-03-23T16:14:54 | MEMBER | null | Once we find out the root cause of:
- #5663
we should revert the temporary pin on tensorflow introduced by:
- #5664 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5666/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5666/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5665 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5665/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5665/comments | https://api.github.com/repos/huggingface/datasets/issues/5665/events | https://github.com/huggingface/datasets/issues/5665 | 1,637,193,648 | I_kwDODunzps5hlZew | 5,665 | Feature request: IterableDataset.push_to_hub | {
"login": "NielsRogge",
"id": 48327001,
"node_id": "MDQ6VXNlcjQ4MzI3MDAx",
"avatar_url": "https://avatars.githubusercontent.com/u/48327001?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/NielsRogge",
"html_url": "https://github.com/NielsRogge",
"followers_url": "https://api.github.com/users/NielsRogge/followers",
"following_url": "https://api.github.com/users/NielsRogge/following{/other_user}",
"gists_url": "https://api.github.com/users/NielsRogge/gists{/gist_id}",
"starred_url": "https://api.github.com/users/NielsRogge/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NielsRogge/subscriptions",
"organizations_url": "https://api.github.com/users/NielsRogge/orgs",
"repos_url": "https://api.github.com/users/NielsRogge/repos",
"events_url": "https://api.github.com/users/NielsRogge/events{/privacy}",
"received_events_url": "https://api.github.com/users/NielsRogge/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [] | 2023-03-23T09:53:04 | 2023-03-23T09:53:16 | null | CONTRIBUTOR | null | ### Feature request
It'd be great to have a lazy push to hub, similar to the lazy loading we have with `IterableDataset`.
Suppose you'd like to filter [LAION](https://huggingface.co/datasets/laion/laion400m) based on certain conditions, but as LAION doesn't fit into your disk, you'd like to leverage streaming:
```
from datasets import load_dataset
dataset = load_dataset("laion/laion400m", streaming=True, split="train")
```
Then you could filter the dataset based on certain conditions:
```
filtered_dataset = dataset.filter(lambda example: example['HEIGHT'] > 400)
```
In order to persist this dataset and push it back to the hub, one currently needs to first load the entire filtered dataset on disk and then push:
```
from datasets import Dataset
Dataset.from_generator(filtered_dataset.__iter__).push_to_hub(...)
```
It would be great if we can instead lazy push to the data to the hub (basically stream the data to the hub), not being limited by our disk size:
```
filtered_dataset.push_to_hub("my-filtered-dataset")
```
### Motivation
This feature would be very useful for people that want to filter huge datasets without having to load the entire dataset or a filtered version thereof on their local disk.
### Your contribution
Happy to test out a PR :) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5665/reactions",
"total_count": 7,
"+1": 7,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5665/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5664 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5664/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5664/comments | https://api.github.com/repos/huggingface/datasets/issues/5664/events | https://github.com/huggingface/datasets/pull/5664 | 1,637,192,684 | PR_kwDODunzps5Mt6vp | 5,664 | Fix CI by temporarily pinning tensorflow < 2.12.0 | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007500 / 0.011353 (-0.003853) | 0.005279 / 0.011008 (-0.005729) | 0.098848 / 0.038508 (0.060340) | 0.035290 / 0.023109 (0.012181) | 0.342676 / 0.275898 (0.066778) | 0.375310 / 0.323480 (0.051830) | 0.006037 / 0.007986 (-0.001948) | 0.004143 / 0.004328 (-0.000185) | 0.075757 / 0.004250 (0.071506) | 0.049436 / 0.037052 (0.012383) | 0.344734 / 0.258489 (0.086245) | 0.388111 / 0.293841 (0.094270) | 0.037079 / 0.128546 (-0.091467) | 0.011986 / 0.075646 (-0.063660) | 0.333911 / 0.419271 (-0.085361) | 0.050415 / 0.043533 (0.006882) | 0.341723 / 0.255139 (0.086584) | 0.364136 / 0.283200 (0.080936) | 0.099371 / 0.141683 (-0.042312) | 1.467030 / 1.452155 (0.014876) | 1.565472 / 1.492716 (0.072755) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212534 / 0.018006 (0.194528) | 0.435854 / 0.000490 (0.435364) | 0.000419 / 0.000200 (0.000219) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027957 / 0.037411 (-0.009454) | 0.106835 / 0.014526 (0.092309) | 0.115733 / 0.176557 (-0.060824) | 0.172374 / 0.737135 (-0.564761) | 0.121907 / 0.296338 (-0.174431) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413195 / 0.215209 (0.197986) | 4.144775 / 2.077655 (2.067120) | 1.885647 / 1.504120 (0.381527) | 1.645525 / 1.541195 (0.104331) | 1.690117 / 1.468490 (0.221627) | 0.705787 / 4.584777 (-3.878989) | 3.763338 / 3.745712 (0.017626) | 2.163044 / 5.269862 (-3.106818) | 1.478619 / 4.565676 (-3.087057) | 0.086458 / 0.424275 (-0.337817) | 0.012711 / 0.007607 (0.005103) | 0.503592 / 0.226044 (0.277547) | 5.031176 / 2.268929 (2.762248) | 2.345348 / 55.444624 (-53.099276) | 2.064573 / 6.876477 (-4.811903) | 2.203937 / 2.142072 (0.061865) | 0.838761 / 4.805227 (-3.966466) | 0.170116 / 6.500664 (-6.330548) | 0.064012 / 0.075469 (-0.011457) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.190887 / 1.841788 (-0.650901) | 15.091466 / 8.074308 (7.017158) | 14.549112 / 10.191392 (4.357720) | 0.180603 / 0.680424 (-0.499820) | 0.017387 / 0.534201 (-0.516814) | 0.421372 / 0.579283 (-0.157911) | 0.434644 / 0.434364 (0.000281) | 0.496958 / 0.540337 (-0.043380) | 0.593995 / 1.386936 (-0.792941) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007790 / 0.011353 (-0.003563) | 0.005307 / 0.011008 (-0.005701) | 0.074779 / 0.038508 (0.036271) | 0.034442 / 0.023109 (0.011332) | 0.337973 / 0.275898 (0.062075) | 0.371944 / 0.323480 (0.048464) | 0.006088 / 0.007986 (-0.001897) | 0.005619 / 0.004328 (0.001291) | 0.073757 / 0.004250 (0.069507) | 0.049385 / 0.037052 (0.012333) | 0.338326 / 0.258489 (0.079837) | 0.387916 / 0.293841 (0.094075) | 0.037197 / 0.128546 (-0.091350) | 0.012371 / 0.075646 (-0.063275) | 0.086938 / 0.419271 (-0.332334) | 0.051379 / 0.043533 (0.007846) | 0.331580 / 0.255139 (0.076441) | 0.355765 / 0.283200 (0.072565) | 0.103368 / 0.141683 (-0.038315) | 1.475963 / 1.452155 (0.023808) | 1.530579 / 1.492716 (0.037863) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223037 / 0.018006 (0.205031) | 0.441795 / 0.000490 (0.441305) | 0.003937 / 0.000200 (0.003737) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030081 / 0.037411 (-0.007330) | 0.110366 / 0.014526 (0.095841) | 0.124097 / 0.176557 (-0.052459) | 0.176237 / 0.737135 (-0.560898) | 0.127045 / 0.296338 (-0.169293) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420191 / 0.215209 (0.204982) | 4.186721 / 2.077655 (2.109066) | 1.992336 / 1.504120 (0.488216) | 1.800567 / 1.541195 (0.259373) | 1.917982 / 1.468490 (0.449491) | 0.700932 / 4.584777 (-3.883845) | 3.888631 / 3.745712 (0.142918) | 2.138168 / 5.269862 (-3.131693) | 1.364636 / 4.565676 (-3.201041) | 0.085404 / 0.424275 (-0.338871) | 0.012550 / 0.007607 (0.004943) | 0.526110 / 0.226044 (0.300066) | 5.258717 / 2.268929 (2.989789) | 2.454287 / 55.444624 (-52.990338) | 2.130539 / 6.876477 (-4.745937) | 2.207982 / 2.142072 (0.065909) | 0.839242 / 4.805227 (-3.965985) | 0.167611 / 6.500664 (-6.333053) | 0.065706 / 0.075469 (-0.009763) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266125 / 1.841788 (-0.575662) | 15.480513 / 8.074308 (7.406205) | 14.959376 / 10.191392 (4.767983) | 0.149195 / 0.680424 (-0.531229) | 0.017881 / 0.534201 (-0.516320) | 0.430863 / 0.579283 (-0.148420) | 0.432878 / 0.434364 (-0.001485) | 0.499605 / 0.540337 (-0.040733) | 0.605592 / 1.386936 (-0.781344) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c20230f8d8762fb67523677093e95e773ce88786 \"CML watermark\")\n"
] | 2023-03-23T09:52:26 | 2023-03-23T10:17:11 | 2023-03-23T10:09:54 | MEMBER | null | As a hotfix for our CI, temporarily pin `tensorflow` upper version:
- In Python 3.10, tensorflow-2.12.0 also installs `jax`
Fix #5663
Until root cause is fixed. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5664/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5664/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5664",
"html_url": "https://github.com/huggingface/datasets/pull/5664",
"diff_url": "https://github.com/huggingface/datasets/pull/5664.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5664.patch",
"merged_at": "2023-03-23T10:09:53"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5663 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5663/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5663/comments | https://api.github.com/repos/huggingface/datasets/issues/5663/events | https://github.com/huggingface/datasets/issues/5663 | 1,637,173,248 | I_kwDODunzps5hlUgA | 5,663 | CI is broken: ModuleNotFoundError: jax requires jaxlib to be installed | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-03-23T09:39:43 | 2023-03-23T10:09:55 | 2023-03-23T10:09:55 | MEMBER | null | CI test_py310 is broken: see https://github.com/huggingface/datasets/actions/runs/4498945505/jobs/7916194236?pr=5662
```
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_map_jax_in_memory - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_map_jax_on_disk - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_audio - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_device - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_image - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
FAILED tests/test_formatting.py::FormatterTest::test_jax_formatter_jnp_array_kwargs - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
FAILED tests/features/test_features.py::CastToPythonObjectsTest::test_cast_to_python_objects_jax - ModuleNotFoundError: jax requires jaxlib to be installed. See https://github.com/google/jax#installation for installation instructions.
===== 8 failed, 2147 passed, 10 skipped, 37 warnings in 228.69s (0:03:48) ======
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5663/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5663/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5662 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5662/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5662/comments | https://api.github.com/repos/huggingface/datasets/issues/5662/events | https://github.com/huggingface/datasets/pull/5662 | 1,637,140,813 | PR_kwDODunzps5MtvsM | 5,662 | Fix unnecessary dict comprehension | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"I am merging because the CI error is unrelated.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009448 / 0.011353 (-0.001905) | 0.006156 / 0.011008 (-0.004852) | 0.123656 / 0.038508 (0.085147) | 0.034998 / 0.023109 (0.011889) | 0.374722 / 0.275898 (0.098824) | 0.418912 / 0.323480 (0.095432) | 0.007348 / 0.007986 (-0.000637) | 0.004779 / 0.004328 (0.000450) | 0.097541 / 0.004250 (0.093291) | 0.052523 / 0.037052 (0.015471) | 0.380118 / 0.258489 (0.121628) | 0.429448 / 0.293841 (0.135607) | 0.055156 / 0.128546 (-0.073390) | 0.019884 / 0.075646 (-0.055763) | 0.429613 / 0.419271 (0.010341) | 0.067554 / 0.043533 (0.024021) | 0.373940 / 0.255139 (0.118801) | 0.408115 / 0.283200 (0.124916) | 0.111353 / 0.141683 (-0.030329) | 1.821013 / 1.452155 (0.368858) | 1.972882 / 1.492716 (0.480165) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236686 / 0.018006 (0.218679) | 0.516519 / 0.000490 (0.516029) | 0.009582 / 0.000200 (0.009383) | 0.000404 / 0.000054 (0.000349) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029425 / 0.037411 (-0.007986) | 0.123972 / 0.014526 (0.109446) | 0.133768 / 0.176557 (-0.042789) | 0.207562 / 0.737135 (-0.529573) | 0.142841 / 0.296338 (-0.153497) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.618531 / 0.215209 (0.403322) | 6.216854 / 2.077655 (4.139199) | 2.480138 / 1.504120 (0.976018) | 2.139884 / 1.541195 (0.598689) | 2.122992 / 1.468490 (0.654502) | 1.233824 / 4.584777 (-3.350953) | 5.426142 / 3.745712 (1.680430) | 4.891039 / 5.269862 (-0.378822) | 2.767033 / 4.565676 (-1.798643) | 0.142224 / 0.424275 (-0.282051) | 0.015754 / 0.007607 (0.008147) | 0.772210 / 0.226044 (0.546166) | 7.620484 / 2.268929 (5.351556) | 3.141617 / 55.444624 (-52.303007) | 2.471406 / 6.876477 (-4.405070) | 2.648008 / 2.142072 (0.505935) | 1.429281 / 4.805227 (-3.375946) | 0.255981 / 6.500664 (-6.244683) | 0.077710 / 0.075469 (0.002241) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.547714 / 1.841788 (-0.294073) | 17.859985 / 8.074308 (9.785677) | 21.791878 / 10.191392 (11.600486) | 0.238569 / 0.680424 (-0.441854) | 0.027520 / 0.534201 (-0.506681) | 0.553960 / 0.579283 (-0.025324) | 0.616165 / 0.434364 (0.181801) | 0.622492 / 0.540337 (0.082154) | 0.716345 / 1.386936 (-0.670591) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009624 / 0.011353 (-0.001729) | 0.006091 / 0.011008 (-0.004917) | 0.096623 / 0.038508 (0.058115) | 0.034903 / 0.023109 (0.011793) | 0.421009 / 0.275898 (0.145111) | 0.459236 / 0.323480 (0.135756) | 0.007778 / 0.007986 (-0.000207) | 0.004726 / 0.004328 (0.000398) | 0.099603 / 0.004250 (0.095353) | 0.051426 / 0.037052 (0.014373) | 0.420461 / 0.258489 (0.161972) | 0.469747 / 0.293841 (0.175906) | 0.053769 / 0.128546 (-0.074777) | 0.020636 / 0.075646 (-0.055011) | 0.115785 / 0.419271 (-0.303486) | 0.062692 / 0.043533 (0.019160) | 0.419388 / 0.255139 (0.164249) | 0.448675 / 0.283200 (0.165475) | 0.112099 / 0.141683 (-0.029584) | 1.787982 / 1.452155 (0.335827) | 1.884581 / 1.492716 (0.391864) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208837 / 0.018006 (0.190831) | 0.515593 / 0.000490 (0.515103) | 0.000447 / 0.000200 (0.000247) | 0.000086 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031025 / 0.037411 (-0.006386) | 0.125179 / 0.014526 (0.110653) | 0.137050 / 0.176557 (-0.039506) | 0.203582 / 0.737135 (-0.533553) | 0.139209 / 0.296338 (-0.157130) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.601507 / 0.215209 (0.386298) | 6.034778 / 2.077655 (3.957123) | 2.550277 / 1.504120 (1.046157) | 2.242277 / 1.541195 (0.701082) | 2.306378 / 1.468490 (0.837888) | 1.251219 / 4.584777 (-3.333558) | 5.448698 / 3.745712 (1.702986) | 3.044666 / 5.269862 (-2.225196) | 2.000684 / 4.565676 (-2.564992) | 0.148385 / 0.424275 (-0.275890) | 0.015175 / 0.007607 (0.007567) | 0.800839 / 0.226044 (0.574795) | 8.062099 / 2.268929 (5.793171) | 3.400980 / 55.444624 (-52.043644) | 2.639583 / 6.876477 (-4.236894) | 2.660691 / 2.142072 (0.518618) | 1.467715 / 4.805227 (-3.337512) | 0.266429 / 6.500664 (-6.234235) | 0.076981 / 0.075469 (0.001512) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.621128 / 1.841788 (-0.220659) | 17.949989 / 8.074308 (9.875680) | 20.946426 / 10.191392 (10.755034) | 0.259357 / 0.680424 (-0.421067) | 0.026094 / 0.534201 (-0.508107) | 0.527840 / 0.579283 (-0.051443) | 0.629027 / 0.434364 (0.194663) | 0.603931 / 0.540337 (0.063594) | 0.711370 / 1.386936 (-0.675566) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2ccf01db81bb7b70f3ea97b185e345c2b1df0274 \"CML watermark\")\n"
] | 2023-03-23T09:18:58 | 2023-03-23T09:46:59 | 2023-03-23T09:37:49 | MEMBER | null | After ruff-0.0.258 release, the C416 rule was updated with unnecessary dict comprehensions. See:
- https://github.com/charliermarsh/ruff/releases/tag/v0.0.258
- https://github.com/charliermarsh/ruff/pull/3605
This PR fixes one unnecessary dict comprehension in our code: no need to unpack and re-pack the tuple values.
Fix #5661 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5662/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5662/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5662",
"html_url": "https://github.com/huggingface/datasets/pull/5662",
"diff_url": "https://github.com/huggingface/datasets/pull/5662.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5662.patch",
"merged_at": "2023-03-23T09:37:49"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5661 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5661/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5661/comments | https://api.github.com/repos/huggingface/datasets/issues/5661/events | https://github.com/huggingface/datasets/issues/5661 | 1,637,129,445 | I_kwDODunzps5hlJzl | 5,661 | CI is broken: Unnecessary `dict` comprehension | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [] | 2023-03-23T09:13:01 | 2023-03-23T09:37:51 | 2023-03-23T09:37:51 | MEMBER | null | CI check_code_quality is broken:
```
src/datasets/arrow_dataset.py:3267:35: C416 [*] Unnecessary `dict` comprehension (rewrite using `dict()`)
Found 1 error.
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5661/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5661/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5660 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5660/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5660/comments | https://api.github.com/repos/huggingface/datasets/issues/5660/events | https://github.com/huggingface/datasets/issues/5660 | 1,635,543,646 | I_kwDODunzps5hfGpe | 5,660 | integration with imbalanced-learn | {
"login": "tansaku",
"id": 30216,
"node_id": "MDQ6VXNlcjMwMjE2",
"avatar_url": "https://avatars.githubusercontent.com/u/30216?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/tansaku",
"html_url": "https://github.com/tansaku",
"followers_url": "https://api.github.com/users/tansaku/followers",
"following_url": "https://api.github.com/users/tansaku/following{/other_user}",
"gists_url": "https://api.github.com/users/tansaku/gists{/gist_id}",
"starred_url": "https://api.github.com/users/tansaku/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/tansaku/subscriptions",
"organizations_url": "https://api.github.com/users/tansaku/orgs",
"repos_url": "https://api.github.com/users/tansaku/repos",
"events_url": "https://api.github.com/users/tansaku/events{/privacy}",
"received_events_url": "https://api.github.com/users/tansaku/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 1935892913,
"node_id": "MDU6TGFiZWwxOTM1ODkyOTEz",
"url": "https://api.github.com/repos/huggingface/datasets/labels/wontfix",
"name": "wontfix",
"color": "ffffff",
"default": true,
"description": "This will not be worked on"
}
] | closed | false | null | [] | null | [
"You can convert any dataset to pandas to be used with imbalanced-learn using `.to_pandas()`\r\n\r\nOtherwise if you want to keep a `Dataset` object and still use e.g. [make_imbalance](https://imbalanced-learn.org/stable/references/generated/imblearn.datasets.make_imbalance.html#imblearn.datasets.make_imbalance), you just need to pass the list of rows ids and labels:\r\n\r\n```python\r\nrow_indices = list(range(len(dataset)))\r\nresampled_row_indices, _ = make_imbalance(\r\n row_indices,\r\n dataset[\"label\"],\r\n sampling_strategy={0: 25, 1: 50, 2: 50},\r\n random_state=RANDOM_STATE,\r\n)\r\n\r\nresampled_dataset = dataset.select(resampled_row_indices)\r\n```"
] | 2023-03-22T11:05:17 | 2023-07-06T18:10:15 | 2023-07-06T18:10:15 | NONE | null | ### Feature request
Wouldn't it be great if the various class balancing operations from imbalanced-learn were available as part of datasets?
### Motivation
I'm trying to use imbalanced-learn to balance a dataset, but it's not clear how to get the two to interoperate - what would be great would be some examples. I've looked online, asked gpt-4, but so far not making much progress.
### Your contribution
If I can get this working myself I can submit a PR with example code to go in the docs | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5660/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5660/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5659 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5659/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5659/comments | https://api.github.com/repos/huggingface/datasets/issues/5659/events | https://github.com/huggingface/datasets/issues/5659 | 1,635,447,540 | I_kwDODunzps5hevL0 | 5,659 | [Audio] Soundfile/libsndfile requirements too stringent for decoding mp3 files | {
"login": "sanchit-gandhi",
"id": 93869735,
"node_id": "U_kgDOBZhWpw",
"avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sanchit-gandhi",
"html_url": "https://github.com/sanchit-gandhi",
"followers_url": "https://api.github.com/users/sanchit-gandhi/followers",
"following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}",
"gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions",
"organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs",
"repos_url": "https://api.github.com/users/sanchit-gandhi/repos",
"events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}",
"received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"cc @polinaeterna @lhoestq ",
"@sanchit-gandhi can you please also post the logs of `pip install soundfile==0.12.1`? To check what wheel is being installed or if it's being built from source (I think it's the latter case). \r\nRequired `libsndfile` binary **should** be bundeled with `soundfile` wheel but I assume it **might not** be the case for some non standard Linux distributions. \r\nThe only solution for using `soundfile` here is to build [`libsndfile`](https://github.com/libsndfile/libsndfile) from source:\r\n\r\n```bash\r\ngit clone https://github.com/libsndfile/libsndfile.git\r\ncd libsndfile/\r\nautoreconf -vif\r\n./configure --enable-werror \r\nmake\r\nmake install\r\n```\r\nfor this, some building libraries should be installed, for Debian/Ubuntu it's like:\r\n```bash\r\napt install autoconf autogen automake build-essential libasound2-dev \\\r\n libflac-dev libogg-dev libtool libvorbis-dev libopus-dev libmp3lame-dev \\\r\n libmpg123-dev pkg-config python\r\n```\r\nbut for other Linux distributions it might be different.\r\n\r\nWhen the binary is compiled, it should be put into location where `soundfile` would search for it (the directory is named `_soundfile_data`), it depends on where`libsdfile` (from the previous step) and `soundfile` were installed, might be something like this:\r\n\r\n```bash\r\ncp /usr/local/lib/libsndfile.so /usr/local/lib/python3.7/dist-packages/_soundfile_data/\r\ncp /usr/local/lib/libsndfile.la /usr/local/lib/python3.7/dist-packages/_soundfile_data/\r\n```\r\n\r\nAnother solution is to not use `soundfile` and apply custom processing function with `torchaudio` while setting `decode=False` in `Audio` feature and passing custom function to `.map`. ",
"Not sure if it may help, but you could also try updating `pip` before installing soundfile",
"@lhoestq @sanchit-gandhi. I encountered the same error (also on the TPU v4) when trying to run `datasets` from source.\r\n\r\nDowngrading soundfile with `pip install soundfile==0.12.0` seems to fix the issue for me.",
"Maybe let's open an issue at https://github.com/bastibe/python-soundfile/issues in case they might know why you get `OSError: cannot load library 'libsndfile.so'` ?",
"> @sanchit-gandhi can you please also post the logs of `pip install soundfile==0.12.1`? To check what wheel is being installed or if it's being built from source (I think it's the latter case). Required `libsndfile` binary **should** be bundeled with `soundfile` wheel but I assume it **might not** be the case for some non standard Linux distributions. The only solution for using `soundfile` here is to build [`libsndfile`](https://github.com/libsndfile/libsndfile) from source:\r\n> \r\n> ```shell\r\n> git clone https://github.com/libsndfile/libsndfile.git\r\n> cd libsndfile/\r\n> autoreconf -vif\r\n> ./configure --enable-werror \r\n> make\r\n> make install\r\n> ```\r\n\r\nThis fixed the issue for me. After installing libsndfile as described above, I had to uninstall soundfile and re-install it with this command. `pip install \"soundfile>=0.12.1\"`",
"Thank you so much for the comprehensive instructions @polinaeterna! Also confirming that they worked for me 🤗 In my case, I had to run several of these commands under \"sudo\" for privileges, but otherwise this workaround gave a successful `libsndfile` install:\r\n\r\n1. Grab source code:\r\n```\r\ngit clone https://github.com/libsndfile/libsndfile.git\r\n```\r\n\r\n2. Set up a build environment:\r\n```\r\nsudo apt install autoconf autogen automake build-essential libasound2-dev \\\r\n libflac-dev libogg-dev libtool libvorbis-dev libopus-dev libmp3lame-dev \\\r\n libmpg123-dev pkg-config python\r\n```\r\n\r\n3. Build and test `libsndfile`:\r\n\r\n```\r\nautoreconf -vif\r\n./configure --enable-werror\r\nsudo make\r\nsudo make check\r\n```\r\n\r\n4. Create `_soundfile_data` submodule (if it does not exist already):\r\n```\r\nsudo mkdir /usr/local/lib/python3.8/dist-packages/_soundfile_data/\r\n```\r\n\r\n5. Copy `libsndfile` files into submodule:\r\n```\r\nsudo cp /usr/local/lib/libsndfile.* /usr/local/lib/python3.8/dist-packages/_soundfile_data/\r\n```",
"On a different machine, I also tried separately by first upgrading pip, then installing soundfile. This worked too! Thanks @lhoestq 🙌",
"> @sanchit-gandhi can you please also post the logs of `pip install soundfile==0.12.1`? To check what wheel is being installed or if it's being built from source (I think it's the latter case). Required `libsndfile` binary **should** be bundeled with `soundfile` wheel but I assume it **might not** be the case for some non standard Linux distributions. The only solution for using `soundfile` here is to build [`libsndfile`](https://github.com/libsndfile/libsndfile) from source:\r\n> \r\n> ```shell\r\n> git clone https://github.com/libsndfile/libsndfile.git\r\n> cd libsndfile/\r\n> autoreconf -vif\r\n> ./configure --enable-werror \r\n> make\r\n> make install\r\n> ```\r\n> \r\n> for this, some building libraries should be installed, for Debian/Ubuntu it's like:\r\n> \r\n> ```shell\r\n> apt install autoconf autogen automake build-essential libasound2-dev \\\r\n> libflac-dev libogg-dev libtool libvorbis-dev libopus-dev libmp3lame-dev \\\r\n> libmpg123-dev pkg-config python\r\n> ```\r\n> \r\n> but for other Linux distributions it might be different.\r\n> \r\n> When the binary is compiled, it should be put into location where `soundfile` would search for it (the directory is named `_soundfile_data`), it depends on where`libsdfile` (from the previous step) and `soundfile` were installed, might be something like this:\r\n> \r\n> ```shell\r\n> cp /usr/local/lib/libsndfile.so /usr/local/lib/python3.7/dist-packages/_soundfile_data/\r\n> cp /usr/local/lib/libsndfile.la /usr/local/lib/python3.7/dist-packages/_soundfile_data/\r\n> ```\r\n> \r\n> Another solution is to not use `soundfile` and apply custom processing function with `torchaudio` while setting `decode=False` in `Audio` feature and passing custom function to `.map`.\r\n\r\nThanks, the solution solved my problem. \r\n\r\n1. Purge uninstall libsndfile, uninstall python-soundfile.\r\n2. Build libsndfile from source code and install.\r\n3. Build python-soundfile from source code and install\r\n4. Well done.",
"> Thank you so much for the comprehensive instructions @polinaeterna! Also confirming that they worked for me 🤗 In my case, I had to run several of these commands under \"sudo\" for privileges, but otherwise this workaround gave a successful `libsndfile` install:\r\n> \r\n> 1. Grab source code:\r\n> \r\n> ```\r\n> git clone https://github.com/libsndfile/libsndfile.git\r\n> ```\r\n> \r\n> 2. Set up a build environment:\r\n> \r\n> ```\r\n> sudo apt install autoconf autogen automake build-essential libasound2-dev \\\r\n> libflac-dev libogg-dev libtool libvorbis-dev libopus-dev libmp3lame-dev \\\r\n> libmpg123-dev pkg-config python\r\n> ```\r\n> \r\n> 3. Build and test `libsndfile`:\r\n> \r\n> ```\r\n> autoreconf -vif\r\n> ./configure --enable-werror\r\n> sudo make\r\n> sudo make check\r\n> ```\r\n> \r\n> 4. Create `_soundfile_data` submodule (if it does not exist already):\r\n> \r\n> ```\r\n> sudo mkdir /usr/local/lib/python3.8/dist-packages/_soundfile_data/\r\n> ```\r\n> \r\n> 5. Copy `libsndfile` files into submodule:\r\n> \r\n> ```\r\n> sudo cp /usr/local/lib/libsndfile.* /usr/local/lib/python3.8/dist-packages/_soundfile_data/\r\n> ```\r\n\r\nI had to run 'make install' or the `/usr/local/lib/libsndfile.*` files didn't exist.\r\n\r\nIt's working though!"
] | 2023-03-22T10:07:33 | 2023-08-25T07:07:22 | 2023-04-07T08:51:28 | CONTRIBUTOR | null | ### Describe the bug
I'm encountering several issues trying to load mp3 audio files using `datasets` on a TPU v4.
The PR https://github.com/huggingface/datasets/pull/5573 updated the audio loading logic to rely solely on the `soundfile`/`libsndfile` libraries for loading audio samples, regardless of their file type.
The installation guide suggests that `libsndfile` is bundled in when `soundfile` is pip installed:
https://github.com/huggingface/datasets/blob/e1af108015e43f9df8734a1faeeaeb9eafce3971/docs/source/installation.md?plain=1#L70-L71
However, just pip installing `soundfile==0.12.1` throws an error that `libsndfile` is missing:
```
pip install soundfile==0.12.1
```
Then:
```python
>>> soundfile
>>> soundfile.__libsndfile_version__
```
<details>
<summary> Traceback (most recent call last): </summary>
```
File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/soundfile.py", line 161, in <module>
import _soundfile_data # ImportError if this doesn't exist
ModuleNotFoundError: No module named '_soundfile_data'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/soundfile.py", line 170, in <module>
raise OSError('sndfile library not found using ctypes.util.find_library')
OSError: sndfile library not found using ctypes.util.find_library
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/home/sanchitgandhi/hf/lib/python3.8/site-packages/soundfile.py", line 192, in <module>
_snd = _ffi.dlopen(_explicit_libname)
OSError: cannot load library 'libsndfile.so': libsndfile.so: cannot open shared object file: No such file or directory
```
</details>
Thus, I've followed the official instructions for installing the `soundfile` package from https://github.com/bastibe/python-soundfile#installation, which states that `libsndfile` needs to be installed separately as:
```
pip install --upgrade soundfile
sudo apt install libsndfile1
```
We can now import `soundfile`:
```python
>>> import soundfile
>>> soundfile.__version__
'0.12.1'
>>> soundfile.__libsndfile_version__
'1.0.28'
```
We see that we have `soundfile==0.12.1`, which matches the `datasets[audio]` package constraints:
https://github.com/huggingface/datasets/blob/e1af108015e43f9df8734a1faeeaeb9eafce3971/setup.py#L144-L147
But we have `libsndfile==1.0.28`, which is too low for decoding mp3 files:
https://github.com/huggingface/datasets/blob/e1af108015e43f9df8734a1faeeaeb9eafce3971/src/datasets/config.py#L136-L138
Updating/upgrading the `libsndfile` doesn't change this:
```
sudo apt-get update
sudo apt-get upgrade
```
Is there any other suggestion for how to get a compatible `libsndfile` version? Currently, the version bundled with Ubuntu `apt-get` is too low for decoding mp3 files.
Maybe we could add this under `setup.py` such that we install the correct `libsndfile` version when we do `pip install datasets[audio]`? IMO this would help circumvent such version issues.
### Steps to reproduce the bug
Environment described above. Loading mp3 files:
```python
from datasets import load_dataset
common_voice_es = load_dataset("common_voice", "es", split="validation", streaming=True)
print(next(iter(common_voice_es)))
```
```python
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
Cell In[4], line 2
1 common_voice_es = load_dataset("common_voice", "es", split="validation", streaming=True)
----> 2 print(next(iter(common_voice_es)))
File ~/datasets/src/datasets/iterable_dataset.py:941, in IterableDataset.__iter__(self)
937 for key, example in ex_iterable:
938 if self.features:
939 # `IterableDataset` automatically fills missing columns with None.
940 # This is done with `_apply_feature_types_on_example`.
--> 941 yield _apply_feature_types_on_example(
942 example, self.features, token_per_repo_id=self._token_per_repo_id
943 )
944 else:
945 yield example
File ~/datasets/src/datasets/iterable_dataset.py:700, in _apply_feature_types_on_example(example, features, token_per_repo_id)
698 encoded_example = features.encode_example(example)
699 # Decode example for Audio feature, e.g.
--> 700 decoded_example = features.decode_example(encoded_example, token_per_repo_id=token_per_repo_id)
701 return decoded_example
File ~/datasets/src/datasets/features/features.py:1864, in Features.decode_example(self, example, token_per_repo_id)
1850 def decode_example(self, example: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None):
1851 """Decode example with custom feature decoding.
1852
1853 Args:
(...)
1861 `dict[str, Any]`
1862 """
-> 1864 return {
1865 column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id)
1866 if self._column_requires_decoding[column_name]
1867 else value
1868 for column_name, (feature, value) in zip_dict(
1869 {key: value for key, value in self.items() if key in example}, example
1870 )
1871 }
File ~/datasets/src/datasets/features/features.py:1865, in <dictcomp>(.0)
1850 def decode_example(self, example: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None):
1851 """Decode example with custom feature decoding.
1852
1853 Args:
(...)
1861 `dict[str, Any]`
1862 """
1864 return {
-> 1865 column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id)
1866 if self._column_requires_decoding[column_name]
1867 else value
1868 for column_name, (feature, value) in zip_dict(
1869 {key: value for key, value in self.items() if key in example}, example
1870 )
1871 }
File ~/datasets/src/datasets/features/features.py:1308, in decode_nested_example(schema, obj, token_per_repo_id)
1305 elif isinstance(schema, (Audio, Image)):
1306 # we pass the token to read and decode files from private repositories in streaming mode
1307 if obj is not None and schema.decode:
-> 1308 return schema.decode_example(obj, token_per_repo_id=token_per_repo_id)
1309 return obj
File ~/datasets/src/datasets/features/audio.py:167, in Audio.decode_example(self, value, token_per_repo_id)
162 raise RuntimeError(
163 "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, "
164 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. '
165 )
166 elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
--> 167 raise RuntimeError(
168 "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, "
169 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. '
170 )
172 if file is None:
173 token_per_repo_id = token_per_repo_id or {}
RuntimeError: Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`.
```
### Expected behavior
Load mp3 files!
### Environment info
- `datasets` version: 2.10.2.dev0
- Platform: Linux-5.13.0-1023-gcp-x86_64-with-glibc2.29
- Python version: 3.8.10
- Huggingface_hub version: 0.13.1
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
- Soundfile version: 0.12.1
- Libsndfile version: 1.0.28 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5659/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5659/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5658 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5658/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5658/comments | https://api.github.com/repos/huggingface/datasets/issues/5658/events | https://github.com/huggingface/datasets/pull/5658 | 1,634,867,204 | PR_kwDODunzps5MmJe0 | 5,658 | docs: Update num_shards docs to mention num_proc on Dataset and DatasetDict | {
"login": "connor-henderson",
"id": 78612354,
"node_id": "MDQ6VXNlcjc4NjEyMzU0",
"avatar_url": "https://avatars.githubusercontent.com/u/78612354?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/connor-henderson",
"html_url": "https://github.com/connor-henderson",
"followers_url": "https://api.github.com/users/connor-henderson/followers",
"following_url": "https://api.github.com/users/connor-henderson/following{/other_user}",
"gists_url": "https://api.github.com/users/connor-henderson/gists{/gist_id}",
"starred_url": "https://api.github.com/users/connor-henderson/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/connor-henderson/subscriptions",
"organizations_url": "https://api.github.com/users/connor-henderson/orgs",
"repos_url": "https://api.github.com/users/connor-henderson/repos",
"events_url": "https://api.github.com/users/connor-henderson/events{/privacy}",
"received_events_url": "https://api.github.com/users/connor-henderson/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007351 / 0.011353 (-0.004002) | 0.005025 / 0.011008 (-0.005983) | 0.095978 / 0.038508 (0.057470) | 0.033486 / 0.023109 (0.010377) | 0.294427 / 0.275898 (0.018529) | 0.325157 / 0.323480 (0.001677) | 0.005671 / 0.007986 (-0.002315) | 0.005284 / 0.004328 (0.000955) | 0.073159 / 0.004250 (0.068909) | 0.045162 / 0.037052 (0.008110) | 0.294004 / 0.258489 (0.035515) | 0.343545 / 0.293841 (0.049704) | 0.036857 / 0.128546 (-0.091689) | 0.012245 / 0.075646 (-0.063401) | 0.332258 / 0.419271 (-0.087014) | 0.051909 / 0.043533 (0.008377) | 0.295701 / 0.255139 (0.040562) | 0.315247 / 0.283200 (0.032048) | 0.102363 / 0.141683 (-0.039320) | 1.441944 / 1.452155 (-0.010211) | 1.527161 / 1.492716 (0.034445) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211769 / 0.018006 (0.193763) | 0.452015 / 0.000490 (0.451525) | 0.004041 / 0.000200 (0.003841) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027396 / 0.037411 (-0.010015) | 0.108318 / 0.014526 (0.093793) | 0.116851 / 0.176557 (-0.059706) | 0.172658 / 0.737135 (-0.564478) | 0.122876 / 0.296338 (-0.173462) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.406484 / 0.215209 (0.191275) | 4.053849 / 2.077655 (1.976194) | 1.842947 / 1.504120 (0.338827) | 1.649473 / 1.541195 (0.108278) | 1.728629 / 1.468490 (0.260139) | 0.699519 / 4.584777 (-3.885258) | 3.730823 / 3.745712 (-0.014889) | 2.139624 / 5.269862 (-3.130237) | 1.487839 / 4.565676 (-3.077837) | 0.086699 / 0.424275 (-0.337576) | 0.012815 / 0.007607 (0.005208) | 0.514014 / 0.226044 (0.287969) | 5.153315 / 2.268929 (2.884387) | 2.324431 / 55.444624 (-53.120193) | 1.971533 / 6.876477 (-4.904944) | 2.074480 / 2.142072 (-0.067592) | 0.842419 / 4.805227 (-3.962808) | 0.169140 / 6.500664 (-6.331524) | 0.065206 / 0.075469 (-0.010263) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180887 / 1.841788 (-0.660901) | 14.627401 / 8.074308 (6.553093) | 14.382699 / 10.191392 (4.191307) | 0.143986 / 0.680424 (-0.536438) | 0.017460 / 0.534201 (-0.516741) | 0.422100 / 0.579283 (-0.157183) | 0.417474 / 0.434364 (-0.016890) | 0.493712 / 0.540337 (-0.046625) | 0.589744 / 1.386936 (-0.797193) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007538 / 0.011353 (-0.003815) | 0.005122 / 0.011008 (-0.005887) | 0.073858 / 0.038508 (0.035350) | 0.034561 / 0.023109 (0.011451) | 0.341250 / 0.275898 (0.065352) | 0.373063 / 0.323480 (0.049583) | 0.005785 / 0.007986 (-0.002200) | 0.005393 / 0.004328 (0.001065) | 0.072354 / 0.004250 (0.068104) | 0.047005 / 0.037052 (0.009953) | 0.341179 / 0.258489 (0.082690) | 0.386299 / 0.293841 (0.092458) | 0.038315 / 0.128546 (-0.090231) | 0.012200 / 0.075646 (-0.063446) | 0.086132 / 0.419271 (-0.333140) | 0.049873 / 0.043533 (0.006340) | 0.337985 / 0.255139 (0.082846) | 0.354806 / 0.283200 (0.071607) | 0.103557 / 0.141683 (-0.038126) | 1.445682 / 1.452155 (-0.006473) | 1.551008 / 1.492716 (0.058291) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235873 / 0.018006 (0.217867) | 0.448445 / 0.000490 (0.447955) | 0.001307 / 0.000200 (0.001108) | 0.000087 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029809 / 0.037411 (-0.007603) | 0.108833 / 0.014526 (0.094307) | 0.123289 / 0.176557 (-0.053268) | 0.176516 / 0.737135 (-0.560620) | 0.127186 / 0.296338 (-0.169153) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422037 / 0.215209 (0.206828) | 4.188073 / 2.077655 (2.110418) | 1.999295 / 1.504120 (0.495175) | 1.809229 / 1.541195 (0.268034) | 1.930798 / 1.468490 (0.462308) | 0.694371 / 4.584777 (-3.890406) | 3.833432 / 3.745712 (0.087719) | 3.235600 / 5.269862 (-2.034262) | 1.867822 / 4.565676 (-2.697854) | 0.085734 / 0.424275 (-0.338541) | 0.012727 / 0.007607 (0.005120) | 0.542261 / 0.226044 (0.316217) | 5.289366 / 2.268929 (3.020437) | 2.469636 / 55.444624 (-52.974988) | 2.139392 / 6.876477 (-4.737084) | 2.193305 / 2.142072 (0.051233) | 0.846747 / 4.805227 (-3.958481) | 0.168965 / 6.500664 (-6.331699) | 0.064463 / 0.075469 (-0.011006) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.263818 / 1.841788 (-0.577970) | 15.254642 / 8.074308 (7.180334) | 14.428111 / 10.191392 (4.236719) | 0.164770 / 0.680424 (-0.515654) | 0.017476 / 0.534201 (-0.516725) | 0.420198 / 0.579283 (-0.159085) | 0.443250 / 0.434364 (0.008886) | 0.496904 / 0.540337 (-0.043434) | 0.596541 / 1.386936 (-0.790395) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4db8e33eb9cf6cd4453cdfa246c065e0eedf170c \"CML watermark\")\n"
] | 2023-03-22T00:12:18 | 2023-03-24T16:43:34 | 2023-03-24T16:36:21 | CONTRIBUTOR | null | Closes #5653
@mariosasko | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5658/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5658/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5658",
"html_url": "https://github.com/huggingface/datasets/pull/5658",
"diff_url": "https://github.com/huggingface/datasets/pull/5658.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5658.patch",
"merged_at": "2023-03-24T16:36:21"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5656 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5656/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5656/comments | https://api.github.com/repos/huggingface/datasets/issues/5656/events | https://github.com/huggingface/datasets/pull/5656 | 1,634,156,563 | PR_kwDODunzps5Mjxoo | 5,656 | Fix `fsspec.open` when using an HTTP proxy | {
"login": "bryant1410",
"id": 3905501,
"node_id": "MDQ6VXNlcjM5MDU1MDE=",
"avatar_url": "https://avatars.githubusercontent.com/u/3905501?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bryant1410",
"html_url": "https://github.com/bryant1410",
"followers_url": "https://api.github.com/users/bryant1410/followers",
"following_url": "https://api.github.com/users/bryant1410/following{/other_user}",
"gists_url": "https://api.github.com/users/bryant1410/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bryant1410/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bryant1410/subscriptions",
"organizations_url": "https://api.github.com/users/bryant1410/orgs",
"repos_url": "https://api.github.com/users/bryant1410/repos",
"events_url": "https://api.github.com/users/bryant1410/events{/privacy}",
"received_events_url": "https://api.github.com/users/bryant1410/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007980 / 0.011353 (-0.003373) | 0.005351 / 0.011008 (-0.005657) | 0.096325 / 0.038508 (0.057817) | 0.034204 / 0.023109 (0.011095) | 0.328080 / 0.275898 (0.052182) | 0.361519 / 0.323480 (0.038039) | 0.005954 / 0.007986 (-0.002032) | 0.004106 / 0.004328 (-0.000222) | 0.072827 / 0.004250 (0.068576) | 0.050522 / 0.037052 (0.013470) | 0.326975 / 0.258489 (0.068486) | 0.373180 / 0.293841 (0.079339) | 0.037024 / 0.128546 (-0.091522) | 0.012347 / 0.075646 (-0.063299) | 0.332341 / 0.419271 (-0.086931) | 0.050695 / 0.043533 (0.007162) | 0.328298 / 0.255139 (0.073159) | 0.352808 / 0.283200 (0.069608) | 0.101637 / 0.141683 (-0.040046) | 1.435172 / 1.452155 (-0.016982) | 1.529797 / 1.492716 (0.037080) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.305727 / 0.018006 (0.287721) | 0.583951 / 0.000490 (0.583462) | 0.011699 / 0.000200 (0.011499) | 0.000345 / 0.000054 (0.000290) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027917 / 0.037411 (-0.009495) | 0.107698 / 0.014526 (0.093173) | 0.120572 / 0.176557 (-0.055985) | 0.176066 / 0.737135 (-0.561069) | 0.125348 / 0.296338 (-0.170991) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.411980 / 0.215209 (0.196771) | 4.113135 / 2.077655 (2.035480) | 1.868725 / 1.504120 (0.364605) | 1.677422 / 1.541195 (0.136227) | 1.796759 / 1.468490 (0.328269) | 0.701957 / 4.584777 (-3.882820) | 3.830742 / 3.745712 (0.085030) | 2.170444 / 5.269862 (-3.099418) | 1.345097 / 4.565676 (-3.220580) | 0.086661 / 0.424275 (-0.337614) | 0.013073 / 0.007607 (0.005466) | 0.519150 / 0.226044 (0.293106) | 5.193447 / 2.268929 (2.924518) | 2.391155 / 55.444624 (-53.053470) | 2.076610 / 6.876477 (-4.799867) | 2.245557 / 2.142072 (0.103484) | 0.846496 / 4.805227 (-3.958731) | 0.169246 / 6.500664 (-6.331418) | 0.066360 / 0.075469 (-0.009109) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196344 / 1.841788 (-0.645444) | 15.640363 / 8.074308 (7.566055) | 14.936144 / 10.191392 (4.744752) | 0.163613 / 0.680424 (-0.516811) | 0.017900 / 0.534201 (-0.516301) | 0.425377 / 0.579283 (-0.153906) | 0.431119 / 0.434364 (-0.003245) | 0.513669 / 0.540337 (-0.026669) | 0.592970 / 1.386936 (-0.793966) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007958 / 0.011353 (-0.003395) | 0.005707 / 0.011008 (-0.005301) | 0.075377 / 0.038508 (0.036869) | 0.037126 / 0.023109 (0.014016) | 0.344589 / 0.275898 (0.068691) | 0.381060 / 0.323480 (0.057580) | 0.006592 / 0.007986 (-0.001393) | 0.004479 / 0.004328 (0.000151) | 0.074456 / 0.004250 (0.070206) | 0.054087 / 0.037052 (0.017035) | 0.344942 / 0.258489 (0.086453) | 0.393174 / 0.293841 (0.099333) | 0.037926 / 0.128546 (-0.090620) | 0.012638 / 0.075646 (-0.063009) | 0.087743 / 0.419271 (-0.331529) | 0.050081 / 0.043533 (0.006548) | 0.340406 / 0.255139 (0.085267) | 0.361487 / 0.283200 (0.078287) | 0.108546 / 0.141683 (-0.033137) | 1.424626 / 1.452155 (-0.027529) | 1.553958 / 1.492716 (0.061242) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.329922 / 0.018006 (0.311916) | 0.523239 / 0.000490 (0.522749) | 0.012164 / 0.000200 (0.011964) | 0.000137 / 0.000054 (0.000082) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031935 / 0.037411 (-0.005477) | 0.115680 / 0.014526 (0.101154) | 0.130062 / 0.176557 (-0.046494) | 0.180679 / 0.737135 (-0.556457) | 0.135548 / 0.296338 (-0.160790) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429648 / 0.215209 (0.214439) | 4.303342 / 2.077655 (2.225687) | 1.999395 / 1.504120 (0.495275) | 1.810354 / 1.541195 (0.269160) | 1.963132 / 1.468490 (0.494642) | 0.701654 / 4.584777 (-3.883122) | 3.844687 / 3.745712 (0.098975) | 2.153425 / 5.269862 (-3.116436) | 1.351541 / 4.565676 (-3.214135) | 0.086292 / 0.424275 (-0.337983) | 0.012491 / 0.007607 (0.004883) | 0.523144 / 0.226044 (0.297099) | 5.243283 / 2.268929 (2.974355) | 2.465849 / 55.444624 (-52.978775) | 2.154505 / 6.876477 (-4.721972) | 2.245500 / 2.142072 (0.103428) | 0.838902 / 4.805227 (-3.966326) | 0.169441 / 6.500664 (-6.331223) | 0.065631 / 0.075469 (-0.009838) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.262175 / 1.841788 (-0.579612) | 15.424650 / 8.074308 (7.350342) | 15.000718 / 10.191392 (4.809326) | 0.186328 / 0.680424 (-0.494096) | 0.018076 / 0.534201 (-0.516125) | 0.433458 / 0.579283 (-0.145825) | 0.424213 / 0.434364 (-0.010151) | 0.546568 / 0.540337 (0.006231) | 0.643529 / 1.386936 (-0.743407) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ea7298bf121d7ae8079f0a59deb67c2fa1d4df6a \"CML watermark\")\n"
] | 2023-03-21T15:23:29 | 2023-03-23T14:14:50 | 2023-03-23T13:15:46 | CONTRIBUTOR | null | Most HTTP(S) downloads from this library support proxy automatically by reading the `HTTP_PROXY` environment variable (et al.) because `requests` is widely used. However, in some parts of the code, `fsspec` is used, which in turn uses `aiohttp` for HTTP(S) requests (as opposed to `requests`), which in turn doesn't support reading proxy env variables by default. This PR enables reading them automatically.
Read [aiohttp docs on using proxies](https://docs.aiohttp.org/en/stable/client_advanced.html?highlight=trust_env#proxy-support).
For context, [the Python library requests](https://requests.readthedocs.io/en/latest/user/advanced/?highlight=http_proxy#proxies) and [the official Python library via `urllib.urlopen` support this automatically by default](https://docs.python.org/3/library/urllib.request.html#urllib.request.urlopen). Many (most common ones?) programs also do the same, including cURL, APT, Wget, and many others. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5656/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5656/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5656",
"html_url": "https://github.com/huggingface/datasets/pull/5656",
"diff_url": "https://github.com/huggingface/datasets/pull/5656.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5656.patch",
"merged_at": "2023-03-23T13:15:46"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5655 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5655/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5655/comments | https://api.github.com/repos/huggingface/datasets/issues/5655/events | https://github.com/huggingface/datasets/pull/5655 | 1,634,030,017 | PR_kwDODunzps5MjWYy | 5,655 | Improve features decoding in to_iterable_dataset | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009691 / 0.011353 (-0.001662) | 0.006160 / 0.011008 (-0.004848) | 0.127528 / 0.038508 (0.089020) | 0.034445 / 0.023109 (0.011335) | 0.391483 / 0.275898 (0.115585) | 0.425922 / 0.323480 (0.102442) | 0.006621 / 0.007986 (-0.001365) | 0.004550 / 0.004328 (0.000221) | 0.099134 / 0.004250 (0.094884) | 0.051089 / 0.037052 (0.014037) | 0.398675 / 0.258489 (0.140186) | 0.456740 / 0.293841 (0.162899) | 0.052279 / 0.128546 (-0.076267) | 0.020878 / 0.075646 (-0.054768) | 0.414954 / 0.419271 (-0.004317) | 0.061903 / 0.043533 (0.018370) | 0.393088 / 0.255139 (0.137949) | 0.410289 / 0.283200 (0.127089) | 0.101684 / 0.141683 (-0.039998) | 1.747102 / 1.452155 (0.294947) | 1.896976 / 1.492716 (0.404260) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203193 / 0.018006 (0.185187) | 0.495011 / 0.000490 (0.494521) | 0.006290 / 0.000200 (0.006090) | 0.000098 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034840 / 0.037411 (-0.002571) | 0.122529 / 0.014526 (0.108003) | 0.133870 / 0.176557 (-0.042686) | 0.207771 / 0.737135 (-0.529364) | 0.141441 / 0.296338 (-0.154897) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.604190 / 0.215209 (0.388981) | 6.040295 / 2.077655 (3.962641) | 2.405703 / 1.504120 (0.901583) | 2.062767 / 1.541195 (0.521572) | 2.079313 / 1.468490 (0.610823) | 1.240107 / 4.584777 (-3.344670) | 5.316583 / 3.745712 (1.570871) | 3.104758 / 5.269862 (-2.165103) | 2.056489 / 4.565676 (-2.509187) | 0.149060 / 0.424275 (-0.275215) | 0.014467 / 0.007607 (0.006860) | 0.736882 / 0.226044 (0.510838) | 7.324142 / 2.268929 (5.055213) | 3.048752 / 55.444624 (-52.395872) | 2.385013 / 6.876477 (-4.491463) | 2.457478 / 2.142072 (0.315405) | 1.459276 / 4.805227 (-3.345951) | 0.253882 / 6.500664 (-6.246782) | 0.076756 / 0.075469 (0.001287) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.499166 / 1.841788 (-0.342622) | 17.294165 / 8.074308 (9.219857) | 20.385668 / 10.191392 (10.194276) | 0.254633 / 0.680424 (-0.425791) | 0.026253 / 0.534201 (-0.507948) | 0.532928 / 0.579283 (-0.046355) | 0.606095 / 0.434364 (0.171731) | 0.615025 / 0.540337 (0.074687) | 0.728651 / 1.386936 (-0.658285) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009376 / 0.011353 (-0.001977) | 0.005981 / 0.011008 (-0.005027) | 0.109898 / 0.038508 (0.071390) | 0.033746 / 0.023109 (0.010637) | 0.410226 / 0.275898 (0.134328) | 0.470606 / 0.323480 (0.147126) | 0.006706 / 0.007986 (-0.001279) | 0.004482 / 0.004328 (0.000153) | 0.092280 / 0.004250 (0.088030) | 0.047988 / 0.037052 (0.010935) | 0.430628 / 0.258489 (0.172139) | 0.480668 / 0.293841 (0.186827) | 0.052099 / 0.128546 (-0.076447) | 0.018743 / 0.075646 (-0.056903) | 0.112204 / 0.419271 (-0.307068) | 0.059838 / 0.043533 (0.016305) | 0.418230 / 0.255139 (0.163091) | 0.451568 / 0.283200 (0.168368) | 0.107026 / 0.141683 (-0.034657) | 1.708111 / 1.452155 (0.255956) | 1.839268 / 1.492716 (0.346552) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229558 / 0.018006 (0.211552) | 0.488099 / 0.000490 (0.487609) | 0.004643 / 0.000200 (0.004443) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030461 / 0.037411 (-0.006951) | 0.120993 / 0.014526 (0.106467) | 0.130874 / 0.176557 (-0.045682) | 0.193550 / 0.737135 (-0.543585) | 0.138164 / 0.296338 (-0.158174) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.635709 / 0.215209 (0.420500) | 6.225112 / 2.077655 (4.147457) | 2.639584 / 1.504120 (1.135465) | 2.254487 / 1.541195 (0.713293) | 2.280478 / 1.468490 (0.811988) | 1.205712 / 4.584777 (-3.379065) | 5.367845 / 3.745712 (1.622133) | 3.020207 / 5.269862 (-2.249655) | 2.001897 / 4.565676 (-2.563779) | 0.149582 / 0.424275 (-0.274693) | 0.014867 / 0.007607 (0.007260) | 0.759050 / 0.226044 (0.533006) | 7.692969 / 2.268929 (5.424041) | 3.274009 / 55.444624 (-52.170615) | 2.635529 / 6.876477 (-4.240948) | 2.672960 / 2.142072 (0.530888) | 1.426487 / 4.805227 (-3.378740) | 0.253368 / 6.500664 (-6.247296) | 0.078650 / 0.075469 (0.003181) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.620265 / 1.841788 (-0.221523) | 17.674168 / 8.074308 (9.599860) | 21.120528 / 10.191392 (10.929136) | 0.244205 / 0.680424 (-0.436218) | 0.029646 / 0.534201 (-0.504555) | 0.510948 / 0.579283 (-0.068335) | 0.586255 / 0.434364 (0.151891) | 0.589286 / 0.540337 (0.048949) | 0.736561 / 1.386936 (-0.650375) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#de5fe9ae5df84c489e08dcbdc3d2d20272b312c3 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007778 / 0.011353 (-0.003575) | 0.005432 / 0.011008 (-0.005577) | 0.098776 / 0.038508 (0.060268) | 0.035196 / 0.023109 (0.012087) | 0.305646 / 0.275898 (0.029748) | 0.342661 / 0.323480 (0.019181) | 0.006513 / 0.007986 (-0.001472) | 0.005897 / 0.004328 (0.001568) | 0.075797 / 0.004250 (0.071547) | 0.056060 / 0.037052 (0.019007) | 0.306645 / 0.258489 (0.048156) | 0.352447 / 0.293841 (0.058606) | 0.037304 / 0.128546 (-0.091242) | 0.012514 / 0.075646 (-0.063132) | 0.334949 / 0.419271 (-0.084323) | 0.051600 / 0.043533 (0.008067) | 0.302302 / 0.255139 (0.047163) | 0.322238 / 0.283200 (0.039038) | 0.106896 / 0.141683 (-0.034787) | 1.483163 / 1.452155 (0.031008) | 1.587483 / 1.492716 (0.094767) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292318 / 0.018006 (0.274312) | 0.541541 / 0.000490 (0.541051) | 0.008342 / 0.000200 (0.008142) | 0.000339 / 0.000054 (0.000285) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028287 / 0.037411 (-0.009124) | 0.107775 / 0.014526 (0.093250) | 0.119112 / 0.176557 (-0.057445) | 0.174002 / 0.737135 (-0.563134) | 0.126531 / 0.296338 (-0.169808) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401684 / 0.215209 (0.186475) | 4.024708 / 2.077655 (1.947053) | 1.812763 / 1.504120 (0.308643) | 1.629540 / 1.541195 (0.088345) | 1.731733 / 1.468490 (0.263243) | 0.711066 / 4.584777 (-3.873711) | 3.867499 / 3.745712 (0.121786) | 3.615968 / 5.269862 (-1.653893) | 1.876077 / 4.565676 (-2.689600) | 0.087003 / 0.424275 (-0.337272) | 0.012445 / 0.007607 (0.004838) | 0.499106 / 0.226044 (0.273061) | 4.975920 / 2.268929 (2.706992) | 2.279074 / 55.444624 (-53.165550) | 1.952311 / 6.876477 (-4.924166) | 2.167480 / 2.142072 (0.025408) | 0.855882 / 4.805227 (-3.949346) | 0.171378 / 6.500664 (-6.329287) | 0.066731 / 0.075469 (-0.008738) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.184226 / 1.841788 (-0.657561) | 15.383396 / 8.074308 (7.309088) | 15.069783 / 10.191392 (4.878391) | 0.161489 / 0.680424 (-0.518935) | 0.017763 / 0.534201 (-0.516438) | 0.427103 / 0.579283 (-0.152180) | 0.434295 / 0.434364 (-0.000069) | 0.496848 / 0.540337 (-0.043489) | 0.592572 / 1.386936 (-0.794364) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008014 / 0.011353 (-0.003339) | 0.005607 / 0.011008 (-0.005401) | 0.076826 / 0.038508 (0.038318) | 0.035283 / 0.023109 (0.012174) | 0.347809 / 0.275898 (0.071911) | 0.382482 / 0.323480 (0.059003) | 0.006276 / 0.007986 (-0.001709) | 0.005978 / 0.004328 (0.001650) | 0.074938 / 0.004250 (0.070687) | 0.054323 / 0.037052 (0.017271) | 0.344027 / 0.258489 (0.085538) | 0.397623 / 0.293841 (0.103783) | 0.037851 / 0.128546 (-0.090695) | 0.012649 / 0.075646 (-0.062997) | 0.086169 / 0.419271 (-0.333103) | 0.051510 / 0.043533 (0.007977) | 0.341112 / 0.255139 (0.085973) | 0.357957 / 0.283200 (0.074757) | 0.110949 / 0.141683 (-0.030734) | 1.479573 / 1.452155 (0.027419) | 1.578572 / 1.492716 (0.085855) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.310678 / 0.018006 (0.292672) | 0.525504 / 0.000490 (0.525015) | 0.000447 / 0.000200 (0.000247) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031262 / 0.037411 (-0.006149) | 0.113801 / 0.014526 (0.099275) | 0.124967 / 0.176557 (-0.051590) | 0.175226 / 0.737135 (-0.561909) | 0.129377 / 0.296338 (-0.166962) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420672 / 0.215209 (0.205463) | 4.181337 / 2.077655 (2.103682) | 1.985524 / 1.504120 (0.481404) | 1.803468 / 1.541195 (0.262273) | 1.952915 / 1.468490 (0.484425) | 0.710928 / 4.584777 (-3.873849) | 3.886245 / 3.745712 (0.140533) | 3.737837 / 5.269862 (-1.532024) | 1.806859 / 4.565676 (-2.758818) | 0.088461 / 0.424275 (-0.335814) | 0.013125 / 0.007607 (0.005518) | 0.522410 / 0.226044 (0.296365) | 5.232591 / 2.268929 (2.963663) | 2.451188 / 55.444624 (-52.993437) | 2.127725 / 6.876477 (-4.748751) | 2.232859 / 2.142072 (0.090786) | 0.854257 / 4.805227 (-3.950970) | 0.171004 / 6.500664 (-6.329661) | 0.066724 / 0.075469 (-0.008746) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257700 / 1.841788 (-0.584088) | 15.738605 / 8.074308 (7.664297) | 15.021698 / 10.191392 (4.830306) | 0.147422 / 0.680424 (-0.533002) | 0.017928 / 0.534201 (-0.516273) | 0.428121 / 0.579283 (-0.151162) | 0.432056 / 0.434364 (-0.002308) | 0.498318 / 0.540337 (-0.042020) | 0.591040 / 1.386936 (-0.795896) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1ac74267032ef3608779a8c8c4361b95a83ecbcb \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007014 / 0.011353 (-0.004339) | 0.004792 / 0.011008 (-0.006216) | 0.099822 / 0.038508 (0.061314) | 0.029333 / 0.023109 (0.006224) | 0.306453 / 0.275898 (0.030555) | 0.344598 / 0.323480 (0.021118) | 0.005121 / 0.007986 (-0.002865) | 0.004850 / 0.004328 (0.000522) | 0.076668 / 0.004250 (0.072417) | 0.039980 / 0.037052 (0.002927) | 0.312276 / 0.258489 (0.053787) | 0.354722 / 0.293841 (0.060881) | 0.031653 / 0.128546 (-0.096893) | 0.011743 / 0.075646 (-0.063903) | 0.322998 / 0.419271 (-0.096274) | 0.042813 / 0.043533 (-0.000720) | 0.308855 / 0.255139 (0.053716) | 0.332650 / 0.283200 (0.049451) | 0.087155 / 0.141683 (-0.054528) | 1.454946 / 1.452155 (0.002791) | 1.550589 / 1.492716 (0.057873) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192921 / 0.018006 (0.174914) | 0.411155 / 0.000490 (0.410666) | 0.004779 / 0.000200 (0.004579) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024462 / 0.037411 (-0.012950) | 0.100320 / 0.014526 (0.085794) | 0.105509 / 0.176557 (-0.071048) | 0.168533 / 0.737135 (-0.568602) | 0.110018 / 0.296338 (-0.186321) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415025 / 0.215209 (0.199816) | 4.144583 / 2.077655 (2.066928) | 1.871627 / 1.504120 (0.367507) | 1.671638 / 1.541195 (0.130443) | 1.734458 / 1.468490 (0.265968) | 0.693435 / 4.584777 (-3.891342) | 3.487999 / 3.745712 (-0.257713) | 3.196553 / 5.269862 (-2.073308) | 1.628499 / 4.565676 (-2.937178) | 0.082999 / 0.424275 (-0.341276) | 0.012822 / 0.007607 (0.005215) | 0.514904 / 0.226044 (0.288860) | 5.157525 / 2.268929 (2.888596) | 2.313093 / 55.444624 (-53.131531) | 1.968335 / 6.876477 (-4.908142) | 2.083462 / 2.142072 (-0.058610) | 0.804485 / 4.805227 (-4.000742) | 0.152290 / 6.500664 (-6.348374) | 0.066813 / 0.075469 (-0.008656) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.210370 / 1.841788 (-0.631418) | 14.261779 / 8.074308 (6.187471) | 14.268121 / 10.191392 (4.076729) | 0.149216 / 0.680424 (-0.531207) | 0.016529 / 0.534201 (-0.517672) | 0.378814 / 0.579283 (-0.200469) | 0.386304 / 0.434364 (-0.048060) | 0.439653 / 0.540337 (-0.100684) | 0.523658 / 1.386936 (-0.863278) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006979 / 0.011353 (-0.004374) | 0.004718 / 0.011008 (-0.006290) | 0.077023 / 0.038508 (0.038514) | 0.029080 / 0.023109 (0.005971) | 0.343145 / 0.275898 (0.067247) | 0.380633 / 0.323480 (0.057153) | 0.006057 / 0.007986 (-0.001928) | 0.003541 / 0.004328 (-0.000788) | 0.075773 / 0.004250 (0.071523) | 0.039112 / 0.037052 (0.002060) | 0.342355 / 0.258489 (0.083866) | 0.386002 / 0.293841 (0.092161) | 0.033238 / 0.128546 (-0.095308) | 0.011696 / 0.075646 (-0.063950) | 0.086178 / 0.419271 (-0.333093) | 0.045219 / 0.043533 (0.001686) | 0.360710 / 0.255139 (0.105571) | 0.367490 / 0.283200 (0.084290) | 0.093041 / 0.141683 (-0.048642) | 1.523670 / 1.452155 (0.071516) | 1.595280 / 1.492716 (0.102564) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235888 / 0.018006 (0.217882) | 0.410205 / 0.000490 (0.409715) | 0.000405 / 0.000200 (0.000205) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025752 / 0.037411 (-0.011659) | 0.103343 / 0.014526 (0.088818) | 0.108722 / 0.176557 (-0.067834) | 0.159241 / 0.737135 (-0.577894) | 0.113684 / 0.296338 (-0.182654) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441809 / 0.215209 (0.226600) | 4.410893 / 2.077655 (2.333238) | 2.104061 / 1.504120 (0.599941) | 1.854016 / 1.541195 (0.312821) | 1.947100 / 1.468490 (0.478610) | 0.697682 / 4.584777 (-3.887095) | 3.467513 / 3.745712 (-0.278199) | 1.911603 / 5.269862 (-3.358258) | 1.187479 / 4.565676 (-3.378197) | 0.083153 / 0.424275 (-0.341122) | 0.012651 / 0.007607 (0.005044) | 0.542081 / 0.226044 (0.316036) | 5.444622 / 2.268929 (3.175693) | 2.524236 / 55.444624 (-52.920388) | 2.190463 / 6.876477 (-4.686014) | 2.265764 / 2.142072 (0.123691) | 0.810778 / 4.805227 (-3.994450) | 0.152459 / 6.500664 (-6.348205) | 0.067815 / 0.075469 (-0.007654) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.334388 / 1.841788 (-0.507400) | 14.640459 / 8.074308 (6.566151) | 14.714874 / 10.191392 (4.523482) | 0.153479 / 0.680424 (-0.526945) | 0.016709 / 0.534201 (-0.517492) | 0.379427 / 0.579283 (-0.199856) | 0.391602 / 0.434364 (-0.042762) | 0.438297 / 0.540337 (-0.102041) | 0.524170 / 1.386936 (-0.862766) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b277cef5cb56c0c506eda082fb69fddb839156a1 \"CML watermark\")\n"
] | 2023-03-21T14:18:09 | 2023-03-23T13:19:27 | 2023-03-23T13:12:25 | MEMBER | null | Following discussion at https://github.com/huggingface/datasets/pull/5589
Right now `to_iterable_dataset` on images/audio hurts iterable dataset performance a lot (e.g. x4 slower because it encodes+decodes images/audios unnecessarily).
I fixed it by providing a generator that yields undecoded examples | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5655/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5655/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5655",
"html_url": "https://github.com/huggingface/datasets/pull/5655",
"diff_url": "https://github.com/huggingface/datasets/pull/5655.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5655.patch",
"merged_at": "2023-03-23T13:12:25"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5654 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5654/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5654/comments | https://api.github.com/repos/huggingface/datasets/issues/5654/events | https://github.com/huggingface/datasets/issues/5654 | 1,633,523,705 | I_kwDODunzps5hXZf5 | 5,654 | Offset overflow when executing Dataset.map | {
"login": "jan-pair",
"id": 118280608,
"node_id": "U_kgDOBwzRoA",
"avatar_url": "https://avatars.githubusercontent.com/u/118280608?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jan-pair",
"html_url": "https://github.com/jan-pair",
"followers_url": "https://api.github.com/users/jan-pair/followers",
"following_url": "https://api.github.com/users/jan-pair/following{/other_user}",
"gists_url": "https://api.github.com/users/jan-pair/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jan-pair/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jan-pair/subscriptions",
"organizations_url": "https://api.github.com/users/jan-pair/orgs",
"repos_url": "https://api.github.com/users/jan-pair/repos",
"events_url": "https://api.github.com/users/jan-pair/events{/privacy}",
"received_events_url": "https://api.github.com/users/jan-pair/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Upd. the above code works if we replace `25` with `1`, but the result value at key \"hr\" is not a tensor but a list of lists of lists of uint8.\r\n\r\nAdding `train_data.set_format(\"torch\")` after map fixes this, but the original issue remains\r\n\r\n",
"As a workaround, one can replace\r\n`return {\"hr\": torch.stack([crop_transf(tensor) for _ in range(25)])}`\r\nwith\r\n`return {f\"hr_crop_{i}\": crop_transf(tensor) for i in range(25)}`\r\nand then choose appropriate crop randomly in further processing, but I still don't understand why the original approach doesn't work(\r\n"
] | 2023-03-21T09:33:27 | 2023-03-21T10:32:07 | null | NONE | null | ### Describe the bug
Hi, I'm trying to use `.map` method to cache multiple random crops from the image to speed up data processing during training, as the image size is too big.
The map function executes all iterations, and then returns the following error:
```bash
Traceback (most recent call last):
File "/home/ubuntu/miniconda3/envs/enhancement/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 3353, in _map_single
writer.finalize() # close_stream=bool(buf_writer is None)) # We only close if we are writing in a file
File "/home/ubuntu/miniconda3/envs/enhancement/lib/python3.8/site-packages/datasets/arrow_writer.py", line 582, in finalize
self.write_examples_on_file()
File "/home/ubuntu/miniconda3/envs/enhancement/lib/python3.8/site-packages/datasets/arrow_writer.py", line 446, in write_examples_on_file
self.write_batch(batch_examples=batch_examples)
File "/home/ubuntu/miniconda3/envs/enhancement/lib/python3.8/site-packages/datasets/arrow_writer.py", line 555, in write_batch
self.write_table(pa_table, writer_batch_size)
File "/home/ubuntu/miniconda3/envs/enhancement/lib/python3.8/site-packages/datasets/arrow_writer.py", line 567, in write_table
pa_table = pa_table.combine_chunks()
File "pyarrow/table.pxi", line 3315, in pyarrow.lib.Table.combine_chunks
File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 100, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: offset overflow while concatenating arrays
```
Here is the minimal code (`/home/datasets/DIV2K_train_HR` is just a folder of images that can be replaced by any appropriate):
### Steps to reproduce the bug
```python
from glob import glob
import torch
from datasets import Dataset, Image
from torchvision.transforms import PILToTensor, RandomCrop
file_paths = glob("/home/datasets/DIV2K_train_HR/*")
to_tensor = PILToTensor()
crop_transf = RandomCrop(size=256)
def prepare_data(example):
tensor = to_tensor(example["image"].convert("RGB"))
return {"hr": torch.stack([crop_transf(tensor) for _ in range(25)])}
train_data = Dataset.from_dict({"image": file_paths}).cast_column("image", Image())
train_data = train_data.map(
prepare_data,
cache_file_name="/home/datasets/DIV2K_train_HR_crops.tmp",
desc="Caching multiple random crops of image",
remove_columns="image",
)
print(train_data[0].keys(), train_data[0]["hr"].shape)
```
### Expected behavior
Cached file is stored at `"/home/datasets/DIV2K_train_HR_crops.tmp"`, output is `dict_keys(['hr']) torch.Size([25, 3, 256, 256])`
### Environment info
- `datasets` version: 2.10.1
- Platform: Linux-5.15.0-67-generic-x86_64-with-glibc2.10
- Python version: 3.8.16
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
- Pytorch version: 2.0.0+cu117
- torchvision version: 0.15.1+cu117 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5654/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5654/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5653 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5653/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5653/comments | https://api.github.com/repos/huggingface/datasets/issues/5653/events | https://github.com/huggingface/datasets/issues/5653 | 1,633,254,159 | I_kwDODunzps5hWXsP | 5,653 | Doc: save_to_disk, `num_proc` will affect `num_shards`, but it's not documented | {
"login": "RmZeta2718",
"id": 42400165,
"node_id": "MDQ6VXNlcjQyNDAwMTY1",
"avatar_url": "https://avatars.githubusercontent.com/u/42400165?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/RmZeta2718",
"html_url": "https://github.com/RmZeta2718",
"followers_url": "https://api.github.com/users/RmZeta2718/followers",
"following_url": "https://api.github.com/users/RmZeta2718/following{/other_user}",
"gists_url": "https://api.github.com/users/RmZeta2718/gists{/gist_id}",
"starred_url": "https://api.github.com/users/RmZeta2718/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/RmZeta2718/subscriptions",
"organizations_url": "https://api.github.com/users/RmZeta2718/orgs",
"repos_url": "https://api.github.com/users/RmZeta2718/repos",
"events_url": "https://api.github.com/users/RmZeta2718/events{/privacy}",
"received_events_url": "https://api.github.com/users/RmZeta2718/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892861,
"node_id": "MDU6TGFiZWwxOTM1ODkyODYx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/documentation",
"name": "documentation",
"color": "0075ca",
"default": true,
"description": "Improvements or additions to documentation"
},
{
"id": 1935892877,
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue",
"name": "good first issue",
"color": "7057ff",
"default": true,
"description": "Good for newcomers"
}
] | closed | false | null | [] | null | [
"I agree this should be documented"
] | 2023-03-21T05:25:35 | 2023-03-24T16:36:23 | 2023-03-24T16:36:23 | NONE | null | ### Describe the bug
[`num_proc`](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.DatasetDict.save_to_disk.num_proc) will affect `num_shards`, but it's not documented
### Steps to reproduce the bug
Nothing to reproduce
### Expected behavior
[document of `num_shards`](https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.DatasetDict.save_to_disk.num_shards) explicitly says that it depends on `max_shard_size`, it should also mention `num_proc`.
### Environment info
datasets main document | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5653/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5653/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5652 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5652/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5652/comments | https://api.github.com/repos/huggingface/datasets/issues/5652/events | https://github.com/huggingface/datasets/pull/5652 | 1,632,546,073 | PR_kwDODunzps5MeVUR | 5,652 | Copy features | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007455 / 0.011353 (-0.003898) | 0.005278 / 0.011008 (-0.005731) | 0.098981 / 0.038508 (0.060473) | 0.029208 / 0.023109 (0.006099) | 0.304132 / 0.275898 (0.028234) | 0.340010 / 0.323480 (0.016530) | 0.005514 / 0.007986 (-0.002472) | 0.003636 / 0.004328 (-0.000692) | 0.076737 / 0.004250 (0.072486) | 0.041985 / 0.037052 (0.004933) | 0.314941 / 0.258489 (0.056452) | 0.346686 / 0.293841 (0.052845) | 0.032528 / 0.128546 (-0.096018) | 0.011795 / 0.075646 (-0.063851) | 0.322122 / 0.419271 (-0.097150) | 0.051548 / 0.043533 (0.008015) | 0.310561 / 0.255139 (0.055422) | 0.329443 / 0.283200 (0.046243) | 0.092820 / 0.141683 (-0.048863) | 1.495764 / 1.452155 (0.043609) | 1.586734 / 1.492716 (0.094018) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.195830 / 0.018006 (0.177824) | 0.422075 / 0.000490 (0.421586) | 0.005483 / 0.000200 (0.005283) | 0.000133 / 0.000054 (0.000078) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023468 / 0.037411 (-0.013943) | 0.097713 / 0.014526 (0.083187) | 0.105331 / 0.176557 (-0.071225) | 0.166237 / 0.737135 (-0.570898) | 0.108924 / 0.296338 (-0.187415) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.671901 / 0.215209 (0.456692) | 6.745691 / 2.077655 (4.668036) | 2.132508 / 1.504120 (0.628388) | 1.693808 / 1.541195 (0.152614) | 1.715282 / 1.468490 (0.246792) | 0.955354 / 4.584777 (-3.629422) | 3.810296 / 3.745712 (0.064584) | 2.214891 / 5.269862 (-3.054970) | 1.461513 / 4.565676 (-3.104164) | 0.109846 / 0.424275 (-0.314430) | 0.013546 / 0.007607 (0.005939) | 0.780046 / 0.226044 (0.554001) | 7.789020 / 2.268929 (5.520091) | 2.602411 / 55.444624 (-52.842213) | 1.995096 / 6.876477 (-4.881380) | 2.009022 / 2.142072 (-0.133051) | 1.069215 / 4.805227 (-3.736012) | 0.179812 / 6.500664 (-6.320852) | 0.068125 / 0.075469 (-0.007344) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.201866 / 1.841788 (-0.639921) | 13.878814 / 8.074308 (5.804506) | 14.179264 / 10.191392 (3.987872) | 0.128908 / 0.680424 (-0.551515) | 0.017257 / 0.534201 (-0.516944) | 0.379500 / 0.579283 (-0.199783) | 0.393308 / 0.434364 (-0.041056) | 0.444700 / 0.540337 (-0.095638) | 0.531043 / 1.386936 (-0.855893) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007413 / 0.011353 (-0.003940) | 0.005431 / 0.011008 (-0.005577) | 0.078158 / 0.038508 (0.039650) | 0.028837 / 0.023109 (0.005728) | 0.343635 / 0.275898 (0.067737) | 0.383041 / 0.323480 (0.059561) | 0.005283 / 0.007986 (-0.002703) | 0.003673 / 0.004328 (-0.000655) | 0.076461 / 0.004250 (0.072211) | 0.038625 / 0.037052 (0.001573) | 0.341109 / 0.258489 (0.082620) | 0.387027 / 0.293841 (0.093186) | 0.032512 / 0.128546 (-0.096034) | 0.011903 / 0.075646 (-0.063744) | 0.086340 / 0.419271 (-0.332931) | 0.043211 / 0.043533 (-0.000321) | 0.339994 / 0.255139 (0.084855) | 0.370868 / 0.283200 (0.087668) | 0.091679 / 0.141683 (-0.050004) | 1.547188 / 1.452155 (0.095033) | 1.578545 / 1.492716 (0.085829) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216981 / 0.018006 (0.198975) | 0.412206 / 0.000490 (0.411716) | 0.004243 / 0.000200 (0.004043) | 0.000130 / 0.000054 (0.000075) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025392 / 0.037411 (-0.012020) | 0.102577 / 0.014526 (0.088051) | 0.107672 / 0.176557 (-0.068884) | 0.160657 / 0.737135 (-0.576478) | 0.111646 / 0.296338 (-0.184692) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.698815 / 0.215209 (0.483606) | 6.958931 / 2.077655 (4.881276) | 2.344216 / 1.504120 (0.840096) | 1.907752 / 1.541195 (0.366557) | 1.964251 / 1.468490 (0.495761) | 0.950754 / 4.584777 (-3.634023) | 3.829700 / 3.745712 (0.083988) | 3.055565 / 5.269862 (-2.214297) | 1.575851 / 4.565676 (-2.989825) | 0.109227 / 0.424275 (-0.315048) | 0.013163 / 0.007607 (0.005556) | 0.804613 / 0.226044 (0.578569) | 8.015035 / 2.268929 (5.746107) | 2.796358 / 55.444624 (-52.648266) | 2.212561 / 6.876477 (-4.663916) | 2.229918 / 2.142072 (0.087845) | 1.062041 / 4.805227 (-3.743186) | 0.181384 / 6.500664 (-6.319280) | 0.068564 / 0.075469 (-0.006905) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.287904 / 1.841788 (-0.553884) | 14.539222 / 8.074308 (6.464914) | 14.232097 / 10.191392 (4.040705) | 0.130870 / 0.680424 (-0.549554) | 0.016710 / 0.534201 (-0.517491) | 0.384454 / 0.579283 (-0.194829) | 0.391750 / 0.434364 (-0.042614) | 0.443995 / 0.540337 (-0.096343) | 0.526255 / 1.386936 (-0.860681) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bd46874a580b888bdc82b53daace79884f04bc62 \"CML watermark\")\n",
"Arf I need to fix some tests first - sorry",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008393 / 0.011353 (-0.002959) | 0.005635 / 0.011008 (-0.005373) | 0.114840 / 0.038508 (0.076332) | 0.039272 / 0.023109 (0.016163) | 0.352116 / 0.275898 (0.076218) | 0.386614 / 0.323480 (0.063134) | 0.006348 / 0.007986 (-0.001638) | 0.005872 / 0.004328 (0.001544) | 0.086437 / 0.004250 (0.082187) | 0.054003 / 0.037052 (0.016951) | 0.350302 / 0.258489 (0.091813) | 0.400148 / 0.293841 (0.106308) | 0.042436 / 0.128546 (-0.086111) | 0.013987 / 0.075646 (-0.061660) | 0.399434 / 0.419271 (-0.019837) | 0.059223 / 0.043533 (0.015690) | 0.354511 / 0.255139 (0.099372) | 0.377764 / 0.283200 (0.094564) | 0.112297 / 0.141683 (-0.029386) | 1.677483 / 1.452155 (0.225328) | 1.784942 / 1.492716 (0.292226) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233334 / 0.018006 (0.215328) | 0.450575 / 0.000490 (0.450085) | 0.000376 / 0.000200 (0.000176) | 0.000068 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031995 / 0.037411 (-0.005416) | 0.126798 / 0.014526 (0.112272) | 0.138453 / 0.176557 (-0.038104) | 0.207360 / 0.737135 (-0.529775) | 0.147744 / 0.296338 (-0.148594) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.481496 / 0.215209 (0.266287) | 4.810495 / 2.077655 (2.732840) | 2.457917 / 1.504120 (0.953797) | 2.300073 / 1.541195 (0.758879) | 2.065595 / 1.468490 (0.597105) | 0.814589 / 4.584777 (-3.770188) | 4.566496 / 3.745712 (0.820784) | 2.386947 / 5.269862 (-2.882914) | 1.531639 / 4.565676 (-3.034037) | 0.099569 / 0.424275 (-0.324706) | 0.014971 / 0.007607 (0.007364) | 0.590359 / 0.226044 (0.364314) | 5.885250 / 2.268929 (3.616322) | 2.706799 / 55.444624 (-52.737826) | 2.324485 / 6.876477 (-4.551992) | 2.452751 / 2.142072 (0.310678) | 0.966955 / 4.805227 (-3.838272) | 0.198165 / 6.500664 (-6.302499) | 0.076877 / 0.075469 (0.001408) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.499085 / 1.841788 (-0.342702) | 17.705516 / 8.074308 (9.631208) | 16.481174 / 10.191392 (6.289782) | 0.191832 / 0.680424 (-0.488592) | 0.021417 / 0.534201 (-0.512784) | 0.519647 / 0.579283 (-0.059636) | 0.498432 / 0.434364 (0.064068) | 0.598206 / 0.540337 (0.057868) | 0.700990 / 1.386936 (-0.685946) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008746 / 0.011353 (-0.002607) | 0.006052 / 0.011008 (-0.004956) | 0.092938 / 0.038508 (0.054430) | 0.038932 / 0.023109 (0.015823) | 0.406919 / 0.275898 (0.131021) | 0.444325 / 0.323480 (0.120845) | 0.006735 / 0.007986 (-0.001251) | 0.005972 / 0.004328 (0.001643) | 0.088152 / 0.004250 (0.083902) | 0.051009 / 0.037052 (0.013957) | 0.407415 / 0.258489 (0.148926) | 0.481048 / 0.293841 (0.187207) | 0.043268 / 0.128546 (-0.085278) | 0.014574 / 0.075646 (-0.061072) | 0.103555 / 0.419271 (-0.315716) | 0.058251 / 0.043533 (0.014719) | 0.406294 / 0.255139 (0.151155) | 0.429229 / 0.283200 (0.146029) | 0.116977 / 0.141683 (-0.024705) | 1.765885 / 1.452155 (0.313730) | 1.885557 / 1.492716 (0.392841) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284014 / 0.018006 (0.266008) | 0.458066 / 0.000490 (0.457576) | 0.022286 / 0.000200 (0.022086) | 0.000158 / 0.000054 (0.000104) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033971 / 0.037411 (-0.003440) | 0.132030 / 0.014526 (0.117504) | 0.141725 / 0.176557 (-0.034831) | 0.199818 / 0.737135 (-0.537318) | 0.149176 / 0.296338 (-0.147162) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.511463 / 0.215209 (0.296254) | 4.917921 / 2.077655 (2.840267) | 2.382377 / 1.504120 (0.878257) | 2.154599 / 1.541195 (0.613404) | 2.247858 / 1.468490 (0.779368) | 0.834524 / 4.584777 (-3.750253) | 4.560010 / 3.745712 (0.814297) | 2.403055 / 5.269862 (-2.866806) | 1.780784 / 4.565676 (-2.784893) | 0.101409 / 0.424275 (-0.322866) | 0.014657 / 0.007607 (0.007050) | 0.610137 / 0.226044 (0.384093) | 6.051011 / 2.268929 (3.782083) | 2.887357 / 55.444624 (-52.557267) | 2.518225 / 6.876477 (-4.358252) | 2.559654 / 2.142072 (0.417582) | 0.981226 / 4.805227 (-3.824001) | 0.197323 / 6.500664 (-6.303341) | 0.076851 / 0.075469 (0.001382) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.554662 / 1.841788 (-0.287126) | 18.038993 / 8.074308 (9.964685) | 16.719948 / 10.191392 (6.528556) | 0.195641 / 0.680424 (-0.484783) | 0.020699 / 0.534201 (-0.513502) | 0.498949 / 0.579283 (-0.080334) | 0.487775 / 0.434364 (0.053411) | 0.591413 / 0.540337 (0.051075) | 0.708520 / 1.386936 (-0.678416) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#39de0d78224c070be33d0820ec9203018fb721d1 \"CML watermark\")\n",
"Ready for review @mariosasko :)",
"Yea it does behave as expected, but modifying a dataset's features dict is not recommended and can lead to unpredictable behaviors. By copying the features, we make sure users don't modify the dataset's features dict.\r\n\r\nSince the attribute is public, users expect to be able to do whatever they want with it, without checking if they have to copy it or not",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008069 / 0.011353 (-0.003284) | 0.005051 / 0.011008 (-0.005958) | 0.096587 / 0.038508 (0.058079) | 0.032954 / 0.023109 (0.009844) | 0.317877 / 0.275898 (0.041979) | 0.328677 / 0.323480 (0.005197) | 0.005524 / 0.007986 (-0.002462) | 0.003958 / 0.004328 (-0.000370) | 0.072692 / 0.004250 (0.068441) | 0.044554 / 0.037052 (0.007502) | 0.311121 / 0.258489 (0.052632) | 0.355912 / 0.293841 (0.062071) | 0.035934 / 0.128546 (-0.092612) | 0.012056 / 0.075646 (-0.063590) | 0.332575 / 0.419271 (-0.086696) | 0.049788 / 0.043533 (0.006255) | 0.307918 / 0.255139 (0.052779) | 0.326757 / 0.283200 (0.043557) | 0.098671 / 0.141683 (-0.043012) | 1.424625 / 1.452155 (-0.027530) | 1.507944 / 1.492716 (0.015228) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207976 / 0.018006 (0.189970) | 0.439604 / 0.000490 (0.439114) | 0.000435 / 0.000200 (0.000235) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026961 / 0.037411 (-0.010451) | 0.106627 / 0.014526 (0.092101) | 0.115292 / 0.176557 (-0.061264) | 0.171901 / 0.737135 (-0.565234) | 0.123276 / 0.296338 (-0.173062) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407679 / 0.215209 (0.192469) | 4.071958 / 2.077655 (1.994303) | 1.854270 / 1.504120 (0.350151) | 1.678406 / 1.541195 (0.137211) | 1.715890 / 1.468490 (0.247400) | 0.705536 / 4.584777 (-3.879241) | 3.774198 / 3.745712 (0.028486) | 2.096429 / 5.269862 (-3.173432) | 1.431810 / 4.565676 (-3.133866) | 0.085557 / 0.424275 (-0.338718) | 0.012191 / 0.007607 (0.004584) | 0.502937 / 0.226044 (0.276893) | 5.034391 / 2.268929 (2.765463) | 2.393826 / 55.444624 (-53.050799) | 2.037383 / 6.876477 (-4.839094) | 2.192037 / 2.142072 (0.049964) | 0.829298 / 4.805227 (-3.975929) | 0.167781 / 6.500664 (-6.332883) | 0.063405 / 0.075469 (-0.012064) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.179189 / 1.841788 (-0.662599) | 14.464132 / 8.074308 (6.389824) | 14.869024 / 10.191392 (4.677632) | 0.172864 / 0.680424 (-0.507560) | 0.017817 / 0.534201 (-0.516384) | 0.427849 / 0.579283 (-0.151434) | 0.434447 / 0.434364 (0.000083) | 0.502077 / 0.540337 (-0.038260) | 0.599587 / 1.386936 (-0.787349) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007366 / 0.011353 (-0.003987) | 0.004939 / 0.011008 (-0.006069) | 0.074982 / 0.038508 (0.036474) | 0.032611 / 0.023109 (0.009501) | 0.340670 / 0.275898 (0.064772) | 0.372471 / 0.323480 (0.048991) | 0.005567 / 0.007986 (-0.002418) | 0.003956 / 0.004328 (-0.000372) | 0.074550 / 0.004250 (0.070300) | 0.047097 / 0.037052 (0.010045) | 0.337049 / 0.258489 (0.078560) | 0.391512 / 0.293841 (0.097671) | 0.035712 / 0.128546 (-0.092835) | 0.012040 / 0.075646 (-0.063606) | 0.087126 / 0.419271 (-0.332146) | 0.048290 / 0.043533 (0.004757) | 0.335069 / 0.255139 (0.079930) | 0.362080 / 0.283200 (0.078881) | 0.098606 / 0.141683 (-0.043077) | 1.456802 / 1.452155 (0.004647) | 1.554652 / 1.492716 (0.061936) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200015 / 0.018006 (0.182009) | 0.442772 / 0.000490 (0.442283) | 0.004594 / 0.000200 (0.004394) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028510 / 0.037411 (-0.008901) | 0.109654 / 0.014526 (0.095128) | 0.119921 / 0.176557 (-0.056636) | 0.170289 / 0.737135 (-0.566846) | 0.125288 / 0.296338 (-0.171051) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430919 / 0.215209 (0.215710) | 4.274132 / 2.077655 (2.196478) | 2.014385 / 1.504120 (0.510265) | 1.822094 / 1.541195 (0.280899) | 1.938188 / 1.468490 (0.469698) | 0.707812 / 4.584777 (-3.876965) | 3.925730 / 3.745712 (0.180018) | 2.117481 / 5.269862 (-3.152381) | 1.369521 / 4.565676 (-3.196155) | 0.088414 / 0.424275 (-0.335861) | 0.013101 / 0.007607 (0.005494) | 0.538468 / 0.226044 (0.312424) | 5.384614 / 2.268929 (3.115685) | 2.487709 / 55.444624 (-52.956915) | 2.152060 / 6.876477 (-4.724417) | 2.225777 / 2.142072 (0.083705) | 0.856749 / 4.805227 (-3.948479) | 0.173299 / 6.500664 (-6.327366) | 0.068872 / 0.075469 (-0.006597) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268009 / 1.841788 (-0.573778) | 15.102648 / 8.074308 (7.028340) | 14.216810 / 10.191392 (4.025418) | 0.163661 / 0.680424 (-0.516763) | 0.017394 / 0.534201 (-0.516807) | 0.418030 / 0.579283 (-0.161253) | 0.413717 / 0.434364 (-0.020647) | 0.487526 / 0.540337 (-0.052811) | 0.581499 / 1.386936 (-0.805437) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#46bb11e96d053c497035a2436702860de9960a65 \"CML watermark\")\n"
] | 2023-03-20T17:17:23 | 2023-03-23T13:19:19 | 2023-03-23T13:12:08 | MEMBER | null | Some users (even internally at HF) are doing
```python
dset_features = dset.features
dset_features.pop(col_to_remove)
dset = dset.map(..., features=dset_features)
```
Right now this causes issues because it modifies the features dict in place before the map.
In this PR I modified `dset.features` to return a copy of the features, so that users can modify it if they want. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5652/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5652/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5652",
"html_url": "https://github.com/huggingface/datasets/pull/5652",
"diff_url": "https://github.com/huggingface/datasets/pull/5652.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5652.patch",
"merged_at": "2023-03-23T13:12:08"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5651 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5651/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5651/comments | https://api.github.com/repos/huggingface/datasets/issues/5651/events | https://github.com/huggingface/datasets/issues/5651 | 1,631,967,509 | I_kwDODunzps5hRdkV | 5,651 | expanduser in save_to_disk | {
"login": "RmZeta2718",
"id": 42400165,
"node_id": "MDQ6VXNlcjQyNDAwMTY1",
"avatar_url": "https://avatars.githubusercontent.com/u/42400165?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/RmZeta2718",
"html_url": "https://github.com/RmZeta2718",
"followers_url": "https://api.github.com/users/RmZeta2718/followers",
"following_url": "https://api.github.com/users/RmZeta2718/following{/other_user}",
"gists_url": "https://api.github.com/users/RmZeta2718/gists{/gist_id}",
"starred_url": "https://api.github.com/users/RmZeta2718/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/RmZeta2718/subscriptions",
"organizations_url": "https://api.github.com/users/RmZeta2718/orgs",
"repos_url": "https://api.github.com/users/RmZeta2718/repos",
"events_url": "https://api.github.com/users/RmZeta2718/events{/privacy}",
"received_events_url": "https://api.github.com/users/RmZeta2718/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892877,
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue",
"name": "good first issue",
"color": "7057ff",
"default": true,
"description": "Good for newcomers"
}
] | open | false | {
"login": "benjaminbrown038",
"id": 35114142,
"node_id": "MDQ6VXNlcjM1MTE0MTQy",
"avatar_url": "https://avatars.githubusercontent.com/u/35114142?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/benjaminbrown038",
"html_url": "https://github.com/benjaminbrown038",
"followers_url": "https://api.github.com/users/benjaminbrown038/followers",
"following_url": "https://api.github.com/users/benjaminbrown038/following{/other_user}",
"gists_url": "https://api.github.com/users/benjaminbrown038/gists{/gist_id}",
"starred_url": "https://api.github.com/users/benjaminbrown038/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/benjaminbrown038/subscriptions",
"organizations_url": "https://api.github.com/users/benjaminbrown038/orgs",
"repos_url": "https://api.github.com/users/benjaminbrown038/repos",
"events_url": "https://api.github.com/users/benjaminbrown038/events{/privacy}",
"received_events_url": "https://api.github.com/users/benjaminbrown038/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "benjaminbrown038",
"id": 35114142,
"node_id": "MDQ6VXNlcjM1MTE0MTQy",
"avatar_url": "https://avatars.githubusercontent.com/u/35114142?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/benjaminbrown038",
"html_url": "https://github.com/benjaminbrown038",
"followers_url": "https://api.github.com/users/benjaminbrown038/followers",
"following_url": "https://api.github.com/users/benjaminbrown038/following{/other_user}",
"gists_url": "https://api.github.com/users/benjaminbrown038/gists{/gist_id}",
"starred_url": "https://api.github.com/users/benjaminbrown038/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/benjaminbrown038/subscriptions",
"organizations_url": "https://api.github.com/users/benjaminbrown038/orgs",
"repos_url": "https://api.github.com/users/benjaminbrown038/repos",
"events_url": "https://api.github.com/users/benjaminbrown038/events{/privacy}",
"received_events_url": "https://api.github.com/users/benjaminbrown038/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"`save_to_disk` should indeed expand `~`. Marking it as a \"good first issue\".",
"#self-assign\r\n\r\nFile path to code: \r\n\r\nhttps://github.com/huggingface/datasets/blob/2.13.0/src/datasets/arrow_dataset.py#L1364\r\n\r\n@RmZeta2718 I created a pull request for this issue. ",
"Hello, \r\nIt says `save_to_disk` is deprecated in 2.8.0, so the alternative to this will be `storage_options`? \r\n\r\nhttps://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.save_to_disk",
"@ashikshafi08 I think you misunderstood the warning. The method `save_to_disk` is not deprecated only the optional parameter `fs`.\r\nAlso @benjaminbrown038 as I cannot find your PR I would like to work on this if you don't mind."
] | 2023-03-20T12:02:18 | 2023-07-26T16:18:06 | null | NONE | null | ### Describe the bug
save_to_disk() does not expand `~`
1. `dataset = load_datasets("any dataset")`
2. `dataset.save_to_disk("~/data")`
3. a folder named "~" created in current folder
4. FileNotFoundError is raised, because the expanded path does not exist (`/home/<user>/data`)
related issue https://github.com/huggingface/transformers/issues/10628
### Steps to reproduce the bug
As described above.
### Expected behavior
expanduser correctly
### Environment info
- datasets 2.10.1
- python 3.10 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5651/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5651/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5650 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5650/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5650/comments | https://api.github.com/repos/huggingface/datasets/issues/5650/events | https://github.com/huggingface/datasets/issues/5650 | 1,630,336,919 | I_kwDODunzps5hLPeX | 5,650 | load_dataset can't work correct with my image data | {
"login": "WiNE-iNEFF",
"id": 41611046,
"node_id": "MDQ6VXNlcjQxNjExMDQ2",
"avatar_url": "https://avatars.githubusercontent.com/u/41611046?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/WiNE-iNEFF",
"html_url": "https://github.com/WiNE-iNEFF",
"followers_url": "https://api.github.com/users/WiNE-iNEFF/followers",
"following_url": "https://api.github.com/users/WiNE-iNEFF/following{/other_user}",
"gists_url": "https://api.github.com/users/WiNE-iNEFF/gists{/gist_id}",
"starred_url": "https://api.github.com/users/WiNE-iNEFF/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/WiNE-iNEFF/subscriptions",
"organizations_url": "https://api.github.com/users/WiNE-iNEFF/orgs",
"repos_url": "https://api.github.com/users/WiNE-iNEFF/repos",
"events_url": "https://api.github.com/users/WiNE-iNEFF/events{/privacy}",
"received_events_url": "https://api.github.com/users/WiNE-iNEFF/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Can you post a reproducible code snippet of what you tried to do?\r\n\r\n",
"> Can you post a reproducible code snippet of what you tried to do?\n> \n> \n\n```python\nfrom datasets import load_dataset\n\ndataset = load_dataset(\"my_folder_name\", split=\"train\")\n```",
"hi @WiNE-iNEFF ! can you please also tell a bit more about how your data is structured (directory structure and filenames patterns)?",
"> hi @WiNE-iNEFF ! can you please also tell a bit more about how your data is structured (directory structure and filenames patterns)?\n\nAll file have format .png converted in RGBA. \nIn main folder \"MyData\" contain 4 folder with images. In function load_dataset i use folder \"MyData\"",
"@WiNE-iNEFF I'm sorry there is still not enough information to answer your question :( For now I can only assume that your [filenames contain split names](https://huggingface.co/docs/datasets/repository_structure#splits-and-file-names) which are somehow incorrectly parsed. \r\nWhat would be the output if you omit `split` while loading? Like just\r\n```python\r\nds = load_dataset(\"MyData\")\r\nprint(ds)\r\n```\r\n\r\n",
"> @WiNE-iNEFF I'm sorry there is still not enough information to answer your question :( For now I can only assume that your [filenames contain split names](https://huggingface.co/docs/datasets/repository_structure#splits-and-file-names) which are somehow incorrectly parsed. \n> What would be the output if you omit `split` while loading? Like just\n> ```python\n> ds = load_dataset(\"MyData\")\n> print(ds)\n> ```\n> \n> \n\n```python\nDataset({\n features: ['image', 'label'],\n num_rows: 4\n})\n```",
"@WiNE-iNEFF My only guess is that 4 images in your data have `\"train\"` string in their names (something like `\"train_image_0.png\"`) and others do not and the loader ignores all the files that do not contain split name in filename. If it's true, please try to remove \"train\" from filenames. Or maybe they are inside a directory named \"train\", then the directory should be renamed (unless you want to put only these 4 specific images to the train but apparently you do not).\r\n\r\nIf there is a bug I cannot investigate it unfortunately because I cannot reproduce your case without some data samples. ",
"> @WiNE-iNEFF My only guess is that 4 images in your data have `\"train\"` string in their names (something like `\"train_image_0.png\"`) and others do not and the loader ignores all the files that do not contain split name in filename. If it's true, please try to remove \"train\" from filenames. Or maybe they are inside a directory named \"train\", then the directory should be renamed (unless you want to put only these 4 specific images to the train but apparently you do not).\n> \n> If there is a bug I cannot investigate it unfortunately because I cannot reproduce your case without some data samples. \n\nI checked my files and some of them do have the words train, valid and test in their names, but the number of such images is more than 500, not 4.",
"@WiNE-iNEFF Probably they are named inconsistently so that the correct pattern for which files should correspond to which split cannot be inferred. You can make it clearer to the loader by removing split names from filenames and putting files in separate folder for each split (you can take a look at the [documentation for imagefolder](https://huggingface.co/docs/datasets/image_dataset#imagefolder)):\r\n```\r\n Fuaimeanna2/\r\n├─ test\r\n│ ├─ label_0\r\n│ │ ├── filename_0.jpg\r\n│ │ └── filename_1.jpg\r\n│ │ └── ...\r\n│ ├─ label_1\r\n│ │ └── ...\r\n│ ├─ label_2\r\n│ │ └── ...\r\n│ └─ label_3\r\n│ └── ...\r\n├─ train\r\n│ ├─ label_0\r\n│ │ └── ...\r\n│ ├─ label_1\r\n│ │ └── ...\r\n│ ├─ label_2\r\n│ │ └── ...\r\n│ └─ label_3\r\n│ └── ...\r\n└── validation\r\n ├─ label_0\r\n │ └── ...\r\n ├─ label_1\r\n │ └── ...\r\n ├─ label_2\r\n │ └── ...\r\n └─ label_3\r\n └── ...\r\n```",
"> @WiNE-iNEFF Probably they are named inconsistently so that the correct pattern for which files should correspond to which split cannot be inferred. You can make it clearer to the loader by removing split names from filenames and putting files in separate folder for each split (you can take a look at the [documentation for imagefolder](https://huggingface.co/docs/datasets/image_dataset#imagefolder)):\n> ```\n> Fuaimeanna2/\n> ├─ test\n> │ ├─ label_0\n> │ │ ├── filename_0.jpg\n> │ │ └── filename_1.jpg\n> │ │ └── ...\n> │ ├─ label_1\n> │ │ └── ...\n> │ ├─ label_2\n> │ │ └── ...\n> │ └─ label_3\n> │ └── ...\n> ├─ train\n> │ ├─ label_0\n> │ │ └── ...\n> │ ├─ label_1\n> │ │ └── ...\n> │ ├─ label_2\n> │ │ └── ...\n> │ └─ label_3\n> │ └── ...\n> └── validation\n> ├─ label_0\n> │ └── ...\n> ├─ label_1\n> │ └── ...\n> ├─ label_2\n> │ └── ...\n> └─ label_3\n> └── ...\n> ```\n\nI have read this documentation more than once. It just wasn't a problem before.",
"Hi,\r\n\r\nYou need to use:\r\n```\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset(\"imagefolder\", split=\"train\", data_dir=\"path_to_your_folder\")\r\n```\r\ninstead of \r\n```\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset(\"my_folder_name\", split=\"train\")\r\n```\r\nTo create an image dataset from your local folders.",
"> Hi,\r\n> \r\n> You need to use:\r\n> \r\n> ```\r\n> from datasets import load_dataset\r\n> \r\n> dataset = load_dataset(\"imagefolder\", split=\"train\", data_dir=\"path_to_your_folder\")\r\n> ```\r\n> \r\n> instead of\r\n> \r\n> ```\r\n> from datasets import load_dataset\r\n> \r\n> dataset = load_dataset(\"my_folder_name\", split=\"train\")\r\n> ```\r\n> \r\n> To create an image dataset from your local folders.\r\n\r\nThank you, but even using the method that you wrote above absolutely nothing changes, especially without using data_dir on my other data everything works fine",
"@WiNE-iNEFF have you tried the suggestion I posted above? with removing split names from filenames and structuring files in folders? \r\n\r\n\r\n> even using the method that you wrote above absolutely nothing changes\r\n\r\nfyi - nothing changed because these two approaches are basically the same. it's just that when you pass your data directory as a dataset name (`load_dataset(\"my_folder_name\"`), not as `data_dir` (`load_dataset(\"imagefolder\", data_dir=\"my_folder_name\"`), `datasets` infers what module to use (`imagefolder` in your case) automatically, by file extensions.",
"Oh I didn't know that! OK but in any case, not sure why the image builder isn't working for @WiNE-iNEFF. But it's hard for us to help if we can't reproduce. I'd just check the structure of the folders, see if the splits are correctly set up, etc.",
"> @WiNE-iNEFF have you tried the suggestion I posted above? with removing split names from filenames and structuring files in folders? \n> \n> \n> > even using the method that you wrote above absolutely nothing changes\n> \n> fyi - nothing changed because these two approaches are basically the same. it's just that when you pass your data directory as a dataset name (`load_dataset(\"my_folder_name\"`), not as `data_dir` (`load_dataset(\"imagefolder\", data_dir=\"my_folder_name\"`), `datasets` infers what module to use (`imagefolder` in your case) automatically, by file extensions.\n\nI'll try to try your method over the next few days, then I'll write it turned out ",
"> @WiNE-iNEFF have you tried the suggestion I posted above? with removing split names from filenames and structuring files in folders? \n> \n> \n> > even using the method that you wrote above absolutely nothing changes\n> \n> fyi - nothing changed because these two approaches are basically the same. it's just that when you pass your data directory as a dataset name (`load_dataset(\"my_folder_name\"`), not as `data_dir` (`load_dataset(\"imagefolder\", data_dir=\"my_folder_name\"`), `datasets` infers what module to use (`imagefolder` in your case) automatically, by file extensions.\n\nI tried creating a `train` folder and put my image folders in it. As a result, all 18,000 images were loaded. ",
"@WiNE-iNEFF great! So to explain what happened according to my assumptions:\r\n\r\nWhen you use a standard packaged loader (like `imagefolder`, `csv`, `jsonl`, and so on) and load your data like `load_dataset(\"my_folder_name\")` or `load_dataset(\"imagefolder\", data_dir=\"my_folder_name\"`, the library searches for patterns to divide files into splits. This is described a bit in [this doc](https://huggingface.co/docs/datasets/v2.10.0/en/repository_structure#splits-and-file-names). And the order to search for patterns is the following:\r\n1. first it checks for [pattern like `data/<split_name>-xxxxx-of-xxxxx`](https://huggingface.co/docs/datasets/v2.10.0/en/repository_structure#custom-split-names) (which allows to pass custom split names)\r\n2. then for directories named as splits (if you have directories named `train`, `test` etc.)\r\n3. then for [splits in filenames](https://huggingface.co/docs/datasets/v2.10.0/en/repository_structure#splits-and-file-names) (like if you have files named `train-image.jpg`, `test_0.jpg`, ...)\r\n4. then if no pattern was found, it treats all files as belonging to a single `train` split\r\n\r\nThe code is [here](https://github.com/huggingface/datasets/blob/main/src/datasets/data_files.py#L215).\r\nSo I assume that in your case, since you didn't have directories for splits (pattern 2), some files that included split keywords (pattern 3) were included and others were ignored as not matching the pattern. And when you added `train` directory, the pattern for directories (pattern 2) was triggered first and everything worked as expected. Everything worked in your previous cases probably because you didn't have split names keywords in filenames, so all the files ended up being a part of a single train split (pattern 4).\r\n\r\nAnother way to mitigate this apart from structuring your data according to the patterns is to explicitly state with files belong to which splits by passing them with `data_files` parameter:\r\n```python\r\nload_dataset(\"my_folder_name\", data_files={\"train\": \"**\"}) # to tell that all files should be included \r\n```\r\n\r\nNow I see that this order should be explained in documentation and also referenced in sections for packaged modules like `imagefolder`, thank you for pointing this out. \r\n\r\n \r\n",
"@NielsRogge @polinaeterna I have a similar problem when reading my dataset. I want to use DETR for object detection, but my data is in YOLO format. With a dataset of 10k images, yolo format involves having 10k labels. As far as I read regarding [COCO format](https://auto.gluon.ai/stable/tutorials/multimodal/object_detection/data_preparation/convert_data_to_coco_format.html), there must be one JSON per split. However, as I post in the [Hugging Face forum](https://discuss.huggingface.co/t/prepare-dataset-from-yolo-format-to-coco-for-detr/34894), when it is read, the number of rows is 1, which does not make sense. \r\nThe instruction to read the train-val-test splits are: \r\n```python\r\nfrom datasets import load_dataset\r\ndata_files = {\r\n\t\"train\": './train_labels.json',\r\n\t\"validation\": './val_labels.json',\r\n\t\"test\": './test_labels.json'\r\n}\r\ndataset = load_dataset(\"json\", data_files=data_files)\r\n```\r\nAn example of the short version of the json file I read, to reproduce my error, is the following: \r\n\r\n``` json\r\n{\r\n \"info\": {},\r\n \"licenses\": [],\r\n \"images\": [\r\n {\r\n \"id\": 1,\r\n \"file_name\": \"aceca_100.mp4frame21.png\",\r\n \"width\": 1280,\r\n \"height\": 720,\r\n \"pixel_values\": null,\r\n \"pixel_mask\": null\r\n },\r\n {\r\n \"id\": 2,\r\n \"file_name\": \"aceca_100.mp4frame24.png\",\r\n \"width\": 1280,\r\n \"height\": 720,\r\n \"pixel_values\": null,\r\n \"pixel_mask\": null\r\n },\r\n {\r\n \"id\": 3,\r\n \"file_name\": \"aceca_100.mp4frame25.png\",\r\n \"width\": 1280,\r\n \"height\": 720,\r\n \"pixel_values\": null,\r\n \"pixel_mask\": null}],\r\n \"annotations\": [\r\n {\r\n \"id\": 1,\r\n \"image_id\": 1,\r\n \"category_id\": 0,\r\n \"bbox\": [0.0, 278.21896388398557, 86.94096523844935, 156.0293445072134],\r\n \"area\": 13565.341816979679,\r\n \"iscrowd\": 0\r\n },\r\n {\r\n \"id\": 2,\r\n \"image_id\": 2,\r\n \"category_id\": 0,\r\n \"bbox\": [149.28851295721816, 297.6359759754418, 34.76802347007475, 98.03908698442889],\r\n \"area\": 3408.625277259324,\r\n \"iscrowd\": 0\r\n },\r\n {\r\n \"id\": 3,\r\n \"image_id\": 3,\r\n \"category_id\": 0,\r\n \"bbox\": [153.3817197549372, 300.168969412891, 31.787555842913775, 89.69583163436312],\r\n \"area\": 2851.2112569539095,\r\n \"iscrowd\": 0\r\n }\r\n ],\r\n \"categories\": [\r\n {\r\n \"id\": 0, \"name\": \"person\"\r\n }\r\n ]\r\n }\r\n```\r\nIf full files required, my email is [email protected]",
"Hi @Alberto1404, to load an object detection dataset it's recommended to make use of the metadata feature as explained [here](https://huggingface.co/docs/datasets/image_dataset#object-detection). ",
"Thank you @NielsRogge! It works!!!",
"You can now refer to https://huggingface.co/docs/datasets/repository_structure to learn about the `datasets`' data files inference, so I'm closing this issue."
] | 2023-03-18T13:59:13 | 2023-07-24T14:13:02 | 2023-07-24T14:13:01 | NONE | null | I have about 20000 images in my folder which divided into 4 folders with class names.
When i use load_dataset("my_folder_name", split="train") this function create dataset in which there are only 4 images, the remaining 19000 images were not added there. What is the problem and did not understand. Tried converting images and the like but absolutely nothing worked | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5650/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5650/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5649 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5649/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5649/comments | https://api.github.com/repos/huggingface/datasets/issues/5649/events | https://github.com/huggingface/datasets/issues/5649 | 1,630,173,460 | I_kwDODunzps5hKnkU | 5,649 | The index column created with .to_sql() is dependent on the batch_size when writing | {
"login": "lsb",
"id": 45281,
"node_id": "MDQ6VXNlcjQ1Mjgx",
"avatar_url": "https://avatars.githubusercontent.com/u/45281?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lsb",
"html_url": "https://github.com/lsb",
"followers_url": "https://api.github.com/users/lsb/followers",
"following_url": "https://api.github.com/users/lsb/following{/other_user}",
"gists_url": "https://api.github.com/users/lsb/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lsb/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lsb/subscriptions",
"organizations_url": "https://api.github.com/users/lsb/orgs",
"repos_url": "https://api.github.com/users/lsb/repos",
"events_url": "https://api.github.com/users/lsb/events{/privacy}",
"received_events_url": "https://api.github.com/users/lsb/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for reporting, @lsb. \r\n\r\nWe are investigating it.\r\n\r\nOn the other hand, please note that in the next `datasets` release, the index will not be created by default (see #5583). If you would like to have it, you will need to explicitly pass `index=True`. ",
"I think this is low enough priority for me to close this as Won't Fix. If I need any primary keys I can generate them beforehand. Feel free to reopen."
] | 2023-03-18T05:25:17 | 2023-06-17T07:01:57 | 2023-06-17T07:01:57 | NONE | null | ### Describe the bug
It seems like the "index" column is designed to be unique? The values are only unique per batch. The SQL index is not a unique index.
This can be a problem, for instance, when building a faiss index on a dataset and then trying to match up ids with a sql export.
### Steps to reproduce the bug
```
from datasets import Dataset
import sqlite3
db = sqlite3.connect(":memory:")
nice_numbers = Dataset.from_dict({"nice_number": range(101,106)})
nice_numbers.to_sql("nice1", db, batch_size=1)
nice_numbers.to_sql("nice2", db, batch_size=2)
print(db.execute("select * from nice1").fetchall()) # [(0, 101), (0, 102), (0, 103), (0, 104), (0, 105)]
print(db.execute("select * from nice2").fetchall()) # [(0, 101), (1, 102), (0, 103), (1, 104), (0, 105)]
```
### Expected behavior
I expected the "index" column to be unique
### Environment info
```
% datasets-cli env
Copy-and-paste the text below in your GitHub issue.
- `datasets` version: 2.10.1
- Platform: macOS-13.2.1-arm64-arm-64bit
- Python version: 3.9.6
- PyArrow version: 7.0.0
- Pandas version: 1.5.2
zsh: segmentation fault datasets-cli env
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5649/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5649/timeline | null | not_planned | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5648 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5648/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5648/comments | https://api.github.com/repos/huggingface/datasets/issues/5648/events | https://github.com/huggingface/datasets/issues/5648 | 1,629,253,719 | I_kwDODunzps5hHHBX | 5,648 | flatten_indices doesn't work with pandas format | {
"login": "alialamiidrissi",
"id": 14365168,
"node_id": "MDQ6VXNlcjE0MzY1MTY4",
"avatar_url": "https://avatars.githubusercontent.com/u/14365168?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alialamiidrissi",
"html_url": "https://github.com/alialamiidrissi",
"followers_url": "https://api.github.com/users/alialamiidrissi/followers",
"following_url": "https://api.github.com/users/alialamiidrissi/following{/other_user}",
"gists_url": "https://api.github.com/users/alialamiidrissi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alialamiidrissi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alialamiidrissi/subscriptions",
"organizations_url": "https://api.github.com/users/alialamiidrissi/orgs",
"repos_url": "https://api.github.com/users/alialamiidrissi/repos",
"events_url": "https://api.github.com/users/alialamiidrissi/events{/privacy}",
"received_events_url": "https://api.github.com/users/alialamiidrissi/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | open | false | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Thanks for reporting! This can be fixed by setting the format to `arrow` in `flatten_indices` and restoring the original format after the flattening. I'm working on a PR that reduces the number of the `flatten_indices` calls in our codebase and makes `flatten_indices` a no-op when a dataset does not have an indices mapping, so I'll incorporate the fix in that PR."
] | 2023-03-17T12:44:25 | 2023-03-21T13:12:03 | null | NONE | null | ### Describe the bug
Hi,
I noticed that `flatten_indices` throws an error when the batch format is `pandas`. This is probably due to the fact that flatten_indices uses map internally which doesn't accept dataframes as the transformation function output
### Steps to reproduce the bug
tabular_data = pd.DataFrame(np.random.randn(10,10))
tabular_data = datasets.arrow_dataset.Dataset.from_pandas(tabular_data)
tabular_data.with_format("pandas").select([0,1,2,3]).flatten_indices()
### Expected behavior
No error thrown
### Environment info
- `datasets` version: 2.10.1
- Python version: 3.9.5
- PyArrow version: 11.0.0
- Pandas version: 1.4.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5648/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5648/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5647 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5647/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5647/comments | https://api.github.com/repos/huggingface/datasets/issues/5647/events | https://github.com/huggingface/datasets/issues/5647 | 1,628,225,544 | I_kwDODunzps5hDMAI | 5,647 | Make all print statements optional | {
"login": "gagan3012",
"id": 49101362,
"node_id": "MDQ6VXNlcjQ5MTAxMzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/49101362?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gagan3012",
"html_url": "https://github.com/gagan3012",
"followers_url": "https://api.github.com/users/gagan3012/followers",
"following_url": "https://api.github.com/users/gagan3012/following{/other_user}",
"gists_url": "https://api.github.com/users/gagan3012/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gagan3012/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gagan3012/subscriptions",
"organizations_url": "https://api.github.com/users/gagan3012/orgs",
"repos_url": "https://api.github.com/users/gagan3012/repos",
"events_url": "https://api.github.com/users/gagan3012/events{/privacy}",
"received_events_url": "https://api.github.com/users/gagan3012/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | null | [] | null | [
"related to #5444 ",
"We now log these messages instead of printing them (addressed in #6019), so I'm closing this issue."
] | 2023-03-16T20:30:07 | 2023-07-21T14:20:25 | 2023-07-21T14:20:24 | NONE | null | ### Feature request
Make all print statements optional to speed up the development
### Motivation
Im loading multiple tiny datasets and all the print statements make the loading slower
### Your contribution
I can help contribute | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5647/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5647/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5646 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5646/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5646/comments | https://api.github.com/repos/huggingface/datasets/issues/5646/events | https://github.com/huggingface/datasets/pull/5646 | 1,627,838,762 | PR_kwDODunzps5MOqjj | 5,646 | Allow self as key in `Features` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009980 / 0.011353 (-0.001373) | 0.006643 / 0.011008 (-0.004366) | 0.140722 / 0.038508 (0.102214) | 0.036693 / 0.023109 (0.013584) | 0.430019 / 0.275898 (0.154121) | 0.463218 / 0.323480 (0.139738) | 0.006977 / 0.007986 (-0.001008) | 0.006488 / 0.004328 (0.002160) | 0.099385 / 0.004250 (0.095134) | 0.047160 / 0.037052 (0.010108) | 0.431440 / 0.258489 (0.172951) | 0.500232 / 0.293841 (0.206391) | 0.057968 / 0.128546 (-0.070578) | 0.020197 / 0.075646 (-0.055449) | 0.438269 / 0.419271 (0.018998) | 0.071149 / 0.043533 (0.027617) | 0.428502 / 0.255139 (0.173363) | 0.486861 / 0.283200 (0.203661) | 0.119855 / 0.141683 (-0.021828) | 1.875372 / 1.452155 (0.423218) | 1.955055 / 1.492716 (0.462339) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.243468 / 0.018006 (0.225462) | 0.547842 / 0.000490 (0.547352) | 0.004885 / 0.000200 (0.004685) | 0.000144 / 0.000054 (0.000089) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031555 / 0.037411 (-0.005856) | 0.125869 / 0.014526 (0.111343) | 0.137816 / 0.176557 (-0.038741) | 0.206581 / 0.737135 (-0.530555) | 0.142976 / 0.296338 (-0.153362) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.624773 / 0.215209 (0.409564) | 6.154861 / 2.077655 (4.077206) | 2.504586 / 1.504120 (1.000466) | 1.989118 / 1.541195 (0.447923) | 2.092280 / 1.468490 (0.623790) | 1.240108 / 4.584777 (-3.344669) | 5.584893 / 3.745712 (1.839181) | 3.075369 / 5.269862 (-2.194492) | 2.174285 / 4.565676 (-2.391391) | 0.141555 / 0.424275 (-0.282720) | 0.016099 / 0.007607 (0.008492) | 0.720543 / 0.226044 (0.494498) | 7.489000 / 2.268929 (5.220071) | 3.239189 / 55.444624 (-52.205435) | 2.525772 / 6.876477 (-4.350704) | 2.773514 / 2.142072 (0.631441) | 1.410084 / 4.805227 (-3.395143) | 0.259252 / 6.500664 (-6.241412) | 0.082573 / 0.075469 (0.007104) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.458186 / 1.841788 (-0.383602) | 17.503738 / 8.074308 (9.429430) | 20.817682 / 10.191392 (10.626290) | 0.231221 / 0.680424 (-0.449203) | 0.032550 / 0.534201 (-0.501651) | 0.559020 / 0.579283 (-0.020263) | 0.592987 / 0.434364 (0.158623) | 0.602661 / 0.540337 (0.062324) | 0.731912 / 1.386936 (-0.655024) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009543 / 0.011353 (-0.001810) | 0.006953 / 0.011008 (-0.004055) | 0.087651 / 0.038508 (0.049143) | 0.031717 / 0.023109 (0.008608) | 0.437813 / 0.275898 (0.161915) | 0.468448 / 0.323480 (0.144968) | 0.007378 / 0.007986 (-0.000607) | 0.005170 / 0.004328 (0.000842) | 0.102286 / 0.004250 (0.098035) | 0.043643 / 0.037052 (0.006591) | 0.458788 / 0.258489 (0.200299) | 0.519891 / 0.293841 (0.226050) | 0.052875 / 0.128546 (-0.075671) | 0.020518 / 0.075646 (-0.055128) | 0.112675 / 0.419271 (-0.306597) | 0.066390 / 0.043533 (0.022858) | 0.423037 / 0.255139 (0.167898) | 0.420345 / 0.283200 (0.137146) | 0.119221 / 0.141683 (-0.022462) | 1.632244 / 1.452155 (0.180090) | 1.829585 / 1.492716 (0.336869) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242312 / 0.018006 (0.224305) | 0.547592 / 0.000490 (0.547102) | 0.006520 / 0.000200 (0.006320) | 0.000185 / 0.000054 (0.000131) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032204 / 0.037411 (-0.005207) | 0.113320 / 0.014526 (0.098794) | 0.135667 / 0.176557 (-0.040889) | 0.194360 / 0.737135 (-0.542775) | 0.127934 / 0.296338 (-0.168404) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.648134 / 0.215209 (0.432925) | 6.470574 / 2.077655 (4.392920) | 2.799121 / 1.504120 (1.295001) | 2.160450 / 1.541195 (0.619255) | 2.261648 / 1.468490 (0.793158) | 1.244660 / 4.584777 (-3.340117) | 5.694636 / 3.745712 (1.948923) | 5.316191 / 5.269862 (0.046329) | 2.764551 / 4.565676 (-1.801126) | 0.152225 / 0.424275 (-0.272051) | 0.015959 / 0.007607 (0.008351) | 0.833606 / 0.226044 (0.607562) | 8.099765 / 2.268929 (5.830836) | 3.523005 / 55.444624 (-51.921620) | 2.855126 / 6.876477 (-4.021351) | 2.730849 / 2.142072 (0.588776) | 1.434351 / 4.805227 (-3.370876) | 0.251963 / 6.500664 (-6.248701) | 0.085718 / 0.075469 (0.010249) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.722466 / 1.841788 (-0.119322) | 17.846981 / 8.074308 (9.772673) | 21.578684 / 10.191392 (11.387292) | 0.239987 / 0.680424 (-0.440437) | 0.029189 / 0.534201 (-0.505012) | 0.543181 / 0.579283 (-0.036102) | 0.626527 / 0.434364 (0.192163) | 0.614334 / 0.540337 (0.073997) | 0.745934 / 1.386936 (-0.641002) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4c506ad7cd22668f37ec51ff01b7c7f7235b9212 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007395 / 0.011353 (-0.003958) | 0.004965 / 0.011008 (-0.006043) | 0.096376 / 0.038508 (0.057868) | 0.033243 / 0.023109 (0.010134) | 0.299990 / 0.275898 (0.024092) | 0.336287 / 0.323480 (0.012807) | 0.005528 / 0.007986 (-0.002458) | 0.004003 / 0.004328 (-0.000326) | 0.072820 / 0.004250 (0.068569) | 0.042867 / 0.037052 (0.005815) | 0.296719 / 0.258489 (0.038230) | 0.337313 / 0.293841 (0.043472) | 0.036809 / 0.128546 (-0.091738) | 0.012239 / 0.075646 (-0.063407) | 0.332351 / 0.419271 (-0.086921) | 0.050449 / 0.043533 (0.006916) | 0.301483 / 0.255139 (0.046344) | 0.316673 / 0.283200 (0.033474) | 0.102526 / 0.141683 (-0.039157) | 1.415429 / 1.452155 (-0.036726) | 1.544381 / 1.492716 (0.051665) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211158 / 0.018006 (0.193152) | 0.434718 / 0.000490 (0.434228) | 0.003386 / 0.000200 (0.003186) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027945 / 0.037411 (-0.009466) | 0.108743 / 0.014526 (0.094217) | 0.119771 / 0.176557 (-0.056785) | 0.178667 / 0.737135 (-0.558468) | 0.123718 / 0.296338 (-0.172620) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413908 / 0.215209 (0.198699) | 4.136828 / 2.077655 (2.059174) | 1.932547 / 1.504120 (0.428427) | 1.715389 / 1.541195 (0.174194) | 1.791679 / 1.468490 (0.323189) | 0.692715 / 4.584777 (-3.892062) | 3.741807 / 3.745712 (-0.003905) | 2.066274 / 5.269862 (-3.203587) | 1.314106 / 4.565676 (-3.251570) | 0.087191 / 0.424275 (-0.337084) | 0.012866 / 0.007607 (0.005259) | 0.510012 / 0.226044 (0.283968) | 5.116419 / 2.268929 (2.847490) | 2.408562 / 55.444624 (-53.036063) | 2.002044 / 6.876477 (-4.874433) | 2.121868 / 2.142072 (-0.020204) | 0.837141 / 4.805227 (-3.968086) | 0.166596 / 6.500664 (-6.334068) | 0.063190 / 0.075469 (-0.012279) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.204152 / 1.841788 (-0.637636) | 14.739793 / 8.074308 (6.665485) | 14.403469 / 10.191392 (4.212077) | 0.165781 / 0.680424 (-0.514642) | 0.017826 / 0.534201 (-0.516375) | 0.423527 / 0.579283 (-0.155756) | 0.431410 / 0.434364 (-0.002954) | 0.499422 / 0.540337 (-0.040915) | 0.596116 / 1.386936 (-0.790820) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007365 / 0.011353 (-0.003988) | 0.005165 / 0.011008 (-0.005844) | 0.073403 / 0.038508 (0.034895) | 0.032542 / 0.023109 (0.009433) | 0.339304 / 0.275898 (0.063406) | 0.371892 / 0.323480 (0.048412) | 0.005544 / 0.007986 (-0.002442) | 0.004108 / 0.004328 (-0.000221) | 0.073750 / 0.004250 (0.069500) | 0.045613 / 0.037052 (0.008561) | 0.366159 / 0.258489 (0.107670) | 0.389864 / 0.293841 (0.096023) | 0.036006 / 0.128546 (-0.092540) | 0.012402 / 0.075646 (-0.063244) | 0.085137 / 0.419271 (-0.334135) | 0.048485 / 0.043533 (0.004952) | 0.334172 / 0.255139 (0.079033) | 0.353168 / 0.283200 (0.069969) | 0.099393 / 0.141683 (-0.042290) | 1.460584 / 1.452155 (0.008429) | 1.518601 / 1.492716 (0.025885) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227352 / 0.018006 (0.209346) | 0.444211 / 0.000490 (0.443721) | 0.000410 / 0.000200 (0.000210) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029517 / 0.037411 (-0.007894) | 0.115557 / 0.014526 (0.101031) | 0.125855 / 0.176557 (-0.050701) | 0.175214 / 0.737135 (-0.561922) | 0.129324 / 0.296338 (-0.167014) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429783 / 0.215209 (0.214574) | 4.301159 / 2.077655 (2.223504) | 2.084939 / 1.504120 (0.580819) | 1.887781 / 1.541195 (0.346586) | 2.045712 / 1.468490 (0.577222) | 0.693319 / 4.584777 (-3.891458) | 3.788595 / 3.745712 (0.042883) | 2.087080 / 5.269862 (-3.182781) | 1.325247 / 4.565676 (-3.240429) | 0.085919 / 0.424275 (-0.338356) | 0.012710 / 0.007607 (0.005103) | 0.533432 / 0.226044 (0.307387) | 5.339468 / 2.268929 (3.070540) | 2.578351 / 55.444624 (-52.866273) | 2.224905 / 6.876477 (-4.651572) | 2.301064 / 2.142072 (0.158992) | 0.839622 / 4.805227 (-3.965605) | 0.166523 / 6.500664 (-6.334141) | 0.065254 / 0.075469 (-0.010215) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.262223 / 1.841788 (-0.579565) | 15.042523 / 8.074308 (6.968215) | 14.542719 / 10.191392 (4.351327) | 0.142230 / 0.680424 (-0.538194) | 0.017610 / 0.534201 (-0.516591) | 0.422357 / 0.579283 (-0.156926) | 0.417785 / 0.434364 (-0.016579) | 0.491990 / 0.540337 (-0.048348) | 0.585835 / 1.386936 (-0.801101) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c2fcedd2a561fe6f5b6972ad18bfef722e1d2c77 \"CML watermark\")\n"
] | 2023-03-16T16:17:03 | 2023-03-16T17:21:58 | 2023-03-16T17:14:50 | CONTRIBUTOR | null | Fix #5641 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5646/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5646/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5646",
"html_url": "https://github.com/huggingface/datasets/pull/5646",
"diff_url": "https://github.com/huggingface/datasets/pull/5646.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5646.patch",
"merged_at": "2023-03-16T17:14:50"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5645 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5645/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5645/comments | https://api.github.com/repos/huggingface/datasets/issues/5645/events | https://github.com/huggingface/datasets/issues/5645 | 1,627,108,278 | I_kwDODunzps5g-7O2 | 5,645 | Datasets map and select(range()) is giving dill error | {
"login": "Tanya-11",
"id": 90728105,
"node_id": "MDQ6VXNlcjkwNzI4MTA1",
"avatar_url": "https://avatars.githubusercontent.com/u/90728105?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Tanya-11",
"html_url": "https://github.com/Tanya-11",
"followers_url": "https://api.github.com/users/Tanya-11/followers",
"following_url": "https://api.github.com/users/Tanya-11/following{/other_user}",
"gists_url": "https://api.github.com/users/Tanya-11/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Tanya-11/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Tanya-11/subscriptions",
"organizations_url": "https://api.github.com/users/Tanya-11/orgs",
"repos_url": "https://api.github.com/users/Tanya-11/repos",
"events_url": "https://api.github.com/users/Tanya-11/events{/privacy}",
"received_events_url": "https://api.github.com/users/Tanya-11/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"It looks like an error that we observed once in https://github.com/huggingface/datasets/pull/5166\r\n\r\nCan you try to update `datasets` ?\r\n\r\n```\r\npip install -U datasets\r\n```\r\n\r\nif it doesn't work, can you make sure you don't have packages installed that may modify `dill`'s behavior, such as `apache-beam` ?",
"@lhoestq That fixed the problem, Thanks :)"
] | 2023-03-16T10:01:28 | 2023-03-17T04:24:51 | 2023-03-17T04:24:51 | NONE | null | ### Describe the bug
I'm using Huggingface Datasets library to load the dataset in google colab
When I do,
> data = train_dataset.select(range(10))
or
> train_datasets = train_dataset.map(
> process_data_to_model_inputs,
> batched=True,
> batch_size=batch_size,
> remove_columns=["article", "abstract"],
> )
I get following error: `module 'dill._dill' has no attribute 'log'`
I've tried downgrading the dill version from latest to 0.2.8, but no luck.
Stack trace:
> ---------------------------------------------------------------------------
> ModuleNotFoundError Traceback (most recent call last)
> /usr/local/lib/python3.9/dist-packages/datasets/utils/py_utils.py in _no_cache_fields(obj)
> 367 try:
> --> 368 import transformers as tr
> 369
>
> ModuleNotFoundError: No module named 'transformers'
>
> During handling of the above exception, another exception occurred:
>
> AttributeError Traceback (most recent call last)
> 17 frames
> <ipython-input-13-dd14813880a6> in <module>
> ----> 1 test = train_dataset.select(range(10))
>
> /usr/local/lib/python3.9/dist-packages/datasets/arrow_dataset.py in wrapper(*args, **kwargs)
> 155 }
> 156 # apply actual function
> --> 157 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
> 158 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
> 159 # re-apply format to the output
>
> /usr/local/lib/python3.9/dist-packages/datasets/fingerprint.py in wrapper(*args, **kwargs)
> 155 if kwargs.get(fingerprint_name) is None:
> 156 kwargs_for_fingerprint["fingerprint_name"] = fingerprint_name
> --> 157 kwargs[fingerprint_name] = update_fingerprint(
> 158 self._fingerprint, transform, kwargs_for_fingerprint
> 159 )
>
> /usr/local/lib/python3.9/dist-packages/datasets/fingerprint.py in update_fingerprint(fingerprint, transform, transform_args)
> 103 for key in sorted(transform_args):
> 104 hasher.update(key)
> --> 105 hasher.update(transform_args[key])
> 106 return hasher.hexdigest()
> 107
>
> /usr/local/lib/python3.9/dist-packages/datasets/fingerprint.py in update(self, value)
> 55 def update(self, value):
> 56 self.m.update(f"=={type(value)}==".encode("utf8"))
> ---> 57 self.m.update(self.hash(value).encode("utf-8"))
> 58
> 59 def hexdigest(self):
>
> /usr/local/lib/python3.9/dist-packages/datasets/fingerprint.py in hash(cls, value)
> 51 return cls.dispatch[type(value)](cls, value)
> 52 else:
> ---> 53 return cls.hash_default(value)
> 54
> 55 def update(self, value):
>
> /usr/local/lib/python3.9/dist-packages/datasets/fingerprint.py in hash_default(cls, value)
> 44 @classmethod
> 45 def hash_default(cls, value):
> ---> 46 return cls.hash_bytes(dumps(value))
> 47
> 48 @classmethod
>
> /usr/local/lib/python3.9/dist-packages/datasets/utils/py_utils.py in dumps(obj)
> 387 file = StringIO()
> 388 with _no_cache_fields(obj):
> --> 389 dump(obj, file)
> 390 return file.getvalue()
> 391
>
> /usr/local/lib/python3.9/dist-packages/datasets/utils/py_utils.py in dump(obj, file)
> 359 def dump(obj, file):
> 360 """pickle an object to a file"""
> --> 361 Pickler(file, recurse=True).dump(obj)
> 362 return
> 363
>
> /usr/local/lib/python3.9/dist-packages/dill/_dill.py in dump(self, obj)
> 392 return
> 393
> --> 394 def load_session(filename='/tmp/session.pkl', main=None):
> 395 """update the __main__ module with the state from the session file"""
> 396 if main is None: main = _main_module
>
> /usr/lib/python3.9/pickle.py in dump(self, obj)
> 485 if self.proto >= 4:
> 486 self.framer.start_framing()
> --> 487 self.save(obj)
> 488 self.write(STOP)
> 489 self.framer.end_framing()
>
> /usr/local/lib/python3.9/dist-packages/dill/_dill.py in save(self, obj, save_persistent_id)
> 386 pickler._byref = False # disable pickling by name reference
> 387 pickler._recurse = False # disable pickling recursion for globals
> --> 388 pickler._session = True # is best indicator of when pickling a session
> 389 pickler.dump(main)
> 390 finally:
>
> /usr/lib/python3.9/pickle.py in save(self, obj, save_persistent_id)
> 558 f = self.dispatch.get(t)
> 559 if f is not None:
> --> 560 f(self, obj) # Call unbound method with explicit self
> 561 return
> 562
>
> /usr/local/lib/python3.9/dist-packages/dill/_dill.py in save_singleton(pickler, obj)
>
> /usr/lib/python3.9/pickle.py in save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj)
> 689 write(NEWOBJ)
> 690 else:
> --> 691 save(func)
> 692 save(args)
> 693 write(REDUCE)
>
> /usr/local/lib/python3.9/dist-packages/dill/_dill.py in save(self, obj, save_persistent_id)
> 386 pickler._byref = False # disable pickling by name reference
> 387 pickler._recurse = False # disable pickling recursion for globals
> --> 388 pickler._session = True # is best indicator of when pickling a session
> 389 pickler.dump(main)
> 390 finally:
>
> /usr/lib/python3.9/pickle.py in save(self, obj, save_persistent_id)
> 558 f = self.dispatch.get(t)
> 559 if f is not None:
> --> 560 f(self, obj) # Call unbound method with explicit self
> 561 return
> 562
>
> /usr/local/lib/python3.9/dist-packages/datasets/utils/py_utils.py in save_function(pickler, obj)
> 583 dill._dill.log.info("# F1")
> 584 else:
> --> 585 dill._dill.log.info("F2: %s" % obj)
> 586 name = getattr(obj, "__qualname__", getattr(obj, "__name__", None))
> 587 dill._dill.StockPickler.save_global(pickler, obj, name=name)
>
> AttributeError: module 'dill._dill' has no attribute 'log'
### Steps to reproduce the bug
After loading the dataset(eg: https://huggingface.co/datasets/scientific_papers) in google colab
do either
> data = train_dataset.select(range(10))
or
> train_datasets = train_dataset.map(
> process_data_to_model_inputs,
> batched=True,
> batch_size=batch_size,
> remove_columns=["article", "abstract"],
> )
### Expected behavior
The map and select function should work
### Environment info
dataset: https://huggingface.co/datasets/scientific_papers
dill = 0.3.6
python= 3.9.16
transformer = 4.2.0 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5645/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5645/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5644 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5644/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5644/comments | https://api.github.com/repos/huggingface/datasets/issues/5644/events | https://github.com/huggingface/datasets/pull/5644 | 1,626,204,046 | PR_kwDODunzps5MJHUi | 5,644 | Allow direct cast from binary to Audio/Image | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008337 / 0.011353 (-0.003016) | 0.005588 / 0.011008 (-0.005421) | 0.110259 / 0.038508 (0.071751) | 0.038928 / 0.023109 (0.015819) | 0.350441 / 0.275898 (0.074543) | 0.378473 / 0.323480 (0.054993) | 0.006369 / 0.007986 (-0.001616) | 0.005730 / 0.004328 (0.001401) | 0.083042 / 0.004250 (0.078792) | 0.048686 / 0.037052 (0.011634) | 0.367561 / 0.258489 (0.109072) | 0.398073 / 0.293841 (0.104232) | 0.043247 / 0.128546 (-0.085299) | 0.013862 / 0.075646 (-0.061785) | 0.386745 / 0.419271 (-0.032527) | 0.060107 / 0.043533 (0.016574) | 0.345450 / 0.255139 (0.090311) | 0.371269 / 0.283200 (0.088069) | 0.117508 / 0.141683 (-0.024175) | 1.689345 / 1.452155 (0.237191) | 1.777119 / 1.492716 (0.284402) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.248248 / 0.018006 (0.230242) | 0.505200 / 0.000490 (0.504710) | 0.015354 / 0.000200 (0.015155) | 0.000794 / 0.000054 (0.000740) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030179 / 0.037411 (-0.007232) | 0.118583 / 0.014526 (0.104057) | 0.131546 / 0.176557 (-0.045010) | 0.196173 / 0.737135 (-0.540962) | 0.140532 / 0.296338 (-0.155807) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.470733 / 0.215209 (0.255524) | 4.758868 / 2.077655 (2.681213) | 2.246731 / 1.504120 (0.742611) | 1.995232 / 1.541195 (0.454037) | 2.057596 / 1.468490 (0.589106) | 0.819227 / 4.584777 (-3.765550) | 4.472093 / 3.745712 (0.726381) | 2.428154 / 5.269862 (-2.841708) | 1.748023 / 4.565676 (-2.817654) | 0.101965 / 0.424275 (-0.322310) | 0.014706 / 0.007607 (0.007098) | 0.600593 / 0.226044 (0.374548) | 5.869565 / 2.268929 (3.600637) | 2.764890 / 55.444624 (-52.679735) | 2.332112 / 6.876477 (-4.544364) | 2.486190 / 2.142072 (0.344118) | 0.979123 / 4.805227 (-3.826104) | 0.199543 / 6.500664 (-6.301121) | 0.075906 / 0.075469 (0.000436) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.397694 / 1.841788 (-0.444094) | 16.910500 / 8.074308 (8.836192) | 16.174131 / 10.191392 (5.982739) | 0.173975 / 0.680424 (-0.506449) | 0.021403 / 0.534201 (-0.512798) | 0.496187 / 0.579283 (-0.083096) | 0.487369 / 0.434364 (0.053005) | 0.565924 / 0.540337 (0.025587) | 0.684965 / 1.386936 (-0.701971) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008253 / 0.011353 (-0.003100) | 0.005745 / 0.011008 (-0.005263) | 0.085848 / 0.038508 (0.047340) | 0.038753 / 0.023109 (0.015644) | 0.401278 / 0.275898 (0.125379) | 0.433132 / 0.323480 (0.109652) | 0.006112 / 0.007986 (-0.001874) | 0.005973 / 0.004328 (0.001644) | 0.085339 / 0.004250 (0.081088) | 0.053297 / 0.037052 (0.016244) | 0.400265 / 0.258489 (0.141776) | 0.455155 / 0.293841 (0.161314) | 0.043116 / 0.128546 (-0.085430) | 0.013957 / 0.075646 (-0.061689) | 0.099507 / 0.419271 (-0.319764) | 0.058858 / 0.043533 (0.015325) | 0.398030 / 0.255139 (0.142891) | 0.418171 / 0.283200 (0.134971) | 0.114392 / 0.141683 (-0.027291) | 1.683102 / 1.452155 (0.230947) | 1.801427 / 1.492716 (0.308711) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242271 / 0.018006 (0.224265) | 0.494920 / 0.000490 (0.494430) | 0.007328 / 0.000200 (0.007128) | 0.000144 / 0.000054 (0.000090) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034061 / 0.037411 (-0.003351) | 0.146417 / 0.014526 (0.131891) | 0.161079 / 0.176557 (-0.015477) | 0.213999 / 0.737135 (-0.523137) | 0.166704 / 0.296338 (-0.129634) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.491214 / 0.215209 (0.276005) | 4.846946 / 2.077655 (2.769291) | 2.352595 / 1.504120 (0.848475) | 2.114055 / 1.541195 (0.572860) | 2.213537 / 1.468490 (0.745047) | 0.799625 / 4.584777 (-3.785152) | 4.440519 / 3.745712 (0.694807) | 4.476103 / 5.269862 (-0.793758) | 2.249384 / 4.565676 (-2.316292) | 0.098807 / 0.424275 (-0.325468) | 0.014463 / 0.007607 (0.006856) | 0.611793 / 0.226044 (0.385748) | 6.045710 / 2.268929 (3.776782) | 2.865957 / 55.444624 (-52.578667) | 2.454052 / 6.876477 (-4.422425) | 2.606153 / 2.142072 (0.464080) | 0.969057 / 4.805227 (-3.836170) | 0.198499 / 6.500664 (-6.302166) | 0.077012 / 0.075469 (0.001543) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.497020 / 1.841788 (-0.344767) | 17.834277 / 8.074308 (9.759969) | 16.413792 / 10.191392 (6.222400) | 0.201979 / 0.680424 (-0.478445) | 0.020627 / 0.534201 (-0.513574) | 0.499767 / 0.579283 (-0.079516) | 0.496982 / 0.434364 (0.062618) | 0.579554 / 0.540337 (0.039216) | 0.693287 / 1.386936 (-0.693649) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a1a3fee942ae159ff6cfe6a23b343605e7e12f55 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007461 / 0.011353 (-0.003892) | 0.005341 / 0.011008 (-0.005668) | 0.099252 / 0.038508 (0.060744) | 0.034723 / 0.023109 (0.011614) | 0.300980 / 0.275898 (0.025082) | 0.353860 / 0.323480 (0.030380) | 0.006100 / 0.007986 (-0.001885) | 0.004149 / 0.004328 (-0.000180) | 0.074765 / 0.004250 (0.070514) | 0.052226 / 0.037052 (0.015174) | 0.305098 / 0.258489 (0.046609) | 0.357445 / 0.293841 (0.063604) | 0.036129 / 0.128546 (-0.092417) | 0.012482 / 0.075646 (-0.063165) | 0.333321 / 0.419271 (-0.085951) | 0.050489 / 0.043533 (0.006956) | 0.294728 / 0.255139 (0.039589) | 0.322722 / 0.283200 (0.039523) | 0.101226 / 0.141683 (-0.040456) | 1.436787 / 1.452155 (-0.015367) | 1.515784 / 1.492716 (0.023068) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.291836 / 0.018006 (0.273830) | 0.550735 / 0.000490 (0.550245) | 0.003828 / 0.000200 (0.003628) | 0.000113 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028490 / 0.037411 (-0.008922) | 0.109543 / 0.014526 (0.095017) | 0.119451 / 0.176557 (-0.057105) | 0.176721 / 0.737135 (-0.560415) | 0.126711 / 0.296338 (-0.169628) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418863 / 0.215209 (0.203654) | 4.179167 / 2.077655 (2.101512) | 1.965126 / 1.504120 (0.461006) | 1.775544 / 1.541195 (0.234349) | 1.882667 / 1.468490 (0.414177) | 0.709201 / 4.584777 (-3.875576) | 3.754780 / 3.745712 (0.009068) | 2.175324 / 5.269862 (-3.094538) | 1.477454 / 4.565676 (-3.088223) | 0.085527 / 0.424275 (-0.338748) | 0.012685 / 0.007607 (0.005078) | 0.514276 / 0.226044 (0.288231) | 5.140518 / 2.268929 (2.871589) | 2.436011 / 55.444624 (-53.008614) | 2.114355 / 6.876477 (-4.762122) | 2.278893 / 2.142072 (0.136821) | 0.847825 / 4.805227 (-3.957402) | 0.169579 / 6.500664 (-6.331086) | 0.065306 / 0.075469 (-0.010163) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.190376 / 1.841788 (-0.651411) | 14.756581 / 8.074308 (6.682272) | 14.622610 / 10.191392 (4.431218) | 0.168186 / 0.680424 (-0.512238) | 0.017527 / 0.534201 (-0.516674) | 0.427808 / 0.579283 (-0.151475) | 0.437278 / 0.434364 (0.002914) | 0.509242 / 0.540337 (-0.031095) | 0.602500 / 1.386936 (-0.784436) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007331 / 0.011353 (-0.004022) | 0.005703 / 0.011008 (-0.005305) | 0.074992 / 0.038508 (0.036484) | 0.034069 / 0.023109 (0.010960) | 0.343513 / 0.275898 (0.067615) | 0.369061 / 0.323480 (0.045582) | 0.006034 / 0.007986 (-0.001951) | 0.004344 / 0.004328 (0.000016) | 0.074678 / 0.004250 (0.070428) | 0.052262 / 0.037052 (0.015210) | 0.364758 / 0.258489 (0.106269) | 0.401130 / 0.293841 (0.107289) | 0.037635 / 0.128546 (-0.090912) | 0.012599 / 0.075646 (-0.063047) | 0.086935 / 0.419271 (-0.332337) | 0.058161 / 0.043533 (0.014628) | 0.338727 / 0.255139 (0.083589) | 0.355957 / 0.283200 (0.072757) | 0.111607 / 0.141683 (-0.030076) | 1.454357 / 1.452155 (0.002202) | 1.591529 / 1.492716 (0.098813) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284379 / 0.018006 (0.266373) | 0.550720 / 0.000490 (0.550230) | 0.002868 / 0.000200 (0.002668) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028876 / 0.037411 (-0.008535) | 0.110892 / 0.014526 (0.096366) | 0.122519 / 0.176557 (-0.054038) | 0.169774 / 0.737135 (-0.567361) | 0.129381 / 0.296338 (-0.166957) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429181 / 0.215209 (0.213972) | 4.251016 / 2.077655 (2.173361) | 2.056778 / 1.504120 (0.552658) | 1.860458 / 1.541195 (0.319264) | 1.958923 / 1.468490 (0.490432) | 0.712667 / 4.584777 (-3.872110) | 3.856910 / 3.745712 (0.111198) | 3.374535 / 5.269862 (-1.895327) | 1.846744 / 4.565676 (-2.718932) | 0.087238 / 0.424275 (-0.337037) | 0.012718 / 0.007607 (0.005111) | 0.524654 / 0.226044 (0.298609) | 5.209756 / 2.268929 (2.940827) | 2.494882 / 55.444624 (-52.949743) | 2.201150 / 6.876477 (-4.675327) | 2.274189 / 2.142072 (0.132117) | 0.844728 / 4.805227 (-3.960499) | 0.167467 / 6.500664 (-6.333197) | 0.064018 / 0.075469 (-0.011451) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.273284 / 1.841788 (-0.568503) | 15.104413 / 8.074308 (7.030105) | 15.134025 / 10.191392 (4.942633) | 0.147568 / 0.680424 (-0.532856) | 0.017429 / 0.534201 (-0.516772) | 0.422052 / 0.579283 (-0.157231) | 0.425786 / 0.434364 (-0.008578) | 0.491753 / 0.540337 (-0.048584) | 0.585091 / 1.386936 (-0.801845) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f3d26e74898e0a9dc0d78490104e2e173269ef5b \"CML watermark\")\n"
] | 2023-03-15T20:02:54 | 2023-03-16T14:20:44 | 2023-03-16T14:12:55 | CONTRIBUTOR | null | To address https://github.com/huggingface/datasets/discussions/5593.
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5644/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5644/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5644",
"html_url": "https://github.com/huggingface/datasets/pull/5644",
"diff_url": "https://github.com/huggingface/datasets/pull/5644.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5644.patch",
"merged_at": "2023-03-16T14:12:55"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5643 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5643/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5643/comments | https://api.github.com/repos/huggingface/datasets/issues/5643/events | https://github.com/huggingface/datasets/pull/5643 | 1,626,160,220 | PR_kwDODunzps5MI9zO | 5,643 | Support PyArrow arrays as column values in `from_dict` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006665 / 0.011353 (-0.004688) | 0.004842 / 0.011008 (-0.006166) | 0.097802 / 0.038508 (0.059294) | 0.032292 / 0.023109 (0.009182) | 0.327522 / 0.275898 (0.051624) | 0.351851 / 0.323480 (0.028371) | 0.005197 / 0.007986 (-0.002789) | 0.003781 / 0.004328 (-0.000547) | 0.073213 / 0.004250 (0.068963) | 0.045819 / 0.037052 (0.008767) | 0.331323 / 0.258489 (0.072834) | 0.376978 / 0.293841 (0.083137) | 0.035014 / 0.128546 (-0.093532) | 0.011853 / 0.075646 (-0.063793) | 0.344031 / 0.419271 (-0.075240) | 0.049094 / 0.043533 (0.005561) | 0.327054 / 0.255139 (0.071915) | 0.349053 / 0.283200 (0.065853) | 0.095413 / 0.141683 (-0.046269) | 1.451593 / 1.452155 (-0.000562) | 1.505568 / 1.492716 (0.012851) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211624 / 0.018006 (0.193618) | 0.437569 / 0.000490 (0.437079) | 0.003775 / 0.000200 (0.003575) | 0.000082 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025915 / 0.037411 (-0.011496) | 0.104085 / 0.014526 (0.089559) | 0.111064 / 0.176557 (-0.065493) | 0.167316 / 0.737135 (-0.569819) | 0.117255 / 0.296338 (-0.179084) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424241 / 0.215209 (0.209032) | 4.251365 / 2.077655 (2.173710) | 2.074036 / 1.504120 (0.569916) | 1.858022 / 1.541195 (0.316828) | 1.819929 / 1.468490 (0.351439) | 0.704153 / 4.584777 (-3.880624) | 3.750506 / 3.745712 (0.004794) | 3.149836 / 5.269862 (-2.120026) | 1.729540 / 4.565676 (-2.836137) | 0.087287 / 0.424275 (-0.336988) | 0.012304 / 0.007607 (0.004697) | 0.513811 / 0.226044 (0.287767) | 5.129427 / 2.268929 (2.860498) | 2.489253 / 55.444624 (-52.955371) | 2.122746 / 6.876477 (-4.753730) | 2.208528 / 2.142072 (0.066456) | 0.843386 / 4.805227 (-3.961841) | 0.169320 / 6.500664 (-6.331344) | 0.064085 / 0.075469 (-0.011384) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.184361 / 1.841788 (-0.657427) | 14.013478 / 8.074308 (5.939170) | 13.936774 / 10.191392 (3.745382) | 0.138009 / 0.680424 (-0.542415) | 0.017192 / 0.534201 (-0.517009) | 0.420938 / 0.579283 (-0.158345) | 0.413390 / 0.434364 (-0.020974) | 0.500244 / 0.540337 (-0.040094) | 0.582499 / 1.386936 (-0.804437) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006709 / 0.011353 (-0.004643) | 0.004847 / 0.011008 (-0.006161) | 0.074740 / 0.038508 (0.036232) | 0.032126 / 0.023109 (0.009017) | 0.343248 / 0.275898 (0.067350) | 0.376822 / 0.323480 (0.053342) | 0.005547 / 0.007986 (-0.002439) | 0.005080 / 0.004328 (0.000752) | 0.074634 / 0.004250 (0.070384) | 0.044735 / 0.037052 (0.007682) | 0.357895 / 0.258489 (0.099406) | 0.401150 / 0.293841 (0.107310) | 0.035485 / 0.128546 (-0.093061) | 0.011978 / 0.075646 (-0.063668) | 0.087567 / 0.419271 (-0.331704) | 0.050233 / 0.043533 (0.006701) | 0.337476 / 0.255139 (0.082337) | 0.385064 / 0.283200 (0.101865) | 0.102733 / 0.141683 (-0.038950) | 1.456238 / 1.452155 (0.004083) | 1.539468 / 1.492716 (0.046752) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203156 / 0.018006 (0.185149) | 0.448898 / 0.000490 (0.448408) | 0.002843 / 0.000200 (0.002644) | 0.000222 / 0.000054 (0.000168) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027836 / 0.037411 (-0.009576) | 0.109889 / 0.014526 (0.095364) | 0.119378 / 0.176557 (-0.057179) | 0.171208 / 0.737135 (-0.565927) | 0.124240 / 0.296338 (-0.172098) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425374 / 0.215209 (0.210165) | 4.252994 / 2.077655 (2.175339) | 2.006410 / 1.504120 (0.502290) | 1.812821 / 1.541195 (0.271626) | 1.857618 / 1.468490 (0.389128) | 0.714564 / 4.584777 (-3.870213) | 3.803040 / 3.745712 (0.057328) | 2.075452 / 5.269862 (-3.194410) | 1.344868 / 4.565676 (-3.220809) | 0.088705 / 0.424275 (-0.335570) | 0.012481 / 0.007607 (0.004874) | 0.528022 / 0.226044 (0.301977) | 5.268878 / 2.268929 (2.999949) | 2.467858 / 55.444624 (-52.976767) | 2.138681 / 6.876477 (-4.737796) | 2.134928 / 2.142072 (-0.007145) | 0.851518 / 4.805227 (-3.953709) | 0.175085 / 6.500664 (-6.325579) | 0.063555 / 0.075469 (-0.011914) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.265788 / 1.841788 (-0.576000) | 14.683444 / 8.074308 (6.609136) | 14.055848 / 10.191392 (3.864456) | 0.145260 / 0.680424 (-0.535164) | 0.017064 / 0.534201 (-0.517137) | 0.424836 / 0.579283 (-0.154447) | 0.418345 / 0.434364 (-0.016019) | 0.491408 / 0.540337 (-0.048930) | 0.594387 / 1.386936 (-0.792549) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#10c3f32c228cc7011ce456498942e6a2a5dc3086 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006870 / 0.011353 (-0.004483) | 0.004602 / 0.011008 (-0.006406) | 0.100075 / 0.038508 (0.061567) | 0.028720 / 0.023109 (0.005611) | 0.304212 / 0.275898 (0.028314) | 0.348423 / 0.323480 (0.024943) | 0.005266 / 0.007986 (-0.002720) | 0.003473 / 0.004328 (-0.000855) | 0.077563 / 0.004250 (0.073313) | 0.040066 / 0.037052 (0.003013) | 0.304039 / 0.258489 (0.045550) | 0.348721 / 0.293841 (0.054881) | 0.032127 / 0.128546 (-0.096419) | 0.011583 / 0.075646 (-0.064063) | 0.326853 / 0.419271 (-0.092418) | 0.043158 / 0.043533 (-0.000375) | 0.310111 / 0.255139 (0.054973) | 0.332869 / 0.283200 (0.049670) | 0.088384 / 0.141683 (-0.053299) | 1.509245 / 1.452155 (0.057091) | 1.575393 / 1.492716 (0.082677) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212839 / 0.018006 (0.194833) | 0.431407 / 0.000490 (0.430918) | 0.002639 / 0.000200 (0.002439) | 0.000076 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024945 / 0.037411 (-0.012466) | 0.101312 / 0.014526 (0.086787) | 0.107873 / 0.176557 (-0.068683) | 0.169579 / 0.737135 (-0.567556) | 0.109922 / 0.296338 (-0.186417) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422091 / 0.215209 (0.206882) | 4.227174 / 2.077655 (2.149519) | 1.957964 / 1.504120 (0.453844) | 1.812076 / 1.541195 (0.270882) | 1.966666 / 1.468490 (0.498176) | 0.698710 / 4.584777 (-3.886067) | 3.431824 / 3.745712 (-0.313888) | 1.898646 / 5.269862 (-3.371215) | 1.172096 / 4.565676 (-3.393581) | 0.083383 / 0.424275 (-0.340892) | 0.012793 / 0.007607 (0.005186) | 0.522501 / 0.226044 (0.296457) | 5.240049 / 2.268929 (2.971121) | 2.349286 / 55.444624 (-53.095338) | 2.051117 / 6.876477 (-4.825360) | 2.255652 / 2.142072 (0.113580) | 0.813668 / 4.805227 (-3.991560) | 0.153770 / 6.500664 (-6.346894) | 0.068323 / 0.075469 (-0.007146) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.197204 / 1.841788 (-0.644584) | 14.146212 / 8.074308 (6.071904) | 14.469765 / 10.191392 (4.278373) | 0.130024 / 0.680424 (-0.550400) | 0.016858 / 0.534201 (-0.517343) | 0.382949 / 0.579283 (-0.196334) | 0.393414 / 0.434364 (-0.040950) | 0.447910 / 0.540337 (-0.092427) | 0.529842 / 1.386936 (-0.857094) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006903 / 0.011353 (-0.004450) | 0.004695 / 0.011008 (-0.006313) | 0.077457 / 0.038508 (0.038949) | 0.028624 / 0.023109 (0.005514) | 0.340767 / 0.275898 (0.064869) | 0.378811 / 0.323480 (0.055331) | 0.005996 / 0.007986 (-0.001990) | 0.003481 / 0.004328 (-0.000848) | 0.076284 / 0.004250 (0.072034) | 0.042564 / 0.037052 (0.005511) | 0.340908 / 0.258489 (0.082419) | 0.384952 / 0.293841 (0.091111) | 0.032057 / 0.128546 (-0.096489) | 0.011697 / 0.075646 (-0.063949) | 0.085941 / 0.419271 (-0.333331) | 0.042464 / 0.043533 (-0.001069) | 0.339309 / 0.255139 (0.084170) | 0.368105 / 0.283200 (0.084905) | 0.093382 / 0.141683 (-0.048301) | 1.467220 / 1.452155 (0.015065) | 1.563105 / 1.492716 (0.070389) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260631 / 0.018006 (0.242625) | 0.418155 / 0.000490 (0.417665) | 0.009539 / 0.000200 (0.009339) | 0.000103 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025494 / 0.037411 (-0.011917) | 0.106034 / 0.014526 (0.091508) | 0.109878 / 0.176557 (-0.066678) | 0.160754 / 0.737135 (-0.576382) | 0.113226 / 0.296338 (-0.183112) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442989 / 0.215209 (0.227780) | 4.447040 / 2.077655 (2.369385) | 2.082529 / 1.504120 (0.578409) | 1.876952 / 1.541195 (0.335757) | 1.968341 / 1.468490 (0.499851) | 0.704317 / 4.584777 (-3.880460) | 3.466190 / 3.745712 (-0.279523) | 1.924954 / 5.269862 (-3.344908) | 1.199763 / 4.565676 (-3.365913) | 0.084320 / 0.424275 (-0.339955) | 0.012956 / 0.007607 (0.005349) | 0.538905 / 0.226044 (0.312861) | 5.426593 / 2.268929 (3.157665) | 2.509287 / 55.444624 (-52.935338) | 2.174829 / 6.876477 (-4.701648) | 2.239214 / 2.142072 (0.097141) | 0.810031 / 4.805227 (-3.995196) | 0.153534 / 6.500664 (-6.347130) | 0.069578 / 0.075469 (-0.005891) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.294068 / 1.841788 (-0.547720) | 14.601899 / 8.074308 (6.527591) | 14.469282 / 10.191392 (4.277890) | 0.130024 / 0.680424 (-0.550400) | 0.016895 / 0.534201 (-0.517306) | 0.382583 / 0.579283 (-0.196700) | 0.388938 / 0.434364 (-0.045426) | 0.448416 / 0.540337 (-0.091922) | 0.533261 / 1.386936 (-0.853675) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7b2af47647152d39a3acade256da898cb396e4d9 \"CML watermark\")\n"
] | 2023-03-15T19:32:40 | 2023-03-16T17:23:06 | 2023-03-16T17:15:40 | CONTRIBUTOR | null | For consistency with `pa.Table.from_pydict`, which supports both Python lists and PyArrow arrays as column values.
"Fixes" https://discuss.huggingface.co/t/pyarrow-lib-floatarray-did-not-recognize-python-value-type-when-inferring-an-arrow-data-type/33417 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5643/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5643/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5643",
"html_url": "https://github.com/huggingface/datasets/pull/5643",
"diff_url": "https://github.com/huggingface/datasets/pull/5643.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5643.patch",
"merged_at": "2023-03-16T17:15:39"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5642 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5642/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5642/comments | https://api.github.com/repos/huggingface/datasets/issues/5642/events | https://github.com/huggingface/datasets/pull/5642 | 1,626,043,177 | PR_kwDODunzps5MIjw9 | 5,642 | Bump hfh to 0.11.0 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006334 / 0.011353 (-0.005018) | 0.004447 / 0.011008 (-0.006561) | 0.099287 / 0.038508 (0.060779) | 0.027426 / 0.023109 (0.004317) | 0.322638 / 0.275898 (0.046740) | 0.370501 / 0.323480 (0.047021) | 0.004775 / 0.007986 (-0.003210) | 0.003289 / 0.004328 (-0.001040) | 0.076531 / 0.004250 (0.072280) | 0.037485 / 0.037052 (0.000432) | 0.335634 / 0.258489 (0.077145) | 0.384031 / 0.293841 (0.090190) | 0.031258 / 0.128546 (-0.097288) | 0.011619 / 0.075646 (-0.064027) | 0.326309 / 0.419271 (-0.092963) | 0.042513 / 0.043533 (-0.001020) | 0.340817 / 0.255139 (0.085678) | 0.369846 / 0.283200 (0.086646) | 0.084904 / 0.141683 (-0.056779) | 1.481739 / 1.452155 (0.029584) | 1.566593 / 1.492716 (0.073877) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.186424 / 0.018006 (0.168418) | 0.400879 / 0.000490 (0.400389) | 0.003520 / 0.000200 (0.003320) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023287 / 0.037411 (-0.014124) | 0.097767 / 0.014526 (0.083241) | 0.103271 / 0.176557 (-0.073286) | 0.165414 / 0.737135 (-0.571722) | 0.106437 / 0.296338 (-0.189901) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422711 / 0.215209 (0.207502) | 4.221382 / 2.077655 (2.143727) | 1.906807 / 1.504120 (0.402687) | 1.709595 / 1.541195 (0.168400) | 1.720452 / 1.468490 (0.251962) | 0.699477 / 4.584777 (-3.885300) | 3.415840 / 3.745712 (-0.329873) | 2.835669 / 5.269862 (-2.434192) | 1.501775 / 4.565676 (-3.063901) | 0.082896 / 0.424275 (-0.341379) | 0.012855 / 0.007607 (0.005248) | 0.514373 / 0.226044 (0.288329) | 5.190000 / 2.268929 (2.921071) | 2.302539 / 55.444624 (-53.142086) | 1.963410 / 6.876477 (-4.913067) | 2.020944 / 2.142072 (-0.121128) | 0.805919 / 4.805227 (-3.999308) | 0.150604 / 6.500664 (-6.350060) | 0.065977 / 0.075469 (-0.009492) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206487 / 1.841788 (-0.635300) | 13.631513 / 8.074308 (5.557205) | 13.800258 / 10.191392 (3.608866) | 0.146914 / 0.680424 (-0.533509) | 0.016454 / 0.534201 (-0.517747) | 0.377752 / 0.579283 (-0.201532) | 0.384312 / 0.434364 (-0.050052) | 0.434912 / 0.540337 (-0.105425) | 0.522507 / 1.386936 (-0.864429) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006328 / 0.011353 (-0.005025) | 0.004406 / 0.011008 (-0.006602) | 0.077951 / 0.038508 (0.039443) | 0.026716 / 0.023109 (0.003607) | 0.337303 / 0.275898 (0.061405) | 0.372036 / 0.323480 (0.048556) | 0.004800 / 0.007986 (-0.003185) | 0.003153 / 0.004328 (-0.001175) | 0.076823 / 0.004250 (0.072573) | 0.035873 / 0.037052 (-0.001179) | 0.340243 / 0.258489 (0.081754) | 0.380183 / 0.293841 (0.086342) | 0.032185 / 0.128546 (-0.096361) | 0.011545 / 0.075646 (-0.064101) | 0.086887 / 0.419271 (-0.332384) | 0.041560 / 0.043533 (-0.001973) | 0.338716 / 0.255139 (0.083577) | 0.363080 / 0.283200 (0.079881) | 0.088375 / 0.141683 (-0.053308) | 1.499004 / 1.452155 (0.046850) | 1.585904 / 1.492716 (0.093188) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211645 / 0.018006 (0.193639) | 0.403707 / 0.000490 (0.403218) | 0.000415 / 0.000200 (0.000215) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024972 / 0.037411 (-0.012440) | 0.097996 / 0.014526 (0.083470) | 0.105941 / 0.176557 (-0.070616) | 0.155521 / 0.737135 (-0.581615) | 0.108246 / 0.296338 (-0.188092) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442316 / 0.215209 (0.227107) | 4.417977 / 2.077655 (2.340322) | 2.078324 / 1.504120 (0.574205) | 1.863678 / 1.541195 (0.322483) | 1.917149 / 1.468490 (0.448659) | 0.697628 / 4.584777 (-3.887149) | 3.412810 / 3.745712 (-0.332902) | 1.866473 / 5.269862 (-3.403389) | 1.155923 / 4.565676 (-3.409754) | 0.082831 / 0.424275 (-0.341444) | 0.012367 / 0.007607 (0.004760) | 0.540018 / 0.226044 (0.313974) | 5.420472 / 2.268929 (3.151544) | 2.508540 / 55.444624 (-52.936084) | 2.166397 / 6.876477 (-4.710080) | 2.153486 / 2.142072 (0.011414) | 0.804860 / 4.805227 (-4.000367) | 0.151178 / 6.500664 (-6.349486) | 0.067870 / 0.075469 (-0.007599) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.310387 / 1.841788 (-0.531400) | 13.908916 / 8.074308 (5.834608) | 14.136895 / 10.191392 (3.945503) | 0.139389 / 0.680424 (-0.541035) | 0.016687 / 0.534201 (-0.517514) | 0.379624 / 0.579283 (-0.199659) | 0.382634 / 0.434364 (-0.051730) | 0.439632 / 0.540337 (-0.100706) | 0.524913 / 1.386936 (-0.862023) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f8f2143b4ed39b58ed415029e7838d767662da91 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006365 / 0.011353 (-0.004988) | 0.004457 / 0.011008 (-0.006551) | 0.097989 / 0.038508 (0.059481) | 0.027686 / 0.023109 (0.004577) | 0.357412 / 0.275898 (0.081514) | 0.368573 / 0.323480 (0.045093) | 0.004859 / 0.007986 (-0.003127) | 0.003262 / 0.004328 (-0.001066) | 0.076487 / 0.004250 (0.072237) | 0.035526 / 0.037052 (-0.001527) | 0.332862 / 0.258489 (0.074373) | 0.369334 / 0.293841 (0.075493) | 0.030750 / 0.128546 (-0.097796) | 0.011503 / 0.075646 (-0.064143) | 0.323289 / 0.419271 (-0.095982) | 0.042302 / 0.043533 (-0.001231) | 0.334009 / 0.255139 (0.078870) | 0.354150 / 0.283200 (0.070951) | 0.082895 / 0.141683 (-0.058788) | 1.499727 / 1.452155 (0.047572) | 1.574123 / 1.492716 (0.081407) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192583 / 0.018006 (0.174577) | 0.408136 / 0.000490 (0.407646) | 0.001272 / 0.000200 (0.001072) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022883 / 0.037411 (-0.014528) | 0.095710 / 0.014526 (0.081185) | 0.106545 / 0.176557 (-0.070011) | 0.165784 / 0.737135 (-0.571352) | 0.108594 / 0.296338 (-0.187744) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429483 / 0.215209 (0.214274) | 4.292338 / 2.077655 (2.214683) | 1.917759 / 1.504120 (0.413639) | 1.711489 / 1.541195 (0.170294) | 1.735668 / 1.468490 (0.267178) | 0.707602 / 4.584777 (-3.877175) | 3.369643 / 3.745712 (-0.376070) | 1.874517 / 5.269862 (-3.395344) | 1.248560 / 4.565676 (-3.317117) | 0.083247 / 0.424275 (-0.341028) | 0.012606 / 0.007607 (0.004999) | 0.519342 / 0.226044 (0.293297) | 5.225462 / 2.268929 (2.956533) | 2.433230 / 55.444624 (-53.011394) | 2.006005 / 6.876477 (-4.870471) | 2.093156 / 2.142072 (-0.048916) | 0.809372 / 4.805227 (-3.995855) | 0.151691 / 6.500664 (-6.348973) | 0.066680 / 0.075469 (-0.008789) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.226283 / 1.841788 (-0.615505) | 13.604338 / 8.074308 (5.530030) | 13.953245 / 10.191392 (3.761853) | 0.132904 / 0.680424 (-0.547520) | 0.016420 / 0.534201 (-0.517781) | 0.395316 / 0.579283 (-0.183967) | 0.385003 / 0.434364 (-0.049361) | 0.483303 / 0.540337 (-0.057034) | 0.578459 / 1.386936 (-0.808477) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006218 / 0.011353 (-0.005135) | 0.004451 / 0.011008 (-0.006557) | 0.076892 / 0.038508 (0.038384) | 0.027017 / 0.023109 (0.003908) | 0.356976 / 0.275898 (0.081078) | 0.396083 / 0.323480 (0.072603) | 0.005510 / 0.007986 (-0.002476) | 0.003265 / 0.004328 (-0.001063) | 0.075771 / 0.004250 (0.071521) | 0.037117 / 0.037052 (0.000064) | 0.362181 / 0.258489 (0.103692) | 0.401771 / 0.293841 (0.107931) | 0.032062 / 0.128546 (-0.096484) | 0.011453 / 0.075646 (-0.064194) | 0.085773 / 0.419271 (-0.333498) | 0.041679 / 0.043533 (-0.001854) | 0.355120 / 0.255139 (0.099981) | 0.390170 / 0.283200 (0.106970) | 0.088210 / 0.141683 (-0.053473) | 1.526434 / 1.452155 (0.074279) | 1.586019 / 1.492716 (0.093302) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.196836 / 0.018006 (0.178830) | 0.401161 / 0.000490 (0.400671) | 0.002880 / 0.000200 (0.002680) | 0.000080 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024445 / 0.037411 (-0.012966) | 0.100187 / 0.014526 (0.085661) | 0.106391 / 0.176557 (-0.070165) | 0.159764 / 0.737135 (-0.577372) | 0.109828 / 0.296338 (-0.186511) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.444228 / 0.215209 (0.229018) | 4.420769 / 2.077655 (2.343114) | 2.069437 / 1.504120 (0.565318) | 1.862587 / 1.541195 (0.321392) | 1.934627 / 1.468490 (0.466137) | 0.699681 / 4.584777 (-3.885095) | 3.352540 / 3.745712 (-0.393172) | 2.613172 / 5.269862 (-2.656689) | 1.445116 / 4.565676 (-3.120561) | 0.083086 / 0.424275 (-0.341189) | 0.012715 / 0.007607 (0.005108) | 0.537450 / 0.226044 (0.311405) | 5.403052 / 2.268929 (3.134123) | 2.506703 / 55.444624 (-52.937921) | 2.170198 / 6.876477 (-4.706279) | 2.201909 / 2.142072 (0.059837) | 0.799555 / 4.805227 (-4.005672) | 0.150825 / 6.500664 (-6.349839) | 0.067234 / 0.075469 (-0.008235) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.293097 / 1.841788 (-0.548691) | 13.817133 / 8.074308 (5.742825) | 14.247231 / 10.191392 (4.055839) | 0.128422 / 0.680424 (-0.552002) | 0.016541 / 0.534201 (-0.517660) | 0.382466 / 0.579283 (-0.196817) | 0.380560 / 0.434364 (-0.053804) | 0.439061 / 0.540337 (-0.101276) | 0.521865 / 1.386936 (-0.865071) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#69e60be438c334919f590512fd664436bd6b3667 \"CML watermark\")\n",
"I also took the liberty of removing `_hf_hub_fixes.py` completely :)\r\n\r\n> Do you think this is really necessary and convenient? I would naively say that 5% of the users is not a negligible number...\r\n\r\nI think it's ok. Most of them are using old versions of `datasets` anyway.\r\n\r\n",
"merging, but lmk if you have other concerns",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006810 / 0.011353 (-0.004543) | 0.004683 / 0.011008 (-0.006325) | 0.100889 / 0.038508 (0.062381) | 0.030135 / 0.023109 (0.007026) | 0.356407 / 0.275898 (0.080509) | 0.389175 / 0.323480 (0.065695) | 0.005358 / 0.007986 (-0.002627) | 0.004760 / 0.004328 (0.000432) | 0.075904 / 0.004250 (0.071654) | 0.040341 / 0.037052 (0.003288) | 0.357363 / 0.258489 (0.098874) | 0.394185 / 0.293841 (0.100344) | 0.031322 / 0.128546 (-0.097224) | 0.011636 / 0.075646 (-0.064010) | 0.327327 / 0.419271 (-0.091944) | 0.042494 / 0.043533 (-0.001039) | 0.338079 / 0.255139 (0.082940) | 0.363388 / 0.283200 (0.080189) | 0.087102 / 0.141683 (-0.054581) | 1.505686 / 1.452155 (0.053531) | 1.562112 / 1.492716 (0.069396) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203630 / 0.018006 (0.185624) | 0.425986 / 0.000490 (0.425496) | 0.003786 / 0.000200 (0.003586) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024138 / 0.037411 (-0.013274) | 0.101752 / 0.014526 (0.087226) | 0.105436 / 0.176557 (-0.071121) | 0.165385 / 0.737135 (-0.571750) | 0.114510 / 0.296338 (-0.181828) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.447561 / 0.215209 (0.232352) | 4.449212 / 2.077655 (2.371557) | 2.169472 / 1.504120 (0.665352) | 1.989025 / 1.541195 (0.447831) | 2.036267 / 1.468490 (0.567776) | 0.698647 / 4.584777 (-3.886130) | 3.483281 / 3.745712 (-0.262431) | 1.949306 / 5.269862 (-3.320555) | 1.290313 / 4.565676 (-3.275363) | 0.083079 / 0.424275 (-0.341196) | 0.012759 / 0.007607 (0.005152) | 0.540944 / 0.226044 (0.314899) | 5.473391 / 2.268929 (3.204463) | 2.632037 / 55.444624 (-52.812587) | 2.327396 / 6.876477 (-4.549081) | 2.428880 / 2.142072 (0.286808) | 0.808918 / 4.805227 (-3.996309) | 0.153283 / 6.500664 (-6.347381) | 0.068325 / 0.075469 (-0.007145) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.212527 / 1.841788 (-0.629260) | 14.306444 / 8.074308 (6.232136) | 14.904980 / 10.191392 (4.713588) | 0.142796 / 0.680424 (-0.537628) | 0.016829 / 0.534201 (-0.517372) | 0.384806 / 0.579283 (-0.194477) | 0.390505 / 0.434364 (-0.043859) | 0.441734 / 0.540337 (-0.098603) | 0.526159 / 1.386936 (-0.860777) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006950 / 0.011353 (-0.004403) | 0.004647 / 0.011008 (-0.006362) | 0.078925 / 0.038508 (0.040417) | 0.028081 / 0.023109 (0.004971) | 0.343420 / 0.275898 (0.067522) | 0.380567 / 0.323480 (0.057087) | 0.005286 / 0.007986 (-0.002700) | 0.004816 / 0.004328 (0.000487) | 0.077332 / 0.004250 (0.073081) | 0.042131 / 0.037052 (0.005078) | 0.345371 / 0.258489 (0.086882) | 0.390232 / 0.293841 (0.096392) | 0.032395 / 0.128546 (-0.096152) | 0.011669 / 0.075646 (-0.063978) | 0.087649 / 0.419271 (-0.331622) | 0.042465 / 0.043533 (-0.001068) | 0.342863 / 0.255139 (0.087724) | 0.368947 / 0.283200 (0.085748) | 0.091725 / 0.141683 (-0.049958) | 1.477435 / 1.452155 (0.025280) | 1.563449 / 1.492716 (0.070733) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208016 / 0.018006 (0.190010) | 0.428387 / 0.000490 (0.427898) | 0.000443 / 0.000200 (0.000243) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026963 / 0.037411 (-0.010449) | 0.103854 / 0.014526 (0.089328) | 0.109068 / 0.176557 (-0.067488) | 0.160107 / 0.737135 (-0.577028) | 0.112843 / 0.296338 (-0.183496) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437161 / 0.215209 (0.221952) | 4.396178 / 2.077655 (2.318523) | 2.067597 / 1.504120 (0.563477) | 1.875247 / 1.541195 (0.334053) | 1.962451 / 1.468490 (0.493961) | 0.701427 / 4.584777 (-3.883350) | 3.459564 / 3.745712 (-0.286148) | 1.959482 / 5.269862 (-3.310380) | 1.191866 / 4.565676 (-3.373810) | 0.083243 / 0.424275 (-0.341032) | 0.012740 / 0.007607 (0.005133) | 0.535236 / 0.226044 (0.309191) | 5.351715 / 2.268929 (3.082786) | 2.490868 / 55.444624 (-52.953756) | 2.195680 / 6.876477 (-4.680797) | 2.233854 / 2.142072 (0.091781) | 0.809041 / 4.805227 (-3.996187) | 0.151498 / 6.500664 (-6.349166) | 0.068297 / 0.075469 (-0.007172) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.303596 / 1.841788 (-0.538192) | 14.712746 / 8.074308 (6.638438) | 14.778412 / 10.191392 (4.587020) | 0.147093 / 0.680424 (-0.533331) | 0.017105 / 0.534201 (-0.517096) | 0.381687 / 0.579283 (-0.197596) | 0.402435 / 0.434364 (-0.031929) | 0.453538 / 0.540337 (-0.086800) | 0.538866 / 1.386936 (-0.848070) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#10f637c3a598c8042865b31f779e315a3da5337e \"CML watermark\")\n"
] | 2023-03-15T18:26:07 | 2023-03-20T12:34:09 | 2023-03-20T12:26:58 | MEMBER | null | to fix errors like
```
requests.exceptions.HTTPError: 400 Client Error: Bad Request for url: https://hub-ci.huggingface.co/api/datasets/__DUMMY_TRANSFORMERS_USER__/...
```
(e.g. from this [failing CI](https://github.com/huggingface/datasets/actions/runs/4428956210/jobs/7769160997))
0.11.0 is the current minimum version in `transformers`
around 5% of users are currently using versions `<0.11.0` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5642/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5642/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5642",
"html_url": "https://github.com/huggingface/datasets/pull/5642",
"diff_url": "https://github.com/huggingface/datasets/pull/5642.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5642.patch",
"merged_at": "2023-03-20T12:26:58"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5641 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5641/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5641/comments | https://api.github.com/repos/huggingface/datasets/issues/5641/events | https://github.com/huggingface/datasets/issues/5641 | 1,625,942,730 | I_kwDODunzps5g6erK | 5,641 | Features cannot be named "self" | {
"login": "alialamiidrissi",
"id": 14365168,
"node_id": "MDQ6VXNlcjE0MzY1MTY4",
"avatar_url": "https://avatars.githubusercontent.com/u/14365168?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alialamiidrissi",
"html_url": "https://github.com/alialamiidrissi",
"followers_url": "https://api.github.com/users/alialamiidrissi/followers",
"following_url": "https://api.github.com/users/alialamiidrissi/following{/other_user}",
"gists_url": "https://api.github.com/users/alialamiidrissi/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alialamiidrissi/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alialamiidrissi/subscriptions",
"organizations_url": "https://api.github.com/users/alialamiidrissi/orgs",
"repos_url": "https://api.github.com/users/alialamiidrissi/repos",
"events_url": "https://api.github.com/users/alialamiidrissi/events{/privacy}",
"received_events_url": "https://api.github.com/users/alialamiidrissi/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2023-03-15T17:16:40 | 2023-03-16T17:14:51 | 2023-03-16T17:14:51 | NONE | null | ### Describe the bug
Hi,
I noticed that we cannot create a HuggingFace dataset from Pandas DataFrame with a column named `self`.
The error seems to be coming from arguments validation in the `Features.from_dict` function.
### Steps to reproduce the bug
```python
import datasets
dummy_pandas = pd.DataFrame([0,1,2,3], columns = ["self"])
datasets.arrow_dataset.Dataset.from_pandas(dummy_pandas)
```
### Expected behavior
No error thrown
### Environment info
- `datasets` version: 2.8.0
- Python version: 3.9.5
- PyArrow version: 6.0.1
- Pandas version: 1.4.1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5641/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5641/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5640 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5640/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5640/comments | https://api.github.com/repos/huggingface/datasets/issues/5640/events | https://github.com/huggingface/datasets/pull/5640 | 1,625,896,057 | PR_kwDODunzps5MID3I | 5,640 | Less zip false positives | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006998 / 0.011353 (-0.004355) | 0.005093 / 0.011008 (-0.005916) | 0.100490 / 0.038508 (0.061982) | 0.032736 / 0.023109 (0.009627) | 0.297738 / 0.275898 (0.021840) | 0.322255 / 0.323480 (-0.001225) | 0.005583 / 0.007986 (-0.002402) | 0.004007 / 0.004328 (-0.000321) | 0.075863 / 0.004250 (0.071613) | 0.044212 / 0.037052 (0.007159) | 0.300033 / 0.258489 (0.041544) | 0.341997 / 0.293841 (0.048156) | 0.036172 / 0.128546 (-0.092374) | 0.012176 / 0.075646 (-0.063471) | 0.356052 / 0.419271 (-0.063220) | 0.050438 / 0.043533 (0.006905) | 0.294677 / 0.255139 (0.039538) | 0.318050 / 0.283200 (0.034850) | 0.104733 / 0.141683 (-0.036950) | 1.435681 / 1.452155 (-0.016474) | 1.534793 / 1.492716 (0.042076) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242815 / 0.018006 (0.224809) | 0.565983 / 0.000490 (0.565494) | 0.006800 / 0.000200 (0.006600) | 0.000124 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026548 / 0.037411 (-0.010863) | 0.104816 / 0.014526 (0.090290) | 0.116222 / 0.176557 (-0.060335) | 0.172143 / 0.737135 (-0.564992) | 0.121631 / 0.296338 (-0.174707) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400126 / 0.215209 (0.184917) | 4.004538 / 2.077655 (1.926883) | 1.798822 / 1.504120 (0.294702) | 1.595191 / 1.541195 (0.053996) | 1.645777 / 1.468490 (0.177287) | 0.705643 / 4.584777 (-3.879134) | 3.750887 / 3.745712 (0.005175) | 2.136547 / 5.269862 (-3.133315) | 1.475881 / 4.565676 (-3.089795) | 0.086921 / 0.424275 (-0.337354) | 0.012379 / 0.007607 (0.004771) | 0.505824 / 0.226044 (0.279779) | 5.052364 / 2.268929 (2.783435) | 2.279983 / 55.444624 (-53.164641) | 1.932253 / 6.876477 (-4.944224) | 2.051359 / 2.142072 (-0.090714) | 0.851906 / 4.805227 (-3.953321) | 0.169566 / 6.500664 (-6.331098) | 0.064600 / 0.075469 (-0.010869) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.165859 / 1.841788 (-0.675929) | 15.049950 / 8.074308 (6.975642) | 14.095981 / 10.191392 (3.904589) | 0.151779 / 0.680424 (-0.528645) | 0.017537 / 0.534201 (-0.516664) | 0.420164 / 0.579283 (-0.159119) | 0.418932 / 0.434364 (-0.015432) | 0.488749 / 0.540337 (-0.051588) | 0.582359 / 1.386936 (-0.804577) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007426 / 0.011353 (-0.003927) | 0.005248 / 0.011008 (-0.005761) | 0.074118 / 0.038508 (0.035610) | 0.034223 / 0.023109 (0.011114) | 0.337780 / 0.275898 (0.061882) | 0.376300 / 0.323480 (0.052820) | 0.006142 / 0.007986 (-0.001843) | 0.004246 / 0.004328 (-0.000083) | 0.074177 / 0.004250 (0.069926) | 0.052698 / 0.037052 (0.015646) | 0.340229 / 0.258489 (0.081740) | 0.396172 / 0.293841 (0.102331) | 0.037293 / 0.128546 (-0.091253) | 0.012514 / 0.075646 (-0.063132) | 0.087144 / 0.419271 (-0.332128) | 0.051922 / 0.043533 (0.008390) | 0.333188 / 0.255139 (0.078049) | 0.355420 / 0.283200 (0.072220) | 0.110273 / 0.141683 (-0.031410) | 1.447826 / 1.452155 (-0.004329) | 1.561135 / 1.492716 (0.068419) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269203 / 0.018006 (0.251197) | 0.551997 / 0.000490 (0.551508) | 0.001558 / 0.000200 (0.001359) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029511 / 0.037411 (-0.007900) | 0.108614 / 0.014526 (0.094089) | 0.123438 / 0.176557 (-0.053118) | 0.171596 / 0.737135 (-0.565539) | 0.126828 / 0.296338 (-0.169511) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420520 / 0.215209 (0.205310) | 4.175672 / 2.077655 (2.098017) | 1.982220 / 1.504120 (0.478101) | 1.788575 / 1.541195 (0.247381) | 1.860840 / 1.468490 (0.392349) | 0.706730 / 4.584777 (-3.878047) | 3.858718 / 3.745712 (0.113005) | 3.069389 / 5.269862 (-2.200472) | 1.827603 / 4.565676 (-2.738073) | 0.087893 / 0.424275 (-0.336382) | 0.012613 / 0.007607 (0.005006) | 0.524177 / 0.226044 (0.298132) | 5.177077 / 2.268929 (2.908148) | 2.494397 / 55.444624 (-52.950227) | 2.189484 / 6.876477 (-4.686992) | 2.217626 / 2.142072 (0.075554) | 0.846326 / 4.805227 (-3.958901) | 0.176558 / 6.500664 (-6.324106) | 0.065018 / 0.075469 (-0.010451) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268618 / 1.841788 (-0.573170) | 15.132711 / 8.074308 (7.058403) | 14.585530 / 10.191392 (4.394138) | 0.163454 / 0.680424 (-0.516970) | 0.017442 / 0.534201 (-0.516759) | 0.421746 / 0.579283 (-0.157537) | 0.425412 / 0.434364 (-0.008952) | 0.499178 / 0.540337 (-0.041159) | 0.595458 / 1.386936 (-0.791478) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ab77e58cd32413f4ef4828134a2470ebd53bb542 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007980 / 0.011353 (-0.003373) | 0.005414 / 0.011008 (-0.005594) | 0.099226 / 0.038508 (0.060718) | 0.035442 / 0.023109 (0.012332) | 0.304851 / 0.275898 (0.028952) | 0.337144 / 0.323480 (0.013664) | 0.006162 / 0.007986 (-0.001823) | 0.004151 / 0.004328 (-0.000177) | 0.074708 / 0.004250 (0.070458) | 0.049690 / 0.037052 (0.012638) | 0.307658 / 0.258489 (0.049168) | 0.358472 / 0.293841 (0.064631) | 0.037181 / 0.128546 (-0.091365) | 0.012259 / 0.075646 (-0.063387) | 0.335426 / 0.419271 (-0.083846) | 0.050790 / 0.043533 (0.007257) | 0.301715 / 0.255139 (0.046576) | 0.320834 / 0.283200 (0.037634) | 0.102357 / 0.141683 (-0.039326) | 1.454750 / 1.452155 (0.002596) | 1.571994 / 1.492716 (0.079278) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218708 / 0.018006 (0.200702) | 0.444391 / 0.000490 (0.443901) | 0.005717 / 0.000200 (0.005517) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028017 / 0.037411 (-0.009395) | 0.112753 / 0.014526 (0.098227) | 0.121003 / 0.176557 (-0.055554) | 0.181085 / 0.737135 (-0.556050) | 0.127211 / 0.296338 (-0.169127) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400803 / 0.215209 (0.185594) | 4.007315 / 2.077655 (1.929660) | 1.826911 / 1.504120 (0.322791) | 1.637799 / 1.541195 (0.096605) | 1.699754 / 1.468490 (0.231264) | 0.709413 / 4.584777 (-3.875364) | 4.008904 / 3.745712 (0.263192) | 3.916540 / 5.269862 (-1.353322) | 1.902102 / 4.565676 (-2.663575) | 0.089048 / 0.424275 (-0.335227) | 0.012763 / 0.007607 (0.005155) | 0.498957 / 0.226044 (0.272913) | 4.979865 / 2.268929 (2.710937) | 2.301987 / 55.444624 (-53.142637) | 1.929404 / 6.876477 (-4.947073) | 2.107839 / 2.142072 (-0.034233) | 0.857253 / 4.805227 (-3.947974) | 0.171935 / 6.500664 (-6.328729) | 0.066753 / 0.075469 (-0.008716) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.186811 / 1.841788 (-0.654977) | 15.866319 / 8.074308 (7.792011) | 14.738555 / 10.191392 (4.547163) | 0.142879 / 0.680424 (-0.537544) | 0.017679 / 0.534201 (-0.516522) | 0.422840 / 0.579283 (-0.156443) | 0.450307 / 0.434364 (0.015943) | 0.491802 / 0.540337 (-0.048536) | 0.588837 / 1.386936 (-0.798099) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007659 / 0.011353 (-0.003694) | 0.005331 / 0.011008 (-0.005678) | 0.075360 / 0.038508 (0.036852) | 0.034011 / 0.023109 (0.010902) | 0.354488 / 0.275898 (0.078590) | 0.401781 / 0.323480 (0.078301) | 0.005806 / 0.007986 (-0.002179) | 0.004029 / 0.004328 (-0.000300) | 0.073822 / 0.004250 (0.069572) | 0.049067 / 0.037052 (0.012015) | 0.364483 / 0.258489 (0.105994) | 0.405637 / 0.293841 (0.111796) | 0.037166 / 0.128546 (-0.091380) | 0.012397 / 0.075646 (-0.063249) | 0.087346 / 0.419271 (-0.331926) | 0.050888 / 0.043533 (0.007355) | 0.334796 / 0.255139 (0.079657) | 0.387681 / 0.283200 (0.104481) | 0.105056 / 0.141683 (-0.036627) | 1.471630 / 1.452155 (0.019475) | 1.554764 / 1.492716 (0.062047) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231825 / 0.018006 (0.213819) | 0.449746 / 0.000490 (0.449256) | 0.000888 / 0.000200 (0.000688) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030363 / 0.037411 (-0.007049) | 0.115234 / 0.014526 (0.100708) | 0.123005 / 0.176557 (-0.053551) | 0.172772 / 0.737135 (-0.564363) | 0.127818 / 0.296338 (-0.168520) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425761 / 0.215209 (0.210552) | 4.237950 / 2.077655 (2.160295) | 1.992045 / 1.504120 (0.487925) | 1.801622 / 1.541195 (0.260427) | 1.918477 / 1.468490 (0.449987) | 0.722730 / 4.584777 (-3.862047) | 4.015968 / 3.745712 (0.270256) | 3.720412 / 5.269862 (-1.549450) | 1.763111 / 4.565676 (-2.802566) | 0.089041 / 0.424275 (-0.335234) | 0.012608 / 0.007607 (0.005001) | 0.522645 / 0.226044 (0.296601) | 5.227108 / 2.268929 (2.958180) | 2.444714 / 55.444624 (-52.999910) | 2.109745 / 6.876477 (-4.766732) | 2.194042 / 2.142072 (0.051969) | 0.871781 / 4.805227 (-3.933447) | 0.173149 / 6.500664 (-6.327515) | 0.066192 / 0.075469 (-0.009277) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.312051 / 1.841788 (-0.529737) | 16.024315 / 8.074308 (7.950007) | 15.123823 / 10.191392 (4.932431) | 0.163997 / 0.680424 (-0.516427) | 0.017595 / 0.534201 (-0.516606) | 0.426379 / 0.579283 (-0.152904) | 0.467709 / 0.434364 (0.033345) | 0.498308 / 0.540337 (-0.042030) | 0.591426 / 1.386936 (-0.795510) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#13488cc110b67090289794f48d5c84a4fd0c063a \"CML watermark\")\n",
"CI is failing due to unrelated issues, hopefully https://github.com/huggingface/datasets/pull/5642 fixes it",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006478 / 0.011353 (-0.004875) | 0.004347 / 0.011008 (-0.006661) | 0.097103 / 0.038508 (0.058595) | 0.027650 / 0.023109 (0.004541) | 0.372355 / 0.275898 (0.096457) | 0.408794 / 0.323480 (0.085314) | 0.005034 / 0.007986 (-0.002952) | 0.003252 / 0.004328 (-0.001076) | 0.074068 / 0.004250 (0.069818) | 0.035542 / 0.037052 (-0.001510) | 0.367392 / 0.258489 (0.108903) | 0.409644 / 0.293841 (0.115803) | 0.031745 / 0.128546 (-0.096801) | 0.011501 / 0.075646 (-0.064145) | 0.323355 / 0.419271 (-0.095917) | 0.043065 / 0.043533 (-0.000467) | 0.377313 / 0.255139 (0.122174) | 0.395326 / 0.283200 (0.112127) | 0.087101 / 0.141683 (-0.054582) | 1.461228 / 1.452155 (0.009073) | 1.529413 / 1.492716 (0.036696) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.199245 / 0.018006 (0.181239) | 0.409978 / 0.000490 (0.409488) | 0.002655 / 0.000200 (0.002455) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023903 / 0.037411 (-0.013508) | 0.097855 / 0.014526 (0.083330) | 0.106405 / 0.176557 (-0.070152) | 0.166889 / 0.737135 (-0.570247) | 0.110256 / 0.296338 (-0.186082) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440351 / 0.215209 (0.225142) | 4.382848 / 2.077655 (2.305194) | 2.049602 / 1.504120 (0.545482) | 1.824638 / 1.541195 (0.283443) | 1.850519 / 1.468490 (0.382029) | 0.702652 / 4.584777 (-3.882125) | 3.394571 / 3.745712 (-0.351141) | 1.940608 / 5.269862 (-3.329254) | 1.263961 / 4.565676 (-3.301716) | 0.083985 / 0.424275 (-0.340290) | 0.013046 / 0.007607 (0.005439) | 0.538272 / 0.226044 (0.312228) | 5.407563 / 2.268929 (3.138634) | 2.519207 / 55.444624 (-52.925418) | 2.153379 / 6.876477 (-4.723098) | 2.394512 / 2.142072 (0.252439) | 0.812840 / 4.805227 (-3.992387) | 0.152868 / 6.500664 (-6.347796) | 0.067823 / 0.075469 (-0.007646) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.220031 / 1.841788 (-0.621757) | 13.781237 / 8.074308 (5.706929) | 14.203975 / 10.191392 (4.012583) | 0.141077 / 0.680424 (-0.539347) | 0.016518 / 0.534201 (-0.517682) | 0.379079 / 0.579283 (-0.200204) | 0.378916 / 0.434364 (-0.055448) | 0.434589 / 0.540337 (-0.105749) | 0.521129 / 1.386936 (-0.865807) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006997 / 0.011353 (-0.004356) | 0.004599 / 0.011008 (-0.006410) | 0.078700 / 0.038508 (0.040192) | 0.027902 / 0.023109 (0.004793) | 0.344406 / 0.275898 (0.068508) | 0.392918 / 0.323480 (0.069438) | 0.005175 / 0.007986 (-0.002811) | 0.004755 / 0.004328 (0.000427) | 0.077707 / 0.004250 (0.073457) | 0.039409 / 0.037052 (0.002357) | 0.343250 / 0.258489 (0.084761) | 0.405544 / 0.293841 (0.111703) | 0.032286 / 0.128546 (-0.096260) | 0.011674 / 0.075646 (-0.063972) | 0.087633 / 0.419271 (-0.331639) | 0.043346 / 0.043533 (-0.000186) | 0.355076 / 0.255139 (0.099937) | 0.382155 / 0.283200 (0.098955) | 0.090914 / 0.141683 (-0.050769) | 1.518369 / 1.452155 (0.066215) | 1.583530 / 1.492716 (0.090813) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.160369 / 0.018006 (0.142362) | 0.406844 / 0.000490 (0.406354) | 0.002651 / 0.000200 (0.002451) | 0.000080 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025295 / 0.037411 (-0.012116) | 0.101490 / 0.014526 (0.086964) | 0.108825 / 0.176557 (-0.067732) | 0.161673 / 0.737135 (-0.575462) | 0.113610 / 0.296338 (-0.182729) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443514 / 0.215209 (0.228305) | 4.436722 / 2.077655 (2.359067) | 2.144008 / 1.504120 (0.639888) | 2.005324 / 1.541195 (0.464129) | 2.123356 / 1.468490 (0.654866) | 0.697217 / 4.584777 (-3.887560) | 3.401105 / 3.745712 (-0.344607) | 1.874621 / 5.269862 (-3.395240) | 1.165069 / 4.565676 (-3.400608) | 0.082799 / 0.424275 (-0.341476) | 0.012806 / 0.007607 (0.005199) | 0.542688 / 0.226044 (0.316644) | 5.420963 / 2.268929 (3.152034) | 2.579034 / 55.444624 (-52.865590) | 2.240201 / 6.876477 (-4.636276) | 2.261309 / 2.142072 (0.119237) | 0.800246 / 4.805227 (-4.004981) | 0.150380 / 6.500664 (-6.350285) | 0.066880 / 0.075469 (-0.008589) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.281721 / 1.841788 (-0.560067) | 13.906361 / 8.074308 (5.832053) | 14.135336 / 10.191392 (3.943944) | 0.128865 / 0.680424 (-0.551559) | 0.016452 / 0.534201 (-0.517749) | 0.373563 / 0.579283 (-0.205720) | 0.385321 / 0.434364 (-0.049043) | 0.437198 / 0.540337 (-0.103139) | 0.530720 / 1.386936 (-0.856216) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e2f8e17f3c8f8d0cb77a4c566a78e31fab47108c \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008099 / 0.011353 (-0.003254) | 0.005093 / 0.011008 (-0.005916) | 0.106258 / 0.038508 (0.067750) | 0.037051 / 0.023109 (0.013942) | 0.347960 / 0.275898 (0.072062) | 0.370849 / 0.323480 (0.047369) | 0.006122 / 0.007986 (-0.001863) | 0.004094 / 0.004328 (-0.000235) | 0.079549 / 0.004250 (0.075299) | 0.046563 / 0.037052 (0.009510) | 0.332735 / 0.258489 (0.074246) | 0.417061 / 0.293841 (0.123220) | 0.038105 / 0.128546 (-0.090441) | 0.011886 / 0.075646 (-0.063760) | 0.342103 / 0.419271 (-0.077169) | 0.053233 / 0.043533 (0.009700) | 0.344754 / 0.255139 (0.089615) | 0.355354 / 0.283200 (0.072155) | 0.101059 / 0.141683 (-0.040624) | 1.518561 / 1.452155 (0.066406) | 1.558652 / 1.492716 (0.065935) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225919 / 0.018006 (0.207913) | 0.518539 / 0.000490 (0.518049) | 0.006230 / 0.000200 (0.006030) | 0.000124 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026782 / 0.037411 (-0.010629) | 0.108457 / 0.014526 (0.093931) | 0.125203 / 0.176557 (-0.051353) | 0.175726 / 0.737135 (-0.561409) | 0.127051 / 0.296338 (-0.169287) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416427 / 0.215209 (0.201217) | 4.168851 / 2.077655 (2.091196) | 1.962238 / 1.504120 (0.458118) | 1.825224 / 1.541195 (0.284029) | 1.831200 / 1.468490 (0.362710) | 0.765526 / 4.584777 (-3.819250) | 4.303957 / 3.745712 (0.558245) | 2.193467 / 5.269862 (-3.076395) | 1.654605 / 4.565676 (-2.911071) | 0.096709 / 0.424275 (-0.327566) | 0.013792 / 0.007607 (0.006185) | 0.537862 / 0.226044 (0.311818) | 5.152230 / 2.268929 (2.883302) | 2.520938 / 55.444624 (-52.923686) | 2.108422 / 6.876477 (-4.768054) | 2.214220 / 2.142072 (0.072147) | 0.834320 / 4.805227 (-3.970907) | 0.170635 / 6.500664 (-6.330029) | 0.063131 / 0.075469 (-0.012338) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.215767 / 1.841788 (-0.626020) | 15.254781 / 8.074308 (7.180473) | 14.360764 / 10.191392 (4.169372) | 0.172511 / 0.680424 (-0.507913) | 0.020161 / 0.534201 (-0.514040) | 0.426936 / 0.579283 (-0.152347) | 0.438771 / 0.434364 (0.004407) | 0.486973 / 0.540337 (-0.053364) | 0.584238 / 1.386936 (-0.802698) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006777 / 0.011353 (-0.004576) | 0.005304 / 0.011008 (-0.005704) | 0.073717 / 0.038508 (0.035209) | 0.033604 / 0.023109 (0.010494) | 0.340448 / 0.275898 (0.064550) | 0.351861 / 0.323480 (0.028381) | 0.005786 / 0.007986 (-0.002199) | 0.005013 / 0.004328 (0.000685) | 0.071263 / 0.004250 (0.067012) | 0.048189 / 0.037052 (0.011137) | 0.339457 / 0.258489 (0.080968) | 0.384383 / 0.293841 (0.090542) | 0.035563 / 0.128546 (-0.092983) | 0.011509 / 0.075646 (-0.064137) | 0.083722 / 0.419271 (-0.335550) | 0.048886 / 0.043533 (0.005353) | 0.350184 / 0.255139 (0.095045) | 0.361037 / 0.283200 (0.077837) | 0.105191 / 0.141683 (-0.036492) | 1.503247 / 1.452155 (0.051093) | 1.582298 / 1.492716 (0.089581) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221687 / 0.018006 (0.203681) | 0.466489 / 0.000490 (0.465999) | 0.000484 / 0.000200 (0.000284) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027978 / 0.037411 (-0.009434) | 0.119572 / 0.014526 (0.105047) | 0.133530 / 0.176557 (-0.043026) | 0.177892 / 0.737135 (-0.559243) | 0.127045 / 0.296338 (-0.169294) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430198 / 0.215209 (0.214989) | 4.435512 / 2.077655 (2.357858) | 2.007183 / 1.504120 (0.503063) | 1.799230 / 1.541195 (0.258036) | 1.884750 / 1.468490 (0.416260) | 0.745232 / 4.584777 (-3.839545) | 4.088069 / 3.745712 (0.342357) | 4.114669 / 5.269862 (-1.155193) | 2.374086 / 4.565676 (-2.191590) | 0.089154 / 0.424275 (-0.335121) | 0.012938 / 0.007607 (0.005331) | 0.505954 / 0.226044 (0.279909) | 5.194226 / 2.268929 (2.925298) | 2.487230 / 55.444624 (-52.957394) | 2.163353 / 6.876477 (-4.713124) | 2.177879 / 2.142072 (0.035807) | 0.828728 / 4.805227 (-3.976499) | 0.171157 / 6.500664 (-6.329507) | 0.062883 / 0.075469 (-0.012586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.275906 / 1.841788 (-0.565882) | 15.235484 / 8.074308 (7.161176) | 14.467396 / 10.191392 (4.276004) | 0.198994 / 0.680424 (-0.481430) | 0.020203 / 0.534201 (-0.513998) | 0.447904 / 0.579283 (-0.131380) | 0.454210 / 0.434364 (0.019846) | 0.528062 / 0.540337 (-0.012275) | 0.619311 / 1.386936 (-0.767625) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#11cd0f73acbce1d16174f2555e56fda511d5a08b \"CML watermark\")\n"
] | 2023-03-15T16:48:59 | 2023-03-16T13:47:37 | 2023-03-16T13:40:12 | MEMBER | null | `zipfile.is_zipfile` return false positives for some Parquet files. It causes errors when loading certain parquet datasets, where some files are considered ZIP files by `zipfile.is_zipfile`
This is a known issue: https://github.com/python/cpython/issues/72680
At first I wanted to rely only on magic numbers, but then I found that someone contributed a [fix to is_zipfile](https://github.com/python/cpython/pull/5053) - do you think we should use it @albertvillanova or not ?
IMO it's ok to rely on magic numbers only for now, since in streaming mode we've had no issue checking only the magic number so far.
Close https://github.com/huggingface/datasets/issues/5639 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5640/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5640/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5640",
"html_url": "https://github.com/huggingface/datasets/pull/5640",
"diff_url": "https://github.com/huggingface/datasets/pull/5640.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5640.patch",
"merged_at": "2023-03-16T13:40:12"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5639 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5639/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5639/comments | https://api.github.com/repos/huggingface/datasets/issues/5639/events | https://github.com/huggingface/datasets/issues/5639 | 1,625,737,098 | I_kwDODunzps5g5seK | 5,639 | Parquet file wrongly recognized as zip prevents loading a dataset | {
"login": "clefourrier",
"id": 22726840,
"node_id": "MDQ6VXNlcjIyNzI2ODQw",
"avatar_url": "https://avatars.githubusercontent.com/u/22726840?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/clefourrier",
"html_url": "https://github.com/clefourrier",
"followers_url": "https://api.github.com/users/clefourrier/followers",
"following_url": "https://api.github.com/users/clefourrier/following{/other_user}",
"gists_url": "https://api.github.com/users/clefourrier/gists{/gist_id}",
"starred_url": "https://api.github.com/users/clefourrier/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/clefourrier/subscriptions",
"organizations_url": "https://api.github.com/users/clefourrier/orgs",
"repos_url": "https://api.github.com/users/clefourrier/repos",
"events_url": "https://api.github.com/users/clefourrier/events{/privacy}",
"received_events_url": "https://api.github.com/users/clefourrier/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2023-03-15T15:20:45 | 2023-03-16T13:40:14 | 2023-03-16T13:40:14 | CONTRIBUTOR | null | ### Describe the bug
When trying to `load_dataset_builder` for `HuggingFaceGECLM/StackExchange_Mar2023`, extraction fails, because parquet file [devops-00000-of-00001-22fe902fd8702892.parquet](https://huggingface.co/datasets/HuggingFaceGECLM/StackExchange_Mar2023/resolve/1f8c9a2ab6f7d0f9ae904b8b922e4384592ae1a5/data/devops-00000-of-00001-22fe902fd8702892.parquet) is wrongly identified by python as being a zip not a parquet.
(Full thread on [Slack](https://huggingface.slack.com/archives/C02V51Q3800/p1678890880803599))
### Steps to reproduce the bug
```python
from datasets import load_dataset_builder
ds = load_dataset_builder("HuggingFaceGECLM/StackExchange_Mar2023")
```
### Expected behavior
Loading the file normally.
### Environment info
- `datasets` version: 2.3.2
- Platform: Linux-5.14.0-1058-oem-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyArrow version: 8.0.0
- Pandas version: 1.4.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5639/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5639/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5638 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5638/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5638/comments | https://api.github.com/repos/huggingface/datasets/issues/5638/events | https://github.com/huggingface/datasets/issues/5638 | 1,625,564,471 | I_kwDODunzps5g5CU3 | 5,638 | xPath to implement all operations for Path | {
"login": "thomasw21",
"id": 24695242,
"node_id": "MDQ6VXNlcjI0Njk1MjQy",
"avatar_url": "https://avatars.githubusercontent.com/u/24695242?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/thomasw21",
"html_url": "https://github.com/thomasw21",
"followers_url": "https://api.github.com/users/thomasw21/followers",
"following_url": "https://api.github.com/users/thomasw21/following{/other_user}",
"gists_url": "https://api.github.com/users/thomasw21/gists{/gist_id}",
"starred_url": "https://api.github.com/users/thomasw21/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/thomasw21/subscriptions",
"organizations_url": "https://api.github.com/users/thomasw21/orgs",
"repos_url": "https://api.github.com/users/thomasw21/repos",
"events_url": "https://api.github.com/users/thomasw21/events{/privacy}",
"received_events_url": "https://api.github.com/users/thomasw21/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | null | [] | null | [
" I think https://github.com/fsspec/universal_pathlib is the project you are looking for.\r\n\r\n`xPath` has the methods often used in dataset scripts, and `mkdir` is not one of them (`dl_manager`'s role is to \"interact\" with the file system, so using `mkdir` is discouraged).",
"Right is there a difference between UPath and xPath? Typically is xPath less well implemented compared to Upath, ie missing some implementations of some methods? Or are there methods in xPath that are not implemented with UPath?",
"`xPath` is an internal component (it doesn't have a leading underscore in the name, but it should) not meant to be used outside of `datasets`, and it's only tested on HTTP URLs, not S3.\r\n\r\n",
"Okay I understand that xPath won't support my usecase. What I was perhaps getting to is why not use UPath in `datasets` instead of `xPath` if UPath seems to have strictly more robust implementations.",
"It seems like `universal_pathlib` does not support `fsspec` URL chaining (`::` is the chaining symbol) and \"compression\" filesystems (e.g., `zip`), but this is what we need to access and stream files from within an archive (e.g., we want to stream URLs such as this one: `zip://data.parquet::https://www.dummyurl.com/archive.zip`)"
] | 2023-03-15T13:47:11 | 2023-03-17T13:21:12 | 2023-03-17T13:21:12 | CONTRIBUTOR | null | ### Feature request
Current xPath implementation is a great extension of Path in order to work with remote objects. However some methods such as `mkdir` are not implemented correctly. It should instead rely on `fsspec` methods, instead of defaulting do `Path` methods which only work locally.
### Motivation
I'm using xPath to interact with remote objects.
### Your contribution
I could try to make a PR. I'm a bit unfamiliar with chaining right now. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5638/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5638/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5637 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5637/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5637/comments | https://api.github.com/repos/huggingface/datasets/issues/5637/events | https://github.com/huggingface/datasets/issues/5637 | 1,625,295,691 | I_kwDODunzps5g4AtL | 5,637 | IterableDataset with_format does not support 'device' keyword for jax | {
"login": "Lime-Cakes",
"id": 91322985,
"node_id": "MDQ6VXNlcjkxMzIyOTg1",
"avatar_url": "https://avatars.githubusercontent.com/u/91322985?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Lime-Cakes",
"html_url": "https://github.com/Lime-Cakes",
"followers_url": "https://api.github.com/users/Lime-Cakes/followers",
"following_url": "https://api.github.com/users/Lime-Cakes/following{/other_user}",
"gists_url": "https://api.github.com/users/Lime-Cakes/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Lime-Cakes/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Lime-Cakes/subscriptions",
"organizations_url": "https://api.github.com/users/Lime-Cakes/orgs",
"repos_url": "https://api.github.com/users/Lime-Cakes/repos",
"events_url": "https://api.github.com/users/Lime-Cakes/events{/privacy}",
"received_events_url": "https://api.github.com/users/Lime-Cakes/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi! Yes, only `torch` is currently supported. Unlike `Dataset`, `IterableDataset` is not PyArrow-backed, so we cannot simply call `to_numpy` on the underlying subtables to format them numerically. Instead, we must manually convert examples to (numeric) arrays while preserving consistency with `Dataset`, which is not trivial, so this is still a to-do.",
"Any plans to support it in the future? Or would streaming dataset be left without support for jax and tensorflow?"
] | 2023-03-15T11:04:12 | 2023-03-16T18:30:59 | null | NONE | null | ### Describe the bug
As seen here: https://huggingface.co/docs/datasets/use_with_jax dataset.with_format() supports the keyword 'device', to put data on a specific device when loaded as jax. However, when called on an IterableDataset, I got the error `TypeError: with_format() got an unexpected keyword argument 'device'`
Looking over the code, it seems IterableDataset support only pytorch and no support for jax device keyword?
https://github.com/huggingface/datasets/blob/fc5c84f36684343bff3e424cb0fd1ac5ecdd66da/src/datasets/iterable_dataset.py#L1029
### Steps to reproduce the bug
1. Load an IterableDataset (tested in streaming mode)
2. Call with_format('jax',device=device)
### Expected behavior
I expect to call `with_format('jax', device=device)` as per [documentation](https://huggingface.co/docs/datasets/use_with_jax) without error
### Environment info
Tested with installing newest (dev) and also pip release (2.10.1).
- `datasets` version: 2.10.2.dev0
- Platform: Linux-5.15.89+-x86_64-with-debian-bullseye-sid
- Python version: 3.7.12
- Huggingface_hub version: 0.12.1
- PyArrow version: 11.0.0
- Pandas version: 1.3.5
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5637/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5637/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5636 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5636/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5636/comments | https://api.github.com/repos/huggingface/datasets/issues/5636/events | https://github.com/huggingface/datasets/pull/5636 | 1,623,721,577 | PR_kwDODunzps5MAunR | 5,636 | Fix CI: ignore C901 ("some_func" is to complex) in `ruff` | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006529 / 0.011353 (-0.004824) | 0.004527 / 0.011008 (-0.006481) | 0.098051 / 0.038508 (0.059543) | 0.028058 / 0.023109 (0.004949) | 0.368543 / 0.275898 (0.092645) | 0.397126 / 0.323480 (0.073646) | 0.005072 / 0.007986 (-0.002913) | 0.003377 / 0.004328 (-0.000952) | 0.076867 / 0.004250 (0.072617) | 0.040121 / 0.037052 (0.003069) | 0.373422 / 0.258489 (0.114933) | 0.403969 / 0.293841 (0.110128) | 0.031485 / 0.128546 (-0.097061) | 0.011673 / 0.075646 (-0.063973) | 0.321837 / 0.419271 (-0.097434) | 0.042828 / 0.043533 (-0.000704) | 0.370391 / 0.255139 (0.115252) | 0.391737 / 0.283200 (0.108538) | 0.084764 / 0.141683 (-0.056919) | 1.463114 / 1.452155 (0.010959) | 1.527042 / 1.492716 (0.034325) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200964 / 0.018006 (0.182958) | 0.403967 / 0.000490 (0.403477) | 0.002439 / 0.000200 (0.002239) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023531 / 0.037411 (-0.013880) | 0.097424 / 0.014526 (0.082899) | 0.104854 / 0.176557 (-0.071703) | 0.165682 / 0.737135 (-0.571453) | 0.109416 / 0.296338 (-0.186922) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431041 / 0.215209 (0.215832) | 4.326039 / 2.077655 (2.248384) | 2.085123 / 1.504120 (0.581003) | 1.922720 / 1.541195 (0.381525) | 2.006608 / 1.468490 (0.538118) | 0.703348 / 4.584777 (-3.881428) | 3.441516 / 3.745712 (-0.304196) | 1.875244 / 5.269862 (-3.394618) | 1.181341 / 4.565676 (-3.384336) | 0.083442 / 0.424275 (-0.340833) | 0.012966 / 0.007607 (0.005359) | 0.536047 / 0.226044 (0.310002) | 5.354856 / 2.268929 (3.085927) | 2.451064 / 55.444624 (-52.993560) | 2.076110 / 6.876477 (-4.800367) | 2.196507 / 2.142072 (0.054435) | 0.811196 / 4.805227 (-3.994032) | 0.152547 / 6.500664 (-6.348118) | 0.067978 / 0.075469 (-0.007491) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196169 / 1.841788 (-0.645618) | 13.697234 / 8.074308 (5.622926) | 13.966652 / 10.191392 (3.775260) | 0.143735 / 0.680424 (-0.536688) | 0.016484 / 0.534201 (-0.517717) | 0.382349 / 0.579283 (-0.196934) | 0.401507 / 0.434364 (-0.032857) | 0.447297 / 0.540337 (-0.093041) | 0.529779 / 1.386936 (-0.857157) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006698 / 0.011353 (-0.004655) | 0.004608 / 0.011008 (-0.006400) | 0.076220 / 0.038508 (0.037712) | 0.027340 / 0.023109 (0.004231) | 0.344095 / 0.275898 (0.068197) | 0.374715 / 0.323480 (0.051235) | 0.004883 / 0.007986 (-0.003102) | 0.004658 / 0.004328 (0.000330) | 0.075381 / 0.004250 (0.071130) | 0.036099 / 0.037052 (-0.000953) | 0.340382 / 0.258489 (0.081893) | 0.383488 / 0.293841 (0.089647) | 0.031534 / 0.128546 (-0.097012) | 0.011735 / 0.075646 (-0.063912) | 0.085895 / 0.419271 (-0.333377) | 0.042226 / 0.043533 (-0.001306) | 0.340301 / 0.255139 (0.085162) | 0.366079 / 0.283200 (0.082879) | 0.088828 / 0.141683 (-0.052854) | 1.487880 / 1.452155 (0.035725) | 1.561318 / 1.492716 (0.068601) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226366 / 0.018006 (0.208360) | 0.408934 / 0.000490 (0.408444) | 0.000396 / 0.000200 (0.000196) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024521 / 0.037411 (-0.012891) | 0.100167 / 0.014526 (0.085641) | 0.106480 / 0.176557 (-0.070077) | 0.156377 / 0.737135 (-0.580758) | 0.111709 / 0.296338 (-0.184630) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436138 / 0.215209 (0.220928) | 4.370919 / 2.077655 (2.293265) | 2.066402 / 1.504120 (0.562282) | 1.862157 / 1.541195 (0.320962) | 1.920701 / 1.468490 (0.452211) | 0.695517 / 4.584777 (-3.889260) | 3.435558 / 3.745712 (-0.310154) | 1.864000 / 5.269862 (-3.405861) | 1.164134 / 4.565676 (-3.401543) | 0.083006 / 0.424275 (-0.341269) | 0.012751 / 0.007607 (0.005144) | 0.535405 / 0.226044 (0.309360) | 5.368530 / 2.268929 (3.099602) | 2.494197 / 55.444624 (-52.950427) | 2.161370 / 6.876477 (-4.715107) | 2.180345 / 2.142072 (0.038272) | 0.808076 / 4.805227 (-3.997151) | 0.151891 / 6.500664 (-6.348773) | 0.067643 / 0.075469 (-0.007826) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.334245 / 1.841788 (-0.507543) | 14.112805 / 8.074308 (6.038497) | 14.152303 / 10.191392 (3.960911) | 0.153492 / 0.680424 (-0.526932) | 0.016542 / 0.534201 (-0.517659) | 0.376013 / 0.579283 (-0.203270) | 0.386528 / 0.434364 (-0.047836) | 0.436461 / 0.540337 (-0.103876) | 0.519278 / 1.386936 (-0.867658) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ce1d1076fc55ac49277398304e551f0b56c3c9e2 \"CML watermark\")\n"
] | 2023-03-14T15:29:11 | 2023-03-14T16:37:06 | 2023-03-14T16:29:52 | CONTRIBUTOR | null | idk if I should have added this ignore to `ruff` too, but I added :) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5636/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5636/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5636",
"html_url": "https://github.com/huggingface/datasets/pull/5636",
"diff_url": "https://github.com/huggingface/datasets/pull/5636.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5636.patch",
"merged_at": "2023-03-14T16:29:52"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5635 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5635/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5635/comments | https://api.github.com/repos/huggingface/datasets/issues/5635/events | https://github.com/huggingface/datasets/pull/5635 | 1,623,682,558 | PR_kwDODunzps5MAmLU | 5,635 | Pass custom metadata filename to Image/Audio folders | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5635). All of your documentation changes will be reflected on that endpoint.",
"I'm not a big fan of this new param - I find assigning metadata files to splits via the `data_files` param cleaner. Also, assuming that the metadata filename is `metadata.json`/`metadata.csv` (I don't think we should allow other names), a user can do `load_dataset(\"imagefolder\", data_dir=\"data\")` to load a dataset with that structure.",
"@mariosasko I don't really like this change in it's current state either but passing specific files with `data_files` also looks not quite user-friendly to me. The idea of providing specific parameter for metadata filename seems natural to me but I don't see a way for implementing it without some ugly changes in `load.py` (passing the param to factories and creating metadata patterns on the fly). Why don't you like this parameter?\r\n\r\nFor context: this PR emerged from the case where users wanted to use different metadata files with the same large set of images without copying directories on disk and it's not possible with `data_files` approach.\r\n\r\nedit: ah no, it's possible if one puts metadata files in different subdirs (so that the filenames can be left the same)",
">For context: this PR emerged from the case where users wanted to use different metadata files with the same large set of images without copying directories on disk and it's not possible with data_files approach.\r\n>\r\n>edit: ah no, it's possible if one puts metadata files in different subdirs (so that the filenames can be left the same)\r\n\r\nSeems low prio, but one way to address this would be by allowing to pass \"exclude patterns\" to `data_files`"
] | 2023-03-14T15:08:16 | 2023-03-22T17:50:31 | null | CONTRIBUTOR | null | This is a quick fix.
Now it requires to pass data via `data_files` parameters and include a required metadata file there and pass its filename as `metadata_filename` parameter.
For example, with the structure like:
```
data
images_dir/
im1.jpg
im2.jpg
...
metadata_dir/
meta_file1.jsonl
meta_file2.jsonl
...
```
to load data with `metadata_file1.jsonl` do:
```python
ds = load_dataset("imagefolder", data_files=["data/images_dir/**", "data/metadata_dir/meta_file1.jsonl"], metadata_filename="meta_file1.jsonl")
```
Note that if you have multiple splits, metadata file should be specified in each of them in `data_files`, smth like:
```python
data_files={
"train": ["data/train/**", "data/metadata_dir/meta_file1.jsonl"],
"test": ["data/train/**", "data/metadata_dir/meta_file1.jsonl"]
}
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5635/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 1,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5635/timeline | null | null | true | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5635",
"html_url": "https://github.com/huggingface/datasets/pull/5635",
"diff_url": "https://github.com/huggingface/datasets/pull/5635.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5635.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5634 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5634/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5634/comments | https://api.github.com/repos/huggingface/datasets/issues/5634/events | https://github.com/huggingface/datasets/issues/5634 | 1,622,424,174 | I_kwDODunzps5gtDpu | 5,634 | Not all progress bars are showing up when they should for downloading dataset | {
"login": "garlandz-db",
"id": 110427462,
"node_id": "U_kgDOBpT9Rg",
"avatar_url": "https://avatars.githubusercontent.com/u/110427462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/garlandz-db",
"html_url": "https://github.com/garlandz-db",
"followers_url": "https://api.github.com/users/garlandz-db/followers",
"following_url": "https://api.github.com/users/garlandz-db/following{/other_user}",
"gists_url": "https://api.github.com/users/garlandz-db/gists{/gist_id}",
"starred_url": "https://api.github.com/users/garlandz-db/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/garlandz-db/subscriptions",
"organizations_url": "https://api.github.com/users/garlandz-db/orgs",
"repos_url": "https://api.github.com/users/garlandz-db/repos",
"events_url": "https://api.github.com/users/garlandz-db/events{/privacy}",
"received_events_url": "https://api.github.com/users/garlandz-db/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi! \r\n\r\nBy default, tqdm has `leave=True` to \"keep all traces of the progress bar upon the termination of iteration\". However, we use `leave=False` in some places (as of recently), which removes the bar once the iteration is over.\r\n\r\nI feel like our TQDM bars are noisy, so I think we should always set `leave=False` and also use the `delay` parameter to display progress bars only for tasks that take time (e.g., more than 3s). What do you think about this? Do you find these bars useful (after the dataset generation is over)?\r\n",
"Hi sorry for the late update. I think the problem still exists despite the `leave` flag\r\n\r\n<img width=\"1105\" alt=\"image\" src=\"https://user-images.githubusercontent.com/110427462/226501615-5b02fb02-fd5f-4eda-b1f7-a7ed6570892d.png\">\r\n\r\n\r\n```\r\nPackage Version\r\n------------------------ ---------\r\naiofiles 22.1.0\r\naiohttp 3.8.4\r\naiosignal 1.3.1\r\naiosqlite 0.18.0\r\nanyio 3.6.2\r\nappnope 0.1.3\r\nargon2-cffi 21.3.0\r\nargon2-cffi-bindings 21.2.0\r\narrow 1.2.3\r\nasttokens 2.2.1\r\nasync-generator 1.10\r\nasync-timeout 4.0.2\r\nattrs 22.2.0\r\nBabel 2.12.1\r\nbackcall 0.2.0\r\nbeautifulsoup4 4.11.2\r\nbleach 6.0.0\r\nbrotlipy 0.7.0\r\ncertifi 2022.12.7\r\ncffi 1.15.1\r\ncfgv 3.3.1\r\ncharset-normalizer 2.1.1\r\ncomm 0.1.2\r\nconda 22.9.0\r\nconda-package-handling 2.0.2\r\nconda_package_streaming 0.7.0\r\ncoverage 7.2.1\r\ncryptography 38.0.4\r\ndatasets 2.8.0\r\ndebugpy 1.6.6\r\ndecorator 5.1.1\r\ndefusedxml 0.7.1\r\ndill 0.3.6\r\ndistlib 0.3.6\r\ndistro 1.4.0\r\nentrypoints 0.4\r\nexceptiongroup 1.1.0\r\nexecuting 1.2.0\r\nfastjsonschema 2.16.3\r\nfilelock 3.9.0\r\nflaky 3.7.0\r\nfqdn 1.5.1\r\nfrozenlist 1.3.3\r\nfsspec 2023.3.0\r\nhuggingface-hub 0.10.1\r\nidentify 2.5.18\r\nidna 3.4\r\niniconfig 2.0.0\r\nipykernel 6.12.1\r\nipyparallel 8.4.1\r\nipython 7.32.0\r\nipython-genutils 0.2.0\r\nipywidgets 8.0.4\r\nisoduration 20.11.0\r\njedi 0.18.2\r\nJinja2 3.1.2\r\njson5 0.9.11\r\njsonpointer 2.3\r\njsonschema 4.17.3\r\njupyter_client 8.0.3\r\njupyter_core 5.2.0\r\njupyter-events 0.6.3\r\njupyter_server 2.4.0\r\njupyter_server_fileid 0.8.0\r\njupyter_server_terminals 0.4.4\r\njupyter_server_ydoc 0.6.1\r\njupyter-ydoc 0.2.2\r\njupyterlab 3.6.1\r\njupyterlab-pygments 0.2.2\r\njupyterlab_server 2.20.0\r\njupyterlab-widgets 3.0.5\r\nlibmambapy 1.1.0\r\nmamba 1.1.0\r\nMarkupSafe 2.1.2\r\nmatplotlib-inline 0.1.6\r\nmistune 2.0.5\r\nmultidict 6.0.4\r\nmultiprocess 0.70.14\r\nnbclassic 0.5.3\r\nnbclient 0.7.2\r\nnbconvert 7.2.9\r\nnbformat 5.7.3\r\nnest-asyncio 1.5.6\r\nnodeenv 1.7.0\r\nnotebook 6.5.3\r\nnotebook_shim 0.2.2\r\nnumpy 1.24.2\r\noutcome 1.2.0\r\npackaging 23.0\r\npandas 1.5.3\r\npandocfilters 1.5.0\r\nparso 0.8.3\r\npexpect 4.8.0\r\npickleshare 0.7.5\r\npip 22.3.1\r\nplatformdirs 3.0.0\r\nplotly 5.13.1\r\npluggy 1.0.0\r\npre-commit 3.1.0\r\nprometheus-client 0.16.0\r\nprompt-toolkit 3.0.38\r\npsutil 5.9.4\r\nptyprocess 0.7.0\r\npure-eval 0.2.2\r\npyarrow 11.0.0\r\npycosat 0.6.4\r\npycparser 2.21\r\nPygments 2.14.0\r\npyOpenSSL 22.1.0\r\npyrsistent 0.19.3\r\nPySocks 1.7.1\r\npytest 7.2.1\r\npytest-asyncio 0.20.3\r\npytest-cov 4.0.0\r\npytest-timeout 2.1.0\r\npython-dateutil 2.8.2\r\npython-json-logger 2.0.7\r\npytz 2022.7.1\r\nPyYAML 6.0\r\npyzmq 25.0.0\r\nrequests 2.28.1\r\nresponses 0.18.0\r\nrfc3339-validator 0.1.4\r\nrfc3986-validator 0.1.1\r\nruamel-yaml-conda 0.15.80\r\nSend2Trash 1.8.0\r\nsetuptools 65.6.3\r\nsimplegeneric 0.8.1\r\nsix 1.16.0\r\nsniffio 1.3.0\r\nsortedcontainers 2.4.0\r\nsoupsieve 2.4\r\nstack-data 0.6.2\r\ntenacity 8.2.2\r\nterminado 0.17.1\r\ntinycss2 1.2.1\r\ntomli 2.0.1\r\ntoolz 0.12.0\r\ntornado 6.2\r\ntqdm 4.65.0\r\ntraitlets 5.8.1\r\ntrio 0.22.0\r\ntyping_extensions 4.5.0\r\nuri-template 1.2.0\r\nurllib3 1.26.13\r\nvirtualenv 20.19.0\r\nwcwidth 0.2.6\r\nwebcolors 1.12\r\nwebencodings 0.5.1\r\nwebsocket-client 1.5.1\r\nwheel 0.38.4\r\nwidgetsnbextension 4.0.5\r\nxxhash 3.2.0\r\ny-py 0.5.9\r\nyarl 1.8.2\r\nypy-websocket 0.8.2\r\nzstandard 0.19.0\r\n```\r\n\r\nAny idea why this is happening? I debugged this to know the tqdm.pbar value is not being updated properly and its not the kernel not sending the comm messages to the IProgress bar"
] | 2023-03-13T23:04:18 | 2023-03-21T01:59:59 | null | NONE | null | ### Describe the bug
During downloading the rotten tomatoes dataset, not all progress bars are displayed properly. This might be related to [this ticket](https://github.com/huggingface/datasets/issues/5117) as it raised the same concern but its not clear if the fix solves this issue too.
ipywidgets
<img width="1243" alt="image" src="https://user-images.githubusercontent.com/110427462/224851138-13fee5b7-ab51-4883-b96f-1b9808782e3b.png">
tqdm
<img width="1251" alt="Screen Shot 2023-03-13 at 3 58 59 PM" src="https://user-images.githubusercontent.com/110427462/224851180-5feb7825-9250-4b1e-ad0c-f3172ac1eb78.png">
### Steps to reproduce the bug
1. Run this line
```
from datasets import load_dataset
rotten_tomatoes = load_dataset("rotten_tomatoes", split="train")
```
### Expected behavior
all progress bars for builder script, metadata, readme, training, validation, and test set
### Environment info
requirements.txt
```
aiofiles==22.1.0
aiohttp==3.8.4
aiosignal==1.3.1
aiosqlite==0.18.0
anyio==3.6.2
appnope==0.1.3
argon2-cffi==21.3.0
argon2-cffi-bindings==21.2.0
arrow==1.2.3
asttokens==2.2.1
async-generator==1.10
async-timeout==4.0.2
attrs==22.2.0
Babel==2.12.1
backcall==0.2.0
beautifulsoup4==4.11.2
bleach==6.0.0
brotlipy @ file:///Users/runner/miniforge3/conda-bld/brotlipy_1666764961872/work
certifi==2022.12.7
cffi @ file:///Users/runner/miniforge3/conda-bld/cffi_1671179414629/work
cfgv==3.3.1
charset-normalizer @ file:///home/conda/feedstock_root/build_artifacts/charset-normalizer_1661170624537/work
comm==0.1.2
conda==22.9.0
conda-package-handling @ file:///home/conda/feedstock_root/build_artifacts/conda-package-handling_1669907009957/work
conda_package_streaming @ file:///home/conda/feedstock_root/build_artifacts/conda-package-streaming_1669733752472/work
coverage==7.2.1
cryptography @ file:///Users/runner/miniforge3/conda-bld/cryptography_1669592251328/work
datasets==2.1.0
debugpy==1.6.6
decorator==5.1.1
defusedxml==0.7.1
dill==0.3.6
distlib==0.3.6
distro==1.4.0
entrypoints==0.4
exceptiongroup==1.1.0
executing==1.2.0
fastjsonschema==2.16.3
filelock==3.9.0
flaky==3.7.0
fqdn==1.5.1
frozenlist==1.3.3
fsspec==2023.3.0
huggingface-hub==0.10.1
identify==2.5.18
idna @ file:///home/conda/feedstock_root/build_artifacts/idna_1663625384323/work
iniconfig==2.0.0
ipykernel==6.12.1
ipyparallel==8.4.1
ipython==7.32.0
ipython-genutils==0.2.0
ipywidgets==8.0.4
isoduration==20.11.0
jedi==0.18.2
Jinja2==3.1.2
json5==0.9.11
jsonpointer==2.3
jsonschema==4.17.3
jupyter-events==0.6.3
jupyter-ydoc==0.2.2
jupyter_client==8.0.3
jupyter_core==5.2.0
jupyter_server==2.4.0
jupyter_server_fileid==0.8.0
jupyter_server_terminals==0.4.4
jupyter_server_ydoc==0.6.1
jupyterlab==3.6.1
jupyterlab-pygments==0.2.2
jupyterlab-widgets==3.0.5
jupyterlab_server==2.20.0
libmambapy @ file:///Users/runner/miniforge3/conda-bld/mamba-split_1671598370072/work/libmambapy
mamba @ file:///Users/runner/miniforge3/conda-bld/mamba-split_1671598370072/work/mamba
MarkupSafe==2.1.2
matplotlib-inline==0.1.6
mistune==2.0.5
multidict==6.0.4
multiprocess==0.70.14
nbclassic==0.5.3
nbclient==0.7.2
nbconvert==7.2.9
nbformat==5.7.3
nest-asyncio==1.5.6
nodeenv==1.7.0
notebook==6.5.3
notebook_shim==0.2.2
numpy==1.24.2
outcome==1.2.0
packaging==23.0
pandas==1.5.3
pandocfilters==1.5.0
parso==0.8.3
pexpect==4.8.0
pickleshare==0.7.5
platformdirs==3.0.0
plotly==5.13.1
pluggy==1.0.0
pre-commit==3.1.0
prometheus-client==0.16.0
prompt-toolkit==3.0.38
psutil==5.9.4
ptyprocess==0.7.0
pure-eval==0.2.2
pyarrow==11.0.0
pycosat @ file:///Users/runner/miniforge3/conda-bld/pycosat_1666836580084/work
pycparser @ file:///home/conda/feedstock_root/build_artifacts/pycparser_1636257122734/work
Pygments==2.14.0
pyOpenSSL @ file:///home/conda/feedstock_root/build_artifacts/pyopenssl_1665350324128/work
pyrsistent==0.19.3
PySocks @ file:///home/conda/feedstock_root/build_artifacts/pysocks_1661604839144/work
pytest==7.2.1
pytest-asyncio==0.20.3
pytest-cov==4.0.0
pytest-timeout==2.1.0
python-dateutil==2.8.2
python-json-logger==2.0.7
pytz==2022.7.1
PyYAML==6.0
pyzmq==25.0.0
requests @ file:///home/conda/feedstock_root/build_artifacts/requests_1661872987712/work
responses==0.18.0
rfc3339-validator==0.1.4
rfc3986-validator==0.1.1
ruamel-yaml-conda @ file:///Users/runner/miniforge3/conda-bld/ruamel_yaml_1666819760545/work
Send2Trash==1.8.0
simplegeneric==0.8.1
six==1.16.0
sniffio==1.3.0
sortedcontainers==2.4.0
soupsieve==2.4
stack-data==0.6.2
tenacity==8.2.2
terminado==0.17.1
tinycss2==1.2.1
tomli==2.0.1
toolz @ file:///home/conda/feedstock_root/build_artifacts/toolz_1657485559105/work
tornado==6.2
tqdm==4.64.1
traitlets==5.8.1
trio==0.22.0
typing_extensions==4.5.0
uri-template==1.2.0
urllib3 @ file:///home/conda/feedstock_root/build_artifacts/urllib3_1669259737463/work
virtualenv==20.19.0
wcwidth==0.2.6
webcolors==1.12
webencodings==0.5.1
websocket-client==1.5.1
widgetsnbextension==4.0.5
xxhash==3.2.0
y-py==0.5.9
yarl==1.8.2
ypy-websocket==0.8.2
zstandard==0.19.0
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5634/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5634/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5633 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5633/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5633/comments | https://api.github.com/repos/huggingface/datasets/issues/5633/events | https://github.com/huggingface/datasets/issues/5633 | 1,621,469,970 | I_kwDODunzps5gpasS | 5,633 | Cannot import datasets | {
"login": "eerio",
"id": 11250555,
"node_id": "MDQ6VXNlcjExMjUwNTU1",
"avatar_url": "https://avatars.githubusercontent.com/u/11250555?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/eerio",
"html_url": "https://github.com/eerio",
"followers_url": "https://api.github.com/users/eerio/followers",
"following_url": "https://api.github.com/users/eerio/following{/other_user}",
"gists_url": "https://api.github.com/users/eerio/gists{/gist_id}",
"starred_url": "https://api.github.com/users/eerio/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/eerio/subscriptions",
"organizations_url": "https://api.github.com/users/eerio/orgs",
"repos_url": "https://api.github.com/users/eerio/repos",
"events_url": "https://api.github.com/users/eerio/events{/privacy}",
"received_events_url": "https://api.github.com/users/eerio/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Okay, the issue was likely caused by mixing `conda` and `pip` usage - I forgot that I have already used `pip` in this environment previously and that it was 'spoiled' because of it. Creating another environment and installing `datasets` by pip with other packages from the `requirements.txt` file solved the problem."
] | 2023-03-13T13:14:44 | 2023-03-13T17:54:19 | 2023-03-13T17:54:19 | NONE | null | ### Describe the bug
Hi,
I cannot even import the library :( I installed it by running:
```
$ conda install datasets
```
Then I realized I should maybe use the huggingface channel, because I encountered the error below, so I ran:
```
$ conda remove datasets
$ conda install -c huggingface datasets
```
Please see 'steps to reproduce the bug' for the specific error, as steps to reproduce is just importing the library
### Steps to reproduce the bug
```
$ python3
Python 3.8.15 (default, Nov 24 2022, 15:19:38)
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import datasets
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/jack/.conda/envs/jack_zpp/lib/python3.8/site-packages/datasets/__init__.py", line 33, in <module>
from .arrow_dataset import Dataset, concatenate_datasets
File "/home/jack/.conda/envs/jack_zpp/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 59, in <module>
from .arrow_reader import ArrowReader
File "/home/jack/.conda/envs/jack_zpp/lib/python3.8/site-packages/datasets/arrow_reader.py", line 27, in <module>
import pyarrow.parquet as pq
File "/home/jack/.conda/envs/jack_zpp/lib/python3.8/site-packages/pyarrow/parquet/__init__.py", line 20, in <module>
from .core import *
File "/home/jack/.conda/envs/jack_zpp/lib/python3.8/site-packages/pyarrow/parquet/core.py", line 37, in <module>
from pyarrow._parquet import (ParquetReader, Statistics, # noqa
ImportError: cannot import name 'FileEncryptionProperties' from 'pyarrow._parquet' (/home/jack/.conda/envs/jack_zpp/lib/python3.8/site-packages/pyarrow/_parquet.cpython-38-x86_64-linux-gnu.so)
```
### Expected behavior
I would expect for the statement `import datasets` to cause no error
### Environment info
Output of `conda list`:
```
# packages in environment at /home/jack/.conda/envs/pbalawender_zpp:
#
# Name Version Build Channel
_libgcc_mutex 0.1 main
_openmp_mutex 5.1 1_gnu
abseil-cpp 20210324.2 h2531618_0
advertools 0.13.2 pypi_0 pypi
aiofiles 0.8.0 pypi_0 pypi
aiohttp 3.8.3 py38h5eee18b_0
aiosignal 1.2.0 pyhd3eb1b0_0
aiosqlite 0.17.0 pypi_0 pypi
anyio 3.6.2 pypi_0 pypi
aquirdturtle-collapsible-headings 3.1.0 pypi_0 pypi
argon2-cffi 21.3.0 pypi_0 pypi
argon2-cffi-bindings 21.2.0 pypi_0 pypi
arrow 1.2.3 pypi_0 pypi
arrow-cpp 3.0.0 py38h6b21186_4
asttokens 2.2.0 pypi_0 pypi
async-timeout 4.0.2 py38h06a4308_0
attrs 22.1.0 py38h06a4308_0
automat 22.10.0 pypi_0 pypi
aws-c-common 0.4.57 he6710b0_1
aws-c-event-stream 0.1.6 h2531618_5
aws-checksums 0.1.9 he6710b0_0
aws-sdk-cpp 1.8.185 hce553d0_0
babel 2.11.0 pypi_0 pypi
backcall 0.2.0 pyhd3eb1b0_0
beautifulsoup4 4.11.1 pypi_0 pypi
blas 1.0 mkl
bleach 5.0.1 pypi_0 pypi
boost-cpp 1.73.0 h27cfd23_11
bottleneck 1.3.5 py38h7deecbd_0
brotli 1.0.9 h5eee18b_7
brotli-bin 1.0.9 h5eee18b_7
brotlipy 0.7.0 py38h27cfd23_1003
bzip2 1.0.8 h7b6447c_0
c-ares 1.18.1 h7f8727e_0
ca-certificates 2023.01.10 h06a4308_0
certifi 2022.9.24 pypi_0 pypi
cffi 1.15.1 py38h5eee18b_3
charset-normalizer 2.1.1 pypi_0 pypi
click 8.1.3 pypi_0 pypi
constantly 15.1.0 pypi_0 pypi
contourpy 1.0.6 pypi_0 pypi
cryptography 38.0.4 pypi_0 pypi
cssselect 1.2.0 pypi_0 pypi
cudatoolkit 10.1.243 h8cb64d8_10 conda-forge
cycler 0.11.0 pypi_0 pypi
dacite 1.6.0 pypi_0 pypi
dataclasses 0.8 pyh6d0b6a4_7
datasets 1.18.4 py_0 huggingface
datetime 4.7 pypi_0 pypi
debugpy 1.6.4 pypi_0 pypi
decorator 5.1.1 pyhd3eb1b0_0
defusedxml 0.7.1 pypi_0 pypi
dill 0.3.6 py38h06a4308_0
docker-pycreds 0.4.0 pypi_0 pypi
double-conversion 3.1.5 he6710b0_1
entrypoints 0.4 py38h06a4308_0
executing 0.8.3 pyhd3eb1b0_0
filelock 3.8.0 pypi_0 pypi
flake8 6.0.0 pypi_0 pypi
flask 2.1.3 py38h06a4308_0
flit-core 3.6.0 pyhd3eb1b0_0
fonttools 4.38.0 pypi_0 pypi
fqdn 1.5.1 pypi_0 pypi
freetype 2.12.1 h4a9f257_0
frozenlist 1.3.3 py38h5eee18b_0
fsspec 2022.11.0 py38h06a4308_0
gensim 4.2.0 pypi_0 pypi
gflags 2.2.2 he6710b0_0
giflib 5.2.1 h5eee18b_3
gitdb 4.0.10 pypi_0 pypi
gitpython 3.1.30 pypi_0 pypi
glog 0.5.0 h2531618_0
grpc-cpp 1.39.0 hae934f6_5
huggingface-hub 0.11.1 pypi_0 pypi
huggingface_hub 0.13.1 py_0 huggingface
hyperlink 21.0.0 pypi_0 pypi
icu 58.2 he6710b0_3
idna 3.4 py38h06a4308_0
importlib-metadata 5.1.0 pypi_0 pypi
importlib_metadata 4.11.3 hd3eb1b0_0
importlib_resources 5.2.0 pyhd3eb1b0_1
incremental 22.10.0 pypi_0 pypi
intel-openmp 2021.4.0 h06a4308_3561
ipykernel 6.17.1 pyh210e3f2_0 conda-forge
ipython 8.7.0 pypi_0 pypi
ipython-genutils 0.2.0 pypi_0 pypi
ipywidgets 8.0.2 pyhd8ed1ab_1 conda-forge
isoduration 20.11.0 pypi_0 pypi
itemadapter 0.7.0 pypi_0 pypi
itemloaders 1.0.6 pypi_0 pypi
itsdangerous 2.0.1 pyhd3eb1b0_0
jedi 0.18.2 pypi_0 pypi
jinja2 3.1.2 py38h06a4308_0
jmespath 1.0.1 pypi_0 pypi
joblib 1.2.0 pypi_0 pypi
jpeg 9b h024ee3a_2
json5 0.9.10 pypi_0 pypi
jsonpickle 3.0.0 pypi_0 pypi
jsonpointer 2.3 pypi_0 pypi
jsonschema 4.17.3 py38h06a4308_0
jupyter-core 5.1.0 pypi_0 pypi
jupyter-events 0.5.0 pypi_0 pypi
jupyter-server 1.23.3 pypi_0 pypi
jupyter-server-fileid 0.6.0 pypi_0 pypi
jupyter-server-ydoc 0.4.0 pypi_0 pypi
jupyter-ydoc 0.2.2 pypi_0 pypi
jupyter_client 7.4.9 py38h06a4308_0
jupyter_core 5.2.0 py38h06a4308_0
jupyterlab 3.6.0a4 pypi_0 pypi
jupyterlab-pygments 0.2.2 pypi_0 pypi
jupyterlab-server 2.16.3 pypi_0 pypi
jupyterlab_widgets 3.0.3 pyhd8ed1ab_0 conda-forge
kiwisolver 1.4.4 pypi_0 pypi
krb5 1.19.4 h568e23c_0
lcms2 2.12 h3be6417_0
ld_impl_linux-64 2.38 h1181459_1
libboost 1.73.0 h3ff78a5_11
libbrotlicommon 1.0.9 h5eee18b_7
libbrotlidec 1.0.9 h5eee18b_7
libbrotlienc 1.0.9 h5eee18b_7
libcurl 7.88.1 h91b91d3_0
libedit 3.1.20221030 h5eee18b_0
libev 4.33 h7f8727e_1
libevent 2.1.12 h8f2d780_0
libffi 3.4.2 h6a678d5_6
libgcc-ng 11.2.0 h1234567_1
libgomp 11.2.0 h1234567_1
libnghttp2 1.46.0 hce63b2e_0
libpng 1.6.39 h5eee18b_0
libprotobuf 3.17.2 h4ff587b_1
libsodium 1.0.18 h7b6447c_0
libssh2 1.10.0 h8f2d780_0
libstdcxx-ng 11.2.0 h1234567_1
libthrift 0.14.2 hcc01f38_0
libtiff 4.1.0 h2733197_1
libuv 1.44.2 h5eee18b_0
libwebp 1.2.0 h89dd481_0
lz4-c 1.9.4 h6a678d5_0
markupsafe 2.1.1 py38h7f8727e_0
matplotlib 3.6.2 pypi_0 pypi
matplotlib-inline 0.1.6 py38h06a4308_0
mccabe 0.7.0 pypi_0 pypi
mistune 2.0.4 pypi_0 pypi
mkl 2021.4.0 h06a4308_640
mkl-service 2.4.0 py38h7f8727e_0
mkl_fft 1.3.1 py38hd3c417c_0
mkl_random 1.2.2 py38h51133e4_0
morfeusz2 1.99.6 pypi_0 pypi
multidict 6.0.2 py38h5eee18b_0
multiprocess 0.70.14 py38h06a4308_0
nbclassic 0.4.8 pypi_0 pypi
nbclient 0.7.2 pypi_0 pypi
nbconvert 7.2.5 pypi_0 pypi
nbformat 5.7.0 py38h06a4308_0
ncurses 6.4 h6a678d5_0
nest-asyncio 1.5.6 py38h06a4308_0
ninja 1.10.2 h06a4308_5
ninja-base 1.10.2 hd09550d_5
notebook 6.5.2 pypi_0 pypi
notebook-shim 0.2.2 pypi_0 pypi
numexpr 2.8.4 py38he184ba9_0
numpy 1.23.5 py38h14f4228_0
numpy-base 1.23.5 py38h31eccc5_0
oauthlib 3.2.2 pypi_0 pypi
opencv-python 4.6.0.66 pypi_0 pypi
openssl 1.1.1t h7f8727e_0
orc 1.6.9 ha97a36c_3
packaging 22.0 py38h06a4308_0
pandas 1.5.2 pypi_0 pypi
pandocfilters 1.5.0 pypi_0 pypi
parsel 1.7.0 pypi_0 pypi
parso 0.8.3 pyhd3eb1b0_0
pathlib 1.0.1 pypi_0 pypi
pathtools 0.1.2 pypi_0 pypi
pexpect 4.8.0 pyhd3eb1b0_3
pickleshare 0.7.5 pyhd3eb1b0_1003
pillow 9.3.0 pypi_0 pypi
pip 22.2.2 py38h06a4308_0
pkgutil-resolve-name 1.3.10 py38h06a4308_0
platformdirs 2.5.4 pypi_0 pypi
prometheus-client 0.15.0 pypi_0 pypi
promise 2.3 pypi_0 pypi
prompt-toolkit 3.0.33 pypi_0 pypi
protego 0.2.1 pypi_0 pypi
protobuf 4.21.12 pypi_0 pypi
psutil 5.9.0 py38h5eee18b_0
ptyprocess 0.7.0 pyhd3eb1b0_2
pure_eval 0.2.2 pyhd3eb1b0_0
pyarrow 10.0.1 pypi_0 pypi
pyasn1 0.4.8 pypi_0 pypi
pyasn1-modules 0.2.8 pypi_0 pypi
pycodestyle 2.10.0 pypi_0 pypi
pycparser 2.21 pyhd3eb1b0_0
pydispatcher 2.0.6 pypi_0 pypi
pyflakes 3.0.1 pypi_0 pypi
pygments 2.11.2 pyhd3eb1b0_0
pyopenssl 22.1.0 pypi_0 pypi
pyrsistent 0.18.0 py38heee7806_0
pysocks 1.7.1 py38h06a4308_0
python 3.8.15 h7a1cb2a_2
python-dateutil 2.8.2 pyhd3eb1b0_0
python-dotenv 0.21.0 pypi_0 pypi
python-fastjsonschema 2.16.2 py38h06a4308_0
python-json-logger 2.0.4 pypi_0 pypi
python-xxhash 2.0.2 py38h5eee18b_1
pytorch 1.7.1 py3.8_cuda10.1.243_cudnn7.6.3_0 pytorch
pytz 2022.6 pypi_0 pypi
pyyaml 6.0 py38h5eee18b_1
pyzmq 23.2.0 py38h6a678d5_0
queuelib 1.6.2 pypi_0 pypi
re2 2022.04.01 h295c915_0
readline 8.2 h5eee18b_0
regex 2022.10.31 pypi_0 pypi
requests 2.28.1 py38h06a4308_0
requests-file 1.5.1 pypi_0 pypi
requests-oauthlib 1.3.1 pypi_0 pypi
rfc3339-validator 0.1.4 pypi_0 pypi
rfc3986-validator 0.1.1 pypi_0 pypi
scikit-learn 1.1.3 pypi_0 pypi
scipy 1.9.3 pypi_0 pypi
scrapy 2.7.1 pypi_0 pypi
seaborn 0.12.1 pypi_0 pypi
send2trash 1.8.0 pypi_0 pypi
sentry-sdk 1.12.1 pypi_0 pypi
service-identity 21.1.0 pypi_0 pypi
setproctitle 1.3.2 pypi_0 pypi
setuptools 65.6.3 pypi_0 pypi
shortuuid 1.0.11 pypi_0 pypi
six 1.16.0 pyhd3eb1b0_1
smart-open 6.2.0 pypi_0 pypi
smmap 5.0.0 pypi_0 pypi
snappy 1.1.9 h295c915_0
sniffio 1.3.0 pypi_0 pypi
soupsieve 2.3.2.post1 pypi_0 pypi
sqlite 3.40.1 h5082296_0
stack-data 0.6.2 pypi_0 pypi
stack_data 0.2.0 pyhd3eb1b0_0
terminado 0.17.0 pypi_0 pypi
threadpoolctl 3.1.0 pypi_0 pypi
tinycss2 1.2.1 pypi_0 pypi
tk 8.6.12 h1ccaba5_0
tldextract 3.4.0 pypi_0 pypi
tokenizers 0.13.2 pypi_0 pypi
tomli 2.0.1 pypi_0 pypi
torchvision 0.8.2 py38_cu101 pytorch
tornado 6.2 py38h5eee18b_0
tqdm 4.64.1 py38h06a4308_0
traitlets 5.6.0 pypi_0 pypi
transformers 4.25.1 pypi_0 pypi
tweepy 4.12.1 pypi_0 pypi
twisted 22.10.0 pypi_0 pypi
twython 3.9.1 pypi_0 pypi
typing-extensions 4.4.0 py38h06a4308_0
typing_extensions 4.4.0 py38h06a4308_0
uri-template 1.2.0 pypi_0 pypi
uriparser 0.9.3 he6710b0_1
urllib3 1.26.13 pypi_0 pypi
utf8proc 2.6.1 h27cfd23_0
w3lib 2.1.0 pypi_0 pypi
wandb 0.13.7 pypi_0 pypi
wcwidth 0.2.5 pyhd3eb1b0_0
webcolors 1.12 pypi_0 pypi
webencodings 0.5.1 pypi_0 pypi
websocket-client 1.4.2 pypi_0 pypi
werkzeug 2.2.2 py38h06a4308_0
wheel 0.38.4 py38h06a4308_0
widgetsnbextension 4.0.3 py38h06a4308_0
xxhash 0.8.0 h7f8727e_3
xz 5.2.10 h5eee18b_1
y-py 0.5.4 pypi_0 pypi
yaml 0.2.5 h7b6447c_0
yarl 1.8.1 py38h5eee18b_0
ypy-websocket 0.5.0 pypi_0 pypi
zeromq 4.3.4 h2531618_0
zipp 3.11.0 py38h06a4308_0
zlib 1.2.13 h5eee18b_0
zope-interface 5.5.2 pypi_0 pypi
zstd 1.4.9 haebb681_0
```
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5633/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5633/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5632 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5632/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5632/comments | https://api.github.com/repos/huggingface/datasets/issues/5632/events | https://github.com/huggingface/datasets/issues/5632 | 1,621,177,391 | I_kwDODunzps5goTQv | 5,632 | Dataset cannot convert too large dictionnary | {
"login": "MaraLac",
"id": 108518627,
"node_id": "U_kgDOBnfc4w",
"avatar_url": "https://avatars.githubusercontent.com/u/108518627?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/MaraLac",
"html_url": "https://github.com/MaraLac",
"followers_url": "https://api.github.com/users/MaraLac/followers",
"following_url": "https://api.github.com/users/MaraLac/following{/other_user}",
"gists_url": "https://api.github.com/users/MaraLac/gists{/gist_id}",
"starred_url": "https://api.github.com/users/MaraLac/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/MaraLac/subscriptions",
"organizations_url": "https://api.github.com/users/MaraLac/orgs",
"repos_url": "https://api.github.com/users/MaraLac/repos",
"events_url": "https://api.github.com/users/MaraLac/events{/privacy}",
"received_events_url": "https://api.github.com/users/MaraLac/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Answered on the forum:\r\n\r\n> To fix the overflow error, we need to merge [support LargeListArray in pyarrow by xwwwwww · Pull Request #4800 · huggingface/datasets · GitHub](https://github.com/huggingface/datasets/pull/4800), which adds support for the large lists. However, before merging it, we need to come up with a cleaner API for large lists. I hope to find some time to address this before Datasets 3.0."
] | 2023-03-13T10:14:40 | 2023-03-16T15:28:57 | null | NONE | null | ### Describe the bug
Hello everyone!
I tried to build a new dataset with the command "dict_valid = datasets.Dataset.from_dict({'input_values': values_array})".
However, I have a very large dataset (~400Go) and it seems that dataset cannot handle this.
Indeed, I can create the dataset until a certain size of my dictionnary, and then I have the error "OverflowError: Python int too large to convert to C long".
Do you know how to solve this problem?
Unfortunately I cannot give a reproductible code because I cannot share a so large file, but you can find the code below (it's a test on only a part of the validation data ~10Go, but it's already the case).
Thank you!
### Steps to reproduce the bug
SAVE_DIR = './data/'
features = h5py.File(SAVE_DIR+'features.hdf5','r')
valid_data = features["validation"]["data/features"]
v_array_values = [np.float32(item[()]) for item in valid_data.values()]
for i in range(len(v_array_values)):
v_array_values[i] = v_array_values[i].round(decimals=5)
dict_valid = datasets.Dataset.from_dict({'input_values': v_array_values})
### Expected behavior
The code is expected to give me a Huggingface dataset.
### Environment info
python: 3.8.15
numpy: 1.22.3
datasets: 2.3.2
pyarrow: 8.0.0 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5632/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5632/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5631 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5631/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5631/comments | https://api.github.com/repos/huggingface/datasets/issues/5631/events | https://github.com/huggingface/datasets/issues/5631 | 1,620,442,854 | I_kwDODunzps5glf7m | 5,631 | Custom split names | {
"login": "ErfanMoosaviMonazzah",
"id": 79091831,
"node_id": "MDQ6VXNlcjc5MDkxODMx",
"avatar_url": "https://avatars.githubusercontent.com/u/79091831?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ErfanMoosaviMonazzah",
"html_url": "https://github.com/ErfanMoosaviMonazzah",
"followers_url": "https://api.github.com/users/ErfanMoosaviMonazzah/followers",
"following_url": "https://api.github.com/users/ErfanMoosaviMonazzah/following{/other_user}",
"gists_url": "https://api.github.com/users/ErfanMoosaviMonazzah/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ErfanMoosaviMonazzah/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ErfanMoosaviMonazzah/subscriptions",
"organizations_url": "https://api.github.com/users/ErfanMoosaviMonazzah/orgs",
"repos_url": "https://api.github.com/users/ErfanMoosaviMonazzah/repos",
"events_url": "https://api.github.com/users/ErfanMoosaviMonazzah/events{/privacy}",
"received_events_url": "https://api.github.com/users/ErfanMoosaviMonazzah/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | closed | false | null | [] | null | [
"Hi!\r\n\r\nYou can also use names other than \"train\", \"validation\" and \"test\". As an example, check the [script](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/blob/e095840f23f3dffc1056c078c2f9320dad9ca74d/common_voice_11_0.py#L139) of the Common Voice 11 dataset. "
] | 2023-03-12T17:21:43 | 2023-03-24T14:13:00 | 2023-03-24T14:13:00 | NONE | null | ### Feature request
Hi,
I participated in multiple NLP tasks where there are more than just train, test, validation splits, there could be multiple validation sets or test sets. But it seems currently only those mentioned three splits supported. It would be nice to have the support for more splits on the hub. (currently i can have more splits when I am loading datasets from urls, but not hub)
### Motivation
Easier access to more splits
### Your contribution
No | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5631/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5631/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5630 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5630/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5630/comments | https://api.github.com/repos/huggingface/datasets/issues/5630/events | https://github.com/huggingface/datasets/pull/5630 | 1,620,327,510 | PR_kwDODunzps5L1ahF | 5,630 | adds early exit if url is `PathLike` | {
"login": "vvvm23",
"id": 44398246,
"node_id": "MDQ6VXNlcjQ0Mzk4MjQ2",
"avatar_url": "https://avatars.githubusercontent.com/u/44398246?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/vvvm23",
"html_url": "https://github.com/vvvm23",
"followers_url": "https://api.github.com/users/vvvm23/followers",
"following_url": "https://api.github.com/users/vvvm23/following{/other_user}",
"gists_url": "https://api.github.com/users/vvvm23/gists{/gist_id}",
"starred_url": "https://api.github.com/users/vvvm23/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/vvvm23/subscriptions",
"organizations_url": "https://api.github.com/users/vvvm23/orgs",
"repos_url": "https://api.github.com/users/vvvm23/repos",
"events_url": "https://api.github.com/users/vvvm23/events{/privacy}",
"received_events_url": "https://api.github.com/users/vvvm23/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5630). All of your documentation changes will be reflected on that endpoint."
] | 2023-03-12T11:23:28 | 2023-03-15T11:58:38 | null | NONE | null | Closes #4864
Should fix errors thrown when attempting to load `json` dataset using `pathlib.Path` in `data_files` argument. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5630/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5630/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5630",
"html_url": "https://github.com/huggingface/datasets/pull/5630",
"diff_url": "https://github.com/huggingface/datasets/pull/5630.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5630.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5629 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5629/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5629/comments | https://api.github.com/repos/huggingface/datasets/issues/5629/events | https://github.com/huggingface/datasets/issues/5629 | 1,619,921,247 | I_kwDODunzps5gjglf | 5,629 | load_dataset gives "403" error when using Financial phrasebank | {
"login": "Jimchoo91",
"id": 67709789,
"node_id": "MDQ6VXNlcjY3NzA5Nzg5",
"avatar_url": "https://avatars.githubusercontent.com/u/67709789?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Jimchoo91",
"html_url": "https://github.com/Jimchoo91",
"followers_url": "https://api.github.com/users/Jimchoo91/followers",
"following_url": "https://api.github.com/users/Jimchoo91/following{/other_user}",
"gists_url": "https://api.github.com/users/Jimchoo91/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Jimchoo91/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Jimchoo91/subscriptions",
"organizations_url": "https://api.github.com/users/Jimchoo91/orgs",
"repos_url": "https://api.github.com/users/Jimchoo91/repos",
"events_url": "https://api.github.com/users/Jimchoo91/events{/privacy}",
"received_events_url": "https://api.github.com/users/Jimchoo91/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi! You seem to be using an outdated version of `datasets` that downloads the older script version. To avoid the error, you can either pass `revision=\"main\"` to `load_dataset` (this can fail if a script uses newer features of the lib) or update your installation with `pip install -U datasets` (better solution)."
] | 2023-03-11T07:46:39 | 2023-03-13T18:27:26 | null | NONE | null | When I try to load this dataset, I receive the following error:
ConnectionError: Couldn't reach https://www.researchgate.net/profile/Pekka_Malo/publication/251231364_FinancialPhraseBank-v10/data/0c96051eee4fb1d56e000000/FinancialPhraseBank-v10.zip (error 403)
Has this been seen before? Thanks. The website loads when I try to access it manually. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5629/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5629/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5628 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5628/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5628/comments | https://api.github.com/repos/huggingface/datasets/issues/5628/events | https://github.com/huggingface/datasets/pull/5628 | 1,619,641,810 | PR_kwDODunzps5LzVKi | 5,628 | add kwargs to index search | {
"login": "SaulLu",
"id": 55560583,
"node_id": "MDQ6VXNlcjU1NTYwNTgz",
"avatar_url": "https://avatars.githubusercontent.com/u/55560583?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/SaulLu",
"html_url": "https://github.com/SaulLu",
"followers_url": "https://api.github.com/users/SaulLu/followers",
"following_url": "https://api.github.com/users/SaulLu/following{/other_user}",
"gists_url": "https://api.github.com/users/SaulLu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/SaulLu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SaulLu/subscriptions",
"organizations_url": "https://api.github.com/users/SaulLu/orgs",
"repos_url": "https://api.github.com/users/SaulLu/repos",
"events_url": "https://api.github.com/users/SaulLu/events{/privacy}",
"received_events_url": "https://api.github.com/users/SaulLu/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._"
] | 2023-03-10T21:24:58 | 2023-03-15T14:48:47 | 2023-03-15T14:46:04 | CONTRIBUTOR | null | This PR proposes to add kwargs to index search methods.
This is particularly useful for setting the timeout of a query on elasticsearch.
A typical use case would be:
```python
dset.add_elasticsearch_index("filename", es_client=es_client)
scores, examples = dset.get_nearest_examples("filename", "my_name-train_29", request_timeout=60)
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5628/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5628/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5628",
"html_url": "https://github.com/huggingface/datasets/pull/5628",
"diff_url": "https://github.com/huggingface/datasets/pull/5628.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5628.patch",
"merged_at": "2023-03-15T14:46:04"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5627 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5627/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5627/comments | https://api.github.com/repos/huggingface/datasets/issues/5627/events | https://github.com/huggingface/datasets/issues/5627 | 1,619,336,609 | I_kwDODunzps5ghR2h | 5,627 | Unable to load AutoTrain-generated dataset from the hub | {
"login": "ijmiller2",
"id": 8560151,
"node_id": "MDQ6VXNlcjg1NjAxNTE=",
"avatar_url": "https://avatars.githubusercontent.com/u/8560151?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ijmiller2",
"html_url": "https://github.com/ijmiller2",
"followers_url": "https://api.github.com/users/ijmiller2/followers",
"following_url": "https://api.github.com/users/ijmiller2/following{/other_user}",
"gists_url": "https://api.github.com/users/ijmiller2/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ijmiller2/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ijmiller2/subscriptions",
"organizations_url": "https://api.github.com/users/ijmiller2/orgs",
"repos_url": "https://api.github.com/users/ijmiller2/repos",
"events_url": "https://api.github.com/users/ijmiller2/events{/privacy}",
"received_events_url": "https://api.github.com/users/ijmiller2/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The AutoTrain format is not supported right now. I think it would require a dedicated dataset builder",
"Okay, good to know. Thanks for the reply. For now I will just have to\nmanage the split manually before training, because I can’t find any way of\npulling out file indices or file names from the autogenerated split. The\nfile names field of the image dataset (loaded directly from arrow file) is\nmissing, just fyi (for anyone else this might be relevant too).\n\nOn Fri, Mar 10, 2023 at 7:02 PM Quentin Lhoest ***@***.***>\nwrote:\n\n> The AutoTrain format is not supported right now. I think it would require\n> a dedicated dataset builder\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/5627#issuecomment-1464734308>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/ACBJ4F5A353MCZ76OGRJ6CTW3PFI7ANCNFSM6AAAAAAVWXNUTE>\n> .\n> You are receiving this because you authored the thread.Message ID:\n> ***@***.***>\n>\n"
] | 2023-03-10T17:25:58 | 2023-03-11T15:44:42 | null | NONE | null | ### Describe the bug
DatasetGenerationError: An error occurred while generating the dataset -> ValueError: Couldn't cast ... because column names don't match
```
ValueError: Couldn't cast
_data_files: list<item: struct<filename: string>>
child 0, item: struct<filename: string>
child 0, filename: string
_fingerprint: string
_format_columns: list<item: string>
child 0, item: string
_format_kwargs: struct<>
_format_type: null
_indexes: struct<>
_output_all_columns: bool
_split: null
to
{'citation': Value(dtype='string', id=None), 'description': Value(dtype='string', id=None), 'features': {'image': {'_type': Value(dtype='string', id=None)}, 'target': {'names': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), '_type': Value(dtype='string', id=None)}}, 'homepage': Value(dtype='string', id=None), 'license': Value(dtype='string', id=None), 'splits': {'train': {'name': Value(dtype='string', id=None), 'num_bytes': Value(dtype='int64', id=None), 'num_examples': Value(dtype='int64', id=None), 'dataset_name': Value(dtype='null', id=None)}}}
because column names don't match
```
### Steps to reproduce the bug
Steps to reproduce:
1. `pip install datasets==2.10.1`
2. Attempt to load (private dataset). Note that I'm authenticated via ` huggingface-cli login`
```
from datasets import load_dataset
# load dataset
dataset = "ijmiller2/autotrain-data-betterbin-vision-10000"
dataset = load_dataset(dataset)
```
Here's the full traceback:
```Downloading and preparing dataset json/ijmiller2--autotrain-data-betterbin-vision-10000 to /Users/ian/.cache/huggingface/datasets/ijmiller2___json/ijmiller2--autotrain-data-betterbin-vision-10000-2eae034a9ff8a1a9/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51...
Downloading data files: 100%|███████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2383.80it/s]
Extracting data files: 100%|█████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 505.95it/s]
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/builder.py:1874, in ArrowBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id)
1868 writer = writer_class(
1869 features=writer._features,
1870 path=fpath.replace("SSSSS", f"{shard_id:05d}").replace("JJJJJ", f"{job_id:05d}"),
1871 storage_options=self._fs.storage_options,
1872 embed_local_files=embed_local_files,
1873 )
-> 1874 writer.write_table(table)
1875 num_examples_progress_update += len(table)
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/arrow_writer.py:568, in ArrowWriter.write_table(self, pa_table, writer_batch_size)
567 pa_table = pa_table.combine_chunks()
--> 568 pa_table = table_cast(pa_table, self._schema)
569 if self.embed_local_files:
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/table.py:2312, in table_cast(table, schema)
2311 if table.schema != schema:
-> 2312 return cast_table_to_schema(table, schema)
2313 elif table.schema.metadata != schema.metadata:
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/table.py:2270, in cast_table_to_schema(table, schema)
2269 if sorted(table.column_names) != sorted(features):
-> 2270 raise ValueError(f"Couldn't cast\n{table.schema}\nto\n{features}\nbecause column names don't match")
2271 arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
ValueError: Couldn't cast
_data_files: list<item: struct<filename: string>>
child 0, item: struct<filename: string>
child 0, filename: string
_fingerprint: string
_format_columns: list<item: string>
child 0, item: string
_format_kwargs: struct<>
_format_type: null
_indexes: struct<>
_output_all_columns: bool
_split: null
to
{'citation': Value(dtype='string', id=None), 'description': Value(dtype='string', id=None), 'features': {'image': {'_type': Value(dtype='string', id=None)}, 'target': {'names': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), '_type': Value(dtype='string', id=None)}}, 'homepage': Value(dtype='string', id=None), 'license': Value(dtype='string', id=None), 'splits': {'train': {'name': Value(dtype='string', id=None), 'num_bytes': Value(dtype='int64', id=None), 'num_examples': Value(dtype='int64', id=None), 'dataset_name': Value(dtype='null', id=None)}}}
because column names don't match
The above exception was the direct cause of the following exception:
DatasetGenerationError Traceback (most recent call last)
Input In [8], in <cell line: 6>()
4 # load dataset
5 dataset = "ijmiller2/autotrain-data-betterbin-vision-10000"
----> 6 dataset = load_dataset(dataset)
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/load.py:1782, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, **config_kwargs)
1779 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES
1781 # Download and prepare data
-> 1782 builder_instance.download_and_prepare(
1783 download_config=download_config,
1784 download_mode=download_mode,
1785 verification_mode=verification_mode,
1786 try_from_hf_gcs=try_from_hf_gcs,
1787 num_proc=num_proc,
1788 )
1790 # Build dataset for splits
1791 keep_in_memory = (
1792 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)
1793 )
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/builder.py:872, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)
870 if num_proc is not None:
871 prepare_split_kwargs["num_proc"] = num_proc
--> 872 self._download_and_prepare(
873 dl_manager=dl_manager,
874 verification_mode=verification_mode,
875 **prepare_split_kwargs,
876 **download_and_prepare_kwargs,
877 )
878 # Sync info
879 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/builder.py:967, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs)
963 split_dict.add(split_generator.split_info)
965 try:
966 # Prepare split will record examples associated to the split
--> 967 self._prepare_split(split_generator, **prepare_split_kwargs)
968 except OSError as e:
969 raise OSError(
970 "Cannot find data file. "
971 + (self.manual_download_instructions or "")
972 + "\nOriginal error:\n"
973 + str(e)
974 ) from None
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/builder.py:1749, in ArrowBasedBuilder._prepare_split(self, split_generator, file_format, num_proc, max_shard_size)
1747 job_id = 0
1748 with pbar:
-> 1749 for job_id, done, content in self._prepare_split_single(
1750 gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args
1751 ):
1752 if done:
1753 result = content
File ~/anaconda3/envs/betterbin/lib/python3.8/site-packages/datasets/builder.py:1892, in ArrowBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id)
1890 if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
1891 e = e.__context__
-> 1892 raise DatasetGenerationError("An error occurred while generating the dataset") from e
1894 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)
DatasetGenerationError: An error occurred while generating the dataset
```
### Expected behavior
I'm ultimately trying to generate my own performance metrics on validation data (before putting an endpoint into production) and so was hoping to load all or at least the validation subset from the hub.
I'm expecting the `load_dataset()` function to work as shown in the documentation [here](https://huggingface.co/docs/datasets/loading#hugging-face-hub):
```python
dataset = load_dataset(
"lhoestq/custom_squad",
revision="main" # tag name, or branch name, or commit hash
)
```
### Environment info
- `datasets` version: 2.10.1
- Platform: macOS-13.2.1-arm64-arm-64bit
- Python version: 3.8.13
- PyArrow version: 9.0.0
- Pandas version: 1.4.4 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5627/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5627/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5626 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5626/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5626/comments | https://api.github.com/repos/huggingface/datasets/issues/5626/events | https://github.com/huggingface/datasets/pull/5626 | 1,619,252,984 | PR_kwDODunzps5LyBT4 | 5,626 | Support streaming datasets with numpy.load | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006607 / 0.011353 (-0.004746) | 0.004610 / 0.011008 (-0.006398) | 0.100673 / 0.038508 (0.062165) | 0.027739 / 0.023109 (0.004630) | 0.326290 / 0.275898 (0.050392) | 0.344296 / 0.323480 (0.020816) | 0.005021 / 0.007986 (-0.002964) | 0.003327 / 0.004328 (-0.001002) | 0.077779 / 0.004250 (0.073529) | 0.040237 / 0.037052 (0.003185) | 0.308992 / 0.258489 (0.050503) | 0.355017 / 0.293841 (0.061176) | 0.031203 / 0.128546 (-0.097343) | 0.011749 / 0.075646 (-0.063898) | 0.327431 / 0.419271 (-0.091840) | 0.043033 / 0.043533 (-0.000500) | 0.309713 / 0.255139 (0.054574) | 0.336550 / 0.283200 (0.053351) | 0.084891 / 0.141683 (-0.056792) | 1.555641 / 1.452155 (0.103487) | 1.613214 / 1.492716 (0.120497) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216269 / 0.018006 (0.198262) | 0.422066 / 0.000490 (0.421576) | 0.004055 / 0.000200 (0.003855) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023759 / 0.037411 (-0.013652) | 0.096937 / 0.014526 (0.082411) | 0.105312 / 0.176557 (-0.071244) | 0.167840 / 0.737135 (-0.569295) | 0.107998 / 0.296338 (-0.188340) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.458315 / 0.215209 (0.243106) | 4.584803 / 2.077655 (2.507148) | 2.193641 / 1.504120 (0.689521) | 1.981494 / 1.541195 (0.440299) | 2.020358 / 1.468490 (0.551868) | 0.696763 / 4.584777 (-3.888014) | 3.388432 / 3.745712 (-0.357280) | 3.335038 / 5.269862 (-1.934823) | 1.648551 / 4.565676 (-2.917126) | 0.083753 / 0.424275 (-0.340522) | 0.012855 / 0.007607 (0.005248) | 0.562331 / 0.226044 (0.336286) | 5.649259 / 2.268929 (3.380330) | 2.680309 / 55.444624 (-52.764315) | 2.319297 / 6.876477 (-4.557180) | 2.444016 / 2.142072 (0.301943) | 0.809821 / 4.805227 (-3.995407) | 0.152855 / 6.500664 (-6.347809) | 0.067756 / 0.075469 (-0.007713) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.213318 / 1.841788 (-0.628470) | 13.887822 / 8.074308 (5.813514) | 14.276325 / 10.191392 (4.084933) | 0.156227 / 0.680424 (-0.524197) | 0.016377 / 0.534201 (-0.517824) | 0.377080 / 0.579283 (-0.202203) | 0.386561 / 0.434364 (-0.047803) | 0.435631 / 0.540337 (-0.104707) | 0.520863 / 1.386936 (-0.866073) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006740 / 0.011353 (-0.004613) | 0.004704 / 0.011008 (-0.006304) | 0.076840 / 0.038508 (0.038331) | 0.027519 / 0.023109 (0.004409) | 0.343219 / 0.275898 (0.067321) | 0.376810 / 0.323480 (0.053330) | 0.005048 / 0.007986 (-0.002938) | 0.003356 / 0.004328 (-0.000972) | 0.077098 / 0.004250 (0.072848) | 0.038601 / 0.037052 (0.001548) | 0.345723 / 0.258489 (0.087233) | 0.388635 / 0.293841 (0.094794) | 0.033612 / 0.128546 (-0.094934) | 0.011689 / 0.075646 (-0.063957) | 0.086446 / 0.419271 (-0.332825) | 0.044390 / 0.043533 (0.000857) | 0.343763 / 0.255139 (0.088624) | 0.368591 / 0.283200 (0.085392) | 0.091605 / 0.141683 (-0.050078) | 1.478615 / 1.452155 (0.026461) | 1.580858 / 1.492716 (0.088142) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223547 / 0.018006 (0.205541) | 0.411243 / 0.000490 (0.410753) | 0.000916 / 0.000200 (0.000716) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025223 / 0.037411 (-0.012189) | 0.100970 / 0.014526 (0.086445) | 0.108178 / 0.176557 (-0.068378) | 0.156827 / 0.737135 (-0.580308) | 0.111431 / 0.296338 (-0.184907) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434168 / 0.215209 (0.218959) | 4.361874 / 2.077655 (2.284219) | 2.060735 / 1.504120 (0.556615) | 1.861100 / 1.541195 (0.319906) | 1.920692 / 1.468490 (0.452202) | 0.697909 / 4.584777 (-3.886868) | 3.477036 / 3.745712 (-0.268676) | 3.002469 / 5.269862 (-2.267392) | 1.449325 / 4.565676 (-3.116351) | 0.083034 / 0.424275 (-0.341241) | 0.012805 / 0.007607 (0.005198) | 0.531391 / 0.226044 (0.305347) | 5.323015 / 2.268929 (3.054086) | 2.488605 / 55.444624 (-52.956020) | 2.158254 / 6.876477 (-4.718222) | 2.189633 / 2.142072 (0.047560) | 0.805972 / 4.805227 (-3.999256) | 0.153105 / 6.500664 (-6.347559) | 0.068909 / 0.075469 (-0.006561) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.276851 / 1.841788 (-0.564937) | 14.431510 / 8.074308 (6.357202) | 14.544788 / 10.191392 (4.353396) | 0.146589 / 0.680424 (-0.533835) | 0.016890 / 0.534201 (-0.517311) | 0.379897 / 0.579283 (-0.199387) | 0.389153 / 0.434364 (-0.045211) | 0.440097 / 0.540337 (-0.100241) | 0.524191 / 1.386936 (-0.862745) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e1af108015e43f9df8734a1faeeaeb9eafce3971 \"CML watermark\")\n"
] | 2023-03-10T16:33:39 | 2023-03-21T06:36:05 | 2023-03-21T06:28:54 | MEMBER | null | Support streaming datasets with `numpy.load`.
See: https://huggingface.co/datasets/qgallouedec/gia_dataset/discussions/1 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5626/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5626/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5626",
"html_url": "https://github.com/huggingface/datasets/pull/5626",
"diff_url": "https://github.com/huggingface/datasets/pull/5626.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5626.patch",
"merged_at": "2023-03-21T06:28:54"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5625 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5625/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5625/comments | https://api.github.com/repos/huggingface/datasets/issues/5625/events | https://github.com/huggingface/datasets/issues/5625 | 1,618,971,855 | I_kwDODunzps5gf4zP | 5,625 | Allow "jsonl" data type signifier | {
"login": "BramVanroy",
"id": 2779410,
"node_id": "MDQ6VXNlcjI3Nzk0MTA=",
"avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/BramVanroy",
"html_url": "https://github.com/BramVanroy",
"followers_url": "https://api.github.com/users/BramVanroy/followers",
"following_url": "https://api.github.com/users/BramVanroy/following{/other_user}",
"gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}",
"starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions",
"organizations_url": "https://api.github.com/users/BramVanroy/orgs",
"repos_url": "https://api.github.com/users/BramVanroy/repos",
"events_url": "https://api.github.com/users/BramVanroy/events{/privacy}",
"received_events_url": "https://api.github.com/users/BramVanroy/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [
"You can use \"json\" instead. It doesn't work by extension names, but rather by dataset builder names, e.g. \"text\", \"imagefolder\", etc. I don't think the example in `transformers` is correct because of that",
"Yes, I understand the reasoning but this issue is to propose that the example in transformers (while incorrect) \"makes sense\" in terms of user expectation. So the question is whether it would be possible to add \"aliases\" for common types (like \"json\" and \"text\") based on common extensions (like jsonl and txt)?"
] | 2023-03-10T13:21:48 | 2023-03-11T10:35:39 | null | CONTRIBUTOR | null | ### Feature request
`load_dataset` currently does not accept `jsonl` as type but only `json`.
### Motivation
I was working with one of the `run_translation` scripts and used my own datasets (`.jsonl`) as train_dataset. But the default code did not work because
```
FileNotFoundError: Couldn't find a dataset script at jsonl\jsonl.py or any data file in the same directory. Couldn't find 'jsonl' on the Hugging Face Hub either: FileNotFoundError: Dataset 'jsonl' doesn't exist on the Hub. If the repo is private or gated, make sure to log in with `huggingface-cli login`.
```
The reason is because the script has these lines to extract the data type by its extension. Therefore, the derived type is `jsonl` which is not recognized by datasets as the error above shows.
https://github.com/huggingface/transformers/blob/ade26bf9912f69e2110137443e4406d7dbe253e7/examples/pytorch/translation/run_translation.py#L342-L356
I suppose you could argue that this is the script's fault (in which case I'll do a PR over at `transformers`) but it makes sense to me to add `jsonl` as an alias to `json` in `datasets`.
### Your contribution
At the moment I cannot work on this. I think it can be as "easy" as having an alias for json, namely jsonl. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5625/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5625/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5624 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5624/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5624/comments | https://api.github.com/repos/huggingface/datasets/issues/5624/events | https://github.com/huggingface/datasets/issues/5624 | 1,617,400,192 | I_kwDODunzps5gZ5GA | 5,624 | glue datasets returning -1 for test split | {
"login": "lithafnium",
"id": 8939967,
"node_id": "MDQ6VXNlcjg5Mzk5Njc=",
"avatar_url": "https://avatars.githubusercontent.com/u/8939967?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lithafnium",
"html_url": "https://github.com/lithafnium",
"followers_url": "https://api.github.com/users/lithafnium/followers",
"following_url": "https://api.github.com/users/lithafnium/following{/other_user}",
"gists_url": "https://api.github.com/users/lithafnium/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lithafnium/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lithafnium/subscriptions",
"organizations_url": "https://api.github.com/users/lithafnium/orgs",
"repos_url": "https://api.github.com/users/lithafnium/repos",
"events_url": "https://api.github.com/users/lithafnium/events{/privacy}",
"received_events_url": "https://api.github.com/users/lithafnium/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi @lithafnium, thanks for reporting.\r\n\r\nPlease note that you can use the \"Community\" tab in the corresponding dataset page to start any discussion: https://huggingface.co/datasets/glue/discussions\r\n\r\nIndeed this issue was already raised there (https://huggingface.co/datasets/glue/discussions/5) and answered: https://huggingface.co/datasets/glue/discussions/5#63907885937867f0cb3cde31\r\n> The test labels are not public.\r\n>\r\n> Note this dataset belongs to a benchmark: people send their predictions for the test split to GLUE (https://gluebenchmark.com/) and then they get a score in their leaderboard...\r\n"
] | 2023-03-09T14:47:18 | 2023-03-09T16:49:29 | 2023-03-09T16:49:29 | NONE | null | ### Describe the bug
Downloading any dataset from GLUE has -1 as class labels for test split. Train and validation have regular 0/1 class labels. This is also present in the dataset card online.
### Steps to reproduce the bug
```
dataset = load_dataset("glue", "sst2")
for d in dataset:
# prints out -1
print(d["label"]
```
### Expected behavior
Expected behavior should be 0/1 instead of -1.
### Environment info
- `datasets` version: 2.4.0
- Platform: Linux-5.15.0-46-generic-x86_64-with-glibc2.17
- Python version: 3.8.16
- PyArrow version: 8.0.0
- Pandas version: 1.5.3
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5624/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5624/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5623 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5623/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5623/comments | https://api.github.com/repos/huggingface/datasets/issues/5623/events | https://github.com/huggingface/datasets/pull/5623 | 1,616,712,665 | PR_kwDODunzps5Lpb4q | 5,623 | Remove set_access_token usage + fail tests if FutureWarning | {
"login": "Wauplin",
"id": 11801849,
"node_id": "MDQ6VXNlcjExODAxODQ5",
"avatar_url": "https://avatars.githubusercontent.com/u/11801849?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Wauplin",
"html_url": "https://github.com/Wauplin",
"followers_url": "https://api.github.com/users/Wauplin/followers",
"following_url": "https://api.github.com/users/Wauplin/following{/other_user}",
"gists_url": "https://api.github.com/users/Wauplin/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Wauplin/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Wauplin/subscriptions",
"organizations_url": "https://api.github.com/users/Wauplin/orgs",
"repos_url": "https://api.github.com/users/Wauplin/repos",
"events_url": "https://api.github.com/users/Wauplin/events{/privacy}",
"received_events_url": "https://api.github.com/users/Wauplin/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008505 / 0.011353 (-0.002848) | 0.004445 / 0.011008 (-0.006563) | 0.102197 / 0.038508 (0.063689) | 0.029886 / 0.023109 (0.006776) | 0.305387 / 0.275898 (0.029489) | 0.355986 / 0.323480 (0.032507) | 0.006814 / 0.007986 (-0.001172) | 0.003298 / 0.004328 (-0.001030) | 0.079204 / 0.004250 (0.074954) | 0.035618 / 0.037052 (-0.001434) | 0.320430 / 0.258489 (0.061941) | 0.353330 / 0.293841 (0.059490) | 0.033280 / 0.128546 (-0.095266) | 0.011300 / 0.075646 (-0.064347) | 0.324627 / 0.419271 (-0.094644) | 0.040405 / 0.043533 (-0.003128) | 0.308760 / 0.255139 (0.053621) | 0.331885 / 0.283200 (0.048685) | 0.084605 / 0.141683 (-0.057077) | 1.576598 / 1.452155 (0.124443) | 1.530694 / 1.492716 (0.037977) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191142 / 0.018006 (0.173136) | 0.404042 / 0.000490 (0.403552) | 0.001185 / 0.000200 (0.000985) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022889 / 0.037411 (-0.014523) | 0.095862 / 0.014526 (0.081336) | 0.104382 / 0.176557 (-0.072175) | 0.139407 / 0.737135 (-0.597728) | 0.106813 / 0.296338 (-0.189525) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419083 / 0.215209 (0.203874) | 4.188702 / 2.077655 (2.111047) | 1.897854 / 1.504120 (0.393734) | 1.689544 / 1.541195 (0.148350) | 1.714032 / 1.468490 (0.245542) | 0.695541 / 4.584777 (-3.889236) | 3.370584 / 3.745712 (-0.375128) | 3.205549 / 5.269862 (-2.064313) | 1.641202 / 4.565676 (-2.924474) | 0.081849 / 0.424275 (-0.342426) | 0.012043 / 0.007607 (0.004436) | 0.529618 / 0.226044 (0.303574) | 5.314167 / 2.268929 (3.045238) | 2.357271 / 55.444624 (-53.087353) | 1.979684 / 6.876477 (-4.896793) | 2.030057 / 2.142072 (-0.112015) | 0.813013 / 4.805227 (-3.992214) | 0.150165 / 6.500664 (-6.350499) | 0.064595 / 0.075469 (-0.010874) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.237824 / 1.841788 (-0.603964) | 13.552178 / 8.074308 (5.477870) | 14.089433 / 10.191392 (3.898041) | 0.149325 / 0.680424 (-0.531099) | 0.028543 / 0.534201 (-0.505658) | 0.396848 / 0.579283 (-0.182435) | 0.396230 / 0.434364 (-0.038134) | 0.466317 / 0.540337 (-0.074021) | 0.539579 / 1.386936 (-0.847357) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006224 / 0.011353 (-0.005128) | 0.004429 / 0.011008 (-0.006579) | 0.075740 / 0.038508 (0.037232) | 0.026717 / 0.023109 (0.003608) | 0.341685 / 0.275898 (0.065787) | 0.383671 / 0.323480 (0.060191) | 0.004682 / 0.007986 (-0.003304) | 0.004681 / 0.004328 (0.000352) | 0.076638 / 0.004250 (0.072387) | 0.034577 / 0.037052 (-0.002476) | 0.341160 / 0.258489 (0.082671) | 0.407590 / 0.293841 (0.113749) | 0.031121 / 0.128546 (-0.097425) | 0.011479 / 0.075646 (-0.064167) | 0.085299 / 0.419271 (-0.333973) | 0.042005 / 0.043533 (-0.001528) | 0.339682 / 0.255139 (0.084543) | 0.377669 / 0.283200 (0.094469) | 0.087751 / 0.141683 (-0.053932) | 1.523910 / 1.452155 (0.071756) | 1.607487 / 1.492716 (0.114771) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225605 / 0.018006 (0.207599) | 0.395851 / 0.000490 (0.395361) | 0.004404 / 0.000200 (0.004204) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024489 / 0.037411 (-0.012922) | 0.099813 / 0.014526 (0.085287) | 0.107392 / 0.176557 (-0.069165) | 0.139567 / 0.737135 (-0.597568) | 0.110080 / 0.296338 (-0.186258) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.449051 / 0.215209 (0.233841) | 4.463098 / 2.077655 (2.385443) | 2.122548 / 1.504120 (0.618428) | 1.913863 / 1.541195 (0.372669) | 1.963988 / 1.468490 (0.495498) | 0.698442 / 4.584777 (-3.886335) | 3.330425 / 3.745712 (-0.415287) | 1.867843 / 5.269862 (-3.402019) | 1.163740 / 4.565676 (-3.401937) | 0.083209 / 0.424275 (-0.341066) | 0.012594 / 0.007607 (0.004987) | 0.547074 / 0.226044 (0.321030) | 5.474779 / 2.268929 (3.205851) | 2.548025 / 55.444624 (-52.896599) | 2.202435 / 6.876477 (-4.674041) | 2.220330 / 2.142072 (0.078257) | 0.810104 / 4.805227 (-3.995124) | 0.151141 / 6.500664 (-6.349523) | 0.066204 / 0.075469 (-0.009265) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272075 / 1.841788 (-0.569712) | 13.749523 / 8.074308 (5.675215) | 14.270974 / 10.191392 (4.079582) | 0.141285 / 0.680424 (-0.539139) | 0.016526 / 0.534201 (-0.517675) | 0.393175 / 0.579283 (-0.186109) | 0.391577 / 0.434364 (-0.042787) | 0.492824 / 0.540337 (-0.047513) | 0.580069 / 1.386936 (-0.806867) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1cda14136c9f79c763c17d49b77eabfb233fbb35 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008901 / 0.011353 (-0.002452) | 0.005017 / 0.011008 (-0.005991) | 0.099340 / 0.038508 (0.060832) | 0.034218 / 0.023109 (0.011109) | 0.295927 / 0.275898 (0.020029) | 0.330087 / 0.323480 (0.006607) | 0.008041 / 0.007986 (0.000056) | 0.005013 / 0.004328 (0.000685) | 0.074255 / 0.004250 (0.070004) | 0.049634 / 0.037052 (0.012582) | 0.299972 / 0.258489 (0.041483) | 0.349879 / 0.293841 (0.056038) | 0.038500 / 0.128546 (-0.090047) | 0.011980 / 0.075646 (-0.063666) | 0.332408 / 0.419271 (-0.086863) | 0.048385 / 0.043533 (0.004852) | 0.300393 / 0.255139 (0.045254) | 0.316972 / 0.283200 (0.033772) | 0.101674 / 0.141683 (-0.040009) | 1.424300 / 1.452155 (-0.027854) | 1.520658 / 1.492716 (0.027942) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.270084 / 0.018006 (0.252078) | 0.538612 / 0.000490 (0.538123) | 0.004439 / 0.000200 (0.004240) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026841 / 0.037411 (-0.010570) | 0.106454 / 0.014526 (0.091928) | 0.118371 / 0.176557 (-0.058186) | 0.155545 / 0.737135 (-0.581590) | 0.125119 / 0.296338 (-0.171220) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395794 / 0.215209 (0.180585) | 3.958195 / 2.077655 (1.880540) | 1.789010 / 1.504120 (0.284890) | 1.601380 / 1.541195 (0.060186) | 1.641062 / 1.468490 (0.172572) | 0.679547 / 4.584777 (-3.905230) | 3.778018 / 3.745712 (0.032306) | 2.101232 / 5.269862 (-3.168630) | 1.463932 / 4.565676 (-3.101745) | 0.083639 / 0.424275 (-0.340636) | 0.012339 / 0.007607 (0.004732) | 0.498708 / 0.226044 (0.272663) | 4.995178 / 2.268929 (2.726249) | 2.272650 / 55.444624 (-53.171975) | 1.907879 / 6.876477 (-4.968598) | 2.012666 / 2.142072 (-0.129407) | 0.829564 / 4.805227 (-3.975663) | 0.165049 / 6.500664 (-6.335615) | 0.062291 / 0.075469 (-0.013178) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.193977 / 1.841788 (-0.647811) | 14.816939 / 8.074308 (6.742631) | 14.369729 / 10.191392 (4.178337) | 0.156339 / 0.680424 (-0.524084) | 0.029151 / 0.534201 (-0.505050) | 0.449362 / 0.579283 (-0.129921) | 0.451895 / 0.434364 (0.017531) | 0.520324 / 0.540337 (-0.020013) | 0.610716 / 1.386936 (-0.776220) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007145 / 0.011353 (-0.004207) | 0.005299 / 0.011008 (-0.005710) | 0.074216 / 0.038508 (0.035708) | 0.033015 / 0.023109 (0.009906) | 0.337117 / 0.275898 (0.061219) | 0.367161 / 0.323480 (0.043682) | 0.005898 / 0.007986 (-0.002088) | 0.005283 / 0.004328 (0.000955) | 0.073795 / 0.004250 (0.069544) | 0.049253 / 0.037052 (0.012201) | 0.343327 / 0.258489 (0.084838) | 0.396417 / 0.293841 (0.102576) | 0.037162 / 0.128546 (-0.091384) | 0.012456 / 0.075646 (-0.063191) | 0.086668 / 0.419271 (-0.332604) | 0.049937 / 0.043533 (0.006404) | 0.335138 / 0.255139 (0.079999) | 0.358111 / 0.283200 (0.074912) | 0.107328 / 0.141683 (-0.034355) | 1.482290 / 1.452155 (0.030135) | 1.557872 / 1.492716 (0.065156) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.343759 / 0.018006 (0.325752) | 0.542697 / 0.000490 (0.542207) | 0.025943 / 0.000200 (0.025743) | 0.000264 / 0.000054 (0.000209) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028469 / 0.037411 (-0.008943) | 0.108620 / 0.014526 (0.094094) | 0.123667 / 0.176557 (-0.052890) | 0.168829 / 0.737135 (-0.568306) | 0.125875 / 0.296338 (-0.170464) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424640 / 0.215209 (0.209431) | 4.227611 / 2.077655 (2.149956) | 2.003605 / 1.504120 (0.499486) | 1.810696 / 1.541195 (0.269501) | 1.882700 / 1.468490 (0.414210) | 0.701361 / 4.584777 (-3.883416) | 3.808054 / 3.745712 (0.062342) | 3.234896 / 5.269862 (-2.034966) | 1.872195 / 4.565676 (-2.693482) | 0.088102 / 0.424275 (-0.336173) | 0.012810 / 0.007607 (0.005203) | 0.551855 / 0.226044 (0.325810) | 5.245654 / 2.268929 (2.976725) | 2.557123 / 55.444624 (-52.887502) | 2.238897 / 6.876477 (-4.637580) | 2.256260 / 2.142072 (0.114187) | 0.849804 / 4.805227 (-3.955424) | 0.170557 / 6.500664 (-6.330107) | 0.064718 / 0.075469 (-0.010751) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.271701 / 1.841788 (-0.570087) | 14.925010 / 8.074308 (6.850702) | 14.966948 / 10.191392 (4.775556) | 0.162966 / 0.680424 (-0.517458) | 0.017618 / 0.534201 (-0.516583) | 0.433484 / 0.579283 (-0.145799) | 0.430047 / 0.434364 (-0.004316) | 0.537356 / 0.540337 (-0.002981) | 0.639237 / 1.386936 (-0.747699) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#aba888cb4d225b1a05596f52258a079bda98df70 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012054 / 0.011353 (0.000702) | 0.005923 / 0.011008 (-0.005085) | 0.129531 / 0.038508 (0.091023) | 0.036283 / 0.023109 (0.013173) | 0.374406 / 0.275898 (0.098508) | 0.452538 / 0.323480 (0.129058) | 0.009419 / 0.007986 (0.001434) | 0.004783 / 0.004328 (0.000454) | 0.095292 / 0.004250 (0.091042) | 0.041290 / 0.037052 (0.004238) | 0.403940 / 0.258489 (0.145451) | 0.443091 / 0.293841 (0.149250) | 0.054635 / 0.128546 (-0.073911) | 0.019062 / 0.075646 (-0.056584) | 0.417053 / 0.419271 (-0.002218) | 0.060865 / 0.043533 (0.017332) | 0.378535 / 0.255139 (0.123396) | 0.401036 / 0.283200 (0.117836) | 0.122959 / 0.141683 (-0.018724) | 1.768517 / 1.452155 (0.316362) | 1.794700 / 1.492716 (0.301984) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246529 / 0.018006 (0.228523) | 0.576887 / 0.000490 (0.576397) | 0.005031 / 0.000200 (0.004831) | 0.000125 / 0.000054 (0.000070) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027363 / 0.037411 (-0.010049) | 0.119037 / 0.014526 (0.104511) | 0.148109 / 0.176557 (-0.028447) | 0.179370 / 0.737135 (-0.557765) | 0.145105 / 0.296338 (-0.151234) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.588748 / 0.215209 (0.373539) | 5.934433 / 2.077655 (3.856778) | 2.549811 / 1.504120 (1.045691) | 2.234616 / 1.541195 (0.693421) | 2.268002 / 1.468490 (0.799512) | 1.154643 / 4.584777 (-3.430134) | 5.333935 / 3.745712 (1.588223) | 2.971065 / 5.269862 (-2.298796) | 2.131427 / 4.565676 (-2.434250) | 0.127737 / 0.424275 (-0.296538) | 0.014699 / 0.007607 (0.007091) | 0.735160 / 0.226044 (0.509115) | 7.403838 / 2.268929 (5.134909) | 3.298169 / 55.444624 (-52.146455) | 2.661285 / 6.876477 (-4.215192) | 2.688877 / 2.142072 (0.546805) | 1.344110 / 4.805227 (-3.461118) | 0.242016 / 6.500664 (-6.258648) | 0.077418 / 0.075469 (0.001948) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.566426 / 1.841788 (-0.275362) | 17.144308 / 8.074308 (9.070000) | 19.360598 / 10.191392 (9.169206) | 0.238554 / 0.680424 (-0.441870) | 0.044946 / 0.534201 (-0.489255) | 0.554183 / 0.579283 (-0.025100) | 0.630175 / 0.434364 (0.195811) | 0.630319 / 0.540337 (0.089982) | 0.745060 / 1.386936 (-0.641876) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009255 / 0.011353 (-0.002098) | 0.006951 / 0.011008 (-0.004057) | 0.092021 / 0.038508 (0.053513) | 0.035588 / 0.023109 (0.012479) | 0.415564 / 0.275898 (0.139666) | 0.446393 / 0.323480 (0.122913) | 0.006532 / 0.007986 (-0.001453) | 0.005099 / 0.004328 (0.000771) | 0.094801 / 0.004250 (0.090550) | 0.044926 / 0.037052 (0.007874) | 0.439125 / 0.258489 (0.180636) | 0.473004 / 0.293841 (0.179163) | 0.057025 / 0.128546 (-0.071522) | 0.018711 / 0.075646 (-0.056935) | 0.110844 / 0.419271 (-0.308427) | 0.058347 / 0.043533 (0.014814) | 0.435721 / 0.255139 (0.180583) | 0.434624 / 0.283200 (0.151424) | 0.114505 / 0.141683 (-0.027178) | 1.722379 / 1.452155 (0.270225) | 1.775836 / 1.492716 (0.283120) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.275893 / 0.018006 (0.257887) | 0.552590 / 0.000490 (0.552100) | 0.007919 / 0.000200 (0.007719) | 0.000122 / 0.000054 (0.000068) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030003 / 0.037411 (-0.007408) | 0.130145 / 0.014526 (0.115619) | 0.131878 / 0.176557 (-0.044678) | 0.194693 / 0.737135 (-0.542442) | 0.137689 / 0.296338 (-0.158650) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.619591 / 0.215209 (0.404382) | 6.324095 / 2.077655 (4.246441) | 2.756563 / 1.504120 (1.252444) | 2.384744 / 1.541195 (0.843549) | 2.450407 / 1.468490 (0.981917) | 1.235391 / 4.584777 (-3.349386) | 5.535383 / 3.745712 (1.789671) | 4.831927 / 5.269862 (-0.437934) | 2.757158 / 4.565676 (-1.808519) | 0.133980 / 0.424275 (-0.290295) | 0.014965 / 0.007607 (0.007358) | 0.731423 / 0.226044 (0.505379) | 7.401850 / 2.268929 (5.132921) | 3.346585 / 55.444624 (-52.098039) | 2.705523 / 6.876477 (-4.170953) | 2.637397 / 2.142072 (0.495324) | 1.347745 / 4.805227 (-3.457482) | 0.248658 / 6.500664 (-6.252006) | 0.077427 / 0.075469 (0.001958) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.520860 / 1.841788 (-0.320928) | 17.153000 / 8.074308 (9.078692) | 19.051393 / 10.191392 (8.860001) | 0.236840 / 0.680424 (-0.443584) | 0.026638 / 0.534201 (-0.507563) | 0.518417 / 0.579283 (-0.060866) | 0.607555 / 0.434364 (0.173191) | 0.637381 / 0.540337 (0.097044) | 0.767109 / 1.386936 (-0.619827) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5ee291f2c5e68a782c82f916e250d470a7e285e7 \"CML watermark\")\n",
"Great, I merged it. Thanks for the review :)",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006711 / 0.011353 (-0.004641) | 0.004472 / 0.011008 (-0.006536) | 0.099581 / 0.038508 (0.061073) | 0.028036 / 0.023109 (0.004927) | 0.301197 / 0.275898 (0.025298) | 0.339341 / 0.323480 (0.015861) | 0.005107 / 0.007986 (-0.002879) | 0.003312 / 0.004328 (-0.001017) | 0.075823 / 0.004250 (0.071573) | 0.040861 / 0.037052 (0.003809) | 0.303407 / 0.258489 (0.044918) | 0.350717 / 0.293841 (0.056876) | 0.031657 / 0.128546 (-0.096889) | 0.011627 / 0.075646 (-0.064020) | 0.325465 / 0.419271 (-0.093806) | 0.052671 / 0.043533 (0.009138) | 0.301953 / 0.255139 (0.046814) | 0.327164 / 0.283200 (0.043964) | 0.091264 / 0.141683 (-0.050419) | 1.508947 / 1.452155 (0.056792) | 1.605685 / 1.492716 (0.112968) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.202977 / 0.018006 (0.184971) | 0.400602 / 0.000490 (0.400112) | 0.003253 / 0.000200 (0.003053) | 0.000080 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022453 / 0.037411 (-0.014958) | 0.098633 / 0.014526 (0.084107) | 0.105996 / 0.176557 (-0.070561) | 0.162428 / 0.737135 (-0.574707) | 0.107139 / 0.296338 (-0.189199) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453061 / 0.215209 (0.237852) | 4.530844 / 2.077655 (2.453190) | 2.286394 / 1.504120 (0.782274) | 2.076479 / 1.541195 (0.535284) | 2.143730 / 1.468490 (0.675240) | 0.702540 / 4.584777 (-3.882237) | 3.442688 / 3.745712 (-0.303024) | 1.874429 / 5.269862 (-3.395433) | 1.172331 / 4.565676 (-3.393346) | 0.083643 / 0.424275 (-0.340632) | 0.012519 / 0.007607 (0.004911) | 0.556859 / 0.226044 (0.330814) | 5.582843 / 2.268929 (3.313915) | 2.753734 / 55.444624 (-52.690890) | 2.415771 / 6.876477 (-4.460705) | 2.531428 / 2.142072 (0.389356) | 0.813005 / 4.805227 (-3.992222) | 0.153322 / 6.500664 (-6.347343) | 0.068061 / 0.075469 (-0.007408) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180481 / 1.841788 (-0.661306) | 13.623933 / 8.074308 (5.549625) | 14.431288 / 10.191392 (4.239896) | 0.127580 / 0.680424 (-0.552844) | 0.016714 / 0.534201 (-0.517487) | 0.394236 / 0.579283 (-0.185047) | 0.381718 / 0.434364 (-0.052646) | 0.486749 / 0.540337 (-0.053589) | 0.565939 / 1.386936 (-0.820997) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006720 / 0.011353 (-0.004633) | 0.004518 / 0.011008 (-0.006491) | 0.076819 / 0.038508 (0.038311) | 0.027272 / 0.023109 (0.004163) | 0.340890 / 0.275898 (0.064992) | 0.381435 / 0.323480 (0.057955) | 0.004980 / 0.007986 (-0.003005) | 0.003382 / 0.004328 (-0.000947) | 0.076368 / 0.004250 (0.072117) | 0.037365 / 0.037052 (0.000313) | 0.341484 / 0.258489 (0.082995) | 0.388917 / 0.293841 (0.095076) | 0.032004 / 0.128546 (-0.096543) | 0.011612 / 0.075646 (-0.064034) | 0.084929 / 0.419271 (-0.334342) | 0.041861 / 0.043533 (-0.001671) | 0.350392 / 0.255139 (0.095253) | 0.369745 / 0.283200 (0.086546) | 0.088301 / 0.141683 (-0.053382) | 1.587296 / 1.452155 (0.135141) | 1.629761 / 1.492716 (0.137045) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.174825 / 0.018006 (0.156818) | 0.414371 / 0.000490 (0.413881) | 0.001595 / 0.000200 (0.001395) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025403 / 0.037411 (-0.012009) | 0.099593 / 0.014526 (0.085067) | 0.108819 / 0.176557 (-0.067738) | 0.161613 / 0.737135 (-0.575523) | 0.112302 / 0.296338 (-0.184037) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439234 / 0.215209 (0.224024) | 4.389073 / 2.077655 (2.311418) | 2.063215 / 1.504120 (0.559095) | 1.852550 / 1.541195 (0.311356) | 1.920014 / 1.468490 (0.451524) | 0.710255 / 4.584777 (-3.874522) | 3.430549 / 3.745712 (-0.315164) | 1.886072 / 5.269862 (-3.383790) | 1.177490 / 4.565676 (-3.388186) | 0.084877 / 0.424275 (-0.339398) | 0.012894 / 0.007607 (0.005287) | 0.544950 / 0.226044 (0.318906) | 5.467347 / 2.268929 (3.198419) | 2.508169 / 55.444624 (-52.936455) | 2.167756 / 6.876477 (-4.708721) | 2.212817 / 2.142072 (0.070744) | 0.824762 / 4.805227 (-3.980465) | 0.154387 / 6.500664 (-6.346277) | 0.068535 / 0.075469 (-0.006934) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.284165 / 1.841788 (-0.557623) | 14.153006 / 8.074308 (6.078697) | 14.152569 / 10.191392 (3.961177) | 0.130083 / 0.680424 (-0.550341) | 0.016556 / 0.534201 (-0.517645) | 0.383828 / 0.579283 (-0.195455) | 0.388241 / 0.434364 (-0.046123) | 0.477982 / 0.540337 (-0.062355) | 0.565583 / 1.386936 (-0.821353) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f1e7442d34a059ff377437381542cc762feab057 \"CML watermark\")\n"
] | 2023-03-09T08:46:01 | 2023-03-09T15:39:00 | 2023-03-09T15:31:59 | CONTRIBUTOR | null | `set_access_token` is deprecated and will be removed in `huggingface_hub>=0.14`.
This PR removes it from the tests (it was not used in `datasets` source code itself). FYI, it was not needed since `set_access_token` was just setting git credentials and `datasets` doesn't seem to use git anywhere.
In the future, use `set_git_credential` if needed. It is a git-credential-agnostic helper, i.e. you can store your git token in `git-credential-cache`, `git-credential-store`, `osxkeychain`, etc. The legacy `set_access_token` could only set in `git-credential-store` no matter the user preference.
(for context, I found out about this while working on https://github.com/huggingface/huggingface_hub/pull/1381)
---
In addition to this, I have added
```
filterwarnings =
error::FutureWarning:huggingface_hub*
```
to the `setup.cfg` config file to fail on future warnings from `huggingface_hub`. In `hfh`'s CI we trigger on FutureWarning from any package but it's less robust (any package update leads can lead to a failure). No obligation to keep it like that (I can remove it if you prefer) but I think it's a good idea in order to track future FutureWarnings.
FYI, in `huggingface_hub` tests we use `-Werror::FutureWarning --log-cli-level=INFO -sv --durations=0`
- FutureWarning are processed as error
- verbose mode / INFO logs (and above) are captured for easier debugging in github report
- track each test duration, just to see where we can improve. We have a quite long CI (~10min) so it helped improve that. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5623/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5623/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5623",
"html_url": "https://github.com/huggingface/datasets/pull/5623",
"diff_url": "https://github.com/huggingface/datasets/pull/5623.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5623.patch",
"merged_at": "2023-03-09T15:31:58"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5622 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5622/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5622/comments | https://api.github.com/repos/huggingface/datasets/issues/5622/events | https://github.com/huggingface/datasets/pull/5622 | 1,615,190,942 | PR_kwDODunzps5LkSj8 | 5,622 | Update README template to better template | {
"login": "emiltj",
"id": 54767532,
"node_id": "MDQ6VXNlcjU0NzY3NTMy",
"avatar_url": "https://avatars.githubusercontent.com/u/54767532?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/emiltj",
"html_url": "https://github.com/emiltj",
"followers_url": "https://api.github.com/users/emiltj/followers",
"following_url": "https://api.github.com/users/emiltj/following{/other_user}",
"gists_url": "https://api.github.com/users/emiltj/gists{/gist_id}",
"starred_url": "https://api.github.com/users/emiltj/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/emiltj/subscriptions",
"organizations_url": "https://api.github.com/users/emiltj/orgs",
"repos_url": "https://api.github.com/users/emiltj/repos",
"events_url": "https://api.github.com/users/emiltj/events{/privacy}",
"received_events_url": "https://api.github.com/users/emiltj/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"IMO this template should stay generic.\r\n\r\nAlso, we now use [the card template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md) from `hugginface_hub` as the source of truth on the Hub (you now have the option to import it into the dataset card/README.md), so I think the next step would be deleting this template rather than updating it.",
"Agreed, the PR was a mistake and meant for my own repo. My bad",
"Feel free to close the PR then."
] | 2023-03-08T12:30:23 | 2023-03-11T05:07:38 | 2023-03-11T05:07:38 | NONE | null | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5622/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5622/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5622",
"html_url": "https://github.com/huggingface/datasets/pull/5622",
"diff_url": "https://github.com/huggingface/datasets/pull/5622.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5622.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5621 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5621/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5621/comments | https://api.github.com/repos/huggingface/datasets/issues/5621/events | https://github.com/huggingface/datasets/pull/5621 | 1,615,029,615 | PR_kwDODunzps5LjwD8 | 5,621 | Adding Oracle Cloud to docs | {
"login": "ahosler",
"id": 29129502,
"node_id": "MDQ6VXNlcjI5MTI5NTAy",
"avatar_url": "https://avatars.githubusercontent.com/u/29129502?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ahosler",
"html_url": "https://github.com/ahosler",
"followers_url": "https://api.github.com/users/ahosler/followers",
"following_url": "https://api.github.com/users/ahosler/following{/other_user}",
"gists_url": "https://api.github.com/users/ahosler/gists{/gist_id}",
"starred_url": "https://api.github.com/users/ahosler/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ahosler/subscriptions",
"organizations_url": "https://api.github.com/users/ahosler/orgs",
"repos_url": "https://api.github.com/users/ahosler/repos",
"events_url": "https://api.github.com/users/ahosler/events{/privacy}",
"received_events_url": "https://api.github.com/users/ahosler/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006183 / 0.011353 (-0.005170) | 0.004377 / 0.011008 (-0.006631) | 0.096898 / 0.038508 (0.058390) | 0.027729 / 0.023109 (0.004620) | 0.336582 / 0.275898 (0.060684) | 0.353792 / 0.323480 (0.030312) | 0.004541 / 0.007986 (-0.003445) | 0.004349 / 0.004328 (0.000020) | 0.074403 / 0.004250 (0.070153) | 0.033918 / 0.037052 (-0.003134) | 0.341505 / 0.258489 (0.083016) | 0.380192 / 0.293841 (0.086351) | 0.031703 / 0.128546 (-0.096843) | 0.011561 / 0.075646 (-0.064086) | 0.321848 / 0.419271 (-0.097423) | 0.043407 / 0.043533 (-0.000126) | 0.330365 / 0.255139 (0.075226) | 0.364630 / 0.283200 (0.081430) | 0.084798 / 0.141683 (-0.056885) | 1.450908 / 1.452155 (-0.001246) | 1.522235 / 1.492716 (0.029519) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198267 / 0.018006 (0.180261) | 0.409554 / 0.000490 (0.409065) | 0.002501 / 0.000200 (0.002301) | 0.000270 / 0.000054 (0.000215) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021801 / 0.037411 (-0.015610) | 0.097429 / 0.014526 (0.082904) | 0.103259 / 0.176557 (-0.073298) | 0.161483 / 0.737135 (-0.575652) | 0.107843 / 0.296338 (-0.188496) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427057 / 0.215209 (0.211848) | 4.259477 / 2.077655 (2.181823) | 1.945819 / 1.504120 (0.441699) | 1.733013 / 1.541195 (0.191819) | 1.748486 / 1.468490 (0.279996) | 0.702231 / 4.584777 (-3.882546) | 3.387608 / 3.745712 (-0.358104) | 1.890187 / 5.269862 (-3.379675) | 1.300465 / 4.565676 (-3.265211) | 0.083702 / 0.424275 (-0.340573) | 0.012674 / 0.007607 (0.005067) | 0.527978 / 0.226044 (0.301934) | 5.259610 / 2.268929 (2.990681) | 2.366512 / 55.444624 (-53.078113) | 2.013811 / 6.876477 (-4.862666) | 2.058175 / 2.142072 (-0.083898) | 0.815042 / 4.805227 (-3.990185) | 0.153496 / 6.500664 (-6.347168) | 0.065442 / 0.075469 (-0.010027) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.227494 / 1.841788 (-0.614294) | 13.812921 / 8.074308 (5.738613) | 14.430149 / 10.191392 (4.238757) | 0.145422 / 0.680424 (-0.535002) | 0.016672 / 0.534201 (-0.517529) | 0.382126 / 0.579283 (-0.197157) | 0.388369 / 0.434364 (-0.045995) | 0.446133 / 0.540337 (-0.094204) | 0.531044 / 1.386936 (-0.855892) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006273 / 0.011353 (-0.005080) | 0.004557 / 0.011008 (-0.006452) | 0.077398 / 0.038508 (0.038890) | 0.027295 / 0.023109 (0.004185) | 0.340866 / 0.275898 (0.064968) | 0.373918 / 0.323480 (0.050438) | 0.004967 / 0.007986 (-0.003018) | 0.003337 / 0.004328 (-0.000991) | 0.076041 / 0.004250 (0.071791) | 0.036708 / 0.037052 (-0.000344) | 0.346126 / 0.258489 (0.087637) | 0.385177 / 0.293841 (0.091336) | 0.032272 / 0.128546 (-0.096275) | 0.011756 / 0.075646 (-0.063890) | 0.086512 / 0.419271 (-0.332759) | 0.049310 / 0.043533 (0.005777) | 0.339352 / 0.255139 (0.084213) | 0.372058 / 0.283200 (0.088859) | 0.089712 / 0.141683 (-0.051971) | 1.501964 / 1.452155 (0.049809) | 1.573753 / 1.492716 (0.081037) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.162075 / 0.018006 (0.144069) | 0.391462 / 0.000490 (0.390973) | 0.002868 / 0.000200 (0.002668) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024176 / 0.037411 (-0.013235) | 0.099631 / 0.014526 (0.085105) | 0.107544 / 0.176557 (-0.069013) | 0.157659 / 0.737135 (-0.579477) | 0.111130 / 0.296338 (-0.185209) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442086 / 0.215209 (0.226877) | 4.426311 / 2.077655 (2.348657) | 2.086133 / 1.504120 (0.582013) | 1.860415 / 1.541195 (0.319220) | 1.892306 / 1.468490 (0.423816) | 0.702752 / 4.584777 (-3.882025) | 3.394358 / 3.745712 (-0.351354) | 1.857396 / 5.269862 (-3.412466) | 1.167168 / 4.565676 (-3.398509) | 0.083549 / 0.424275 (-0.340726) | 0.012780 / 0.007607 (0.005173) | 0.547075 / 0.226044 (0.321031) | 5.466619 / 2.268929 (3.197691) | 2.548893 / 55.444624 (-52.895731) | 2.185574 / 6.876477 (-4.690903) | 2.188000 / 2.142072 (0.045928) | 0.810370 / 4.805227 (-3.994857) | 0.153320 / 6.500664 (-6.347344) | 0.068409 / 0.075469 (-0.007060) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.330431 / 1.841788 (-0.511356) | 14.178916 / 8.074308 (6.104608) | 14.409594 / 10.191392 (4.218202) | 0.156270 / 0.680424 (-0.524154) | 0.016452 / 0.534201 (-0.517749) | 0.379837 / 0.579283 (-0.199447) | 0.389896 / 0.434364 (-0.044468) | 0.443892 / 0.540337 (-0.096446) | 0.531392 / 1.386936 (-0.855544) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e502117cafd92fd9c25d1d6dd047cc650c691629 \"CML watermark\")\n"
] | 2023-03-08T10:22:50 | 2023-03-11T00:57:18 | 2023-03-11T00:49:56 | CONTRIBUTOR | null | Adding Oracle Cloud's fsspec implementation to the list of supported cloud storage providers. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5621/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5621/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5621",
"html_url": "https://github.com/huggingface/datasets/pull/5621",
"diff_url": "https://github.com/huggingface/datasets/pull/5621.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5621.patch",
"merged_at": "2023-03-11T00:49:56"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5620 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5620/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5620/comments | https://api.github.com/repos/huggingface/datasets/issues/5620/events | https://github.com/huggingface/datasets/pull/5620 | 1,613,460,520 | PR_kwDODunzps5LefAf | 5,620 | Bump pyarrow to 8.0.0 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009873 / 0.011353 (-0.001480) | 0.005180 / 0.011008 (-0.005828) | 0.099587 / 0.038508 (0.061079) | 0.035674 / 0.023109 (0.012565) | 0.299156 / 0.275898 (0.023258) | 0.361253 / 0.323480 (0.037773) | 0.008159 / 0.007986 (0.000173) | 0.004245 / 0.004328 (-0.000084) | 0.076809 / 0.004250 (0.072559) | 0.045251 / 0.037052 (0.008199) | 0.306002 / 0.258489 (0.047513) | 0.345758 / 0.293841 (0.051917) | 0.037826 / 0.128546 (-0.090721) | 0.011887 / 0.075646 (-0.063759) | 0.333804 / 0.419271 (-0.085467) | 0.047859 / 0.043533 (0.004326) | 0.291866 / 0.255139 (0.036727) | 0.319356 / 0.283200 (0.036157) | 0.104241 / 0.141683 (-0.037442) | 1.443816 / 1.452155 (-0.008338) | 1.514654 / 1.492716 (0.021938) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.009846 / 0.018006 (-0.008160) | 0.439488 / 0.000490 (0.438999) | 0.003227 / 0.000200 (0.003028) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027553 / 0.037411 (-0.009858) | 0.105337 / 0.014526 (0.090811) | 0.116203 / 0.176557 (-0.060354) | 0.161140 / 0.737135 (-0.575995) | 0.123002 / 0.296338 (-0.173336) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400102 / 0.215209 (0.184893) | 3.976748 / 2.077655 (1.899094) | 1.794763 / 1.504120 (0.290643) | 1.602477 / 1.541195 (0.061282) | 1.703689 / 1.468490 (0.235199) | 0.696751 / 4.584777 (-3.888026) | 3.713832 / 3.745712 (-0.031880) | 2.124536 / 5.269862 (-3.145326) | 1.313005 / 4.565676 (-3.252671) | 0.086130 / 0.424275 (-0.338146) | 0.012085 / 0.007607 (0.004477) | 0.512976 / 0.226044 (0.286932) | 5.135313 / 2.268929 (2.866384) | 2.318173 / 55.444624 (-53.126451) | 1.996360 / 6.876477 (-4.880117) | 2.060150 / 2.142072 (-0.081922) | 0.853534 / 4.805227 (-3.951693) | 0.165586 / 6.500664 (-6.335078) | 0.062365 / 0.075469 (-0.013104) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.178843 / 1.841788 (-0.662945) | 14.541639 / 8.074308 (6.467331) | 14.090782 / 10.191392 (3.899390) | 0.158717 / 0.680424 (-0.521707) | 0.028825 / 0.534201 (-0.505376) | 0.441427 / 0.579283 (-0.137856) | 0.439856 / 0.434364 (0.005492) | 0.530610 / 0.540337 (-0.009727) | 0.634044 / 1.386936 (-0.752892) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007502 / 0.011353 (-0.003851) | 0.005208 / 0.011008 (-0.005801) | 0.075020 / 0.038508 (0.036512) | 0.033297 / 0.023109 (0.010188) | 0.342218 / 0.275898 (0.066320) | 0.376716 / 0.323480 (0.053236) | 0.005906 / 0.007986 (-0.002080) | 0.005320 / 0.004328 (0.000992) | 0.073531 / 0.004250 (0.069281) | 0.049091 / 0.037052 (0.012039) | 0.344202 / 0.258489 (0.085713) | 0.380556 / 0.293841 (0.086715) | 0.037500 / 0.128546 (-0.091047) | 0.012404 / 0.075646 (-0.063242) | 0.087254 / 0.419271 (-0.332017) | 0.055145 / 0.043533 (0.011612) | 0.344112 / 0.255139 (0.088973) | 0.359052 / 0.283200 (0.075852) | 0.108337 / 0.141683 (-0.033345) | 1.450332 / 1.452155 (-0.001822) | 1.553607 / 1.492716 (0.060891) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216335 / 0.018006 (0.198329) | 0.436813 / 0.000490 (0.436323) | 0.005055 / 0.000200 (0.004855) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030037 / 0.037411 (-0.007374) | 0.110854 / 0.014526 (0.096329) | 0.121967 / 0.176557 (-0.054589) | 0.174029 / 0.737135 (-0.563107) | 0.128340 / 0.296338 (-0.167998) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424463 / 0.215209 (0.209254) | 4.201822 / 2.077655 (2.124167) | 2.043075 / 1.504120 (0.538956) | 1.851841 / 1.541195 (0.310647) | 1.947790 / 1.468490 (0.479300) | 0.684110 / 4.584777 (-3.900667) | 3.763536 / 3.745712 (0.017824) | 3.106988 / 5.269862 (-2.162873) | 1.498305 / 4.565676 (-3.067372) | 0.085079 / 0.424275 (-0.339196) | 0.012241 / 0.007607 (0.004634) | 0.520877 / 0.226044 (0.294832) | 5.181455 / 2.268929 (2.912527) | 2.443038 / 55.444624 (-53.001586) | 2.130823 / 6.876477 (-4.745654) | 2.217901 / 2.142072 (0.075829) | 0.837116 / 4.805227 (-3.968111) | 0.166581 / 6.500664 (-6.334083) | 0.065510 / 0.075469 (-0.009959) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.289317 / 1.841788 (-0.552471) | 15.122019 / 8.074308 (7.047710) | 13.919670 / 10.191392 (3.728278) | 0.150047 / 0.680424 (-0.530377) | 0.017612 / 0.534201 (-0.516589) | 0.426239 / 0.579283 (-0.153044) | 0.425686 / 0.434364 (-0.008678) | 0.521436 / 0.540337 (-0.018901) | 0.618217 / 1.386936 (-0.768719) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#879fc6d5186ce593fe819f1e9e67897a1873766b \"CML watermark\")\n",
"We haven't updated the minimal version requirement for PyArrow in a while, so it's ok to make a bigger leap IMO, e.g., PyArrow 8.0 (Colab installs 9.0). With this change, we should also remove the PyArrow version check in `folder_based_builder.py`, and the ones in `table.py`/`arrow_dataset.py` regarding the `to_reader` API if we decide to bump PyArrow to version 8.0.",
"I think it's a good opportunity to bump the version to 8.0 which offers higher performance anyway, I wouldn't bother trying to support 6.0.1 anymore. Only 1% of users based on 6.0.1 use the latest `datasets` version 2.10.1\r\n\r\nBumping to 8.0 if it sounds good to you",
"Sure, it is OK for those other reasons. I would just not stress that the increase of the minimum version is to support pandas 2.0 though...",
"If requiring min 8.0, do you know the percentage of people using 7.0 and latest datasets version?",
"Around 10% of users have 7.0.0, and 25% among them use the latest datasets version",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006744 / 0.011353 (-0.004609) | 0.004585 / 0.011008 (-0.006423) | 0.097828 / 0.038508 (0.059320) | 0.028230 / 0.023109 (0.005121) | 0.302190 / 0.275898 (0.026292) | 0.335022 / 0.323480 (0.011542) | 0.005107 / 0.007986 (-0.002878) | 0.004648 / 0.004328 (0.000320) | 0.076842 / 0.004250 (0.072592) | 0.038291 / 0.037052 (0.001239) | 0.313286 / 0.258489 (0.054797) | 0.342534 / 0.293841 (0.048693) | 0.031325 / 0.128546 (-0.097221) | 0.011632 / 0.075646 (-0.064014) | 0.321879 / 0.419271 (-0.097392) | 0.042204 / 0.043533 (-0.001329) | 0.304442 / 0.255139 (0.049303) | 0.330912 / 0.283200 (0.047712) | 0.085446 / 0.141683 (-0.056237) | 1.469990 / 1.452155 (0.017835) | 1.551147 / 1.492716 (0.058431) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.185961 / 0.018006 (0.167955) | 0.404675 / 0.000490 (0.404186) | 0.003212 / 0.000200 (0.003012) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023876 / 0.037411 (-0.013535) | 0.097820 / 0.014526 (0.083295) | 0.107382 / 0.176557 (-0.069174) | 0.167598 / 0.737135 (-0.569537) | 0.108789 / 0.296338 (-0.187550) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.455004 / 0.215209 (0.239795) | 4.529104 / 2.077655 (2.451449) | 2.180068 / 1.504120 (0.675948) | 1.982109 / 1.541195 (0.440914) | 2.041856 / 1.468490 (0.573366) | 0.702029 / 4.584777 (-3.882747) | 3.368613 / 3.745712 (-0.377099) | 1.932303 / 5.269862 (-3.337559) | 1.278340 / 4.565676 (-3.287336) | 0.082836 / 0.424275 (-0.341439) | 0.012349 / 0.007607 (0.004742) | 0.548197 / 0.226044 (0.322153) | 5.509982 / 2.268929 (3.241053) | 2.612889 / 55.444624 (-52.831736) | 2.278157 / 6.876477 (-4.598320) | 2.386923 / 2.142072 (0.244851) | 0.803332 / 4.805227 (-4.001896) | 0.151222 / 6.500664 (-6.349442) | 0.066673 / 0.075469 (-0.008796) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.209453 / 1.841788 (-0.632335) | 13.649733 / 8.074308 (5.575424) | 14.065917 / 10.191392 (3.874525) | 0.128872 / 0.680424 (-0.551551) | 0.016773 / 0.534201 (-0.517428) | 0.385475 / 0.579283 (-0.193809) | 0.386208 / 0.434364 (-0.048156) | 0.475144 / 0.540337 (-0.065194) | 0.564183 / 1.386936 (-0.822753) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006629 / 0.011353 (-0.004724) | 0.004433 / 0.011008 (-0.006575) | 0.076008 / 0.038508 (0.037500) | 0.027471 / 0.023109 (0.004362) | 0.339837 / 0.275898 (0.063939) | 0.376857 / 0.323480 (0.053377) | 0.004930 / 0.007986 (-0.003055) | 0.003312 / 0.004328 (-0.001016) | 0.075070 / 0.004250 (0.070820) | 0.035897 / 0.037052 (-0.001156) | 0.342398 / 0.258489 (0.083909) | 0.380202 / 0.293841 (0.086361) | 0.031781 / 0.128546 (-0.096766) | 0.011697 / 0.075646 (-0.063950) | 0.085926 / 0.419271 (-0.333345) | 0.041599 / 0.043533 (-0.001934) | 0.343098 / 0.255139 (0.087959) | 0.371275 / 0.283200 (0.088076) | 0.090489 / 0.141683 (-0.051194) | 1.483738 / 1.452155 (0.031584) | 1.554973 / 1.492716 (0.062256) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.183703 / 0.018006 (0.165697) | 0.395105 / 0.000490 (0.394616) | 0.002162 / 0.000200 (0.001963) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025432 / 0.037411 (-0.011979) | 0.101322 / 0.014526 (0.086796) | 0.107839 / 0.176557 (-0.068718) | 0.160328 / 0.737135 (-0.576807) | 0.109899 / 0.296338 (-0.186440) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448001 / 0.215209 (0.232792) | 4.485321 / 2.077655 (2.407666) | 2.157064 / 1.504120 (0.652944) | 1.966141 / 1.541195 (0.424947) | 2.032808 / 1.468490 (0.564318) | 0.705684 / 4.584777 (-3.879093) | 3.359802 / 3.745712 (-0.385910) | 2.694952 / 5.269862 (-2.574910) | 1.471309 / 4.565676 (-3.094368) | 0.084185 / 0.424275 (-0.340090) | 0.012330 / 0.007607 (0.004723) | 0.554083 / 0.226044 (0.328038) | 5.569137 / 2.268929 (3.300208) | 2.586009 / 55.444624 (-52.858615) | 2.234920 / 6.876477 (-4.641557) | 2.285128 / 2.142072 (0.143056) | 0.818825 / 4.805227 (-3.986402) | 0.152604 / 6.500664 (-6.348060) | 0.067722 / 0.075469 (-0.007747) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.305571 / 1.841788 (-0.536217) | 13.687471 / 8.074308 (5.613163) | 13.305401 / 10.191392 (3.114009) | 0.140477 / 0.680424 (-0.539947) | 0.018138 / 0.534201 (-0.516063) | 0.377255 / 0.579283 (-0.202028) | 0.379522 / 0.434364 (-0.054842) | 0.458489 / 0.540337 (-0.081849) | 0.543767 / 1.386936 (-0.843169) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#02570894db6ecc46bf25b7fa1cb1bcdc1dede853 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009606 / 0.011353 (-0.001747) | 0.006795 / 0.011008 (-0.004213) | 0.133738 / 0.038508 (0.095230) | 0.043379 / 0.023109 (0.020270) | 0.412917 / 0.275898 (0.137019) | 0.418790 / 0.323480 (0.095310) | 0.007290 / 0.007986 (-0.000696) | 0.004960 / 0.004328 (0.000632) | 0.095496 / 0.004250 (0.091246) | 0.057607 / 0.037052 (0.020555) | 0.402638 / 0.258489 (0.144149) | 0.436206 / 0.293841 (0.142365) | 0.056023 / 0.128546 (-0.072523) | 0.019909 / 0.075646 (-0.055737) | 0.463958 / 0.419271 (0.044687) | 0.064073 / 0.043533 (0.020541) | 0.398337 / 0.255139 (0.143198) | 0.421786 / 0.283200 (0.138586) | 0.131563 / 0.141683 (-0.010120) | 1.840217 / 1.452155 (0.388063) | 1.912013 / 1.492716 (0.419296) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230519 / 0.018006 (0.212513) | 0.550506 / 0.000490 (0.550017) | 0.003649 / 0.000200 (0.003449) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029713 / 0.037411 (-0.007698) | 0.129913 / 0.014526 (0.115387) | 0.131543 / 0.176557 (-0.045013) | 0.203571 / 0.737135 (-0.533565) | 0.141483 / 0.296338 (-0.154856) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.626383 / 0.215209 (0.411174) | 6.193043 / 2.077655 (4.115388) | 2.442728 / 1.504120 (0.938608) | 2.079049 / 1.541195 (0.537855) | 2.117761 / 1.468490 (0.649271) | 1.315296 / 4.584777 (-3.269481) | 5.643709 / 3.745712 (1.897997) | 5.245789 / 5.269862 (-0.024073) | 2.757442 / 4.565676 (-1.808235) | 0.151655 / 0.424275 (-0.272620) | 0.014686 / 0.007607 (0.007079) | 0.779937 / 0.226044 (0.553893) | 7.796685 / 2.268929 (5.527756) | 3.349580 / 55.444624 (-52.095045) | 2.493750 / 6.876477 (-4.382727) | 2.506200 / 2.142072 (0.364128) | 1.534964 / 4.805227 (-3.270263) | 0.260001 / 6.500664 (-6.240663) | 0.080543 / 0.075469 (0.005074) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.541940 / 1.841788 (-0.299848) | 17.851935 / 8.074308 (9.777627) | 22.418859 / 10.191392 (12.227467) | 0.258602 / 0.680424 (-0.421822) | 0.027679 / 0.534201 (-0.506522) | 0.548379 / 0.579283 (-0.030904) | 0.625505 / 0.434364 (0.191141) | 0.664074 / 0.540337 (0.123737) | 0.797418 / 1.386936 (-0.589518) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009800 / 0.011353 (-0.001553) | 0.006178 / 0.011008 (-0.004830) | 0.105667 / 0.038508 (0.067159) | 0.039380 / 0.023109 (0.016271) | 0.419528 / 0.275898 (0.143630) | 0.469857 / 0.323480 (0.146377) | 0.006672 / 0.007986 (-0.001314) | 0.004745 / 0.004328 (0.000417) | 0.101647 / 0.004250 (0.097397) | 0.048531 / 0.037052 (0.011478) | 0.433364 / 0.258489 (0.174875) | 0.459719 / 0.293841 (0.165878) | 0.054291 / 0.128546 (-0.074256) | 0.020406 / 0.075646 (-0.055240) | 0.122321 / 0.419271 (-0.296951) | 0.059719 / 0.043533 (0.016186) | 0.416083 / 0.255139 (0.160944) | 0.455277 / 0.283200 (0.172077) | 0.119342 / 0.141683 (-0.022341) | 1.862544 / 1.452155 (0.410390) | 2.001428 / 1.492716 (0.508712) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240951 / 0.018006 (0.222945) | 0.516958 / 0.000490 (0.516468) | 0.000449 / 0.000200 (0.000249) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032725 / 0.037411 (-0.004686) | 0.130291 / 0.014526 (0.115765) | 0.139834 / 0.176557 (-0.036723) | 0.214995 / 0.737135 (-0.522140) | 0.150925 / 0.296338 (-0.145414) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.652062 / 0.215209 (0.436853) | 6.584447 / 2.077655 (4.506793) | 2.654838 / 1.504120 (1.150718) | 2.297209 / 1.541195 (0.756015) | 2.420394 / 1.468490 (0.951904) | 1.299285 / 4.584777 (-3.285492) | 5.605849 / 3.745712 (1.860137) | 3.166103 / 5.269862 (-2.103759) | 2.138123 / 4.565676 (-2.427554) | 0.152562 / 0.424275 (-0.271713) | 0.015499 / 0.007607 (0.007892) | 0.816300 / 0.226044 (0.590256) | 8.308746 / 2.268929 (6.039817) | 3.482982 / 55.444624 (-51.961642) | 2.689247 / 6.876477 (-4.187229) | 2.792728 / 2.142072 (0.650656) | 1.566320 / 4.805227 (-3.238907) | 0.264110 / 6.500664 (-6.236554) | 0.083652 / 0.075469 (0.008183) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.643027 / 1.841788 (-0.198760) | 18.612349 / 8.074308 (10.538041) | 19.460644 / 10.191392 (9.269252) | 0.260795 / 0.680424 (-0.419629) | 0.026050 / 0.534201 (-0.508151) | 0.539750 / 0.579283 (-0.039533) | 0.620791 / 0.434364 (0.186428) | 0.645023 / 0.540337 (0.104686) | 0.765604 / 1.386936 (-0.621332) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e6dcf4c50e14ee6dbc6d763ed1b7ce3501460863 \"CML watermark\")\n",
"ready for re-review :)",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006388 / 0.011353 (-0.004965) | 0.004469 / 0.011008 (-0.006540) | 0.097082 / 0.038508 (0.058573) | 0.028005 / 0.023109 (0.004895) | 0.364797 / 0.275898 (0.088899) | 0.399671 / 0.323480 (0.076191) | 0.005062 / 0.007986 (-0.002923) | 0.004580 / 0.004328 (0.000252) | 0.075670 / 0.004250 (0.071420) | 0.038328 / 0.037052 (0.001276) | 0.365948 / 0.258489 (0.107459) | 0.402631 / 0.293841 (0.108790) | 0.031378 / 0.128546 (-0.097168) | 0.011443 / 0.075646 (-0.064203) | 0.321590 / 0.419271 (-0.097682) | 0.042263 / 0.043533 (-0.001270) | 0.368238 / 0.255139 (0.113099) | 0.389928 / 0.283200 (0.106728) | 0.085203 / 0.141683 (-0.056480) | 1.462820 / 1.452155 (0.010665) | 1.529207 / 1.492716 (0.036490) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.197194 / 0.018006 (0.179188) | 0.410897 / 0.000490 (0.410407) | 0.003394 / 0.000200 (0.003194) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022911 / 0.037411 (-0.014500) | 0.097012 / 0.014526 (0.082486) | 0.102247 / 0.176557 (-0.074309) | 0.163363 / 0.737135 (-0.573772) | 0.106897 / 0.296338 (-0.189441) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416303 / 0.215209 (0.201094) | 4.159325 / 2.077655 (2.081671) | 1.844893 / 1.504120 (0.340773) | 1.646131 / 1.541195 (0.104936) | 1.706763 / 1.468490 (0.238273) | 0.699607 / 4.584777 (-3.885170) | 3.462048 / 3.745712 (-0.283664) | 1.939076 / 5.269862 (-3.330786) | 1.324744 / 4.565676 (-3.240932) | 0.082949 / 0.424275 (-0.341326) | 0.012327 / 0.007607 (0.004720) | 0.513812 / 0.226044 (0.287768) | 5.171021 / 2.268929 (2.902093) | 2.288039 / 55.444624 (-53.156585) | 1.957403 / 6.876477 (-4.919074) | 1.990060 / 2.142072 (-0.152013) | 0.805571 / 4.805227 (-3.999656) | 0.152641 / 6.500664 (-6.348023) | 0.068169 / 0.075469 (-0.007300) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.200624 / 1.841788 (-0.641164) | 13.836334 / 8.074308 (5.762026) | 14.065340 / 10.191392 (3.873948) | 0.143406 / 0.680424 (-0.537018) | 0.016709 / 0.534201 (-0.517492) | 0.380080 / 0.579283 (-0.199204) | 0.398414 / 0.434364 (-0.035950) | 0.479192 / 0.540337 (-0.061145) | 0.572508 / 1.386936 (-0.814428) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006622 / 0.011353 (-0.004731) | 0.004511 / 0.011008 (-0.006497) | 0.076454 / 0.038508 (0.037946) | 0.027431 / 0.023109 (0.004322) | 0.339041 / 0.275898 (0.063143) | 0.375691 / 0.323480 (0.052211) | 0.004854 / 0.007986 (-0.003131) | 0.004654 / 0.004328 (0.000325) | 0.075300 / 0.004250 (0.071049) | 0.036469 / 0.037052 (-0.000583) | 0.341357 / 0.258489 (0.082868) | 0.381561 / 0.293841 (0.087720) | 0.031754 / 0.128546 (-0.096792) | 0.011544 / 0.075646 (-0.064102) | 0.085956 / 0.419271 (-0.333315) | 0.041704 / 0.043533 (-0.001828) | 0.340088 / 0.255139 (0.084950) | 0.364037 / 0.283200 (0.080838) | 0.091016 / 0.141683 (-0.050667) | 1.483515 / 1.452155 (0.031360) | 1.562878 / 1.492716 (0.070162) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228019 / 0.018006 (0.210013) | 0.404809 / 0.000490 (0.404320) | 0.000384 / 0.000200 (0.000184) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025230 / 0.037411 (-0.012181) | 0.099790 / 0.014526 (0.085264) | 0.107923 / 0.176557 (-0.068634) | 0.157651 / 0.737135 (-0.579484) | 0.112525 / 0.296338 (-0.183813) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440360 / 0.215209 (0.225151) | 4.387749 / 2.077655 (2.310094) | 2.077592 / 1.504120 (0.573472) | 1.872532 / 1.541195 (0.331337) | 1.941607 / 1.468490 (0.473117) | 0.699394 / 4.584777 (-3.885383) | 3.411210 / 3.745712 (-0.334502) | 1.901816 / 5.269862 (-3.368046) | 1.177042 / 4.565676 (-3.388634) | 0.083536 / 0.424275 (-0.340739) | 0.012418 / 0.007607 (0.004811) | 0.548463 / 0.226044 (0.322419) | 5.487107 / 2.268929 (3.218178) | 2.548076 / 55.444624 (-52.896548) | 2.215012 / 6.876477 (-4.661465) | 2.253472 / 2.142072 (0.111400) | 0.812925 / 4.805227 (-3.992302) | 0.152935 / 6.500664 (-6.347729) | 0.068144 / 0.075469 (-0.007325) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267914 / 1.841788 (-0.573873) | 14.015185 / 8.074308 (5.940877) | 13.153967 / 10.191392 (2.962575) | 0.140666 / 0.680424 (-0.539758) | 0.016718 / 0.534201 (-0.517483) | 0.383411 / 0.579283 (-0.195872) | 0.395424 / 0.434364 (-0.038940) | 0.466069 / 0.540337 (-0.074269) | 0.553825 / 1.386936 (-0.833111) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#14568bf072b38e3b295f29774c874c8e78b9fe37 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007463 / 0.011353 (-0.003890) | 0.005017 / 0.011008 (-0.005991) | 0.098777 / 0.038508 (0.060269) | 0.033859 / 0.023109 (0.010750) | 0.298569 / 0.275898 (0.022670) | 0.343717 / 0.323480 (0.020237) | 0.005806 / 0.007986 (-0.002180) | 0.005403 / 0.004328 (0.001074) | 0.075840 / 0.004250 (0.071590) | 0.046539 / 0.037052 (0.009487) | 0.300058 / 0.258489 (0.041569) | 0.345036 / 0.293841 (0.051195) | 0.036258 / 0.128546 (-0.092288) | 0.011992 / 0.075646 (-0.063654) | 0.334986 / 0.419271 (-0.084286) | 0.050427 / 0.043533 (0.006894) | 0.295319 / 0.255139 (0.040180) | 0.318980 / 0.283200 (0.035780) | 0.098407 / 0.141683 (-0.043276) | 1.437626 / 1.452155 (-0.014529) | 1.562548 / 1.492716 (0.069832) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231502 / 0.018006 (0.213496) | 0.441550 / 0.000490 (0.441060) | 0.005863 / 0.000200 (0.005663) | 0.000724 / 0.000054 (0.000670) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027501 / 0.037411 (-0.009911) | 0.111490 / 0.014526 (0.096964) | 0.117503 / 0.176557 (-0.059054) | 0.173849 / 0.737135 (-0.563286) | 0.124521 / 0.296338 (-0.171818) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419266 / 0.215209 (0.204057) | 4.170337 / 2.077655 (2.092683) | 2.015883 / 1.504120 (0.511763) | 1.832683 / 1.541195 (0.291488) | 1.950195 / 1.468490 (0.481705) | 0.698150 / 4.584777 (-3.886627) | 3.775601 / 3.745712 (0.029889) | 2.094581 / 5.269862 (-3.175281) | 1.325437 / 4.565676 (-3.240240) | 0.085382 / 0.424275 (-0.338894) | 0.012151 / 0.007607 (0.004544) | 0.526441 / 0.226044 (0.300397) | 5.256124 / 2.268929 (2.987196) | 2.488408 / 55.444624 (-52.956216) | 2.157228 / 6.876477 (-4.719249) | 2.228991 / 2.142072 (0.086919) | 0.837002 / 4.805227 (-3.968225) | 0.167520 / 6.500664 (-6.333144) | 0.066435 / 0.075469 (-0.009035) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.174544 / 1.841788 (-0.667243) | 14.684207 / 8.074308 (6.609899) | 14.494676 / 10.191392 (4.303284) | 0.143423 / 0.680424 (-0.537001) | 0.017289 / 0.534201 (-0.516912) | 0.424727 / 0.579283 (-0.154556) | 0.417077 / 0.434364 (-0.017287) | 0.498955 / 0.540337 (-0.041383) | 0.584838 / 1.386936 (-0.802098) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007666 / 0.011353 (-0.003687) | 0.005269 / 0.011008 (-0.005739) | 0.073548 / 0.038508 (0.035040) | 0.033683 / 0.023109 (0.010573) | 0.342646 / 0.275898 (0.066747) | 0.380948 / 0.323480 (0.057468) | 0.005737 / 0.007986 (-0.002248) | 0.005366 / 0.004328 (0.001038) | 0.073228 / 0.004250 (0.068978) | 0.050065 / 0.037052 (0.013013) | 0.348593 / 0.258489 (0.090104) | 0.393930 / 0.293841 (0.100089) | 0.037411 / 0.128546 (-0.091135) | 0.012476 / 0.075646 (-0.063170) | 0.084884 / 0.419271 (-0.334387) | 0.049368 / 0.043533 (0.005835) | 0.343142 / 0.255139 (0.088003) | 0.362828 / 0.283200 (0.079628) | 0.102962 / 0.141683 (-0.038721) | 1.505703 / 1.452155 (0.053549) | 1.580695 / 1.492716 (0.087979) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207621 / 0.018006 (0.189615) | 0.437678 / 0.000490 (0.437188) | 0.003931 / 0.000200 (0.003731) | 0.000093 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029079 / 0.037411 (-0.008332) | 0.108600 / 0.014526 (0.094074) | 0.124787 / 0.176557 (-0.051770) | 0.173354 / 0.737135 (-0.563781) | 0.126124 / 0.296338 (-0.170214) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427911 / 0.215209 (0.212702) | 4.254227 / 2.077655 (2.176572) | 2.052142 / 1.504120 (0.548022) | 1.857042 / 1.541195 (0.315848) | 1.965244 / 1.468490 (0.496754) | 0.707994 / 4.584777 (-3.876783) | 3.807593 / 3.745712 (0.061880) | 3.387588 / 5.269862 (-1.882274) | 1.844853 / 4.565676 (-2.720824) | 0.088548 / 0.424275 (-0.335727) | 0.012398 / 0.007607 (0.004791) | 0.565896 / 0.226044 (0.339851) | 5.228024 / 2.268929 (2.959095) | 2.467220 / 55.444624 (-52.977405) | 2.144413 / 6.876477 (-4.732064) | 2.214049 / 2.142072 (0.071977) | 0.869381 / 4.805227 (-3.935846) | 0.170991 / 6.500664 (-6.329673) | 0.064932 / 0.075469 (-0.010537) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.246661 / 1.841788 (-0.595127) | 14.902743 / 8.074308 (6.828435) | 13.264294 / 10.191392 (3.072902) | 0.165328 / 0.680424 (-0.515095) | 0.017567 / 0.534201 (-0.516634) | 0.425491 / 0.579283 (-0.153792) | 0.427327 / 0.434364 (-0.007037) | 0.526475 / 0.540337 (-0.013862) | 0.627309 / 1.386936 (-0.759627) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#dd31bce76b554447bccb2b1447440e1f8ddba035 \"CML watermark\")\n"
] | 2023-03-07T13:31:53 | 2023-03-08T14:01:27 | 2023-03-08T13:54:22 | MEMBER | null | Fix those for Pandas 2.0 (tested [here](https://github.com/huggingface/datasets/actions/runs/4346221280/jobs/7592010397) with pandas==2.0.0.rc0):
```python
=========================== short test summary info ============================
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_to_parquet_in_memory - ImportError: Unable to find a usable engine; tried using: 'pyarrow', 'fastparquet'.
A suitable version of pyarrow or fastparquet is required for parquet support.
Trying to import the above resulted in these errors:
- Pandas requires version '7.0.0' or newer of 'pyarrow' (version '6.0.1' currently installed).
- Missing optional dependency 'fastparquet'. fastparquet is required for parquet support. Use pip or conda to install fastparquet.
FAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_to_parquet_on_disk - ImportError: Unable to find a usable engine; tried using: 'pyarrow', 'fastparquet'.
A suitable version of pyarrow or fastparquet is required for parquet support.
Trying to import the above resulted in these errors:
- Pandas requires version '7.0.0' or newer of 'pyarrow' (version '6.0.1' currently installed).
- Missing optional dependency 'fastparquet'. fastparquet is required for parquet support. Use pip or conda to install fastparquet.
===== 2 failed, 2137 passed, 18 skipped, 32 warnings in 212.76s (0:03:32) ======
```
EDIT: also for performance - with 8.0 we can use `.to_reader()` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5620/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5620/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5620",
"html_url": "https://github.com/huggingface/datasets/pull/5620",
"diff_url": "https://github.com/huggingface/datasets/pull/5620.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5620.patch",
"merged_at": "2023-03-08T13:54:21"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5619 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5619/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5619/comments | https://api.github.com/repos/huggingface/datasets/issues/5619/events | https://github.com/huggingface/datasets/pull/5619 | 1,613,439,709 | PR_kwDODunzps5LeaYP | 5,619 | unpin fsspec | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009954 / 0.011353 (-0.001398) | 0.005468 / 0.011008 (-0.005541) | 0.101228 / 0.038508 (0.062720) | 0.037878 / 0.023109 (0.014769) | 0.305635 / 0.275898 (0.029737) | 0.391672 / 0.323480 (0.068192) | 0.008893 / 0.007986 (0.000908) | 0.005861 / 0.004328 (0.001533) | 0.076940 / 0.004250 (0.072689) | 0.046242 / 0.037052 (0.009190) | 0.324033 / 0.258489 (0.065544) | 0.383306 / 0.293841 (0.089465) | 0.039298 / 0.128546 (-0.089249) | 0.012187 / 0.075646 (-0.063459) | 0.336774 / 0.419271 (-0.082498) | 0.053493 / 0.043533 (0.009960) | 0.303381 / 0.255139 (0.048242) | 0.323494 / 0.283200 (0.040295) | 0.118613 / 0.141683 (-0.023070) | 1.463430 / 1.452155 (0.011275) | 1.549856 / 1.492716 (0.057139) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.289264 / 0.018006 (0.271258) | 0.520348 / 0.000490 (0.519858) | 0.004543 / 0.000200 (0.004343) | 0.000090 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028183 / 0.037411 (-0.009229) | 0.107869 / 0.014526 (0.093343) | 0.124019 / 0.176557 (-0.052537) | 0.167769 / 0.737135 (-0.569367) | 0.130304 / 0.296338 (-0.166034) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402296 / 0.215209 (0.187087) | 4.018884 / 2.077655 (1.941229) | 1.834050 / 1.504120 (0.329930) | 1.649974 / 1.541195 (0.108779) | 1.741697 / 1.468490 (0.273207) | 0.684354 / 4.584777 (-3.900423) | 3.778213 / 3.745712 (0.032501) | 2.158086 / 5.269862 (-3.111775) | 1.472671 / 4.565676 (-3.093006) | 0.083912 / 0.424275 (-0.340363) | 0.012285 / 0.007607 (0.004678) | 0.501689 / 0.226044 (0.275645) | 5.014722 / 2.268929 (2.745794) | 2.310722 / 55.444624 (-53.133902) | 1.983214 / 6.876477 (-4.893262) | 2.154518 / 2.142072 (0.012446) | 0.821277 / 4.805227 (-3.983950) | 0.164434 / 6.500664 (-6.336231) | 0.062568 / 0.075469 (-0.012901) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224338 / 1.841788 (-0.617450) | 14.981623 / 8.074308 (6.907315) | 14.296356 / 10.191392 (4.104964) | 0.193554 / 0.680424 (-0.486870) | 0.028511 / 0.534201 (-0.505690) | 0.437649 / 0.579283 (-0.141634) | 0.448934 / 0.434364 (0.014570) | 0.552624 / 0.540337 (0.012287) | 0.654268 / 1.386936 (-0.732668) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007772 / 0.011353 (-0.003581) | 0.005534 / 0.011008 (-0.005474) | 0.074347 / 0.038508 (0.035839) | 0.034486 / 0.023109 (0.011376) | 0.343430 / 0.275898 (0.067532) | 0.385778 / 0.323480 (0.062298) | 0.006424 / 0.007986 (-0.001562) | 0.004241 / 0.004328 (-0.000087) | 0.072839 / 0.004250 (0.068589) | 0.055523 / 0.037052 (0.018471) | 0.342778 / 0.258489 (0.084289) | 0.389961 / 0.293841 (0.096120) | 0.037238 / 0.128546 (-0.091308) | 0.012450 / 0.075646 (-0.063197) | 0.085282 / 0.419271 (-0.333990) | 0.049678 / 0.043533 (0.006146) | 0.345300 / 0.255139 (0.090161) | 0.365220 / 0.283200 (0.082020) | 0.109257 / 0.141683 (-0.032426) | 1.480284 / 1.452155 (0.028129) | 1.627881 / 1.492716 (0.135165) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.323330 / 0.018006 (0.305324) | 0.530824 / 0.000490 (0.530334) | 0.000463 / 0.000200 (0.000263) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032398 / 0.037411 (-0.005013) | 0.115889 / 0.014526 (0.101363) | 0.131093 / 0.176557 (-0.045464) | 0.180757 / 0.737135 (-0.556379) | 0.134395 / 0.296338 (-0.161943) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423931 / 0.215209 (0.208722) | 4.238207 / 2.077655 (2.160553) | 2.075721 / 1.504120 (0.571602) | 1.887752 / 1.541195 (0.346557) | 2.055054 / 1.468490 (0.586564) | 0.703145 / 4.584777 (-3.881632) | 3.937120 / 3.745712 (0.191408) | 3.748550 / 5.269862 (-1.521311) | 1.562849 / 4.565676 (-3.002827) | 0.087695 / 0.424275 (-0.336580) | 0.012614 / 0.007607 (0.005007) | 0.523901 / 0.226044 (0.297856) | 5.230210 / 2.268929 (2.961282) | 2.592667 / 55.444624 (-52.851958) | 2.345662 / 6.876477 (-4.530815) | 2.475388 / 2.142072 (0.333316) | 0.836443 / 4.805227 (-3.968784) | 0.170304 / 6.500664 (-6.330360) | 0.067741 / 0.075469 (-0.007729) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255171 / 1.841788 (-0.586617) | 16.312856 / 8.074308 (8.238548) | 13.184770 / 10.191392 (2.993378) | 0.145557 / 0.680424 (-0.534867) | 0.017723 / 0.534201 (-0.516478) | 0.423447 / 0.579283 (-0.155836) | 0.423063 / 0.434364 (-0.011301) | 0.494159 / 0.540337 (-0.046179) | 0.589590 / 1.386936 (-0.797346) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4ea6f1db3f80eb3bb7ac6f252c2cd5bd97537c01 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012068 / 0.011353 (0.000715) | 0.006127 / 0.011008 (-0.004881) | 0.112550 / 0.038508 (0.074042) | 0.043201 / 0.023109 (0.020092) | 0.346666 / 0.275898 (0.070768) | 0.413852 / 0.323480 (0.090372) | 0.009342 / 0.007986 (0.001356) | 0.006302 / 0.004328 (0.001974) | 0.086901 / 0.004250 (0.082650) | 0.053992 / 0.037052 (0.016940) | 0.362192 / 0.258489 (0.103703) | 0.409867 / 0.293841 (0.116026) | 0.046124 / 0.128546 (-0.082422) | 0.014139 / 0.075646 (-0.061507) | 0.386386 / 0.419271 (-0.032886) | 0.058465 / 0.043533 (0.014932) | 0.344832 / 0.255139 (0.089693) | 0.370684 / 0.283200 (0.087485) | 0.122886 / 0.141683 (-0.018796) | 1.724013 / 1.452155 (0.271858) | 1.775756 / 1.492716 (0.283039) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220289 / 0.018006 (0.202283) | 0.493585 / 0.000490 (0.493096) | 0.001970 / 0.000200 (0.001770) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030763 / 0.037411 (-0.006649) | 0.128237 / 0.014526 (0.113711) | 0.138364 / 0.176557 (-0.038192) | 0.188115 / 0.737135 (-0.549021) | 0.145367 / 0.296338 (-0.150972) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.452487 / 0.215209 (0.237277) | 4.592728 / 2.077655 (2.515074) | 2.075712 / 1.504120 (0.571592) | 1.845424 / 1.541195 (0.304229) | 1.956400 / 1.468490 (0.487910) | 0.808387 / 4.584777 (-3.776390) | 4.483678 / 3.745712 (0.737966) | 3.870287 / 5.269862 (-1.399574) | 2.151205 / 4.565676 (-2.414471) | 0.098123 / 0.424275 (-0.326152) | 0.014139 / 0.007607 (0.006531) | 0.577775 / 0.226044 (0.351730) | 5.785545 / 2.268929 (3.516616) | 2.614418 / 55.444624 (-52.830206) | 2.312136 / 6.876477 (-4.564341) | 2.364189 / 2.142072 (0.222117) | 0.970028 / 4.805227 (-3.835199) | 0.189592 / 6.500664 (-6.311072) | 0.072883 / 0.075469 (-0.002586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.414252 / 1.841788 (-0.427535) | 17.518307 / 8.074308 (9.443999) | 16.053748 / 10.191392 (5.862356) | 0.215297 / 0.680424 (-0.465127) | 0.033947 / 0.534201 (-0.500253) | 0.525794 / 0.579283 (-0.053489) | 0.514676 / 0.434364 (0.080312) | 0.595066 / 0.540337 (0.054728) | 0.689404 / 1.386936 (-0.697532) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008185 / 0.011353 (-0.003168) | 0.005776 / 0.011008 (-0.005232) | 0.084919 / 0.038508 (0.046411) | 0.037575 / 0.023109 (0.014466) | 0.401192 / 0.275898 (0.125294) | 0.443920 / 0.323480 (0.120440) | 0.006446 / 0.007986 (-0.001540) | 0.004428 / 0.004328 (0.000099) | 0.084013 / 0.004250 (0.079763) | 0.052013 / 0.037052 (0.014961) | 0.398429 / 0.258489 (0.139940) | 0.455676 / 0.293841 (0.161836) | 0.041568 / 0.128546 (-0.086978) | 0.013631 / 0.075646 (-0.062015) | 0.098709 / 0.419271 (-0.320563) | 0.055889 / 0.043533 (0.012356) | 0.402002 / 0.255139 (0.146863) | 0.424248 / 0.283200 (0.141049) | 0.113288 / 0.141683 (-0.028395) | 1.672214 / 1.452155 (0.220059) | 1.792940 / 1.492716 (0.300223) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211847 / 0.018006 (0.193841) | 0.486711 / 0.000490 (0.486221) | 0.002907 / 0.000200 (0.002707) | 0.000118 / 0.000054 (0.000063) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032931 / 0.037411 (-0.004480) | 0.142073 / 0.014526 (0.127547) | 0.142872 / 0.176557 (-0.033685) | 0.202612 / 0.737135 (-0.534523) | 0.154390 / 0.296338 (-0.141949) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.488682 / 0.215209 (0.273473) | 4.755805 / 2.077655 (2.678150) | 2.348778 / 1.504120 (0.844658) | 2.144992 / 1.541195 (0.603797) | 2.245654 / 1.468490 (0.777164) | 0.792690 / 4.584777 (-3.792087) | 4.569190 / 3.745712 (0.823478) | 3.919317 / 5.269862 (-1.350545) | 2.140302 / 4.565676 (-2.425374) | 0.096430 / 0.424275 (-0.327845) | 0.014551 / 0.007607 (0.006944) | 0.605138 / 0.226044 (0.379094) | 5.989470 / 2.268929 (3.720542) | 2.915525 / 55.444624 (-52.529099) | 2.516243 / 6.876477 (-4.360234) | 2.673114 / 2.142072 (0.531041) | 0.932330 / 4.805227 (-3.872897) | 0.191456 / 6.500664 (-6.309209) | 0.073887 / 0.075469 (-0.001582) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.455552 / 1.841788 (-0.386236) | 17.824864 / 8.074308 (9.750556) | 15.764150 / 10.191392 (5.572758) | 0.184935 / 0.680424 (-0.495489) | 0.020552 / 0.534201 (-0.513649) | 0.486816 / 0.579283 (-0.092467) | 0.489006 / 0.434364 (0.054642) | 0.609826 / 0.540337 (0.069488) | 0.721313 / 1.386936 (-0.665623) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a0a35c5fa84a8a7df656c1f5b0a7266126fa9b75 \"CML watermark\")\n"
] | 2023-03-07T13:22:41 | 2023-03-07T13:47:01 | 2023-03-07T13:39:02 | MEMBER | null | close https://github.com/huggingface/datasets/issues/5618 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5619/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5619/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5619",
"html_url": "https://github.com/huggingface/datasets/pull/5619",
"diff_url": "https://github.com/huggingface/datasets/pull/5619.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5619.patch",
"merged_at": "2023-03-07T13:39:02"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5618 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5618/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5618/comments | https://api.github.com/repos/huggingface/datasets/issues/5618/events | https://github.com/huggingface/datasets/issues/5618 | 1,612,977,934 | I_kwDODunzps5gJBcO | 5,618 | Unpin fsspec < 2023.3.0 once issue fixed | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2023-03-07T08:41:51 | 2023-03-07T13:39:03 | 2023-03-07T13:39:03 | MEMBER | null | Unpin `fsspec` upper version once root cause of our CI break is fixed.
See:
- #5614 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5618/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5618/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5617 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5617/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5617/comments | https://api.github.com/repos/huggingface/datasets/issues/5617/events | https://github.com/huggingface/datasets/pull/5617 | 1,612,947,422 | PR_kwDODunzps5LcvI- | 5,617 | Fix CI by temporarily pinning fsspec < 2023.3.0 | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008771 / 0.011353 (-0.002582) | 0.004665 / 0.011008 (-0.006343) | 0.101645 / 0.038508 (0.063137) | 0.030190 / 0.023109 (0.007081) | 0.298581 / 0.275898 (0.022683) | 0.371206 / 0.323480 (0.047727) | 0.007272 / 0.007986 (-0.000714) | 0.003432 / 0.004328 (-0.000896) | 0.078645 / 0.004250 (0.074395) | 0.037640 / 0.037052 (0.000588) | 0.314014 / 0.258489 (0.055525) | 0.345682 / 0.293841 (0.051841) | 0.033675 / 0.128546 (-0.094871) | 0.011513 / 0.075646 (-0.064134) | 0.320683 / 0.419271 (-0.098589) | 0.041633 / 0.043533 (-0.001900) | 0.302697 / 0.255139 (0.047558) | 0.323560 / 0.283200 (0.040361) | 0.089309 / 0.141683 (-0.052374) | 1.477570 / 1.452155 (0.025415) | 1.528004 / 1.492716 (0.035287) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.184710 / 0.018006 (0.166704) | 0.412794 / 0.000490 (0.412305) | 0.001421 / 0.000200 (0.001221) | 0.000069 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023133 / 0.037411 (-0.014278) | 0.099492 / 0.014526 (0.084967) | 0.104806 / 0.176557 (-0.071751) | 0.150765 / 0.737135 (-0.586370) | 0.110127 / 0.296338 (-0.186211) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438642 / 0.215209 (0.223433) | 4.349753 / 2.077655 (2.272098) | 2.178754 / 1.504120 (0.674634) | 1.952839 / 1.541195 (0.411645) | 1.840574 / 1.468490 (0.372084) | 0.694016 / 4.584777 (-3.890761) | 3.375186 / 3.745712 (-0.370526) | 1.892391 / 5.269862 (-3.377470) | 1.177643 / 4.565676 (-3.388033) | 0.082328 / 0.424275 (-0.341947) | 0.012280 / 0.007607 (0.004673) | 0.534478 / 0.226044 (0.308434) | 5.377043 / 2.268929 (3.108114) | 2.645273 / 55.444624 (-52.799351) | 2.336391 / 6.876477 (-4.540086) | 2.387917 / 2.142072 (0.245845) | 0.814399 / 4.805227 (-3.990828) | 0.149226 / 6.500664 (-6.351438) | 0.066614 / 0.075469 (-0.008855) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.205467 / 1.841788 (-0.636321) | 13.857481 / 8.074308 (5.783173) | 14.269958 / 10.191392 (4.078566) | 0.152199 / 0.680424 (-0.528225) | 0.029083 / 0.534201 (-0.505118) | 0.397590 / 0.579283 (-0.181693) | 0.410587 / 0.434364 (-0.023777) | 0.480479 / 0.540337 (-0.059858) | 0.576014 / 1.386936 (-0.810922) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006956 / 0.011353 (-0.004397) | 0.004914 / 0.011008 (-0.006094) | 0.077571 / 0.038508 (0.039063) | 0.028309 / 0.023109 (0.005200) | 0.344523 / 0.275898 (0.068625) | 0.383039 / 0.323480 (0.059560) | 0.005202 / 0.007986 (-0.002783) | 0.003513 / 0.004328 (-0.000816) | 0.076393 / 0.004250 (0.072142) | 0.042035 / 0.037052 (0.004982) | 0.342950 / 0.258489 (0.084461) | 0.387432 / 0.293841 (0.093591) | 0.032267 / 0.128546 (-0.096280) | 0.011914 / 0.075646 (-0.063732) | 0.087140 / 0.419271 (-0.332131) | 0.042624 / 0.043533 (-0.000909) | 0.342391 / 0.255139 (0.087253) | 0.367016 / 0.283200 (0.083817) | 0.091757 / 0.141683 (-0.049926) | 1.515845 / 1.452155 (0.063690) | 1.607929 / 1.492716 (0.115213) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234461 / 0.018006 (0.216455) | 0.420430 / 0.000490 (0.419941) | 0.000403 / 0.000200 (0.000203) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026639 / 0.037411 (-0.010772) | 0.101860 / 0.014526 (0.087334) | 0.109696 / 0.176557 (-0.066860) | 0.160902 / 0.737135 (-0.576233) | 0.112431 / 0.296338 (-0.183907) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438444 / 0.215209 (0.223235) | 4.378881 / 2.077655 (2.301226) | 2.063975 / 1.504120 (0.559855) | 1.863069 / 1.541195 (0.321874) | 1.955684 / 1.468490 (0.487193) | 0.694106 / 4.584777 (-3.890671) | 3.467683 / 3.745712 (-0.278029) | 2.882441 / 5.269862 (-2.387421) | 1.484533 / 4.565676 (-3.081143) | 0.082682 / 0.424275 (-0.341593) | 0.012597 / 0.007607 (0.004990) | 0.539219 / 0.226044 (0.313174) | 5.384838 / 2.268929 (3.115909) | 2.528273 / 55.444624 (-52.916351) | 2.190332 / 6.876477 (-4.686145) | 2.252573 / 2.142072 (0.110500) | 0.801047 / 4.805227 (-4.004180) | 0.151082 / 6.500664 (-6.349582) | 0.067564 / 0.075469 (-0.007905) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.306469 / 1.841788 (-0.535319) | 14.220154 / 8.074308 (6.145846) | 13.300979 / 10.191392 (3.109586) | 0.153827 / 0.680424 (-0.526597) | 0.016818 / 0.534201 (-0.517383) | 0.383528 / 0.579283 (-0.195755) | 0.393970 / 0.434364 (-0.040394) | 0.468395 / 0.540337 (-0.071943) | 0.558748 / 1.386936 (-0.828188) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#824860ca204a3bd84a7d63f71df5df4c56c2432f \"CML watermark\")\n"
] | 2023-03-07T08:18:20 | 2023-03-07T08:44:55 | 2023-03-07T08:37:28 | MEMBER | null | As a hotfix for our CI, temporarily pin `fsspec`:
Fix #5616.
Until root cause is fixed, see:
- #5614 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5617/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5617/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5617",
"html_url": "https://github.com/huggingface/datasets/pull/5617",
"diff_url": "https://github.com/huggingface/datasets/pull/5617.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5617.patch",
"merged_at": "2023-03-07T08:37:28"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5616 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5616/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5616/comments | https://api.github.com/repos/huggingface/datasets/issues/5616/events | https://github.com/huggingface/datasets/issues/5616 | 1,612,932,508 | I_kwDODunzps5gI2Wc | 5,616 | CI is broken after fsspec-2023.3.0 release | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | closed | false | null | [] | null | [] | 2023-03-07T08:06:39 | 2023-03-07T08:37:29 | 2023-03-07T08:37:29 | MEMBER | null | As reported by @lhoestq, our CI is broken after `fsspec` 2023.3.0 release:
```
FAILED tests/test_filesystem.py::test_compression_filesystems[Bz2FileSystem] - AssertionError: assert [{'created': ...: False, ...}] == ['file.txt']
At index 0 diff: {'name': 'file.txt', 'size': 70, 'type': 'file', 'created': 1678175677.1887748, 'islink': False, 'mode': 33188, 'uid': 1001, 'gid': 123, 'mtime': 1678175677.1887748, 'ino': 286957, 'nlink': 1} != 'file.txt'
Full diff:
[
- 'file.txt',
+ {'created': 1678175677.1887748,
+ 'gid': 123,
+ 'ino': 286957,
+ 'islink': False,
+ 'mode': 33188,
+ 'mtime': 1678175677.1887748,
+ 'name': 'file.txt',
+ 'nlink': 1,
+ 'size': 70,
+ 'type': 'file',
+ 'uid': 1001},
]
```
Also:
```
FAILED tests/test_filesystem.py::test_compression_filesystems[GzipFileSystem] - AssertionError: assert [{'created': ...: False, ...}] == ['file.txt']
FAILED tests/test_filesystem.py::test_compression_filesystems[Lz4FileSystem] - AssertionError: assert [{'created': ...: False, ...}] == ['file.txt']
FAILED tests/test_filesystem.py::test_compression_filesystems[XzFileSystem] - AssertionError: assert [{'created': ...: False, ...}] == ['file.txt']
FAILED tests/test_filesystem.py::test_compression_filesystems[ZstdFileSystem] - AssertionError: assert [{'created': ...: False, ...}] == ['file.txt']
===== 5 failed, 2134 passed, 18 skipped, 38 warnings in 157.21s (0:02:37) ======
```
See:
- fsspec/filesystem_spec#1205 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5616/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5616/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5615 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5615/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5615/comments | https://api.github.com/repos/huggingface/datasets/issues/5615/events | https://github.com/huggingface/datasets/issues/5615 | 1,612,552,653 | I_kwDODunzps5gHZnN | 5,615 | IterableDataset.add_column is unable to accept another IterableDataset as a parameter. | {
"login": "zsaladin",
"id": 6466389,
"node_id": "MDQ6VXNlcjY0NjYzODk=",
"avatar_url": "https://avatars.githubusercontent.com/u/6466389?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/zsaladin",
"html_url": "https://github.com/zsaladin",
"followers_url": "https://api.github.com/users/zsaladin/followers",
"following_url": "https://api.github.com/users/zsaladin/following{/other_user}",
"gists_url": "https://api.github.com/users/zsaladin/gists{/gist_id}",
"starred_url": "https://api.github.com/users/zsaladin/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/zsaladin/subscriptions",
"organizations_url": "https://api.github.com/users/zsaladin/orgs",
"repos_url": "https://api.github.com/users/zsaladin/repos",
"events_url": "https://api.github.com/users/zsaladin/events{/privacy}",
"received_events_url": "https://api.github.com/users/zsaladin/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892913,
"node_id": "MDU6TGFiZWwxOTM1ODkyOTEz",
"url": "https://api.github.com/repos/huggingface/datasets/labels/wontfix",
"name": "wontfix",
"color": "ffffff",
"default": true,
"description": "This will not be worked on"
}
] | closed | false | null | [] | null | [
"Hi! You can use `concatenate_datasets([ids1, ids2], axis=1)` to do this."
] | 2023-03-07T01:52:00 | 2023-03-09T15:24:05 | 2023-03-09T15:23:54 | NONE | null | ### Describe the bug
`IterableDataset.add_column` occurs an exception when passing another `IterableDataset` as a parameter.
The method seems to accept only eager evaluated values.
https://github.com/huggingface/datasets/blob/35b789e8f6826b6b5a6b48fcc2416c890a1f326a/src/datasets/iterable_dataset.py#L1388-L1391
I wrote codes below to make it.
```py
def add_column(dataset: IterableDataset, name: str, add_dataset: IterableDataset, key: str) -> IterableDataset:
iter_add_dataset = iter(add_dataset)
def add_column_fn(example):
if name in example:
raise ValueError(f"Error when adding {name}: column {name} is already in the dataset.")
return {name: next(iter_add_dataset)[key]}
return dataset.map(add_column_fn)
```
Is there other way to do it? Or is it intended?
### Steps to reproduce the bug
Thie codes below occurs `NotImplementedError`
```py
from datasets import IterableDataset
def gen(num):
yield {f"col{num}": 1}
yield {f"col{num}": 2}
yield {f"col{num}": 3}
ids1 = IterableDataset.from_generator(gen, gen_kwargs={"num": 1})
ids2 = IterableDataset.from_generator(gen, gen_kwargs={"num": 2})
new_ids = ids1.add_column("new_col", ids1)
for row in new_ids:
print(row)
```
### Expected behavior
`IterableDataset.add_column` is able to task `IterableDataset` and lazy evaluated values as a parameter since IterableDataset is lazy evalued.
### Environment info
- `datasets` version: 2.8.0
- Platform: Linux-3.10.0-1160.36.2.el7.x86_64-x86_64-with-glibc2.17
- Python version: 3.9.7
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5615/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5615/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5614 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5614/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5614/comments | https://api.github.com/repos/huggingface/datasets/issues/5614/events | https://github.com/huggingface/datasets/pull/5614 | 1,611,896,357 | PR_kwDODunzps5LZOTd | 5,614 | Fix archive fs test | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008664 / 0.011353 (-0.002689) | 0.004622 / 0.011008 (-0.006387) | 0.101716 / 0.038508 (0.063208) | 0.030044 / 0.023109 (0.006935) | 0.298476 / 0.275898 (0.022578) | 0.360873 / 0.323480 (0.037393) | 0.007012 / 0.007986 (-0.000974) | 0.003409 / 0.004328 (-0.000919) | 0.077731 / 0.004250 (0.073480) | 0.035493 / 0.037052 (-0.001560) | 0.311474 / 0.258489 (0.052985) | 0.357276 / 0.293841 (0.063435) | 0.033909 / 0.128546 (-0.094638) | 0.011315 / 0.075646 (-0.064332) | 0.323149 / 0.419271 (-0.096122) | 0.040678 / 0.043533 (-0.002855) | 0.298487 / 0.255139 (0.043348) | 0.323107 / 0.283200 (0.039907) | 0.086641 / 0.141683 (-0.055042) | 1.452905 / 1.452155 (0.000750) | 1.510953 / 1.492716 (0.018237) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.190607 / 0.018006 (0.172601) | 0.409786 / 0.000490 (0.409297) | 0.000818 / 0.000200 (0.000618) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023267 / 0.037411 (-0.014144) | 0.095390 / 0.014526 (0.080864) | 0.104381 / 0.176557 (-0.072175) | 0.150735 / 0.737135 (-0.586401) | 0.106876 / 0.296338 (-0.189462) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434259 / 0.215209 (0.219050) | 4.326978 / 2.077655 (2.249323) | 2.036690 / 1.504120 (0.532570) | 1.836459 / 1.541195 (0.295264) | 1.904003 / 1.468490 (0.435513) | 0.697265 / 4.584777 (-3.887512) | 3.435911 / 3.745712 (-0.309802) | 3.240918 / 5.269862 (-2.028944) | 1.629220 / 4.565676 (-2.936456) | 0.083158 / 0.424275 (-0.341117) | 0.012604 / 0.007607 (0.004997) | 0.539818 / 0.226044 (0.313773) | 5.397860 / 2.268929 (3.128932) | 2.483890 / 55.444624 (-52.960735) | 2.132404 / 6.876477 (-4.744072) | 2.162583 / 2.142072 (0.020510) | 0.817773 / 4.805227 (-3.987454) | 0.151677 / 6.500664 (-6.348987) | 0.066569 / 0.075469 (-0.008900) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.243449 / 1.841788 (-0.598339) | 13.699854 / 8.074308 (5.625546) | 13.930979 / 10.191392 (3.739587) | 0.165344 / 0.680424 (-0.515079) | 0.028910 / 0.534201 (-0.505291) | 0.396201 / 0.579283 (-0.183082) | 0.404448 / 0.434364 (-0.029916) | 0.482031 / 0.540337 (-0.058306) | 0.570023 / 1.386936 (-0.816913) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006785 / 0.011353 (-0.004568) | 0.004643 / 0.011008 (-0.006365) | 0.076755 / 0.038508 (0.038247) | 0.027893 / 0.023109 (0.004783) | 0.342539 / 0.275898 (0.066641) | 0.379103 / 0.323480 (0.055623) | 0.005107 / 0.007986 (-0.002879) | 0.003413 / 0.004328 (-0.000915) | 0.075779 / 0.004250 (0.071528) | 0.039251 / 0.037052 (0.002199) | 0.343425 / 0.258489 (0.084935) | 0.385292 / 0.293841 (0.091451) | 0.032229 / 0.128546 (-0.096317) | 0.011666 / 0.075646 (-0.063980) | 0.086452 / 0.419271 (-0.332819) | 0.042918 / 0.043533 (-0.000615) | 0.343145 / 0.255139 (0.088006) | 0.367916 / 0.283200 (0.084717) | 0.090810 / 0.141683 (-0.050873) | 1.471679 / 1.452155 (0.019524) | 1.566683 / 1.492716 (0.073966) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220343 / 0.018006 (0.202336) | 0.396155 / 0.000490 (0.395665) | 0.003831 / 0.000200 (0.003631) | 0.000080 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024990 / 0.037411 (-0.012421) | 0.101270 / 0.014526 (0.086744) | 0.110115 / 0.176557 (-0.066442) | 0.161770 / 0.737135 (-0.575365) | 0.112187 / 0.296338 (-0.184151) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436199 / 0.215209 (0.220989) | 4.329084 / 2.077655 (2.251429) | 2.043335 / 1.504120 (0.539215) | 1.836799 / 1.541195 (0.295604) | 1.908362 / 1.468490 (0.439872) | 0.700518 / 4.584777 (-3.884259) | 3.418003 / 3.745712 (-0.327710) | 1.860621 / 5.269862 (-3.409241) | 1.171343 / 4.565676 (-3.394334) | 0.083150 / 0.424275 (-0.341125) | 0.012543 / 0.007607 (0.004936) | 0.533528 / 0.226044 (0.307483) | 5.339660 / 2.268929 (3.070732) | 2.499494 / 55.444624 (-52.945131) | 2.154773 / 6.876477 (-4.721704) | 2.198734 / 2.142072 (0.056661) | 0.803383 / 4.805227 (-4.001844) | 0.150980 / 6.500664 (-6.349684) | 0.068050 / 0.075469 (-0.007419) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.309487 / 1.841788 (-0.532301) | 14.177068 / 8.074308 (6.102760) | 13.218912 / 10.191392 (3.027520) | 0.156857 / 0.680424 (-0.523567) | 0.016534 / 0.534201 (-0.517667) | 0.383986 / 0.579283 (-0.195297) | 0.395264 / 0.434364 (-0.039100) | 0.442310 / 0.540337 (-0.098027) | 0.535535 / 1.386936 (-0.851401) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#64e24bca88be711f4fdcb9c18edaddc1db0bbe2e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009446 / 0.011353 (-0.001907) | 0.005061 / 0.011008 (-0.005948) | 0.099783 / 0.038508 (0.061275) | 0.036379 / 0.023109 (0.013270) | 0.296769 / 0.275898 (0.020871) | 0.368990 / 0.323480 (0.045510) | 0.007891 / 0.007986 (-0.000094) | 0.003940 / 0.004328 (-0.000389) | 0.076284 / 0.004250 (0.072034) | 0.044390 / 0.037052 (0.007337) | 0.313373 / 0.258489 (0.054884) | 0.361118 / 0.293841 (0.067277) | 0.039058 / 0.128546 (-0.089488) | 0.012016 / 0.075646 (-0.063631) | 0.334239 / 0.419271 (-0.085033) | 0.047028 / 0.043533 (0.003495) | 0.297766 / 0.255139 (0.042627) | 0.312853 / 0.283200 (0.029653) | 0.099117 / 0.141683 (-0.042566) | 1.475487 / 1.452155 (0.023332) | 1.557487 / 1.492716 (0.064771) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206243 / 0.018006 (0.188237) | 0.443920 / 0.000490 (0.443430) | 0.001404 / 0.000200 (0.001205) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026347 / 0.037411 (-0.011065) | 0.105880 / 0.014526 (0.091354) | 0.116227 / 0.176557 (-0.060330) | 0.157404 / 0.737135 (-0.579732) | 0.121668 / 0.296338 (-0.174671) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.398614 / 0.215209 (0.183405) | 3.970657 / 2.077655 (1.893002) | 1.778899 / 1.504120 (0.274779) | 1.591806 / 1.541195 (0.050611) | 1.687717 / 1.468490 (0.219227) | 0.695399 / 4.584777 (-3.889378) | 3.829281 / 3.745712 (0.083569) | 2.140856 / 5.269862 (-3.129006) | 1.355027 / 4.565676 (-3.210650) | 0.085714 / 0.424275 (-0.338561) | 0.012130 / 0.007607 (0.004523) | 0.505807 / 0.226044 (0.279762) | 5.053098 / 2.268929 (2.784170) | 2.321694 / 55.444624 (-53.122931) | 2.015909 / 6.876477 (-4.860568) | 2.100862 / 2.142072 (-0.041210) | 0.855689 / 4.805227 (-3.949539) | 0.167192 / 6.500664 (-6.333472) | 0.062376 / 0.075469 (-0.013093) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196647 / 1.841788 (-0.645141) | 14.971356 / 8.074308 (6.897048) | 13.897184 / 10.191392 (3.705792) | 0.193267 / 0.680424 (-0.487157) | 0.029252 / 0.534201 (-0.504949) | 0.444885 / 0.579283 (-0.134398) | 0.452792 / 0.434364 (0.018429) | 0.550157 / 0.540337 (0.009819) | 0.658524 / 1.386936 (-0.728412) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007774 / 0.011353 (-0.003579) | 0.005304 / 0.011008 (-0.005704) | 0.075530 / 0.038508 (0.037022) | 0.034930 / 0.023109 (0.011821) | 0.343879 / 0.275898 (0.067981) | 0.386487 / 0.323480 (0.063008) | 0.005998 / 0.007986 (-0.001987) | 0.005619 / 0.004328 (0.001291) | 0.075865 / 0.004250 (0.071614) | 0.050499 / 0.037052 (0.013446) | 0.345503 / 0.258489 (0.087014) | 0.392081 / 0.293841 (0.098240) | 0.037118 / 0.128546 (-0.091429) | 0.012540 / 0.075646 (-0.063107) | 0.086202 / 0.419271 (-0.333069) | 0.050672 / 0.043533 (0.007139) | 0.343622 / 0.255139 (0.088483) | 0.353853 / 0.283200 (0.070653) | 0.105408 / 0.141683 (-0.036274) | 1.460695 / 1.452155 (0.008540) | 1.524270 / 1.492716 (0.031554) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219356 / 0.018006 (0.201350) | 0.440740 / 0.000490 (0.440251) | 0.014313 / 0.000200 (0.014114) | 0.000103 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030297 / 0.037411 (-0.007115) | 0.108723 / 0.014526 (0.094197) | 0.125085 / 0.176557 (-0.051471) | 0.176664 / 0.737135 (-0.560471) | 0.126659 / 0.296338 (-0.169680) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.445790 / 0.215209 (0.230581) | 4.241046 / 2.077655 (2.163391) | 2.027381 / 1.504120 (0.523261) | 1.821070 / 1.541195 (0.279876) | 1.934417 / 1.468490 (0.465927) | 0.710897 / 4.584777 (-3.873880) | 3.840397 / 3.745712 (0.094685) | 3.959196 / 5.269862 (-1.310666) | 1.646069 / 4.565676 (-2.919608) | 0.088615 / 0.424275 (-0.335660) | 0.012321 / 0.007607 (0.004714) | 0.523463 / 0.226044 (0.297418) | 5.240147 / 2.268929 (2.971218) | 2.521639 / 55.444624 (-52.922986) | 2.246535 / 6.876477 (-4.629942) | 2.365913 / 2.142072 (0.223841) | 0.851288 / 4.805227 (-3.953939) | 0.170179 / 6.500664 (-6.330485) | 0.064732 / 0.075469 (-0.010737) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255505 / 1.841788 (-0.586283) | 15.305457 / 8.074308 (7.231148) | 13.214186 / 10.191392 (3.022794) | 0.188971 / 0.680424 (-0.491453) | 0.018972 / 0.534201 (-0.515229) | 0.429621 / 0.579283 (-0.149662) | 0.428738 / 0.434364 (-0.005626) | 0.536241 / 0.540337 (-0.004096) | 0.632998 / 1.386936 (-0.753938) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b64fae9509f6e9da9cabf0ce677966598fc61e38 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008435 / 0.011353 (-0.002918) | 0.004454 / 0.011008 (-0.006554) | 0.099091 / 0.038508 (0.060583) | 0.028890 / 0.023109 (0.005781) | 0.297450 / 0.275898 (0.021551) | 0.329025 / 0.323480 (0.005545) | 0.006584 / 0.007986 (-0.001401) | 0.004669 / 0.004328 (0.000340) | 0.077387 / 0.004250 (0.073137) | 0.033701 / 0.037052 (-0.003352) | 0.301272 / 0.258489 (0.042783) | 0.345401 / 0.293841 (0.051560) | 0.033473 / 0.128546 (-0.095073) | 0.011244 / 0.075646 (-0.064402) | 0.321941 / 0.419271 (-0.097330) | 0.040646 / 0.043533 (-0.002887) | 0.306686 / 0.255139 (0.051547) | 0.321868 / 0.283200 (0.038668) | 0.084281 / 0.141683 (-0.057401) | 1.491414 / 1.452155 (0.039259) | 1.542799 / 1.492716 (0.050083) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.188368 / 0.018006 (0.170362) | 0.398595 / 0.000490 (0.398105) | 0.000805 / 0.000200 (0.000605) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022690 / 0.037411 (-0.014721) | 0.096795 / 0.014526 (0.082269) | 0.104037 / 0.176557 (-0.072520) | 0.149409 / 0.737135 (-0.587727) | 0.108022 / 0.296338 (-0.188317) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419316 / 0.215209 (0.204107) | 4.186850 / 2.077655 (2.109196) | 1.920182 / 1.504120 (0.416062) | 1.715493 / 1.541195 (0.174298) | 1.757767 / 1.468490 (0.289277) | 0.692296 / 4.584777 (-3.892480) | 3.342330 / 3.745712 (-0.403382) | 1.842063 / 5.269862 (-3.427798) | 1.150190 / 4.565676 (-3.415487) | 0.082792 / 0.424275 (-0.341483) | 0.012540 / 0.007607 (0.004933) | 0.528867 / 0.226044 (0.302822) | 5.297818 / 2.268929 (3.028890) | 2.313173 / 55.444624 (-53.131451) | 1.941723 / 6.876477 (-4.934754) | 1.982948 / 2.142072 (-0.159125) | 0.808951 / 4.805227 (-3.996276) | 0.149338 / 6.500664 (-6.351326) | 0.064838 / 0.075469 (-0.010631) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.187865 / 1.841788 (-0.653923) | 13.381918 / 8.074308 (5.307610) | 13.730627 / 10.191392 (3.539234) | 0.149976 / 0.680424 (-0.530447) | 0.028249 / 0.534201 (-0.505952) | 0.392591 / 0.579283 (-0.186692) | 0.403451 / 0.434364 (-0.030912) | 0.467484 / 0.540337 (-0.072853) | 0.560296 / 1.386936 (-0.826640) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006440 / 0.011353 (-0.004913) | 0.004488 / 0.011008 (-0.006521) | 0.077875 / 0.038508 (0.039367) | 0.027284 / 0.023109 (0.004174) | 0.341625 / 0.275898 (0.065727) | 0.374960 / 0.323480 (0.051480) | 0.005581 / 0.007986 (-0.002405) | 0.003326 / 0.004328 (-0.001003) | 0.076928 / 0.004250 (0.072677) | 0.038205 / 0.037052 (0.001153) | 0.345933 / 0.258489 (0.087444) | 0.383675 / 0.293841 (0.089834) | 0.031908 / 0.128546 (-0.096638) | 0.011724 / 0.075646 (-0.063922) | 0.086974 / 0.419271 (-0.332298) | 0.043084 / 0.043533 (-0.000449) | 0.339663 / 0.255139 (0.084524) | 0.363782 / 0.283200 (0.080582) | 0.090934 / 0.141683 (-0.050749) | 1.459718 / 1.452155 (0.007563) | 1.541104 / 1.492716 (0.048388) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224005 / 0.018006 (0.205998) | 0.400727 / 0.000490 (0.400238) | 0.000427 / 0.000200 (0.000227) | 0.000061 / 0.000054 (0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024604 / 0.037411 (-0.012807) | 0.099813 / 0.014526 (0.085287) | 0.104034 / 0.176557 (-0.072523) | 0.156245 / 0.737135 (-0.580890) | 0.108739 / 0.296338 (-0.187600) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440500 / 0.215209 (0.225291) | 4.379934 / 2.077655 (2.302279) | 2.075826 / 1.504120 (0.571706) | 1.867635 / 1.541195 (0.326441) | 1.919035 / 1.468490 (0.450545) | 0.696613 / 4.584777 (-3.888164) | 3.334993 / 3.745712 (-0.410720) | 1.857139 / 5.269862 (-3.412723) | 1.160598 / 4.565676 (-3.405079) | 0.083120 / 0.424275 (-0.341155) | 0.012475 / 0.007607 (0.004868) | 0.544607 / 0.226044 (0.318563) | 5.436808 / 2.268929 (3.167879) | 2.518562 / 55.444624 (-52.926063) | 2.158434 / 6.876477 (-4.718042) | 2.170691 / 2.142072 (0.028618) | 0.811297 / 4.805227 (-3.993930) | 0.150675 / 6.500664 (-6.349990) | 0.065655 / 0.075469 (-0.009814) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.277627 / 1.841788 (-0.564160) | 13.833501 / 8.074308 (5.759193) | 13.038718 / 10.191392 (2.847325) | 0.148837 / 0.680424 (-0.531587) | 0.016440 / 0.534201 (-0.517761) | 0.379147 / 0.579283 (-0.200136) | 0.379753 / 0.434364 (-0.054611) | 0.460197 / 0.540337 (-0.080141) | 0.544152 / 1.386936 (-0.842784) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6e2a235cbab1c91dc5eca0cb123f9c9d9f743461 \"CML watermark\")\n"
] | 2023-03-06T17:28:09 | 2023-03-07T13:27:50 | 2023-03-07T13:20:57 | MEMBER | null | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5614/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5614/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5614",
"html_url": "https://github.com/huggingface/datasets/pull/5614",
"diff_url": "https://github.com/huggingface/datasets/pull/5614.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5614.patch",
"merged_at": "2023-03-07T13:20:57"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5613 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5613/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5613/comments | https://api.github.com/repos/huggingface/datasets/issues/5613/events | https://github.com/huggingface/datasets/issues/5613 | 1,611,875,473 | I_kwDODunzps5gE0SR | 5,613 | Version mismatch with multiprocess and dill on Python 3.10 | {
"login": "adampauls",
"id": 1243668,
"node_id": "MDQ6VXNlcjEyNDM2Njg=",
"avatar_url": "https://avatars.githubusercontent.com/u/1243668?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/adampauls",
"html_url": "https://github.com/adampauls",
"followers_url": "https://api.github.com/users/adampauls/followers",
"following_url": "https://api.github.com/users/adampauls/following{/other_user}",
"gists_url": "https://api.github.com/users/adampauls/gists{/gist_id}",
"starred_url": "https://api.github.com/users/adampauls/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/adampauls/subscriptions",
"organizations_url": "https://api.github.com/users/adampauls/orgs",
"repos_url": "https://api.github.com/users/adampauls/repos",
"events_url": "https://api.github.com/users/adampauls/events{/privacy}",
"received_events_url": "https://api.github.com/users/adampauls/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Sorry, I just found https://github.com/apache/beam/issues/24458. It seems this issue is being worked on. ",
"Reopening, since I think the docs should inform the user of this problem. For example, [this page](https://huggingface.co/docs/datasets/installation) says \r\n> Datasets is tested on Python 3.7+.\r\n\r\nbut it should probably say that Beam Datasets do not work with Python 3.10 (or link to a known issues page). ",
"Same problem on Colab using a vanilla setup running :\r\nPython 3.10.11 \r\napache-beam 2.47.0\r\ndatasets 2.12.0",
"Same problem, \r\npy 3.10.11\r\napache-beam==2.47.0\r\ndatasets==2.12.0"
] | 2023-03-06T17:14:41 | 2023-05-28T01:03:55 | null | NONE | null | ### Describe the bug
Grabbing the latest version of `datasets` and `apache-beam` with `poetry` using Python 3.10 gives a crash at runtime. The crash is
```
File "/Users/adpauls/sc/git/DSI-transformers/data/NQ/create_NQ_train_vali.py", line 1, in <module>
import datasets
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/datasets/__init__.py", line 43, in <module>
from .arrow_dataset import Dataset
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 65, in <module>
from .arrow_reader import ArrowReader
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/datasets/arrow_reader.py", line 30, in <module>
from .download.download_config import DownloadConfig
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/datasets/download/__init__.py", line 9, in <module>
from .download_manager import DownloadManager, DownloadMode
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/datasets/download/download_manager.py", line 35, in <module>
from ..utils.py_utils import NestedDataStructure, map_nested, size_str
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 40, in <module>
import multiprocess.pool
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/multiprocess/pool.py", line 609, in <module>
class ThreadPool(Pool):
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/multiprocess/pool.py", line 611, in ThreadPool
from .dummy import Process
File "/Users/adpauls/Library/Caches/pypoetry/virtualenvs/yyy-oPbZ7mKM-py3.10/lib/python3.10/site-packages/multiprocess/dummy/__init__.py", line 87, in <module>
class Condition(threading._Condition):
AttributeError: module 'threading' has no attribute '_Condition'. Did you mean: 'Condition'?
```
I think this is a bad interaction of versions from `dill`, `multiprocess`, `apache-beam`, and `threading` from the Python (3.10) standard lib. Upgrading `multiprocess` to a version that does not crash like this is not possible because `apache-beam` pins `dill` to and old version:
```
Because multiprocess (0.70.10) depends on dill (>=0.3.2)
and apache-beam (2.45.0) depends on dill (>=0.3.1.1,<0.3.2), multiprocess (0.70.10) is incompatible with apache-beam (2.45.0).
And because no versions of apache-beam match >2.45.0,<3.0.0, multiprocess (0.70.10) is incompatible with apache-beam (>=2.45.0,<3.0.0).
So, because yyy depends on both apache-beam (^2.45.0) and multiprocess (0.70.10), version solving failed.
```
Perhaps it is not right to file a bug here, but I'm not totally sure whose fault it is. And in any case, this is an immediate blocker to using `datasets` out of the box.
Possibly related to https://github.com/huggingface/datasets/issues/5232.
### Steps to reproduce the bug
Steps to reproduce:
1. Make a poetry project with this configuration
```
[tool.poetry]
name = "yyy"
version = "0.1.0"
description = ""
authors = ["Adam Pauls <[email protected]>"]
readme = "README.md"
packages = [{ include = "xxx" }]
[tool.poetry.dependencies]
python = ">=3.10,<3.11"
datasets = "^2.10.1"
apache-beam = "^2.45.0"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"
```
2. `poetry install`.
3. `poetry run python -c "import datasets"`.
### Expected behavior
Script runs.
### Environment info
Python 3.10. Here are the versions installed by `poetry`:
```
•• Installing frozenlist (1.3.3)
• Installing idna (3.4)
• Installing multidict (6.0.4)
• Installing aiosignal (1.3.1)
• Installing async-timeout (4.0.2)
• Installing attrs (22.2.0)
• Installing certifi (2022.12.7)
• Installing charset-normalizer (3.1.0)
• Installing six (1.16.0)
• Installing urllib3 (1.26.14)
• Installing yarl (1.8.2)
• Installing aiohttp (3.8.4)
• Installing dill (0.3.1.1)
• Installing docopt (0.6.2)
• Installing filelock (3.9.0)
• Installing numpy (1.22.4)
• Installing pyparsing (3.0.9)
• Installing protobuf (3.19.4)
• Installing packaging (23.0)
• Installing python-dateutil (2.8.2)
• Installing pytz (2022.7.1)
• Installing pyyaml (6.0)
• Installing requests (2.28.2)
• Installing tqdm (4.65.0)
• Installing typing-extensions (4.5.0)
• Installing cloudpickle (2.2.1)
• Installing crcmod (1.7)
• Installing fastavro (1.7.2)
• Installing fasteners (0.18)
• Installing fsspec (2023.3.0)
• Installing grpcio (1.51.3)
• Installing hdfs (2.7.0)
• Installing httplib2 (0.20.4)
• Installing huggingface-hub (0.12.1)
• Installing multiprocess (0.70.9)
• Installing objsize (0.6.1)
• Installing orjson (3.8.7)
• Installing pandas (1.5.3)
• Installing proto-plus (1.22.2)
• Installing pyarrow (9.0.0)
• Installing pydot (1.4.2)
• Installing pymongo (3.13.0)
• Installing regex (2022.10.31)
• Installing responses (0.18.0)
• Installing xxhash (3.2.0)
• Installing zstandard (0.20.0)
• Installing apache-beam (2.45.0)
• Installing datasets (2.10.1)
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5613/reactions",
"total_count": 6,
"+1": 6,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5613/timeline | null | reopened | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5612 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5612/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5612/comments | https://api.github.com/repos/huggingface/datasets/issues/5612/events | https://github.com/huggingface/datasets/issues/5612 | 1,611,262,510 | I_kwDODunzps5gCeou | 5,612 | Arrow map type in parquet files unsupported | {
"login": "TevenLeScao",
"id": 26709476,
"node_id": "MDQ6VXNlcjI2NzA5NDc2",
"avatar_url": "https://avatars.githubusercontent.com/u/26709476?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/TevenLeScao",
"html_url": "https://github.com/TevenLeScao",
"followers_url": "https://api.github.com/users/TevenLeScao/followers",
"following_url": "https://api.github.com/users/TevenLeScao/following{/other_user}",
"gists_url": "https://api.github.com/users/TevenLeScao/gists{/gist_id}",
"starred_url": "https://api.github.com/users/TevenLeScao/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/TevenLeScao/subscriptions",
"organizations_url": "https://api.github.com/users/TevenLeScao/orgs",
"repos_url": "https://api.github.com/users/TevenLeScao/repos",
"events_url": "https://api.github.com/users/TevenLeScao/events{/privacy}",
"received_events_url": "https://api.github.com/users/TevenLeScao/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"I'm attaching a minimal reproducible example:\r\n```python\r\nfrom datasets import load_dataset\r\nimport pyarrow as pa\r\nimport pyarrow.parquet as pq\r\n\r\ntable_with_map = pa.Table.from_pydict(\r\n {\"a\": [1, 2], \"b\": [[(\"a\", 2)], [(\"b\", 4)]]},\r\n schema=pa.schema({\"a\": pa.int32(), \"b\": pa.map_(pa.string(), pa.int32())})\r\n)\r\npq.write_table(table_with_map, \"parquet_with_map.parquet\")\r\ndset = load_dataset(\"parquet\", data_files=\"parquet_with_map.parquet\", split=\"train\") # error unless streaming=True\r\n``` \r\n\r\nFor a dataset generated with the packaged loaders (CSV, JSON, Parquet), `streaming=True` sets the dataset's features to `None` (unless explicitly provided in `load_dataset`), hence no error will be thrown as long as the features stay \"unresolved\" (resolving the features with `_resolve_features` will lead to an error)."
] | 2023-03-06T12:03:24 | 2023-03-14T17:20:25 | null | CONTRIBUTOR | null | ### Describe the bug
When I try to load parquet files that were processed with Spark, I get the following issue:
`ValueError: Arrow type map<string, string ('warc_headers')> does not have a datasets dtype equivalent.`
Strangely, loading the dataset with `streaming=True` solves the issue.
### Steps to reproduce the bug
The dataset is private, but this can be reproduced with any dataset that has Arrow maps.
### Expected behavior
Loading the dataset no matter whether streaming is True or not.
### Environment info
- `datasets` version: 2.10.1
- Platform: Linux-5.15.0-1029-gcp-x86_64-with-glibc2.31
- Python version: 3.10.7
- PyArrow version: 8.0.0
- Pandas version: 1.4.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5612/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5612/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5611 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5611/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5611/comments | https://api.github.com/repos/huggingface/datasets/issues/5611/events | https://github.com/huggingface/datasets/pull/5611 | 1,611,197,906 | PR_kwDODunzps5LW2Lx | 5,611 | add Dataset.to_list | {
"login": "kyoto7250",
"id": 50972773,
"node_id": "MDQ6VXNlcjUwOTcyNzcz",
"avatar_url": "https://avatars.githubusercontent.com/u/50972773?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kyoto7250",
"html_url": "https://github.com/kyoto7250",
"followers_url": "https://api.github.com/users/kyoto7250/followers",
"following_url": "https://api.github.com/users/kyoto7250/following{/other_user}",
"gists_url": "https://api.github.com/users/kyoto7250/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kyoto7250/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kyoto7250/subscriptions",
"organizations_url": "https://api.github.com/users/kyoto7250/orgs",
"repos_url": "https://api.github.com/users/kyoto7250/repos",
"events_url": "https://api.github.com/users/kyoto7250/events{/privacy}",
"received_events_url": "https://api.github.com/users/kyoto7250/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Hi, thanks for working on this! `Table.to_pylist` requires PyArrow 7.0+, and our minimal version requirement is 6.0, so we need to bump the version requirement to avoid CI failure. I'll do this in a separate PR.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006857 / 0.011353 (-0.004496) | 0.004711 / 0.011008 (-0.006297) | 0.098332 / 0.038508 (0.059824) | 0.028547 / 0.023109 (0.005438) | 0.307647 / 0.275898 (0.031749) | 0.334891 / 0.323480 (0.011411) | 0.005252 / 0.007986 (-0.002734) | 0.003495 / 0.004328 (-0.000833) | 0.075529 / 0.004250 (0.071279) | 0.042167 / 0.037052 (0.005114) | 0.308509 / 0.258489 (0.050020) | 0.348294 / 0.293841 (0.054453) | 0.032042 / 0.128546 (-0.096504) | 0.011684 / 0.075646 (-0.063962) | 0.321740 / 0.419271 (-0.097531) | 0.057725 / 0.043533 (0.014193) | 0.309431 / 0.255139 (0.054292) | 0.326818 / 0.283200 (0.043618) | 0.093261 / 0.141683 (-0.048422) | 1.475344 / 1.452155 (0.023190) | 1.563952 / 1.492716 (0.071236) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.205056 / 0.018006 (0.187050) | 0.421656 / 0.000490 (0.421166) | 0.004167 / 0.000200 (0.003967) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023935 / 0.037411 (-0.013476) | 0.097220 / 0.014526 (0.082695) | 0.104942 / 0.176557 (-0.071615) | 0.170339 / 0.737135 (-0.566796) | 0.107556 / 0.296338 (-0.188782) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424509 / 0.215209 (0.209300) | 4.223637 / 2.077655 (2.145982) | 2.090700 / 1.504120 (0.586580) | 1.902537 / 1.541195 (0.361343) | 1.981192 / 1.468490 (0.512701) | 0.695272 / 4.584777 (-3.889505) | 3.570169 / 3.745712 (-0.175544) | 1.885007 / 5.269862 (-3.384854) | 1.162828 / 4.565676 (-3.402848) | 0.084956 / 0.424275 (-0.339319) | 0.012818 / 0.007607 (0.005210) | 0.534395 / 0.226044 (0.308351) | 5.354318 / 2.268929 (3.085389) | 2.436875 / 55.444624 (-53.007749) | 2.111365 / 6.876477 (-4.765112) | 2.232874 / 2.142072 (0.090802) | 0.804703 / 4.805227 (-4.000524) | 0.152406 / 6.500664 (-6.348258) | 0.066926 / 0.075469 (-0.008543) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.198621 / 1.841788 (-0.643166) | 13.907491 / 8.074308 (5.833183) | 14.356286 / 10.191392 (4.164894) | 0.140714 / 0.680424 (-0.539710) | 0.016440 / 0.534201 (-0.517761) | 0.380868 / 0.579283 (-0.198415) | 0.396004 / 0.434364 (-0.038360) | 0.448275 / 0.540337 (-0.092062) | 0.537818 / 1.386936 (-0.849118) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006789 / 0.011353 (-0.004564) | 0.004652 / 0.011008 (-0.006356) | 0.076449 / 0.038508 (0.037941) | 0.028389 / 0.023109 (0.005280) | 0.378644 / 0.275898 (0.102746) | 0.423870 / 0.323480 (0.100391) | 0.005824 / 0.007986 (-0.002162) | 0.003398 / 0.004328 (-0.000931) | 0.075575 / 0.004250 (0.071324) | 0.039656 / 0.037052 (0.002604) | 0.370072 / 0.258489 (0.111583) | 0.441812 / 0.293841 (0.147971) | 0.031817 / 0.128546 (-0.096729) | 0.011701 / 0.075646 (-0.063946) | 0.085759 / 0.419271 (-0.333513) | 0.042328 / 0.043533 (-0.001205) | 0.364103 / 0.255139 (0.108964) | 0.413910 / 0.283200 (0.130711) | 0.090871 / 0.141683 (-0.050812) | 1.505749 / 1.452155 (0.053594) | 1.608555 / 1.492716 (0.115839) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212533 / 0.018006 (0.194527) | 0.404519 / 0.000490 (0.404030) | 0.000373 / 0.000200 (0.000174) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024849 / 0.037411 (-0.012562) | 0.100769 / 0.014526 (0.086243) | 0.110450 / 0.176557 (-0.066107) | 0.161715 / 0.737135 (-0.575420) | 0.113599 / 0.296338 (-0.182739) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436780 / 0.215209 (0.221571) | 4.387103 / 2.077655 (2.309448) | 2.081942 / 1.504120 (0.577822) | 1.873661 / 1.541195 (0.332466) | 1.947718 / 1.468490 (0.479228) | 0.696434 / 4.584777 (-3.888343) | 3.405300 / 3.745712 (-0.340412) | 1.897388 / 5.269862 (-3.372474) | 1.169969 / 4.565676 (-3.395707) | 0.083085 / 0.424275 (-0.341190) | 0.012480 / 0.007607 (0.004873) | 0.535635 / 0.226044 (0.309591) | 5.364462 / 2.268929 (3.095533) | 2.531168 / 55.444624 (-52.913457) | 2.184324 / 6.876477 (-4.692153) | 2.228613 / 2.142072 (0.086541) | 0.807127 / 4.805227 (-3.998100) | 0.151971 / 6.500664 (-6.348693) | 0.068430 / 0.075469 (-0.007039) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.306401 / 1.841788 (-0.535387) | 14.479552 / 8.074308 (6.405244) | 14.428398 / 10.191392 (4.237006) | 0.159505 / 0.680424 (-0.520919) | 0.016856 / 0.534201 (-0.517344) | 0.375197 / 0.579283 (-0.204086) | 0.384328 / 0.434364 (-0.050036) | 0.440688 / 0.540337 (-0.099650) | 0.524998 / 1.386936 (-0.861938) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#50b887b840cf3cab86b0394b41050b579c4b79ba \"CML watermark\")\n"
] | 2023-03-06T11:21:57 | 2023-03-27T13:34:19 | 2023-03-27T13:26:38 | CONTRIBUTOR | null | close https://github.com/huggingface/datasets/issues/5606
This PR is for adding the `Dataset.to_list` method.
Thank you in advance.
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5611/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5611/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5611",
"html_url": "https://github.com/huggingface/datasets/pull/5611",
"diff_url": "https://github.com/huggingface/datasets/pull/5611.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5611.patch",
"merged_at": "2023-03-27T13:26:38"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5610 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5610/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5610/comments | https://api.github.com/repos/huggingface/datasets/issues/5610/events | https://github.com/huggingface/datasets/issues/5610 | 1,610,698,006 | I_kwDODunzps5gAU0W | 5,610 | use datasets streaming mode in trainer ddp mode cause memory leak | {
"login": "gromzhu",
"id": 15223544,
"node_id": "MDQ6VXNlcjE1MjIzNTQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/15223544?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gromzhu",
"html_url": "https://github.com/gromzhu",
"followers_url": "https://api.github.com/users/gromzhu/followers",
"following_url": "https://api.github.com/users/gromzhu/following{/other_user}",
"gists_url": "https://api.github.com/users/gromzhu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gromzhu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gromzhu/subscriptions",
"organizations_url": "https://api.github.com/users/gromzhu/orgs",
"repos_url": "https://api.github.com/users/gromzhu/repos",
"events_url": "https://api.github.com/users/gromzhu/events{/privacy}",
"received_events_url": "https://api.github.com/users/gromzhu/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Same problem, \r\ntransformers 4.28.1\r\ndatasets 2.12.0\r\n\r\nleak around 100Mb per 10 seconds when use dataloader_num_werker > 0 in training argumennts for transformer train, possile bug in transformers repo, but still not found solution :(\r\n",
"found an article described a problem, may be helpful for somebody:\r\nhttps://ppwwyyxx.com/blog/2022/Demystify-RAM-Usage-in-Multiprocess-DataLoader/\r\nI confirm, it`s not memory leak, after some time memory growing has stopped"
] | 2023-03-06T05:26:49 | 2023-05-07T15:15:32 | null | NONE | null | ### Describe the bug
use datasets streaming mode in trainer ddp mode cause memory leak
### Steps to reproduce the bug
import os
import time
import datetime
import sys
import numpy as np
import random
import torch
from torch.utils.data import Dataset, DataLoader, random_split, RandomSampler, SequentialSampler,DistributedSampler,BatchSampler
torch.manual_seed(42)
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config, GPT2Model,DataCollatorForLanguageModeling,AutoModelForCausalLM
from transformers import AdamW, get_linear_schedule_with_warmup
hf_model_path ='./Wenzhong-GPT2-110M'
tokenizer = GPT2Tokenizer.from_pretrained(hf_model_path)
tokenizer.add_special_tokens({'pad_token': '<|pad|>'})
from datasets import load_dataset
gpus=8
max_len = 576
batch_size_node = 17
save_step = 5000
gradient_accumulation = 2
dataloader_num = 4
max_step = 351000*1000//batch_size_node//gradient_accumulation//gpus
#max_step = -1
print("total_step:%d"%(max_step))
import datasets
datasets.version
dataset = load_dataset("text", data_files="./gpt_data_v1/*",split='train',cache_dir='./dataset_cache',streaming=True)
print('load over')
shuffled_dataset = dataset.shuffle(seed=42)
print('shuffle over')
def dataset_tokener(example,max_lenth=max_len):
example['text'] = list(map(lambda x : x.strip()+'<|endoftext|>',example['text'] ))
return tokenizer(example['text'], truncation=True, max_length=max_lenth, padding="longest")
new_new_dataset = shuffled_dataset.map(dataset_tokener, batched=True, remove_columns=["text"])
print('map over')
configuration = GPT2Config.from_pretrained(hf_model_path, output_hidden_states=False)
model = AutoModelForCausalLM.from_pretrained(hf_model_path)
model.resize_token_embeddings(len(tokenizer))
seed_val = 42
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
from transformers import Trainer,TrainingArguments
import os
print("strat train")
training_args = TrainingArguments(output_dir="./test_trainer",
num_train_epochs=1.0,
report_to="none",
do_train=True,
dataloader_num_workers=dataloader_num,
local_rank=int(os.environ.get('LOCAL_RANK', -1)),
overwrite_output_dir=True,
logging_strategy='steps',
logging_first_step=True,
logging_dir="./logs",
log_on_each_node=False,
per_device_train_batch_size=batch_size_node,
warmup_ratio=0.03,
save_steps=save_step,
save_total_limit=5,
gradient_accumulation_steps=gradient_accumulation,
max_steps=max_step,
disable_tqdm=False,
data_seed=42
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=new_new_dataset,
eval_dataset=None,
tokenizer=tokenizer,
data_collator=DataCollatorForLanguageModeling(tokenizer,mlm=False),
#compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
#preprocess_logits_for_metrics=preprocess_logits_for_metrics
#if training_args.do_eval and not is_torch_tpu_available()
#else None,
)
trainer.train(resume_from_checkpoint=True)
### Expected behavior
use the train code uppper
my dataset ./gpt_data_v1 have 1000 files, each file size is 120mb
start cmd is : python -m torch.distributed.launch --nproc_per_node=8 my_train.py
here is result:
![image](https://user-images.githubusercontent.com/15223544/223026042-1a81489f-897a-43e4-8339-65a202fd5dc7.png)
here is memory usage monitor in 12 hours
![image](https://user-images.githubusercontent.com/15223544/223027076-14e32e8b-9608-4282-9a80-f15d0277026d.png)
every dataloader work allocate over 24gb cpu memory
according to memory usage monitor in 12 hours,sometime small memory releases, but total memory usage is increase.
i think datasets streaming mode should not used so much memery,so maybe somewhere has memory leak.
### Environment info
pytorch 1.11.0
py 3.8
cuda 11.3
transformers 4.26.1
datasets 2.9.0
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5610/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5610/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5609 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5609/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5609/comments | https://api.github.com/repos/huggingface/datasets/issues/5609/events | https://github.com/huggingface/datasets/issues/5609 | 1,610,062,862 | I_kwDODunzps5f95wO | 5,609 | `load_from_disk` vs `load_dataset` performance. | {
"login": "davidgilbertson",
"id": 4443482,
"node_id": "MDQ6VXNlcjQ0NDM0ODI=",
"avatar_url": "https://avatars.githubusercontent.com/u/4443482?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/davidgilbertson",
"html_url": "https://github.com/davidgilbertson",
"followers_url": "https://api.github.com/users/davidgilbertson/followers",
"following_url": "https://api.github.com/users/davidgilbertson/following{/other_user}",
"gists_url": "https://api.github.com/users/davidgilbertson/gists{/gist_id}",
"starred_url": "https://api.github.com/users/davidgilbertson/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/davidgilbertson/subscriptions",
"organizations_url": "https://api.github.com/users/davidgilbertson/orgs",
"repos_url": "https://api.github.com/users/davidgilbertson/repos",
"events_url": "https://api.github.com/users/davidgilbertson/events{/privacy}",
"received_events_url": "https://api.github.com/users/davidgilbertson/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"Hi! We've recently made some improvements to `save_to_disk`/`list_to_disk` (100x faster in some scenarios), so it would help if you could install `datasets` directly from `main` (`pip install git+https://github.com/huggingface/datasets.git`) and re-run the \"benchmark\".",
"Great to hear! I'll give it a try when I've got a moment.",
"@mariosasko is that fix released to pip in the meantime? Asking cause im facing still the same issue (regarding loading images from local paths):\r\n```\r\ndataset = load_dataset(\"csv\", cache_dir=\"cache\", data_files=[\"/STORAGE/DATA/mijam/vit/code/list_filtered.csv\"], num_proc=16, split=\"train\").cast_column(\"image\", Image())\r\ndataset = dataset.class_encode_column(\"label\")\r\n```\r\nquite fast. \r\n\r\nThen I do `save_to_disk()` and some time later:\r\n```\r\ndataset = load_from_disk('/STORAGE/DATA/mijam/accel/saved_arrow_big')\r\n```\r\nreally slow. In theory it should be quicked since it only loads arrow files, no conversions and so on.\r\n",
"@mjamroz I assume your CSV file stores image file paths. This means `save_to_disk` needs to embed the image bytes resulting in a much bigger Arrow file (than the initial one). Maybe specifying `num_shards` to make the Arrow files smaller can help (large Arrow files on some systems take a long time to load)."
] | 2023-03-05T05:27:15 | 2023-07-13T18:48:05 | null | NONE | null | ### Describe the bug
I have downloaded `openwebtext` (~12GB) and filtered out a small amount of junk (it's still huge). Now, I would like to use this filtered version for future work. It seems I have two choices:
1. Use `load_dataset` each time, relying on the cache mechanism, and re-run my filtering.
2. `save_to_disk` and then use `load_from_disk` to load the filtered version.
The performance of these two approaches is wildly different:
* Using `load_dataset` takes about 20 seconds to load the dataset, and a few seconds to re-filter (thanks to the brilliant filter/map caching)
* Using `load_from_disk` takes 14 minutes! And the second time I tried, the session just crashed (on a machine with 32GB of RAM)
I don't know if you'd call this a bug, but it seems like there shouldn't need to be two methods to load from disk, or that they should not take such wildly different amounts of time, or that one should not crash. Or maybe that the docs could offer some guidance about when to pick which method and why two methods exist, or just how do most people do it?
Something I couldn't work out from reading the docs was this: can I modify a dataset from the hub, save it (locally) and use `load_dataset` to load it? This [post seemed to suggest that the answer is no](https://discuss.huggingface.co/t/save-and-load-datasets/9260).
### Steps to reproduce the bug
See above
### Expected behavior
Load times should be about the same.
### Environment info
- `datasets` version: 2.9.0
- Platform: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31
- Python version: 3.10.8
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5609/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5609/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5608 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5608/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5608/comments | https://api.github.com/repos/huggingface/datasets/issues/5608/events | https://github.com/huggingface/datasets/issues/5608 | 1,609,996,563 | I_kwDODunzps5f9pkT | 5,608 | audiofolder only creates dataset of 13 rows (files) when the data folder it's reading from has 20,000 mp3 files. | {
"login": "jcho19",
"id": 107211437,
"node_id": "U_kgDOBmPqrQ",
"avatar_url": "https://avatars.githubusercontent.com/u/107211437?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/jcho19",
"html_url": "https://github.com/jcho19",
"followers_url": "https://api.github.com/users/jcho19/followers",
"following_url": "https://api.github.com/users/jcho19/following{/other_user}",
"gists_url": "https://api.github.com/users/jcho19/gists{/gist_id}",
"starred_url": "https://api.github.com/users/jcho19/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/jcho19/subscriptions",
"organizations_url": "https://api.github.com/users/jcho19/orgs",
"repos_url": "https://api.github.com/users/jcho19/repos",
"events_url": "https://api.github.com/users/jcho19/events{/privacy}",
"received_events_url": "https://api.github.com/users/jcho19/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi!\r\n\r\n> naming convention of mp3 files\r\n\r\nYes, this could be the problem. MP3 files should end with `.mp3`/`.MP3` to be recognized as audio files.\r\n\r\nIf the file names are not the culprit, can you paste the audio folder's directory structure to help us reproduce the error (e.g., by running the `tree \"x\"` command)?",
"Hi! I'm sorry, I don't want to reveal my entire dataset, but here's a snippet (all of the mp3 files below are some of the ones not being recognized by audiofolder. Also, for another dataset, audiofolder loaded zero mp3 files because \"train\" was in the name of one of the mp3 files. \r\nmy_dataset\r\n├── data\r\n│ ├── VHA_Innovation_Stories_-_Day_2-123.mp3\r\n│ ├── VHA_Innovation_Stories_-_Day_2-124.mp3\r\n│ ├── ASSOCIATION_OF_GENERAL_PRACTITIONERS_OF_JAMAICA_NEPHROLOGY_CONFERENCE_-_JULY_3,_2022-93.mp3\r\n│ ├── ASSOCIATION_OF_GENERAL_PRACTITIONERS_OF_JAMAICA_NEPHROLOGY_CONFERENCE_-_JULY_3,_2022-94.mp3\r\n│ ├── ASSOCIATION_OF_GENERAL_PRACTITIONERS_OF_JAMAICA_NEPHROLOGY_CONFERENCE_-_JULY_3,_2022-95.mp3\r\n│ ├── Your_Impact\\357\\274\\232_Neurosurgery_equipment-5.mp3\r\n│ └── Your_Impact\\357\\274\\232_Neurosurgery_equipment-6.mp3\r\n└── metadata.csv\r\n\r\nHere's a few of the 13 files recognized by the dataset:\r\nBritish_Heart_Foundation_-_Your_guide_to_a_Coronary_Angiogram,_a_test_for_heart_disease-1.mp3\r\nBritish_Heart_Foundation_-_Your_guide_to_a_Coronary_Angiogram,_a_test_for_heart_disease-2.mp3\r\nBritish_Heart_Foundation_-_Your_guide_to_a_Coronary_Angiogram,_a_test_for_heart_disease-3.mp3\r\nIVP_⧸_IVU_test_Procedure_for_Kidneys_intravenous_pyelogram_-_medical_radiology_X-ray_ivp-1.mp3\r\nIVP_⧸_IVU_test_Procedure_for_Kidneys_intravenous_pyelogram_-_medical_radiology_X-ray_ivp-2.mp3"
] | 2023-03-05T00:14:45 | 2023-03-12T00:02:57 | 2023-03-12T00:02:57 | NONE | null | ### Describe the bug
x = load_dataset("audiofolder", data_dir="x")
When running this, x is a dataset of 13 rows (files) when it should be 20,000 rows (files) as the data_dir "x" has 20,000 mp3 files. Does anyone know what could possibly cause this (naming convention of mp3 files, etc.)
### Steps to reproduce the bug
x = load_dataset("audiofolder", data_dir="x")
### Expected behavior
x = load_dataset("audiofolder", data_dir="x") should create a dataset of 20,000 rows (files).
### Environment info
- `datasets` version: 2.9.0
- Platform: Linux-3.10.0-1160.80.1.el7.x86_64-x86_64-with-glibc2.17
- Python version: 3.9.16
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5608/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5608/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5607 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5607/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5607/comments | https://api.github.com/repos/huggingface/datasets/issues/5607/events | https://github.com/huggingface/datasets/pull/5607 | 1,609,166,035 | PR_kwDODunzps5LQPbG | 5,607 | Fix outdated `verification_mode` values | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006142 / 0.011353 (-0.005211) | 0.004506 / 0.011008 (-0.006502) | 0.100224 / 0.038508 (0.061715) | 0.026988 / 0.023109 (0.003879) | 0.301625 / 0.275898 (0.025727) | 0.346337 / 0.323480 (0.022857) | 0.004642 / 0.007986 (-0.003343) | 0.003481 / 0.004328 (-0.000847) | 0.075847 / 0.004250 (0.071597) | 0.036959 / 0.037052 (-0.000094) | 0.302697 / 0.258489 (0.044208) | 0.351917 / 0.293841 (0.058076) | 0.030719 / 0.128546 (-0.097828) | 0.011591 / 0.075646 (-0.064056) | 0.319709 / 0.419271 (-0.099563) | 0.042000 / 0.043533 (-0.001532) | 0.306854 / 0.255139 (0.051715) | 0.326903 / 0.283200 (0.043703) | 0.082711 / 0.141683 (-0.058972) | 1.486616 / 1.452155 (0.034461) | 1.603229 / 1.492716 (0.110513) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198990 / 0.018006 (0.180983) | 0.427733 / 0.000490 (0.427243) | 0.003612 / 0.000200 (0.003412) | 0.000071 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022932 / 0.037411 (-0.014480) | 0.096969 / 0.014526 (0.082443) | 0.105749 / 0.176557 (-0.070807) | 0.166101 / 0.737135 (-0.571034) | 0.108646 / 0.296338 (-0.187692) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428174 / 0.215209 (0.212965) | 4.271452 / 2.077655 (2.193797) | 1.907588 / 1.504120 (0.403468) | 1.680870 / 1.541195 (0.139675) | 1.761336 / 1.468490 (0.292846) | 0.700380 / 4.584777 (-3.884396) | 3.415168 / 3.745712 (-0.330544) | 1.886122 / 5.269862 (-3.383740) | 1.276814 / 4.565676 (-3.288863) | 0.083429 / 0.424275 (-0.340846) | 0.012988 / 0.007607 (0.005381) | 0.518821 / 0.226044 (0.292776) | 5.188284 / 2.268929 (2.919356) | 2.433084 / 55.444624 (-53.011540) | 1.988034 / 6.876477 (-4.888443) | 2.100275 / 2.142072 (-0.041797) | 0.808252 / 4.805227 (-3.996976) | 0.158102 / 6.500664 (-6.342562) | 0.067686 / 0.075469 (-0.007783) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.204171 / 1.841788 (-0.637616) | 13.548756 / 8.074308 (5.474448) | 14.339805 / 10.191392 (4.148413) | 0.142853 / 0.680424 (-0.537571) | 0.016529 / 0.534201 (-0.517672) | 0.383800 / 0.579283 (-0.195483) | 0.380362 / 0.434364 (-0.054002) | 0.437716 / 0.540337 (-0.102621) | 0.524306 / 1.386936 (-0.862630) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006730 / 0.011353 (-0.004623) | 0.004652 / 0.011008 (-0.006356) | 0.077476 / 0.038508 (0.038968) | 0.027584 / 0.023109 (0.004475) | 0.340907 / 0.275898 (0.065009) | 0.377950 / 0.323480 (0.054470) | 0.005946 / 0.007986 (-0.002040) | 0.003548 / 0.004328 (-0.000780) | 0.076270 / 0.004250 (0.072019) | 0.037483 / 0.037052 (0.000431) | 0.346390 / 0.258489 (0.087901) | 0.384739 / 0.293841 (0.090898) | 0.031744 / 0.128546 (-0.096802) | 0.011598 / 0.075646 (-0.064049) | 0.085651 / 0.419271 (-0.333620) | 0.047308 / 0.043533 (0.003775) | 0.344704 / 0.255139 (0.089565) | 0.363410 / 0.283200 (0.080211) | 0.095009 / 0.141683 (-0.046674) | 1.478307 / 1.452155 (0.026152) | 1.576808 / 1.492716 (0.084092) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.197545 / 0.018006 (0.179539) | 0.431984 / 0.000490 (0.431494) | 0.001529 / 0.000200 (0.001329) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025452 / 0.037411 (-0.011959) | 0.100176 / 0.014526 (0.085651) | 0.108222 / 0.176557 (-0.068335) | 0.160556 / 0.737135 (-0.576580) | 0.112748 / 0.296338 (-0.183591) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436326 / 0.215209 (0.221117) | 4.378443 / 2.077655 (2.300788) | 2.056001 / 1.504120 (0.551881) | 1.853406 / 1.541195 (0.312211) | 1.931645 / 1.468490 (0.463155) | 0.698340 / 4.584777 (-3.886437) | 3.368961 / 3.745712 (-0.376751) | 2.583622 / 5.269862 (-2.686239) | 1.501274 / 4.565676 (-3.064402) | 0.083034 / 0.424275 (-0.341241) | 0.012725 / 0.007607 (0.005117) | 0.539991 / 0.226044 (0.313947) | 5.418413 / 2.268929 (3.149485) | 2.517205 / 55.444624 (-52.927420) | 2.179332 / 6.876477 (-4.697144) | 2.215376 / 2.142072 (0.073304) | 0.806133 / 4.805227 (-3.999094) | 0.151499 / 6.500664 (-6.349165) | 0.067270 / 0.075469 (-0.008199) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.308324 / 1.841788 (-0.533464) | 14.357361 / 8.074308 (6.283053) | 14.684768 / 10.191392 (4.493376) | 0.139575 / 0.680424 (-0.540849) | 0.016409 / 0.534201 (-0.517792) | 0.374087 / 0.579283 (-0.205196) | 0.390628 / 0.434364 (-0.043735) | 0.443102 / 0.540337 (-0.097235) | 0.536089 / 1.386936 (-0.850847) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#778d4e1c13ece980e706f8c7cb06e8473fd61315 \"CML watermark\")\n"
] | 2023-03-03T19:50:29 | 2023-03-09T17:34:13 | 2023-03-09T17:27:07 | CONTRIBUTOR | null | ~I think it makes sense not to save `dataset_info.json` file to a dataset cache directory when loading dataset with `verification_mode="no_checks"` because otherwise when next time the dataset is loaded **without** `verification_mode="no_checks"`, it will be loaded successfully, despite some values in info might not correspond to the ones in the repo which was the reason for using `verification_mode="no_checks"` first.~
Updated values of `verification_mode` to the current ones in some places ("none" -> "no_checks", "all" -> "all_checks") | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5607/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5607/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5607",
"html_url": "https://github.com/huggingface/datasets/pull/5607",
"diff_url": "https://github.com/huggingface/datasets/pull/5607.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5607.patch",
"merged_at": "2023-03-09T17:27:07"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5606 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5606/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5606/comments | https://api.github.com/repos/huggingface/datasets/issues/5606/events | https://github.com/huggingface/datasets/issues/5606 | 1,608,911,632 | I_kwDODunzps5f5gsQ | 5,606 | Add `Dataset.to_list` to the API | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
},
{
"id": 1935892877,
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue",
"name": "good first issue",
"color": "7057ff",
"default": true,
"description": "Good for newcomers"
}
] | closed | false | {
"login": "kyoto7250",
"id": 50972773,
"node_id": "MDQ6VXNlcjUwOTcyNzcz",
"avatar_url": "https://avatars.githubusercontent.com/u/50972773?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kyoto7250",
"html_url": "https://github.com/kyoto7250",
"followers_url": "https://api.github.com/users/kyoto7250/followers",
"following_url": "https://api.github.com/users/kyoto7250/following{/other_user}",
"gists_url": "https://api.github.com/users/kyoto7250/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kyoto7250/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kyoto7250/subscriptions",
"organizations_url": "https://api.github.com/users/kyoto7250/orgs",
"repos_url": "https://api.github.com/users/kyoto7250/repos",
"events_url": "https://api.github.com/users/kyoto7250/events{/privacy}",
"received_events_url": "https://api.github.com/users/kyoto7250/received_events",
"type": "User",
"site_admin": false
} | [
{
"login": "kyoto7250",
"id": 50972773,
"node_id": "MDQ6VXNlcjUwOTcyNzcz",
"avatar_url": "https://avatars.githubusercontent.com/u/50972773?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/kyoto7250",
"html_url": "https://github.com/kyoto7250",
"followers_url": "https://api.github.com/users/kyoto7250/followers",
"following_url": "https://api.github.com/users/kyoto7250/following{/other_user}",
"gists_url": "https://api.github.com/users/kyoto7250/gists{/gist_id}",
"starred_url": "https://api.github.com/users/kyoto7250/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kyoto7250/subscriptions",
"organizations_url": "https://api.github.com/users/kyoto7250/orgs",
"repos_url": "https://api.github.com/users/kyoto7250/repos",
"events_url": "https://api.github.com/users/kyoto7250/events{/privacy}",
"received_events_url": "https://api.github.com/users/kyoto7250/received_events",
"type": "User",
"site_admin": false
}
] | null | [
"Hello, I have an interest in this issue.\r\nIs the `Dataset.to_dict` you are describing correct in the code here?\r\n\r\nhttps://github.com/huggingface/datasets/blob/35b789e8f6826b6b5a6b48fcc2416c890a1f326a/src/datasets/arrow_dataset.py#L4633-L4667",
"Yes, this is where `Dataset.to_dict` is defined.",
"#self-assign"
] | 2023-03-03T16:17:10 | 2023-03-27T13:26:40 | 2023-03-27T13:26:40 | CONTRIBUTOR | null | Since there is `Dataset.from_list` in the API, we should also add `Dataset.to_list` to be consistent.
Regarding the implementation, we can re-use `Dataset.to_dict`'s code and replace the `to_pydict` calls with `to_pylist`. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5606/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5606/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5605 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5605/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5605/comments | https://api.github.com/repos/huggingface/datasets/issues/5605/events | https://github.com/huggingface/datasets/pull/5605 | 1,608,865,460 | PR_kwDODunzps5LPPf5 | 5,605 | Update README logo | {
"login": "gary149",
"id": 3841370,
"node_id": "MDQ6VXNlcjM4NDEzNzA=",
"avatar_url": "https://avatars.githubusercontent.com/u/3841370?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/gary149",
"html_url": "https://github.com/gary149",
"followers_url": "https://api.github.com/users/gary149/followers",
"following_url": "https://api.github.com/users/gary149/following{/other_user}",
"gists_url": "https://api.github.com/users/gary149/gists{/gist_id}",
"starred_url": "https://api.github.com/users/gary149/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/gary149/subscriptions",
"organizations_url": "https://api.github.com/users/gary149/orgs",
"repos_url": "https://api.github.com/users/gary149/repos",
"events_url": "https://api.github.com/users/gary149/events{/privacy}",
"received_events_url": "https://api.github.com/users/gary149/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"Are you sure it's safe to remove? https://github.com/huggingface/datasets/pull/3866",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009520 / 0.011353 (-0.001833) | 0.005319 / 0.011008 (-0.005690) | 0.099372 / 0.038508 (0.060863) | 0.036173 / 0.023109 (0.013064) | 0.295752 / 0.275898 (0.019853) | 0.362882 / 0.323480 (0.039402) | 0.008442 / 0.007986 (0.000456) | 0.004225 / 0.004328 (-0.000103) | 0.076645 / 0.004250 (0.072394) | 0.044198 / 0.037052 (0.007146) | 0.311948 / 0.258489 (0.053459) | 0.342963 / 0.293841 (0.049122) | 0.038613 / 0.128546 (-0.089933) | 0.012127 / 0.075646 (-0.063519) | 0.334427 / 0.419271 (-0.084844) | 0.048309 / 0.043533 (0.004776) | 0.297046 / 0.255139 (0.041907) | 0.314562 / 0.283200 (0.031363) | 0.105797 / 0.141683 (-0.035886) | 1.460967 / 1.452155 (0.008812) | 1.500907 / 1.492716 (0.008190) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216185 / 0.018006 (0.198179) | 0.438924 / 0.000490 (0.438435) | 0.001210 / 0.000200 (0.001011) | 0.000081 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026193 / 0.037411 (-0.011219) | 0.105888 / 0.014526 (0.091363) | 0.115812 / 0.176557 (-0.060744) | 0.158748 / 0.737135 (-0.578387) | 0.121514 / 0.296338 (-0.174824) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399837 / 0.215209 (0.184628) | 3.996992 / 2.077655 (1.919338) | 1.784964 / 1.504120 (0.280844) | 1.591078 / 1.541195 (0.049883) | 1.666424 / 1.468490 (0.197934) | 0.711450 / 4.584777 (-3.873327) | 3.787814 / 3.745712 (0.042102) | 2.056776 / 5.269862 (-3.213085) | 1.332163 / 4.565676 (-3.233514) | 0.085755 / 0.424275 (-0.338520) | 0.012033 / 0.007607 (0.004426) | 0.511500 / 0.226044 (0.285455) | 5.098999 / 2.268929 (2.830071) | 2.288261 / 55.444624 (-53.156364) | 1.947483 / 6.876477 (-4.928994) | 1.987838 / 2.142072 (-0.154234) | 0.852241 / 4.805227 (-3.952986) | 0.164781 / 6.500664 (-6.335883) | 0.061825 / 0.075469 (-0.013644) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.202253 / 1.841788 (-0.639534) | 14.632608 / 8.074308 (6.558300) | 13.331320 / 10.191392 (3.139928) | 0.157944 / 0.680424 (-0.522480) | 0.029284 / 0.534201 (-0.504917) | 0.446636 / 0.579283 (-0.132647) | 0.437009 / 0.434364 (0.002645) | 0.521883 / 0.540337 (-0.018455) | 0.606687 / 1.386936 (-0.780249) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007528 / 0.011353 (-0.003825) | 0.005274 / 0.011008 (-0.005734) | 0.073524 / 0.038508 (0.035016) | 0.033893 / 0.023109 (0.010784) | 0.335432 / 0.275898 (0.059534) | 0.379981 / 0.323480 (0.056501) | 0.005954 / 0.007986 (-0.002031) | 0.004126 / 0.004328 (-0.000203) | 0.072891 / 0.004250 (0.068641) | 0.046517 / 0.037052 (0.009465) | 0.337241 / 0.258489 (0.078752) | 0.385562 / 0.293841 (0.091721) | 0.036410 / 0.128546 (-0.092136) | 0.012246 / 0.075646 (-0.063401) | 0.085974 / 0.419271 (-0.333298) | 0.049665 / 0.043533 (0.006133) | 0.330919 / 0.255139 (0.075780) | 0.352041 / 0.283200 (0.068841) | 0.103751 / 0.141683 (-0.037931) | 1.468851 / 1.452155 (0.016696) | 1.565380 / 1.492716 (0.072663) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260431 / 0.018006 (0.242425) | 0.444554 / 0.000490 (0.444064) | 0.016055 / 0.000200 (0.015855) | 0.000283 / 0.000054 (0.000228) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029130 / 0.037411 (-0.008281) | 0.112002 / 0.014526 (0.097476) | 0.120769 / 0.176557 (-0.055788) | 0.169345 / 0.737135 (-0.567790) | 0.129609 / 0.296338 (-0.166730) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432211 / 0.215209 (0.217002) | 4.293008 / 2.077655 (2.215353) | 2.071291 / 1.504120 (0.567171) | 1.859322 / 1.541195 (0.318127) | 1.971434 / 1.468490 (0.502943) | 0.704042 / 4.584777 (-3.880735) | 3.791696 / 3.745712 (0.045983) | 3.142632 / 5.269862 (-2.127230) | 1.735151 / 4.565676 (-2.830525) | 0.086203 / 0.424275 (-0.338072) | 0.012542 / 0.007607 (0.004935) | 0.534870 / 0.226044 (0.308826) | 5.326042 / 2.268929 (3.057113) | 2.547960 / 55.444624 (-52.896664) | 2.212730 / 6.876477 (-4.663747) | 2.296177 / 2.142072 (0.154105) | 0.840311 / 4.805227 (-3.964917) | 0.168353 / 6.500664 (-6.332311) | 0.065949 / 0.075469 (-0.009520) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255589 / 1.841788 (-0.586199) | 14.947344 / 8.074308 (6.873036) | 13.253721 / 10.191392 (3.062329) | 0.162349 / 0.680424 (-0.518075) | 0.017579 / 0.534201 (-0.516622) | 0.420758 / 0.579283 (-0.158525) | 0.430030 / 0.434364 (-0.004334) | 0.524669 / 0.540337 (-0.015669) | 0.623920 / 1.386936 (-0.763016) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#35b789e8f6826b6b5a6b48fcc2416c890a1f326a \"CML watermark\")\n"
] | 2023-03-03T15:46:31 | 2023-03-03T21:57:18 | 2023-03-03T21:50:17 | CONTRIBUTOR | null | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5605/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5605/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5605",
"html_url": "https://github.com/huggingface/datasets/pull/5605",
"diff_url": "https://github.com/huggingface/datasets/pull/5605.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5605.patch",
"merged_at": "2023-03-03T21:50:17"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5604 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5604/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5604/comments | https://api.github.com/repos/huggingface/datasets/issues/5604/events | https://github.com/huggingface/datasets/issues/5604 | 1,608,304,775 | I_kwDODunzps5f3MiH | 5,604 | Problems with downloading The Pile | {
"login": "sentialx",
"id": 11065386,
"node_id": "MDQ6VXNlcjExMDY1Mzg2",
"avatar_url": "https://avatars.githubusercontent.com/u/11065386?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/sentialx",
"html_url": "https://github.com/sentialx",
"followers_url": "https://api.github.com/users/sentialx/followers",
"following_url": "https://api.github.com/users/sentialx/following{/other_user}",
"gists_url": "https://api.github.com/users/sentialx/gists{/gist_id}",
"starred_url": "https://api.github.com/users/sentialx/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sentialx/subscriptions",
"organizations_url": "https://api.github.com/users/sentialx/orgs",
"repos_url": "https://api.github.com/users/sentialx/repos",
"events_url": "https://api.github.com/users/sentialx/events{/privacy}",
"received_events_url": "https://api.github.com/users/sentialx/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi! \r\n\r\n\r\nYou can specify `download_config=DownloadConfig(resume_download=True))` in `load_dataset` to resume the download when re-running the code after the timeout error:\r\n```python\r\nfrom datasets import load_dataset, DownloadConfig\r\ndataset = load_dataset('the_pile', split='train', cache_dir='F:\\datasets', download_config=DownloadConfig(resume_download=True))\r\n```\r\n\r\n",
"@mariosasko , I used your suggestion but its not saving anything , just stops and runs from the same point .\r\nbelow is the script to download and save on disk .\r\n\r\n```\r\nfrom datasets import load_dataset, DownloadConfig\r\n\r\n\r\n#load the Pile dataset from Hugging Face Datasets\r\n#dataset = load_dataset('the_pile')\r\ndataset = load_dataset('the_pile', split='train', cache_dir='datasets', download_config=DownloadConfig(resume_download=True))\r\n\r\n\r\n# save each file in the dataset to disk\r\nfor i, example in enumerate(dataset['train']):\r\n filename = f'pile_file_{i}.json'\r\n with open(filename, 'w') as f:\r\n f.write(str(example))\r\n\r\nprint(\"Finished saving Pile dataset files to disk.\")\r\n```\r\n",
"@mariosasko , it shows nothing in dataset folder\r\n\r\n```\r\n du -sh /mnt/nlp/hugging_face/*\r\n20K /mnt/nlp/hugging_face/datasets\r\n4.0K /mnt/nlp/hugging_face/download_pile.py\r\n```\r\n",
"@mariosasko \r\n\r\n```\r\nroot@d20f0ab8f4f8:/mnt/hugging_face# python3 download_pile.py\r\nNo config specified, defaulting to: the_pile/all\r\nDownloading and preparing dataset the_pile/all to /mnt/hugging_face/datasets/the_pile/all/0.0.0/6fadc480ecb32470826cbf5900a9558b791ce55d5e9a0fdc8ad653e7b64bb349...\r\nDownloading data files: 0%| | 0/3 [00:00<?, ?it/s]\r\n\r\n\r\n\r\n\r\n\r\nDownloading data: 70%|████████████████████████████████████████████████████████████████████▊ | 10.7G/15.2G [12:09<11:53, 6.36MB/s]\r\nDownloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████| 15.2G/15.2G [22:15<00:00, 7.25MB/s]\r\nDownloading data: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████| 15.2G/15.2G [46:17<00:00, 5.48MB/s]\r\nDownloading data: 40%|██████████████████████████████████████▏ | 6.07G/15.3G [50:49<1:17:02, 1.99MB/s]\r\nTraceback (most recent call last):██████████████████████████▊ | 6.07G/15.3G [50:49<25:35:23, 99.9kB/s]\r\n File \"/usr/local/lib/python3.8/dist-packages/urllib3/response.py\", line 444, in _error_catcher\r\n yield\r\n File \"/usr/local/lib/python3.8/dist-packages/urllib3/response.py\", line 567, in read\r\n data = self._fp_read(amt) if not fp_closed else b\"\"\r\n File \"/usr/local/lib/python3.8/dist-packages/urllib3/response.py\", line 525, in _fp_read\r\n data = self._fp.read(chunk_amt)\r\n File \"/usr/lib/python3.8/http/client.py\", line 459, in read\r\n n = self.readinto(b)\r\n File \"/usr/lib/python3.8/http/client.py\", line 503, in readinto\r\n n = self.fp.readinto(b)\r\n File \"/usr/lib/python3.8/socket.py\", line 669, in readinto\r\n return self._sock.recv_into(b)\r\n File \"/usr/lib/python3.8/ssl.py\", line 1241, in recv_into\r\n return self.read(nbytes, buffer)\r\n File \"/usr/lib/python3.8/ssl.py\", line 1099, in read\r\n return self._sslobj.read(len, buffer)\r\nConnectionResetError: [Errno 104] Connection reset by peer\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File \"/usr/local/lib/python3.8/dist-packages/requests/models.py\", line 816, in generate\r\n yield from self.raw.stream(chunk_size, decode_content=True)\r\n File \"/usr/local/lib/python3.8/dist-packages/urllib3/response.py\", line 628, in stream\r\n data = self.read(amt=amt, decode_content=decode_content)\r\n File \"/usr/local/lib/python3.8/dist-packages/urllib3/response.py\", line 593, in read\r\n raise IncompleteRead(self._fp_bytes_read, self.length_remaining)\r\n File \"/usr/lib/python3.8/contextlib.py\", line 131, in __exit__\r\n self.gen.throw(type, value, traceback)\r\n File \"/usr/local/lib/python3.8/dist-packages/urllib3/response.py\", line 461, in _error_catcher\r\n raise ProtocolError(\"Connection broken: %r\" % e, e)\r\nurllib3.exceptions.ProtocolError: (\"Connection broken: ConnectionResetError(104, 'Connection reset by peer')\", ConnectionResetError(104, 'Connection reset by peer'))\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File \"download_pile.py\", line 6, in <module>\r\n dataset = load_dataset('the_pile', split='train', cache_dir='datasets', download_config=DownloadConfig(resume_download=True))\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/load.py\", line 1782, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/builder.py\", line 872, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/builder.py\", line 1649, in _download_and_prepare\r\n super()._download_and_prepare(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/builder.py\", line 945, in _download_and_prepare\r\n split_generators = self._split_generators(dl_manager, **split_generators_kwargs)\r\n File \"/root/.cache/huggingface/modules/datasets_modules/datasets/the_pile/6fadc480ecb32470826cbf5900a9558b791ce55d5e9a0fdc8ad653e7b64bb349/the_pile.py\", line 192, in _split_generators\r\n data_dir = dl_manager.download(_DATA_URLS[self.config.name])\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/download/download_manager.py\", line 427, in download\r\n downloaded_path_or_paths = map_nested(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/py_utils.py\", line 443, in map_nested\r\n mapped = [\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/py_utils.py\", line 444, in <listcomp>\r\n _single_map_nested((function, obj, types, None, True, None))\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/py_utils.py\", line 363, in _single_map_nested\r\n mapped = [_single_map_nested((function, v, types, None, True, None)) for v in pbar]\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/py_utils.py\", line 363, in <listcomp>\r\n mapped = [_single_map_nested((function, v, types, None, True, None)) for v in pbar]\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/py_utils.py\", line 346, in _single_map_nested\r\n return function(data_struct)\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/download/download_manager.py\", line 453, in _download\r\n return cached_path(url_or_filename, download_config=download_config)\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/file_utils.py\", line 182, in cached_path\r\n output_path = get_from_cache(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/file_utils.py\", line 575, in get_from_cache\r\n http_get(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/file_utils.py\", line 379, in http_get\r\n for chunk in response.iter_content(chunk_size=1024):\r\n File \"/usr/local/lib/python3.8/dist-packages/requests/models.py\", line 818, in generate\r\n raise ChunkedEncodingError(e)\r\nrequests.exceptions.ChunkedEncodingError: (\"Connection broken: ConnectionResetError(104, 'Connection reset by peer')\", ConnectionResetError(104, 'Connection reset by peer'))\r\n```\r\n",
"Users with slow internet speed are doomed (4MB/s). The dataset downloads fine at minimum speed 10MB/s.\n\nAlso, when the train splits were generated and then I removed the downloads folder to save up disk space, it started redownloading the whole dataset. Is there any way to use the already generated splits instead?",
"@sentialx @mariosasko , anytime on my above script , am I downloading and saving dataset correctly . Please suggest :)"
] | 2023-03-03T09:52:08 | 2023-03-29T01:44:05 | 2023-03-24T12:44:25 | NONE | null | ### Describe the bug
The downloads in the screenshot seem to be interrupted after some time and the last download throws a "Read timed out" error.
![image](https://user-images.githubusercontent.com/11065386/222687870-ec5fcb65-84e8-467d-9593-4ad7bdac4d50.png)
Here are the downloaded files:
![image](https://user-images.githubusercontent.com/11065386/222688200-454c2288-49e5-4682-96e6-1eb69aca0852.png)
They should be all 14GB like here (https://the-eye.eu/public/AI/pile/train/).
Alternatively, can I somehow download the files by myself and use the datasets preparing script?
### Steps to reproduce the bug
dataset = load_dataset('the_pile', split='train', cache_dir='F:\datasets')
### Expected behavior
The files should be downloaded correctly.
### Environment info
- `datasets` version: 2.10.1
- Platform: Windows-10-10.0.22623-SP0
- Python version: 3.10.5
- PyArrow version: 9.0.0
- Pandas version: 1.4.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5604/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5604/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5603 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5603/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5603/comments | https://api.github.com/repos/huggingface/datasets/issues/5603/events | https://github.com/huggingface/datasets/pull/5603 | 1,607,143,509 | PR_kwDODunzps5LJZzG | 5,603 | Don't compute checksums if not necessary in `datasets-cli test` | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008550 / 0.011353 (-0.002803) | 0.004476 / 0.011008 (-0.006532) | 0.100902 / 0.038508 (0.062394) | 0.029684 / 0.023109 (0.006575) | 0.308081 / 0.275898 (0.032183) | 0.363435 / 0.323480 (0.039955) | 0.006987 / 0.007986 (-0.000999) | 0.003401 / 0.004328 (-0.000927) | 0.078218 / 0.004250 (0.073967) | 0.036657 / 0.037052 (-0.000395) | 0.319670 / 0.258489 (0.061181) | 0.349952 / 0.293841 (0.056111) | 0.033416 / 0.128546 (-0.095130) | 0.011511 / 0.075646 (-0.064135) | 0.323888 / 0.419271 (-0.095384) | 0.042429 / 0.043533 (-0.001104) | 0.307310 / 0.255139 (0.052171) | 0.329459 / 0.283200 (0.046259) | 0.085209 / 0.141683 (-0.056474) | 1.475893 / 1.452155 (0.023739) | 1.502782 / 1.492716 (0.010065) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200137 / 0.018006 (0.182131) | 0.411269 / 0.000490 (0.410780) | 0.000415 / 0.000200 (0.000215) | 0.000061 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022626 / 0.037411 (-0.014785) | 0.097045 / 0.014526 (0.082519) | 0.102955 / 0.176557 (-0.073602) | 0.148411 / 0.737135 (-0.588725) | 0.107238 / 0.296338 (-0.189100) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421683 / 0.215209 (0.206474) | 4.203031 / 2.077655 (2.125376) | 1.908232 / 1.504120 (0.404112) | 1.698867 / 1.541195 (0.157672) | 1.743561 / 1.468490 (0.275071) | 0.693199 / 4.584777 (-3.891578) | 3.361022 / 3.745712 (-0.384690) | 2.989610 / 5.269862 (-2.280251) | 1.533036 / 4.565676 (-3.032641) | 0.082675 / 0.424275 (-0.341601) | 0.012419 / 0.007607 (0.004812) | 0.531543 / 0.226044 (0.305499) | 5.330595 / 2.268929 (3.061666) | 2.347519 / 55.444624 (-53.097105) | 1.975672 / 6.876477 (-4.900804) | 2.039541 / 2.142072 (-0.102532) | 0.810281 / 4.805227 (-3.994946) | 0.148917 / 6.500664 (-6.351747) | 0.065441 / 0.075469 (-0.010028) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266213 / 1.841788 (-0.575574) | 13.628106 / 8.074308 (5.553798) | 13.852191 / 10.191392 (3.660799) | 0.149004 / 0.680424 (-0.531420) | 0.028549 / 0.534201 (-0.505652) | 0.399824 / 0.579283 (-0.179459) | 0.401231 / 0.434364 (-0.033133) | 0.473251 / 0.540337 (-0.067086) | 0.561094 / 1.386936 (-0.825842) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006669 / 0.011353 (-0.004684) | 0.004477 / 0.011008 (-0.006532) | 0.077514 / 0.038508 (0.039006) | 0.027489 / 0.023109 (0.004380) | 0.341935 / 0.275898 (0.066037) | 0.377392 / 0.323480 (0.053912) | 0.004947 / 0.007986 (-0.003039) | 0.004600 / 0.004328 (0.000271) | 0.075938 / 0.004250 (0.071687) | 0.039586 / 0.037052 (0.002534) | 0.344966 / 0.258489 (0.086477) | 0.392181 / 0.293841 (0.098340) | 0.031838 / 0.128546 (-0.096708) | 0.011572 / 0.075646 (-0.064075) | 0.085811 / 0.419271 (-0.333461) | 0.042250 / 0.043533 (-0.001283) | 0.345605 / 0.255139 (0.090466) | 0.367814 / 0.283200 (0.084615) | 0.090683 / 0.141683 (-0.051000) | 1.483168 / 1.452155 (0.031014) | 1.559724 / 1.492716 (0.067008) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235655 / 0.018006 (0.217649) | 0.399016 / 0.000490 (0.398527) | 0.003096 / 0.000200 (0.002896) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024454 / 0.037411 (-0.012957) | 0.100710 / 0.014526 (0.086185) | 0.107950 / 0.176557 (-0.068606) | 0.161560 / 0.737135 (-0.575576) | 0.111840 / 0.296338 (-0.184498) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441362 / 0.215209 (0.226153) | 4.428105 / 2.077655 (2.350450) | 2.074501 / 1.504120 (0.570381) | 1.866672 / 1.541195 (0.325477) | 1.928266 / 1.468490 (0.459776) | 0.703561 / 4.584777 (-3.881216) | 3.396537 / 3.745712 (-0.349175) | 3.047369 / 5.269862 (-2.222492) | 1.595133 / 4.565676 (-2.970543) | 0.084028 / 0.424275 (-0.340247) | 0.012349 / 0.007607 (0.004741) | 0.539354 / 0.226044 (0.313310) | 5.401535 / 2.268929 (3.132606) | 2.499874 / 55.444624 (-52.944750) | 2.161406 / 6.876477 (-4.715071) | 2.197385 / 2.142072 (0.055313) | 0.810864 / 4.805227 (-3.994363) | 0.152277 / 6.500664 (-6.348387) | 0.067266 / 0.075469 (-0.008203) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.280900 / 1.841788 (-0.560887) | 13.815731 / 8.074308 (5.741423) | 13.007438 / 10.191392 (2.816046) | 0.129711 / 0.680424 (-0.550713) | 0.016852 / 0.534201 (-0.517349) | 0.380775 / 0.579283 (-0.198508) | 0.384143 / 0.434364 (-0.050221) | 0.459954 / 0.540337 (-0.080383) | 0.549335 / 1.386936 (-0.837601) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8805d67bd81ce48f481d5c1e56b84e6ebcaa2b2b \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009570 / 0.011353 (-0.001783) | 0.005219 / 0.011008 (-0.005789) | 0.098472 / 0.038508 (0.059964) | 0.035429 / 0.023109 (0.012320) | 0.303086 / 0.275898 (0.027188) | 0.365926 / 0.323480 (0.042446) | 0.008797 / 0.007986 (0.000811) | 0.004220 / 0.004328 (-0.000108) | 0.076670 / 0.004250 (0.072419) | 0.045596 / 0.037052 (0.008543) | 0.309476 / 0.258489 (0.050987) | 0.343958 / 0.293841 (0.050117) | 0.038741 / 0.128546 (-0.089805) | 0.011990 / 0.075646 (-0.063657) | 0.332326 / 0.419271 (-0.086945) | 0.048897 / 0.043533 (0.005364) | 0.296002 / 0.255139 (0.040863) | 0.322048 / 0.283200 (0.038849) | 0.104403 / 0.141683 (-0.037280) | 1.461777 / 1.452155 (0.009622) | 1.516362 / 1.492716 (0.023645) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201565 / 0.018006 (0.183559) | 0.435781 / 0.000490 (0.435291) | 0.004215 / 0.000200 (0.004015) | 0.000282 / 0.000054 (0.000227) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027272 / 0.037411 (-0.010139) | 0.106157 / 0.014526 (0.091631) | 0.116948 / 0.176557 (-0.059609) | 0.160404 / 0.737135 (-0.576731) | 0.122518 / 0.296338 (-0.173820) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397721 / 0.215209 (0.182512) | 3.966433 / 2.077655 (1.888778) | 1.755410 / 1.504120 (0.251290) | 1.566480 / 1.541195 (0.025285) | 1.623684 / 1.468490 (0.155194) | 0.696820 / 4.584777 (-3.887957) | 3.750437 / 3.745712 (0.004725) | 2.105875 / 5.269862 (-3.163986) | 1.442026 / 4.565676 (-3.123650) | 0.085026 / 0.424275 (-0.339249) | 0.012239 / 0.007607 (0.004632) | 0.502613 / 0.226044 (0.276569) | 5.049016 / 2.268929 (2.780087) | 2.314499 / 55.444624 (-53.130126) | 1.967943 / 6.876477 (-4.908534) | 2.033507 / 2.142072 (-0.108565) | 0.861908 / 4.805227 (-3.943319) | 0.167784 / 6.500664 (-6.332880) | 0.063022 / 0.075469 (-0.012447) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.210434 / 1.841788 (-0.631353) | 14.979319 / 8.074308 (6.905011) | 14.095263 / 10.191392 (3.903871) | 0.174203 / 0.680424 (-0.506221) | 0.028547 / 0.534201 (-0.505654) | 0.442509 / 0.579283 (-0.136774) | 0.445811 / 0.434364 (0.011447) | 0.531313 / 0.540337 (-0.009024) | 0.636541 / 1.386936 (-0.750395) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007341 / 0.011353 (-0.004012) | 0.005197 / 0.011008 (-0.005811) | 0.075413 / 0.038508 (0.036905) | 0.033261 / 0.023109 (0.010152) | 0.339596 / 0.275898 (0.063698) | 0.376051 / 0.323480 (0.052571) | 0.005827 / 0.007986 (-0.002159) | 0.005473 / 0.004328 (0.001144) | 0.074851 / 0.004250 (0.070600) | 0.049059 / 0.037052 (0.012007) | 0.357182 / 0.258489 (0.098693) | 0.384589 / 0.293841 (0.090748) | 0.037122 / 0.128546 (-0.091424) | 0.012298 / 0.075646 (-0.063348) | 0.088191 / 0.419271 (-0.331081) | 0.052002 / 0.043533 (0.008469) | 0.343216 / 0.255139 (0.088077) | 0.364534 / 0.283200 (0.081334) | 0.105462 / 0.141683 (-0.036221) | 1.486717 / 1.452155 (0.034562) | 1.584725 / 1.492716 (0.092009) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.199210 / 0.018006 (0.181203) | 0.439069 / 0.000490 (0.438580) | 0.000436 / 0.000200 (0.000236) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029931 / 0.037411 (-0.007480) | 0.109564 / 0.014526 (0.095038) | 0.122284 / 0.176557 (-0.054273) | 0.170819 / 0.737135 (-0.566317) | 0.125886 / 0.296338 (-0.170452) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422724 / 0.215209 (0.207515) | 4.210304 / 2.077655 (2.132650) | 2.001481 / 1.504120 (0.497361) | 1.810818 / 1.541195 (0.269623) | 1.901367 / 1.468490 (0.432877) | 0.686004 / 4.584777 (-3.898773) | 3.768850 / 3.745712 (0.023138) | 2.079501 / 5.269862 (-3.190360) | 1.326970 / 4.565676 (-3.238706) | 0.085991 / 0.424275 (-0.338284) | 0.012298 / 0.007607 (0.004690) | 0.526878 / 0.226044 (0.300833) | 5.267241 / 2.268929 (2.998312) | 2.451781 / 55.444624 (-52.992843) | 2.109143 / 6.876477 (-4.767333) | 2.185426 / 2.142072 (0.043353) | 0.830165 / 4.805227 (-3.975063) | 0.166167 / 6.500664 (-6.334497) | 0.064077 / 0.075469 (-0.011392) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270430 / 1.841788 (-0.571358) | 14.844852 / 8.074308 (6.770544) | 13.196672 / 10.191392 (3.005280) | 0.162853 / 0.680424 (-0.517571) | 0.017727 / 0.534201 (-0.516474) | 0.424803 / 0.579283 (-0.154480) | 0.439970 / 0.434364 (0.005606) | 0.530691 / 0.540337 (-0.009647) | 0.630474 / 1.386936 (-0.756462) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#24fb01b720ef4203d4ae6225f43cba912b1f6d55 \"CML watermark\")\n"
] | 2023-03-02T16:42:39 | 2023-03-03T15:45:32 | 2023-03-03T15:38:28 | MEMBER | null | we only need them if there exists a `dataset_infos.json` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5603/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5603/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5603",
"html_url": "https://github.com/huggingface/datasets/pull/5603",
"diff_url": "https://github.com/huggingface/datasets/pull/5603.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5603.patch",
"merged_at": "2023-03-03T15:38:28"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5602 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5602/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5602/comments | https://api.github.com/repos/huggingface/datasets/issues/5602/events | https://github.com/huggingface/datasets/pull/5602 | 1,607,054,110 | PR_kwDODunzps5LJGfa | 5,602 | Return dict structure if columns are lists - to_tf_dataset | {
"login": "amyeroberts",
"id": 22614925,
"node_id": "MDQ6VXNlcjIyNjE0OTI1",
"avatar_url": "https://avatars.githubusercontent.com/u/22614925?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/amyeroberts",
"html_url": "https://github.com/amyeroberts",
"followers_url": "https://api.github.com/users/amyeroberts/followers",
"following_url": "https://api.github.com/users/amyeroberts/following{/other_user}",
"gists_url": "https://api.github.com/users/amyeroberts/gists{/gist_id}",
"starred_url": "https://api.github.com/users/amyeroberts/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/amyeroberts/subscriptions",
"organizations_url": "https://api.github.com/users/amyeroberts/orgs",
"repos_url": "https://api.github.com/users/amyeroberts/repos",
"events_url": "https://api.github.com/users/amyeroberts/events{/privacy}",
"received_events_url": "https://api.github.com/users/amyeroberts/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5602). All of your documentation changes will be reflected on that endpoint.",
"This is a great PR! Thinking about the UX though, maybe we could do it without the extra argument? Before this PR, the logic in `to_tf_dataset` was that if the user passed a single column name in either `columns` or `label_cols`, we converted it to a length-1 list. Then, later in the code, we convert output dicts with only one key to naked Tensors.\r\n\r\nWould it be easier if we removed the argument, but instead treated the cases differently? Passing a column name as a string could yield a single naked Tensor in the output as before, but passing a list of length 1 would yield a full dict? That way if you wanted dict output with a single key you could just say `columns=[col_name]`.\r\n\r\n(I'm not totally convinced this is a good idea yet, it just seems like it might be more intuitive)",
"@Rocketknight1 Happy to implement it that way - it's certainly cleaner to not have another arg. In this case, am I right in saying we'd effectively set `return_dict` [here](https://github.com/huggingface/datasets/blob/6569014a9948eab7d031a3587405e64ba92d6c59/src/datasets/arrow_dataset.py#L410) - where columns are made into a list if they were a string? \r\n\r\nThere only concern I have is this changes the default behaviour, which might break things for people who were happily using `columns=[\"my_col_str\"]` before. \r\n\r\n\r\n",
"@amyeroberts That's correct! Probably the simplest way to implement it would be to just add the flag there.\r\n\r\nAnd yeah, I'm aware this might be a slightly breaking change, but we've mostly tried to move users to `prepare_tf_dataset` in `transformers` at this point, so hopefully as long as that method doesn't break then most users won't be negatively affected by the change.",
"@lhoestq @Rocketknight1 - I've remove the `return_dict` argument and implemented @Rocketknight1 's suggestion. LMK what you think :) ",
"@lhoestq Of course :) I've opened a draft PR here for the updates needed in transformers examples and docs to keep the returned data structure consistent: https://github.com/huggingface/transformers/pull/21935. Note: even with the different structure, `model.fit` can still successfully be called. \r\n\r\nFor the [link you shared](https://github.com/huggingface/datasets/pull/url) - for me it returns a 404 error. Is there another link I could follow to see how to run the transformers CI with this branch? \r\n\r\nCurrently looking into the failing tests 😭 ",
"Oh sorry - I fixed the URL: https://github.com/huggingface/transformers/commit/4eb55bbd593adf2e49362613ee32a11ddc4a854d",
"The error shows `There appear to be 80 leaked shared_memory objects to clean up at shutdown`. IIRC to_tf_dataset does some shared memory stuff for multiprocessing - maybe @Rocketknight1 you know what's going on ?",
"@lhoestq That warning appears anytime you interrupt a process using Python `SharedMemory` objects - it's only a problem if you still get the error when the process finishes normally! Our implementation of `to_tf_dataset` should clean things up properly.",
"Ok, not sure why it fails then :/",
"Hmm, will investigate! Sorry, I misread - I thought that warning was coming up in the context of another error",
"IMO outputing different types based on nuances in the input could confuse users.\r\n\r\nAlso, in the ideal scenario,`to_tf_function` should return a `tf.data.Dataset` that iterates over the underlying Arrow data and yields (unprocessed) dicts of TF tensors, and all the model-specific code should live in Transformers (e.g., in `prepare_tf_dataset`). So the goal would be to make `to_tf_dataset` more user-friendly, not more complex :).",
"I think we agree @mariosasko :) \r\n\r\n> Also, in the ideal scenario,to_tf_function should return a tf.data.Dataset that iterates over the underlying Arrow data and yields (unprocessed) dicts of TF tensors\r\n\r\nThis I'll leave for another PR as it's outside the scope of this one and @Rocketknight1 will have far more knowledge and ideas about what is possible\r\n\r\n> all the model-specific code should live in Transformers (e.g., in prepare_tf_dataset\r\n\r\nAgreed! This PR isn't really a model specific change - although it was highlighted when trying to train a model. We definitely want to move model specific things out of datasets as much as possible. \r\n\r\n> IMO outputing different types based on nuances in the input could confuse users.\r\n> So the goal would be to make to_tf_dataset more user-friendly, not more complex :).\r\n\r\nThe aim was to move more towards being able to return the dict of TF tensors you suggest, whilst maintaining backwards compatibility. Personally, I found it surprising to be returned a tuple structure when I was using `to_tf_dataset`. The aim was to make `to_tf_dataset` more user friendly, but I agree that it has the potential to be confusing. \r\n\r\nFor context, the thought process behind this design was to: \r\n* Not add even more arguments to `to_tf_dataset`. \r\n* Have a feature selection -> return type logic in keeping with `datasets` e.g. `dataset['train'][:10]['feat1']` returns a list of values, whereas `dataset['train'][:10]['feat1', 'feat2']` returns a dictionary. \r\n\r\nVery happy to add any suggestions or changes you might have about how to make this design better! :) \r\n",
"Hi ! Anything blocking here ? I'b be happy to help",
"Hi @lhoestq - sorry this hasn't been very active for the past ~1.5 weeks. There's nothing specific blocking, other than not being able to replicate without running on CI, and still need to test a bit more to narrow down the issue. I should have time tomorrow to pick it up again :) ",
"@lhoestq @Rocketknight1 Friendly ping for a review :) ",
"Awesome ! What about showing a warning that this change is about to happen in the next version of `datasets`, and then apply this change in a subsequent major release ? This way folks at twitter won't hate us: https://github.com/twitter/the-algorithm/blob/138bb519975407d4ea0dc1478d897d451ef05dab/trust_and_safety_models/toxicity/data/mb_generator.py#L142-L148",
"@lhoestq Sounds good! How would you like this warning to happen? I could open a PR to add a warning message within `to_tf_dataset`?",
"Yup sounds good :)"
] | 2023-03-02T15:51:12 | 2023-04-12T15:54:53 | null | CONTRIBUTOR | null | This PR introduces new logic to `to_tf_dataset` affecting the returned data structure, enabling a dictionary structure to be returned, even if only one feature column is selected.
If the passed in `columns` or `label_cols` to `to_tf_dataset` are a list, they are returned as a dictionary, respectively. If they are a string, the tensor is returned.
An outline of the behaviour:
```
dataset,to_tf_dataset(columns=["col_1"], label_cols="col_2")
# ({'col_1': col_1}, col_2}
dataset,to_tf_dataset(columns="col1", label_cols="col_2")
# (col1, col2)
dataset,to_tf_dataset(columns="col1")
# col1
dataset,to_tf_dataset(columns=["col_1"], labels=["col_2"])
# ({'col1': tensor}, {'col2': tensor}}
dataset,to_tf_dataset(columns="col_1", labels=["col_2"])
# (col1, {'col2': tensor}}
```
## Motivation
Currently, when calling `to_tf_dataset`, the returned dataset will always return a tuple structure if a single feature column is used. This can cause issues when calling `model.fit` on models which train without labels e.g. [TFVitMAEForPreTraining](https://github.com/huggingface/transformers/blob/b6f47b539377ac1fd845c7adb4ccaa5eb514e126/src/transformers/models/vit_mae/modeling_vit_mae.py#L849). Specifically, [this line](https://github.com/huggingface/transformers/blob/d9e28d91a8b2d09b51a33155d3a03ad9fcfcbd1f/src/transformers/modeling_tf_utils.py#L1521) where it's assumed the input `x` is a dictionary if there is no label.
## Example
Previous behaviour
```python
In [1]: import tensorflow as tf
...: from datasets import load_dataset
...:
...:
...: def transform(batch):
...: def _transform_img(img):
...: img = img.convert("RGB")
...: img = tf.keras.utils.img_to_array(img)
...: img = tf.image.resize(img, (224, 224))
...: img /= 255.0
...: img = tf.transpose(img, perm=[2, 0, 1])
...: return img
...: batch['pixel_values'] = [_transform_img(pil_img) for pil_img in batch['img']]
...: return batch
...:
...:
...: def collate_fn(examples):
...: pixel_values = tf.stack([example["pixel_values"] for example in examples])
...: return {"pixel_values": pixel_values}
...:
...:
...: dataset = load_dataset('cifar10')['train']
...: dataset = dataset.with_transform(transform)
...: dataset.to_tf_dataset(batch_size=8, columns=['pixel_values'], collate_fn=collate_fn)
Out[1]: <PrefetchDataset element_spec=TensorSpec(shape=(None, 3, 224, 224), dtype=tf.float32, name=None)>
```
New behaviour
```python
In [1]: import tensorflow as tf
...: from datasets import load_dataset
...:
...:
...: def transform(batch):
...: def _transform_img(img):
...: img = img.convert("RGB")
...: img = tf.keras.utils.img_to_array(img)
...: img = tf.image.resize(img, (224, 224))
...: img /= 255.0
...: img = tf.transpose(img, perm=[2, 0, 1])
...: return img
...: batch['pixel_values'] = [_transform_img(pil_img) for pil_img in batch['img']]
...: return batch
...:
...:
...: def collate_fn(examples):
...: pixel_values = tf.stack([example["pixel_values"] for example in examples])
...: return {"pixel_values": pixel_values}
...:
...:
...: dataset = load_dataset('cifar10')['train']
...: dataset = dataset.with_transform(transform)
...: dataset.to_tf_dataset(batch_size=8, columns=['pixel_values'], collate_fn=collate_fn)
Out[1]: <PrefetchDataset element_spec={'pixel_values': TensorSpec(shape=(None, 3, 224, 224), dtype=tf.float32, name=None)}>
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5602/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5602/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5602",
"html_url": "https://github.com/huggingface/datasets/pull/5602",
"diff_url": "https://github.com/huggingface/datasets/pull/5602.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5602.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5601 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5601/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5601/comments | https://api.github.com/repos/huggingface/datasets/issues/5601/events | https://github.com/huggingface/datasets/issues/5601 | 1,606,685,976 | I_kwDODunzps5fxBUY | 5,601 | Authorization error | {
"login": "OleksandrKorovii",
"id": 107404835,
"node_id": "U_kgDOBmbeIw",
"avatar_url": "https://avatars.githubusercontent.com/u/107404835?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/OleksandrKorovii",
"html_url": "https://github.com/OleksandrKorovii",
"followers_url": "https://api.github.com/users/OleksandrKorovii/followers",
"following_url": "https://api.github.com/users/OleksandrKorovii/following{/other_user}",
"gists_url": "https://api.github.com/users/OleksandrKorovii/gists{/gist_id}",
"starred_url": "https://api.github.com/users/OleksandrKorovii/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/OleksandrKorovii/subscriptions",
"organizations_url": "https://api.github.com/users/OleksandrKorovii/orgs",
"repos_url": "https://api.github.com/users/OleksandrKorovii/repos",
"events_url": "https://api.github.com/users/OleksandrKorovii/events{/privacy}",
"received_events_url": "https://api.github.com/users/OleksandrKorovii/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi! \r\n\r\nIt's better to report this kind of issue in the `huggingface_hub` repo, so if you still haven't resolved it, I suggest you open an issue there.",
"Yeah, I solved it. Problem was in osxkeychain. When I do `hugginface-cli login` it's add token with default account (username)`hg_user` but my repo contain other username. When I changed username in keychain - it works now."
] | 2023-03-02T12:08:39 | 2023-03-14T16:55:35 | 2023-03-14T16:55:34 | NONE | null | ### Describe the bug
Get `Authorization error` when try to push data into hugginface datasets hub.
### Steps to reproduce the bug
I did all steps in the [tutorial](https://huggingface.co/docs/datasets/share),
1. `huggingface-cli login` with WRITE token
2. `git lfs install`
3. `git clone https://huggingface.co/datasets/namespace/your_dataset_name`
4.
```
cp /somewhere/data/*.json .
git lfs track *.json
git add .gitattributes
git add *.json
git commit -m "add json files"
```
but when I execute `git push` I got the error:
```
Uploading LFS objects: 0% (0/1), 0 B | 0 B/s, done.
batch response: Authorization error.
error: failed to push some refs to 'https://huggingface.co/datasets/zeusfsx/ukrainian-news'
```
Size of data ~100Gb. I have five json files - different parts.
### Expected behavior
All my data pushed into hub
### Environment info
- `datasets` version: 2.10.1
- Platform: macOS-13.2.1-arm64-arm-64bit
- Python version: 3.10.10
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5601/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5601/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5600 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5600/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5600/comments | https://api.github.com/repos/huggingface/datasets/issues/5600/events | https://github.com/huggingface/datasets/issues/5600 | 1,606,585,596 | I_kwDODunzps5fwoz8 | 5,600 | Dataloader getitem not working for DreamboothDatasets | {
"login": "salahiguiliz",
"id": 76955987,
"node_id": "MDQ6VXNlcjc2OTU1OTg3",
"avatar_url": "https://avatars.githubusercontent.com/u/76955987?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/salahiguiliz",
"html_url": "https://github.com/salahiguiliz",
"followers_url": "https://api.github.com/users/salahiguiliz/followers",
"following_url": "https://api.github.com/users/salahiguiliz/following{/other_user}",
"gists_url": "https://api.github.com/users/salahiguiliz/gists{/gist_id}",
"starred_url": "https://api.github.com/users/salahiguiliz/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/salahiguiliz/subscriptions",
"organizations_url": "https://api.github.com/users/salahiguiliz/orgs",
"repos_url": "https://api.github.com/users/salahiguiliz/repos",
"events_url": "https://api.github.com/users/salahiguiliz/events{/privacy}",
"received_events_url": "https://api.github.com/users/salahiguiliz/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi! \r\n\r\n> (see example of DreamboothDatasets)\r\n\r\n\r\nCould you please provide a link to it? If you are referring to the example in the `diffusers` repo, your issue is unrelated to `datasets` as that example uses `Dataset` from PyTorch to load data."
] | 2023-03-02T11:00:27 | 2023-03-13T17:59:35 | 2023-03-13T17:59:35 | NONE | null | ### Describe the bug
Dataloader getitem is not working as before (see example of [DreamboothDatasets](https://github.com/huggingface/peft/blob/main/examples/lora_dreambooth/train_dreambooth.py#L451C14-L529))
moving Datasets to 2.8.0 solved the issue.
### Steps to reproduce the bug
1- using DreamBoothDataset to load some images
2- error after loading when trying to visualise the images
### Expected behavior
I was expecting a numpy array of the image
### Environment info
- Platform: Linux-5.10.147+-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyArrow version: 9.0.0
- Pandas version: 1.3.5 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5600/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5600/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5598 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5598/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5598/comments | https://api.github.com/repos/huggingface/datasets/issues/5598/events | https://github.com/huggingface/datasets/pull/5598 | 1,605,018,478 | PR_kwDODunzps5LCMiX | 5,598 | Fix push_to_hub with no dataset_infos | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008823 / 0.011353 (-0.002529) | 0.004738 / 0.011008 (-0.006270) | 0.102338 / 0.038508 (0.063830) | 0.030603 / 0.023109 (0.007494) | 0.302995 / 0.275898 (0.027097) | 0.362080 / 0.323480 (0.038600) | 0.007096 / 0.007986 (-0.000889) | 0.003493 / 0.004328 (-0.000835) | 0.079129 / 0.004250 (0.074878) | 0.037966 / 0.037052 (0.000914) | 0.310412 / 0.258489 (0.051923) | 0.346740 / 0.293841 (0.052899) | 0.033795 / 0.128546 (-0.094751) | 0.011595 / 0.075646 (-0.064051) | 0.325189 / 0.419271 (-0.094083) | 0.041679 / 0.043533 (-0.001854) | 0.302339 / 0.255139 (0.047200) | 0.322519 / 0.283200 (0.039319) | 0.089058 / 0.141683 (-0.052625) | 1.496223 / 1.452155 (0.044068) | 1.512562 / 1.492716 (0.019845) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.009298 / 0.018006 (-0.008709) | 0.406726 / 0.000490 (0.406236) | 0.003753 / 0.000200 (0.003553) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023327 / 0.037411 (-0.014084) | 0.098175 / 0.014526 (0.083649) | 0.106040 / 0.176557 (-0.070516) | 0.151934 / 0.737135 (-0.585201) | 0.108465 / 0.296338 (-0.187873) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419073 / 0.215209 (0.203864) | 4.188012 / 2.077655 (2.110358) | 1.857667 / 1.504120 (0.353547) | 1.664124 / 1.541195 (0.122929) | 1.704341 / 1.468490 (0.235851) | 0.699671 / 4.584777 (-3.885106) | 3.391110 / 3.745712 (-0.354602) | 1.871136 / 5.269862 (-3.398725) | 1.176794 / 4.565676 (-3.388882) | 0.083322 / 0.424275 (-0.340953) | 0.012450 / 0.007607 (0.004843) | 0.525058 / 0.226044 (0.299014) | 5.265425 / 2.268929 (2.996497) | 2.320672 / 55.444624 (-53.123952) | 1.964806 / 6.876477 (-4.911671) | 2.027055 / 2.142072 (-0.115017) | 0.819768 / 4.805227 (-3.985459) | 0.149638 / 6.500664 (-6.351026) | 0.064774 / 0.075469 (-0.010695) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.204575 / 1.841788 (-0.637212) | 13.651878 / 8.074308 (5.577570) | 13.751973 / 10.191392 (3.560581) | 0.154781 / 0.680424 (-0.525643) | 0.028887 / 0.534201 (-0.505314) | 0.404905 / 0.579283 (-0.174379) | 0.411320 / 0.434364 (-0.023043) | 0.485026 / 0.540337 (-0.055311) | 0.579690 / 1.386936 (-0.807246) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006615 / 0.011353 (-0.004737) | 0.004606 / 0.011008 (-0.006402) | 0.076099 / 0.038508 (0.037591) | 0.027247 / 0.023109 (0.004137) | 0.360731 / 0.275898 (0.084833) | 0.393688 / 0.323480 (0.070208) | 0.005079 / 0.007986 (-0.002906) | 0.003345 / 0.004328 (-0.000984) | 0.077184 / 0.004250 (0.072934) | 0.037850 / 0.037052 (0.000797) | 0.379738 / 0.258489 (0.121249) | 0.400474 / 0.293841 (0.106633) | 0.031581 / 0.128546 (-0.096966) | 0.011508 / 0.075646 (-0.064138) | 0.084966 / 0.419271 (-0.334306) | 0.041740 / 0.043533 (-0.001793) | 0.349887 / 0.255139 (0.094748) | 0.384405 / 0.283200 (0.101205) | 0.089022 / 0.141683 (-0.052661) | 1.503448 / 1.452155 (0.051293) | 1.564870 / 1.492716 (0.072154) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.233581 / 0.018006 (0.215574) | 0.413819 / 0.000490 (0.413330) | 0.000398 / 0.000200 (0.000198) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024805 / 0.037411 (-0.012607) | 0.101348 / 0.014526 (0.086822) | 0.108701 / 0.176557 (-0.067856) | 0.160011 / 0.737135 (-0.577124) | 0.111696 / 0.296338 (-0.184642) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436303 / 0.215209 (0.221094) | 4.368684 / 2.077655 (2.291029) | 2.082366 / 1.504120 (0.578247) | 1.888108 / 1.541195 (0.346913) | 1.958295 / 1.468490 (0.489804) | 0.700858 / 4.584777 (-3.883919) | 3.408321 / 3.745712 (-0.337391) | 1.872960 / 5.269862 (-3.396902) | 1.165116 / 4.565676 (-3.400560) | 0.083556 / 0.424275 (-0.340719) | 0.012348 / 0.007607 (0.004741) | 0.536551 / 0.226044 (0.310506) | 5.359974 / 2.268929 (3.091045) | 2.539043 / 55.444624 (-52.905581) | 2.200314 / 6.876477 (-4.676162) | 2.222051 / 2.142072 (0.079979) | 0.808567 / 4.805227 (-3.996661) | 0.151222 / 6.500664 (-6.349442) | 0.066351 / 0.075469 (-0.009118) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.265502 / 1.841788 (-0.576286) | 13.692066 / 8.074308 (5.617758) | 13.124507 / 10.191392 (2.933115) | 0.129545 / 0.680424 (-0.550879) | 0.016827 / 0.534201 (-0.517374) | 0.380326 / 0.579283 (-0.198957) | 0.387268 / 0.434364 (-0.047096) | 0.463722 / 0.540337 (-0.076616) | 0.553681 / 1.386936 (-0.833255) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6569014a9948eab7d031a3587405e64ba92d6c59 \"CML watermark\")\n"
] | 2023-03-01T13:54:06 | 2023-03-02T13:47:13 | 2023-03-02T13:40:17 | MEMBER | null | As reported in https://github.com/vijaydwivedi75/lrgb/issues/10, `push_to_hub` fails if the remote repository already exists and has a README.md without `dataset_info` in the YAML tags
cc @clefourrier | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5598/reactions",
"total_count": 1,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 1,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5598/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5598",
"html_url": "https://github.com/huggingface/datasets/pull/5598",
"diff_url": "https://github.com/huggingface/datasets/pull/5598.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5598.patch",
"merged_at": "2023-03-02T13:40:17"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5597 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5597/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5597/comments | https://api.github.com/repos/huggingface/datasets/issues/5597/events | https://github.com/huggingface/datasets/issues/5597 | 1,604,928,721 | I_kwDODunzps5fqUTR | 5,597 | in-place dataset update | {
"login": "speedcell4",
"id": 3585459,
"node_id": "MDQ6VXNlcjM1ODU0NTk=",
"avatar_url": "https://avatars.githubusercontent.com/u/3585459?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/speedcell4",
"html_url": "https://github.com/speedcell4",
"followers_url": "https://api.github.com/users/speedcell4/followers",
"following_url": "https://api.github.com/users/speedcell4/following{/other_user}",
"gists_url": "https://api.github.com/users/speedcell4/gists{/gist_id}",
"starred_url": "https://api.github.com/users/speedcell4/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/speedcell4/subscriptions",
"organizations_url": "https://api.github.com/users/speedcell4/orgs",
"repos_url": "https://api.github.com/users/speedcell4/repos",
"events_url": "https://api.github.com/users/speedcell4/events{/privacy}",
"received_events_url": "https://api.github.com/users/speedcell4/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892913,
"node_id": "MDU6TGFiZWwxOTM1ODkyOTEz",
"url": "https://api.github.com/repos/huggingface/datasets/labels/wontfix",
"name": "wontfix",
"color": "ffffff",
"default": true,
"description": "This will not be worked on"
}
] | closed | false | null | [] | null | [
"We won't support in-place modifications since `datasets` is based on the Apache Arrow format which doesn't support in-place modifications.\r\n\r\nIn your case the old dataset is garbage collected pretty quickly so you won't have memory issues.\r\n\r\nNote that datasets loaded from disk (memory mapped) are not loaded in memory, and therefore the new dataset actually use the same buffers as the old one.",
"Thank you for your detailed reply.\r\n\r\n> In your case the old dataset is garbage collected pretty quickly so you won't have memory issues.\r\n\r\nI understand this, but it still copies the old dataset to create the new one, is this correct? So maybe it is not memory-consuming, but time-consuming?",
"Indeed, and because of that it is more efficient to add multiple rows at once instead of one by one, using `concatenate_datasets` for example."
] | 2023-03-01T12:58:18 | 2023-03-02T13:30:41 | 2023-03-02T03:47:00 | NONE | null | ### Motivation
For the circumstance that I creat an empty `Dataset` and keep appending new rows into it, I found that it leads to creating a new dataset at each call. It looks quite memory-consuming. I just wonder if there is any more efficient way to do this.
```python
from datasets import Dataset
ds = Dataset.from_list([])
ds.add_item({'a': [1, 2, 3], 'b': 4})
print(ds)
>>> Dataset({
>>> features: [],
>>> num_rows: 0
>>> })
ds = ds.add_item({'a': [1, 2, 3], 'b': 4})
print(ds)
>>> Dataset({
>>> features: ['a', 'b'],
>>> num_rows: 1
>>> })
```
### Feature request
Call for in-place dataset update functions, that update the existing `Dataset` in place without creating a new copy. The interface is supposed to keep the same style as PyTorch, such as the in-place version of a `function` is named `function_`. For example, the in-pace version of `add_item`, i.e., `add_item_`, immediately updates the `Dataset`.
```python
from datasets import Dataset
ds = Dataset.from_list([])
ds.add_item({'a': [1, 2, 3], 'b': 4})
print(ds)
>>> Dataset({
>>> features: [],
>>> num_rows: 0
>>> })
ds.add_item_({'a': [1, 2, 3], 'b': 4})
print(ds)
>>> Dataset({
>>> features: ['a', 'b'],
>>> num_rows: 1
>>> })
```
### Related Functions
* `.map`
* `.filter`
* `.add_item` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5597/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5597/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5596 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5596/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5596/comments | https://api.github.com/repos/huggingface/datasets/issues/5596/events | https://github.com/huggingface/datasets/issues/5596 | 1,604,919,993 | I_kwDODunzps5fqSK5 | 5,596 | [TypeError: Couldn't cast array of type] Can only load a subset of the dataset | {
"login": "loubnabnl",
"id": 44069155,
"node_id": "MDQ6VXNlcjQ0MDY5MTU1",
"avatar_url": "https://avatars.githubusercontent.com/u/44069155?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/loubnabnl",
"html_url": "https://github.com/loubnabnl",
"followers_url": "https://api.github.com/users/loubnabnl/followers",
"following_url": "https://api.github.com/users/loubnabnl/following{/other_user}",
"gists_url": "https://api.github.com/users/loubnabnl/gists{/gist_id}",
"starred_url": "https://api.github.com/users/loubnabnl/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/loubnabnl/subscriptions",
"organizations_url": "https://api.github.com/users/loubnabnl/orgs",
"repos_url": "https://api.github.com/users/loubnabnl/repos",
"events_url": "https://api.github.com/users/loubnabnl/events{/privacy}",
"received_events_url": "https://api.github.com/users/loubnabnl/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Apparently some JSON objects have a `\"labels\"` field. Since this field is not present in every object, you must specify all the fields types in the README.md\r\n\r\nEDIT: actually specifying the feature types doesn’t solve the issue, it raises an error because “labels” is missing in the data",
"We've updated the dataset to remove the extra `labels` field from some files, closing this issue. Thanks!",
"A similar error occurs in the Pile dataset (EleutherAI/the_pile)\r\n\r\nLoading the dataset produces the following error.\r\n\r\n```\r\nTypeError: Couldn't cast array of type\r\nstruct<file: string, id: string>\r\nto\r\n{'id': Value(dtype='string', id=None)}\r\n```\r\n",
"I think this was fixed in https://huggingface.co/datasets/EleutherAI/the_pile/discussions/11"
] | 2023-03-01T12:53:08 | 2023-04-19T10:19:37 | 2023-03-02T11:12:11 | NONE | null | ### Describe the bug
I'm trying to load this [dataset](https://huggingface.co/datasets/bigcode-data/the-stack-gh-issues) which consists of jsonl files and I get the following error:
```
casted_values = _c(array.values, feature[0])
File "/opt/conda/lib/python3.7/site-packages/datasets/table.py", line 1839, in wrapper
return func(array, *args, **kwargs)
File "/opt/conda/lib/python3.7/site-packages/datasets/table.py", line 2132, in cast_array_to_feature
raise TypeError(f"Couldn't cast array of type\n{array.type}\nto\n{feature}")
TypeError: Couldn't cast array of type
struct<type: string, action: string, datetime: timestamp[s], author: string, title: string, description: string, comment_id: int64, comment: string, labels: list<item: string>>
to
{'type': Value(dtype='string', id=None), 'action': Value(dtype='string', id=None), 'datetime': Value(dtype='timestamp[s]', id=None), 'author': Value(dtype='string', id=None), 'title': Value(dtype='string', id=None), 'description': Value(dtype='string', id=None), 'comment_id': Value(dtype='int64', id=None), 'comment': Value(dtype='string', id=None)}
```
But I can succesfully load a subset of the dataset, for example this works:
```python
ds = load_dataset('bigcode-data/the-stack-gh-issues', split="train", data_files=[f"data/data-{x}.jsonl" for x in range(10)])
```
and `ds.features` returns:
```
{'repo': Value(dtype='string', id=None),
'org': Value(dtype='string', id=None),
'issue_id': Value(dtype='int64', id=None),
'issue_number': Value(dtype='int64', id=None),
'pull_request': {'user_login': Value(dtype='string', id=None),
'repo': Value(dtype='string', id=None),
'number': Value(dtype='int64', id=None)},
'events': [{'type': Value(dtype='string', id=None),
'action': Value(dtype='string', id=None),
'datetime': Value(dtype='timestamp[s]', id=None),
'author': Value(dtype='string', id=None),
'title': Value(dtype='string', id=None),
'description': Value(dtype='string', id=None),
'comment_id': Value(dtype='int64', id=None),
'comment': Value(dtype='string', id=None)}]}
```
So I'm not sure if there's an issue with just some of the files. Grateful if you have any suggestions to fix the issue.
Side note:
I saw this related [issue](https://github.com/huggingface/datasets/issues/3637) and tried to write a loading script to have `events` as a `Sequence` and not `list` [here](https://huggingface.co/datasets/bigcode-data/the-stack-gh-issues/blob/main/loading.py) (the script was renamed). It worked with a subset locally but doesn't for the remote dataset it can't find https://huggingface.co/datasets/bigcode-data/the-stack-gh-issues/resolve/main/data.
### Steps to reproduce the bug
```python
from datasets import load_dataset
ds = load_dataset('bigcode-data/the-stack-gh-issues', split="train")
```
### Expected behavior
Load the entire dataset succesfully.
### Environment info
- `datasets` version: 2.10.1
- Platform: Linux-4.19.0-23-cloud-amd64-x86_64-with-debian-10.13
- Python version: 3.7.12
- PyArrow version: 9.0.0
- Pandas version: 1.3.4 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5596/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5596/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5595 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5595/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5595/comments | https://api.github.com/repos/huggingface/datasets/issues/5595/events | https://github.com/huggingface/datasets/pull/5595 | 1,604,070,629 | PR_kwDODunzps5K--V9 | 5,595 | Unpins sqlAlchemy | {
"login": "lazarust",
"id": 46943923,
"node_id": "MDQ6VXNlcjQ2OTQzOTIz",
"avatar_url": "https://avatars.githubusercontent.com/u/46943923?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lazarust",
"html_url": "https://github.com/lazarust",
"followers_url": "https://api.github.com/users/lazarust/followers",
"following_url": "https://api.github.com/users/lazarust/following{/other_user}",
"gists_url": "https://api.github.com/users/lazarust/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lazarust/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lazarust/subscriptions",
"organizations_url": "https://api.github.com/users/lazarust/orgs",
"repos_url": "https://api.github.com/users/lazarust/repos",
"events_url": "https://api.github.com/users/lazarust/events{/privacy}",
"received_events_url": "https://api.github.com/users/lazarust/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5595). All of your documentation changes will be reflected on that endpoint.",
"It looks like this issue hasn't been fixed yet, so let's wait a bit more.",
"@lazarust thanks for your work, but unfortunately we cannot merge it.\r\n\r\nSee my comment in: https://github.com/huggingface/datasets/issues/5477#issuecomment-1495512688\r\n\r\nThe fix was released yesterday (2023-04-03) only in `pandas-2.0.0`:\r\n- https://github.com/pandas-dev/pandas/releases/tag/v2.0.0\r\n\r\nbut it will not be back-ported to `pandas-1`:\r\n- https://github.com/pandas-dev/pandas/pull/48576#issuecomment-1466467159\r\n\r\nAlso note that `pandas-2.0.0` dropped support for Python 3.7:\r\n- https://github.com/pandas-dev/pandas/issues/41678\r\n- https://github.com/pandas-dev/pandas/pull/41989\r\n\r\nTherefore, we cannot unpin `sqlalchemy` until we drop support for Python 3.7 (these Python users cannot use `pandas-2`). See our latest CI checks below:\r\n- \"CI / test\" fails because it runs on Python 3.7\r\n- \"CI / test_py310\" succeeds because it runs on Python 3.10 "
] | 2023-03-01T01:33:45 | 2023-04-04T08:20:19 | 2023-04-04T08:19:14 | NONE | null | Closes #5477 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5595/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5595/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5595",
"html_url": "https://github.com/huggingface/datasets/pull/5595",
"diff_url": "https://github.com/huggingface/datasets/pull/5595.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5595.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5594 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5594/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5594/comments | https://api.github.com/repos/huggingface/datasets/issues/5594/events | https://github.com/huggingface/datasets/issues/5594 | 1,603,980,995 | I_kwDODunzps5fms7D | 5,594 | Error while downloading the xtreme udpos dataset | {
"login": "simran-khanuja",
"id": 24687672,
"node_id": "MDQ6VXNlcjI0Njg3Njcy",
"avatar_url": "https://avatars.githubusercontent.com/u/24687672?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/simran-khanuja",
"html_url": "https://github.com/simran-khanuja",
"followers_url": "https://api.github.com/users/simran-khanuja/followers",
"following_url": "https://api.github.com/users/simran-khanuja/following{/other_user}",
"gists_url": "https://api.github.com/users/simran-khanuja/gists{/gist_id}",
"starred_url": "https://api.github.com/users/simran-khanuja/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/simran-khanuja/subscriptions",
"organizations_url": "https://api.github.com/users/simran-khanuja/orgs",
"repos_url": "https://api.github.com/users/simran-khanuja/repos",
"events_url": "https://api.github.com/users/simran-khanuja/events{/privacy}",
"received_events_url": "https://api.github.com/users/simran-khanuja/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi! I cannot reproduce this error on my machine.\r\n\r\nThe raised error could mean that one of the downloaded files is corrupted. To verify this is not the case, you can run `load_dataset` as follows:\r\n```python\r\ntrain_dataset = load_dataset('xtreme', 'udpos.English', split=\"train\", cache_dir=args.cache_dir, download_mode=\"force_redownload\", verification_mode=\"all_checks\")\r\n```",
"Hi! Apologies for the delayed response! I tried the above and it doesn't solve the issue. Actually, the dataset gets downloaded most times, but sometimes this error occurs (at random afaik). Is it possible that there is a server issue for this particular dataset? I am able to download other datasets using the same code on the same machine with no issues :( I get this error now : \r\n```\r\nDownloading data: 16%|███████████████▌ | 55.9M/355M [04:45<25:25, 196kB/s]\r\nTraceback (most recent call last):\r\n File \"/home/skhanuja/Optimal-Resource-Allocation-for-Multilingual-Finetuning/src/train_al.py\", line 1107, in <module>\r\n main()\r\n File \"/home/skhanuja/Optimal-Resource-Allocation-for-Multilingual-Finetuning/src/train_al.py\", line 439, in main\r\n en_dataset = load_dataset(\"xtreme\", \"udpos.English\", split=\"train\", download_mode=\"force_redownload\", verification_mode=\"all_checks\")\r\n File \"/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/load.py\", line 1782, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py\", line 872, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py\", line 1649, in _download_and_prepare\r\n super()._download_and_prepare(\r\n File \"/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py\", line 949, in _download_and_prepare\r\n verify_checksums(\r\n File \"/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/utils/info_utils.py\", line 62, in verify_checksums\r\n raise NonMatchingChecksumError(\r\ndatasets.utils.info_utils.NonMatchingChecksumError: Checksums didn't match for dataset source files:\r\n['https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/11234/1-3105/ud-treebanks-v2.5.tgz']\r\nSet `verification_mode='no_checks'` to skip checksums verification and ignore this error\r\n```",
"If this happens randomly, then this means the data file from the error message is not always downloaded correctly. \r\n\r\nThe only solution in this scenario is to download the dataset again by passing `download_mode=\"force_redownload\"` to the `load_dataset` call."
] | 2023-02-28T23:40:53 | 2023-07-24T14:22:18 | 2023-07-24T14:22:18 | NONE | null | ### Describe the bug
Hi,
I am facing an error while downloading the xtreme udpos dataset using load_dataset. I have datasets 2.10.1 installed
```Downloading and preparing dataset xtreme/udpos.Arabic to /compute/tir-1-18/skhanuja/multilingual_ft/cache/data/xtreme/udpos.Arabic/1.0.0/29f5d57a48779f37ccb75cb8708d1095448aad0713b425bdc1ff9a4a128a56e4...
Downloading data: 16%|██████████████▏ | 56.9M/355M [03:11<16:43, 297kB/s]
Generating train split: 0%| | 0/6075 [00:00<?, ? examples/s]Traceback (most recent call last):
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py", line 1608, in _prepare_split_single
for key, record in generator:
File "/home/skhanuja/.cache/huggingface/modules/datasets_modules/datasets/xtreme/29f5d57a48779f37ccb75cb8708d1095448aad0713b425bdc1ff9a4a128a56e4/xtreme.py", line 732, in _generate_examples
yield from UdposParser.generate_examples(config=self.config, filepath=filepath, **kwargs)
File "/home/skhanuja/.cache/huggingface/modules/datasets_modules/datasets/xtreme/29f5d57a48779f37ccb75cb8708d1095448aad0713b425bdc1ff9a4a128a56e4/xtreme.py", line 921, in generate_examples
for path, file in filepath:
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/download/download_manager.py", line 158, in __iter__
yield from self.generator(*self.args, **self.kwargs)
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/download/download_manager.py", line 211, in _iter_from_path
yield from cls._iter_tar(f)
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/download/download_manager.py", line 167, in _iter_tar
for tarinfo in stream:
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/tarfile.py", line 2475, in __iter__
tarinfo = self.next()
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/tarfile.py", line 2344, in next
raise ReadError("unexpected end of data")
tarfile.ReadError: unexpected end of data
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/home/skhanuja/Optimal-Resource-Allocation-for-Multilingual-Finetuning/src/train_al.py", line 855, in <module>
main()
File "/home/skhanuja/Optimal-Resource-Allocation-for-Multilingual-Finetuning/src/train_al.py", line 487, in main
train_dataset = load_dataset(dataset_name, source_language, split="train", cache_dir=args.cache_dir, download_mode="force_redownload")
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/load.py", line 1782, in load_dataset
builder_instance.download_and_prepare(
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py", line 872, in download_and_prepare
self._download_and_prepare(
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py", line 1649, in _download_and_prepare
super()._download_and_prepare(
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py", line 967, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py", line 1488, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/home/skhanuja/miniconda3/envs/multilingual_ft/lib/python3.10/site-packages/datasets/builder.py", line 1644, in _prepare_split_single
raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.builder.DatasetGenerationError: An error occurred while generating the dataset
```
### Steps to reproduce the bug
```
train_dataset = load_dataset('xtreme', 'udpos.English', split="train", cache_dir=args.cache_dir, download_mode="force_redownload")
```
### Expected behavior
Download the udpos dataset
### Environment info
- `datasets` version: 2.10.1
- Platform: Linux-3.10.0-957.1.3.el7.x86_64-x86_64-with-glibc2.17
- Python version: 3.10.8
- PyArrow version: 10.0.1
- Pandas version: 1.5.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5594/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5594/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5592 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5592/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5592/comments | https://api.github.com/repos/huggingface/datasets/issues/5592/events | https://github.com/huggingface/datasets/pull/5592 | 1,603,619,124 | PR_kwDODunzps5K9dWr | 5,592 | Fix docstring example | {
"login": "stevhliu",
"id": 59462357,
"node_id": "MDQ6VXNlcjU5NDYyMzU3",
"avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/stevhliu",
"html_url": "https://github.com/stevhliu",
"followers_url": "https://api.github.com/users/stevhliu/followers",
"following_url": "https://api.github.com/users/stevhliu/following{/other_user}",
"gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}",
"starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions",
"organizations_url": "https://api.github.com/users/stevhliu/orgs",
"repos_url": "https://api.github.com/users/stevhliu/repos",
"events_url": "https://api.github.com/users/stevhliu/events{/privacy}",
"received_events_url": "https://api.github.com/users/stevhliu/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009526 / 0.011353 (-0.001827) | 0.005132 / 0.011008 (-0.005876) | 0.101312 / 0.038508 (0.062804) | 0.035703 / 0.023109 (0.012594) | 0.301788 / 0.275898 (0.025890) | 0.368411 / 0.323480 (0.044932) | 0.008163 / 0.007986 (0.000177) | 0.005462 / 0.004328 (0.001134) | 0.077282 / 0.004250 (0.073031) | 0.044139 / 0.037052 (0.007086) | 0.312280 / 0.258489 (0.053791) | 0.351870 / 0.293841 (0.058029) | 0.038266 / 0.128546 (-0.090281) | 0.012051 / 0.075646 (-0.063595) | 0.335109 / 0.419271 (-0.084163) | 0.047596 / 0.043533 (0.004064) | 0.300931 / 0.255139 (0.045792) | 0.325705 / 0.283200 (0.042505) | 0.100472 / 0.141683 (-0.041211) | 1.475037 / 1.452155 (0.022882) | 1.520059 / 1.492716 (0.027343) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211096 / 0.018006 (0.193089) | 0.442988 / 0.000490 (0.442498) | 0.003644 / 0.000200 (0.003444) | 0.000090 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027492 / 0.037411 (-0.009919) | 0.108981 / 0.014526 (0.094455) | 0.117836 / 0.176557 (-0.058720) | 0.161220 / 0.737135 (-0.575915) | 0.124765 / 0.296338 (-0.171574) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413480 / 0.215209 (0.198271) | 4.111355 / 2.077655 (2.033700) | 1.933024 / 1.504120 (0.428904) | 1.727467 / 1.541195 (0.186272) | 1.827106 / 1.468490 (0.358616) | 0.688209 / 4.584777 (-3.896568) | 3.759672 / 3.745712 (0.013960) | 2.163806 / 5.269862 (-3.106056) | 1.473521 / 4.565676 (-3.092155) | 0.082859 / 0.424275 (-0.341416) | 0.012320 / 0.007607 (0.004713) | 0.515321 / 0.226044 (0.289277) | 5.158651 / 2.268929 (2.889722) | 2.489123 / 55.444624 (-52.955501) | 2.218910 / 6.876477 (-4.657566) | 2.257306 / 2.142072 (0.115233) | 0.861477 / 4.805227 (-3.943750) | 0.165857 / 6.500664 (-6.334807) | 0.063723 / 0.075469 (-0.011746) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.195163 / 1.841788 (-0.646625) | 14.954518 / 8.074308 (6.880210) | 14.272289 / 10.191392 (4.080897) | 0.167420 / 0.680424 (-0.513004) | 0.028907 / 0.534201 (-0.505294) | 0.450117 / 0.579283 (-0.129166) | 0.448532 / 0.434364 (0.014168) | 0.534406 / 0.540337 (-0.005931) | 0.633468 / 1.386936 (-0.753468) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007658 / 0.011353 (-0.003694) | 0.005266 / 0.011008 (-0.005742) | 0.075293 / 0.038508 (0.036785) | 0.034442 / 0.023109 (0.011333) | 0.346558 / 0.275898 (0.070660) | 0.391496 / 0.323480 (0.068017) | 0.005852 / 0.007986 (-0.002133) | 0.004121 / 0.004328 (-0.000207) | 0.074254 / 0.004250 (0.070004) | 0.048361 / 0.037052 (0.011309) | 0.344613 / 0.258489 (0.086124) | 0.401497 / 0.293841 (0.107656) | 0.037243 / 0.128546 (-0.091303) | 0.012505 / 0.075646 (-0.063142) | 0.087188 / 0.419271 (-0.332084) | 0.050114 / 0.043533 (0.006581) | 0.340454 / 0.255139 (0.085315) | 0.361087 / 0.283200 (0.077887) | 0.104692 / 0.141683 (-0.036991) | 1.419432 / 1.452155 (-0.032722) | 1.524709 / 1.492716 (0.031993) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231820 / 0.018006 (0.213814) | 0.445791 / 0.000490 (0.445301) | 0.000442 / 0.000200 (0.000242) | 0.000061 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030445 / 0.037411 (-0.006967) | 0.111183 / 0.014526 (0.096657) | 0.123494 / 0.176557 (-0.053063) | 0.173121 / 0.737135 (-0.564014) | 0.124968 / 0.296338 (-0.171371) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428854 / 0.215209 (0.213645) | 4.270262 / 2.077655 (2.192608) | 2.012075 / 1.504120 (0.507955) | 1.826564 / 1.541195 (0.285370) | 1.931699 / 1.468490 (0.463209) | 0.728762 / 4.584777 (-3.856015) | 3.879640 / 3.745712 (0.133928) | 3.325715 / 5.269862 (-1.944147) | 1.818573 / 4.565676 (-2.747104) | 0.087879 / 0.424275 (-0.336396) | 0.012530 / 0.007607 (0.004923) | 0.530249 / 0.226044 (0.304204) | 5.286110 / 2.268929 (3.017181) | 2.566649 / 55.444624 (-52.877975) | 2.210162 / 6.876477 (-4.666315) | 2.297562 / 2.142072 (0.155490) | 0.906161 / 4.805227 (-3.899066) | 0.171914 / 6.500664 (-6.328750) | 0.064182 / 0.075469 (-0.011287) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.285781 / 1.841788 (-0.556006) | 16.159072 / 8.074308 (8.084763) | 14.087492 / 10.191392 (3.896100) | 0.148789 / 0.680424 (-0.531635) | 0.018078 / 0.534201 (-0.516123) | 0.427748 / 0.579283 (-0.151535) | 0.447079 / 0.434364 (0.012715) | 0.535917 / 0.540337 (-0.004421) | 0.627491 / 1.386936 (-0.759445) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#88fa043d08c12923709c0492e037130c99c029fb \"CML watermark\")\n"
] | 2023-02-28T18:42:37 | 2023-02-28T19:26:33 | 2023-02-28T19:19:15 | MEMBER | null | Fixes #5581 to use the correct output for the `set_format` method. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5592/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5592/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5592",
"html_url": "https://github.com/huggingface/datasets/pull/5592",
"diff_url": "https://github.com/huggingface/datasets/pull/5592.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5592.patch",
"merged_at": "2023-02-28T19:19:15"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5591 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5591/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5591/comments | https://api.github.com/repos/huggingface/datasets/issues/5591/events | https://github.com/huggingface/datasets/pull/5591 | 1,603,571,407 | PR_kwDODunzps5K9S79 | 5,591 | set dev version | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5591). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008826 / 0.011353 (-0.002527) | 0.004595 / 0.011008 (-0.006413) | 0.103387 / 0.038508 (0.064879) | 0.030241 / 0.023109 (0.007132) | 0.351202 / 0.275898 (0.075303) | 0.417601 / 0.323480 (0.094121) | 0.007121 / 0.007986 (-0.000865) | 0.003497 / 0.004328 (-0.000831) | 0.079256 / 0.004250 (0.075006) | 0.037617 / 0.037052 (0.000564) | 0.380542 / 0.258489 (0.122053) | 0.397863 / 0.293841 (0.104022) | 0.034291 / 0.128546 (-0.094255) | 0.011767 / 0.075646 (-0.063879) | 0.323737 / 0.419271 (-0.095534) | 0.041502 / 0.043533 (-0.002031) | 0.352982 / 0.255139 (0.097843) | 0.378618 / 0.283200 (0.095418) | 0.091671 / 0.141683 (-0.050012) | 1.499278 / 1.452155 (0.047123) | 1.517489 / 1.492716 (0.024773) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.190108 / 0.018006 (0.172102) | 0.414404 / 0.000490 (0.413915) | 0.001064 / 0.000200 (0.000864) | 0.000066 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023214 / 0.037411 (-0.014198) | 0.099351 / 0.014526 (0.084825) | 0.105227 / 0.176557 (-0.071330) | 0.150620 / 0.737135 (-0.586516) | 0.109323 / 0.296338 (-0.187015) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412463 / 0.215209 (0.197254) | 4.138123 / 2.077655 (2.060469) | 1.845163 / 1.504120 (0.341043) | 1.641108 / 1.541195 (0.099913) | 1.715471 / 1.468490 (0.246981) | 0.697397 / 4.584777 (-3.887380) | 3.449829 / 3.745712 (-0.295883) | 1.959309 / 5.269862 (-3.310553) | 1.285754 / 4.565676 (-3.279923) | 0.082746 / 0.424275 (-0.341529) | 0.012523 / 0.007607 (0.004916) | 0.524745 / 0.226044 (0.298700) | 5.257085 / 2.268929 (2.988156) | 2.293163 / 55.444624 (-53.151461) | 1.958309 / 6.876477 (-4.918168) | 2.016106 / 2.142072 (-0.125966) | 0.814359 / 4.805227 (-3.990869) | 0.149443 / 6.500664 (-6.351221) | 0.066013 / 0.075469 (-0.009456) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.248495 / 1.841788 (-0.593292) | 14.303301 / 8.074308 (6.228993) | 14.238533 / 10.191392 (4.047141) | 0.161421 / 0.680424 (-0.519003) | 0.028779 / 0.534201 (-0.505422) | 0.396511 / 0.579283 (-0.182772) | 0.412784 / 0.434364 (-0.021580) | 0.473984 / 0.540337 (-0.066353) | 0.569610 / 1.386936 (-0.817327) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007003 / 0.011353 (-0.004350) | 0.004621 / 0.011008 (-0.006387) | 0.079418 / 0.038508 (0.040910) | 0.028659 / 0.023109 (0.005550) | 0.340594 / 0.275898 (0.064696) | 0.377972 / 0.323480 (0.054492) | 0.005421 / 0.007986 (-0.002565) | 0.004852 / 0.004328 (0.000523) | 0.077579 / 0.004250 (0.073329) | 0.042662 / 0.037052 (0.005610) | 0.342264 / 0.258489 (0.083775) | 0.387255 / 0.293841 (0.093414) | 0.032574 / 0.128546 (-0.095972) | 0.011820 / 0.075646 (-0.063826) | 0.087960 / 0.419271 (-0.331312) | 0.045199 / 0.043533 (0.001667) | 0.341785 / 0.255139 (0.086646) | 0.365014 / 0.283200 (0.081814) | 0.096129 / 0.141683 (-0.045554) | 1.498962 / 1.452155 (0.046807) | 1.557331 / 1.492716 (0.064615) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236216 / 0.018006 (0.218210) | 0.440189 / 0.000490 (0.439699) | 0.000399 / 0.000200 (0.000199) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026357 / 0.037411 (-0.011055) | 0.104485 / 0.014526 (0.089959) | 0.109616 / 0.176557 (-0.066941) | 0.163005 / 0.737135 (-0.574130) | 0.113859 / 0.296338 (-0.182479) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437452 / 0.215209 (0.222243) | 4.371854 / 2.077655 (2.294199) | 2.056845 / 1.504120 (0.552725) | 1.856071 / 1.541195 (0.314876) | 1.957978 / 1.468490 (0.489488) | 0.703171 / 4.584777 (-3.881606) | 3.433889 / 3.745712 (-0.311823) | 1.968321 / 5.269862 (-3.301541) | 1.204947 / 4.565676 (-3.360729) | 0.084499 / 0.424275 (-0.339777) | 0.012729 / 0.007607 (0.005122) | 0.537534 / 0.226044 (0.311490) | 5.383346 / 2.268929 (3.114417) | 2.522136 / 55.444624 (-52.922488) | 2.192715 / 6.876477 (-4.683762) | 2.243579 / 2.142072 (0.101507) | 0.811136 / 4.805227 (-3.994091) | 0.154015 / 6.500664 (-6.346649) | 0.069324 / 0.075469 (-0.006145) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.294232 / 1.841788 (-0.547556) | 14.809448 / 8.074308 (6.735140) | 13.510074 / 10.191392 (3.318682) | 0.158033 / 0.680424 (-0.522391) | 0.016703 / 0.534201 (-0.517498) | 0.393976 / 0.579283 (-0.185307) | 0.385983 / 0.434364 (-0.048381) | 0.476691 / 0.540337 (-0.063646) | 0.565694 / 1.386936 (-0.821242) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b0dd3126196e8fcd9ba81a6602b46623b4e77e6e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009155 / 0.011353 (-0.002198) | 0.005227 / 0.011008 (-0.005781) | 0.099767 / 0.038508 (0.061259) | 0.035338 / 0.023109 (0.012229) | 0.293913 / 0.275898 (0.018015) | 0.366976 / 0.323480 (0.043496) | 0.007802 / 0.007986 (-0.000184) | 0.005286 / 0.004328 (0.000958) | 0.075117 / 0.004250 (0.070867) | 0.042336 / 0.037052 (0.005284) | 0.304690 / 0.258489 (0.046201) | 0.343496 / 0.293841 (0.049655) | 0.038745 / 0.128546 (-0.089802) | 0.012275 / 0.075646 (-0.063371) | 0.334455 / 0.419271 (-0.084817) | 0.052611 / 0.043533 (0.009078) | 0.293229 / 0.255139 (0.038090) | 0.314340 / 0.283200 (0.031140) | 0.108676 / 0.141683 (-0.033007) | 1.444495 / 1.452155 (-0.007659) | 1.492244 / 1.492716 (-0.000472) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.204852 / 0.018006 (0.186846) | 0.438202 / 0.000490 (0.437712) | 0.005043 / 0.000200 (0.004843) | 0.000282 / 0.000054 (0.000228) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027268 / 0.037411 (-0.010143) | 0.109497 / 0.014526 (0.094972) | 0.117187 / 0.176557 (-0.059369) | 0.162551 / 0.737135 (-0.574584) | 0.124175 / 0.296338 (-0.172164) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401667 / 0.215209 (0.186458) | 4.010274 / 2.077655 (1.932619) | 1.882617 / 1.504120 (0.378497) | 1.721960 / 1.541195 (0.180765) | 1.806874 / 1.468490 (0.338384) | 0.711253 / 4.584777 (-3.873524) | 3.806585 / 3.745712 (0.060873) | 3.713011 / 5.269862 (-1.556851) | 1.896558 / 4.565676 (-2.669119) | 0.086092 / 0.424275 (-0.338184) | 0.012129 / 0.007607 (0.004522) | 0.504905 / 0.226044 (0.278861) | 5.050794 / 2.268929 (2.781865) | 2.324331 / 55.444624 (-53.120293) | 2.020170 / 6.876477 (-4.856307) | 2.079685 / 2.142072 (-0.062388) | 0.854782 / 4.805227 (-3.950445) | 0.166754 / 6.500664 (-6.333910) | 0.062434 / 0.075469 (-0.013035) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.187897 / 1.841788 (-0.653891) | 14.618517 / 8.074308 (6.544209) | 13.205760 / 10.191392 (3.014368) | 0.154322 / 0.680424 (-0.526102) | 0.029243 / 0.534201 (-0.504958) | 0.442390 / 0.579283 (-0.136893) | 0.434651 / 0.434364 (0.000287) | 0.523082 / 0.540337 (-0.017256) | 0.602675 / 1.386936 (-0.784261) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007214 / 0.011353 (-0.004139) | 0.005225 / 0.011008 (-0.005783) | 0.076497 / 0.038508 (0.037989) | 0.032761 / 0.023109 (0.009652) | 0.336005 / 0.275898 (0.060107) | 0.373547 / 0.323480 (0.050067) | 0.005460 / 0.007986 (-0.002526) | 0.003933 / 0.004328 (-0.000395) | 0.074540 / 0.004250 (0.070289) | 0.047785 / 0.037052 (0.010733) | 0.341917 / 0.258489 (0.083428) | 0.396978 / 0.293841 (0.103137) | 0.036763 / 0.128546 (-0.091783) | 0.012043 / 0.075646 (-0.063603) | 0.087632 / 0.419271 (-0.331640) | 0.049376 / 0.043533 (0.005843) | 0.335169 / 0.255139 (0.080030) | 0.354852 / 0.283200 (0.071652) | 0.100180 / 0.141683 (-0.041503) | 1.443422 / 1.452155 (-0.008733) | 1.518618 / 1.492716 (0.025901) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209593 / 0.018006 (0.191587) | 0.444028 / 0.000490 (0.443538) | 0.004545 / 0.000200 (0.004345) | 0.000100 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029676 / 0.037411 (-0.007735) | 0.115444 / 0.014526 (0.100918) | 0.121765 / 0.176557 (-0.054791) | 0.171037 / 0.737135 (-0.566098) | 0.128592 / 0.296338 (-0.167746) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428556 / 0.215209 (0.213347) | 4.228531 / 2.077655 (2.150877) | 2.039190 / 1.504120 (0.535070) | 1.836518 / 1.541195 (0.295324) | 1.897040 / 1.468490 (0.428550) | 0.698893 / 4.584777 (-3.885884) | 3.753998 / 3.745712 (0.008286) | 2.097731 / 5.269862 (-3.172131) | 1.338315 / 4.565676 (-3.227361) | 0.087119 / 0.424275 (-0.337156) | 0.012149 / 0.007607 (0.004542) | 0.520774 / 0.226044 (0.294730) | 5.227420 / 2.268929 (2.958492) | 2.522235 / 55.444624 (-52.922389) | 2.194213 / 6.876477 (-4.682264) | 2.241406 / 2.142072 (0.099333) | 0.843119 / 4.805227 (-3.962109) | 0.169128 / 6.500664 (-6.331536) | 0.065071 / 0.075469 (-0.010398) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254490 / 1.841788 (-0.587298) | 15.037137 / 8.074308 (6.962829) | 13.115333 / 10.191392 (2.923941) | 0.181743 / 0.680424 (-0.498681) | 0.017748 / 0.534201 (-0.516453) | 0.425758 / 0.579283 (-0.153525) | 0.429926 / 0.434364 (-0.004438) | 0.524386 / 0.540337 (-0.015951) | 0.643044 / 1.386936 (-0.743892) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#09e820e79a3b879855b514e2a62d84b738013940 \"CML watermark\")\n"
] | 2023-02-28T18:09:05 | 2023-02-28T18:16:31 | 2023-02-28T18:09:15 | MEMBER | null | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5591/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5591/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5591",
"html_url": "https://github.com/huggingface/datasets/pull/5591",
"diff_url": "https://github.com/huggingface/datasets/pull/5591.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5591.patch",
"merged_at": "2023-02-28T18:09:15"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5590 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5590/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5590/comments | https://api.github.com/repos/huggingface/datasets/issues/5590/events | https://github.com/huggingface/datasets/pull/5590 | 1,603,549,504 | PR_kwDODunzps5K9N_H | 5,590 | Release: 2.10.1 | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008717 / 0.011353 (-0.002636) | 0.004570 / 0.011008 (-0.006439) | 0.100228 / 0.038508 (0.061720) | 0.030076 / 0.023109 (0.006967) | 0.317919 / 0.275898 (0.042021) | 0.366360 / 0.323480 (0.042880) | 0.007008 / 0.007986 (-0.000978) | 0.003498 / 0.004328 (-0.000831) | 0.077607 / 0.004250 (0.073356) | 0.036106 / 0.037052 (-0.000946) | 0.314128 / 0.258489 (0.055639) | 0.351450 / 0.293841 (0.057609) | 0.033697 / 0.128546 (-0.094849) | 0.011424 / 0.075646 (-0.064222) | 0.323867 / 0.419271 (-0.095404) | 0.042073 / 0.043533 (-0.001460) | 0.304564 / 0.255139 (0.049425) | 0.334865 / 0.283200 (0.051665) | 0.087791 / 0.141683 (-0.053892) | 1.488075 / 1.452155 (0.035920) | 1.513676 / 1.492716 (0.020959) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.010936 / 0.018006 (-0.007070) | 0.409610 / 0.000490 (0.409121) | 0.004820 / 0.000200 (0.004620) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023931 / 0.037411 (-0.013481) | 0.096826 / 0.014526 (0.082300) | 0.105764 / 0.176557 (-0.070792) | 0.153241 / 0.737135 (-0.583895) | 0.108976 / 0.296338 (-0.187363) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412833 / 0.215209 (0.197624) | 4.129735 / 2.077655 (2.052081) | 1.819049 / 1.504120 (0.314929) | 1.617411 / 1.541195 (0.076216) | 1.682353 / 1.468490 (0.213863) | 0.688987 / 4.584777 (-3.895790) | 3.388276 / 3.745712 (-0.357436) | 1.857452 / 5.269862 (-3.412410) | 1.158020 / 4.565676 (-3.407657) | 0.082161 / 0.424275 (-0.342114) | 0.012319 / 0.007607 (0.004712) | 0.523052 / 0.226044 (0.297008) | 5.237726 / 2.268929 (2.968797) | 2.275605 / 55.444624 (-53.169020) | 1.931664 / 6.876477 (-4.944813) | 1.970026 / 2.142072 (-0.172046) | 0.805240 / 4.805227 (-3.999988) | 0.148431 / 6.500664 (-6.352233) | 0.064707 / 0.075469 (-0.010762) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196456 / 1.841788 (-0.645332) | 13.750113 / 8.074308 (5.675805) | 13.853543 / 10.191392 (3.662151) | 0.137892 / 0.680424 (-0.542532) | 0.028304 / 0.534201 (-0.505897) | 0.400128 / 0.579283 (-0.179155) | 0.410409 / 0.434364 (-0.023955) | 0.479165 / 0.540337 (-0.061172) | 0.575002 / 1.386936 (-0.811934) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006587 / 0.011353 (-0.004766) | 0.004526 / 0.011008 (-0.006482) | 0.075673 / 0.038508 (0.037165) | 0.027429 / 0.023109 (0.004320) | 0.341808 / 0.275898 (0.065910) | 0.379520 / 0.323480 (0.056040) | 0.004972 / 0.007986 (-0.003014) | 0.003354 / 0.004328 (-0.000975) | 0.075373 / 0.004250 (0.071123) | 0.038347 / 0.037052 (0.001294) | 0.343671 / 0.258489 (0.085181) | 0.389632 / 0.293841 (0.095791) | 0.031694 / 0.128546 (-0.096853) | 0.011458 / 0.075646 (-0.064188) | 0.084210 / 0.419271 (-0.335062) | 0.042662 / 0.043533 (-0.000871) | 0.339436 / 0.255139 (0.084297) | 0.367493 / 0.283200 (0.084294) | 0.091604 / 0.141683 (-0.050079) | 1.526762 / 1.452155 (0.074607) | 1.569110 / 1.492716 (0.076394) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211496 / 0.018006 (0.193489) | 0.404868 / 0.000490 (0.404379) | 0.004267 / 0.000200 (0.004067) | 0.000083 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025189 / 0.037411 (-0.012222) | 0.099139 / 0.014526 (0.084613) | 0.105898 / 0.176557 (-0.070659) | 0.160997 / 0.737135 (-0.576138) | 0.110158 / 0.296338 (-0.186180) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.444286 / 0.215209 (0.229077) | 4.445479 / 2.077655 (2.367824) | 2.118920 / 1.504120 (0.614800) | 1.908296 / 1.541195 (0.367102) | 1.947211 / 1.468490 (0.478721) | 0.704850 / 4.584777 (-3.879927) | 3.395990 / 3.745712 (-0.349723) | 1.892529 / 5.269862 (-3.377332) | 1.172190 / 4.565676 (-3.393486) | 0.084235 / 0.424275 (-0.340040) | 0.012588 / 0.007607 (0.004981) | 0.546962 / 0.226044 (0.320918) | 5.475842 / 2.268929 (3.206913) | 2.575280 / 55.444624 (-52.869344) | 2.245658 / 6.876477 (-4.630818) | 2.274767 / 2.142072 (0.132695) | 0.813755 / 4.805227 (-3.991473) | 0.151927 / 6.500664 (-6.348737) | 0.067167 / 0.075469 (-0.008302) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267666 / 1.841788 (-0.574122) | 13.658905 / 8.074308 (5.584597) | 13.207249 / 10.191392 (3.015857) | 0.128590 / 0.680424 (-0.551833) | 0.016531 / 0.534201 (-0.517670) | 0.385050 / 0.579283 (-0.194233) | 0.388945 / 0.434364 (-0.045419) | 0.472378 / 0.540337 (-0.067959) | 0.568929 / 1.386936 (-0.818007) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#87cd5f7f7fda60d0f91f50424bcc3f327fe0d059 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009339 / 0.011353 (-0.002014) | 0.005197 / 0.011008 (-0.005811) | 0.100698 / 0.038508 (0.062190) | 0.035484 / 0.023109 (0.012375) | 0.299030 / 0.275898 (0.023132) | 0.366603 / 0.323480 (0.043124) | 0.007909 / 0.007986 (-0.000077) | 0.005683 / 0.004328 (0.001355) | 0.077719 / 0.004250 (0.073469) | 0.042147 / 0.037052 (0.005094) | 0.310174 / 0.258489 (0.051685) | 0.342720 / 0.293841 (0.048879) | 0.039679 / 0.128546 (-0.088867) | 0.012042 / 0.075646 (-0.063605) | 0.335663 / 0.419271 (-0.083609) | 0.051137 / 0.043533 (0.007604) | 0.298218 / 0.255139 (0.043079) | 0.316398 / 0.283200 (0.033198) | 0.108906 / 0.141683 (-0.032776) | 1.422823 / 1.452155 (-0.029331) | 1.472955 / 1.492716 (-0.019761) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.205845 / 0.018006 (0.187839) | 0.445942 / 0.000490 (0.445453) | 0.003553 / 0.000200 (0.003353) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025506 / 0.037411 (-0.011906) | 0.107494 / 0.014526 (0.092969) | 0.116226 / 0.176557 (-0.060331) | 0.157313 / 0.737135 (-0.579822) | 0.123822 / 0.296338 (-0.172516) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400908 / 0.215209 (0.185699) | 3.980232 / 2.077655 (1.902578) | 1.805410 / 1.504120 (0.301290) | 1.615698 / 1.541195 (0.074503) | 1.677213 / 1.468490 (0.208723) | 0.697882 / 4.584777 (-3.886895) | 3.752781 / 3.745712 (0.007069) | 2.076062 / 5.269862 (-3.193800) | 1.446909 / 4.565676 (-3.118768) | 0.084572 / 0.424275 (-0.339703) | 0.011917 / 0.007607 (0.004310) | 0.511815 / 0.226044 (0.285771) | 5.121487 / 2.268929 (2.852558) | 2.277642 / 55.444624 (-53.166982) | 1.930393 / 6.876477 (-4.946084) | 1.965855 / 2.142072 (-0.176218) | 0.843391 / 4.805227 (-3.961837) | 0.163581 / 6.500664 (-6.337083) | 0.062547 / 0.075469 (-0.012922) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.223930 / 1.841788 (-0.617858) | 14.354466 / 8.074308 (6.280158) | 14.015159 / 10.191392 (3.823767) | 0.148658 / 0.680424 (-0.531766) | 0.028469 / 0.534201 (-0.505732) | 0.437614 / 0.579283 (-0.141669) | 0.435452 / 0.434364 (0.001089) | 0.523623 / 0.540337 (-0.016715) | 0.625109 / 1.386936 (-0.761827) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006917 / 0.011353 (-0.004436) | 0.005080 / 0.011008 (-0.005928) | 0.075806 / 0.038508 (0.037298) | 0.032402 / 0.023109 (0.009293) | 0.331105 / 0.275898 (0.055207) | 0.361226 / 0.323480 (0.037746) | 0.005694 / 0.007986 (-0.002292) | 0.003810 / 0.004328 (-0.000518) | 0.076886 / 0.004250 (0.072635) | 0.046158 / 0.037052 (0.009106) | 0.338791 / 0.258489 (0.080302) | 0.385733 / 0.293841 (0.091892) | 0.035590 / 0.128546 (-0.092956) | 0.011997 / 0.075646 (-0.063649) | 0.087854 / 0.419271 (-0.331417) | 0.048985 / 0.043533 (0.005452) | 0.331248 / 0.255139 (0.076109) | 0.354633 / 0.283200 (0.071434) | 0.101609 / 0.141683 (-0.040074) | 1.496899 / 1.452155 (0.044745) | 1.570469 / 1.492716 (0.077753) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.180871 / 0.018006 (0.162865) | 0.449417 / 0.000490 (0.448928) | 0.004300 / 0.000200 (0.004100) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029054 / 0.037411 (-0.008358) | 0.110888 / 0.014526 (0.096362) | 0.121736 / 0.176557 (-0.054821) | 0.172563 / 0.737135 (-0.564572) | 0.126565 / 0.296338 (-0.169773) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419545 / 0.215209 (0.204336) | 4.193685 / 2.077655 (2.116031) | 2.049967 / 1.504120 (0.545847) | 1.855038 / 1.541195 (0.313843) | 1.899822 / 1.468490 (0.431332) | 0.709123 / 4.584777 (-3.875654) | 3.795939 / 3.745712 (0.050227) | 2.076055 / 5.269862 (-3.193807) | 1.335864 / 4.565676 (-3.229812) | 0.085555 / 0.424275 (-0.338720) | 0.012197 / 0.007607 (0.004590) | 0.516164 / 0.226044 (0.290119) | 5.158983 / 2.268929 (2.890054) | 2.445581 / 55.444624 (-52.999044) | 2.122256 / 6.876477 (-4.754221) | 2.160011 / 2.142072 (0.017939) | 0.840251 / 4.805227 (-3.964976) | 0.165924 / 6.500664 (-6.334740) | 0.064080 / 0.075469 (-0.011389) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.285292 / 1.841788 (-0.556495) | 14.561084 / 8.074308 (6.486776) | 12.899269 / 10.191392 (2.707877) | 0.185657 / 0.680424 (-0.494767) | 0.017866 / 0.534201 (-0.516335) | 0.425365 / 0.579283 (-0.153918) | 0.427183 / 0.434364 (-0.007181) | 0.529773 / 0.540337 (-0.010564) | 0.642061 / 1.386936 (-0.744875) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0628013d009dd5150e8a1c1a4ac9d93887b88a76 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008995 / 0.011353 (-0.002357) | 0.004540 / 0.011008 (-0.006469) | 0.099675 / 0.038508 (0.061167) | 0.030338 / 0.023109 (0.007229) | 0.307167 / 0.275898 (0.031269) | 0.338789 / 0.323480 (0.015309) | 0.007293 / 0.007986 (-0.000692) | 0.004681 / 0.004328 (0.000352) | 0.077475 / 0.004250 (0.073225) | 0.036399 / 0.037052 (-0.000654) | 0.304615 / 0.258489 (0.046126) | 0.351611 / 0.293841 (0.057770) | 0.034449 / 0.128546 (-0.094097) | 0.011565 / 0.075646 (-0.064082) | 0.322765 / 0.419271 (-0.096506) | 0.041971 / 0.043533 (-0.001562) | 0.307492 / 0.255139 (0.052354) | 0.327240 / 0.283200 (0.044040) | 0.087110 / 0.141683 (-0.054573) | 1.484600 / 1.452155 (0.032445) | 1.536651 / 1.492716 (0.043934) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.185876 / 0.018006 (0.167869) | 0.404276 / 0.000490 (0.403787) | 0.001592 / 0.000200 (0.001392) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023272 / 0.037411 (-0.014139) | 0.096273 / 0.014526 (0.081747) | 0.105400 / 0.176557 (-0.071157) | 0.149720 / 0.737135 (-0.587416) | 0.107807 / 0.296338 (-0.188532) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420072 / 0.215209 (0.204863) | 4.184108 / 2.077655 (2.106454) | 1.880690 / 1.504120 (0.376570) | 1.673103 / 1.541195 (0.131909) | 1.715792 / 1.468490 (0.247302) | 0.695771 / 4.584777 (-3.889006) | 3.450224 / 3.745712 (-0.295488) | 2.999218 / 5.269862 (-2.270644) | 1.585571 / 4.565676 (-2.980106) | 0.082105 / 0.424275 (-0.342170) | 0.012453 / 0.007607 (0.004846) | 0.528538 / 0.226044 (0.302494) | 5.287951 / 2.268929 (3.019023) | 2.289127 / 55.444624 (-53.155497) | 1.956503 / 6.876477 (-4.919974) | 2.004498 / 2.142072 (-0.137575) | 0.813547 / 4.805227 (-3.991681) | 0.151574 / 6.500664 (-6.349090) | 0.063763 / 0.075469 (-0.011706) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.239125 / 1.841788 (-0.602662) | 13.627676 / 8.074308 (5.553368) | 13.747815 / 10.191392 (3.556423) | 0.157745 / 0.680424 (-0.522679) | 0.028590 / 0.534201 (-0.505611) | 0.397472 / 0.579283 (-0.181811) | 0.405925 / 0.434364 (-0.028439) | 0.477942 / 0.540337 (-0.062396) | 0.572379 / 1.386936 (-0.814557) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006637 / 0.011353 (-0.004716) | 0.004657 / 0.011008 (-0.006351) | 0.082056 / 0.038508 (0.043548) | 0.027974 / 0.023109 (0.004865) | 0.342887 / 0.275898 (0.066989) | 0.375938 / 0.323480 (0.052458) | 0.004958 / 0.007986 (-0.003028) | 0.004738 / 0.004328 (0.000409) | 0.080449 / 0.004250 (0.076198) | 0.038138 / 0.037052 (0.001085) | 0.345636 / 0.258489 (0.087147) | 0.385992 / 0.293841 (0.092151) | 0.033265 / 0.128546 (-0.095281) | 0.011965 / 0.075646 (-0.063681) | 0.091441 / 0.419271 (-0.327830) | 0.051407 / 0.043533 (0.007874) | 0.353758 / 0.255139 (0.098619) | 0.372118 / 0.283200 (0.088919) | 0.093947 / 0.141683 (-0.047735) | 1.468197 / 1.452155 (0.016042) | 1.554677 / 1.492716 (0.061960) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222034 / 0.018006 (0.204027) | 0.403658 / 0.000490 (0.403169) | 0.003242 / 0.000200 (0.003042) | 0.000082 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025335 / 0.037411 (-0.012076) | 0.100404 / 0.014526 (0.085878) | 0.107858 / 0.176557 (-0.068698) | 0.156115 / 0.737135 (-0.581021) | 0.113967 / 0.296338 (-0.182372) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437567 / 0.215209 (0.222358) | 4.362486 / 2.077655 (2.284832) | 2.067315 / 1.504120 (0.563195) | 1.857669 / 1.541195 (0.316475) | 1.926380 / 1.468490 (0.457890) | 0.703905 / 4.584777 (-3.880872) | 3.437139 / 3.745712 (-0.308573) | 3.051931 / 5.269862 (-2.217930) | 1.356494 / 4.565676 (-3.209182) | 0.083679 / 0.424275 (-0.340596) | 0.012507 / 0.007607 (0.004900) | 0.539572 / 0.226044 (0.313528) | 5.405790 / 2.268929 (3.136861) | 2.532769 / 55.444624 (-52.911855) | 2.181950 / 6.876477 (-4.694527) | 2.212627 / 2.142072 (0.070554) | 0.807468 / 4.805227 (-3.997759) | 0.152146 / 6.500664 (-6.348518) | 0.068891 / 0.075469 (-0.006578) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.286972 / 1.841788 (-0.554816) | 13.987186 / 8.074308 (5.912878) | 13.115065 / 10.191392 (2.923673) | 0.162143 / 0.680424 (-0.518281) | 0.016767 / 0.534201 (-0.517434) | 0.384766 / 0.579283 (-0.194517) | 0.397438 / 0.434364 (-0.036926) | 0.470850 / 0.540337 (-0.069487) | 0.562216 / 1.386936 (-0.824720) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2843fceabc428932754ba497f643d6e94173b91e \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010877 / 0.011353 (-0.000476) | 0.005739 / 0.011008 (-0.005269) | 0.118542 / 0.038508 (0.080034) | 0.042266 / 0.023109 (0.019157) | 0.359317 / 0.275898 (0.083419) | 0.412995 / 0.323480 (0.089515) | 0.009158 / 0.007986 (0.001173) | 0.006343 / 0.004328 (0.002014) | 0.089587 / 0.004250 (0.085336) | 0.047899 / 0.037052 (0.010847) | 0.358745 / 0.258489 (0.100256) | 0.421316 / 0.293841 (0.127476) | 0.044540 / 0.128546 (-0.084006) | 0.013872 / 0.075646 (-0.061774) | 0.399856 / 0.419271 (-0.019415) | 0.056484 / 0.043533 (0.012951) | 0.356922 / 0.255139 (0.101783) | 0.385598 / 0.283200 (0.102398) | 0.116039 / 0.141683 (-0.025644) | 1.726095 / 1.452155 (0.273940) | 1.888643 / 1.492716 (0.395927) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269517 / 0.018006 (0.251511) | 0.511204 / 0.000490 (0.510714) | 0.001906 / 0.000200 (0.001706) | 0.000103 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031133 / 0.037411 (-0.006278) | 0.128513 / 0.014526 (0.113987) | 0.139639 / 0.176557 (-0.036918) | 0.189778 / 0.737135 (-0.547358) | 0.145219 / 0.296338 (-0.151120) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.486693 / 0.215209 (0.271484) | 4.851999 / 2.077655 (2.774344) | 2.255334 / 1.504120 (0.751214) | 2.052271 / 1.541195 (0.511077) | 2.143262 / 1.468490 (0.674772) | 0.835765 / 4.584777 (-3.749012) | 4.451280 / 3.745712 (0.705568) | 2.534392 / 5.269862 (-2.735469) | 1.747817 / 4.565676 (-2.817859) | 0.101186 / 0.424275 (-0.323089) | 0.014281 / 0.007607 (0.006674) | 0.616164 / 0.226044 (0.390120) | 6.161789 / 2.268929 (3.892860) | 2.815347 / 55.444624 (-52.629277) | 2.408305 / 6.876477 (-4.468172) | 2.508240 / 2.142072 (0.366167) | 1.017709 / 4.805227 (-3.787519) | 0.198272 / 6.500664 (-6.302392) | 0.075663 / 0.075469 (0.000194) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.435501 / 1.841788 (-0.406287) | 18.149581 / 8.074308 (10.075273) | 16.619011 / 10.191392 (6.427619) | 0.205080 / 0.680424 (-0.475344) | 0.033780 / 0.534201 (-0.500421) | 0.515768 / 0.579283 (-0.063515) | 0.542628 / 0.434364 (0.108264) | 0.634067 / 0.540337 (0.093730) | 0.757841 / 1.386936 (-0.629095) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008541 / 0.011353 (-0.002812) | 0.005733 / 0.011008 (-0.005275) | 0.089859 / 0.038508 (0.051351) | 0.039379 / 0.023109 (0.016270) | 0.402037 / 0.275898 (0.126139) | 0.454046 / 0.323480 (0.130566) | 0.006652 / 0.007986 (-0.001334) | 0.004555 / 0.004328 (0.000227) | 0.087651 / 0.004250 (0.083401) | 0.054934 / 0.037052 (0.017881) | 0.404468 / 0.258489 (0.145979) | 0.467127 / 0.293841 (0.173286) | 0.042034 / 0.128546 (-0.086512) | 0.014225 / 0.075646 (-0.061421) | 0.103281 / 0.419271 (-0.315990) | 0.057767 / 0.043533 (0.014234) | 0.396391 / 0.255139 (0.141252) | 0.429364 / 0.283200 (0.146165) | 0.120193 / 0.141683 (-0.021489) | 1.794029 / 1.452155 (0.341875) | 1.875431 / 1.492716 (0.382714) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.325707 / 0.018006 (0.307701) | 0.503841 / 0.000490 (0.503351) | 0.010224 / 0.000200 (0.010024) | 0.000137 / 0.000054 (0.000082) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035289 / 0.037411 (-0.002123) | 0.139018 / 0.014526 (0.124492) | 0.145112 / 0.176557 (-0.031445) | 0.202616 / 0.737135 (-0.534519) | 0.152975 / 0.296338 (-0.143363) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.493110 / 0.215209 (0.277901) | 4.885713 / 2.077655 (2.808058) | 2.344417 / 1.504120 (0.840297) | 2.135734 / 1.541195 (0.594540) | 2.254118 / 1.468490 (0.785628) | 0.811516 / 4.584777 (-3.773261) | 4.484454 / 3.745712 (0.738742) | 2.459913 / 5.269862 (-2.809948) | 1.553106 / 4.565676 (-3.012570) | 0.100943 / 0.424275 (-0.323332) | 0.014848 / 0.007607 (0.007241) | 0.626214 / 0.226044 (0.400170) | 6.206925 / 2.268929 (3.937997) | 2.986549 / 55.444624 (-52.458076) | 2.521895 / 6.876477 (-4.354582) | 2.610917 / 2.142072 (0.468845) | 0.998496 / 4.805227 (-3.806731) | 0.199405 / 6.500664 (-6.301260) | 0.077355 / 0.075469 (0.001886) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.525135 / 1.841788 (-0.316653) | 18.708407 / 8.074308 (10.634099) | 16.049482 / 10.191392 (5.858090) | 0.170986 / 0.680424 (-0.509437) | 0.021090 / 0.534201 (-0.513111) | 0.511734 / 0.579283 (-0.067549) | 0.495507 / 0.434364 (0.061143) | 0.628578 / 0.540337 (0.088241) | 0.749546 / 1.386936 (-0.637390) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2843fceabc428932754ba497f643d6e94173b91e \"CML watermark\")\n"
] | 2023-02-28T17:58:11 | 2023-02-28T18:16:27 | 2023-02-28T18:06:08 | MEMBER | null | null | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5590/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5590/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5590",
"html_url": "https://github.com/huggingface/datasets/pull/5590",
"diff_url": "https://github.com/huggingface/datasets/pull/5590.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5590.patch",
"merged_at": "2023-02-28T18:06:08"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5589 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5589/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5589/comments | https://api.github.com/repos/huggingface/datasets/issues/5589/events | https://github.com/huggingface/datasets/pull/5589 | 1,603,535,704 | PR_kwDODunzps5K9K1i | 5,589 | Revert "pass the dataset features to the IterableDataset.from_generator" | {
"login": "lhoestq",
"id": 42851186,
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lhoestq",
"html_url": "https://github.com/lhoestq",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008442 / 0.011353 (-0.002911) | 0.004567 / 0.011008 (-0.006441) | 0.100688 / 0.038508 (0.062180) | 0.029568 / 0.023109 (0.006459) | 0.306993 / 0.275898 (0.031095) | 0.362626 / 0.323480 (0.039146) | 0.006983 / 0.007986 (-0.001002) | 0.003424 / 0.004328 (-0.000905) | 0.079050 / 0.004250 (0.074799) | 0.036087 / 0.037052 (-0.000966) | 0.318205 / 0.258489 (0.059716) | 0.353882 / 0.293841 (0.060041) | 0.033091 / 0.128546 (-0.095455) | 0.011468 / 0.075646 (-0.064178) | 0.321125 / 0.419271 (-0.098146) | 0.040645 / 0.043533 (-0.002888) | 0.309827 / 0.255139 (0.054688) | 0.344848 / 0.283200 (0.061648) | 0.087100 / 0.141683 (-0.054583) | 1.465123 / 1.452155 (0.012968) | 1.499457 / 1.492716 (0.006741) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.171619 / 0.018006 (0.153613) | 0.410198 / 0.000490 (0.409709) | 0.002391 / 0.000200 (0.002191) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022913 / 0.037411 (-0.014499) | 0.097275 / 0.014526 (0.082749) | 0.103902 / 0.176557 (-0.072655) | 0.148855 / 0.737135 (-0.588281) | 0.107247 / 0.296338 (-0.189092) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413139 / 0.215209 (0.197930) | 4.131760 / 2.077655 (2.054105) | 1.854491 / 1.504120 (0.350371) | 1.625524 / 1.541195 (0.084329) | 1.666665 / 1.468490 (0.198175) | 0.687105 / 4.584777 (-3.897672) | 3.327124 / 3.745712 (-0.418588) | 1.830820 / 5.269862 (-3.439042) | 1.147930 / 4.565676 (-3.417746) | 0.081586 / 0.424275 (-0.342689) | 0.012422 / 0.007607 (0.004815) | 0.523723 / 0.226044 (0.297678) | 5.246977 / 2.268929 (2.978049) | 2.288350 / 55.444624 (-53.156275) | 1.933740 / 6.876477 (-4.942737) | 1.954356 / 2.142072 (-0.187716) | 0.804434 / 4.805227 (-4.000793) | 0.147621 / 6.500664 (-6.353043) | 0.064835 / 0.075469 (-0.010634) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244841 / 1.841788 (-0.596947) | 13.758465 / 8.074308 (5.684157) | 13.984576 / 10.191392 (3.793184) | 0.144860 / 0.680424 (-0.535564) | 0.028616 / 0.534201 (-0.505584) | 0.401928 / 0.579283 (-0.177355) | 0.415294 / 0.434364 (-0.019069) | 0.476483 / 0.540337 (-0.063854) | 0.569257 / 1.386936 (-0.817679) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006556 / 0.011353 (-0.004797) | 0.004502 / 0.011008 (-0.006507) | 0.074828 / 0.038508 (0.036319) | 0.027537 / 0.023109 (0.004427) | 0.339961 / 0.275898 (0.064063) | 0.372491 / 0.323480 (0.049011) | 0.005010 / 0.007986 (-0.002976) | 0.004624 / 0.004328 (0.000295) | 0.074459 / 0.004250 (0.070208) | 0.037539 / 0.037052 (0.000486) | 0.341031 / 0.258489 (0.082542) | 0.383397 / 0.293841 (0.089556) | 0.031706 / 0.128546 (-0.096840) | 0.011542 / 0.075646 (-0.064104) | 0.084882 / 0.419271 (-0.334389) | 0.041860 / 0.043533 (-0.001673) | 0.338699 / 0.255139 (0.083560) | 0.365666 / 0.283200 (0.082467) | 0.088966 / 0.141683 (-0.052717) | 1.502493 / 1.452155 (0.050339) | 1.570746 / 1.492716 (0.078030) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217547 / 0.018006 (0.199541) | 0.392407 / 0.000490 (0.391918) | 0.000388 / 0.000200 (0.000188) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024571 / 0.037411 (-0.012840) | 0.099259 / 0.014526 (0.084734) | 0.107850 / 0.176557 (-0.068707) | 0.157686 / 0.737135 (-0.579449) | 0.109761 / 0.296338 (-0.186578) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434791 / 0.215209 (0.219582) | 4.323099 / 2.077655 (2.245444) | 2.063610 / 1.504120 (0.559490) | 1.866136 / 1.541195 (0.324941) | 1.910185 / 1.468490 (0.441695) | 0.696584 / 4.584777 (-3.888193) | 3.398017 / 3.745712 (-0.347695) | 1.848473 / 5.269862 (-3.421388) | 1.168238 / 4.565676 (-3.397438) | 0.083222 / 0.424275 (-0.341053) | 0.012332 / 0.007607 (0.004725) | 0.538953 / 0.226044 (0.312909) | 5.421273 / 2.268929 (3.152344) | 2.499877 / 55.444624 (-52.944747) | 2.161853 / 6.876477 (-4.714624) | 2.183941 / 2.142072 (0.041868) | 0.803916 / 4.805227 (-4.001311) | 0.150266 / 6.500664 (-6.350398) | 0.067399 / 0.075469 (-0.008070) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.280479 / 1.841788 (-0.561309) | 13.728074 / 8.074308 (5.653766) | 12.946098 / 10.191392 (2.754706) | 0.128459 / 0.680424 (-0.551965) | 0.016567 / 0.534201 (-0.517634) | 0.374461 / 0.579283 (-0.204822) | 0.386973 / 0.434364 (-0.047391) | 0.459754 / 0.540337 (-0.080583) | 0.543870 / 1.386936 (-0.843066) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#595b3d47e1fc579f5db1cbc376f756edf32904dd \"CML watermark\")\n",
"Instead of reverting the change, maybe we can use the same conversion in `to_iterable_dataset` as in `ArrowBasedBuilder._as_streaming_dataset` to avoid decoding images twice?",
"True, let me take a look",
"Closing in favor of https://github.com/huggingface/datasets/pull/5655"
] | 2023-02-28T17:52:04 | 2023-03-21T14:21:45 | 2023-03-21T14:18:18 | MEMBER | null | This reverts commit b91070b9c09673e2e148eec458036ab6a62ac042 (temporarily)
It hurts iterable dataset performance a lot (e.g. x4 slower because it encodes+decodes images unnecessarily). I think we need to fix this before re-adding it
cc @mariosasko @Hubert-Bonisseur | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5589/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5589/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5589",
"html_url": "https://github.com/huggingface/datasets/pull/5589",
"diff_url": "https://github.com/huggingface/datasets/pull/5589.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5589.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5588 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5588/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5588/comments | https://api.github.com/repos/huggingface/datasets/issues/5588/events | https://github.com/huggingface/datasets/pull/5588 | 1,603,304,766 | PR_kwDODunzps5K8YYz | 5,588 | Flatten dataset on the fly in `save_to_disk` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009866 / 0.011353 (-0.001487) | 0.005334 / 0.011008 (-0.005675) | 0.101771 / 0.038508 (0.063263) | 0.037722 / 0.023109 (0.014613) | 0.301026 / 0.275898 (0.025128) | 0.336618 / 0.323480 (0.013138) | 0.008679 / 0.007986 (0.000693) | 0.005640 / 0.004328 (0.001312) | 0.077076 / 0.004250 (0.072825) | 0.045068 / 0.037052 (0.008016) | 0.302570 / 0.258489 (0.044081) | 0.359093 / 0.293841 (0.065252) | 0.038865 / 0.128546 (-0.089681) | 0.012318 / 0.075646 (-0.063328) | 0.334819 / 0.419271 (-0.084452) | 0.047980 / 0.043533 (0.004447) | 0.296999 / 0.255139 (0.041860) | 0.318855 / 0.283200 (0.035656) | 0.110633 / 0.141683 (-0.031050) | 1.464326 / 1.452155 (0.012172) | 1.537386 / 1.492716 (0.044670) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.282906 / 0.018006 (0.264900) | 0.498418 / 0.000490 (0.497928) | 0.001507 / 0.000200 (0.001307) | 0.000087 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029948 / 0.037411 (-0.007463) | 0.114385 / 0.014526 (0.099859) | 0.125783 / 0.176557 (-0.050774) | 0.193458 / 0.737135 (-0.543678) | 0.129725 / 0.296338 (-0.166614) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403822 / 0.215209 (0.188613) | 4.034180 / 2.077655 (1.956525) | 1.768206 / 1.504120 (0.264086) | 1.579267 / 1.541195 (0.038072) | 1.725077 / 1.468490 (0.256587) | 0.698743 / 4.584777 (-3.886034) | 3.723481 / 3.745712 (-0.022231) | 2.302374 / 5.269862 (-2.967488) | 1.497954 / 4.565676 (-3.067723) | 0.087360 / 0.424275 (-0.336915) | 0.012453 / 0.007607 (0.004846) | 0.523374 / 0.226044 (0.297329) | 5.244962 / 2.268929 (2.976033) | 2.272874 / 55.444624 (-53.171750) | 1.935570 / 6.876477 (-4.940907) | 2.043151 / 2.142072 (-0.098921) | 0.866298 / 4.805227 (-3.938929) | 0.169376 / 6.500664 (-6.331288) | 0.064578 / 0.075469 (-0.010892) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.217372 / 1.841788 (-0.624416) | 15.896050 / 8.074308 (7.821742) | 15.165190 / 10.191392 (4.973798) | 0.171168 / 0.680424 (-0.509256) | 0.029770 / 0.534201 (-0.504431) | 0.449030 / 0.579283 (-0.130253) | 0.454704 / 0.434364 (0.020340) | 0.550689 / 0.540337 (0.010351) | 0.651182 / 1.386936 (-0.735754) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008072 / 0.011353 (-0.003281) | 0.005533 / 0.011008 (-0.005475) | 0.076343 / 0.038508 (0.037835) | 0.037997 / 0.023109 (0.014888) | 0.350465 / 0.275898 (0.074567) | 0.391168 / 0.323480 (0.067688) | 0.006475 / 0.007986 (-0.001511) | 0.004299 / 0.004328 (-0.000029) | 0.074867 / 0.004250 (0.070617) | 0.055256 / 0.037052 (0.018204) | 0.363919 / 0.258489 (0.105430) | 0.396521 / 0.293841 (0.102680) | 0.037746 / 0.128546 (-0.090801) | 0.012556 / 0.075646 (-0.063091) | 0.087974 / 0.419271 (-0.331297) | 0.050850 / 0.043533 (0.007317) | 0.345857 / 0.255139 (0.090718) | 0.361019 / 0.283200 (0.077820) | 0.111007 / 0.141683 (-0.030676) | 1.444014 / 1.452155 (-0.008140) | 1.533154 / 1.492716 (0.040438) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.332114 / 0.018006 (0.314108) | 0.517232 / 0.000490 (0.516742) | 0.004459 / 0.000200 (0.004259) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033147 / 0.037411 (-0.004264) | 0.119983 / 0.014526 (0.105457) | 0.125970 / 0.176557 (-0.050586) | 0.196375 / 0.737135 (-0.540760) | 0.133849 / 0.296338 (-0.162489) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429477 / 0.215209 (0.214267) | 4.263750 / 2.077655 (2.186096) | 2.079409 / 1.504120 (0.575289) | 1.899831 / 1.541195 (0.358636) | 2.048472 / 1.468490 (0.579982) | 0.720945 / 4.584777 (-3.863832) | 3.813195 / 3.745712 (0.067483) | 2.250353 / 5.269862 (-3.019508) | 1.401496 / 4.565676 (-3.164181) | 0.090052 / 0.424275 (-0.334223) | 0.012552 / 0.007607 (0.004945) | 0.536839 / 0.226044 (0.310794) | 5.361089 / 2.268929 (3.092161) | 2.559710 / 55.444624 (-52.884914) | 2.226963 / 6.876477 (-4.649513) | 2.341898 / 2.142072 (0.199825) | 0.872115 / 4.805227 (-3.933112) | 0.173776 / 6.500664 (-6.326888) | 0.068567 / 0.075469 (-0.006902) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.294583 / 1.841788 (-0.547205) | 16.624099 / 8.074308 (8.549791) | 13.698509 / 10.191392 (3.507117) | 0.161917 / 0.680424 (-0.518506) | 0.017744 / 0.534201 (-0.516457) | 0.428547 / 0.579283 (-0.150736) | 0.424687 / 0.434364 (-0.009677) | 0.525812 / 0.540337 (-0.014525) | 0.629075 / 1.386936 (-0.757861) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#33e4d6af919db17bf9a1eac544a0501b5972393b \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008667 / 0.011353 (-0.002686) | 0.004921 / 0.011008 (-0.006087) | 0.098352 / 0.038508 (0.059844) | 0.033983 / 0.023109 (0.010873) | 0.291640 / 0.275898 (0.015742) | 0.323388 / 0.323480 (-0.000092) | 0.007943 / 0.007986 (-0.000043) | 0.003922 / 0.004328 (-0.000407) | 0.075861 / 0.004250 (0.071610) | 0.042606 / 0.037052 (0.005554) | 0.298571 / 0.258489 (0.040081) | 0.345496 / 0.293841 (0.051655) | 0.037443 / 0.128546 (-0.091103) | 0.012114 / 0.075646 (-0.063532) | 0.333269 / 0.419271 (-0.086003) | 0.047762 / 0.043533 (0.004229) | 0.295452 / 0.255139 (0.040313) | 0.319641 / 0.283200 (0.036441) | 0.101083 / 0.141683 (-0.040600) | 1.432179 / 1.452155 (-0.019976) | 1.523976 / 1.492716 (0.031260) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.241327 / 0.018006 (0.223321) | 0.538315 / 0.000490 (0.537825) | 0.003479 / 0.000200 (0.003279) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025857 / 0.037411 (-0.011554) | 0.104833 / 0.014526 (0.090307) | 0.116826 / 0.176557 (-0.059730) | 0.183460 / 0.737135 (-0.553675) | 0.119595 / 0.296338 (-0.176743) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397533 / 0.215209 (0.182324) | 3.968664 / 2.077655 (1.891010) | 1.774025 / 1.504120 (0.269905) | 1.577424 / 1.541195 (0.036229) | 1.623049 / 1.468490 (0.154559) | 0.701008 / 4.584777 (-3.883769) | 3.753278 / 3.745712 (0.007565) | 2.078313 / 5.269862 (-3.191549) | 1.335639 / 4.565676 (-3.230037) | 0.085216 / 0.424275 (-0.339059) | 0.012087 / 0.007607 (0.004480) | 0.513219 / 0.226044 (0.287174) | 5.097693 / 2.268929 (2.828765) | 2.275030 / 55.444624 (-53.169594) | 1.928037 / 6.876477 (-4.948439) | 1.941216 / 2.142072 (-0.200856) | 0.856720 / 4.805227 (-3.948507) | 0.166723 / 6.500664 (-6.333941) | 0.062263 / 0.075469 (-0.013206) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196054 / 1.841788 (-0.645734) | 14.190526 / 8.074308 (6.116218) | 14.053768 / 10.191392 (3.862376) | 0.179982 / 0.680424 (-0.500442) | 0.029024 / 0.534201 (-0.505177) | 0.440391 / 0.579283 (-0.138892) | 0.445627 / 0.434364 (0.011264) | 0.543098 / 0.540337 (0.002761) | 0.640577 / 1.386936 (-0.746359) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007008 / 0.011353 (-0.004345) | 0.005015 / 0.011008 (-0.005993) | 0.073783 / 0.038508 (0.035274) | 0.032401 / 0.023109 (0.009292) | 0.343382 / 0.275898 (0.067484) | 0.358317 / 0.323480 (0.034837) | 0.005548 / 0.007986 (-0.002437) | 0.005188 / 0.004328 (0.000859) | 0.072867 / 0.004250 (0.068617) | 0.048555 / 0.037052 (0.011502) | 0.334516 / 0.258489 (0.076027) | 0.390263 / 0.293841 (0.096422) | 0.036343 / 0.128546 (-0.092203) | 0.012243 / 0.075646 (-0.063404) | 0.087067 / 0.419271 (-0.332205) | 0.049025 / 0.043533 (0.005492) | 0.333977 / 0.255139 (0.078838) | 0.354427 / 0.283200 (0.071227) | 0.104771 / 0.141683 (-0.036912) | 1.434588 / 1.452155 (-0.017567) | 1.519788 / 1.492716 (0.027072) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.264002 / 0.018006 (0.245996) | 0.547902 / 0.000490 (0.547412) | 0.000461 / 0.000200 (0.000261) | 0.000062 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028916 / 0.037411 (-0.008496) | 0.110267 / 0.014526 (0.095741) | 0.119190 / 0.176557 (-0.057367) | 0.188599 / 0.737135 (-0.548537) | 0.126948 / 0.296338 (-0.169391) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422777 / 0.215209 (0.207568) | 4.209813 / 2.077655 (2.132158) | 2.001360 / 1.504120 (0.497240) | 1.802651 / 1.541195 (0.261456) | 1.860357 / 1.468490 (0.391867) | 0.695006 / 4.584777 (-3.889771) | 3.741917 / 3.745712 (-0.003795) | 3.313071 / 5.269862 (-1.956791) | 1.726366 / 4.565676 (-2.839311) | 0.086185 / 0.424275 (-0.338090) | 0.012256 / 0.007607 (0.004649) | 0.536874 / 0.226044 (0.310830) | 5.253008 / 2.268929 (2.984079) | 2.457189 / 55.444624 (-52.987436) | 2.112199 / 6.876477 (-4.764278) | 2.117867 / 2.142072 (-0.024205) | 0.831914 / 4.805227 (-3.973314) | 0.168238 / 6.500664 (-6.332426) | 0.065075 / 0.075469 (-0.010394) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.280795 / 1.841788 (-0.560993) | 14.606608 / 8.074308 (6.532299) | 13.317597 / 10.191392 (3.126205) | 0.166590 / 0.680424 (-0.513834) | 0.017520 / 0.534201 (-0.516681) | 0.420978 / 0.579283 (-0.158305) | 0.415708 / 0.434364 (-0.018656) | 0.523619 / 0.540337 (-0.016718) | 0.625299 / 1.386936 (-0.761637) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a2a83a8ea4b3a87a925ef44b787e87b59bf68225 \"CML watermark\")\n"
] | 2023-02-28T15:37:46 | 2023-02-28T17:28:35 | 2023-02-28T17:21:17 | CONTRIBUTOR | null | Flatten a dataset on the fly in `save_to_disk` instead of doing it with `flatten_indices` to avoid creating an additional cache file.
(this is one of the sub-tasks in https://github.com/huggingface/datasets/issues/5507) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5588/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5588/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5588",
"html_url": "https://github.com/huggingface/datasets/pull/5588",
"diff_url": "https://github.com/huggingface/datasets/pull/5588.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5588.patch",
"merged_at": "2023-02-28T17:21:17"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5587 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5587/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5587/comments | https://api.github.com/repos/huggingface/datasets/issues/5587/events | https://github.com/huggingface/datasets/pull/5587 | 1,603,139,420 | PR_kwDODunzps5K70pp | 5,587 | Fix `sort` with indices mapping | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008740 / 0.011353 (-0.002613) | 0.004501 / 0.011008 (-0.006507) | 0.100045 / 0.038508 (0.061537) | 0.029999 / 0.023109 (0.006890) | 0.303556 / 0.275898 (0.027658) | 0.335342 / 0.323480 (0.011863) | 0.006996 / 0.007986 (-0.000989) | 0.004183 / 0.004328 (-0.000145) | 0.076434 / 0.004250 (0.072183) | 0.033899 / 0.037052 (-0.003153) | 0.301312 / 0.258489 (0.042823) | 0.343136 / 0.293841 (0.049295) | 0.034062 / 0.128546 (-0.094484) | 0.011465 / 0.075646 (-0.064181) | 0.323134 / 0.419271 (-0.096137) | 0.040820 / 0.043533 (-0.002713) | 0.301708 / 0.255139 (0.046569) | 0.329528 / 0.283200 (0.046328) | 0.088393 / 0.141683 (-0.053290) | 1.460996 / 1.452155 (0.008842) | 1.531145 / 1.492716 (0.038429) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191918 / 0.018006 (0.173912) | 0.414099 / 0.000490 (0.413610) | 0.000411 / 0.000200 (0.000211) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022707 / 0.037411 (-0.014704) | 0.096991 / 0.014526 (0.082465) | 0.106070 / 0.176557 (-0.070487) | 0.151275 / 0.737135 (-0.585860) | 0.108909 / 0.296338 (-0.187430) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422499 / 0.215209 (0.207289) | 4.205551 / 2.077655 (2.127896) | 1.918960 / 1.504120 (0.414841) | 1.715421 / 1.541195 (0.174227) | 1.768969 / 1.468490 (0.300479) | 0.692243 / 4.584777 (-3.892534) | 3.382452 / 3.745712 (-0.363260) | 1.943695 / 5.269862 (-3.326166) | 1.250482 / 4.565676 (-3.315195) | 0.082084 / 0.424275 (-0.342191) | 0.012446 / 0.007607 (0.004839) | 0.525584 / 0.226044 (0.299539) | 5.275530 / 2.268929 (3.006602) | 2.386207 / 55.444624 (-53.058418) | 2.043920 / 6.876477 (-4.832557) | 2.030932 / 2.142072 (-0.111140) | 0.810233 / 4.805227 (-3.994994) | 0.148139 / 6.500664 (-6.352525) | 0.064617 / 0.075469 (-0.010852) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.227352 / 1.841788 (-0.614436) | 13.527623 / 8.074308 (5.453315) | 14.018551 / 10.191392 (3.827159) | 0.140333 / 0.680424 (-0.540091) | 0.028349 / 0.534201 (-0.505852) | 0.394904 / 0.579283 (-0.184379) | 0.406532 / 0.434364 (-0.027831) | 0.471714 / 0.540337 (-0.068624) | 0.568517 / 1.386936 (-0.818419) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006623 / 0.011353 (-0.004730) | 0.004464 / 0.011008 (-0.006544) | 0.076342 / 0.038508 (0.037834) | 0.027451 / 0.023109 (0.004341) | 0.343851 / 0.275898 (0.067953) | 0.385723 / 0.323480 (0.062243) | 0.005624 / 0.007986 (-0.002362) | 0.004685 / 0.004328 (0.000356) | 0.075669 / 0.004250 (0.071419) | 0.037297 / 0.037052 (0.000244) | 0.343363 / 0.258489 (0.084874) | 0.396115 / 0.293841 (0.102274) | 0.031577 / 0.128546 (-0.096970) | 0.011557 / 0.075646 (-0.064090) | 0.085626 / 0.419271 (-0.333645) | 0.041699 / 0.043533 (-0.001834) | 0.340826 / 0.255139 (0.085687) | 0.377167 / 0.283200 (0.093967) | 0.088632 / 0.141683 (-0.053051) | 1.464500 / 1.452155 (0.012345) | 1.556686 / 1.492716 (0.063969) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231136 / 0.018006 (0.213130) | 0.402687 / 0.000490 (0.402197) | 0.000590 / 0.000200 (0.000390) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024926 / 0.037411 (-0.012485) | 0.101062 / 0.014526 (0.086536) | 0.106481 / 0.176557 (-0.070075) | 0.159167 / 0.737135 (-0.577968) | 0.110948 / 0.296338 (-0.185390) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441813 / 0.215209 (0.226603) | 4.416332 / 2.077655 (2.338677) | 2.080621 / 1.504120 (0.576501) | 1.877832 / 1.541195 (0.336637) | 1.944778 / 1.468490 (0.476288) | 0.704634 / 4.584777 (-3.880143) | 3.433955 / 3.745712 (-0.311758) | 1.863493 / 5.269862 (-3.406368) | 1.168869 / 4.565676 (-3.396807) | 0.084095 / 0.424275 (-0.340180) | 0.012440 / 0.007607 (0.004833) | 0.545122 / 0.226044 (0.319077) | 5.472214 / 2.268929 (3.203285) | 2.514580 / 55.444624 (-52.930044) | 2.164570 / 6.876477 (-4.711907) | 2.193467 / 2.142072 (0.051395) | 0.809056 / 4.805227 (-3.996171) | 0.152343 / 6.500664 (-6.348321) | 0.067610 / 0.075469 (-0.007859) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.280968 / 1.841788 (-0.560820) | 13.887674 / 8.074308 (5.813366) | 13.160405 / 10.191392 (2.969013) | 0.128601 / 0.680424 (-0.551823) | 0.016420 / 0.534201 (-0.517780) | 0.382810 / 0.579283 (-0.196473) | 0.394386 / 0.434364 (-0.039978) | 0.470254 / 0.540337 (-0.070083) | 0.566907 / 1.386936 (-0.820029) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8cc6950322337ea8873939541c53858b10c0f3b9 \"CML watermark\")\n",
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008673 / 0.011353 (-0.002679) | 0.004475 / 0.011008 (-0.006533) | 0.102060 / 0.038508 (0.063552) | 0.029438 / 0.023109 (0.006329) | 0.351785 / 0.275898 (0.075887) | 0.388199 / 0.323480 (0.064719) | 0.007011 / 0.007986 (-0.000974) | 0.003317 / 0.004328 (-0.001012) | 0.080931 / 0.004250 (0.076681) | 0.033449 / 0.037052 (-0.003603) | 0.360329 / 0.258489 (0.101840) | 0.400069 / 0.293841 (0.106228) | 0.033628 / 0.128546 (-0.094918) | 0.011462 / 0.075646 (-0.064184) | 0.323781 / 0.419271 (-0.095490) | 0.040686 / 0.043533 (-0.002847) | 0.332715 / 0.255139 (0.077576) | 0.370339 / 0.283200 (0.087139) | 0.084633 / 0.141683 (-0.057050) | 1.459452 / 1.452155 (0.007297) | 1.547719 / 1.492716 (0.055003) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.187051 / 0.018006 (0.169045) | 0.402625 / 0.000490 (0.402135) | 0.002218 / 0.000200 (0.002018) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025240 / 0.037411 (-0.012171) | 0.102201 / 0.014526 (0.087675) | 0.108629 / 0.176557 (-0.067927) | 0.156686 / 0.737135 (-0.580449) | 0.111383 / 0.296338 (-0.184955) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418099 / 0.215209 (0.202890) | 4.163345 / 2.077655 (2.085690) | 1.868419 / 1.504120 (0.364300) | 1.662066 / 1.541195 (0.120871) | 1.705912 / 1.468490 (0.237422) | 0.696391 / 4.584777 (-3.888386) | 3.338307 / 3.745712 (-0.407405) | 1.923255 / 5.269862 (-3.346607) | 1.249220 / 4.565676 (-3.316457) | 0.082037 / 0.424275 (-0.342238) | 0.012232 / 0.007607 (0.004624) | 0.523913 / 0.226044 (0.297869) | 5.290036 / 2.268929 (3.021107) | 2.319729 / 55.444624 (-53.124896) | 1.987345 / 6.876477 (-4.889132) | 2.044516 / 2.142072 (-0.097556) | 0.812098 / 4.805227 (-3.993129) | 0.147327 / 6.500664 (-6.353337) | 0.063838 / 0.075469 (-0.011631) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.219652 / 1.841788 (-0.622136) | 13.271513 / 8.074308 (5.197205) | 13.799982 / 10.191392 (3.608590) | 0.150055 / 0.680424 (-0.530369) | 0.028804 / 0.534201 (-0.505397) | 0.395452 / 0.579283 (-0.183831) | 0.398758 / 0.434364 (-0.035606) | 0.468575 / 0.540337 (-0.071763) | 0.553324 / 1.386936 (-0.833612) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006498 / 0.011353 (-0.004855) | 0.004439 / 0.011008 (-0.006569) | 0.076525 / 0.038508 (0.038017) | 0.027184 / 0.023109 (0.004074) | 0.364705 / 0.275898 (0.088807) | 0.409481 / 0.323480 (0.086001) | 0.004831 / 0.007986 (-0.003154) | 0.004524 / 0.004328 (0.000196) | 0.075403 / 0.004250 (0.071153) | 0.039013 / 0.037052 (0.001960) | 0.364042 / 0.258489 (0.105553) | 0.413090 / 0.293841 (0.119249) | 0.032052 / 0.128546 (-0.096495) | 0.011514 / 0.075646 (-0.064132) | 0.085219 / 0.419271 (-0.334053) | 0.041448 / 0.043533 (-0.002085) | 0.350371 / 0.255139 (0.095232) | 0.386670 / 0.283200 (0.103470) | 0.089824 / 0.141683 (-0.051859) | 1.487392 / 1.452155 (0.035238) | 1.537201 / 1.492716 (0.044485) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231555 / 0.018006 (0.213549) | 0.407505 / 0.000490 (0.407016) | 0.000382 / 0.000200 (0.000182) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026665 / 0.037411 (-0.010747) | 0.105852 / 0.014526 (0.091326) | 0.108228 / 0.176557 (-0.068328) | 0.164164 / 0.737135 (-0.572972) | 0.114284 / 0.296338 (-0.182054) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448957 / 0.215209 (0.233748) | 4.500058 / 2.077655 (2.422403) | 2.331660 / 1.504120 (0.827541) | 2.119904 / 1.541195 (0.578710) | 2.101489 / 1.468490 (0.632999) | 0.696580 / 4.584777 (-3.888197) | 3.364206 / 3.745712 (-0.381506) | 2.550157 / 5.269862 (-2.719704) | 1.496455 / 4.565676 (-3.069222) | 0.083289 / 0.424275 (-0.340986) | 0.012283 / 0.007607 (0.004676) | 0.555581 / 0.226044 (0.329537) | 5.556284 / 2.268929 (3.287355) | 2.595261 / 55.444624 (-52.849363) | 2.234793 / 6.876477 (-4.641683) | 2.280150 / 2.142072 (0.138078) | 0.817885 / 4.805227 (-3.987343) | 0.151481 / 6.500664 (-6.349183) | 0.066764 / 0.075469 (-0.008705) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.318875 / 1.841788 (-0.522913) | 14.220380 / 8.074308 (6.146072) | 13.922773 / 10.191392 (3.731381) | 0.154608 / 0.680424 (-0.525816) | 0.016343 / 0.534201 (-0.517858) | 0.380758 / 0.579283 (-0.198525) | 0.392595 / 0.434364 (-0.041769) | 0.468844 / 0.540337 (-0.071493) | 0.561047 / 1.386936 (-0.825889) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d57fdcf2c8110b4b599289695fa065d1fc4936d4 \"CML watermark\")\n"
] | 2023-02-28T14:05:08 | 2023-02-28T17:28:57 | 2023-02-28T17:21:58 | CONTRIBUTOR | null | Fixes the `key` range in the `query_table` call in `sort` to account for an indices mapping
Fix #5586 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5587/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5587/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5587",
"html_url": "https://github.com/huggingface/datasets/pull/5587",
"diff_url": "https://github.com/huggingface/datasets/pull/5587.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5587.patch",
"merged_at": "2023-02-28T17:21:58"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5586 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5586/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5586/comments | https://api.github.com/repos/huggingface/datasets/issues/5586/events | https://github.com/huggingface/datasets/issues/5586 | 1,602,961,544 | I_kwDODunzps5fi0CI | 5,586 | .sort() is broken when used after .filter(), only in 2.10.0 | {
"login": "MattYoon",
"id": 57797966,
"node_id": "MDQ6VXNlcjU3Nzk3OTY2",
"avatar_url": "https://avatars.githubusercontent.com/u/57797966?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/MattYoon",
"html_url": "https://github.com/MattYoon",
"followers_url": "https://api.github.com/users/MattYoon/followers",
"following_url": "https://api.github.com/users/MattYoon/following{/other_user}",
"gists_url": "https://api.github.com/users/MattYoon/gists{/gist_id}",
"starred_url": "https://api.github.com/users/MattYoon/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/MattYoon/subscriptions",
"organizations_url": "https://api.github.com/users/MattYoon/orgs",
"repos_url": "https://api.github.com/users/MattYoon/repos",
"events_url": "https://api.github.com/users/MattYoon/events{/privacy}",
"received_events_url": "https://api.github.com/users/MattYoon/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892857,
"node_id": "MDU6TGFiZWwxOTM1ODkyODU3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
] | closed | false | null | [] | null | [
"Thanks for reporting and thanks @mariosasko for fixing ! We just did a patch release `2.10.1` with the fix"
] | 2023-02-28T12:18:09 | 2023-02-28T18:17:26 | 2023-02-28T17:21:59 | NONE | null | ### Describe the bug
Hi, thank you for your support!
It seems like the addition of multiple key sort (#5502) in 2.10.0 broke the `.sort()` method.
After filtering a dataset with `.filter()`, the `.sort()` seems to refer to the query_table index of the previous unfiltered dataset, resulting in an IndexError.
This only happens with the 2.10.0 release.
### Steps to reproduce the bug
```Python
from datasets import load_dataset
# dataset with length of 1104
ds = load_dataset('glue', 'ax')['test']
ds = ds.filter(lambda x: x['idx'] > 1100)
ds.sort('premise')
print('Done')
```
File "/home/dongkeun/datasets_test/test.py", line 5, in <module>
ds.sort('premise')
File "/home/dongkeun/miniconda3/envs/datasets_test/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 528, in wrapper
out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
File "/home/dongkeun/miniconda3/envs/datasets_test/lib/python3.9/site-packages/datasets/fingerprint.py", line 511, in wrapper
out = func(dataset, *args, **kwargs)
File "/home/dongkeun/miniconda3/envs/datasets_test/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 3959, in sort
sort_table = query_table(
File "/home/dongkeun/miniconda3/envs/datasets_test/lib/python3.9/site-packages/datasets/formatting/formatting.py", line 588, in query_table
_check_valid_index_key(key, size)
File "/home/dongkeun/miniconda3/envs/datasets_test/lib/python3.9/site-packages/datasets/formatting/formatting.py", line 537, in _check_valid_index_key
_check_valid_index_key(max(key), size=size)
File "/home/dongkeun/miniconda3/envs/datasets_test/lib/python3.9/site-packages/datasets/formatting/formatting.py", line 531, in _check_valid_index_key
raise IndexError(f"Invalid key: {key} is out of bounds for size {size}")
IndexError: Invalid key: 1103 is out of bounds for size 3
### Expected behavior
It should sort the dataset and print "Done". Which it does on 2.9.0.
### Environment info
- `datasets` version: 2.10.0
- Platform: Linux-5.15.0-41-generic-x86_64-with-glibc2.31
- Python version: 3.9.16
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5586/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5586/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5585 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5585/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5585/comments | https://api.github.com/repos/huggingface/datasets/issues/5585/events | https://github.com/huggingface/datasets/issues/5585 | 1,602,190,030 | I_kwDODunzps5ff3rO | 5,585 | Cache is not transportable | {
"login": "davidgilbertson",
"id": 4443482,
"node_id": "MDQ6VXNlcjQ0NDM0ODI=",
"avatar_url": "https://avatars.githubusercontent.com/u/4443482?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/davidgilbertson",
"html_url": "https://github.com/davidgilbertson",
"followers_url": "https://api.github.com/users/davidgilbertson/followers",
"following_url": "https://api.github.com/users/davidgilbertson/following{/other_user}",
"gists_url": "https://api.github.com/users/davidgilbertson/gists{/gist_id}",
"starred_url": "https://api.github.com/users/davidgilbertson/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/davidgilbertson/subscriptions",
"organizations_url": "https://api.github.com/users/davidgilbertson/orgs",
"repos_url": "https://api.github.com/users/davidgilbertson/repos",
"events_url": "https://api.github.com/users/davidgilbertson/events{/privacy}",
"received_events_url": "https://api.github.com/users/davidgilbertson/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi ! No the cache is not transportable in general. It will work on a shared filesystem if you use the same python environment, but not across machines/os/environments.\r\n\r\nIn particular, reloading cached datasets does work, but reloading cached processed datasets (e.g. from `map`) may not work. This is because some hashes used by caching are based on pickle dumps of the function you pass to `map`.\r\n\r\nFinally you may copy the cache to another machine, but all the `cached-*.arrow` files are unlikely to be reloaded.",
"OK good to know. Thanks @lhoestq !"
] | 2023-02-28T00:53:06 | 2023-02-28T21:26:52 | 2023-02-28T21:26:52 | NONE | null | ### Describe the bug
I would like to share cache between two machines (a Windows host machine and a WSL instance).
I run most my code in WSL. I have just run out of space in the virtual drive. Rather than expand the drive size, I plan to move to cache to the host Windows machine, thereby sharing the downloads.
I'm hoping that I can just copy/paste the cache files, but I notice that a lot of the file names start with the path name, e.g. `_home_davidg_.cache_huggingface_datasets_conll2003_default-451...98.lock` where `home/davidg` is where the cache is in WSL.
This seems to suggest that the cache is not portable/cannot be centralised or shared. Is this the case, or are the files that start with path names not integral to the caching mechanism? Because copying the cache files _seems_ to work, but I'm not filled with confidence that something isn't going to break.
A related issue, when trying to load a dataset that should come from cache (running in WSL, pointing to cache on the Windows host) it seemed to work fine, but it still uses a WSL directory for `.cache\huggingface\modules\datasets_modules`. I see nothing in the docs about this, or how to point it to a different place.
I have asked a related question on the forum: https://discuss.huggingface.co/t/is-datasets-cache-operating-system-agnostic/32656
### Steps to reproduce the bug
View the cache directory in WSL/Windows.
### Expected behavior
Cache can be shared between (virtual) machines and be transportable.
It would be nice to have a simple way to say "Dear Hugging Face packages, please put ALL your cache in `blah/de/blah`" and have all the Hugging Face packages respect that single location.
### Environment info
```
- `datasets` version: 2.9.0
- Platform: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31
- Python version: 3.10.8
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
- ``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5585/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5585/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5584 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5584/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5584/comments | https://api.github.com/repos/huggingface/datasets/issues/5584/events | https://github.com/huggingface/datasets/issues/5584 | 1,601,821,808 | I_kwDODunzps5fedxw | 5,584 | Unable to load coyo700M dataset | {
"login": "manuaero",
"id": 3059998,
"node_id": "MDQ6VXNlcjMwNTk5OTg=",
"avatar_url": "https://avatars.githubusercontent.com/u/3059998?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/manuaero",
"html_url": "https://github.com/manuaero",
"followers_url": "https://api.github.com/users/manuaero/followers",
"following_url": "https://api.github.com/users/manuaero/following{/other_user}",
"gists_url": "https://api.github.com/users/manuaero/gists{/gist_id}",
"starred_url": "https://api.github.com/users/manuaero/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/manuaero/subscriptions",
"organizations_url": "https://api.github.com/users/manuaero/orgs",
"repos_url": "https://api.github.com/users/manuaero/repos",
"events_url": "https://api.github.com/users/manuaero/events{/privacy}",
"received_events_url": "https://api.github.com/users/manuaero/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi @manuaero \r\n\r\nThank you for your interest in the COYO dataset.\r\n\r\nOur dataset provides the img-url and alt-text in the form of a parquet, so to utilize the coyo dataset you will need to download it directly.\r\n\r\nWe provide a [guide](https://github.com/kakaobrain/coyo-dataset/blob/main/download/README.md) to download, so check it out.\r\n\r\nThank you."
] | 2023-02-27T19:35:03 | 2023-02-28T07:27:59 | 2023-02-28T07:27:58 | NONE | null | ### Describe the bug
Seeing this error when downloading https://huggingface.co/datasets/kakaobrain/coyo-700m:
```ArrowInvalid: Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.```
Full stack trace
```Downloading and preparing dataset parquet/kakaobrain--coyo-700m to /root/.cache/huggingface/datasets/kakaobrain___parquet/kakaobrain--coyo-700m-ae729692ae3e0073/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...
Downloading data files: 100%
1/1 [00:00<00:00, 63.35it/s]
Extracting data files: 100%
1/1 [00:00<00:00, 5.00it/s]
---------------------------------------------------------------------------
ArrowInvalid Traceback (most recent call last)
[/usr/local/lib/python3.8/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id)
1859 _time = time.time()
-> 1860 for _, table in generator:
1861 if max_shard_size is not None and writer._num_bytes > max_shard_size:
9 frames
ArrowInvalid: Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.
The above exception was the direct cause of the following exception:
DatasetGenerationError Traceback (most recent call last)
[/usr/local/lib/python3.8/dist-packages/datasets/builder.py](https://localhost:8080/#) in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, job_id)
1890 if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
1891 e = e.__context__
-> 1892 raise DatasetGenerationError("An error occurred while generating the dataset") from e
1893
1894 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)
DatasetGenerationError: An error occurred while generating the dataset```
### Steps to reproduce the bug
```
from datasets import load_dataset
hf_dataset = load_dataset("kakaobrain/coyo-700m")
```
### Expected behavior
The above commands load the dataset successfully. Or handles exception and continue loading the remainder.
### Environment info
colab. any | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5584/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5584/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5583 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5583/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5583/comments | https://api.github.com/repos/huggingface/datasets/issues/5583/events | https://github.com/huggingface/datasets/pull/5583 | 1,601,583,625 | PR_kwDODunzps5K2mIz | 5,583 | Do no write index by default when exporting a dataset | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009044 / 0.011353 (-0.002309) | 0.004244 / 0.011008 (-0.006765) | 0.106705 / 0.038508 (0.068197) | 0.029779 / 0.023109 (0.006670) | 0.289684 / 0.275898 (0.013786) | 0.347100 / 0.323480 (0.023620) | 0.007071 / 0.007986 (-0.000915) | 0.003734 / 0.004328 (-0.000595) | 0.077971 / 0.004250 (0.073720) | 0.035323 / 0.037052 (-0.001730) | 0.334520 / 0.258489 (0.076031) | 0.375804 / 0.293841 (0.081964) | 0.049211 / 0.128546 (-0.079335) | 0.016992 / 0.075646 (-0.058654) | 0.337208 / 0.419271 (-0.082064) | 0.053700 / 0.043533 (0.010167) | 0.295750 / 0.255139 (0.040611) | 0.330157 / 0.283200 (0.046958) | 0.097017 / 0.141683 (-0.044666) | 1.379353 / 1.452155 (-0.072802) | 1.402670 / 1.492716 (-0.090047) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.012685 / 0.018006 (-0.005321) | 0.474541 / 0.000490 (0.474051) | 0.006752 / 0.000200 (0.006552) | 0.000097 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025735 / 0.037411 (-0.011676) | 0.092507 / 0.014526 (0.077982) | 0.100275 / 0.176557 (-0.076281) | 0.180359 / 0.737135 (-0.556777) | 0.104312 / 0.296338 (-0.192026) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456558 / 0.215209 (0.241349) | 4.786667 / 2.077655 (2.709012) | 1.873169 / 1.504120 (0.369050) | 1.640935 / 1.541195 (0.099741) | 1.614543 / 1.468490 (0.146053) | 0.936144 / 4.584777 (-3.648633) | 4.699886 / 3.745712 (0.954174) | 2.398545 / 5.269862 (-2.871317) | 1.642808 / 4.565676 (-2.922868) | 0.124803 / 0.424275 (-0.299472) | 0.011848 / 0.007607 (0.004241) | 0.631684 / 0.226044 (0.405639) | 6.096052 / 2.268929 (3.827124) | 2.463052 / 55.444624 (-52.981572) | 1.928551 / 6.876477 (-4.947926) | 1.927790 / 2.142072 (-0.214283) | 1.098912 / 4.805227 (-3.706315) | 0.196343 / 6.500664 (-6.304321) | 0.063296 / 0.075469 (-0.012173) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255032 / 1.841788 (-0.586755) | 13.853623 / 8.074308 (5.779315) | 16.303280 / 10.191392 (6.111888) | 0.227287 / 0.680424 (-0.453137) | 0.037527 / 0.534201 (-0.496674) | 0.449345 / 0.579283 (-0.129938) | 0.522054 / 0.434364 (0.087690) | 0.552848 / 0.540337 (0.012511) | 0.642994 / 1.386936 (-0.743942) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008470 / 0.011353 (-0.002883) | 0.005167 / 0.011008 (-0.005841) | 0.077794 / 0.038508 (0.039286) | 0.029228 / 0.023109 (0.006119) | 0.340828 / 0.275898 (0.064930) | 0.400170 / 0.323480 (0.076691) | 0.005485 / 0.007986 (-0.002500) | 0.003854 / 0.004328 (-0.000475) | 0.077597 / 0.004250 (0.073346) | 0.036519 / 0.037052 (-0.000533) | 0.335522 / 0.258489 (0.077033) | 0.412622 / 0.293841 (0.118781) | 0.044587 / 0.128546 (-0.083959) | 0.016024 / 0.075646 (-0.059623) | 0.092312 / 0.419271 (-0.326960) | 0.055660 / 0.043533 (0.012127) | 0.343140 / 0.255139 (0.088001) | 0.386403 / 0.283200 (0.103203) | 0.098634 / 0.141683 (-0.043049) | 1.326126 / 1.452155 (-0.126029) | 1.430316 / 1.492716 (-0.062400) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222807 / 0.018006 (0.204801) | 0.473622 / 0.000490 (0.473132) | 0.000376 / 0.000200 (0.000176) | 0.000066 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024599 / 0.037411 (-0.012813) | 0.100743 / 0.014526 (0.086217) | 0.112086 / 0.176557 (-0.064471) | 0.198294 / 0.737135 (-0.538842) | 0.111210 / 0.296338 (-0.185129) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.494120 / 0.215209 (0.278911) | 5.117958 / 2.077655 (3.040303) | 2.305131 / 1.504120 (0.801011) | 2.015591 / 1.541195 (0.474396) | 2.027284 / 1.468490 (0.558794) | 1.014241 / 4.584777 (-3.570536) | 4.738836 / 3.745712 (0.993124) | 2.519718 / 5.269862 (-2.750143) | 1.706379 / 4.565676 (-2.859298) | 0.122452 / 0.424275 (-0.301824) | 0.011500 / 0.007607 (0.003893) | 0.632864 / 0.226044 (0.406820) | 6.295457 / 2.268929 (4.026529) | 2.824897 / 55.444624 (-52.619727) | 2.324359 / 6.876477 (-4.552117) | 2.281046 / 2.142072 (0.138974) | 1.173570 / 4.805227 (-3.631657) | 0.197195 / 6.500664 (-6.303469) | 0.064845 / 0.075469 (-0.010624) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.273224 / 1.841788 (-0.568563) | 14.531155 / 8.074308 (6.456847) | 15.892176 / 10.191392 (5.700784) | 0.208051 / 0.680424 (-0.472373) | 0.023119 / 0.534201 (-0.511082) | 0.422317 / 0.579283 (-0.156966) | 0.519946 / 0.434364 (0.085582) | 0.544517 / 0.540337 (0.004179) | 0.605955 / 1.386936 (-0.780981) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#337a4a91d0268c68f26760321c9b45bb4a98832a \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010806 / 0.011353 (-0.000547) | 0.005631 / 0.011008 (-0.005378) | 0.113166 / 0.038508 (0.074657) | 0.042980 / 0.023109 (0.019871) | 0.344856 / 0.275898 (0.068958) | 0.404417 / 0.323480 (0.080938) | 0.012222 / 0.007986 (0.004236) | 0.004470 / 0.004328 (0.000141) | 0.088072 / 0.004250 (0.083822) | 0.049815 / 0.037052 (0.012763) | 0.366532 / 0.258489 (0.108043) | 0.392558 / 0.293841 (0.098717) | 0.045411 / 0.128546 (-0.083135) | 0.014118 / 0.075646 (-0.061529) | 0.392894 / 0.419271 (-0.026378) | 0.067713 / 0.043533 (0.024181) | 0.353013 / 0.255139 (0.097874) | 0.378375 / 0.283200 (0.095175) | 0.123686 / 0.141683 (-0.017996) | 1.665272 / 1.452155 (0.213118) | 1.748383 / 1.492716 (0.255667) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.011672 / 0.018006 (-0.006335) | 0.481667 / 0.000490 (0.481178) | 0.003644 / 0.000200 (0.003444) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030436 / 0.037411 (-0.006976) | 0.122577 / 0.014526 (0.108052) | 0.135409 / 0.176557 (-0.041148) | 0.220385 / 0.737135 (-0.516750) | 0.143140 / 0.296338 (-0.153199) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471146 / 0.215209 (0.255937) | 4.645023 / 2.077655 (2.567368) | 2.126783 / 1.504120 (0.622663) | 1.907905 / 1.541195 (0.366710) | 1.969561 / 1.468490 (0.501071) | 0.798670 / 4.584777 (-3.786107) | 4.394787 / 3.745712 (0.649075) | 2.353535 / 5.269862 (-2.916327) | 1.501013 / 4.565676 (-3.064664) | 0.097472 / 0.424275 (-0.326803) | 0.014015 / 0.007607 (0.006408) | 0.589365 / 0.226044 (0.363320) | 5.897331 / 2.268929 (3.628402) | 2.656198 / 55.444624 (-52.788427) | 2.256082 / 6.876477 (-4.620395) | 2.271122 / 2.142072 (0.129050) | 0.961566 / 4.805227 (-3.843661) | 0.188303 / 6.500664 (-6.312361) | 0.073258 / 0.075469 (-0.002211) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.445266 / 1.841788 (-0.396522) | 16.876710 / 8.074308 (8.802402) | 16.004287 / 10.191392 (5.812895) | 0.212252 / 0.680424 (-0.468172) | 0.033186 / 0.534201 (-0.501015) | 0.520564 / 0.579283 (-0.058719) | 0.516865 / 0.434364 (0.082501) | 0.638482 / 0.540337 (0.098144) | 0.761959 / 1.386936 (-0.624977) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008101 / 0.011353 (-0.003252) | 0.005512 / 0.011008 (-0.005497) | 0.086138 / 0.038508 (0.047630) | 0.038605 / 0.023109 (0.015496) | 0.413082 / 0.275898 (0.137184) | 0.444016 / 0.323480 (0.120536) | 0.006196 / 0.007986 (-0.001790) | 0.005736 / 0.004328 (0.001408) | 0.086938 / 0.004250 (0.082688) | 0.052307 / 0.037052 (0.015255) | 0.415206 / 0.258489 (0.156717) | 0.481510 / 0.293841 (0.187669) | 0.041469 / 0.128546 (-0.087077) | 0.013481 / 0.075646 (-0.062165) | 0.101528 / 0.419271 (-0.317744) | 0.056507 / 0.043533 (0.012974) | 0.418166 / 0.255139 (0.163027) | 0.443834 / 0.283200 (0.160634) | 0.116434 / 0.141683 (-0.025249) | 1.651223 / 1.452155 (0.199068) | 1.746429 / 1.492716 (0.253713) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242381 / 0.018006 (0.224375) | 0.478826 / 0.000490 (0.478337) | 0.000463 / 0.000200 (0.000264) | 0.000067 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031743 / 0.037411 (-0.005668) | 0.126141 / 0.014526 (0.111616) | 0.134539 / 0.176557 (-0.042018) | 0.216546 / 0.737135 (-0.520590) | 0.143513 / 0.296338 (-0.152825) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.486915 / 0.215209 (0.271706) | 4.833812 / 2.077655 (2.756158) | 2.317785 / 1.504120 (0.813666) | 2.114181 / 1.541195 (0.572986) | 2.153896 / 1.468490 (0.685406) | 0.797490 / 4.584777 (-3.787287) | 4.369950 / 3.745712 (0.624238) | 2.305492 / 5.269862 (-2.964370) | 1.488860 / 4.565676 (-3.076816) | 0.098071 / 0.424275 (-0.326204) | 0.014129 / 0.007607 (0.006522) | 0.611311 / 0.226044 (0.385266) | 6.087482 / 2.268929 (3.818554) | 2.837676 / 55.444624 (-52.606948) | 2.451819 / 6.876477 (-4.424657) | 2.456763 / 2.142072 (0.314690) | 0.957637 / 4.805227 (-3.847590) | 0.190974 / 6.500664 (-6.309690) | 0.074497 / 0.075469 (-0.000972) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.466214 / 1.841788 (-0.375574) | 17.063925 / 8.074308 (8.989617) | 14.630326 / 10.191392 (4.438934) | 0.170570 / 0.680424 (-0.509854) | 0.023794 / 0.534201 (-0.510407) | 0.509175 / 0.579283 (-0.070108) | 0.506485 / 0.434364 (0.072121) | 0.616965 / 0.540337 (0.076628) | 0.718176 / 1.386936 (-0.668760) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c4f14de325e26910d026f377756dd8a231150398 \"CML watermark\")\n"
] | 2023-02-27T17:04:46 | 2023-02-28T13:52:15 | 2023-02-28T13:44:04 | CONTRIBUTOR | null | Ensures all the writers that use Pandas for conversion (JSON, CSV, SQL) do not export `index` by default (https://github.com/huggingface/datasets/pull/5490 only did this for CSV) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5583/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5583/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5583",
"html_url": "https://github.com/huggingface/datasets/pull/5583",
"diff_url": "https://github.com/huggingface/datasets/pull/5583.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5583.patch",
"merged_at": "2023-02-28T13:44:04"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5582 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5582/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5582/comments | https://api.github.com/repos/huggingface/datasets/issues/5582/events | https://github.com/huggingface/datasets/pull/5582 | 1,600,932,092 | PR_kwDODunzps5K0ZcN | 5,582 | Add column_names to IterableDataset | {
"login": "patrickloeber",
"id": 50772274,
"node_id": "MDQ6VXNlcjUwNzcyMjc0",
"avatar_url": "https://avatars.githubusercontent.com/u/50772274?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/patrickloeber",
"html_url": "https://github.com/patrickloeber",
"followers_url": "https://api.github.com/users/patrickloeber/followers",
"following_url": "https://api.github.com/users/patrickloeber/following{/other_user}",
"gists_url": "https://api.github.com/users/patrickloeber/gists{/gist_id}",
"starred_url": "https://api.github.com/users/patrickloeber/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/patrickloeber/subscriptions",
"organizations_url": "https://api.github.com/users/patrickloeber/orgs",
"repos_url": "https://api.github.com/users/patrickloeber/repos",
"events_url": "https://api.github.com/users/patrickloeber/events{/privacy}",
"received_events_url": "https://api.github.com/users/patrickloeber/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006362 / 0.011353 (-0.004991) | 0.004546 / 0.011008 (-0.006462) | 0.097003 / 0.038508 (0.058495) | 0.028007 / 0.023109 (0.004898) | 0.315097 / 0.275898 (0.039199) | 0.365128 / 0.323480 (0.041649) | 0.004819 / 0.007986 (-0.003167) | 0.003335 / 0.004328 (-0.000994) | 0.076665 / 0.004250 (0.072415) | 0.038285 / 0.037052 (0.001233) | 0.322100 / 0.258489 (0.063611) | 0.407466 / 0.293841 (0.113625) | 0.031580 / 0.128546 (-0.096966) | 0.011645 / 0.075646 (-0.064001) | 0.321789 / 0.419271 (-0.097483) | 0.051015 / 0.043533 (0.007483) | 0.331762 / 0.255139 (0.076623) | 0.369727 / 0.283200 (0.086527) | 0.090144 / 0.141683 (-0.051539) | 1.485480 / 1.452155 (0.033326) | 1.562032 / 1.492716 (0.069316) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201192 / 0.018006 (0.183186) | 0.409760 / 0.000490 (0.409270) | 0.002220 / 0.000200 (0.002020) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022361 / 0.037411 (-0.015050) | 0.096375 / 0.014526 (0.081849) | 0.101369 / 0.176557 (-0.075188) | 0.161568 / 0.737135 (-0.575568) | 0.105094 / 0.296338 (-0.191245) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426251 / 0.215209 (0.211042) | 4.261374 / 2.077655 (2.183720) | 2.015688 / 1.504120 (0.511569) | 1.833708 / 1.541195 (0.292513) | 1.908994 / 1.468490 (0.440504) | 0.703108 / 4.584777 (-3.881669) | 3.420767 / 3.745712 (-0.324945) | 1.844776 / 5.269862 (-3.425086) | 1.158470 / 4.565676 (-3.407207) | 0.083324 / 0.424275 (-0.340951) | 0.013054 / 0.007607 (0.005447) | 0.521473 / 0.226044 (0.295429) | 5.245505 / 2.268929 (2.976576) | 2.349110 / 55.444624 (-53.095515) | 2.011119 / 6.876477 (-4.865358) | 2.217807 / 2.142072 (0.075734) | 0.808584 / 4.805227 (-3.996643) | 0.151337 / 6.500664 (-6.349327) | 0.065815 / 0.075469 (-0.009654) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.221839 / 1.841788 (-0.619949) | 13.634161 / 8.074308 (5.559853) | 13.915360 / 10.191392 (3.723968) | 0.126448 / 0.680424 (-0.553976) | 0.016614 / 0.534201 (-0.517587) | 0.379150 / 0.579283 (-0.200133) | 0.382134 / 0.434364 (-0.052230) | 0.442845 / 0.540337 (-0.097493) | 0.519578 / 1.386936 (-0.867358) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006238 / 0.011353 (-0.005115) | 0.004591 / 0.011008 (-0.006418) | 0.076652 / 0.038508 (0.038144) | 0.026882 / 0.023109 (0.003773) | 0.341948 / 0.275898 (0.066050) | 0.375244 / 0.323480 (0.051764) | 0.004770 / 0.007986 (-0.003215) | 0.004703 / 0.004328 (0.000374) | 0.075797 / 0.004250 (0.071547) | 0.035001 / 0.037052 (-0.002051) | 0.341670 / 0.258489 (0.083181) | 0.383028 / 0.293841 (0.089187) | 0.031756 / 0.128546 (-0.096791) | 0.011714 / 0.075646 (-0.063933) | 0.085552 / 0.419271 (-0.333720) | 0.047697 / 0.043533 (0.004164) | 0.340805 / 0.255139 (0.085666) | 0.365478 / 0.283200 (0.082278) | 0.093146 / 0.141683 (-0.048537) | 1.465100 / 1.452155 (0.012945) | 1.552708 / 1.492716 (0.059992) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209117 / 0.018006 (0.191111) | 0.402622 / 0.000490 (0.402132) | 0.003940 / 0.000200 (0.003740) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026027 / 0.037411 (-0.011385) | 0.098346 / 0.014526 (0.083820) | 0.107349 / 0.176557 (-0.069207) | 0.157846 / 0.737135 (-0.579289) | 0.109566 / 0.296338 (-0.186772) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.445088 / 0.215209 (0.229879) | 4.450727 / 2.077655 (2.373072) | 2.237798 / 1.504120 (0.733678) | 2.026060 / 1.541195 (0.484866) | 2.020464 / 1.468490 (0.551974) | 0.700155 / 4.584777 (-3.884622) | 3.435497 / 3.745712 (-0.310215) | 2.851970 / 5.269862 (-2.417891) | 1.512689 / 4.565676 (-3.052988) | 0.083717 / 0.424275 (-0.340558) | 0.012466 / 0.007607 (0.004859) | 0.545130 / 0.226044 (0.319085) | 5.478228 / 2.268929 (3.209300) | 2.554169 / 55.444624 (-52.890456) | 2.214703 / 6.876477 (-4.661774) | 2.229997 / 2.142072 (0.087925) | 0.809851 / 4.805227 (-3.995376) | 0.151019 / 6.500664 (-6.349645) | 0.066354 / 0.075469 (-0.009115) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.281016 / 1.841788 (-0.560772) | 14.071312 / 8.074308 (5.997004) | 14.682465 / 10.191392 (4.491073) | 0.144197 / 0.680424 (-0.536227) | 0.017088 / 0.534201 (-0.517113) | 0.379049 / 0.579283 (-0.200234) | 0.390713 / 0.434364 (-0.043650) | 0.435804 / 0.540337 (-0.104534) | 0.518895 / 1.386936 (-0.868041) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fc5c84f36684343bff3e424cb0fd1ac5ecdd66da \"CML watermark\")\n"
] | 2023-02-27T10:50:07 | 2023-03-13T19:10:22 | 2023-03-13T19:03:32 | CONTRIBUTOR | null | This PR closes #5383
* Add column_names property to IterableDataset
* Add multiple tests for this new property | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5582/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5582/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5582",
"html_url": "https://github.com/huggingface/datasets/pull/5582",
"diff_url": "https://github.com/huggingface/datasets/pull/5582.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5582.patch",
"merged_at": "2023-03-13T19:03:31"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5581 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5581/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5581/comments | https://api.github.com/repos/huggingface/datasets/issues/5581/events | https://github.com/huggingface/datasets/issues/5581 | 1,600,675,489 | I_kwDODunzps5faF6h | 5,581 | [DOC] Mistaken docs on set_format | {
"login": "NightMachinery",
"id": 36224762,
"node_id": "MDQ6VXNlcjM2MjI0NzYy",
"avatar_url": "https://avatars.githubusercontent.com/u/36224762?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/NightMachinery",
"html_url": "https://github.com/NightMachinery",
"followers_url": "https://api.github.com/users/NightMachinery/followers",
"following_url": "https://api.github.com/users/NightMachinery/following{/other_user}",
"gists_url": "https://api.github.com/users/NightMachinery/gists{/gist_id}",
"starred_url": "https://api.github.com/users/NightMachinery/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/NightMachinery/subscriptions",
"organizations_url": "https://api.github.com/users/NightMachinery/orgs",
"repos_url": "https://api.github.com/users/NightMachinery/repos",
"events_url": "https://api.github.com/users/NightMachinery/events{/privacy}",
"received_events_url": "https://api.github.com/users/NightMachinery/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892877,
"node_id": "MDU6TGFiZWwxOTM1ODkyODc3",
"url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue",
"name": "good first issue",
"color": "7057ff",
"default": true,
"description": "Good for newcomers"
}
] | closed | false | null | [] | null | [
"Thanks for reporting!"
] | 2023-02-27T08:03:09 | 2023-02-28T19:19:17 | 2023-02-28T19:19:17 | CONTRIBUTOR | null | ### Describe the bug
https://huggingface.co/docs/datasets/v2.10.0/en/package_reference/main_classes#datasets.Dataset.set_format
<img width="700" alt="image" src="https://user-images.githubusercontent.com/36224762/221506973-ae2e3991-60a7-4d4e-99f8-965c6eb61e59.png">
While actually running it will result in:
<img width="1094" alt="image" src="https://user-images.githubusercontent.com/36224762/221507032-007dab82-8781-4319-b21a-e6e4d40d97b3.png">
### Steps to reproduce the bug
_
### Expected behavior
_
### Environment info
- `datasets` version: 2.10.0
- Platform: Linux-5.10.147+-x86_64-with-glibc2.29
- Python version: 3.8.10
- PyArrow version: 9.0.0
- Pandas version: 1.3.5 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5581/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5581/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5580 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5580/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5580/comments | https://api.github.com/repos/huggingface/datasets/issues/5580/events | https://github.com/huggingface/datasets/pull/5580 | 1,600,431,792 | PR_kwDODunzps5Kys1c | 5,580 | Support cloud storage in load_dataset via fsspec | {
"login": "dwyatte",
"id": 2512762,
"node_id": "MDQ6VXNlcjI1MTI3NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/2512762?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/dwyatte",
"html_url": "https://github.com/dwyatte",
"followers_url": "https://api.github.com/users/dwyatte/followers",
"following_url": "https://api.github.com/users/dwyatte/following{/other_user}",
"gists_url": "https://api.github.com/users/dwyatte/gists{/gist_id}",
"starred_url": "https://api.github.com/users/dwyatte/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/dwyatte/subscriptions",
"organizations_url": "https://api.github.com/users/dwyatte/orgs",
"repos_url": "https://api.github.com/users/dwyatte/repos",
"events_url": "https://api.github.com/users/dwyatte/events{/privacy}",
"received_events_url": "https://api.github.com/users/dwyatte/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"> Regarding the tests I think it should be possible to use the mockfs fixture, it allows to play with a dummy fsspec FileSystem with the \"mock://\" protocol.\r\n\r\n> However it requires some storage_options to be passed. Maybe it can be added to DownloadConfig which is passed to cached_path, so that fsspec_get and fsspec_head can use the user's storage_options ?\r\n\r\n@lhoestq I went ahead and tested this with a patch so that I could assign the mockfs as a return value. Let me know if I'm missing something though and we need to pass storage_options down",
"> Instead of patching think it would be better to have a new filesystem TmpDirFileSystem (tmpfs) that doesn't need storage_options for the tests, and that is based on a temporary directory created just for the fixture. Maybe something like this ?\r\n\r\nThanks for the recommendation, this works great.",
"Feel free to merge `main` into your PR to fix the CI :)",
"Should be good to go. Thanks!",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006183 / 0.011353 (-0.005170) | 0.004180 / 0.011008 (-0.006829) | 0.095965 / 0.038508 (0.057457) | 0.026754 / 0.023109 (0.003645) | 0.339724 / 0.275898 (0.063826) | 0.381628 / 0.323480 (0.058149) | 0.004615 / 0.007986 (-0.003371) | 0.004469 / 0.004328 (0.000140) | 0.074035 / 0.004250 (0.069784) | 0.035089 / 0.037052 (-0.001963) | 0.352253 / 0.258489 (0.093764) | 0.389598 / 0.293841 (0.095757) | 0.032262 / 0.128546 (-0.096285) | 0.011392 / 0.075646 (-0.064254) | 0.323884 / 0.419271 (-0.095388) | 0.042658 / 0.043533 (-0.000874) | 0.331533 / 0.255139 (0.076394) | 0.364723 / 0.283200 (0.081523) | 0.086349 / 0.141683 (-0.055334) | 1.465687 / 1.452155 (0.013533) | 1.559782 / 1.492716 (0.067066) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198562 / 0.018006 (0.180556) | 0.457170 / 0.000490 (0.456680) | 0.000409 / 0.000200 (0.000209) | 0.000061 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022439 / 0.037411 (-0.014973) | 0.096551 / 0.014526 (0.082025) | 0.102230 / 0.176557 (-0.074326) | 0.160878 / 0.737135 (-0.576257) | 0.109348 / 0.296338 (-0.186990) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.456635 / 0.215209 (0.241426) | 4.563571 / 2.077655 (2.485916) | 2.313048 / 1.504120 (0.808928) | 2.117433 / 1.541195 (0.576239) | 2.127478 / 1.468490 (0.658988) | 0.699478 / 4.584777 (-3.885299) | 3.358955 / 3.745712 (-0.386757) | 1.821437 / 5.269862 (-3.448424) | 1.158239 / 4.565676 (-3.407438) | 0.083207 / 0.424275 (-0.341068) | 0.012925 / 0.007607 (0.005318) | 0.556526 / 0.226044 (0.330482) | 5.552364 / 2.268929 (3.283435) | 2.744696 / 55.444624 (-52.699928) | 2.374455 / 6.876477 (-4.502022) | 2.442021 / 2.142072 (0.299949) | 0.809393 / 4.805227 (-3.995834) | 0.152305 / 6.500664 (-6.348359) | 0.066164 / 0.075469 (-0.009305) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.258268 / 1.841788 (-0.583520) | 13.402391 / 8.074308 (5.328083) | 13.816927 / 10.191392 (3.625535) | 0.148466 / 0.680424 (-0.531958) | 0.016487 / 0.534201 (-0.517714) | 0.385888 / 0.579283 (-0.193395) | 0.378840 / 0.434364 (-0.055524) | 0.444527 / 0.540337 (-0.095810) | 0.531011 / 1.386936 (-0.855925) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006230 / 0.011353 (-0.005123) | 0.004488 / 0.011008 (-0.006520) | 0.077539 / 0.038508 (0.039031) | 0.026611 / 0.023109 (0.003502) | 0.342093 / 0.275898 (0.066195) | 0.371555 / 0.323480 (0.048075) | 0.004665 / 0.007986 (-0.003321) | 0.003289 / 0.004328 (-0.001039) | 0.078378 / 0.004250 (0.074128) | 0.035223 / 0.037052 (-0.001829) | 0.339972 / 0.258489 (0.081483) | 0.378755 / 0.293841 (0.084914) | 0.031331 / 0.128546 (-0.097215) | 0.011406 / 0.075646 (-0.064241) | 0.086891 / 0.419271 (-0.332381) | 0.047713 / 0.043533 (0.004180) | 0.342678 / 0.255139 (0.087539) | 0.364536 / 0.283200 (0.081337) | 0.092132 / 0.141683 (-0.049551) | 1.537050 / 1.452155 (0.084895) | 1.639927 / 1.492716 (0.147211) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219933 / 0.018006 (0.201927) | 0.391627 / 0.000490 (0.391137) | 0.002238 / 0.000200 (0.002038) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024890 / 0.037411 (-0.012521) | 0.098989 / 0.014526 (0.084464) | 0.104505 / 0.176557 (-0.072052) | 0.156252 / 0.737135 (-0.580884) | 0.108027 / 0.296338 (-0.188312) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443957 / 0.215209 (0.228748) | 4.450850 / 2.077655 (2.373196) | 2.076043 / 1.504120 (0.571923) | 1.866396 / 1.541195 (0.325202) | 1.902692 / 1.468490 (0.434202) | 0.703160 / 4.584777 (-3.881617) | 3.373761 / 3.745712 (-0.371951) | 2.615649 / 5.269862 (-2.654213) | 1.340612 / 4.565676 (-3.225065) | 0.083836 / 0.424275 (-0.340439) | 0.012619 / 0.007607 (0.005012) | 0.553410 / 0.226044 (0.327365) | 5.526500 / 2.268929 (3.257571) | 2.513213 / 55.444624 (-52.931411) | 2.152701 / 6.876477 (-4.723776) | 2.165092 / 2.142072 (0.023019) | 0.818381 / 4.805227 (-3.986846) | 0.152118 / 6.500664 (-6.348546) | 0.066950 / 0.075469 (-0.008519) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.291468 / 1.841788 (-0.550320) | 13.694828 / 8.074308 (5.620520) | 13.821019 / 10.191392 (3.629627) | 0.126077 / 0.680424 (-0.554347) | 0.016543 / 0.534201 (-0.517658) | 0.381399 / 0.579283 (-0.197884) | 0.377326 / 0.434364 (-0.057038) | 0.439275 / 0.540337 (-0.101063) | 0.524021 / 1.386936 (-0.862915) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3e6269979fc80ae8939294d26298897f0db5b84d \"CML watermark\")\n"
] | 2023-02-27T04:06:05 | 2023-03-11T01:02:49 | 2023-03-11T00:55:40 | CONTRIBUTOR | null | Closes https://github.com/huggingface/datasets/issues/5281
This PR uses fsspec to support datasets on cloud storage (tested manually with GCS). ETags are currently unsupported for cloud storage. In general, a much larger refactor could be done to just use fsspec for all schemes (ftp, http/s, s3, gcs) to unify the interfaces here, but I ultimately opted to leave that out of this PR
I didn't create a GCS filesystem class in `datasets.filesystems` since the S3 one appears to be a wrapper around `s3fs.S3FileSystem` and mainly used to generate docs. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5580/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5580/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5580",
"html_url": "https://github.com/huggingface/datasets/pull/5580",
"diff_url": "https://github.com/huggingface/datasets/pull/5580.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5580.patch",
"merged_at": "2023-03-11T00:55:40"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5579 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5579/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5579/comments | https://api.github.com/repos/huggingface/datasets/issues/5579/events | https://github.com/huggingface/datasets/pull/5579 | 1,599,732,211 | PR_kwDODunzps5Kwgo4 | 5,579 | Add instructions to create `DataLoader` from augmented dataset in object detection guide | {
"login": "Laurent2916",
"id": 21087104,
"node_id": "MDQ6VXNlcjIxMDg3MTA0",
"avatar_url": "https://avatars.githubusercontent.com/u/21087104?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Laurent2916",
"html_url": "https://github.com/Laurent2916",
"followers_url": "https://api.github.com/users/Laurent2916/followers",
"following_url": "https://api.github.com/users/Laurent2916/following{/other_user}",
"gists_url": "https://api.github.com/users/Laurent2916/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Laurent2916/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Laurent2916/subscriptions",
"organizations_url": "https://api.github.com/users/Laurent2916/orgs",
"repos_url": "https://api.github.com/users/Laurent2916/repos",
"events_url": "https://api.github.com/users/Laurent2916/events{/privacy}",
"received_events_url": "https://api.github.com/users/Laurent2916/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5579). All of your documentation changes will be reflected on that endpoint.",
"I'm not sure we need this part as we provide a link to the notebook that shows how to train an object detection model, and this notebook instantiates a `DataLoader` before training the model. I'd like to hear what @stevhliu thinks.\r\n\r\nPS: Your `collate_fn` calls `torch.stack` on the `bbox` tensors, which don't have the same shape, so this will fail.",
"I agree with @mariosasko; we also have a [Use with PyTorch](https://huggingface.co/docs/datasets/use_with_pytorch) guide that shows how you can create a `DataLoader`. "
] | 2023-02-25T14:53:17 | 2023-03-23T19:24:59 | 2023-03-23T19:24:50 | CONTRIBUTOR | null | The following adds instructions on how to create a `DataLoader` from the guide on how to use object detection with augmentations (#4710). I am open to hearing any suggestions for improvement ! | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5579/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5579/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5579",
"html_url": "https://github.com/huggingface/datasets/pull/5579",
"diff_url": "https://github.com/huggingface/datasets/pull/5579.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5579.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5578 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5578/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5578/comments | https://api.github.com/repos/huggingface/datasets/issues/5578/events | https://github.com/huggingface/datasets/pull/5578 | 1,598,863,119 | PR_kwDODunzps5Kto96 | 5,578 | Add `huggingface_hub` version to env cli command | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008124 / 0.011353 (-0.003229) | 0.004594 / 0.011008 (-0.006414) | 0.101575 / 0.038508 (0.063066) | 0.029074 / 0.023109 (0.005965) | 0.314641 / 0.275898 (0.038743) | 0.372006 / 0.323480 (0.048526) | 0.006882 / 0.007986 (-0.001103) | 0.003371 / 0.004328 (-0.000958) | 0.078800 / 0.004250 (0.074550) | 0.034030 / 0.037052 (-0.003023) | 0.326917 / 0.258489 (0.068428) | 0.357628 / 0.293841 (0.063788) | 0.033076 / 0.128546 (-0.095470) | 0.011552 / 0.075646 (-0.064094) | 0.321715 / 0.419271 (-0.097557) | 0.040426 / 0.043533 (-0.003107) | 0.315091 / 0.255139 (0.059952) | 0.339291 / 0.283200 (0.056091) | 0.087280 / 0.141683 (-0.054403) | 1.443445 / 1.452155 (-0.008710) | 1.489233 / 1.492716 (-0.003483) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.182643 / 0.018006 (0.164637) | 0.390205 / 0.000490 (0.389716) | 0.001361 / 0.000200 (0.001161) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022767 / 0.037411 (-0.014644) | 0.095744 / 0.014526 (0.081219) | 0.102763 / 0.176557 (-0.073794) | 0.166760 / 0.737135 (-0.570375) | 0.106393 / 0.296338 (-0.189945) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424649 / 0.215209 (0.209440) | 4.257982 / 2.077655 (2.180327) | 2.135847 / 1.504120 (0.631727) | 1.924810 / 1.541195 (0.383615) | 1.813797 / 1.468490 (0.345307) | 0.695467 / 4.584777 (-3.889310) | 3.330164 / 3.745712 (-0.415548) | 2.665606 / 5.269862 (-2.604255) | 1.458619 / 4.565676 (-3.107058) | 0.082408 / 0.424275 (-0.341867) | 0.012259 / 0.007607 (0.004652) | 0.527737 / 0.226044 (0.301693) | 5.271119 / 2.268929 (3.002191) | 2.618655 / 55.444624 (-52.825970) | 2.312321 / 6.876477 (-4.564155) | 2.270096 / 2.142072 (0.128023) | 0.811563 / 4.805227 (-3.993664) | 0.148512 / 6.500664 (-6.352152) | 0.064562 / 0.075469 (-0.010907) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.212483 / 1.841788 (-0.629304) | 13.471679 / 8.074308 (5.397371) | 13.691054 / 10.191392 (3.499662) | 0.137399 / 0.680424 (-0.543025) | 0.028489 / 0.534201 (-0.505711) | 0.398879 / 0.579283 (-0.180404) | 0.396712 / 0.434364 (-0.037652) | 0.458879 / 0.540337 (-0.081458) | 0.537143 / 1.386936 (-0.849793) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006911 / 0.011353 (-0.004442) | 0.004941 / 0.011008 (-0.006067) | 0.078606 / 0.038508 (0.040098) | 0.028411 / 0.023109 (0.005302) | 0.352172 / 0.275898 (0.076274) | 0.401155 / 0.323480 (0.077675) | 0.005433 / 0.007986 (-0.002552) | 0.003704 / 0.004328 (-0.000625) | 0.076615 / 0.004250 (0.072365) | 0.043814 / 0.037052 (0.006761) | 0.346928 / 0.258489 (0.088439) | 0.405587 / 0.293841 (0.111746) | 0.032176 / 0.128546 (-0.096370) | 0.011863 / 0.075646 (-0.063783) | 0.087209 / 0.419271 (-0.332063) | 0.042977 / 0.043533 (-0.000556) | 0.345366 / 0.255139 (0.090227) | 0.419664 / 0.283200 (0.136464) | 0.093862 / 0.141683 (-0.047821) | 1.490968 / 1.452155 (0.038813) | 1.566644 / 1.492716 (0.073927) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216703 / 0.018006 (0.198697) | 0.472411 / 0.000490 (0.471921) | 0.002234 / 0.000200 (0.002034) | 0.000085 / 0.000054 (0.000031) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027672 / 0.037411 (-0.009740) | 0.109793 / 0.014526 (0.095267) | 0.110720 / 0.176557 (-0.065837) | 0.182342 / 0.737135 (-0.554793) | 0.116150 / 0.296338 (-0.180188) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438165 / 0.215209 (0.222956) | 4.366213 / 2.077655 (2.288558) | 2.065036 / 1.504120 (0.560917) | 1.860105 / 1.541195 (0.318911) | 1.966885 / 1.468490 (0.498395) | 0.705194 / 4.584777 (-3.879583) | 3.389408 / 3.745712 (-0.356304) | 2.632155 / 5.269862 (-2.637707) | 1.471090 / 4.565676 (-3.094587) | 0.083579 / 0.424275 (-0.340697) | 0.012643 / 0.007607 (0.005036) | 0.542230 / 0.226044 (0.316186) | 5.416293 / 2.268929 (3.147365) | 2.517391 / 55.444624 (-52.927233) | 2.160159 / 6.876477 (-4.716317) | 2.167104 / 2.142072 (0.025031) | 0.807142 / 4.805227 (-3.998085) | 0.152249 / 6.500664 (-6.348415) | 0.067559 / 0.075469 (-0.007910) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.399516 / 1.841788 (-0.442272) | 15.289898 / 8.074308 (7.215590) | 14.188758 / 10.191392 (3.997366) | 0.161277 / 0.680424 (-0.519147) | 0.016854 / 0.534201 (-0.517347) | 0.382091 / 0.579283 (-0.197192) | 0.396639 / 0.434364 (-0.037725) | 0.467932 / 0.540337 (-0.072405) | 0.552017 / 1.386936 (-0.834919) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2e050273ec3d2a7e53d817544318b23fb51430d0 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011038 / 0.011353 (-0.000315) | 0.005878 / 0.011008 (-0.005130) | 0.118247 / 0.038508 (0.079739) | 0.043988 / 0.023109 (0.020879) | 0.350823 / 0.275898 (0.074925) | 0.430350 / 0.323480 (0.106870) | 0.009259 / 0.007986 (0.001274) | 0.004614 / 0.004328 (0.000286) | 0.089366 / 0.004250 (0.085116) | 0.049993 / 0.037052 (0.012941) | 0.367620 / 0.258489 (0.109131) | 0.404809 / 0.293841 (0.110968) | 0.044078 / 0.128546 (-0.084468) | 0.014226 / 0.075646 (-0.061421) | 0.397707 / 0.419271 (-0.021565) | 0.056631 / 0.043533 (0.013098) | 0.355942 / 0.255139 (0.100803) | 0.375537 / 0.283200 (0.092338) | 0.121956 / 0.141683 (-0.019727) | 1.757958 / 1.452155 (0.305803) | 1.822183 / 1.492716 (0.329466) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.024505 / 0.018006 (0.006499) | 0.488754 / 0.000490 (0.488265) | 0.011032 / 0.000200 (0.010832) | 0.000540 / 0.000054 (0.000486) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032895 / 0.037411 (-0.004516) | 0.132496 / 0.014526 (0.117970) | 0.140620 / 0.176557 (-0.035937) | 0.220628 / 0.737135 (-0.516507) | 0.147622 / 0.296338 (-0.148717) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471335 / 0.215209 (0.256126) | 4.699792 / 2.077655 (2.622137) | 2.119782 / 1.504120 (0.615662) | 1.894784 / 1.541195 (0.353590) | 2.002694 / 1.468490 (0.534204) | 0.822610 / 4.584777 (-3.762167) | 4.511510 / 3.745712 (0.765797) | 2.467017 / 5.269862 (-2.802845) | 1.568500 / 4.565676 (-2.997177) | 0.101488 / 0.424275 (-0.322787) | 0.014567 / 0.007607 (0.006960) | 0.603033 / 0.226044 (0.376989) | 6.041397 / 2.268929 (3.772468) | 2.759140 / 55.444624 (-52.685484) | 2.397192 / 6.876477 (-4.479285) | 2.491986 / 2.142072 (0.349914) | 1.021198 / 4.805227 (-3.784029) | 0.196415 / 6.500664 (-6.304249) | 0.076409 / 0.075469 (0.000939) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.406816 / 1.841788 (-0.434972) | 17.740263 / 8.074308 (9.665954) | 16.926489 / 10.191392 (6.735097) | 0.235302 / 0.680424 (-0.445122) | 0.036829 / 0.534201 (-0.497372) | 0.525326 / 0.579283 (-0.053957) | 0.530905 / 0.434364 (0.096541) | 0.650357 / 0.540337 (0.110019) | 0.770641 / 1.386936 (-0.616295) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008728 / 0.011353 (-0.002625) | 0.006023 / 0.011008 (-0.004985) | 0.088694 / 0.038508 (0.050186) | 0.040345 / 0.023109 (0.017236) | 0.408126 / 0.275898 (0.132228) | 0.461178 / 0.323480 (0.137698) | 0.007456 / 0.007986 (-0.000529) | 0.004722 / 0.004328 (0.000394) | 0.087340 / 0.004250 (0.083090) | 0.055826 / 0.037052 (0.018774) | 0.422432 / 0.258489 (0.163942) | 0.466308 / 0.293841 (0.172467) | 0.043637 / 0.128546 (-0.084909) | 0.014602 / 0.075646 (-0.061044) | 0.103610 / 0.419271 (-0.315662) | 0.069999 / 0.043533 (0.026466) | 0.410676 / 0.255139 (0.155537) | 0.434551 / 0.283200 (0.151351) | 0.127699 / 0.141683 (-0.013984) | 1.699858 / 1.452155 (0.247703) | 1.830331 / 1.492716 (0.337615) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235217 / 0.018006 (0.217211) | 0.494814 / 0.000490 (0.494325) | 0.004942 / 0.000200 (0.004742) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035996 / 0.037411 (-0.001416) | 0.139419 / 0.014526 (0.124893) | 0.146859 / 0.176557 (-0.029698) | 0.234793 / 0.737135 (-0.502343) | 0.152495 / 0.296338 (-0.143843) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.509812 / 0.215209 (0.294603) | 5.067227 / 2.077655 (2.989572) | 2.455505 / 1.504120 (0.951385) | 2.223516 / 1.541195 (0.682321) | 2.367783 / 1.468490 (0.899293) | 0.852550 / 4.584777 (-3.732227) | 4.517284 / 3.745712 (0.771572) | 4.860399 / 5.269862 (-0.409462) | 2.175290 / 4.565676 (-2.390386) | 0.106155 / 0.424275 (-0.318120) | 0.015023 / 0.007607 (0.007416) | 0.633753 / 0.226044 (0.407708) | 6.316214 / 2.268929 (4.047285) | 3.021118 / 55.444624 (-52.423506) | 2.601317 / 6.876477 (-4.275160) | 2.807988 / 2.142072 (0.665916) | 1.028695 / 4.805227 (-3.776532) | 0.204387 / 6.500664 (-6.296277) | 0.077368 / 0.075469 (0.001899) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.540299 / 1.841788 (-0.301489) | 18.311957 / 8.074308 (10.237649) | 16.139892 / 10.191392 (5.948500) | 0.217231 / 0.680424 (-0.463193) | 0.020544 / 0.534201 (-0.513657) | 0.505589 / 0.579283 (-0.073694) | 0.506694 / 0.434364 (0.072330) | 0.622162 / 0.540337 (0.081824) | 0.739537 / 1.386936 (-0.647399) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0f595fc2aa4786720f7a21da56069a1c46b4552a \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009465 / 0.011353 (-0.001887) | 0.005307 / 0.011008 (-0.005701) | 0.104111 / 0.038508 (0.065603) | 0.036083 / 0.023109 (0.012974) | 0.296608 / 0.275898 (0.020710) | 0.351365 / 0.323480 (0.027885) | 0.008309 / 0.007986 (0.000323) | 0.004383 / 0.004328 (0.000055) | 0.078297 / 0.004250 (0.074047) | 0.044062 / 0.037052 (0.007009) | 0.295592 / 0.258489 (0.037103) | 0.354442 / 0.293841 (0.060602) | 0.038651 / 0.128546 (-0.089896) | 0.012311 / 0.075646 (-0.063335) | 0.337933 / 0.419271 (-0.081338) | 0.048179 / 0.043533 (0.004646) | 0.308320 / 0.255139 (0.053181) | 0.335028 / 0.283200 (0.051829) | 0.105394 / 0.141683 (-0.036289) | 1.444104 / 1.452155 (-0.008050) | 1.573953 / 1.492716 (0.081237) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236548 / 0.018006 (0.218542) | 0.552862 / 0.000490 (0.552372) | 0.003925 / 0.000200 (0.003726) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026386 / 0.037411 (-0.011025) | 0.108002 / 0.014526 (0.093476) | 0.118327 / 0.176557 (-0.058230) | 0.182861 / 0.737135 (-0.554274) | 0.126032 / 0.296338 (-0.170307) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397037 / 0.215209 (0.181827) | 3.960978 / 2.077655 (1.883323) | 1.771955 / 1.504120 (0.267835) | 1.575033 / 1.541195 (0.033839) | 1.696552 / 1.468490 (0.228062) | 0.679013 / 4.584777 (-3.905764) | 3.770136 / 3.745712 (0.024424) | 2.068323 / 5.269862 (-3.201539) | 1.310823 / 4.565676 (-3.254853) | 0.083752 / 0.424275 (-0.340523) | 0.012366 / 0.007607 (0.004759) | 0.512679 / 0.226044 (0.286635) | 5.127036 / 2.268929 (2.858108) | 2.313200 / 55.444624 (-53.131424) | 1.931007 / 6.876477 (-4.945470) | 2.018336 / 2.142072 (-0.123737) | 0.833033 / 4.805227 (-3.972194) | 0.163778 / 6.500664 (-6.336886) | 0.064053 / 0.075469 (-0.011417) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.234102 / 1.841788 (-0.607685) | 15.227921 / 8.074308 (7.153613) | 14.587146 / 10.191392 (4.395754) | 0.176236 / 0.680424 (-0.504187) | 0.028905 / 0.534201 (-0.505295) | 0.439758 / 0.579283 (-0.139525) | 0.439211 / 0.434364 (0.004848) | 0.544325 / 0.540337 (0.003988) | 0.633804 / 1.386936 (-0.753132) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007933 / 0.011353 (-0.003420) | 0.005446 / 0.011008 (-0.005563) | 0.077846 / 0.038508 (0.039338) | 0.036017 / 0.023109 (0.012907) | 0.358925 / 0.275898 (0.083027) | 0.402757 / 0.323480 (0.079277) | 0.006478 / 0.007986 (-0.001508) | 0.005708 / 0.004328 (0.001380) | 0.074833 / 0.004250 (0.070583) | 0.053412 / 0.037052 (0.016360) | 0.358587 / 0.258489 (0.100098) | 0.430904 / 0.293841 (0.137063) | 0.037778 / 0.128546 (-0.090768) | 0.012698 / 0.075646 (-0.062948) | 0.087615 / 0.419271 (-0.331657) | 0.050236 / 0.043533 (0.006703) | 0.344160 / 0.255139 (0.089021) | 0.390870 / 0.283200 (0.107670) | 0.111035 / 0.141683 (-0.030648) | 1.446963 / 1.452155 (-0.005192) | 1.566158 / 1.492716 (0.073442) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.302380 / 0.018006 (0.284373) | 0.554005 / 0.000490 (0.553515) | 0.007244 / 0.000200 (0.007044) | 0.000115 / 0.000054 (0.000061) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032291 / 0.037411 (-0.005120) | 0.117117 / 0.014526 (0.102591) | 0.127513 / 0.176557 (-0.049044) | 0.204208 / 0.737135 (-0.532927) | 0.133730 / 0.296338 (-0.162608) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424597 / 0.215209 (0.209388) | 4.233852 / 2.077655 (2.156198) | 2.029731 / 1.504120 (0.525611) | 1.830075 / 1.541195 (0.288880) | 1.966198 / 1.468490 (0.497707) | 0.697881 / 4.584777 (-3.886896) | 3.758012 / 3.745712 (0.012299) | 3.405319 / 5.269862 (-1.864542) | 1.870816 / 4.565676 (-2.694860) | 0.086892 / 0.424275 (-0.337383) | 0.012438 / 0.007607 (0.004831) | 0.524252 / 0.226044 (0.298207) | 5.209534 / 2.268929 (2.940606) | 2.478608 / 55.444624 (-52.966017) | 2.151535 / 6.876477 (-4.724942) | 2.249260 / 2.142072 (0.107187) | 0.831955 / 4.805227 (-3.973273) | 0.165955 / 6.500664 (-6.334710) | 0.064663 / 0.075469 (-0.010806) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.253327 / 1.841788 (-0.588460) | 15.904393 / 8.074308 (7.830085) | 13.253464 / 10.191392 (3.062072) | 0.162148 / 0.680424 (-0.518276) | 0.017643 / 0.534201 (-0.516558) | 0.425028 / 0.579283 (-0.154255) | 0.425615 / 0.434364 (-0.008749) | 0.521503 / 0.540337 (-0.018835) | 0.629473 / 1.386936 (-0.757463) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#939b2332115c7ec3dd56f58169800ed81cc4a982 \"CML watermark\")\n"
] | 2023-02-24T15:37:43 | 2023-02-27T17:28:25 | 2023-02-27T17:21:09 | CONTRIBUTOR | null | Add the `huggingface_hub` version to the `env` command's output. | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5578/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5578/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5578",
"html_url": "https://github.com/huggingface/datasets/pull/5578",
"diff_url": "https://github.com/huggingface/datasets/pull/5578.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5578.patch",
"merged_at": "2023-02-27T17:21:09"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5577 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5577/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5577/comments | https://api.github.com/repos/huggingface/datasets/issues/5577/events | https://github.com/huggingface/datasets/issues/5577 | 1,598,587,665 | I_kwDODunzps5fSIMR | 5,577 | Cannot load `the_pile_openwebtext2` | {
"login": "wjfwzzc",
"id": 5126316,
"node_id": "MDQ6VXNlcjUxMjYzMTY=",
"avatar_url": "https://avatars.githubusercontent.com/u/5126316?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/wjfwzzc",
"html_url": "https://github.com/wjfwzzc",
"followers_url": "https://api.github.com/users/wjfwzzc/followers",
"following_url": "https://api.github.com/users/wjfwzzc/following{/other_user}",
"gists_url": "https://api.github.com/users/wjfwzzc/gists{/gist_id}",
"starred_url": "https://api.github.com/users/wjfwzzc/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/wjfwzzc/subscriptions",
"organizations_url": "https://api.github.com/users/wjfwzzc/orgs",
"repos_url": "https://api.github.com/users/wjfwzzc/repos",
"events_url": "https://api.github.com/users/wjfwzzc/events{/privacy}",
"received_events_url": "https://api.github.com/users/wjfwzzc/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Hi! I've merged a PR to use `int32` instead of `int8` for `reddit_scores`, so it should work now.\r\n\r\n"
] | 2023-02-24T13:01:48 | 2023-02-24T14:01:09 | 2023-02-24T14:01:09 | NONE | null | ### Describe the bug
I met the same bug mentioned in #3053 which is never fixed. Because several `reddit_scores` are larger than `int8` even `int16`. https://huggingface.co/datasets/the_pile_openwebtext2/blob/main/the_pile_openwebtext2.py#L62
### Steps to reproduce the bug
```python3
from datasets import load_dataset
dataset = load_dataset("the_pile_openwebtext2")
```
### Expected behavior
load as normal.
### Environment info
- `datasets` version: 2.10.0
- Platform: Linux-5.4.143.bsk.7-amd64-x86_64-with-glibc2.31
- Python version: 3.9.2
- PyArrow version: 11.0.0
- Pandas version: 1.5.3 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5577/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5577/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5576 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5576/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5576/comments | https://api.github.com/repos/huggingface/datasets/issues/5576/events | https://github.com/huggingface/datasets/issues/5576 | 1,598,582,744 | I_kwDODunzps5fSG_Y | 5,576 | I was getting a similar error `pyarrow.lib.ArrowInvalid: Integer value 528 not in range: -128 to 127` - AFAICT, this is because the type specified for `reddit_scores` is `datasets.Sequence(datasets.Value("int8"))`, but the actual values can be well outside the max range for 8-bit integers. | {
"login": "wjfwzzc",
"id": 5126316,
"node_id": "MDQ6VXNlcjUxMjYzMTY=",
"avatar_url": "https://avatars.githubusercontent.com/u/5126316?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/wjfwzzc",
"html_url": "https://github.com/wjfwzzc",
"followers_url": "https://api.github.com/users/wjfwzzc/followers",
"following_url": "https://api.github.com/users/wjfwzzc/following{/other_user}",
"gists_url": "https://api.github.com/users/wjfwzzc/gists{/gist_id}",
"starred_url": "https://api.github.com/users/wjfwzzc/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/wjfwzzc/subscriptions",
"organizations_url": "https://api.github.com/users/wjfwzzc/orgs",
"repos_url": "https://api.github.com/users/wjfwzzc/repos",
"events_url": "https://api.github.com/users/wjfwzzc/events{/privacy}",
"received_events_url": "https://api.github.com/users/wjfwzzc/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Duplicated issue."
] | 2023-02-24T12:57:49 | 2023-02-24T12:58:31 | 2023-02-24T12:58:18 | NONE | null | I was getting a similar error `pyarrow.lib.ArrowInvalid: Integer value 528 not in range: -128 to 127` - AFAICT, this is because the type specified for `reddit_scores` is `datasets.Sequence(datasets.Value("int8"))`, but the actual values can be well outside the max range for 8-bit integers.
I worked around this by downloading the `the_pile_openwebtext2.py` and editing it to use local files and drop reddit scores as a column (not needed for my purposes).
_Originally posted by @tc-wolf in https://github.com/huggingface/datasets/issues/3053#issuecomment-1281392422_
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5576/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5576/timeline | null | not_planned | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5575 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5575/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5575/comments | https://api.github.com/repos/huggingface/datasets/issues/5575/events | https://github.com/huggingface/datasets/issues/5575 | 1,598,396,552 | I_kwDODunzps5fRZiI | 5,575 | Metadata for each column | {
"login": "parsa-ra",
"id": 11356471,
"node_id": "MDQ6VXNlcjExMzU2NDcx",
"avatar_url": "https://avatars.githubusercontent.com/u/11356471?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/parsa-ra",
"html_url": "https://github.com/parsa-ra",
"followers_url": "https://api.github.com/users/parsa-ra/followers",
"following_url": "https://api.github.com/users/parsa-ra/following{/other_user}",
"gists_url": "https://api.github.com/users/parsa-ra/gists{/gist_id}",
"starred_url": "https://api.github.com/users/parsa-ra/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/parsa-ra/subscriptions",
"organizations_url": "https://api.github.com/users/parsa-ra/orgs",
"repos_url": "https://api.github.com/users/parsa-ra/repos",
"events_url": "https://api.github.com/users/parsa-ra/events{/privacy}",
"received_events_url": "https://api.github.com/users/parsa-ra/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | {
"url": "https://api.github.com/repos/huggingface/datasets/milestones/10",
"html_url": "https://github.com/huggingface/datasets/milestone/10",
"labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/10/labels",
"id": 9038583,
"node_id": "MI_kwDODunzps4Aier3",
"number": 10,
"title": "3.0",
"description": "Next major release",
"creator": {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
},
"open_issues": 3,
"closed_issues": 0,
"state": "open",
"created_at": "2023-02-13T16:22:42",
"updated_at": "2023-04-12T17:00:57",
"due_on": null,
"closed_at": null
} | [
"Hi! Indeed it would be useful to support this. PyArrow natively supports schema-level and column-level metadata, so implementing this should be straightforward. The API I have in mind would work as follows:\r\n```python\r\ncol_feature = Value(\"string\", metadata=\"Some column-level metadata\")\r\n\r\nfeatures = Features({\"col\": col_feature}, metadata=\"Some schema-level metadata\")\r\n```\r\n\r\nWDYT?",
"Sorry for the late reply, \r\nYes, I think this is the most straight-forward approach with the things that we already have.\r\n\r\n",
"@mariosasko Let me know how I can help."
] | 2023-02-24T10:53:44 | 2023-03-10T17:04:04 | null | NONE | null | ### Feature request
Being able to put some metadata for each column as a string or any other type.
### Motivation
I will bring the motivation by an example, lets say we are experimenting with embedding produced by some image encoder network, and we want to iterate through a couple of preprocessing and see which one works better in our downstream task, here as workaround right now what I do is the compute the hash of the preprocessing that the images went through as part of the new columns name, it would be nice to attach some kinda meta data in these scenarios to the each columns. metadata
### Your contribution
Maybe we could map another relational like database as the metadata? | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5575/reactions",
"total_count": 1,
"+1": 1,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5575/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5574 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5574/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5574/comments | https://api.github.com/repos/huggingface/datasets/issues/5574/events | https://github.com/huggingface/datasets/issues/5574 | 1,598,104,691 | I_kwDODunzps5fQSRz | 5,574 | c4 dataset streaming fails with `FileNotFoundError` | {
"login": "krasserm",
"id": 202907,
"node_id": "MDQ6VXNlcjIwMjkwNw==",
"avatar_url": "https://avatars.githubusercontent.com/u/202907?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/krasserm",
"html_url": "https://github.com/krasserm",
"followers_url": "https://api.github.com/users/krasserm/followers",
"following_url": "https://api.github.com/users/krasserm/following{/other_user}",
"gists_url": "https://api.github.com/users/krasserm/gists{/gist_id}",
"starred_url": "https://api.github.com/users/krasserm/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/krasserm/subscriptions",
"organizations_url": "https://api.github.com/users/krasserm/orgs",
"repos_url": "https://api.github.com/users/krasserm/repos",
"events_url": "https://api.github.com/users/krasserm/events{/privacy}",
"received_events_url": "https://api.github.com/users/krasserm/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Also encountering this issue for every dataset I try to stream! Installed datasets from main:\r\n```\r\n- `datasets` version: 2.10.1.dev0\r\n- Platform: macOS-13.1-arm64-arm-64bit\r\n- Python version: 3.9.13\r\n- PyArrow version: 10.0.1\r\n- Pandas version: 1.5.2\r\n```\r\n\r\nRepro:\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nspigi = load_dataset(\"kensho/spgispeech\", \"dev\", split=\"validation\", streaming=True, use_auth_token=True)\r\nsample = next(iter(spigi))\r\n```\r\n\r\n<details>\r\n<summary> Traceback </summary>\r\n\r\n```python\r\n---------------------------------------------------------------------------\r\nClientResponseError Traceback (most recent call last)\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/implementations/http.py:407, in HTTPFileSystem._info(self, url, **kwargs)\r\n 405 try:\r\n 406 info.update(\r\n--> 407 await _file_info(\r\n 408 self.encode_url(url),\r\n 409 size_policy=policy,\r\n 410 session=session,\r\n 411 **self.kwargs,\r\n 412 **kwargs,\r\n 413 )\r\n 414 )\r\n 415 if info.get(\"size\") is not None:\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/implementations/http.py:792, in _file_info(url, session, size_policy, **kwargs)\r\n 791 async with r:\r\n--> 792 r.raise_for_status()\r\n 794 # TODO:\r\n 795 # recognise lack of 'Accept-Ranges',\r\n 796 # or 'Accept-Ranges': 'none' (not 'bytes')\r\n 797 # to mean streaming only, no random access => return None\r\n\r\nFile ~/venv/lib/python3.9/site-packages/aiohttp/client_reqrep.py:1005, in ClientResponse.raise_for_status(self)\r\n 1004 self.release()\r\n-> 1005 raise ClientResponseError(\r\n 1006 self.request_info,\r\n 1007 self.history,\r\n 1008 status=self.status,\r\n 1009 message=self.reason,\r\n 1010 headers=self.headers,\r\n 1011 )\r\n\r\nClientResponseError: 403, message='Forbidden', url=URL('[https://cdn-lfs.huggingface.co/repos/e2/89/e28905247d6f48bb4edad5baf9b1bb4158e897a13fdf18bf3b8ee89ff8387ab8/46eca7431a7b6bad344bf451800e5b10cea1dd168f26d1027a6d9eb374b7fac3?response-content-disposition=attachment%3B+filename*%3DUTF-8''dev.csv%3B+filename%3D%22dev.csv%22%3B&response-content-type=text/csv&Expires=1677494732&Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cHM6Ly9jZG4tbGZzLmh1Z2dpbmdmYWNlLmNvL3JlcG9zL2UyLzg5L2UyODkwNTI0N2Q2ZjQ4YmI0ZWRhZDViYWY5YjFiYjQxNThlODk3YTEzZmRmMThiZjNiOGVlODlmZjgzODdhYjgvNDZlY2E3NDMxYTdiNmJhZDM0NGJmNDUxODAwZTViMTBjZWExZGQxNjhmMjZkMTAyN2E2ZDllYjM3NGI3ZmFjMz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPXRleHQlMkZjc3YiLCJDb25kaXRpb24iOnsiRGF0ZUxlc3NUaGFuIjp7IkFXUzpFcG9jaFRpbWUiOjE2Nzc0OTQ3MzJ9fX1dfQ__&Signature=EzQB9f7xPckvqfFB6LzcyR-wzTnQCqtPDdWtQUzZ3QJ-gY-IHG5mxQITJgMr1nVTbJZrPmGAaDngMcPFUfSQa8RmCqYH~dZl-UGE8CO4neKNUT1DvA2WEvLDS4WaAJ3SN-9rX0uFb03~c1QS78cIgIRboYvf6ugKiJz86Bd7Vs~tcp201JFR0A6jIMseqApOnkb9d8dHMP3Ny~F6gO3Qf2QpEWM-QsDIyw2Kz2QV55nq8TsDpRYZCZo50~WwD~73Hej0PoDhEA1K37d19pa0CQhkaN-gjCrbT9xLabbvhJWa~ZkWcMdD0teCgjYqv1wKyvFXDAxukxLGEc7OBXVbYw__&Key-Pair-Id=KVTP0A1DKRTAX](https://cdn-lfs.huggingface.co/repos/e2/89/e28905247d6f48bb4edad5baf9b1bb4158e897a13fdf18bf3b8ee89ff8387ab8/46eca7431a7b6bad344bf451800e5b10cea1dd168f26d1027a6d9eb374b7fac3?response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27dev.csv%3B+filename%3D%22dev.csv%22%3B&response-content-type=text/csv&Expires=1677494732&Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cHM6Ly9jZG4tbGZzLmh1Z2dpbmdmYWNlLmNvL3JlcG9zL2UyLzg5L2UyODkwNTI0N2Q2ZjQ4YmI0ZWRhZDViYWY5YjFiYjQxNThlODk3YTEzZmRmMThiZjNiOGVlODlmZjgzODdhYjgvNDZlY2E3NDMxYTdiNmJhZDM0NGJmNDUxODAwZTViMTBjZWExZGQxNjhmMjZkMTAyN2E2ZDllYjM3NGI3ZmFjMz9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPXRleHQlMkZjc3YiLCJDb25kaXRpb24iOnsiRGF0ZUxlc3NUaGFuIjp7IkFXUzpFcG9jaFRpbWUiOjE2Nzc0OTQ3MzJ9fX1dfQ__&Signature=EzQB9f7xPckvqfFB6LzcyR-wzTnQCqtPDdWtQUzZ3QJ-gY-IHG5mxQITJgMr1nVTbJZrPmGAaDngMcPFUfSQa8RmCqYH~dZl-UGE8CO4neKNUT1DvA2WEvLDS4WaAJ3SN-9rX0uFb03~c1QS78cIgIRboYvf6ugKiJz86Bd7Vs~tcp201JFR0A6jIMseqApOnkb9d8dHMP3Ny~F6gO3Qf2QpEWM-QsDIyw2Kz2QV55nq8TsDpRYZCZo50~WwD~73Hej0PoDhEA1K37d19pa0CQhkaN-gjCrbT9xLabbvhJWa~ZkWcMdD0teCgjYqv1wKyvFXDAxukxLGEc7OBXVbYw__&Key-Pair-Id=KVTP0A1DKRTAX)')\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nFileNotFoundError Traceback (most recent call last)\r\nCell In[5], line 4\r\n 1 from datasets import load_dataset\r\n 3 spigi = load_dataset(\"kensho/spgispeech\", \"dev\", split=\"validation\", streaming=True)\r\n----> 4 sample = next(iter(spigi))\r\n\r\nFile ~/datasets/src/datasets/iterable_dataset.py:937, in IterableDataset.__iter__(self)\r\n 934 yield from self._iter_pytorch(ex_iterable)\r\n 935 return\r\n--> 937 for key, example in ex_iterable:\r\n 938 if self.features:\r\n 939 # `IterableDataset` automatically fills missing columns with None.\r\n 940 # This is done with `_apply_feature_types_on_example`.\r\n 941 yield _apply_feature_types_on_example(\r\n 942 example, self.features, token_per_repo_id=self._token_per_repo_id\r\n 943 )\r\n\r\nFile ~/datasets/src/datasets/iterable_dataset.py:113, in ExamplesIterable.__iter__(self)\r\n 112 def __iter__(self):\r\n--> 113 yield from self.generate_examples_fn(**self.kwargs)\r\n\r\nFile ~/.cache/huggingface/modules/datasets_modules/datasets/kensho--spgispeech/5fbf75dd9ef795a9b5a673457d2cbaf0b8fa0de8fb62acbd1da338d83a41e2f0/spgispeech.py:186, in Spgispeech._generate_examples(self, local_extracted_archive_paths, archives, meta_path)\r\n 183 dict_keys = [\"wav_filename\", \"wav_filesize\", \"transcript\"]\r\n 185 logging.info(\"Reading metadata...\")\r\n--> 186 with open(meta_path, encoding=\"utf-8\") as f:\r\n 187 csvreader = csv.DictReader(f, delimiter=\"|\")\r\n 188 metadata = {x[\"wav_filename\"]: dict((k, x[k]) for k in dict_keys) for x in csvreader}\r\n\r\nFile ~/datasets/src/datasets/streaming.py:70, in extend_module_for_streaming.<locals>.wrap_auth.<locals>.wrapper(*args, **kwargs)\r\n 68 @wraps(function)\r\n 69 def wrapper(*args, **kwargs):\r\n---> 70 return function(*args, use_auth_token=use_auth_token, **kwargs)\r\n\r\nFile ~/datasets/src/datasets/download/streaming_download_manager.py:495, in xopen(file, mode, use_auth_token, *args, **kwargs)\r\n 493 kwargs = {**kwargs, **new_kwargs}\r\n 494 try:\r\n--> 495 file_obj = fsspec.open(file, mode=mode, *args, **kwargs).open()\r\n 496 except ValueError as e:\r\n 497 if str(e) == \"Cannot seek streaming HTTP file\":\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/core.py:135, in OpenFile.open(self)\r\n 128 def open(self):\r\n 129 \"\"\"Materialise this as a real open file without context\r\n 130 \r\n 131 The OpenFile object should be explicitly closed to avoid enclosed file\r\n 132 instances persisting. You must, therefore, keep a reference to the OpenFile\r\n 133 during the life of the file-like it generates.\r\n 134 \"\"\"\r\n--> 135 return self.__enter__()\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/core.py:103, in OpenFile.__enter__(self)\r\n 100 def __enter__(self):\r\n 101 mode = self.mode.replace(\"t\", \"\").replace(\"b\", \"\") + \"b\"\r\n--> 103 f = self.fs.open(self.path, mode=mode)\r\n 105 self.fobjects = [f]\r\n 107 if self.compression is not None:\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/spec.py:1106, in AbstractFileSystem.open(self, path, mode, block_size, cache_options, compression, **kwargs)\r\n 1104 else:\r\n 1105 ac = kwargs.pop(\"autocommit\", not self._intrans)\r\n-> 1106 f = self._open(\r\n 1107 path,\r\n 1108 mode=mode,\r\n 1109 block_size=block_size,\r\n 1110 autocommit=ac,\r\n 1111 cache_options=cache_options,\r\n 1112 **kwargs,\r\n 1113 )\r\n 1114 if compression is not None:\r\n 1115 from fsspec.compression import compr\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/implementations/http.py:346, in HTTPFileSystem._open(self, path, mode, block_size, autocommit, cache_type, cache_options, size, **kwargs)\r\n 344 kw[\"asynchronous\"] = self.asynchronous\r\n 345 kw.update(kwargs)\r\n--> 346 size = size or self.info(path, **kwargs)[\"size\"]\r\n 347 session = sync(self.loop, self.set_session)\r\n 348 if block_size and size:\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/asyn.py:113, in sync_wrapper.<locals>.wrapper(*args, **kwargs)\r\n 110 @functools.wraps(func)\r\n 111 def wrapper(*args, **kwargs):\r\n 112 self = obj or args[0]\r\n--> 113 return sync(self.loop, func, *args, **kwargs)\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/asyn.py:98, in sync(loop, func, timeout, *args, **kwargs)\r\n 96 raise FSTimeoutError from return_result\r\n 97 elif isinstance(return_result, BaseException):\r\n---> 98 raise return_result\r\n 99 else:\r\n 100 return return_result\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/asyn.py:53, in _runner(event, coro, result, timeout)\r\n 51 coro = asyncio.wait_for(coro, timeout=timeout)\r\n 52 try:\r\n---> 53 result[0] = await coro\r\n 54 except Exception as ex:\r\n 55 result[0] = ex\r\n\r\nFile ~/venv/lib/python3.9/site-packages/fsspec/implementations/http.py:420, in HTTPFileSystem._info(self, url, **kwargs)\r\n 417 except Exception as exc:\r\n 418 if policy == \"get\":\r\n 419 # If get failed, then raise a FileNotFoundError\r\n--> 420 raise FileNotFoundError(url) from exc\r\n 421 logger.debug(str(exc))\r\n 423 return {\"name\": url, \"size\": None, **info, \"type\": \"file\"}\r\n\r\nFileNotFoundError: https://huggingface.co/datasets/kensho/spgispeech/resolve/main/data/meta/dev.csv\r\n```\r\n</details>",
"Hi ! We're investigating this issue, sorry for the inconvenience",
"This has been resolved ! Thanks for reporting",
"Wow, thanks for the very quick fix!",
"This problem now appears again, this time with an underlying HTTP 502 status code:\r\n\r\n```\r\naiohttp.client_exceptions.ClientResponseError: 502, message='Bad Gateway', url=URL('https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/en/c4-validation.00002-of-00008.json.gz')\r\n```",
"Re-executing a minute later, the underlying cause is an HTTP 403 status code, as reported yesterday:\r\n\r\n```\r\naiohttp.client_exceptions.ClientResponseError: 403, message='Forbidden', url=URL('https://cdn-lfs.huggingface.co/datasets/allenai/c4/4bf6b248b0f910dcde2cdf2118d6369d8208c8f9515ec29ab73e531f380b18e2?response-content-disposition=attachment%3B+filename*%3DUTF-8''c4-validation.00002-of-00008.json.gz%3B+filename%3D%22c4-validation.00002-of-00008.json.gz%22%3B&response-content-type=application/gzip&Expires=1677571273&Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cHM6Ly9jZG4tbGZzLmh1Z2dpbmdmYWNlLmNvL2RhdGFzZXRzL2FsbGVuYWkvYzQvNGJmNmIyNDhiMGY5MTBkY2RlMmNkZjIxMThkNjM2OWQ4MjA4YzhmOTUxNWVjMjlhYjczZTUzMWYzODBiMThlMj9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPWFwcGxpY2F0aW9uJTJGZ3ppcCIsIkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTY3NzU3MTI3M319fV19&Signature=WW42NOKkLuX~xVB1QfbkqzdvGo2AOXpgbF3PjTXy6iKd~ffilr1N9ScPXfvTXqy5yvdhJg1G0xJy1zYtUjGAL8GEx3Av-0vIhpWMGYTM8XKEU5gYA9qt30oVtNph6TkTYSABrsYTaj-hzQL9WCgyapmjvG69ETMh4wj44r2rcbk4T3j0l6l4u76Gh~lyRSll3aK4qycdUwcyL7FECDu~0W1mJIJwKkCrWHhSpHJSshb-0ElwG71pq4eyQ5g2uxHdK6JbRF7loxUpRQQJ1vlk0EHXdw0wTMaQ9tqHy6xcrQd8Ep0Yvx3tUD8MR0vWOcbQKnL6LwPQByc8tkChlpjnig__&Key-Pair-Id=KVTP0A1DKRTAX')\r\n```",
"I'm facing the same problem. Interestingly using `wget` I can download the file. ",
"It's been resolved again ;)",
"> It's been resolved again ;)\r\n\r\nI'm experiencing the same issue when trying to load this dataset, `FileNotFoundError: https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/realnewslike/c4-train.00000-of-00512.json.gz`"
] | 2023-02-24T07:57:32 | 2023-03-06T13:14:11 | 2023-02-27T04:03:38 | NONE | null | ### Describe the bug
Loading the `c4` dataset in streaming mode with `load_dataset("c4", "en", split="validation", streaming=True)` and then using it fails with a `FileNotFoundException`.
### Steps to reproduce the bug
```python
from datasets import load_dataset
dataset = load_dataset("c4", "en", split="train", streaming=True)
next(iter(dataset))
```
causes a
```
FileNotFoundError: https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/en/c4-train.00000-of-01024.json.gz
```
I can download this file manually though e.g. by entering this URL in a browser.
There is an underlying HTTP 403 status code:
```
aiohttp.client_exceptions.ClientResponseError: 403, message='Forbidden', url=URL('https://cdn-lfs.huggingface.co/datasets/allenai/c4/8ef8d75b0e045dec4aa5123a671b4564466b0707086a7ed1ba8721626dfffbc9?response-content-disposition=attachment%3B+filename*%3DUTF-8''c4-train.00000-of-01024.json.gz%3B+filename%3D%22c4-train.00000-of-01024.json.gz%22%3B&response-content-type=application/gzip&Expires=1677483770&Policy=eyJTdGF0ZW1lbnQiOlt7IlJlc291cmNlIjoiaHR0cHM6Ly9jZG4tbGZzLmh1Z2dpbmdmYWNlLmNvL2RhdGFzZXRzL2FsbGVuYWkvYzQvOGVmOGQ3NWIwZTA0NWRlYzRhYTUxMjNhNjcxYjQ1NjQ0NjZiMDcwNzA4NmE3ZWQxYmE4NzIxNjI2ZGZmZmJjOT9yZXNwb25zZS1jb250ZW50LWRpc3Bvc2l0aW9uPSomcmVzcG9uc2UtY29udGVudC10eXBlPWFwcGxpY2F0aW9uJTJGZ3ppcCIsIkNvbmRpdGlvbiI6eyJEYXRlTGVzc1RoYW4iOnsiQVdTOkVwb2NoVGltZSI6MTY3NzQ4Mzc3MH19fV19&Signature=yjL3UeY72cf2xpnvPvD68eAYOEe2qtaUJV55sB-jnPskBJEMwpMJcBZvg2~GqXZdM3O-GWV-Z3CI~d4u5VCb4YZ-HlmOjr3VBYkvox2EKiXnBIhjMecf2UVUPtxhTa9kBVlWjqu4qKzB9gKXZF2Cwpp5ctLzapEaT2nnqF84RAL-rsqMA3I~M8vWWfivQsbBK63hMfgZqqKMgdWM0iKMaItveDl0ufQ29azMFmsR7qd8V7sU2Z-F1fAeohS8HpN9OOnClW34yi~YJ2AbgZJJBXA~qsylfVA0Qp7Q~yX~q4P8JF1vmJ2BjkiSbGrj3bAXOGugpOVU5msI52DT88yMdA__&Key-Pair-Id=KVTP0A1DKRTAX')
```
### Expected behavior
This should retrieve the first example from the C4 validation set. This worked a few days ago but stopped working now.
### Environment info
- `datasets` version: 2.9.0
- Platform: Linux-5.15.0-60-generic-x86_64-with-glibc2.31
- Python version: 3.9.16
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5574/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5574/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/5573 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5573/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5573/comments | https://api.github.com/repos/huggingface/datasets/issues/5573/events | https://github.com/huggingface/datasets/pull/5573 | 1,597,400,836 | PR_kwDODunzps5Kop7n | 5,573 | Use soundfile for mp3 decoding instead of torchaudio | {
"login": "polinaeterna",
"id": 16348744,
"node_id": "MDQ6VXNlcjE2MzQ4NzQ0",
"avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/polinaeterna",
"html_url": "https://github.com/polinaeterna",
"followers_url": "https://api.github.com/users/polinaeterna/followers",
"following_url": "https://api.github.com/users/polinaeterna/following{/other_user}",
"gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}",
"starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions",
"organizations_url": "https://api.github.com/users/polinaeterna/orgs",
"repos_url": "https://api.github.com/users/polinaeterna/repos",
"events_url": "https://api.github.com/users/polinaeterna/events{/privacy}",
"received_events_url": "https://api.github.com/users/polinaeterna/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"@mariosasko thank you for the review! do you have any idea why `test_hash_torch_tensor` fails on \"ubuntu-latest deps-minimum\"? I removed the `torchaudio<0.12.0` test dependency so it uses the latest `torch` now, might it be connected?",
"@polinaeterna The failure is due to `torch.from_numpy` not being picklable in newer versions of PyTorch. You can replace the current definition of `_save_tensor` in `utils/py_utils.py` with the following one to fix it: \r\n\r\n```python\r\n@pklregister(obj_type)\r\ndef _save_tensor(pickler, obj):\r\n # `torch.from_numpy` is not picklable in `torch>=1.11.0`\r\n def _create_tensor(np_array):\r\n return torch.from_numpy(np_array)\r\n\r\n dill_log(pickler, f\"To: {obj}\")\r\n args = (obj.detach().cpu().numpy(),)\r\n pickler.save_reduce(_create_tensor, args, obj=obj)\r\n dill_log(pickler, \"# To\")\r\n return\r\n```",
"(doing a patch release now - please wait before merging ^^)",
"@mariosasko génial, merci!! i've integrated all your changes, can you pls take a look one more time?",
"Patch release is done (I did it from another branch than `main` anyway)",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010927 / 0.011353 (-0.000426) | 0.006232 / 0.011008 (-0.004776) | 0.119815 / 0.038508 (0.081307) | 0.034138 / 0.023109 (0.011029) | 0.349945 / 0.275898 (0.074047) | 0.404967 / 0.323480 (0.081487) | 0.008672 / 0.007986 (0.000687) | 0.005010 / 0.004328 (0.000681) | 0.091931 / 0.004250 (0.087680) | 0.042534 / 0.037052 (0.005482) | 0.374701 / 0.258489 (0.116212) | 0.401027 / 0.293841 (0.107186) | 0.053523 / 0.128546 (-0.075024) | 0.019704 / 0.075646 (-0.055942) | 0.384207 / 0.419271 (-0.035064) | 0.065350 / 0.043533 (0.021817) | 0.375074 / 0.255139 (0.119935) | 0.390458 / 0.283200 (0.107259) | 0.110549 / 0.141683 (-0.031134) | 1.719812 / 1.452155 (0.267657) | 1.748906 / 1.492716 (0.256190) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210051 / 0.018006 (0.192045) | 0.546503 / 0.000490 (0.546013) | 0.004078 / 0.000200 (0.003878) | 0.000111 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030212 / 0.037411 (-0.007199) | 0.121845 / 0.014526 (0.107319) | 0.136309 / 0.176557 (-0.040247) | 0.204667 / 0.737135 (-0.532468) | 0.157327 / 0.296338 (-0.139012) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.672548 / 0.215209 (0.457339) | 6.239409 / 2.077655 (4.161754) | 2.462441 / 1.504120 (0.958322) | 2.063985 / 1.541195 (0.522791) | 2.098858 / 1.468490 (0.630368) | 1.262600 / 4.584777 (-3.322177) | 5.478462 / 3.745712 (1.732750) | 5.454672 / 5.269862 (0.184810) | 2.991866 / 4.565676 (-1.573810) | 0.153415 / 0.424275 (-0.270861) | 0.015061 / 0.007607 (0.007454) | 0.796115 / 0.226044 (0.570071) | 8.206858 / 2.268929 (5.937930) | 3.226395 / 55.444624 (-52.218229) | 2.503522 / 6.876477 (-4.372955) | 2.547489 / 2.142072 (0.405417) | 1.504776 / 4.805227 (-3.300451) | 0.256536 / 6.500664 (-6.244128) | 0.078543 / 0.075469 (0.003073) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.591109 / 1.841788 (-0.250678) | 18.153317 / 8.074308 (10.079008) | 20.465684 / 10.191392 (10.274292) | 0.229808 / 0.680424 (-0.450616) | 0.045263 / 0.534201 (-0.488938) | 0.556760 / 0.579283 (-0.022524) | 0.614985 / 0.434364 (0.180622) | 0.635675 / 0.540337 (0.095337) | 0.729817 / 1.386936 (-0.657119) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011247 / 0.011353 (-0.000106) | 0.006823 / 0.011008 (-0.004185) | 0.101989 / 0.038508 (0.063481) | 0.036077 / 0.023109 (0.012968) | 0.413469 / 0.275898 (0.137571) | 0.505560 / 0.323480 (0.182080) | 0.007506 / 0.007986 (-0.000480) | 0.006369 / 0.004328 (0.002040) | 0.099597 / 0.004250 (0.095346) | 0.058115 / 0.037052 (0.021063) | 0.414735 / 0.258489 (0.156246) | 0.466801 / 0.293841 (0.172960) | 0.064771 / 0.128546 (-0.063775) | 0.021100 / 0.075646 (-0.054546) | 0.135407 / 0.419271 (-0.283864) | 0.068784 / 0.043533 (0.025251) | 0.410467 / 0.255139 (0.155328) | 0.465993 / 0.283200 (0.182794) | 0.119404 / 0.141683 (-0.022279) | 1.767107 / 1.452155 (0.314952) | 1.938342 / 1.492716 (0.445626) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227038 / 0.018006 (0.209032) | 0.511389 / 0.000490 (0.510899) | 0.006723 / 0.000200 (0.006523) | 0.000118 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033078 / 0.037411 (-0.004333) | 0.133159 / 0.014526 (0.118633) | 0.147928 / 0.176557 (-0.028629) | 0.214005 / 0.737135 (-0.523130) | 0.151655 / 0.296338 (-0.144683) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.634829 / 0.215209 (0.419620) | 6.578640 / 2.077655 (4.500985) | 2.673598 / 1.504120 (1.169478) | 2.338671 / 1.541195 (0.797476) | 2.389104 / 1.468490 (0.920614) | 1.274938 / 4.584777 (-3.309839) | 5.746524 / 3.745712 (2.000812) | 5.992084 / 5.269862 (0.722222) | 3.092090 / 4.565676 (-1.473587) | 0.150375 / 0.424275 (-0.273900) | 0.015470 / 0.007607 (0.007863) | 0.792962 / 0.226044 (0.566918) | 8.057491 / 2.268929 (5.788563) | 3.483966 / 55.444624 (-51.960659) | 2.715038 / 6.876477 (-4.161438) | 2.747186 / 2.142072 (0.605114) | 1.532951 / 4.805227 (-3.272276) | 0.262214 / 6.500664 (-6.238450) | 0.081308 / 0.075469 (0.005839) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.698448 / 1.841788 (-0.143340) | 18.590002 / 8.074308 (10.515694) | 20.584508 / 10.191392 (10.393116) | 0.227237 / 0.680424 (-0.453187) | 0.028445 / 0.534201 (-0.505756) | 0.527874 / 0.579283 (-0.051409) | 0.602844 / 0.434364 (0.168480) | 0.672948 / 0.540337 (0.132611) | 0.788103 / 1.386936 (-0.598833) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f96547708a889c09ca8a02ed7aadd8c5690503c5 \"CML watermark\")\n"
] | 2023-02-23T19:19:44 | 2023-02-28T20:25:14 | 2023-02-28T20:16:02 | CONTRIBUTOR | null | I've removed `torchaudio` completely and switched to use `soundfile` for everything. With the new version of `soundfile` package this should work smoothly because the `libsndfile` C library is bundled, in Linux wheels too.
Let me know if you think it's too harsh and we should continue to support `torchaudio` decoding.
I decided that we can drop it completely because:
1. it's always something wrong with `torchaudio` (for example recently https://github.com/huggingface/datasets/issues/5488 )
2. the results of mp3 decoding are different depending on `torchaudio` version
3. `soundfile` is slightly faster then the latest `torchaudio`
4. anyway users can pass any custom decoding function with any library they want if needed (worth putting a snippet in the docs).
cc @sanchit-gandhi @vaibhavad | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5573/reactions",
"total_count": 3,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 3,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5573/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/5573",
"html_url": "https://github.com/huggingface/datasets/pull/5573",
"diff_url": "https://github.com/huggingface/datasets/pull/5573.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/5573.patch",
"merged_at": "2023-02-28T20:16:02"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/5572 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/5572/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/5572/comments | https://api.github.com/repos/huggingface/datasets/issues/5572/events | https://github.com/huggingface/datasets/issues/5572 | 1,597,257,624 | I_kwDODunzps5fNDeY | 5,572 | Datasets 2.10.0 does not reuse the dataset cache | {
"login": "lsb",
"id": 45281,
"node_id": "MDQ6VXNlcjQ1Mjgx",
"avatar_url": "https://avatars.githubusercontent.com/u/45281?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/lsb",
"html_url": "https://github.com/lsb",
"followers_url": "https://api.github.com/users/lsb/followers",
"following_url": "https://api.github.com/users/lsb/following{/other_user}",
"gists_url": "https://api.github.com/users/lsb/gists{/gist_id}",
"starred_url": "https://api.github.com/users/lsb/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lsb/subscriptions",
"organizations_url": "https://api.github.com/users/lsb/orgs",
"repos_url": "https://api.github.com/users/lsb/repos",
"events_url": "https://api.github.com/users/lsb/events{/privacy}",
"received_events_url": "https://api.github.com/users/lsb/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [] | 2023-02-23T17:28:11 | 2023-02-23T18:03:55 | 2023-02-23T18:03:55 | NONE | null | ### Describe the bug
download_mode="reuse_dataset_if_exists" will always consider that a dataset doesn't exist.
Specifically, upon losing an internet connection trying to load a dataset for a second time in ten seconds, a connection error results, showing a breakpoint of:
```
File ~/jupyterlab/.direnv/python-3.9.6/lib/python3.9/site-packages/datasets/load.py:1174, in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs)
1165 except Exception as e: # noqa: catch any exception of hf_hub and consider that the dataset doesn't exist
1166 if isinstance(
1167 e,
1168 (
(...)
1172 ),
1173 ):
-> 1174 raise ConnectionError(f"Couldn't reach '{path}' on the Hub ({type(e).__name__})")
1175 elif "404" in str(e):
1176 msg = f"Dataset '{path}' doesn't exist on the Hub"
ConnectionError: Couldn't reach 'lsb/tenk' on the Hub (ConnectionError)
```
This has been around since at least v2.0.
### Steps to reproduce the bug
```
from datasets import load_dataset
import numpy as np
tenk = load_dataset("lsb/tenk") # ten thousand integers
print(np.average(tenk['train']['a'])) # prints 4999.5
### now disconnect your internet
tenk_too = load_dataset("lsb/tenk", download_mode="reuse_dataset_if_exists")
# Raises ConnectionError: Couldn't reach 'lsb/tenk' on the Hub (ConnectionError)
```
### Expected behavior
I expected that I would be able to reuse the dataset I just downloaded.
### Environment info
- `datasets` version: 2.10.0
- Platform: macOS-13.1-arm64-arm-64bit
- Python version: 3.9.6
- PyArrow version: 7.0.0
- Pandas version: 1.5.2 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/5572/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/5572/timeline | null | completed | null | null | false |