url
stringlengths
61
61
repository_url
stringclasses
1 value
labels_url
stringlengths
75
75
comments_url
stringlengths
70
70
events_url
stringlengths
68
68
html_url
stringlengths
49
51
id
int64
1.14B
1.87B
node_id
stringlengths
18
19
number
int64
3.74k
6.19k
title
stringlengths
1
290
user
dict
labels
list
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
list
milestone
dict
comments
sequence
created_at
timestamp[s]
updated_at
timestamp[s]
closed_at
timestamp[s]
author_association
stringclasses
3 values
active_lock_reason
null
body
stringlengths
2
33.9k
reactions
dict
timeline_url
stringlengths
70
70
performed_via_github_app
null
state_reason
stringclasses
3 values
draft
bool
2 classes
pull_request
dict
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/5468
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5468/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5468/comments
https://api.github.com/repos/huggingface/datasets/issues/5468/events
https://github.com/huggingface/datasets/issues/5468
1,558,066,625
I_kwDODunzps5c3jXB
5,468
Allow opposite of remove_columns on Dataset and DatasetDict
{ "login": "hollance", "id": 346853, "node_id": "MDQ6VXNlcjM0Njg1Mw==", "avatar_url": "https://avatars.githubusercontent.com/u/346853?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hollance", "html_url": "https://github.com/hollance", "followers_url": "https://api.github.com/users/hollance/followers", "following_url": "https://api.github.com/users/hollance/following{/other_user}", "gists_url": "https://api.github.com/users/hollance/gists{/gist_id}", "starred_url": "https://api.github.com/users/hollance/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hollance/subscriptions", "organizations_url": "https://api.github.com/users/hollance/orgs", "repos_url": "https://api.github.com/users/hollance/repos", "events_url": "https://api.github.com/users/hollance/events{/privacy}", "received_events_url": "https://api.github.com/users/hollance/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" }, { "id": 1935892877, "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue", "name": "good first issue", "color": "7057ff", "default": true, "description": "Good for newcomers" } ]
closed
false
null
[]
null
[ "Hi! I agree it would be nice to have a method like that. Instead of `keep_columns`, we can name it `select_columns` to be more aligned with PyArrow's naming convention (`pa.Table.select`).", "Hi, I am a newbie to open source and would like to contribute. @mariosasko can I take up this issue ?", "Hey, I also want to work on this issue I am a newbie to open source. ", "This sounds related to https://github.com/huggingface/datasets/issues/5474\r\n\r\nI'm fine with `select_columns`, or we could also override `select` to also accept a list of columns maybe ?", "@lhoestq, I am planning to add a member function to the dataset class to perform the selection operation. Do you think its the right way to proceed? or there is a better option ?", "Unless @mariosasko thinks otherwise, I think it can go in `Dataset.select()` :)\r\nThough some parameters like keep_in_memory, indices_cache_file_name or writer_batch_size wouldn't when selecting columns, so we would need to update the docstring as well", "If someone wants to give it a shot, feel free to comment `#self-assign` and it will assign the issue to you.\r\n\r\nFeel free to ping us here if you have questions or if we can help :)", "I would rather have this functionality as a separate method. IMO it's always better to be explicit than to have an API where a single method can do different/uncorrelated things (somewhat reminds me of Pandas, and there is probably a good reason why PyArrow is more rigid in this aspect).", "In the end I also think it would be nice to have it as a separate method, this way we can also have it for `IterableDataset` (which can't have `select` for indices)" ]
2023-01-26T12:28:09
2023-02-13T09:59:38
2023-02-13T09:59:38
NONE
null
### Feature request In this blog post https://huggingface.co/blog/audio-datasets, I noticed the following code: ```python COLUMNS_TO_KEEP = ["text", "audio"] all_columns = gigaspeech["train"].column_names columns_to_remove = set(all_columns) - set(COLUMNS_TO_KEEP) gigaspeech = gigaspeech.remove_columns(columns_to_remove) ``` This kind of thing happens a lot when you don't need to keep all columns from the dataset. It would be more convenient (and less error prone) if you could just write: ```python gigaspeech = gigaspeech.keep_columns(["text", "audio"]) ``` Internally, `keep_columns` could still call `remove_columns`, but it expresses more clearly what the user's intent is. ### Motivation Less code to write for the user of the dataset. ### Your contribution -
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5468/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5468/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5467
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5467/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5467/comments
https://api.github.com/repos/huggingface/datasets/issues/5467/events
https://github.com/huggingface/datasets/pull/5467
1,557,898,273
PR_kwDODunzps5IlAlk
5,467
Fix conda command in readme
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "ah didn't read well - it's all good", "or maybe it isn't ? `-c huggingface -c conda-forge` installs from HF or from conda-forge ?", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010196 / 0.011353 (-0.001157) | 0.005531 / 0.011008 (-0.005477) | 0.104601 / 0.038508 (0.066093) | 0.041322 / 0.023109 (0.018213) | 0.302080 / 0.275898 (0.026182) | 0.396579 / 0.323480 (0.073099) | 0.008874 / 0.007986 (0.000888) | 0.004482 / 0.004328 (0.000153) | 0.077487 / 0.004250 (0.073236) | 0.051113 / 0.037052 (0.014061) | 0.321850 / 0.258489 (0.063361) | 0.354946 / 0.293841 (0.061105) | 0.039822 / 0.128546 (-0.088724) | 0.012622 / 0.075646 (-0.063024) | 0.337898 / 0.419271 (-0.081374) | 0.048372 / 0.043533 (0.004839) | 0.299646 / 0.255139 (0.044507) | 0.321113 / 0.283200 (0.037914) | 0.114780 / 0.141683 (-0.026903) | 1.475750 / 1.452155 (0.023595) | 1.496307 / 1.492716 (0.003590) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.311443 / 0.018006 (0.293437) | 0.567268 / 0.000490 (0.566778) | 0.006149 / 0.000200 (0.005950) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029407 / 0.037411 (-0.008004) | 0.118611 / 0.014526 (0.104085) | 0.122247 / 0.176557 (-0.054309) | 0.164770 / 0.737135 (-0.572365) | 0.128561 / 0.296338 (-0.167778) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399185 / 0.215209 (0.183976) | 3.972995 / 2.077655 (1.895340) | 1.764638 / 1.504120 (0.260518) | 1.574058 / 1.541195 (0.032863) | 1.741695 / 1.468490 (0.273205) | 0.705664 / 4.584777 (-3.879113) | 3.915399 / 3.745712 (0.169686) | 2.310154 / 5.269862 (-2.959707) | 1.554067 / 4.565676 (-3.011610) | 0.087133 / 0.424275 (-0.337142) | 0.012393 / 0.007607 (0.004786) | 0.510758 / 0.226044 (0.284713) | 5.114906 / 2.268929 (2.845977) | 2.304473 / 55.444624 (-53.140152) | 1.960768 / 6.876477 (-4.915709) | 2.092263 / 2.142072 (-0.049810) | 0.867973 / 4.805227 (-3.937255) | 0.170000 / 6.500664 (-6.330664) | 0.068358 / 0.075469 (-0.007111) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.211022 / 1.841788 (-0.630765) | 16.777269 / 8.074308 (8.702961) | 15.272659 / 10.191392 (5.081267) | 0.182149 / 0.680424 (-0.498274) | 0.029577 / 0.534201 (-0.504624) | 0.446590 / 0.579283 (-0.132693) | 0.454724 / 0.434364 (0.020360) | 0.541938 / 0.540337 (0.001601) | 0.640886 / 1.386936 (-0.746050) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008441 / 0.011353 (-0.002912) | 0.006105 / 0.011008 (-0.004904) | 0.100349 / 0.038508 (0.061841) | 0.040675 / 0.023109 (0.017565) | 0.381775 / 0.275898 (0.105877) | 0.425246 / 0.323480 (0.101767) | 0.007197 / 0.007986 (-0.000789) | 0.004972 / 0.004328 (0.000644) | 0.075346 / 0.004250 (0.071096) | 0.065339 / 0.037052 (0.028286) | 0.379340 / 0.258489 (0.120851) | 0.435646 / 0.293841 (0.141805) | 0.038891 / 0.128546 (-0.089656) | 0.013079 / 0.075646 (-0.062568) | 0.339273 / 0.419271 (-0.079999) | 0.057478 / 0.043533 (0.013945) | 0.373516 / 0.255139 (0.118377) | 0.402388 / 0.283200 (0.119189) | 0.123145 / 0.141683 (-0.018538) | 1.503765 / 1.452155 (0.051610) | 1.609797 / 1.492716 (0.117081) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.420354 / 0.018006 (0.402348) | 0.589272 / 0.000490 (0.588782) | 0.045861 / 0.000200 (0.045662) | 0.000527 / 0.000054 (0.000473) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033918 / 0.037411 (-0.003493) | 0.128041 / 0.014526 (0.113515) | 0.130274 / 0.176557 (-0.046283) | 0.180605 / 0.737135 (-0.556530) | 0.136377 / 0.296338 (-0.159962) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440343 / 0.215209 (0.225133) | 4.390264 / 2.077655 (2.312610) | 2.218738 / 1.504120 (0.714618) | 2.052399 / 1.541195 (0.511204) | 2.231912 / 1.468490 (0.763422) | 0.716805 / 4.584777 (-3.867972) | 3.909277 / 3.745712 (0.163565) | 2.302121 / 5.269862 (-2.967740) | 1.419454 / 4.565676 (-3.146222) | 0.088067 / 0.424275 (-0.336208) | 0.012994 / 0.007607 (0.005387) | 0.548267 / 0.226044 (0.322223) | 5.462973 / 2.268929 (3.194044) | 2.768414 / 55.444624 (-52.676210) | 2.489320 / 6.876477 (-4.387157) | 2.569546 / 2.142072 (0.427474) | 0.853135 / 4.805227 (-3.952092) | 0.170618 / 6.500664 (-6.330046) | 0.069908 / 0.075469 (-0.005562) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.304726 / 1.841788 (-0.537062) | 17.335977 / 8.074308 (9.261669) | 15.088319 / 10.191392 (4.896927) | 0.190893 / 0.680424 (-0.489531) | 0.018133 / 0.534201 (-0.516068) | 0.429324 / 0.579283 (-0.149959) | 0.439212 / 0.434364 (0.004848) | 0.545312 / 0.540337 (0.004975) | 0.663972 / 1.386936 (-0.722964) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e7505adc37498f5e0cb3dd4c13bbb06696afdda5 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._" ]
2023-01-26T10:03:01
2023-01-26T18:32:16
2023-01-26T18:29:37
MEMBER
null
The [conda forge channel](https://anaconda.org/conda-forge/datasets) is lagging behind (as of right now, only 2.7.1 is available), we should recommend using the [Hugging face channel](https://anaconda.org/HuggingFace/datasets) that we are maintaining ``` conda install -c huggingface datasets ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5467/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5467/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5467", "html_url": "https://github.com/huggingface/datasets/pull/5467", "diff_url": "https://github.com/huggingface/datasets/pull/5467.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5467.patch", "merged_at": null }
true
https://api.github.com/repos/huggingface/datasets/issues/5466
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5466/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5466/comments
https://api.github.com/repos/huggingface/datasets/issues/5466/events
https://github.com/huggingface/datasets/pull/5466
1,557,584,845
PR_kwDODunzps5Ij-z1
5,466
remove pathlib.Path with URIs
{ "login": "jonny-cyberhaven", "id": 121845112, "node_id": "U_kgDOB0M1eA", "avatar_url": "https://avatars.githubusercontent.com/u/121845112?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jonny-cyberhaven", "html_url": "https://github.com/jonny-cyberhaven", "followers_url": "https://api.github.com/users/jonny-cyberhaven/followers", "following_url": "https://api.github.com/users/jonny-cyberhaven/following{/other_user}", "gists_url": "https://api.github.com/users/jonny-cyberhaven/gists{/gist_id}", "starred_url": "https://api.github.com/users/jonny-cyberhaven/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonny-cyberhaven/subscriptions", "organizations_url": "https://api.github.com/users/jonny-cyberhaven/orgs", "repos_url": "https://api.github.com/users/jonny-cyberhaven/repos", "events_url": "https://api.github.com/users/jonny-cyberhaven/events{/privacy}", "received_events_url": "https://api.github.com/users/jonny-cyberhaven/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Thanks !\r\n`os.path.join` will use a backslash `\\` on windows which will also fail. You can use this instead in `load_from_disk`:\r\n```python\r\nfrom .filesystems import is_remote_filesystem\r\n\r\nis_local = not is_remote_filesystem(fs)\r\npath_join = os.path.join if is_local else posixpath.join\r\n```", "Thank you ! I did a minor change to not have to define a new function and I ran the CI. If it's green we can merge :)", "_The documentation is not available anymore as the PR was closed or merged._", "> \r\n\r\n\r\n\r\n> Thank you ! I did a minor change to not have to define a new function and I ran the CI. If it's green we can merge :)\r\n\r\nlol it's a battle of +1 imports or +1 functions. LGTM, I was editing fast and swapped which branch gets os vs Path. Should be ok now 🤙", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012043 / 0.011353 (0.000690) | 0.006585 / 0.011008 (-0.004423) | 0.149007 / 0.038508 (0.110499) | 0.039514 / 0.023109 (0.016405) | 0.403893 / 0.275898 (0.127995) | 0.431252 / 0.323480 (0.107772) | 0.009218 / 0.007986 (0.001233) | 0.006108 / 0.004328 (0.001779) | 0.114666 / 0.004250 (0.110416) | 0.044962 / 0.037052 (0.007910) | 0.411592 / 0.258489 (0.153103) | 0.461561 / 0.293841 (0.167721) | 0.059958 / 0.128546 (-0.068589) | 0.029047 / 0.075646 (-0.046599) | 0.456000 / 0.419271 (0.036728) | 0.060744 / 0.043533 (0.017211) | 0.415816 / 0.255139 (0.160677) | 0.430488 / 0.283200 (0.147289) | 0.122477 / 0.141683 (-0.019205) | 1.862910 / 1.452155 (0.410755) | 1.974698 / 1.492716 (0.481981) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257230 / 0.018006 (0.239224) | 0.606854 / 0.000490 (0.606364) | 0.006175 / 0.000200 (0.005975) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030533 / 0.037411 (-0.006879) | 0.130702 / 0.014526 (0.116177) | 0.143781 / 0.176557 (-0.032775) | 0.183272 / 0.737135 (-0.553863) | 0.151267 / 0.296338 (-0.145071) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.637422 / 0.215209 (0.422213) | 6.503535 / 2.077655 (4.425880) | 2.630387 / 1.504120 (1.126267) | 2.281180 / 1.541195 (0.739985) | 2.354341 / 1.468490 (0.885851) | 1.306497 / 4.584777 (-3.278280) | 5.837184 / 3.745712 (2.091472) | 3.257198 / 5.269862 (-2.012663) | 2.050681 / 4.565676 (-2.514995) | 0.146415 / 0.424275 (-0.277860) | 0.015386 / 0.007607 (0.007779) | 0.790146 / 0.226044 (0.564102) | 8.056137 / 2.268929 (5.787209) | 3.383566 / 55.444624 (-52.061059) | 2.707620 / 6.876477 (-4.168856) | 2.714857 / 2.142072 (0.572785) | 1.520847 / 4.805227 (-3.284380) | 0.266028 / 6.500664 (-6.234636) | 0.091422 / 0.075469 (0.015953) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.656148 / 1.841788 (-0.185640) | 18.833393 / 8.074308 (10.759085) | 21.360824 / 10.191392 (11.169432) | 0.227608 / 0.680424 (-0.452816) | 0.049018 / 0.534201 (-0.485183) | 0.593418 / 0.579283 (0.014135) | 0.656690 / 0.434364 (0.222326) | 0.709171 / 0.540337 (0.168833) | 0.828226 / 1.386936 (-0.558710) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010112 / 0.011353 (-0.001241) | 0.006761 / 0.011008 (-0.004247) | 0.146723 / 0.038508 (0.108215) | 0.038451 / 0.023109 (0.015342) | 0.524267 / 0.275898 (0.248369) | 0.609484 / 0.323480 (0.286004) | 0.008502 / 0.007986 (0.000516) | 0.006964 / 0.004328 (0.002635) | 0.111396 / 0.004250 (0.107146) | 0.056839 / 0.037052 (0.019787) | 0.514649 / 0.258489 (0.256160) | 0.604212 / 0.293841 (0.310372) | 0.061410 / 0.128546 (-0.067137) | 0.020396 / 0.075646 (-0.055250) | 0.505026 / 0.419271 (0.085754) | 0.067280 / 0.043533 (0.023747) | 0.522249 / 0.255139 (0.267110) | 0.559484 / 0.283200 (0.276284) | 0.120943 / 0.141683 (-0.020740) | 2.124323 / 1.452155 (0.672169) | 2.153397 / 1.492716 (0.660681) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216614 / 0.018006 (0.198608) | 0.594181 / 0.000490 (0.593692) | 0.004079 / 0.000200 (0.003879) | 0.000117 / 0.000054 (0.000063) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.036925 / 0.037411 (-0.000486) | 0.131322 / 0.014526 (0.116797) | 0.148542 / 0.176557 (-0.028015) | 0.196045 / 0.737135 (-0.541090) | 0.156867 / 0.296338 (-0.139472) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.669722 / 0.215209 (0.454513) | 6.858856 / 2.077655 (4.781202) | 3.093969 / 1.504120 (1.589849) | 2.667385 / 1.541195 (1.126190) | 2.797192 / 1.468490 (1.328702) | 1.334759 / 4.584777 (-3.250018) | 6.024861 / 3.745712 (2.279149) | 3.257779 / 5.269862 (-2.012083) | 2.202816 / 4.565676 (-2.362860) | 0.147617 / 0.424275 (-0.276658) | 0.015451 / 0.007607 (0.007844) | 0.887015 / 0.226044 (0.660970) | 8.371288 / 2.268929 (6.102360) | 3.807451 / 55.444624 (-51.637173) | 3.079483 / 6.876477 (-3.796994) | 3.103321 / 2.142072 (0.961249) | 1.520272 / 4.805227 (-3.284955) | 0.273079 / 6.500664 (-6.227585) | 0.088613 / 0.075469 (0.013143) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.818913 / 1.841788 (-0.022875) | 19.274269 / 8.074308 (11.199960) | 19.871784 / 10.191392 (9.680392) | 0.250388 / 0.680424 (-0.430036) | 0.030562 / 0.534201 (-0.503638) | 0.560566 / 0.579283 (-0.018717) | 0.664701 / 0.434364 (0.230337) | 0.714513 / 0.540337 (0.174176) | 0.827227 / 1.386936 (-0.559710) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f7a9bf823ea41b85313c0392388ec68b3033ef29 \"CML watermark\")\n" ]
2023-01-26T03:25:45
2023-01-26T17:08:57
2023-01-26T16:59:11
CONTRIBUTOR
null
Pathlib will convert "//" to "/" which causes retry errors when downloading from cloud storage
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5466/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5466/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5466", "html_url": "https://github.com/huggingface/datasets/pull/5466", "diff_url": "https://github.com/huggingface/datasets/pull/5466.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5466.patch", "merged_at": "2023-01-26T16:59:11" }
true
https://api.github.com/repos/huggingface/datasets/issues/5465
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5465/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5465/comments
https://api.github.com/repos/huggingface/datasets/issues/5465/events
https://github.com/huggingface/datasets/issues/5465
1,557,510,618
I_kwDODunzps5c1bna
5,465
audiofolder creates empty dataset even though the dataset passed in follows the correct structure
{ "login": "jcho19", "id": 107211437, "node_id": "U_kgDOBmPqrQ", "avatar_url": "https://avatars.githubusercontent.com/u/107211437?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jcho19", "html_url": "https://github.com/jcho19", "followers_url": "https://api.github.com/users/jcho19/followers", "following_url": "https://api.github.com/users/jcho19/following{/other_user}", "gists_url": "https://api.github.com/users/jcho19/gists{/gist_id}", "starred_url": "https://api.github.com/users/jcho19/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jcho19/subscriptions", "organizations_url": "https://api.github.com/users/jcho19/orgs", "repos_url": "https://api.github.com/users/jcho19/repos", "events_url": "https://api.github.com/users/jcho19/events{/privacy}", "received_events_url": "https://api.github.com/users/jcho19/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-01-26T01:45:45
2023-01-26T08:48:45
2023-01-26T08:48:45
NONE
null
### Describe the bug The structure of my dataset folder called "my_dataset" is : data metadata.csv The data folder consists of all mp3 files and metadata.csv consist of file locations like 'data/...mp3 and transcriptions. There's 400+ mp3 files and corresponding transcriptions for my dataset. When I run the following: ds = load_dataset("audiofolder", data_dir="my_dataset") I get: Using custom data configuration default-... Downloading and preparing dataset audiofolder/default to /... Downloading data files: 0%| | 0/2 [00:00<?, ?it/s] Downloading data files: 0it [00:00, ?it/s] Extracting data files: 0it [00:00, ?it/s] Generating train split: 0 examples [00:00, ? examples/s] Dataset audiofolder downloaded and prepared to /.... Subsequent calls will reuse this data. 0%| | 0/1 [00:00<?, ?it/s] DatasetDict({ train: Dataset({ features: ['audio', 'transcription'], num_rows: 1 }) }) ### Steps to reproduce the bug Create a dataset folder called 'my_dataset' with a subfolder called 'data' that has mp3 files. Also, create metadata.csv that has file locations like 'data/...mp3' and their corresponding transcription. Run: ds = load_dataset("audiofolder", data_dir="my_dataset") ### Expected behavior It should generate a dataset with numerous rows. ### Environment info Run on Jupyter notebook
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5465/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5465/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5464
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5464/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5464/comments
https://api.github.com/repos/huggingface/datasets/issues/5464/events
https://github.com/huggingface/datasets/issues/5464
1,557,462,104
I_kwDODunzps5c1PxY
5,464
NonMatchingChecksumError for hendrycks_test
{ "login": "sarahwie", "id": 8027676, "node_id": "MDQ6VXNlcjgwMjc2NzY=", "avatar_url": "https://avatars.githubusercontent.com/u/8027676?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sarahwie", "html_url": "https://github.com/sarahwie", "followers_url": "https://api.github.com/users/sarahwie/followers", "following_url": "https://api.github.com/users/sarahwie/following{/other_user}", "gists_url": "https://api.github.com/users/sarahwie/gists{/gist_id}", "starred_url": "https://api.github.com/users/sarahwie/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sarahwie/subscriptions", "organizations_url": "https://api.github.com/users/sarahwie/orgs", "repos_url": "https://api.github.com/users/sarahwie/repos", "events_url": "https://api.github.com/users/sarahwie/events{/privacy}", "received_events_url": "https://api.github.com/users/sarahwie/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Thanks for reporting, @sarahwie.\r\n\r\nPlease note this issue was already fixed in `datasets` 2.6.0 version:\r\n- #5040\r\n\r\nIf you update your `datasets` version, you will be able to load the dataset:\r\n```\r\npip install -U datasets\r\n```", "Oops, missed that I needed to upgrade. Thanks!" ]
2023-01-26T00:43:23
2023-01-27T05:44:31
2023-01-26T07:41:58
NONE
null
### Describe the bug The checksum of the file has likely changed on the remote host. ### Steps to reproduce the bug `dataset = nlp.load_dataset("hendrycks_test", "anatomy")` ### Expected behavior no error thrown ### Environment info - `datasets` version: 2.2.1 - Platform: macOS-13.1-arm64-arm-64bit - Python version: 3.9.13 - PyArrow version: 9.0.0 - Pandas version: 1.5.1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5464/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5464/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5463
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5463/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5463/comments
https://api.github.com/repos/huggingface/datasets/issues/5463/events
https://github.com/huggingface/datasets/pull/5463
1,557,021,041
PR_kwDODunzps5IiGWb
5,463
Imagefolder docs: mention support of CSV and ZIP
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009559 / 0.011353 (-0.001794) | 0.006425 / 0.011008 (-0.004583) | 0.112951 / 0.038508 (0.074443) | 0.030835 / 0.023109 (0.007725) | 0.313846 / 0.275898 (0.037948) | 0.352780 / 0.323480 (0.029301) | 0.007740 / 0.007986 (-0.000246) | 0.006843 / 0.004328 (0.002515) | 0.082632 / 0.004250 (0.078382) | 0.039704 / 0.037052 (0.002652) | 0.328526 / 0.258489 (0.070037) | 0.369162 / 0.293841 (0.075321) | 0.047603 / 0.128546 (-0.080943) | 0.015834 / 0.075646 (-0.059812) | 0.385912 / 0.419271 (-0.033360) | 0.053838 / 0.043533 (0.010306) | 0.325778 / 0.255139 (0.070639) | 0.361863 / 0.283200 (0.078663) | 0.097388 / 0.141683 (-0.044295) | 1.510132 / 1.452155 (0.057978) | 1.555980 / 1.492716 (0.063264) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210792 / 0.018006 (0.192786) | 0.507270 / 0.000490 (0.506780) | 0.002383 / 0.000200 (0.002183) | 0.000095 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023057 / 0.037411 (-0.014355) | 0.103471 / 0.014526 (0.088945) | 0.111671 / 0.176557 (-0.064885) | 0.145665 / 0.737135 (-0.591470) | 0.131447 / 0.296338 (-0.164891) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.502979 / 0.215209 (0.287770) | 5.111471 / 2.077655 (3.033816) | 2.093604 / 1.504120 (0.589484) | 1.761342 / 1.541195 (0.220148) | 1.919485 / 1.468490 (0.450995) | 1.065672 / 4.584777 (-3.519105) | 5.109746 / 3.745712 (1.364034) | 4.694027 / 5.269862 (-0.575835) | 2.438401 / 4.565676 (-2.127275) | 0.133579 / 0.424275 (-0.290696) | 0.012355 / 0.007607 (0.004748) | 0.669077 / 0.226044 (0.443033) | 6.533905 / 2.268929 (4.264976) | 2.698832 / 55.444624 (-52.745792) | 2.146377 / 6.876477 (-4.730100) | 2.220563 / 2.142072 (0.078491) | 1.287855 / 4.805227 (-3.517372) | 0.238221 / 6.500664 (-6.262443) | 0.071426 / 0.075469 (-0.004043) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.332659 / 1.841788 (-0.509129) | 15.610100 / 8.074308 (7.535791) | 16.691117 / 10.191392 (6.499725) | 0.226338 / 0.680424 (-0.454086) | 0.039964 / 0.534201 (-0.494237) | 0.462911 / 0.579283 (-0.116372) | 0.575923 / 0.434364 (0.141560) | 0.592583 / 0.540337 (0.052245) | 0.658552 / 1.386936 (-0.728384) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008388 / 0.011353 (-0.002965) | 0.005360 / 0.011008 (-0.005648) | 0.104574 / 0.038508 (0.066066) | 0.030109 / 0.023109 (0.007000) | 0.389294 / 0.275898 (0.113396) | 0.424813 / 0.323480 (0.101333) | 0.006629 / 0.007986 (-0.001356) | 0.005222 / 0.004328 (0.000893) | 0.080157 / 0.004250 (0.075907) | 0.045811 / 0.037052 (0.008759) | 0.398708 / 0.258489 (0.140219) | 0.429449 / 0.293841 (0.135608) | 0.052242 / 0.128546 (-0.076304) | 0.017439 / 0.075646 (-0.058207) | 0.362678 / 0.419271 (-0.056593) | 0.054151 / 0.043533 (0.010618) | 0.387932 / 0.255139 (0.132793) | 0.410544 / 0.283200 (0.127344) | 0.101210 / 0.141683 (-0.040473) | 1.486496 / 1.452155 (0.034341) | 1.576404 / 1.492716 (0.083687) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.259468 / 0.018006 (0.241461) | 0.521661 / 0.000490 (0.521172) | 0.000456 / 0.000200 (0.000256) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027045 / 0.037411 (-0.010366) | 0.107615 / 0.014526 (0.093089) | 0.133228 / 0.176557 (-0.043329) | 0.156807 / 0.737135 (-0.580328) | 0.125226 / 0.296338 (-0.171113) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.528804 / 0.215209 (0.313595) | 5.516402 / 2.077655 (3.438748) | 2.387531 / 1.504120 (0.883412) | 2.084734 / 1.541195 (0.543539) | 2.091894 / 1.468490 (0.623404) | 1.089761 / 4.584777 (-3.495016) | 5.093067 / 3.745712 (1.347355) | 2.670349 / 5.269862 (-2.599512) | 1.784723 / 4.565676 (-2.780953) | 0.125528 / 0.424275 (-0.298747) | 0.013702 / 0.007607 (0.006095) | 0.667755 / 0.226044 (0.441710) | 6.653900 / 2.268929 (4.384972) | 3.006058 / 55.444624 (-52.438567) | 2.512919 / 6.876477 (-4.363558) | 2.546824 / 2.142072 (0.404751) | 1.269008 / 4.805227 (-3.536219) | 0.234388 / 6.500664 (-6.266276) | 0.065675 / 0.075469 (-0.009795) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.372222 / 1.841788 (-0.469566) | 15.565156 / 8.074308 (7.490848) | 16.800666 / 10.191392 (6.609274) | 0.220656 / 0.680424 (-0.459768) | 0.023690 / 0.534201 (-0.510511) | 0.450049 / 0.579283 (-0.129234) | 0.580433 / 0.434364 (0.146069) | 0.558899 / 0.540337 (0.018561) | 0.676799 / 1.386936 (-0.710137) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6cc5dcacecf41efc566385b323a3ca72ab44db36 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009440 / 0.011353 (-0.001913) | 0.005159 / 0.011008 (-0.005849) | 0.099152 / 0.038508 (0.060644) | 0.035939 / 0.023109 (0.012830) | 0.300968 / 0.275898 (0.025070) | 0.365676 / 0.323480 (0.042196) | 0.008220 / 0.007986 (0.000235) | 0.004071 / 0.004328 (-0.000257) | 0.075216 / 0.004250 (0.070965) | 0.042173 / 0.037052 (0.005121) | 0.315055 / 0.258489 (0.056566) | 0.338287 / 0.293841 (0.044446) | 0.037789 / 0.128546 (-0.090758) | 0.011856 / 0.075646 (-0.063791) | 0.332975 / 0.419271 (-0.086297) | 0.047087 / 0.043533 (0.003554) | 0.295107 / 0.255139 (0.039968) | 0.315416 / 0.283200 (0.032217) | 0.102273 / 0.141683 (-0.039410) | 1.464908 / 1.452155 (0.012754) | 1.500281 / 1.492716 (0.007565) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208522 / 0.018006 (0.190516) | 0.446576 / 0.000490 (0.446086) | 0.005766 / 0.000200 (0.005566) | 0.000084 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027924 / 0.037411 (-0.009487) | 0.111296 / 0.014526 (0.096771) | 0.119055 / 0.176557 (-0.057502) | 0.157755 / 0.737135 (-0.579381) | 0.125539 / 0.296338 (-0.170799) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395683 / 0.215209 (0.180474) | 3.962696 / 2.077655 (1.885042) | 1.789511 / 1.504120 (0.285391) | 1.591541 / 1.541195 (0.050346) | 1.661276 / 1.468490 (0.192786) | 0.693524 / 4.584777 (-3.891253) | 3.836526 / 3.745712 (0.090813) | 2.187284 / 5.269862 (-3.082578) | 1.521420 / 4.565676 (-3.044257) | 0.084370 / 0.424275 (-0.339905) | 0.012083 / 0.007607 (0.004476) | 0.498017 / 0.226044 (0.271972) | 4.982356 / 2.268929 (2.713428) | 2.235881 / 55.444624 (-53.208743) | 1.912067 / 6.876477 (-4.964410) | 2.052172 / 2.142072 (-0.089900) | 0.836232 / 4.805227 (-3.968995) | 0.165234 / 6.500664 (-6.335431) | 0.062933 / 0.075469 (-0.012536) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.197785 / 1.841788 (-0.644003) | 15.233655 / 8.074308 (7.159347) | 14.254450 / 10.191392 (4.063058) | 0.169149 / 0.680424 (-0.511274) | 0.028794 / 0.534201 (-0.505407) | 0.437214 / 0.579283 (-0.142069) | 0.434836 / 0.434364 (0.000472) | 0.531594 / 0.540337 (-0.008744) | 0.626266 / 1.386936 (-0.760670) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007394 / 0.011353 (-0.003959) | 0.005305 / 0.011008 (-0.005703) | 0.098888 / 0.038508 (0.060380) | 0.033069 / 0.023109 (0.009959) | 0.388427 / 0.275898 (0.112529) | 0.415216 / 0.323480 (0.091736) | 0.005610 / 0.007986 (-0.002375) | 0.004922 / 0.004328 (0.000593) | 0.073694 / 0.004250 (0.069443) | 0.047368 / 0.037052 (0.010315) | 0.379604 / 0.258489 (0.121115) | 0.424876 / 0.293841 (0.131035) | 0.039471 / 0.128546 (-0.089075) | 0.012219 / 0.075646 (-0.063427) | 0.345925 / 0.419271 (-0.073346) | 0.048981 / 0.043533 (0.005448) | 0.379303 / 0.255139 (0.124164) | 0.404682 / 0.283200 (0.121483) | 0.103932 / 0.141683 (-0.037751) | 1.490852 / 1.452155 (0.038697) | 1.578900 / 1.492716 (0.086183) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201393 / 0.018006 (0.183387) | 0.452484 / 0.000490 (0.451994) | 0.005627 / 0.000200 (0.005428) | 0.000129 / 0.000054 (0.000075) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029317 / 0.037411 (-0.008094) | 0.114904 / 0.014526 (0.100378) | 0.126678 / 0.176557 (-0.049878) | 0.178315 / 0.737135 (-0.558820) | 0.131603 / 0.296338 (-0.164736) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.459830 / 0.215209 (0.244621) | 4.595358 / 2.077655 (2.517703) | 2.383582 / 1.504120 (0.879462) | 2.181945 / 1.541195 (0.640750) | 2.309517 / 1.468490 (0.841027) | 0.704803 / 4.584777 (-3.879974) | 3.820411 / 3.745712 (0.074698) | 4.872173 / 5.269862 (-0.397689) | 2.266090 / 4.565676 (-2.299586) | 0.085805 / 0.424275 (-0.338470) | 0.012488 / 0.007607 (0.004881) | 0.557500 / 0.226044 (0.331456) | 5.570830 / 2.268929 (3.301901) | 2.836202 / 55.444624 (-52.608422) | 2.530534 / 6.876477 (-4.345943) | 2.599792 / 2.142072 (0.457720) | 0.843852 / 4.805227 (-3.961376) | 0.169427 / 6.500664 (-6.331237) | 0.065521 / 0.075469 (-0.009948) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.246014 / 1.841788 (-0.595774) | 15.455336 / 8.074308 (7.381028) | 13.559111 / 10.191392 (3.367719) | 0.169131 / 0.680424 (-0.511293) | 0.017812 / 0.534201 (-0.516389) | 0.421161 / 0.579283 (-0.158122) | 0.458286 / 0.434364 (0.023922) | 0.534692 / 0.540337 (-0.005645) | 0.639299 / 1.386936 (-0.747637) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2b7558953b5a071194356bbe4c596a2890a3b847 \"CML watermark\")\n" ]
2023-01-25T17:24:01
2023-01-25T18:33:35
2023-01-25T18:26:15
MEMBER
null
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5463/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5463/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5463", "html_url": "https://github.com/huggingface/datasets/pull/5463", "diff_url": "https://github.com/huggingface/datasets/pull/5463.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5463.patch", "merged_at": "2023-01-25T18:26:15" }
true
https://api.github.com/repos/huggingface/datasets/issues/5462
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5462/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5462/comments
https://api.github.com/repos/huggingface/datasets/issues/5462/events
https://github.com/huggingface/datasets/pull/5462
1,556,572,144
PR_kwDODunzps5Iglqu
5,462
Concatenate on axis=1 with misaligned blocks
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008860 / 0.011353 (-0.002493) | 0.004564 / 0.011008 (-0.006444) | 0.101556 / 0.038508 (0.063048) | 0.030000 / 0.023109 (0.006891) | 0.304404 / 0.275898 (0.028506) | 0.366247 / 0.323480 (0.042767) | 0.007182 / 0.007986 (-0.000804) | 0.003583 / 0.004328 (-0.000746) | 0.079665 / 0.004250 (0.075415) | 0.036529 / 0.037052 (-0.000523) | 0.310998 / 0.258489 (0.052509) | 0.346954 / 0.293841 (0.053113) | 0.034098 / 0.128546 (-0.094448) | 0.011576 / 0.075646 (-0.064070) | 0.320448 / 0.419271 (-0.098824) | 0.043328 / 0.043533 (-0.000205) | 0.307317 / 0.255139 (0.052178) | 0.325071 / 0.283200 (0.041871) | 0.096406 / 0.141683 (-0.045277) | 1.540331 / 1.452155 (0.088176) | 1.589533 / 1.492716 (0.096817) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.011034 / 0.018006 (-0.006972) | 0.422066 / 0.000490 (0.421577) | 0.002409 / 0.000200 (0.002209) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023703 / 0.037411 (-0.013708) | 0.099935 / 0.014526 (0.085409) | 0.105966 / 0.176557 (-0.070591) | 0.142259 / 0.737135 (-0.594876) | 0.109327 / 0.296338 (-0.187011) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418381 / 0.215209 (0.203172) | 4.177564 / 2.077655 (2.099909) | 1.880196 / 1.504120 (0.376076) | 1.669169 / 1.541195 (0.127974) | 1.725989 / 1.468490 (0.257499) | 0.689384 / 4.584777 (-3.895393) | 3.380963 / 3.745712 (-0.364749) | 1.884192 / 5.269862 (-3.385670) | 1.162409 / 4.565676 (-3.403268) | 0.082045 / 0.424275 (-0.342230) | 0.012575 / 0.007607 (0.004968) | 0.525824 / 0.226044 (0.299779) | 5.272574 / 2.268929 (3.003646) | 2.283492 / 55.444624 (-53.161132) | 1.947390 / 6.876477 (-4.929087) | 2.013790 / 2.142072 (-0.128283) | 0.806280 / 4.805227 (-3.998948) | 0.149267 / 6.500664 (-6.351397) | 0.066967 / 0.075469 (-0.008502) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.216511 / 1.841788 (-0.625277) | 13.869829 / 8.074308 (5.795521) | 14.189967 / 10.191392 (3.998575) | 0.148716 / 0.680424 (-0.531708) | 0.028324 / 0.534201 (-0.505877) | 0.390856 / 0.579283 (-0.188427) | 0.404389 / 0.434364 (-0.029975) | 0.456050 / 0.540337 (-0.084287) | 0.544139 / 1.386936 (-0.842797) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006727 / 0.011353 (-0.004626) | 0.004515 / 0.011008 (-0.006494) | 0.098791 / 0.038508 (0.060283) | 0.027596 / 0.023109 (0.004487) | 0.439066 / 0.275898 (0.163168) | 0.480555 / 0.323480 (0.157076) | 0.005066 / 0.007986 (-0.002920) | 0.004669 / 0.004328 (0.000341) | 0.075334 / 0.004250 (0.071084) | 0.039779 / 0.037052 (0.002726) | 0.439860 / 0.258489 (0.181371) | 0.480787 / 0.293841 (0.186946) | 0.031550 / 0.128546 (-0.096996) | 0.011668 / 0.075646 (-0.063978) | 0.317348 / 0.419271 (-0.101923) | 0.041312 / 0.043533 (-0.002220) | 0.442934 / 0.255139 (0.187795) | 0.463677 / 0.283200 (0.180478) | 0.090066 / 0.141683 (-0.051617) | 1.544152 / 1.452155 (0.091998) | 1.584455 / 1.492716 (0.091738) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224284 / 0.018006 (0.206278) | 0.406982 / 0.000490 (0.406492) | 0.000427 / 0.000200 (0.000227) | 0.000061 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024914 / 0.037411 (-0.012497) | 0.102608 / 0.014526 (0.088082) | 0.106931 / 0.176557 (-0.069626) | 0.140828 / 0.737135 (-0.596308) | 0.112015 / 0.296338 (-0.184324) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471078 / 0.215209 (0.255869) | 4.705742 / 2.077655 (2.628088) | 2.437442 / 1.504120 (0.933322) | 2.242768 / 1.541195 (0.701573) | 2.302158 / 1.468490 (0.833668) | 0.697314 / 4.584777 (-3.887462) | 3.357730 / 3.745712 (-0.387982) | 1.913306 / 5.269862 (-3.356556) | 1.173879 / 4.565676 (-3.391798) | 0.083257 / 0.424275 (-0.341018) | 0.012480 / 0.007607 (0.004873) | 0.573407 / 0.226044 (0.347362) | 5.728650 / 2.268929 (3.459721) | 2.868863 / 55.444624 (-52.575761) | 2.548640 / 6.876477 (-4.327837) | 2.596622 / 2.142072 (0.454549) | 0.805563 / 4.805227 (-3.999664) | 0.150860 / 6.500664 (-6.349804) | 0.068344 / 0.075469 (-0.007125) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.300368 / 1.841788 (-0.541420) | 13.920451 / 8.074308 (5.846143) | 14.222430 / 10.191392 (4.031038) | 0.152497 / 0.680424 (-0.527927) | 0.017415 / 0.534201 (-0.516786) | 0.378827 / 0.579283 (-0.200456) | 0.384165 / 0.434364 (-0.050199) | 0.439364 / 0.540337 (-0.100973) | 0.525710 / 1.386936 (-0.861226) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2cd22277fa87e02ad9970483f5b75aacdfbf9a70 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008482 / 0.011353 (-0.002871) | 0.004405 / 0.011008 (-0.006604) | 0.099662 / 0.038508 (0.061154) | 0.029062 / 0.023109 (0.005953) | 0.298329 / 0.275898 (0.022431) | 0.332837 / 0.323480 (0.009357) | 0.006760 / 0.007986 (-0.001225) | 0.003290 / 0.004328 (-0.001039) | 0.077659 / 0.004250 (0.073409) | 0.034745 / 0.037052 (-0.002307) | 0.303134 / 0.258489 (0.044644) | 0.346402 / 0.293841 (0.052561) | 0.033511 / 0.128546 (-0.095035) | 0.011464 / 0.075646 (-0.064183) | 0.322932 / 0.419271 (-0.096340) | 0.040697 / 0.043533 (-0.002836) | 0.301951 / 0.255139 (0.046812) | 0.328961 / 0.283200 (0.045761) | 0.084802 / 0.141683 (-0.056881) | 1.506247 / 1.452155 (0.054092) | 1.547631 / 1.492716 (0.054915) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.190370 / 0.018006 (0.172363) | 0.405786 / 0.000490 (0.405297) | 0.002196 / 0.000200 (0.001997) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022958 / 0.037411 (-0.014453) | 0.095736 / 0.014526 (0.081210) | 0.103684 / 0.176557 (-0.072872) | 0.138200 / 0.737135 (-0.598936) | 0.105618 / 0.296338 (-0.190721) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415239 / 0.215209 (0.200030) | 4.147223 / 2.077655 (2.069569) | 1.850322 / 1.504120 (0.346202) | 1.662815 / 1.541195 (0.121620) | 1.671563 / 1.468490 (0.203073) | 0.693806 / 4.584777 (-3.890971) | 3.352938 / 3.745712 (-0.392774) | 1.849257 / 5.269862 (-3.420604) | 1.161603 / 4.565676 (-3.404074) | 0.081884 / 0.424275 (-0.342391) | 0.012726 / 0.007607 (0.005119) | 0.521105 / 0.226044 (0.295061) | 5.231910 / 2.268929 (2.962981) | 2.306073 / 55.444624 (-53.138551) | 1.950449 / 6.876477 (-4.926028) | 1.988433 / 2.142072 (-0.153640) | 0.811168 / 4.805227 (-3.994059) | 0.149960 / 6.500664 (-6.350704) | 0.064845 / 0.075469 (-0.010624) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.221487 / 1.841788 (-0.620301) | 13.756534 / 8.074308 (5.682226) | 13.825369 / 10.191392 (3.633977) | 0.155641 / 0.680424 (-0.524783) | 0.028444 / 0.534201 (-0.505757) | 0.390364 / 0.579283 (-0.188919) | 0.397592 / 0.434364 (-0.036772) | 0.455905 / 0.540337 (-0.084433) | 0.534606 / 1.386936 (-0.852330) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006281 / 0.011353 (-0.005071) | 0.004533 / 0.011008 (-0.006475) | 0.098328 / 0.038508 (0.059820) | 0.026998 / 0.023109 (0.003889) | 0.424814 / 0.275898 (0.148915) | 0.457653 / 0.323480 (0.134173) | 0.004617 / 0.007986 (-0.003368) | 0.003320 / 0.004328 (-0.001009) | 0.075884 / 0.004250 (0.071634) | 0.035865 / 0.037052 (-0.001187) | 0.431674 / 0.258489 (0.173185) | 0.468286 / 0.293841 (0.174445) | 0.031915 / 0.128546 (-0.096631) | 0.011680 / 0.075646 (-0.063967) | 0.319575 / 0.419271 (-0.099696) | 0.047792 / 0.043533 (0.004259) | 0.428191 / 0.255139 (0.173052) | 0.445657 / 0.283200 (0.162458) | 0.090464 / 0.141683 (-0.051218) | 1.465480 / 1.452155 (0.013326) | 1.548985 / 1.492716 (0.056268) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.185671 / 0.018006 (0.167664) | 0.399274 / 0.000490 (0.398784) | 0.002822 / 0.000200 (0.002622) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025934 / 0.037411 (-0.011477) | 0.099480 / 0.014526 (0.084954) | 0.110264 / 0.176557 (-0.066293) | 0.140558 / 0.737135 (-0.596577) | 0.110832 / 0.296338 (-0.185507) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.473491 / 0.215209 (0.258282) | 4.722507 / 2.077655 (2.644852) | 2.456242 / 1.504120 (0.952122) | 2.255999 / 1.541195 (0.714804) | 2.300816 / 1.468490 (0.832326) | 0.698226 / 4.584777 (-3.886551) | 3.397296 / 3.745712 (-0.348416) | 2.741674 / 5.269862 (-2.528187) | 1.462103 / 4.565676 (-3.103573) | 0.082736 / 0.424275 (-0.341539) | 0.012183 / 0.007607 (0.004576) | 0.580144 / 0.226044 (0.354099) | 5.794351 / 2.268929 (3.525422) | 2.881201 / 55.444624 (-52.563423) | 2.544384 / 6.876477 (-4.332093) | 2.555227 / 2.142072 (0.413154) | 0.805849 / 4.805227 (-3.999378) | 0.151822 / 6.500664 (-6.348842) | 0.067477 / 0.075469 (-0.007992) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.300224 / 1.841788 (-0.541564) | 13.595361 / 8.074308 (5.521053) | 13.967622 / 10.191392 (3.776230) | 0.129222 / 0.680424 (-0.551202) | 0.016939 / 0.534201 (-0.517262) | 0.375190 / 0.579283 (-0.204094) | 0.383511 / 0.434364 (-0.050853) | 0.437179 / 0.540337 (-0.103158) | 0.525674 / 1.386936 (-0.861262) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7ed52db3d67cc8d0f2adfe53b2ec8d1124a174b8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012364 / 0.011353 (0.001011) | 0.006098 / 0.011008 (-0.004911) | 0.158908 / 0.038508 (0.120400) | 0.039798 / 0.023109 (0.016689) | 0.383786 / 0.275898 (0.107888) | 0.533961 / 0.323480 (0.210481) | 0.012079 / 0.007986 (0.004094) | 0.006483 / 0.004328 (0.002155) | 0.109660 / 0.004250 (0.105410) | 0.048391 / 0.037052 (0.011339) | 0.447426 / 0.258489 (0.188937) | 0.477292 / 0.293841 (0.183451) | 0.066492 / 0.128546 (-0.062054) | 0.021155 / 0.075646 (-0.054492) | 0.474473 / 0.419271 (0.055202) | 0.063520 / 0.043533 (0.019987) | 0.444941 / 0.255139 (0.189802) | 0.450675 / 0.283200 (0.167475) | 0.129236 / 0.141683 (-0.012447) | 2.009362 / 1.452155 (0.557207) | 1.912067 / 1.492716 (0.419350) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260384 / 0.018006 (0.242378) | 0.577654 / 0.000490 (0.577165) | 0.004977 / 0.000200 (0.004777) | 0.000110 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028101 / 0.037411 (-0.009310) | 0.161680 / 0.014526 (0.147154) | 0.146107 / 0.176557 (-0.030450) | 0.173878 / 0.737135 (-0.563257) | 0.186149 / 0.296338 (-0.110190) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.689835 / 0.215209 (0.474626) | 6.775888 / 2.077655 (4.698234) | 2.885499 / 1.504120 (1.381379) | 2.486855 / 1.541195 (0.945660) | 2.540831 / 1.468490 (1.072341) | 1.328135 / 4.584777 (-3.256642) | 5.964983 / 3.745712 (2.219271) | 3.400713 / 5.269862 (-1.869149) | 2.423257 / 4.565676 (-2.142419) | 0.129767 / 0.424275 (-0.294508) | 0.017936 / 0.007607 (0.010328) | 0.909284 / 0.226044 (0.683239) | 8.778791 / 2.268929 (6.509863) | 3.890757 / 55.444624 (-51.553867) | 3.072116 / 6.876477 (-3.804360) | 3.085390 / 2.142072 (0.943318) | 1.571710 / 4.805227 (-3.233517) | 0.279290 / 6.500664 (-6.221374) | 0.087775 / 0.075469 (0.012306) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.751223 / 1.841788 (-0.090564) | 20.313135 / 8.074308 (12.238827) | 22.793800 / 10.191392 (12.602408) | 0.296052 / 0.680424 (-0.384372) | 0.053420 / 0.534201 (-0.480781) | 0.600626 / 0.579283 (0.021343) | 0.634505 / 0.434364 (0.200142) | 0.724000 / 0.540337 (0.183663) | 0.869283 / 1.386936 (-0.517653) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.014876 / 0.011353 (0.003523) | 0.008113 / 0.011008 (-0.002895) | 0.177038 / 0.038508 (0.138530) | 0.050825 / 0.023109 (0.027716) | 0.473989 / 0.275898 (0.198091) | 0.601058 / 0.323480 (0.277578) | 0.007536 / 0.007986 (-0.000450) | 0.006761 / 0.004328 (0.002432) | 0.105260 / 0.004250 (0.101010) | 0.073960 / 0.037052 (0.036908) | 0.447711 / 0.258489 (0.189222) | 0.609998 / 0.293841 (0.316157) | 0.061280 / 0.128546 (-0.067267) | 0.019370 / 0.075646 (-0.056276) | 0.510466 / 0.419271 (0.091194) | 0.062695 / 0.043533 (0.019162) | 0.436778 / 0.255139 (0.181639) | 0.489916 / 0.283200 (0.206717) | 0.137305 / 0.141683 (-0.004378) | 1.801554 / 1.452155 (0.349399) | 2.082409 / 1.492716 (0.589692) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.291304 / 0.018006 (0.273298) | 0.599041 / 0.000490 (0.598551) | 0.008017 / 0.000200 (0.007817) | 0.000127 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031243 / 0.037411 (-0.006169) | 0.139689 / 0.014526 (0.125163) | 0.138678 / 0.176557 (-0.037878) | 0.180458 / 0.737135 (-0.556677) | 0.149753 / 0.296338 (-0.146585) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.699692 / 0.215209 (0.484482) | 7.273327 / 2.077655 (5.195672) | 3.222650 / 1.504120 (1.718530) | 2.679424 / 1.541195 (1.138229) | 2.842378 / 1.468490 (1.373888) | 1.394633 / 4.584777 (-3.190143) | 6.379970 / 3.745712 (2.634258) | 5.944663 / 5.269862 (0.674801) | 3.105214 / 4.565676 (-1.460462) | 0.138790 / 0.424275 (-0.285485) | 0.014211 / 0.007607 (0.006604) | 0.815275 / 0.226044 (0.589230) | 8.549334 / 2.268929 (6.280405) | 3.754795 / 55.444624 (-51.689829) | 3.125222 / 6.876477 (-3.751255) | 3.269639 / 2.142072 (1.127566) | 1.464187 / 4.805227 (-3.341040) | 0.314557 / 6.500664 (-6.186107) | 0.107354 / 0.075469 (0.031885) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.480793 / 1.841788 (-0.360995) | 16.770328 / 8.074308 (8.696019) | 18.054861 / 10.191392 (7.863469) | 0.198257 / 0.680424 (-0.482167) | 0.026493 / 0.534201 (-0.507708) | 0.489701 / 0.579283 (-0.089582) | 0.540890 / 0.434364 (0.106526) | 0.566675 / 0.540337 (0.026337) | 0.661918 / 1.386936 (-0.725018) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c4b839b50e9a81693e065f5299990026b97f6580 \"CML watermark\")\n" ]
2023-01-25T12:33:22
2023-01-26T09:37:00
2023-01-26T09:27:19
MEMBER
null
Allow to concatenate on axis 1 two tables made of misaligned blocks. For example if the first table has 2 row blocks of 3 rows each, and the second table has 3 row blocks or 2 rows each. To do that, I slice the row blocks to re-align the blocks. Fix https://github.com/huggingface/datasets/issues/5413
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5462/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5462/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5462", "html_url": "https://github.com/huggingface/datasets/pull/5462", "diff_url": "https://github.com/huggingface/datasets/pull/5462.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5462.patch", "merged_at": "2023-01-26T09:27:19" }
true
https://api.github.com/repos/huggingface/datasets/issues/5461
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5461/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5461/comments
https://api.github.com/repos/huggingface/datasets/issues/5461/events
https://github.com/huggingface/datasets/issues/5461
1,555,532,719
I_kwDODunzps5ct4uv
5,461
Discrepancy in `nyu_depth_v2` dataset
{ "login": "awsaf49", "id": 36858976, "node_id": "MDQ6VXNlcjM2ODU4OTc2", "avatar_url": "https://avatars.githubusercontent.com/u/36858976?v=4", "gravatar_id": "", "url": "https://api.github.com/users/awsaf49", "html_url": "https://github.com/awsaf49", "followers_url": "https://api.github.com/users/awsaf49/followers", "following_url": "https://api.github.com/users/awsaf49/following{/other_user}", "gists_url": "https://api.github.com/users/awsaf49/gists{/gist_id}", "starred_url": "https://api.github.com/users/awsaf49/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/awsaf49/subscriptions", "organizations_url": "https://api.github.com/users/awsaf49/orgs", "repos_url": "https://api.github.com/users/awsaf49/repos", "events_url": "https://api.github.com/users/awsaf49/events{/privacy}", "received_events_url": "https://api.github.com/users/awsaf49/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Ccing @dwofk (the author of `fast-depth`). \r\n\r\nThanks, @awsaf49 for reporting this. I believe this is because the NYU Depth V2 shipped from `fast-depth` is already preprocessed. \r\n\r\nIf you think it might be better to have the NYU Depth V2 dataset from BTS [here](https://huggingface.co/datasets/sayakpaul/nyu_depth_v2) feel free to open a PR, I am happy to provide guidance :) ", "Good catch ! Ideally it would be nice to have the datasets in the raw form, this way users can choose whatever processing they want to apply", "> Ccing @dwofk (the author of `fast-depth`).\r\n> \r\n> Thanks, @awsaf49 for reporting this. I believe this is because the NYU Depth V2 shipped from `fast-depth` is already preprocessed.\r\n> \r\n> If you think it might be better to have the NYU Depth V2 dataset from BTS [here](https://huggingface.co/datasets/sayakpaul/nyu_depth_v2) feel free to open a PR, I am happy to provide guidance :)\r\n\r\n@sayakpaul I would love to create a PR on this. As this will be my first PR here, some guidance would be helpful.\r\n\r\nNeed a bit of advice on the dataset, there are three publicly available datasets. Which one should I consider for PR?\r\n1. [BTS](https://github.com/cleinc/bts): Containst train/test: 36K/654 data, dtype = `uint16` hence more precise\r\n2. [DenseDepth](https://github.com/ialhashim/DenseDepth) It contains train/test: 50K/654 data, dtype = `uint8` hence less precise\r\n3. [Official](https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html#raw_parts): Size is big 400GB+, requires **MatLab** code for fixing **projection** and **sync**, DataType: `pgm` and `dump` hence can't be used directly.\r\n\r\ncc: @lhoestq\r\n\r\n", "I think BTS. Repositories like https://github.com/vinvino02/GLPDepth usually use BTS. Also, just for clarity, the PR will be to https://huggingface.co/datasets/sayakpaul/nyu_depth_v2. Once we have worked it out, we can update the following things:\r\n\r\n* https://github.com/huggingface/blog/pull/718\r\n* https://huggingface.co/docs/datasets/main/en/depth_estimation\r\n\r\nDon't worry about it if it seems overwhelming. We will work it out together :) \r\n\r\n@lhoestq what do you think? ", "@sayakpaul If I get this right I have to,\r\n1. Create a PR on https://huggingface.co/datasets/sayakpaul/nyu_depth_v2\r\n2. Create a PR on https://github.com/huggingface/blog\r\n3. Create a PR on https://github.com/huggingface/datasets to update https://github.com/huggingface/datasets/blob/main/docs/source/depth_estimation.mdx", "The last two are low-hanging fruits. Don't worry about them. ", "Yup opening a PR to use BTS on https://huggingface.co/datasets/sayakpaul/nyu_depth_v2 sounds good :) Thanks for the help !", "Finally, I have found the origin of the **discretized depth map**. When I first loaded the datasets from HF I noticed it was 30GB but in DenseDepth data is only 4GB with dtype=uint8. This means data from fast-depth (before loading to HF) must have high precision. So when I tried to dig deeper by directly loading depth_map from `h5py`, I found depth_map from `h5py` came with `float32`. But when the data is processed in HF with `datasets.Image()` it was directly converted to `uint8` from `float32` hence the **discretized** depth map.\r\nhttps://github.com/huggingface/datasets/blob/c78559cacbb0ca6e0bc8bfc313cc0359f8c23ead/src/datasets/features/image.py#L91-L93\r\n\r\n## Solutions:\r\n\r\n#### 1. Array2D\r\nUse `Array2D` feature with `float32` for depth_map \r\n\r\n* Code:\r\n```py\r\nFeatures({'depth_map': Array2D(shape=(480, 640), dtype='float32')})\r\n```\r\n* Pros:\r\nNo precision loss.\r\n\r\n* Cons:\r\nAs depth_map is saved as Array I think it can't be visuzlied in [hf.co/dataset](https://huggingface.co/datasets/sayakpaul/nyu_depth_v2) page like segmentation mask.\r\n\r\n#### 2. Uint16\r\nUse `uint16` as dtype for Image in `_h5_loader` for saving depth maps and accept `uint16` dtype in `datasets.Image()` feature.\r\n\r\n* Code\r\n```py\r\ndepth = np.array(h5f[\"depth\"])\r\ndepth /= 10.0 # [0, max_depth] -> [0, 1]\r\ndepth *= (2**16 -1) # transform from [0, 1] -> [0, 2^16 - 1]\r\ndepth = depth.astype('uint16')\r\n```\r\n* Pros:\r\n * We can visualize depth map in hf.co/datasets page like segmentation mask.\r\n * No need for post-processing.\r\n\r\n* Cons:\r\n * We need to make two change\r\n * Modify `_h5_loader` in https://huggingface.co/datasets/sayakpaul/nyu_depth_v2 to convert depth_map from `float32` to `uint16`.\r\n * Make sure `datasets.Image()` converts `np.ndarray` to `uint16` checking max value\r\n * Precision loss due to `float32` to `uint16`\r\n * Post-processing required for depth_map to transform from `[0, 2^16 - 1]` to `[0, max_depth]` before feeding them to model.", "Thanks so much for digging into this. \r\n\r\nSince the second solution entails changes to core datatypes in `datasets`, I think it's better to go with the first solution. \r\n\r\n@lhoestq WDYT?", "@sayakpaul Yes, Solution 1 requires minimal change and provides no precision loss. But I think support for `uint16` image would be a great addition as many datasets come with `uint16` image. For example [UW-Madison GI Tract Image Segmentation](https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation) dataset, here the image itself comes with `uint16` dtype rather than mask. So, saving `uint16` image with `uint8` will result in precision loss.\r\n\r\nPerhaps we can adapt solution 1 for this issue and Add support for `uint16` image separately?", "Using Array2D makes it not practical to use to train a model - in `transformers` we expect an image type.\r\n\r\nThere is a pull request to support more precision than uint8 in Image() here: https://github.com/huggingface/datasets/pull/5365/files\r\n\r\nwe can probably merge it today and do a release right away", "Fantastic, @lhoestq! \r\n\r\n@awsaf49 then let's wait for the PR to get merged and then take the next steps? ", "Sure", "The PR adds support for uint16 which is ok for BTS if I understand correctly, would it be ok for you ?", "If the main issue with the current version of NYU we have on the Hub is related to the precision loss stemming from `Image()`, I'd prefer if `Image()` supported float32 as well. ", "I also prefer `float32` as it offers more precision. But I'm not sure if we'll be able to visualize image with `float32` precision.", "We could have a separate loading for the float32 one using Array2D, but I feel like it's less convenient to use due to the amount of disk space and because it's not an Image() type. That's why I think uint16 is a better solution for users", "A bit confused here, If https://github.com/huggingface/datasets/pull/5365 gets merged won't this issue will be resolved automatically?", "Yes in theory :)", "actually float32 also seems to work in this PR (it just doesn't work for multi-channel)", "In that case, a new PR isn't necessary, right?", "Yep. I just tested from the PR and it works:\r\n```python\r\n>>> train_dataset = load_dataset(\"sayakpaul/nyu_depth_v2\", split=\"train\", streaming=True) \r\nDownloading readme: 100%|██████████████████| 8.71k/8.71k [00:00<00:00, 3.60MB/s]\r\n>>> next(iter(train_dataset))\r\n{'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=640x480 at 0x1382ED7F0>,\r\n 'depth_map': <PIL.TiffImagePlugin.TiffImageFile image mode=F size=640x480 at 0x1382EDF28>}\r\n>>> x = next(iter(train_dataset))\r\n>>> np.asarray(x[\"depth_map\"]) \r\narray([[0. , 0. , 0. , ..., 0. , 0. ,\r\n 0. ],\r\n [0. , 0. , 0. , ..., 0. , 0. ,\r\n 0. ],\r\n [0. , 0. , 0. , ..., 0. , 0. ,\r\n 0. ],\r\n ...,\r\n [0. , 2.2861192, 2.2861192, ..., 2.234162 , 2.234162 ,\r\n 0. ],\r\n [0. , 2.2861192, 2.2861192, ..., 2.234162 , 2.234162 ,\r\n 0. ],\r\n [0. , 2.2861192, 2.2861192, ..., 2.234162 , 2.234162 ,\r\n 0. ]], dtype=float32)\r\n```", "Great! the case is closed! This issue has been solved and I have to say, it was quite the thrill ride. I felt like Sherlock Holmes, solving a mystery and finding the bug🕵️‍♂️. But in all seriousness, it was a pleasure working on this issue and I'm glad we could get to the bottom of it.\r\n\r\nOn another note, should I consider closing the issue? I think we still need to make updates on https://github.com/huggingface/blog and https://github.com/huggingface/datasets/blob/main/docs/source/depth_estimation.mdx", "Haha thanks Mr Holmes :p\r\n\r\nmaybe let's close this issue when we're done updating the blog post and the documentation", "@awsaf49 thank you for your hard work! \r\n\r\nI am a little unsure why the other links need to be updated, though. They all rely on datasets internally. ", "I think depth_map still shows discretized version. It would be nice to have corrected one.\r\n<img src=\"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/depth_est_target_viz.png\" width = 300>", "Also, I think we need to make some changes in the code to visualize depth_map as it is `float32` . `plot.imshow()` supports either [0, 1] + float32 or [0. 255] + uint8", "Oh yes! Do you want to start with the fixes? Please feel free to say no but I wanted to make sure your contributions are reflected properly in our doc and the blog :)", "Yes I think that would be nice :)", "I'll make the changes tomorrow. I hope it's okay..." ]
2023-01-24T19:15:46
2023-02-06T20:52:00
null
CONTRIBUTOR
null
### Describe the bug I think there is a discrepancy between depth map of `nyu_depth_v2` dataset [here](https://huggingface.co/docs/datasets/main/en/depth_estimation) and actual depth map. Depth values somehow got **discretized/clipped** resulting in depth maps that are different from actual ones. Here is a side-by-side comparison, ![image](https://user-images.githubusercontent.com/36858976/214381162-1d9582c2-6750-4114-a01a-61ca1cd5f872.png) I tried to find the origin of this issue but sadly as I mentioned in tensorflow/datasets/issues/4674, the download link from `fast-depth` doesn't work anymore hence couldn't verify if the error originated there or during porting data from there to HF. Hi @sayakpaul, as you worked on huggingface/datasets/issues/5255, if you still have access to that data could you please share the data or perhaps checkout this issue? ### Steps to reproduce the bug This [notebook](https://colab.research.google.com/drive/1K3ZU8XUPRDOYD38MQS9nreQXJYitlKSW?usp=sharing#scrollTo=UEW7QSh0jf0i) from @sayakpaul could be used to generate depth maps and actual ground truths could be checked from this [dataset](https://www.kaggle.com/datasets/awsaf49/nyuv2-bts-dataset) from BTS repo. > Note: BTS dataset has only 36K data compared to the train-test 50K. They sampled the data as adjacent frames look quite the same ### Expected behavior Expected depth maps should be smooth rather than discrete/clipped. ### Environment info - `datasets` version: 2.8.1.dev0 - Platform: Linux-5.10.147+-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 9.0.0 - Pandas version: 1.3.5
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5461/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5461/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5460
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5460/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5460/comments
https://api.github.com/repos/huggingface/datasets/issues/5460/events
https://github.com/huggingface/datasets/pull/5460
1,555,387,532
PR_kwDODunzps5Icn9C
5,460
Document that removing all the columns returns an empty document and the num_row is lost
{ "login": "thomasw21", "id": 24695242, "node_id": "MDQ6VXNlcjI0Njk1MjQy", "avatar_url": "https://avatars.githubusercontent.com/u/24695242?v=4", "gravatar_id": "", "url": "https://api.github.com/users/thomasw21", "html_url": "https://github.com/thomasw21", "followers_url": "https://api.github.com/users/thomasw21/followers", "following_url": "https://api.github.com/users/thomasw21/following{/other_user}", "gists_url": "https://api.github.com/users/thomasw21/gists{/gist_id}", "starred_url": "https://api.github.com/users/thomasw21/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/thomasw21/subscriptions", "organizations_url": "https://api.github.com/users/thomasw21/orgs", "repos_url": "https://api.github.com/users/thomasw21/repos", "events_url": "https://api.github.com/users/thomasw21/events{/privacy}", "received_events_url": "https://api.github.com/users/thomasw21/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011812 / 0.011353 (0.000459) | 0.006878 / 0.011008 (-0.004130) | 0.128720 / 0.038508 (0.090212) | 0.038506 / 0.023109 (0.015397) | 0.359670 / 0.275898 (0.083772) | 0.422908 / 0.323480 (0.099428) | 0.010115 / 0.007986 (0.002129) | 0.004332 / 0.004328 (0.000004) | 0.096281 / 0.004250 (0.092031) | 0.048850 / 0.037052 (0.011798) | 0.373795 / 0.258489 (0.115306) | 0.414643 / 0.293841 (0.120802) | 0.057568 / 0.128546 (-0.070978) | 0.024135 / 0.075646 (-0.051512) | 0.411764 / 0.419271 (-0.007507) | 0.060167 / 0.043533 (0.016634) | 0.367119 / 0.255139 (0.111980) | 0.391813 / 0.283200 (0.108613) | 0.112125 / 0.141683 (-0.029558) | 1.869560 / 1.452155 (0.417406) | 1.845649 / 1.492716 (0.352932) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211449 / 0.018006 (0.193443) | 0.522453 / 0.000490 (0.521963) | 0.003984 / 0.000200 (0.003784) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026015 / 0.037411 (-0.011397) | 0.117747 / 0.014526 (0.103221) | 0.125037 / 0.176557 (-0.051520) | 0.168351 / 0.737135 (-0.568785) | 0.132390 / 0.296338 (-0.163949) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.605653 / 0.215209 (0.390444) | 5.883452 / 2.077655 (3.805798) | 2.367052 / 1.504120 (0.862932) | 2.137671 / 1.541195 (0.596476) | 2.042370 / 1.468490 (0.573880) | 1.168442 / 4.584777 (-3.416335) | 5.205236 / 3.745712 (1.459524) | 2.992514 / 5.269862 (-2.277348) | 2.191829 / 4.565676 (-2.373847) | 0.137702 / 0.424275 (-0.286574) | 0.015898 / 0.007607 (0.008291) | 0.783987 / 0.226044 (0.557942) | 7.768965 / 2.268929 (5.500036) | 3.249149 / 55.444624 (-52.195476) | 2.530687 / 6.876477 (-4.345790) | 2.675212 / 2.142072 (0.533140) | 1.482804 / 4.805227 (-3.322423) | 0.276845 / 6.500664 (-6.223819) | 0.080597 / 0.075469 (0.005128) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.519086 / 1.841788 (-0.322701) | 17.394093 / 8.074308 (9.319785) | 19.613554 / 10.191392 (9.422162) | 0.253291 / 0.680424 (-0.427133) | 0.047746 / 0.534201 (-0.486455) | 0.547114 / 0.579283 (-0.032170) | 0.623873 / 0.434364 (0.189509) | 0.631924 / 0.540337 (0.091586) | 0.744390 / 1.386936 (-0.642546) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009229 / 0.011353 (-0.002124) | 0.006206 / 0.011008 (-0.004802) | 0.121866 / 0.038508 (0.083357) | 0.033629 / 0.023109 (0.010519) | 0.435172 / 0.275898 (0.159274) | 0.472093 / 0.323480 (0.148613) | 0.006946 / 0.007986 (-0.001039) | 0.004848 / 0.004328 (0.000519) | 0.097289 / 0.004250 (0.093038) | 0.046982 / 0.037052 (0.009930) | 0.447365 / 0.258489 (0.188876) | 0.491213 / 0.293841 (0.197372) | 0.055486 / 0.128546 (-0.073060) | 0.019788 / 0.075646 (-0.055858) | 0.399830 / 0.419271 (-0.019441) | 0.058943 / 0.043533 (0.015411) | 0.447658 / 0.255139 (0.192519) | 0.465752 / 0.283200 (0.182552) | 0.110441 / 0.141683 (-0.031242) | 1.773155 / 1.452155 (0.321001) | 1.899370 / 1.492716 (0.406653) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191188 / 0.018006 (0.173181) | 0.523721 / 0.000490 (0.523232) | 0.004008 / 0.000200 (0.003808) | 0.000126 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032579 / 0.037411 (-0.004833) | 0.120870 / 0.014526 (0.106344) | 0.154991 / 0.176557 (-0.021565) | 0.175450 / 0.737135 (-0.561685) | 0.136526 / 0.296338 (-0.159813) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.627262 / 0.215209 (0.412052) | 6.457989 / 2.077655 (4.380334) | 2.935188 / 1.504120 (1.431068) | 2.558705 / 1.541195 (1.017510) | 2.669455 / 1.468490 (1.200965) | 1.228791 / 4.584777 (-3.355985) | 5.621262 / 3.745712 (1.875549) | 3.181775 / 5.269862 (-2.088086) | 2.115116 / 4.565676 (-2.450560) | 0.159348 / 0.424275 (-0.264927) | 0.013598 / 0.007607 (0.005991) | 0.834732 / 0.226044 (0.608687) | 8.051097 / 2.268929 (5.782168) | 3.761681 / 55.444624 (-51.682943) | 2.898158 / 6.876477 (-3.978319) | 2.936289 / 2.142072 (0.794217) | 1.476307 / 4.805227 (-3.328920) | 0.269845 / 6.500664 (-6.230819) | 0.087225 / 0.075469 (0.011756) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.632522 / 1.841788 (-0.209266) | 17.615297 / 8.074308 (9.540989) | 20.501172 / 10.191392 (10.309780) | 0.248845 / 0.680424 (-0.431579) | 0.024852 / 0.534201 (-0.509349) | 0.498957 / 0.579283 (-0.080326) | 0.588566 / 0.434364 (0.154202) | 0.611051 / 0.540337 (0.070714) | 0.726321 / 1.386936 (-0.660615) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#adaaf0b5ad596538c744d41bb56ce472834b6573 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008920 / 0.011353 (-0.002433) | 0.004666 / 0.011008 (-0.006342) | 0.098584 / 0.038508 (0.060076) | 0.030213 / 0.023109 (0.007103) | 0.298180 / 0.275898 (0.022282) | 0.358932 / 0.323480 (0.035452) | 0.007182 / 0.007986 (-0.000804) | 0.005430 / 0.004328 (0.001102) | 0.077962 / 0.004250 (0.073712) | 0.038516 / 0.037052 (0.001463) | 0.308840 / 0.258489 (0.050351) | 0.343678 / 0.293841 (0.049837) | 0.033701 / 0.128546 (-0.094845) | 0.011460 / 0.075646 (-0.064186) | 0.319809 / 0.419271 (-0.099462) | 0.040731 / 0.043533 (-0.002802) | 0.299772 / 0.255139 (0.044633) | 0.324292 / 0.283200 (0.041092) | 0.087755 / 0.141683 (-0.053928) | 1.493077 / 1.452155 (0.040922) | 1.527462 / 1.492716 (0.034746) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.187927 / 0.018006 (0.169921) | 0.412785 / 0.000490 (0.412296) | 0.003235 / 0.000200 (0.003035) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023313 / 0.037411 (-0.014098) | 0.095663 / 0.014526 (0.081137) | 0.105094 / 0.176557 (-0.071463) | 0.140389 / 0.737135 (-0.596746) | 0.108477 / 0.296338 (-0.187861) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.410680 / 0.215209 (0.195471) | 4.109287 / 2.077655 (2.031632) | 1.833214 / 1.504120 (0.329094) | 1.622837 / 1.541195 (0.081642) | 1.679899 / 1.468490 (0.211409) | 0.686920 / 4.584777 (-3.897857) | 3.463267 / 3.745712 (-0.282445) | 1.867035 / 5.269862 (-3.402826) | 1.150631 / 4.565676 (-3.415046) | 0.081209 / 0.424275 (-0.343066) | 0.012384 / 0.007607 (0.004777) | 0.521070 / 0.226044 (0.295026) | 5.208829 / 2.268929 (2.939900) | 2.289032 / 55.444624 (-53.155592) | 1.942976 / 6.876477 (-4.933501) | 1.990660 / 2.142072 (-0.151413) | 0.802976 / 4.805227 (-4.002252) | 0.148199 / 6.500664 (-6.352465) | 0.064644 / 0.075469 (-0.010825) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.277029 / 1.841788 (-0.564759) | 13.915489 / 8.074308 (5.841181) | 14.035486 / 10.191392 (3.844094) | 0.138205 / 0.680424 (-0.542219) | 0.028968 / 0.534201 (-0.505232) | 0.394275 / 0.579283 (-0.185008) | 0.399967 / 0.434364 (-0.034397) | 0.460595 / 0.540337 (-0.079742) | 0.537625 / 1.386936 (-0.849311) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006485 / 0.011353 (-0.004868) | 0.004534 / 0.011008 (-0.006474) | 0.097742 / 0.038508 (0.059234) | 0.027231 / 0.023109 (0.004122) | 0.431321 / 0.275898 (0.155423) | 0.469212 / 0.323480 (0.145732) | 0.004894 / 0.007986 (-0.003092) | 0.004147 / 0.004328 (-0.000181) | 0.073650 / 0.004250 (0.069400) | 0.037052 / 0.037052 (-0.000000) | 0.434196 / 0.258489 (0.175707) | 0.480539 / 0.293841 (0.186698) | 0.031923 / 0.128546 (-0.096623) | 0.011522 / 0.075646 (-0.064124) | 0.317062 / 0.419271 (-0.102209) | 0.041124 / 0.043533 (-0.002409) | 0.432013 / 0.255139 (0.176874) | 0.456760 / 0.283200 (0.173560) | 0.089757 / 0.141683 (-0.051925) | 1.497752 / 1.452155 (0.045597) | 1.585342 / 1.492716 (0.092626) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227784 / 0.018006 (0.209778) | 0.404570 / 0.000490 (0.404080) | 0.000556 / 0.000200 (0.000356) | 0.000065 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025201 / 0.037411 (-0.012210) | 0.099348 / 0.014526 (0.084822) | 0.114984 / 0.176557 (-0.061573) | 0.147039 / 0.737135 (-0.590097) | 0.109727 / 0.296338 (-0.186611) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468415 / 0.215209 (0.253206) | 4.692228 / 2.077655 (2.614573) | 2.403382 / 1.504120 (0.899262) | 2.196026 / 1.541195 (0.654832) | 2.234736 / 1.468490 (0.766246) | 0.703011 / 4.584777 (-3.881766) | 3.451513 / 3.745712 (-0.294199) | 2.596811 / 5.269862 (-2.673051) | 1.544079 / 4.565676 (-3.021598) | 0.083153 / 0.424275 (-0.341123) | 0.012605 / 0.007607 (0.004998) | 0.570265 / 0.226044 (0.344220) | 5.735996 / 2.268929 (3.467067) | 2.865336 / 55.444624 (-52.579288) | 2.508340 / 6.876477 (-4.368137) | 2.547144 / 2.142072 (0.405072) | 0.813018 / 4.805227 (-3.992210) | 0.150327 / 6.500664 (-6.350337) | 0.065837 / 0.075469 (-0.009632) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268941 / 1.841788 (-0.572847) | 13.835698 / 8.074308 (5.761390) | 13.992726 / 10.191392 (3.801334) | 0.127751 / 0.680424 (-0.552673) | 0.016673 / 0.534201 (-0.517528) | 0.381921 / 0.579283 (-0.197362) | 0.390688 / 0.434364 (-0.043676) | 0.446234 / 0.540337 (-0.094103) | 0.532631 / 1.386936 (-0.854305) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1492df3311bfeac55aaedf34c93c014630c4403e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008486 / 0.011353 (-0.002867) | 0.004573 / 0.011008 (-0.006435) | 0.100096 / 0.038508 (0.061588) | 0.029449 / 0.023109 (0.006340) | 0.298384 / 0.275898 (0.022486) | 0.361886 / 0.323480 (0.038406) | 0.006813 / 0.007986 (-0.001173) | 0.003394 / 0.004328 (-0.000935) | 0.077563 / 0.004250 (0.073312) | 0.035605 / 0.037052 (-0.001447) | 0.306864 / 0.258489 (0.048375) | 0.346438 / 0.293841 (0.052597) | 0.033156 / 0.128546 (-0.095390) | 0.011567 / 0.075646 (-0.064079) | 0.322189 / 0.419271 (-0.097083) | 0.040161 / 0.043533 (-0.003372) | 0.299329 / 0.255139 (0.044190) | 0.326375 / 0.283200 (0.043175) | 0.086572 / 0.141683 (-0.055111) | 1.502473 / 1.452155 (0.050319) | 1.528539 / 1.492716 (0.035823) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.008502 / 0.018006 (-0.009505) | 0.411045 / 0.000490 (0.410555) | 0.003179 / 0.000200 (0.002980) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023177 / 0.037411 (-0.014234) | 0.096948 / 0.014526 (0.082422) | 0.104068 / 0.176557 (-0.072489) | 0.138739 / 0.737135 (-0.598396) | 0.108241 / 0.296338 (-0.188097) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.411156 / 0.215209 (0.195947) | 4.092992 / 2.077655 (2.015337) | 1.841903 / 1.504120 (0.337783) | 1.637449 / 1.541195 (0.096254) | 1.670968 / 1.468490 (0.202478) | 0.697301 / 4.584777 (-3.887476) | 3.354717 / 3.745712 (-0.390995) | 1.851518 / 5.269862 (-3.418344) | 1.160367 / 4.565676 (-3.405309) | 0.082613 / 0.424275 (-0.341662) | 0.012477 / 0.007607 (0.004870) | 0.524839 / 0.226044 (0.298795) | 5.264173 / 2.268929 (2.995245) | 2.294530 / 55.444624 (-53.150094) | 1.933233 / 6.876477 (-4.943244) | 1.968959 / 2.142072 (-0.173113) | 0.817104 / 4.805227 (-3.988123) | 0.149072 / 6.500664 (-6.351592) | 0.064911 / 0.075469 (-0.010558) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.222215 / 1.841788 (-0.619573) | 13.607545 / 8.074308 (5.533237) | 13.990230 / 10.191392 (3.798838) | 0.150855 / 0.680424 (-0.529568) | 0.028844 / 0.534201 (-0.505357) | 0.396169 / 0.579283 (-0.183114) | 0.406957 / 0.434364 (-0.027407) | 0.464069 / 0.540337 (-0.076268) | 0.554027 / 1.386936 (-0.832909) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006296 / 0.011353 (-0.005057) | 0.004563 / 0.011008 (-0.006445) | 0.097719 / 0.038508 (0.059211) | 0.027106 / 0.023109 (0.003996) | 0.409333 / 0.275898 (0.133435) | 0.445397 / 0.323480 (0.121917) | 0.004906 / 0.007986 (-0.003080) | 0.003316 / 0.004328 (-0.001012) | 0.075363 / 0.004250 (0.071112) | 0.039366 / 0.037052 (0.002314) | 0.412710 / 0.258489 (0.154221) | 0.451789 / 0.293841 (0.157948) | 0.031810 / 0.128546 (-0.096736) | 0.011681 / 0.075646 (-0.063965) | 0.318484 / 0.419271 (-0.100788) | 0.046741 / 0.043533 (0.003208) | 0.411631 / 0.255139 (0.156492) | 0.435274 / 0.283200 (0.152074) | 0.092366 / 0.141683 (-0.049317) | 1.492243 / 1.452155 (0.040089) | 1.617603 / 1.492716 (0.124887) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217376 / 0.018006 (0.199369) | 0.400940 / 0.000490 (0.400450) | 0.003700 / 0.000200 (0.003500) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023733 / 0.037411 (-0.013678) | 0.098553 / 0.014526 (0.084027) | 0.105790 / 0.176557 (-0.070767) | 0.139537 / 0.737135 (-0.597598) | 0.109862 / 0.296338 (-0.186477) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.476562 / 0.215209 (0.261353) | 4.773469 / 2.077655 (2.695814) | 2.447302 / 1.504120 (0.943182) | 2.240596 / 1.541195 (0.699401) | 2.271370 / 1.468490 (0.802880) | 0.698913 / 4.584777 (-3.885864) | 3.345648 / 3.745712 (-0.400064) | 1.845008 / 5.269862 (-3.424854) | 1.163213 / 4.565676 (-3.402464) | 0.082456 / 0.424275 (-0.341819) | 0.012315 / 0.007607 (0.004708) | 0.575881 / 0.226044 (0.349836) | 5.769575 / 2.268929 (3.500647) | 2.909759 / 55.444624 (-52.534865) | 2.580259 / 6.876477 (-4.296218) | 2.590473 / 2.142072 (0.448401) | 0.802765 / 4.805227 (-4.002462) | 0.151514 / 6.500664 (-6.349150) | 0.067718 / 0.075469 (-0.007751) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.293014 / 1.841788 (-0.548773) | 13.934072 / 8.074308 (5.859763) | 13.538760 / 10.191392 (3.347368) | 0.126490 / 0.680424 (-0.553934) | 0.016653 / 0.534201 (-0.517548) | 0.381220 / 0.579283 (-0.198064) | 0.387571 / 0.434364 (-0.046793) | 0.444674 / 0.540337 (-0.095663) | 0.550802 / 1.386936 (-0.836134) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bed576f2205c96f6cb26b5c6522345cb8b06ecfc \"CML watermark\")\n" ]
2023-01-24T17:33:38
2023-01-25T16:11:10
2023-01-25T16:04:03
CONTRIBUTOR
null
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5460/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5460/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5460", "html_url": "https://github.com/huggingface/datasets/pull/5460", "diff_url": "https://github.com/huggingface/datasets/pull/5460.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5460.patch", "merged_at": "2023-01-25T16:04:03" }
true
https://api.github.com/repos/huggingface/datasets/issues/5459
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5459/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5459/comments
https://api.github.com/repos/huggingface/datasets/issues/5459/events
https://github.com/huggingface/datasets/pull/5459
1,555,367,504
PR_kwDODunzps5Icjwe
5,459
Disable aiohttp requoting of redirection URL
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Comment by @lhoestq:\r\n> Do you think we need this in `datasets` if it's fixed on the moon landing side ? In the aiohttp doc they consider those symbols as \"non-safe\" ", "The lib `requests` does not perform that requote on redirect URLs.", "Indeed, the `requests` library does perform a requoting, but this does not unquote `%27`:\r\n```python\r\nIn [1]: from requests.utils import requote_uri\r\n\r\nIn [2]: url = \"https://netloc/path?param=param%27%27value\"\r\n\r\nIn [3]: url\r\nOut[3]: 'https://netloc/path?param=param%27%27value'\r\n\r\nIn [4]: requote_uri(url)\r\nOut[4]: 'https://netloc/path?param=param%27%27value'\r\n```\r\n\r\nHowever, the `aiohttp` library uses `yarl.ULR` and this does unquote `%27`:\r\n```python\r\nIn [5]: from yarl import URL\r\n\r\nIn [6]: url\r\nOut[6]: 'https://netloc/path?param=param%27%27value'\r\n\r\nIn [7]: str(URL(url))\r\nOut[7]: \"https://netloc/path?param=param''value\"\r\n```\r\n\r\nIf we pass `requote_redirect_url=False` to `aiohttp`, then it passes `encoded=True` to `yarl.ULR`: https://github.com/aio-libs/aiohttp/blob/4635161ee8e7ad321cca46e01ce5bfeb1ad8bf26/aiohttp/client.py#L578-L580\r\n```python\r\nparsed_url = URL(\r\n r_url, encoded=not self._requote_redirect_url\r\n)\r\n```\r\nwhich does not unquote `%27`:\r\n```python\r\nIn [8]: url\r\nOut[8]: 'https://netloc/path?param=param%27%27value'\r\n\r\nIn [9]: str(URL(url, encoded=True))\r\nOut[9]: 'https://netloc/path?param=param%27%27value'\r\n```", "See the issues we opened in the respective libraries:\r\n- aiohttp\r\n - aio-libs/aiohttp#7183\r\n- requests\r\n - psf/requests#6341", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012399 / 0.011353 (0.001047) | 0.006388 / 0.011008 (-0.004620) | 0.134173 / 0.038508 (0.095665) | 0.037059 / 0.023109 (0.013949) | 0.420697 / 0.275898 (0.144799) | 0.473981 / 0.323480 (0.150502) | 0.009857 / 0.007986 (0.001871) | 0.004791 / 0.004328 (0.000463) | 0.106886 / 0.004250 (0.102636) | 0.044871 / 0.037052 (0.007818) | 0.429843 / 0.258489 (0.171354) | 0.461569 / 0.293841 (0.167728) | 0.057285 / 0.128546 (-0.071261) | 0.018809 / 0.075646 (-0.056837) | 0.432613 / 0.419271 (0.013342) | 0.058086 / 0.043533 (0.014553) | 0.413064 / 0.255139 (0.157925) | 0.444407 / 0.283200 (0.161207) | 0.119102 / 0.141683 (-0.022581) | 1.875954 / 1.452155 (0.423799) | 1.916392 / 1.492716 (0.423676) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267489 / 0.018006 (0.249483) | 0.567554 / 0.000490 (0.567064) | 0.005901 / 0.000200 (0.005701) | 0.000134 / 0.000054 (0.000079) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031248 / 0.037411 (-0.006164) | 0.123014 / 0.014526 (0.108489) | 0.140001 / 0.176557 (-0.036556) | 0.191476 / 0.737135 (-0.545659) | 0.141687 / 0.296338 (-0.154652) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.637481 / 0.215209 (0.422272) | 6.255969 / 2.077655 (4.178314) | 2.559811 / 1.504120 (1.055691) | 2.118154 / 1.541195 (0.576960) | 2.079487 / 1.468490 (0.610997) | 1.201079 / 4.584777 (-3.383698) | 5.592625 / 3.745712 (1.846913) | 5.143344 / 5.269862 (-0.126517) | 2.764716 / 4.565676 (-1.800960) | 0.142539 / 0.424275 (-0.281736) | 0.015541 / 0.007607 (0.007934) | 0.771407 / 0.226044 (0.545363) | 7.631657 / 2.268929 (5.362728) | 3.279684 / 55.444624 (-52.164940) | 2.587566 / 6.876477 (-4.288911) | 2.624622 / 2.142072 (0.482549) | 1.427878 / 4.805227 (-3.377350) | 0.257759 / 6.500664 (-6.242906) | 0.078616 / 0.075469 (0.003147) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.609305 / 1.841788 (-0.232483) | 18.258792 / 8.074308 (10.184484) | 20.345242 / 10.191392 (10.153850) | 0.267366 / 0.680424 (-0.413058) | 0.047035 / 0.534201 (-0.487166) | 0.568881 / 0.579283 (-0.010402) | 0.662763 / 0.434364 (0.228399) | 0.668927 / 0.540337 (0.128590) | 0.755766 / 1.386936 (-0.631170) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010017 / 0.011353 (-0.001336) | 0.006816 / 0.011008 (-0.004192) | 0.105038 / 0.038508 (0.066529) | 0.038689 / 0.023109 (0.015580) | 0.482113 / 0.275898 (0.206215) | 0.540072 / 0.323480 (0.216592) | 0.007738 / 0.007986 (-0.000248) | 0.005134 / 0.004328 (0.000806) | 0.102203 / 0.004250 (0.097953) | 0.054080 / 0.037052 (0.017028) | 0.501057 / 0.258489 (0.242568) | 0.567186 / 0.293841 (0.273345) | 0.060330 / 0.128546 (-0.068217) | 0.020059 / 0.075646 (-0.055587) | 0.123102 / 0.419271 (-0.296170) | 0.063426 / 0.043533 (0.019893) | 0.494171 / 0.255139 (0.239032) | 0.538238 / 0.283200 (0.255039) | 0.119613 / 0.141683 (-0.022069) | 1.853728 / 1.452155 (0.401574) | 1.984621 / 1.492716 (0.491904) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.282511 / 0.018006 (0.264505) | 0.563190 / 0.000490 (0.562700) | 0.000465 / 0.000200 (0.000265) | 0.000086 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029267 / 0.037411 (-0.008144) | 0.135618 / 0.014526 (0.121093) | 0.146286 / 0.176557 (-0.030271) | 0.188570 / 0.737135 (-0.548565) | 0.155839 / 0.296338 (-0.140499) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.671660 / 0.215209 (0.456451) | 6.718775 / 2.077655 (4.641120) | 3.004601 / 1.504120 (1.500481) | 2.640504 / 1.541195 (1.099309) | 2.666788 / 1.468490 (1.198298) | 1.242655 / 4.584777 (-3.342122) | 5.780119 / 3.745712 (2.034407) | 3.247935 / 5.269862 (-2.021927) | 2.114007 / 4.565676 (-2.451669) | 0.147546 / 0.424275 (-0.276729) | 0.014408 / 0.007607 (0.006801) | 0.824407 / 0.226044 (0.598362) | 8.278185 / 2.268929 (6.009257) | 3.733463 / 55.444624 (-51.711161) | 2.976732 / 6.876477 (-3.899745) | 3.132758 / 2.142072 (0.990686) | 1.446095 / 4.805227 (-3.359132) | 0.258628 / 6.500664 (-6.242036) | 0.085513 / 0.075469 (0.010043) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.702681 / 1.841788 (-0.139106) | 18.725123 / 8.074308 (10.650815) | 19.622808 / 10.191392 (9.431416) | 0.215845 / 0.680424 (-0.464579) | 0.029246 / 0.534201 (-0.504955) | 0.554819 / 0.579283 (-0.024464) | 0.630926 / 0.434364 (0.196562) | 0.637663 / 0.540337 (0.097325) | 0.837948 / 1.386936 (-0.548988) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c4a4f96ef0a4ec4b25f0872f160fa1eb9d2e711c \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008540 / 0.011353 (-0.002813) | 0.004538 / 0.011008 (-0.006470) | 0.101507 / 0.038508 (0.062999) | 0.029751 / 0.023109 (0.006641) | 0.292608 / 0.275898 (0.016710) | 0.354734 / 0.323480 (0.031254) | 0.007430 / 0.007986 (-0.000556) | 0.003365 / 0.004328 (-0.000964) | 0.078703 / 0.004250 (0.074452) | 0.034858 / 0.037052 (-0.002194) | 0.303518 / 0.258489 (0.045029) | 0.336523 / 0.293841 (0.042682) | 0.033741 / 0.128546 (-0.094805) | 0.011460 / 0.075646 (-0.064186) | 0.319551 / 0.419271 (-0.099721) | 0.041102 / 0.043533 (-0.002431) | 0.295914 / 0.255139 (0.040775) | 0.322142 / 0.283200 (0.038943) | 0.084694 / 0.141683 (-0.056989) | 1.481308 / 1.452155 (0.029153) | 1.530271 / 1.492716 (0.037554) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.180516 / 0.018006 (0.162510) | 0.405741 / 0.000490 (0.405251) | 0.002806 / 0.000200 (0.002606) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023359 / 0.037411 (-0.014052) | 0.096950 / 0.014526 (0.082424) | 0.103991 / 0.176557 (-0.072566) | 0.143700 / 0.737135 (-0.593435) | 0.106764 / 0.296338 (-0.189575) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416966 / 0.215209 (0.201757) | 4.145601 / 2.077655 (2.067946) | 1.838258 / 1.504120 (0.334139) | 1.629396 / 1.541195 (0.088201) | 1.649707 / 1.468490 (0.181217) | 0.689624 / 4.584777 (-3.895153) | 3.414584 / 3.745712 (-0.331129) | 1.874295 / 5.269862 (-3.395566) | 1.251930 / 4.565676 (-3.313746) | 0.081782 / 0.424275 (-0.342493) | 0.012868 / 0.007607 (0.005261) | 0.523904 / 0.226044 (0.297859) | 5.251032 / 2.268929 (2.982104) | 2.301549 / 55.444624 (-53.143075) | 1.942110 / 6.876477 (-4.934367) | 2.023014 / 2.142072 (-0.119058) | 0.816492 / 4.805227 (-3.988736) | 0.150107 / 6.500664 (-6.350558) | 0.065118 / 0.075469 (-0.010351) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.226433 / 1.841788 (-0.615355) | 13.852569 / 8.074308 (5.778261) | 13.862779 / 10.191392 (3.671387) | 0.146361 / 0.680424 (-0.534062) | 0.028652 / 0.534201 (-0.505549) | 0.398251 / 0.579283 (-0.181032) | 0.403590 / 0.434364 (-0.030774) | 0.492184 / 0.540337 (-0.048154) | 0.581040 / 1.386936 (-0.805896) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006859 / 0.011353 (-0.004494) | 0.004632 / 0.011008 (-0.006376) | 0.076653 / 0.038508 (0.038145) | 0.027865 / 0.023109 (0.004755) | 0.354472 / 0.275898 (0.078573) | 0.385462 / 0.323480 (0.061982) | 0.005125 / 0.007986 (-0.002861) | 0.003420 / 0.004328 (-0.000909) | 0.076018 / 0.004250 (0.071768) | 0.040197 / 0.037052 (0.003144) | 0.353675 / 0.258489 (0.095186) | 0.394911 / 0.293841 (0.101070) | 0.032909 / 0.128546 (-0.095637) | 0.011713 / 0.075646 (-0.063933) | 0.085921 / 0.419271 (-0.333350) | 0.044462 / 0.043533 (0.000929) | 0.349997 / 0.255139 (0.094858) | 0.375207 / 0.283200 (0.092008) | 0.091288 / 0.141683 (-0.050394) | 1.536515 / 1.452155 (0.084361) | 1.581878 / 1.492716 (0.089162) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.273284 / 0.018006 (0.255277) | 0.424457 / 0.000490 (0.423967) | 0.044659 / 0.000200 (0.044459) | 0.000247 / 0.000054 (0.000192) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025473 / 0.037411 (-0.011938) | 0.100014 / 0.014526 (0.085488) | 0.108551 / 0.176557 (-0.068006) | 0.147913 / 0.737135 (-0.589223) | 0.112729 / 0.296338 (-0.183610) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448162 / 0.215209 (0.232953) | 4.472701 / 2.077655 (2.395046) | 2.078384 / 1.504120 (0.574264) | 1.861292 / 1.541195 (0.320097) | 1.920482 / 1.468490 (0.451991) | 0.706968 / 4.584777 (-3.877809) | 3.433109 / 3.745712 (-0.312603) | 1.898684 / 5.269862 (-3.371178) | 1.174375 / 4.565676 (-3.391302) | 0.083666 / 0.424275 (-0.340609) | 0.012388 / 0.007607 (0.004781) | 0.546011 / 0.226044 (0.319966) | 5.487514 / 2.268929 (3.218585) | 2.534124 / 55.444624 (-52.910500) | 2.168441 / 6.876477 (-4.708036) | 2.203458 / 2.142072 (0.061386) | 0.813333 / 4.805227 (-3.991894) | 0.153169 / 6.500664 (-6.347495) | 0.067151 / 0.075469 (-0.008318) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.277815 / 1.841788 (-0.563972) | 13.920545 / 8.074308 (5.846237) | 13.473801 / 10.191392 (3.282409) | 0.129035 / 0.680424 (-0.551389) | 0.016737 / 0.534201 (-0.517464) | 0.388413 / 0.579283 (-0.190870) | 0.388785 / 0.434364 (-0.045579) | 0.481735 / 0.540337 (-0.058602) | 0.576390 / 1.386936 (-0.810546) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c4a4f96ef0a4ec4b25f0872f160fa1eb9d2e711c \"CML watermark\")\n" ]
2023-01-24T17:18:59
2023-02-01T08:45:33
2023-01-31T08:37:54
MEMBER
null
The library `aiohttp` performs a requoting of redirection URLs that unquotes the single quotation mark character: `%27` => `'` This is a problem for our Hugging Face Hub, which requires exact URL from location header. Specifically, in the query component of the URL (`https://netloc/path?query`), the value for `response-content-disposition` contains `%27`: ``` response-content-disposition=attachment%3B+filename*%3DUTF-8%27%27sample.jsonl.gz%3B+filename%3D%22sample.jsonl.gz%22%3B ``` and after the requoting, the `%27` characters get unquoted to `'`: ``` response-content-disposition=attachment%3B+filename*%3DUTF-8''sample.jsonl.gz%3B+filename%3D%22sample.jsonl.gz%22%3B ``` This PR disables the `aiohttp` requoting of redirection URLs.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5459/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5459/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5459", "html_url": "https://github.com/huggingface/datasets/pull/5459", "diff_url": "https://github.com/huggingface/datasets/pull/5459.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5459.patch", "merged_at": "2023-01-31T08:37:54" }
true
https://api.github.com/repos/huggingface/datasets/issues/5458
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5458/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5458/comments
https://api.github.com/repos/huggingface/datasets/issues/5458/events
https://github.com/huggingface/datasets/issues/5458
1,555,054,737
I_kwDODunzps5csECR
5,458
slice split while streaming
{ "login": "SvenDS9", "id": 122370631, "node_id": "U_kgDOB0s6Rw", "avatar_url": "https://avatars.githubusercontent.com/u/122370631?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SvenDS9", "html_url": "https://github.com/SvenDS9", "followers_url": "https://api.github.com/users/SvenDS9/followers", "following_url": "https://api.github.com/users/SvenDS9/following{/other_user}", "gists_url": "https://api.github.com/users/SvenDS9/gists{/gist_id}", "starred_url": "https://api.github.com/users/SvenDS9/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SvenDS9/subscriptions", "organizations_url": "https://api.github.com/users/SvenDS9/orgs", "repos_url": "https://api.github.com/users/SvenDS9/repos", "events_url": "https://api.github.com/users/SvenDS9/events{/privacy}", "received_events_url": "https://api.github.com/users/SvenDS9/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi! Yes, that's correct. When `streaming` is `True`, only split names can be specified as `split`, and for slicing, you have to use `.skip`/`.take` instead.\r\n\r\nE.g. \r\n`load_dataset(\"lhoestq/demo1\",revision=None, streaming=True, split=\"train[:3]\")`\r\n\r\nrewritten with `.skip`/`.take`:\r\n`load_dataset(\"lhoestq/demo1\",revision=None, streaming=True, split=\"train\").take(3)`\r\n\r\n\r\n", "Thank you for your quick response!" ]
2023-01-24T14:08:17
2023-01-24T15:11:47
2023-01-24T15:11:47
NONE
null
### Describe the bug When using the `load_dataset` function with streaming set to True, slicing splits is apparently not supported. Did I miss this in the documentation? ### Steps to reproduce the bug `load_dataset("lhoestq/demo1",revision=None, streaming=True, split="train[:3]")` causes ValueError: Bad split: train[:3]. Available splits: ['train', 'test'] in builder.py, line 1213, in as_streaming_dataset ### Expected behavior The first 3 entries of the dataset as a stream ### Environment info - `datasets` version: 2.8.0 - Platform: Windows-10-10.0.19045-SP0 - Python version: 3.10.9 - PyArrow version: 10.0.1 - Pandas version: 1.5.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5458/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5458/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5457
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5457/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5457/comments
https://api.github.com/repos/huggingface/datasets/issues/5457/events
https://github.com/huggingface/datasets/issues/5457
1,554,171,264
I_kwDODunzps5cosWA
5,457
prebuilt dataset relies on `downloads/extracted`
{ "login": "stas00", "id": 10676103, "node_id": "MDQ6VXNlcjEwNjc2MTAz", "avatar_url": "https://avatars.githubusercontent.com/u/10676103?v=4", "gravatar_id": "", "url": "https://api.github.com/users/stas00", "html_url": "https://github.com/stas00", "followers_url": "https://api.github.com/users/stas00/followers", "following_url": "https://api.github.com/users/stas00/following{/other_user}", "gists_url": "https://api.github.com/users/stas00/gists{/gist_id}", "starred_url": "https://api.github.com/users/stas00/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stas00/subscriptions", "organizations_url": "https://api.github.com/users/stas00/orgs", "repos_url": "https://api.github.com/users/stas00/repos", "events_url": "https://api.github.com/users/stas00/events{/privacy}", "received_events_url": "https://api.github.com/users/stas00/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi! \r\n\r\nThis issue is due to our audio/image datasets not being self-contained. This allows us to save disk space (files are written only once) but also leads to the issues like this one. We plan to make all our datasets self-contained in Datasets 3.0.\r\n\r\nIn the meantime, you can run the following map to ensure your dataset is self-contained:\r\n```python\r\nfrom datasets.table import embed_table_storage\r\n# load_dataset ...\r\ndset = dset.with_format(\"arrow\")\r\ndset.map(embed_table_storage, batched=True)\r\ndset = dset.with_format(\"python\")\r\n```\r\n", "Understood. Thank you, Mario.\r\n\r\nPerhaps the solution could be very simple - move the extracted files into the directory of the cached dataset? Which would make it self-contained already and won't require waiting for a new major release. Unless I'm missing some back-compat nuance.\r\n\r\nBut regardless if X relies on Y - it could check if Y is still there when loading X. so not checking full consistency but just the top-level directory it relies on." ]
2023-01-24T02:09:32
2023-01-24T18:14:10
null
MEMBER
null
### Describe the bug I pre-built the dataset: ``` python -c 'import sys; from datasets import load_dataset; ds=load_dataset(sys.argv[1])' HuggingFaceM4/general-pmd-synthetic-testing ``` and it can be used just fine. now I wipe out `downloads/extracted` and it no longer works. ``` rm -r ~/.cache/huggingface/datasets/downloads ``` That is I can still load it: ``` python -c 'import sys; from datasets import load_dataset; ds=load_dataset(sys.argv[1])' HuggingFaceM4/general-pmd-synthetic-testing No config specified, defaulting to: general-pmd-synthetic-testing/100.unique Found cached dataset general-pmd-synthetic-testing (/home/stas/.cache/huggingface/datasets/HuggingFaceM4___general-pmd-synthetic-testing/100.unique/1.1.1/86bc445e3e48cb5ef79de109eb4e54ff85b318cd55c3835c4ee8f86eae33d9d2) ``` but if I try to use it: ``` E stderr: Traceback (most recent call last): E stderr: File "/mnt/nvme0/code/huggingface/m4-master-6/m4/training/main.py", line 116, in <module> E stderr: train_loader, val_loader = get_dataloaders( E stderr: File "/mnt/nvme0/code/huggingface/m4-master-6/m4/training/dataset.py", line 170, in get_dataloaders E stderr: train_loader = get_dataloader_from_config( E stderr: File "/mnt/nvme0/code/huggingface/m4-master-6/m4/training/dataset.py", line 443, in get_dataloader_from_config E stderr: dataloader = get_dataloader( E stderr: File "/mnt/nvme0/code/huggingface/m4-master-6/m4/training/dataset.py", line 264, in get_dataloader E stderr: is_pmd = "meta" in hf_dataset[0] and "source" in hf_dataset[0] E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/arrow_dataset.py", line 2601, in __getitem__ E stderr: return self._getitem( E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/arrow_dataset.py", line 2586, in _getitem E stderr: formatted_output = format_table( E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/formatting/formatting.py", line 634, in format_table E stderr: return formatter(pa_table, query_type=query_type) E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/formatting/formatting.py", line 406, in __call__ E stderr: return self.format_row(pa_table) E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/formatting/formatting.py", line 442, in format_row E stderr: row = self.python_features_decoder.decode_row(row) E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/formatting/formatting.py", line 225, in decode_row E stderr: return self.features.decode_example(row) if self.features else row E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1846, in decode_example E stderr: return { E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1847, in <dictcomp> E stderr: column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id) E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1304, in decode_nested_example E stderr: return decode_nested_example([schema.feature], obj) E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1296, in decode_nested_example E stderr: if decode_nested_example(sub_schema, first_elmt) != first_elmt: E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/features.py", line 1309, in decode_nested_example E stderr: return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) E stderr: File "/mnt/nvme0/code/huggingface/datasets-master/src/datasets/features/image.py", line 144, in decode_example E stderr: image = PIL.Image.open(path) E stderr: File "/home/stas/anaconda3/envs/py38-pt113/lib/python3.8/site-packages/PIL/Image.py", line 3092, in open E stderr: fp = builtins.open(filename, "rb") E stderr: FileNotFoundError: [Errno 2] No such file or directory: '/mnt/nvme0/code/data/cache/huggingface/datasets/downloads/extracted/134227b9b94c4eccf19b205bf3021d4492d0227b9be6c2ddb6bf517d8d55a8cb/data/101/images_01.jpg' ``` Only if I wipe out the cached dir and rebuild then it starts working as `download/extracted` is back again with extracted files. ``` rm -r ~/.cache/huggingface/datasets/HuggingFaceM4___general-pmd-synthetic-testing python -c 'import sys; from datasets import load_dataset; ds=load_dataset(sys.argv[1])' HuggingFaceM4/general-pmd-synthetic-testing ``` I think there are 2 issues here: 1. why does it still rely on extracted files after `arrow` files were printed - did I do something incorrectly when creating this dataset? 2. why doesn't the dataset know that it has been gutted and loads just fine? If it has a dependency on `download/extracted` then `load_dataset` should check if it's there and fail or force rebuilding. I am sure this could be a very expensive operation, so probably really solving #1 will not require this check. and this second item is probably an overkill. Other than perhaps if it had an optional `check_consistency` flag to do that. ### Environment info datasets@main
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5457/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5457/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5456
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5456/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5456/comments
https://api.github.com/repos/huggingface/datasets/issues/5456/events
https://github.com/huggingface/datasets/pull/5456
1,553,905,148
PR_kwDODunzps5IXq92
5,456
feat: tqdm for `to_parquet`
{ "login": "zanussbaum", "id": 33707069, "node_id": "MDQ6VXNlcjMzNzA3MDY5", "avatar_url": "https://avatars.githubusercontent.com/u/33707069?v=4", "gravatar_id": "", "url": "https://api.github.com/users/zanussbaum", "html_url": "https://github.com/zanussbaum", "followers_url": "https://api.github.com/users/zanussbaum/followers", "following_url": "https://api.github.com/users/zanussbaum/following{/other_user}", "gists_url": "https://api.github.com/users/zanussbaum/gists{/gist_id}", "starred_url": "https://api.github.com/users/zanussbaum/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zanussbaum/subscriptions", "organizations_url": "https://api.github.com/users/zanussbaum/orgs", "repos_url": "https://api.github.com/users/zanussbaum/repos", "events_url": "https://api.github.com/users/zanussbaum/events{/privacy}", "received_events_url": "https://api.github.com/users/zanussbaum/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012395 / 0.011353 (0.001042) | 0.006466 / 0.011008 (-0.004542) | 0.127605 / 0.038508 (0.089097) | 0.044929 / 0.023109 (0.021820) | 0.399856 / 0.275898 (0.123958) | 0.491341 / 0.323480 (0.167861) | 0.009193 / 0.007986 (0.001207) | 0.005419 / 0.004328 (0.001090) | 0.100577 / 0.004250 (0.096327) | 0.045338 / 0.037052 (0.008286) | 0.409970 / 0.258489 (0.151481) | 0.452941 / 0.293841 (0.159100) | 0.054350 / 0.128546 (-0.074197) | 0.019069 / 0.075646 (-0.056578) | 0.427036 / 0.419271 (0.007765) | 0.073616 / 0.043533 (0.030083) | 0.395384 / 0.255139 (0.140245) | 0.442381 / 0.283200 (0.159181) | 0.123185 / 0.141683 (-0.018498) | 1.797640 / 1.452155 (0.345485) | 1.888860 / 1.492716 (0.396143) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.211041 / 0.018006 (0.193035) | 0.539350 / 0.000490 (0.538860) | 0.001683 / 0.000200 (0.001483) | 0.000118 / 0.000054 (0.000064) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031699 / 0.037411 (-0.005712) | 0.132696 / 0.014526 (0.118170) | 0.133710 / 0.176557 (-0.042846) | 0.190074 / 0.737135 (-0.547061) | 0.142919 / 0.296338 (-0.153420) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.643521 / 0.215209 (0.428312) | 6.137350 / 2.077655 (4.059695) | 2.463894 / 1.504120 (0.959774) | 2.120043 / 1.541195 (0.578848) | 2.121898 / 1.468490 (0.653408) | 1.287319 / 4.584777 (-3.297458) | 5.517864 / 3.745712 (1.772151) | 5.070820 / 5.269862 (-0.199042) | 2.948967 / 4.565676 (-1.616710) | 0.175861 / 0.424275 (-0.248415) | 0.015292 / 0.007607 (0.007685) | 0.843195 / 0.226044 (0.617150) | 7.884275 / 2.268929 (5.615347) | 3.182821 / 55.444624 (-52.261803) | 2.576093 / 6.876477 (-4.300384) | 2.537160 / 2.142072 (0.395088) | 1.510029 / 4.805227 (-3.295198) | 0.249404 / 6.500664 (-6.251260) | 0.080434 / 0.075469 (0.004965) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.618695 / 1.841788 (-0.223093) | 18.879207 / 8.074308 (10.804899) | 21.075272 / 10.191392 (10.883880) | 0.260781 / 0.680424 (-0.419643) | 0.046387 / 0.534201 (-0.487813) | 0.570709 / 0.579283 (-0.008574) | 0.619050 / 0.434364 (0.184686) | 0.642295 / 0.540337 (0.101958) | 0.780070 / 1.386936 (-0.606866) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010418 / 0.011353 (-0.000935) | 0.006104 / 0.011008 (-0.004905) | 0.133609 / 0.038508 (0.095101) | 0.035101 / 0.023109 (0.011992) | 0.471931 / 0.275898 (0.196033) | 0.504498 / 0.323480 (0.181018) | 0.007388 / 0.007986 (-0.000598) | 0.004852 / 0.004328 (0.000523) | 0.094535 / 0.004250 (0.090284) | 0.056832 / 0.037052 (0.019779) | 0.470513 / 0.258489 (0.212024) | 0.531285 / 0.293841 (0.237444) | 0.058271 / 0.128546 (-0.070276) | 0.020523 / 0.075646 (-0.055123) | 0.437398 / 0.419271 (0.018126) | 0.065390 / 0.043533 (0.021857) | 0.503702 / 0.255139 (0.248563) | 0.515876 / 0.283200 (0.232677) | 0.118615 / 0.141683 (-0.023068) | 1.865380 / 1.452155 (0.413225) | 1.990316 / 1.492716 (0.497600) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246772 / 0.018006 (0.228766) | 0.560607 / 0.000490 (0.560118) | 0.005675 / 0.000200 (0.005475) | 0.000142 / 0.000054 (0.000088) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034692 / 0.037411 (-0.002719) | 0.174016 / 0.014526 (0.159490) | 0.179838 / 0.176557 (0.003282) | 0.217118 / 0.737135 (-0.520018) | 0.184811 / 0.296338 (-0.111527) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.675970 / 0.215209 (0.460760) | 6.787039 / 2.077655 (4.709384) | 2.932619 / 1.504120 (1.428499) | 2.545076 / 1.541195 (1.003882) | 2.566705 / 1.468490 (1.098215) | 1.287365 / 4.584777 (-3.297412) | 5.468441 / 3.745712 (1.722729) | 5.227726 / 5.269862 (-0.042136) | 2.868970 / 4.565676 (-1.696706) | 0.153535 / 0.424275 (-0.270740) | 0.020087 / 0.007607 (0.012480) | 0.860562 / 0.226044 (0.634518) | 8.656109 / 2.268929 (6.387180) | 3.749424 / 55.444624 (-51.695200) | 3.011337 / 6.876477 (-3.865139) | 3.119045 / 2.142072 (0.976973) | 1.562174 / 4.805227 (-3.243053) | 0.279161 / 6.500664 (-6.221504) | 0.084905 / 0.075469 (0.009436) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.638684 / 1.841788 (-0.203104) | 18.834760 / 8.074308 (10.760452) | 21.554310 / 10.191392 (11.362918) | 0.274518 / 0.680424 (-0.405906) | 0.030343 / 0.534201 (-0.503858) | 0.539094 / 0.579283 (-0.040189) | 0.627258 / 0.434364 (0.192895) | 0.624638 / 0.540337 (0.084301) | 0.742776 / 1.386936 (-0.644160) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#98c9b27be45e1f5bc8c18d8bb2414478efe68055 \"CML watermark\")\n" ]
2023-01-23T22:05:38
2023-01-24T11:26:47
2023-01-24T11:17:12
CONTRIBUTOR
null
As described in #5418 I noticed also that the `to_json` function supports multi-workers whereas `to_parquet`, is that not possible/not needed with Parquet or something that hasn't been implemented yet?
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5456/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5456/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5456", "html_url": "https://github.com/huggingface/datasets/pull/5456", "diff_url": "https://github.com/huggingface/datasets/pull/5456.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5456.patch", "merged_at": "2023-01-24T11:17:12" }
true
https://api.github.com/repos/huggingface/datasets/issues/5455
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5455/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5455/comments
https://api.github.com/repos/huggingface/datasets/issues/5455/events
https://github.com/huggingface/datasets/pull/5455
1,553,040,080
PR_kwDODunzps5IUvAZ
5,455
Single TQDM bar in multi-proc map
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008372 / 0.011353 (-0.002981) | 0.004658 / 0.011008 (-0.006350) | 0.102005 / 0.038508 (0.063497) | 0.029030 / 0.023109 (0.005920) | 0.296968 / 0.275898 (0.021070) | 0.364898 / 0.323480 (0.041418) | 0.006899 / 0.007986 (-0.001087) | 0.003410 / 0.004328 (-0.000919) | 0.079705 / 0.004250 (0.075455) | 0.034265 / 0.037052 (-0.002787) | 0.305695 / 0.258489 (0.047206) | 0.343275 / 0.293841 (0.049434) | 0.033783 / 0.128546 (-0.094763) | 0.011604 / 0.075646 (-0.064042) | 0.322577 / 0.419271 (-0.096694) | 0.040540 / 0.043533 (-0.002993) | 0.299176 / 0.255139 (0.044037) | 0.333157 / 0.283200 (0.049957) | 0.087460 / 0.141683 (-0.054223) | 1.494392 / 1.452155 (0.042237) | 1.539580 / 1.492716 (0.046863) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.176206 / 0.018006 (0.158200) | 0.413702 / 0.000490 (0.413212) | 0.002625 / 0.000200 (0.002425) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023886 / 0.037411 (-0.013525) | 0.099758 / 0.014526 (0.085232) | 0.104349 / 0.176557 (-0.072208) | 0.147138 / 0.737135 (-0.589998) | 0.108682 / 0.296338 (-0.187657) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.411957 / 0.215209 (0.196748) | 4.110004 / 2.077655 (2.032349) | 1.820951 / 1.504120 (0.316831) | 1.629726 / 1.541195 (0.088532) | 1.672573 / 1.468490 (0.204083) | 0.686627 / 4.584777 (-3.898150) | 3.382665 / 3.745712 (-0.363047) | 2.875908 / 5.269862 (-2.393954) | 1.475331 / 4.565676 (-3.090345) | 0.081353 / 0.424275 (-0.342922) | 0.012521 / 0.007607 (0.004914) | 0.516226 / 0.226044 (0.290182) | 5.157658 / 2.268929 (2.888729) | 2.302012 / 55.444624 (-53.142612) | 1.950831 / 6.876477 (-4.925646) | 1.962081 / 2.142072 (-0.179992) | 0.800007 / 4.805227 (-4.005221) | 0.148462 / 6.500664 (-6.352202) | 0.064448 / 0.075469 (-0.011021) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.227977 / 1.841788 (-0.613810) | 13.776087 / 8.074308 (5.701779) | 13.749825 / 10.191392 (3.558433) | 0.137034 / 0.680424 (-0.543390) | 0.028461 / 0.534201 (-0.505740) | 0.392335 / 0.579283 (-0.186948) | 0.397404 / 0.434364 (-0.036960) | 0.450831 / 0.540337 (-0.089507) | 0.533716 / 1.386936 (-0.853220) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006883 / 0.011353 (-0.004470) | 0.004625 / 0.011008 (-0.006383) | 0.099039 / 0.038508 (0.060531) | 0.028068 / 0.023109 (0.004958) | 0.419988 / 0.275898 (0.144090) | 0.449543 / 0.323480 (0.126063) | 0.005232 / 0.007986 (-0.002753) | 0.003527 / 0.004328 (-0.000801) | 0.076308 / 0.004250 (0.072057) | 0.040523 / 0.037052 (0.003471) | 0.420165 / 0.258489 (0.161676) | 0.463220 / 0.293841 (0.169379) | 0.032368 / 0.128546 (-0.096178) | 0.011784 / 0.075646 (-0.063863) | 0.320675 / 0.419271 (-0.098597) | 0.041861 / 0.043533 (-0.001672) | 0.424903 / 0.255139 (0.169764) | 0.443528 / 0.283200 (0.160328) | 0.090869 / 0.141683 (-0.050814) | 1.504757 / 1.452155 (0.052602) | 1.557824 / 1.492716 (0.065108) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224020 / 0.018006 (0.206014) | 0.404090 / 0.000490 (0.403601) | 0.000403 / 0.000200 (0.000203) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024556 / 0.037411 (-0.012855) | 0.101280 / 0.014526 (0.086754) | 0.108017 / 0.176557 (-0.068540) | 0.146679 / 0.737135 (-0.590456) | 0.111468 / 0.296338 (-0.184870) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.478955 / 0.215209 (0.263746) | 4.769628 / 2.077655 (2.691973) | 2.473238 / 1.504120 (0.969118) | 2.263588 / 1.541195 (0.722393) | 2.285425 / 1.468490 (0.816935) | 0.699051 / 4.584777 (-3.885726) | 3.390495 / 3.745712 (-0.355217) | 1.858569 / 5.269862 (-3.411293) | 1.162081 / 4.565676 (-3.403596) | 0.083294 / 0.424275 (-0.340981) | 0.012410 / 0.007607 (0.004803) | 0.580786 / 0.226044 (0.354741) | 5.866868 / 2.268929 (3.597940) | 2.944358 / 55.444624 (-52.500266) | 2.596241 / 6.876477 (-4.280235) | 2.664464 / 2.142072 (0.522392) | 0.806751 / 4.805227 (-3.998476) | 0.152389 / 6.500664 (-6.348275) | 0.066945 / 0.075469 (-0.008524) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.290545 / 1.841788 (-0.551243) | 14.005727 / 8.074308 (5.931419) | 14.478951 / 10.191392 (4.287559) | 0.127488 / 0.680424 (-0.552935) | 0.016929 / 0.534201 (-0.517272) | 0.378380 / 0.579283 (-0.200904) | 0.387499 / 0.434364 (-0.046865) | 0.440816 / 0.540337 (-0.099522) | 0.525794 / 1.386936 (-0.861142) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#07549c6fcb2dced59d7614b4b8264d54ef573407 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008704 / 0.011353 (-0.002649) | 0.004474 / 0.011008 (-0.006534) | 0.101720 / 0.038508 (0.063212) | 0.030426 / 0.023109 (0.007317) | 0.298944 / 0.275898 (0.023046) | 0.371491 / 0.323480 (0.048011) | 0.007042 / 0.007986 (-0.000944) | 0.003479 / 0.004328 (-0.000850) | 0.078086 / 0.004250 (0.073835) | 0.037014 / 0.037052 (-0.000038) | 0.312964 / 0.258489 (0.054475) | 0.351251 / 0.293841 (0.057410) | 0.033286 / 0.128546 (-0.095260) | 0.011468 / 0.075646 (-0.064179) | 0.321784 / 0.419271 (-0.097488) | 0.040700 / 0.043533 (-0.002832) | 0.303799 / 0.255139 (0.048660) | 0.336982 / 0.283200 (0.053782) | 0.089448 / 0.141683 (-0.052235) | 1.462430 / 1.452155 (0.010275) | 1.524448 / 1.492716 (0.031732) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178390 / 0.018006 (0.160384) | 0.402474 / 0.000490 (0.401984) | 0.002697 / 0.000200 (0.002497) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022679 / 0.037411 (-0.014733) | 0.097759 / 0.014526 (0.083234) | 0.105102 / 0.176557 (-0.071454) | 0.140720 / 0.737135 (-0.596415) | 0.109119 / 0.296338 (-0.187219) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.414153 / 0.215209 (0.198944) | 4.131799 / 2.077655 (2.054144) | 1.852325 / 1.504120 (0.348205) | 1.646955 / 1.541195 (0.105760) | 1.662880 / 1.468490 (0.194390) | 0.693823 / 4.584777 (-3.890954) | 3.378843 / 3.745712 (-0.366869) | 1.861324 / 5.269862 (-3.408538) | 1.156916 / 4.565676 (-3.408761) | 0.082385 / 0.424275 (-0.341890) | 0.012166 / 0.007607 (0.004559) | 0.528690 / 0.226044 (0.302646) | 5.286388 / 2.268929 (3.017459) | 2.319941 / 55.444624 (-53.124684) | 1.959462 / 6.876477 (-4.917014) | 1.995102 / 2.142072 (-0.146970) | 0.817158 / 4.805227 (-3.988069) | 0.149479 / 6.500664 (-6.351185) | 0.065668 / 0.075469 (-0.009801) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.240228 / 1.841788 (-0.601560) | 13.770357 / 8.074308 (5.696048) | 13.940638 / 10.191392 (3.749246) | 0.152589 / 0.680424 (-0.527835) | 0.028498 / 0.534201 (-0.505703) | 0.392579 / 0.579283 (-0.186704) | 0.402843 / 0.434364 (-0.031521) | 0.455429 / 0.540337 (-0.084909) | 0.541090 / 1.386936 (-0.845846) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006692 / 0.011353 (-0.004661) | 0.004514 / 0.011008 (-0.006495) | 0.097058 / 0.038508 (0.058550) | 0.027780 / 0.023109 (0.004671) | 0.415806 / 0.275898 (0.139908) | 0.443079 / 0.323480 (0.119599) | 0.005181 / 0.007986 (-0.002805) | 0.003408 / 0.004328 (-0.000921) | 0.075263 / 0.004250 (0.071013) | 0.038169 / 0.037052 (0.001116) | 0.417292 / 0.258489 (0.158803) | 0.461875 / 0.293841 (0.168034) | 0.032280 / 0.128546 (-0.096266) | 0.011571 / 0.075646 (-0.064075) | 0.319091 / 0.419271 (-0.100181) | 0.048295 / 0.043533 (0.004762) | 0.423619 / 0.255139 (0.168480) | 0.435064 / 0.283200 (0.151864) | 0.094869 / 0.141683 (-0.046814) | 1.523000 / 1.452155 (0.070846) | 1.583097 / 1.492716 (0.090381) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.214326 / 0.018006 (0.196320) | 0.391623 / 0.000490 (0.391134) | 0.004602 / 0.000200 (0.004403) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024306 / 0.037411 (-0.013106) | 0.101178 / 0.014526 (0.086652) | 0.108504 / 0.176557 (-0.068053) | 0.144114 / 0.737135 (-0.593022) | 0.111088 / 0.296338 (-0.185250) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472573 / 0.215209 (0.257364) | 4.748929 / 2.077655 (2.671274) | 2.441602 / 1.504120 (0.937482) | 2.238841 / 1.541195 (0.697647) | 2.303303 / 1.468490 (0.834813) | 0.696618 / 4.584777 (-3.888159) | 3.373867 / 3.745712 (-0.371845) | 2.809009 / 5.269862 (-2.460852) | 1.337240 / 4.565676 (-3.228437) | 0.082682 / 0.424275 (-0.341593) | 0.012834 / 0.007607 (0.005227) | 0.569686 / 0.226044 (0.343642) | 5.723407 / 2.268929 (3.454478) | 2.882944 / 55.444624 (-52.561680) | 2.543530 / 6.876477 (-4.332947) | 2.581856 / 2.142072 (0.439784) | 0.802353 / 4.805227 (-4.002874) | 0.149947 / 6.500664 (-6.350717) | 0.065865 / 0.075469 (-0.009604) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.282146 / 1.841788 (-0.559642) | 13.831344 / 8.074308 (5.757036) | 14.081550 / 10.191392 (3.890157) | 0.141735 / 0.680424 (-0.538689) | 0.016677 / 0.534201 (-0.517524) | 0.378967 / 0.579283 (-0.200316) | 0.383775 / 0.434364 (-0.050589) | 0.432892 / 0.540337 (-0.107446) | 0.518042 / 1.386936 (-0.868894) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#01b4a5a18b56fa7b648b0f131f6b5568b1fd436a \"CML watermark\")\n", "Omg I love this ! cc @TevenLeScao @thomasw21 this will save your terminals from infinite streams of progress bars", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008680 / 0.011353 (-0.002673) | 0.004597 / 0.011008 (-0.006411) | 0.101154 / 0.038508 (0.062646) | 0.029831 / 0.023109 (0.006722) | 0.300619 / 0.275898 (0.024721) | 0.358259 / 0.323480 (0.034779) | 0.007284 / 0.007986 (-0.000701) | 0.003511 / 0.004328 (-0.000817) | 0.078805 / 0.004250 (0.074555) | 0.037192 / 0.037052 (0.000140) | 0.307241 / 0.258489 (0.048752) | 0.354648 / 0.293841 (0.060807) | 0.033696 / 0.128546 (-0.094851) | 0.011660 / 0.075646 (-0.063986) | 0.324266 / 0.419271 (-0.095006) | 0.043393 / 0.043533 (-0.000140) | 0.297503 / 0.255139 (0.042364) | 0.326037 / 0.283200 (0.042838) | 0.091165 / 0.141683 (-0.050517) | 1.479970 / 1.452155 (0.027816) | 1.508507 / 1.492716 (0.015791) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.179995 / 0.018006 (0.161989) | 0.464282 / 0.000490 (0.463793) | 0.003953 / 0.000200 (0.003753) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022696 / 0.037411 (-0.014715) | 0.099510 / 0.014526 (0.084984) | 0.103741 / 0.176557 (-0.072816) | 0.137837 / 0.737135 (-0.599299) | 0.108776 / 0.296338 (-0.187563) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417034 / 0.215209 (0.201825) | 4.183479 / 2.077655 (2.105824) | 1.855329 / 1.504120 (0.351209) | 1.660675 / 1.541195 (0.119481) | 1.723936 / 1.468490 (0.255446) | 0.687815 / 4.584777 (-3.896962) | 3.331280 / 3.745712 (-0.414432) | 2.821430 / 5.269862 (-2.448432) | 1.542394 / 4.565676 (-3.023283) | 0.081665 / 0.424275 (-0.342610) | 0.012483 / 0.007607 (0.004875) | 0.524758 / 0.226044 (0.298713) | 5.277285 / 2.268929 (3.008357) | 2.278067 / 55.444624 (-53.166557) | 1.923232 / 6.876477 (-4.953245) | 1.978645 / 2.142072 (-0.163428) | 0.806225 / 4.805227 (-3.999002) | 0.147568 / 6.500664 (-6.353096) | 0.064206 / 0.075469 (-0.011263) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.175079 / 1.841788 (-0.666708) | 13.677443 / 8.074308 (5.603135) | 14.064103 / 10.191392 (3.872711) | 0.167462 / 0.680424 (-0.512962) | 0.028677 / 0.534201 (-0.505524) | 0.399090 / 0.579283 (-0.180193) | 0.398930 / 0.434364 (-0.035433) | 0.461604 / 0.540337 (-0.078733) | 0.540978 / 1.386936 (-0.845958) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006846 / 0.011353 (-0.004507) | 0.004452 / 0.011008 (-0.006556) | 0.076169 / 0.038508 (0.037661) | 0.028290 / 0.023109 (0.005181) | 0.341105 / 0.275898 (0.065207) | 0.381465 / 0.323480 (0.057986) | 0.005038 / 0.007986 (-0.002948) | 0.003298 / 0.004328 (-0.001031) | 0.075794 / 0.004250 (0.071544) | 0.039225 / 0.037052 (0.002173) | 0.342995 / 0.258489 (0.084506) | 0.384878 / 0.293841 (0.091037) | 0.031766 / 0.128546 (-0.096780) | 0.011597 / 0.075646 (-0.064049) | 0.084849 / 0.419271 (-0.334423) | 0.041795 / 0.043533 (-0.001737) | 0.341770 / 0.255139 (0.086631) | 0.383142 / 0.283200 (0.099942) | 0.088854 / 0.141683 (-0.052829) | 1.465116 / 1.452155 (0.012961) | 1.566888 / 1.492716 (0.074171) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225129 / 0.018006 (0.207123) | 0.394290 / 0.000490 (0.393801) | 0.000397 / 0.000200 (0.000197) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025492 / 0.037411 (-0.011919) | 0.100494 / 0.014526 (0.085968) | 0.110587 / 0.176557 (-0.065969) | 0.142715 / 0.737135 (-0.594420) | 0.110962 / 0.296338 (-0.185376) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437240 / 0.215209 (0.222031) | 4.379191 / 2.077655 (2.301536) | 2.055059 / 1.504120 (0.550939) | 1.844643 / 1.541195 (0.303448) | 1.914678 / 1.468490 (0.446188) | 0.695607 / 4.584777 (-3.889170) | 3.353845 / 3.745712 (-0.391867) | 1.837403 / 5.269862 (-3.432459) | 1.155518 / 4.565676 (-3.410158) | 0.082753 / 0.424275 (-0.341523) | 0.012812 / 0.007607 (0.005205) | 0.537304 / 0.226044 (0.311260) | 5.387425 / 2.268929 (3.118497) | 2.506986 / 55.444624 (-52.937638) | 2.159031 / 6.876477 (-4.717445) | 2.187844 / 2.142072 (0.045772) | 0.796880 / 4.805227 (-4.008347) | 0.151850 / 6.500664 (-6.348815) | 0.067577 / 0.075469 (-0.007892) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257779 / 1.841788 (-0.584009) | 13.968842 / 8.074308 (5.894534) | 13.544220 / 10.191392 (3.352828) | 0.149962 / 0.680424 (-0.530462) | 0.016875 / 0.534201 (-0.517326) | 0.394714 / 0.579283 (-0.184570) | 0.387845 / 0.434364 (-0.046519) | 0.481674 / 0.540337 (-0.058664) | 0.569820 / 1.386936 (-0.817116) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#71e50283422a93e805ea76722ce2520d1aae39c2 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009745 / 0.011353 (-0.001607) | 0.005307 / 0.011008 (-0.005702) | 0.104230 / 0.038508 (0.065722) | 0.039745 / 0.023109 (0.016635) | 0.306102 / 0.275898 (0.030204) | 0.384390 / 0.323480 (0.060910) | 0.008265 / 0.007986 (0.000279) | 0.005516 / 0.004328 (0.001187) | 0.076023 / 0.004250 (0.071772) | 0.048266 / 0.037052 (0.011213) | 0.315380 / 0.258489 (0.056891) | 0.365735 / 0.293841 (0.071895) | 0.038222 / 0.128546 (-0.090324) | 0.012397 / 0.075646 (-0.063249) | 0.348964 / 0.419271 (-0.070307) | 0.047668 / 0.043533 (0.004135) | 0.301037 / 0.255139 (0.045898) | 0.322982 / 0.283200 (0.039783) | 0.109307 / 0.141683 (-0.032376) | 1.420777 / 1.452155 (-0.031378) | 1.468290 / 1.492716 (-0.024426) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.262386 / 0.018006 (0.244380) | 0.557151 / 0.000490 (0.556661) | 0.000352 / 0.000200 (0.000152) | 0.000062 / 0.000054 (0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029508 / 0.037411 (-0.007903) | 0.113960 / 0.014526 (0.099434) | 0.123176 / 0.176557 (-0.053381) | 0.161928 / 0.737135 (-0.575207) | 0.129196 / 0.296338 (-0.167142) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407051 / 0.215209 (0.191842) | 4.072550 / 2.077655 (1.994895) | 1.899809 / 1.504120 (0.395689) | 1.751981 / 1.541195 (0.210786) | 1.841361 / 1.468490 (0.372871) | 0.713908 / 4.584777 (-3.870869) | 3.703339 / 3.745712 (-0.042373) | 2.091283 / 5.269862 (-3.178578) | 1.323810 / 4.565676 (-3.241866) | 0.084691 / 0.424275 (-0.339584) | 0.012685 / 0.007607 (0.005078) | 0.511301 / 0.226044 (0.285257) | 5.109741 / 2.268929 (2.840813) | 2.315073 / 55.444624 (-53.129551) | 2.012746 / 6.876477 (-4.863731) | 2.160074 / 2.142072 (0.018002) | 0.853025 / 4.805227 (-3.952202) | 0.165301 / 6.500664 (-6.335363) | 0.062244 / 0.075469 (-0.013225) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.219727 / 1.841788 (-0.622061) | 15.319675 / 8.074308 (7.245367) | 13.100883 / 10.191392 (2.909491) | 0.173451 / 0.680424 (-0.506973) | 0.029173 / 0.534201 (-0.505028) | 0.440162 / 0.579283 (-0.139122) | 0.429771 / 0.434364 (-0.004593) | 0.518689 / 0.540337 (-0.021648) | 0.608590 / 1.386936 (-0.778346) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007839 / 0.011353 (-0.003514) | 0.005409 / 0.011008 (-0.005599) | 0.076468 / 0.038508 (0.037960) | 0.036568 / 0.023109 (0.013459) | 0.337568 / 0.275898 (0.061670) | 0.379353 / 0.323480 (0.055873) | 0.006208 / 0.007986 (-0.001778) | 0.005971 / 0.004328 (0.001643) | 0.073765 / 0.004250 (0.069514) | 0.056609 / 0.037052 (0.019556) | 0.344578 / 0.258489 (0.086089) | 0.405249 / 0.293841 (0.111408) | 0.037652 / 0.128546 (-0.090894) | 0.012549 / 0.075646 (-0.063097) | 0.087086 / 0.419271 (-0.332186) | 0.056669 / 0.043533 (0.013136) | 0.334121 / 0.255139 (0.078983) | 0.354582 / 0.283200 (0.071383) | 0.113293 / 0.141683 (-0.028390) | 1.437327 / 1.452155 (-0.014828) | 1.574400 / 1.492716 (0.081684) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.325235 / 0.018006 (0.307229) | 0.535405 / 0.000490 (0.534915) | 0.014119 / 0.000200 (0.013919) | 0.000278 / 0.000054 (0.000224) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030826 / 0.037411 (-0.006585) | 0.114077 / 0.014526 (0.099552) | 0.128799 / 0.176557 (-0.047758) | 0.172164 / 0.737135 (-0.564971) | 0.133665 / 0.296338 (-0.162673) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430898 / 0.215209 (0.215689) | 4.285507 / 2.077655 (2.207853) | 2.089767 / 1.504120 (0.585647) | 1.899457 / 1.541195 (0.358262) | 2.042875 / 1.468490 (0.574385) | 0.690575 / 4.584777 (-3.894202) | 3.815905 / 3.745712 (0.070192) | 3.371085 / 5.269862 (-1.898776) | 1.865748 / 4.565676 (-2.699929) | 0.086678 / 0.424275 (-0.337597) | 0.013172 / 0.007607 (0.005565) | 0.552038 / 0.226044 (0.325994) | 5.275093 / 2.268929 (3.006165) | 2.561102 / 55.444624 (-52.883522) | 2.224235 / 6.876477 (-4.652242) | 2.330315 / 2.142072 (0.188243) | 0.845163 / 4.805227 (-3.960064) | 0.170675 / 6.500664 (-6.329989) | 0.068446 / 0.075469 (-0.007023) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.261213 / 1.841788 (-0.580575) | 15.354959 / 8.074308 (7.280651) | 15.034302 / 10.191392 (4.842910) | 0.146704 / 0.680424 (-0.533720) | 0.017986 / 0.534201 (-0.516215) | 0.425978 / 0.579283 (-0.153305) | 0.421806 / 0.434364 (-0.012558) | 0.494844 / 0.540337 (-0.045493) | 0.587870 / 1.386936 (-0.799066) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0933901bb757e9a386095aef0fb11de9f9a04085 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012765 / 0.011353 (0.001412) | 0.006429 / 0.011008 (-0.004579) | 0.133669 / 0.038508 (0.095161) | 0.041420 / 0.023109 (0.018311) | 0.419990 / 0.275898 (0.144092) | 0.505218 / 0.323480 (0.181738) | 0.010189 / 0.007986 (0.002204) | 0.005134 / 0.004328 (0.000805) | 0.100890 / 0.004250 (0.096640) | 0.045639 / 0.037052 (0.008587) | 0.440593 / 0.258489 (0.182103) | 0.476966 / 0.293841 (0.183125) | 0.059270 / 0.128546 (-0.069276) | 0.018625 / 0.075646 (-0.057021) | 0.444957 / 0.419271 (0.025686) | 0.060669 / 0.043533 (0.017136) | 0.415373 / 0.255139 (0.160234) | 0.461810 / 0.283200 (0.178610) | 0.116119 / 0.141683 (-0.025564) | 1.873691 / 1.452155 (0.421536) | 1.939891 / 1.492716 (0.447175) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.259529 / 0.018006 (0.241523) | 0.587213 / 0.000490 (0.586723) | 0.003729 / 0.000200 (0.003529) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032064 / 0.037411 (-0.005347) | 0.140228 / 0.014526 (0.125702) | 0.147139 / 0.176557 (-0.029417) | 0.193731 / 0.737135 (-0.543405) | 0.162126 / 0.296338 (-0.134213) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.639262 / 0.215209 (0.424053) | 6.496491 / 2.077655 (4.418836) | 2.602044 / 1.504120 (1.097924) | 2.245891 / 1.541195 (0.704696) | 2.301321 / 1.468490 (0.832831) | 1.234088 / 4.584777 (-3.350689) | 5.883315 / 3.745712 (2.137603) | 3.166902 / 5.269862 (-2.102959) | 2.258279 / 4.565676 (-2.307398) | 0.146203 / 0.424275 (-0.278072) | 0.015490 / 0.007607 (0.007883) | 0.800188 / 0.226044 (0.574144) | 8.150866 / 2.268929 (5.881938) | 3.419508 / 55.444624 (-52.025117) | 2.712174 / 6.876477 (-4.164302) | 2.805059 / 2.142072 (0.662987) | 1.421047 / 4.805227 (-3.384180) | 0.254274 / 6.500664 (-6.246390) | 0.083886 / 0.075469 (0.008417) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.651962 / 1.841788 (-0.189826) | 19.453202 / 8.074308 (11.378894) | 24.643881 / 10.191392 (14.452489) | 0.263612 / 0.680424 (-0.416812) | 0.046913 / 0.534201 (-0.487288) | 0.579861 / 0.579283 (0.000578) | 0.695137 / 0.434364 (0.260773) | 0.705479 / 0.540337 (0.165142) | 0.806073 / 1.386936 (-0.580863) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010384 / 0.011353 (-0.000969) | 0.007460 / 0.011008 (-0.003548) | 0.107830 / 0.038508 (0.069322) | 0.036792 / 0.023109 (0.013682) | 0.469585 / 0.275898 (0.193687) | 0.521278 / 0.323480 (0.197798) | 0.007472 / 0.007986 (-0.000513) | 0.007774 / 0.004328 (0.003446) | 0.105405 / 0.004250 (0.101154) | 0.053732 / 0.037052 (0.016680) | 0.486299 / 0.258489 (0.227810) | 0.537067 / 0.293841 (0.243226) | 0.053378 / 0.128546 (-0.075168) | 0.022018 / 0.075646 (-0.053628) | 0.127765 / 0.419271 (-0.291507) | 0.063844 / 0.043533 (0.020311) | 0.479724 / 0.255139 (0.224585) | 0.511243 / 0.283200 (0.228043) | 0.123223 / 0.141683 (-0.018460) | 1.934167 / 1.452155 (0.482013) | 2.003168 / 1.492716 (0.510451) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227670 / 0.018006 (0.209664) | 0.609125 / 0.000490 (0.608635) | 0.004408 / 0.000200 (0.004208) | 0.000147 / 0.000054 (0.000092) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035905 / 0.037411 (-0.001506) | 0.142207 / 0.014526 (0.127681) | 0.154749 / 0.176557 (-0.021808) | 0.216191 / 0.737135 (-0.520944) | 0.156577 / 0.296338 (-0.139761) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.665085 / 0.215209 (0.449876) | 6.510923 / 2.077655 (4.433269) | 2.902438 / 1.504120 (1.398318) | 2.561427 / 1.541195 (1.020232) | 2.669556 / 1.468490 (1.201066) | 1.190340 / 4.584777 (-3.394437) | 5.933066 / 3.745712 (2.187354) | 5.627784 / 5.269862 (0.357922) | 2.971922 / 4.565676 (-1.593755) | 0.140884 / 0.424275 (-0.283391) | 0.015382 / 0.007607 (0.007775) | 0.810441 / 0.226044 (0.584396) | 8.255538 / 2.268929 (5.986609) | 3.819014 / 55.444624 (-51.625611) | 3.222479 / 6.876477 (-3.653998) | 3.181700 / 2.142072 (1.039627) | 1.483403 / 4.805227 (-3.321824) | 0.262726 / 6.500664 (-6.237939) | 0.090252 / 0.075469 (0.014783) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.748566 / 1.841788 (-0.093222) | 19.566894 / 8.074308 (11.492586) | 24.382155 / 10.191392 (14.190763) | 0.260118 / 0.680424 (-0.420305) | 0.028725 / 0.534201 (-0.505476) | 0.564875 / 0.579283 (-0.014408) | 0.666708 / 0.434364 (0.232344) | 0.691165 / 0.540337 (0.150827) | 0.837061 / 1.386936 (-0.549875) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fe6bf908e9f12e0b69b4059c392da8264881525d \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010098 / 0.011353 (-0.001255) | 0.005797 / 0.011008 (-0.005211) | 0.111262 / 0.038508 (0.072754) | 0.039687 / 0.023109 (0.016578) | 0.331081 / 0.275898 (0.055183) | 0.395878 / 0.323480 (0.072398) | 0.009244 / 0.007986 (0.001259) | 0.004498 / 0.004328 (0.000170) | 0.086129 / 0.004250 (0.081879) | 0.046662 / 0.037052 (0.009610) | 0.361926 / 0.258489 (0.103437) | 0.386155 / 0.293841 (0.092314) | 0.043657 / 0.128546 (-0.084889) | 0.013545 / 0.075646 (-0.062101) | 0.383735 / 0.419271 (-0.035537) | 0.055727 / 0.043533 (0.012194) | 0.355356 / 0.255139 (0.100217) | 0.358749 / 0.283200 (0.075550) | 0.123219 / 0.141683 (-0.018463) | 1.707982 / 1.452155 (0.255828) | 1.773342 / 1.492716 (0.280626) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238902 / 0.018006 (0.220896) | 0.495525 / 0.000490 (0.495036) | 0.001742 / 0.000200 (0.001542) | 0.000096 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031276 / 0.037411 (-0.006135) | 0.124286 / 0.014526 (0.109760) | 0.136236 / 0.176557 (-0.040321) | 0.180257 / 0.737135 (-0.556879) | 0.141047 / 0.296338 (-0.155292) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.465075 / 0.215209 (0.249865) | 4.543997 / 2.077655 (2.466342) | 2.036632 / 1.504120 (0.532512) | 1.820356 / 1.541195 (0.279161) | 1.860692 / 1.468490 (0.392202) | 0.807549 / 4.584777 (-3.777227) | 4.400369 / 3.745712 (0.654657) | 2.423372 / 5.269862 (-2.846490) | 1.741338 / 4.565676 (-2.824339) | 0.099457 / 0.424275 (-0.324818) | 0.014464 / 0.007607 (0.006857) | 0.599442 / 0.226044 (0.373398) | 5.867798 / 2.268929 (3.598870) | 2.641859 / 55.444624 (-52.802766) | 2.294246 / 6.876477 (-4.582231) | 2.329639 / 2.142072 (0.187567) | 0.981897 / 4.805227 (-3.823331) | 0.189278 / 6.500664 (-6.311386) | 0.071868 / 0.075469 (-0.003601) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.471800 / 1.841788 (-0.369988) | 17.149150 / 8.074308 (9.074841) | 15.818942 / 10.191392 (5.627550) | 0.174760 / 0.680424 (-0.505664) | 0.033507 / 0.534201 (-0.500694) | 0.511055 / 0.579283 (-0.068228) | 0.517107 / 0.434364 (0.082743) | 0.650813 / 0.540337 (0.110476) | 0.752515 / 1.386936 (-0.634421) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008651 / 0.011353 (-0.002702) | 0.005935 / 0.011008 (-0.005073) | 0.088589 / 0.038508 (0.050081) | 0.038796 / 0.023109 (0.015687) | 0.415430 / 0.275898 (0.139532) | 0.443693 / 0.323480 (0.120213) | 0.006631 / 0.007986 (-0.001354) | 0.004638 / 0.004328 (0.000309) | 0.085779 / 0.004250 (0.081529) | 0.053994 / 0.037052 (0.016942) | 0.408349 / 0.258489 (0.149860) | 0.475441 / 0.293841 (0.181600) | 0.042792 / 0.128546 (-0.085754) | 0.013938 / 0.075646 (-0.061709) | 0.102173 / 0.419271 (-0.317098) | 0.057940 / 0.043533 (0.014407) | 0.408967 / 0.255139 (0.153828) | 0.422741 / 0.283200 (0.139541) | 0.121844 / 0.141683 (-0.019839) | 1.772779 / 1.452155 (0.320625) | 1.837706 / 1.492716 (0.344989) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228896 / 0.018006 (0.210890) | 0.497964 / 0.000490 (0.497475) | 0.004402 / 0.000200 (0.004202) | 0.000112 / 0.000054 (0.000057) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035626 / 0.037411 (-0.001786) | 0.132021 / 0.014526 (0.117495) | 0.145599 / 0.176557 (-0.030957) | 0.192317 / 0.737135 (-0.544818) | 0.150165 / 0.296338 (-0.146174) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.500216 / 0.215209 (0.285007) | 5.002916 / 2.077655 (2.925262) | 2.502439 / 1.504120 (0.998319) | 2.353019 / 1.541195 (0.811825) | 2.485082 / 1.468490 (1.016592) | 0.827694 / 4.584777 (-3.757083) | 4.569319 / 3.745712 (0.823607) | 3.739820 / 5.269862 (-1.530042) | 2.097857 / 4.565676 (-2.467819) | 0.098636 / 0.424275 (-0.325639) | 0.014608 / 0.007607 (0.007001) | 0.604411 / 0.226044 (0.378366) | 6.131702 / 2.268929 (3.862774) | 3.043988 / 55.444624 (-52.400637) | 2.642427 / 6.876477 (-4.234050) | 2.687223 / 2.142072 (0.545151) | 0.968808 / 4.805227 (-3.836419) | 0.193876 / 6.500664 (-6.306788) | 0.076931 / 0.075469 (0.001462) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.511820 / 1.841788 (-0.329968) | 17.971574 / 8.074308 (9.897265) | 16.512738 / 10.191392 (6.321346) | 0.223702 / 0.680424 (-0.456722) | 0.020191 / 0.534201 (-0.514010) | 0.511045 / 0.579283 (-0.068238) | 0.499813 / 0.434364 (0.065449) | 0.642147 / 0.540337 (0.101810) | 0.756029 / 1.386936 (-0.630907) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1f6c7b9eb4bca89ec90c465623f7a2e6f5251062 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008909 / 0.011353 (-0.002444) | 0.005096 / 0.011008 (-0.005912) | 0.098568 / 0.038508 (0.060060) | 0.034548 / 0.023109 (0.011438) | 0.294762 / 0.275898 (0.018864) | 0.366093 / 0.323480 (0.042613) | 0.007476 / 0.007986 (-0.000510) | 0.003982 / 0.004328 (-0.000347) | 0.075975 / 0.004250 (0.071725) | 0.040499 / 0.037052 (0.003446) | 0.315050 / 0.258489 (0.056561) | 0.351273 / 0.293841 (0.057433) | 0.038327 / 0.128546 (-0.090219) | 0.011943 / 0.075646 (-0.063703) | 0.332148 / 0.419271 (-0.087124) | 0.047648 / 0.043533 (0.004115) | 0.295817 / 0.255139 (0.040678) | 0.322704 / 0.283200 (0.039504) | 0.100830 / 0.141683 (-0.040853) | 1.422162 / 1.452155 (-0.029993) | 1.468972 / 1.492716 (-0.023744) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201164 / 0.018006 (0.183158) | 0.435425 / 0.000490 (0.434935) | 0.001576 / 0.000200 (0.001376) | 0.000218 / 0.000054 (0.000163) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026667 / 0.037411 (-0.010744) | 0.106161 / 0.014526 (0.091636) | 0.115836 / 0.176557 (-0.060720) | 0.151511 / 0.737135 (-0.585624) | 0.122248 / 0.296338 (-0.174091) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.395974 / 0.215209 (0.180765) | 3.952958 / 2.077655 (1.875303) | 1.772111 / 1.504120 (0.267991) | 1.581370 / 1.541195 (0.040175) | 1.602811 / 1.468490 (0.134321) | 0.694072 / 4.584777 (-3.890705) | 3.640238 / 3.745712 (-0.105474) | 2.028865 / 5.269862 (-3.240997) | 1.419182 / 4.565676 (-3.146495) | 0.084078 / 0.424275 (-0.340197) | 0.012248 / 0.007607 (0.004641) | 0.499768 / 0.226044 (0.273723) | 4.997449 / 2.268929 (2.728521) | 2.280711 / 55.444624 (-53.163913) | 1.971701 / 6.876477 (-4.904776) | 1.983248 / 2.142072 (-0.158824) | 0.831030 / 4.805227 (-3.974198) | 0.163008 / 6.500664 (-6.337656) | 0.061887 / 0.075469 (-0.013582) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.191744 / 1.841788 (-0.650043) | 14.424546 / 8.074308 (6.350238) | 14.530127 / 10.191392 (4.338735) | 0.165793 / 0.680424 (-0.514631) | 0.029099 / 0.534201 (-0.505102) | 0.447830 / 0.579283 (-0.131453) | 0.441036 / 0.434364 (0.006672) | 0.554697 / 0.540337 (0.014360) | 0.668854 / 1.386936 (-0.718082) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006825 / 0.011353 (-0.004528) | 0.004998 / 0.011008 (-0.006010) | 0.074197 / 0.038508 (0.035689) | 0.032381 / 0.023109 (0.009272) | 0.335745 / 0.275898 (0.059847) | 0.360474 / 0.323480 (0.036994) | 0.005420 / 0.007986 (-0.002566) | 0.005121 / 0.004328 (0.000792) | 0.074980 / 0.004250 (0.070730) | 0.046392 / 0.037052 (0.009340) | 0.338693 / 0.258489 (0.080204) | 0.383679 / 0.293841 (0.089838) | 0.035380 / 0.128546 (-0.093166) | 0.012197 / 0.075646 (-0.063449) | 0.085738 / 0.419271 (-0.333533) | 0.049990 / 0.043533 (0.006458) | 0.342640 / 0.255139 (0.087501) | 0.355139 / 0.283200 (0.071939) | 0.102992 / 0.141683 (-0.038690) | 1.451900 / 1.452155 (-0.000254) | 1.550919 / 1.492716 (0.058202) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223241 / 0.018006 (0.205235) | 0.436954 / 0.000490 (0.436464) | 0.003319 / 0.000200 (0.003120) | 0.000088 / 0.000054 (0.000034) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028042 / 0.037411 (-0.009370) | 0.106079 / 0.014526 (0.091554) | 0.122713 / 0.176557 (-0.053843) | 0.156543 / 0.737135 (-0.580593) | 0.122424 / 0.296338 (-0.173914) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.439482 / 0.215209 (0.224273) | 4.283112 / 2.077655 (2.205457) | 2.139705 / 1.504120 (0.635585) | 1.940898 / 1.541195 (0.399703) | 2.003906 / 1.468490 (0.535416) | 0.703269 / 4.584777 (-3.881508) | 3.780391 / 3.745712 (0.034679) | 2.079963 / 5.269862 (-3.189898) | 1.330669 / 4.565676 (-3.235007) | 0.086582 / 0.424275 (-0.337693) | 0.012497 / 0.007607 (0.004890) | 0.519329 / 0.226044 (0.293284) | 5.218117 / 2.268929 (2.949189) | 2.635982 / 55.444624 (-52.808643) | 2.301111 / 6.876477 (-4.575366) | 2.341312 / 2.142072 (0.199239) | 0.840157 / 4.805227 (-3.965070) | 0.166174 / 6.500664 (-6.334490) | 0.062890 / 0.075469 (-0.012579) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257672 / 1.841788 (-0.584116) | 14.983374 / 8.074308 (6.909066) | 14.284441 / 10.191392 (4.093049) | 0.176077 / 0.680424 (-0.504347) | 0.017544 / 0.534201 (-0.516657) | 0.429619 / 0.579283 (-0.149664) | 0.426371 / 0.434364 (-0.007993) | 0.534832 / 0.540337 (-0.005506) | 0.643322 / 1.386936 (-0.743614) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0409b1435876fa97b3674b0275285e84b49d83f8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010622 / 0.011353 (-0.000731) | 0.005856 / 0.011008 (-0.005152) | 0.108608 / 0.038508 (0.070100) | 0.039868 / 0.023109 (0.016759) | 0.327853 / 0.275898 (0.051955) | 0.396721 / 0.323480 (0.073241) | 0.008916 / 0.007986 (0.000930) | 0.004590 / 0.004328 (0.000261) | 0.085020 / 0.004250 (0.080770) | 0.046608 / 0.037052 (0.009555) | 0.356369 / 0.258489 (0.097880) | 0.391142 / 0.293841 (0.097301) | 0.040579 / 0.128546 (-0.087967) | 0.012249 / 0.075646 (-0.063397) | 0.387740 / 0.419271 (-0.031532) | 0.057794 / 0.043533 (0.014262) | 0.335763 / 0.255139 (0.080624) | 0.369847 / 0.283200 (0.086647) | 0.121276 / 0.141683 (-0.020407) | 1.605406 / 1.452155 (0.153251) | 1.709524 / 1.492716 (0.216808) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226688 / 0.018006 (0.208681) | 0.493320 / 0.000490 (0.492831) | 0.002825 / 0.000200 (0.002626) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031874 / 0.037411 (-0.005538) | 0.117365 / 0.014526 (0.102840) | 0.127697 / 0.176557 (-0.048859) | 0.175589 / 0.737135 (-0.561546) | 0.137731 / 0.296338 (-0.158608) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472563 / 0.215209 (0.257354) | 4.744383 / 2.077655 (2.666728) | 2.152015 / 1.504120 (0.647895) | 1.925398 / 1.541195 (0.384203) | 2.054613 / 1.468490 (0.586123) | 0.821703 / 4.584777 (-3.763074) | 4.468177 / 3.745712 (0.722465) | 4.687682 / 5.269862 (-0.582179) | 2.379674 / 4.565676 (-2.186003) | 0.101325 / 0.424275 (-0.322950) | 0.014891 / 0.007607 (0.007284) | 0.593161 / 0.226044 (0.367117) | 5.641670 / 2.268929 (3.372741) | 2.460206 / 55.444624 (-52.984419) | 2.131148 / 6.876477 (-4.745329) | 2.351067 / 2.142072 (0.208994) | 0.997634 / 4.805227 (-3.807593) | 0.195338 / 6.500664 (-6.305326) | 0.075540 / 0.075469 (0.000071) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.411585 / 1.841788 (-0.430203) | 17.055689 / 8.074308 (8.981381) | 16.544028 / 10.191392 (6.352636) | 0.180840 / 0.680424 (-0.499584) | 0.034549 / 0.534201 (-0.499652) | 0.510256 / 0.579283 (-0.069027) | 0.525632 / 0.434364 (0.091268) | 0.601206 / 0.540337 (0.060868) | 0.668468 / 1.386936 (-0.718469) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008989 / 0.011353 (-0.002364) | 0.006065 / 0.011008 (-0.004943) | 0.088294 / 0.038508 (0.049786) | 0.040404 / 0.023109 (0.017295) | 0.405622 / 0.275898 (0.129724) | 0.454519 / 0.323480 (0.131039) | 0.006919 / 0.007986 (-0.001067) | 0.004545 / 0.004328 (0.000217) | 0.087023 / 0.004250 (0.082772) | 0.055962 / 0.037052 (0.018910) | 0.400942 / 0.258489 (0.142453) | 0.490670 / 0.293841 (0.196829) | 0.044086 / 0.128546 (-0.084461) | 0.014485 / 0.075646 (-0.061162) | 0.103333 / 0.419271 (-0.315938) | 0.059663 / 0.043533 (0.016130) | 0.404944 / 0.255139 (0.149805) | 0.425763 / 0.283200 (0.142563) | 0.123989 / 0.141683 (-0.017694) | 1.777244 / 1.452155 (0.325089) | 1.879884 / 1.492716 (0.387167) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226440 / 0.018006 (0.208434) | 0.492688 / 0.000490 (0.492198) | 0.004691 / 0.000200 (0.004491) | 0.000110 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035123 / 0.037411 (-0.002288) | 0.134288 / 0.014526 (0.119762) | 0.145542 / 0.176557 (-0.031015) | 0.195372 / 0.737135 (-0.541764) | 0.152551 / 0.296338 (-0.143787) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468615 / 0.215209 (0.253406) | 4.813363 / 2.077655 (2.735708) | 2.333606 / 1.504120 (0.829486) | 2.107344 / 1.541195 (0.566149) | 2.109109 / 1.468490 (0.640619) | 0.783779 / 4.584777 (-3.800998) | 4.521448 / 3.745712 (0.775736) | 2.290532 / 5.269862 (-2.979329) | 1.553488 / 4.565676 (-3.012189) | 0.088786 / 0.424275 (-0.335489) | 0.013091 / 0.007607 (0.005484) | 0.567165 / 0.226044 (0.341120) | 5.974315 / 2.268929 (3.705386) | 2.815018 / 55.444624 (-52.629606) | 2.488954 / 6.876477 (-4.387522) | 2.461849 / 2.142072 (0.319776) | 0.934487 / 4.805227 (-3.870740) | 0.190209 / 6.500664 (-6.310455) | 0.074811 / 0.075469 (-0.000658) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.513476 / 1.841788 (-0.328311) | 17.902599 / 8.074308 (9.828291) | 14.308027 / 10.191392 (4.116635) | 0.201992 / 0.680424 (-0.478432) | 0.018678 / 0.534201 (-0.515523) | 0.454707 / 0.579283 (-0.124576) | 0.470643 / 0.434364 (0.036279) | 0.612534 / 0.540337 (0.072197) | 0.685773 / 1.386936 (-0.701163) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c4a66da3633a811eb8ea01d23469c41dfec0ffb8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009385 / 0.011353 (-0.001968) | 0.005220 / 0.011008 (-0.005788) | 0.098722 / 0.038508 (0.060214) | 0.035382 / 0.023109 (0.012273) | 0.297114 / 0.275898 (0.021216) | 0.371443 / 0.323480 (0.047963) | 0.008070 / 0.007986 (0.000084) | 0.004204 / 0.004328 (-0.000125) | 0.075621 / 0.004250 (0.071370) | 0.046015 / 0.037052 (0.008963) | 0.304569 / 0.258489 (0.046080) | 0.345598 / 0.293841 (0.051757) | 0.037946 / 0.128546 (-0.090600) | 0.011972 / 0.075646 (-0.063674) | 0.331993 / 0.419271 (-0.087279) | 0.047250 / 0.043533 (0.003717) | 0.296588 / 0.255139 (0.041449) | 0.316070 / 0.283200 (0.032870) | 0.108211 / 0.141683 (-0.033472) | 1.447619 / 1.452155 (-0.004535) | 1.481243 / 1.492716 (-0.011473) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274860 / 0.018006 (0.256854) | 0.503139 / 0.000490 (0.502649) | 0.003598 / 0.000200 (0.003398) | 0.000081 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026752 / 0.037411 (-0.010660) | 0.109008 / 0.014526 (0.094482) | 0.119109 / 0.176557 (-0.057448) | 0.158462 / 0.737135 (-0.578673) | 0.126171 / 0.296338 (-0.170168) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396396 / 0.215209 (0.181187) | 3.963055 / 2.077655 (1.885400) | 1.796308 / 1.504120 (0.292188) | 1.600565 / 1.541195 (0.059370) | 1.742409 / 1.468490 (0.273919) | 0.690942 / 4.584777 (-3.893835) | 3.713343 / 3.745712 (-0.032369) | 2.066804 / 5.269862 (-3.203058) | 1.292946 / 4.565676 (-3.272730) | 0.084344 / 0.424275 (-0.339931) | 0.012473 / 0.007607 (0.004865) | 0.513109 / 0.226044 (0.287065) | 5.175141 / 2.268929 (2.906213) | 2.266559 / 55.444624 (-53.178066) | 1.935737 / 6.876477 (-4.940740) | 2.028911 / 2.142072 (-0.113161) | 0.831191 / 4.805227 (-3.974036) | 0.163155 / 6.500664 (-6.337509) | 0.063414 / 0.075469 (-0.012055) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.195429 / 1.841788 (-0.646358) | 15.257933 / 8.074308 (7.183625) | 14.358815 / 10.191392 (4.167423) | 0.152677 / 0.680424 (-0.527747) | 0.028890 / 0.534201 (-0.505311) | 0.455342 / 0.579283 (-0.123941) | 0.442602 / 0.434364 (0.008238) | 0.526833 / 0.540337 (-0.013505) | 0.618296 / 1.386936 (-0.768640) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007613 / 0.011353 (-0.003740) | 0.005515 / 0.011008 (-0.005493) | 0.073759 / 0.038508 (0.035251) | 0.033944 / 0.023109 (0.010835) | 0.347764 / 0.275898 (0.071866) | 0.371143 / 0.323480 (0.047664) | 0.005997 / 0.007986 (-0.001988) | 0.004322 / 0.004328 (-0.000006) | 0.073002 / 0.004250 (0.068751) | 0.053051 / 0.037052 (0.015999) | 0.340345 / 0.258489 (0.081856) | 0.383761 / 0.293841 (0.089920) | 0.037734 / 0.128546 (-0.090813) | 0.012815 / 0.075646 (-0.062831) | 0.086998 / 0.419271 (-0.332273) | 0.050165 / 0.043533 (0.006632) | 0.343864 / 0.255139 (0.088725) | 0.356734 / 0.283200 (0.073534) | 0.108955 / 0.141683 (-0.032728) | 1.464558 / 1.452155 (0.012403) | 1.560084 / 1.492716 (0.067368) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.327885 / 0.018006 (0.309878) | 0.515515 / 0.000490 (0.515025) | 0.000439 / 0.000200 (0.000239) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030741 / 0.037411 (-0.006670) | 0.107634 / 0.014526 (0.093108) | 0.127121 / 0.176557 (-0.049436) | 0.164044 / 0.737135 (-0.573092) | 0.129097 / 0.296338 (-0.167242) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435690 / 0.215209 (0.220481) | 4.350705 / 2.077655 (2.273050) | 2.199597 / 1.504120 (0.695477) | 2.022715 / 1.541195 (0.481521) | 2.265907 / 1.468490 (0.797417) | 0.695817 / 4.584777 (-3.888960) | 3.795207 / 3.745712 (0.049494) | 3.061587 / 5.269862 (-2.208274) | 1.872213 / 4.565676 (-2.693463) | 0.085265 / 0.424275 (-0.339010) | 0.012243 / 0.007607 (0.004636) | 0.547209 / 0.226044 (0.321164) | 5.383626 / 2.268929 (3.114698) | 2.707439 / 55.444624 (-52.737185) | 2.393773 / 6.876477 (-4.482703) | 2.481385 / 2.142072 (0.339312) | 0.826169 / 4.805227 (-3.979059) | 0.166643 / 6.500664 (-6.334021) | 0.065817 / 0.075469 (-0.009652) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.274469 / 1.841788 (-0.567318) | 15.565025 / 8.074308 (7.490717) | 14.254192 / 10.191392 (4.062800) | 0.166785 / 0.680424 (-0.513639) | 0.017830 / 0.534201 (-0.516371) | 0.430406 / 0.579283 (-0.148877) | 0.435655 / 0.434364 (0.001292) | 0.530605 / 0.540337 (-0.009732) | 0.636355 / 1.386936 (-0.750581) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#146983fdc70b9fe2cc38109368e185b6ffa7a05e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008466 / 0.011353 (-0.002887) | 0.004679 / 0.011008 (-0.006329) | 0.100534 / 0.038508 (0.062025) | 0.029513 / 0.023109 (0.006403) | 0.302866 / 0.275898 (0.026968) | 0.352816 / 0.323480 (0.029336) | 0.006912 / 0.007986 (-0.001074) | 0.003513 / 0.004328 (-0.000815) | 0.078625 / 0.004250 (0.074375) | 0.036725 / 0.037052 (-0.000327) | 0.312135 / 0.258489 (0.053646) | 0.344579 / 0.293841 (0.050738) | 0.033870 / 0.128546 (-0.094677) | 0.011563 / 0.075646 (-0.064083) | 0.318982 / 0.419271 (-0.100290) | 0.043002 / 0.043533 (-0.000531) | 0.301956 / 0.255139 (0.046817) | 0.330798 / 0.283200 (0.047599) | 0.091755 / 0.141683 (-0.049927) | 1.458577 / 1.452155 (0.006422) | 1.532642 / 1.492716 (0.039926) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194853 / 0.018006 (0.176847) | 0.396844 / 0.000490 (0.396354) | 0.004401 / 0.000200 (0.004201) | 0.000076 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022971 / 0.037411 (-0.014441) | 0.096595 / 0.014526 (0.082069) | 0.106104 / 0.176557 (-0.070452) | 0.144815 / 0.737135 (-0.592320) | 0.110036 / 0.296338 (-0.186303) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415025 / 0.215209 (0.199816) | 4.138136 / 2.077655 (2.060481) | 1.861253 / 1.504120 (0.357133) | 1.653420 / 1.541195 (0.112226) | 1.703784 / 1.468490 (0.235294) | 0.698261 / 4.584777 (-3.886516) | 3.357240 / 3.745712 (-0.388472) | 3.025790 / 5.269862 (-2.244072) | 1.637191 / 4.565676 (-2.928485) | 0.085620 / 0.424275 (-0.338655) | 0.012454 / 0.007607 (0.004846) | 0.524708 / 0.226044 (0.298663) | 5.269234 / 2.268929 (3.000306) | 2.290612 / 55.444624 (-53.154012) | 1.936107 / 6.876477 (-4.940370) | 1.968216 / 2.142072 (-0.173856) | 0.810438 / 4.805227 (-3.994789) | 0.154133 / 6.500664 (-6.346531) | 0.064978 / 0.075469 (-0.010491) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.231782 / 1.841788 (-0.610006) | 13.545573 / 8.074308 (5.471264) | 14.558765 / 10.191392 (4.367373) | 0.140763 / 0.680424 (-0.539661) | 0.029259 / 0.534201 (-0.504942) | 0.407776 / 0.579283 (-0.171507) | 0.410244 / 0.434364 (-0.024120) | 0.477313 / 0.540337 (-0.063024) | 0.551465 / 1.386936 (-0.835471) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006272 / 0.011353 (-0.005081) | 0.004397 / 0.011008 (-0.006611) | 0.077496 / 0.038508 (0.038988) | 0.026946 / 0.023109 (0.003837) | 0.342992 / 0.275898 (0.067094) | 0.374407 / 0.323480 (0.050927) | 0.004849 / 0.007986 (-0.003136) | 0.004549 / 0.004328 (0.000220) | 0.076439 / 0.004250 (0.072189) | 0.035829 / 0.037052 (-0.001224) | 0.343483 / 0.258489 (0.084994) | 0.385581 / 0.293841 (0.091740) | 0.031745 / 0.128546 (-0.096801) | 0.011617 / 0.075646 (-0.064030) | 0.087207 / 0.419271 (-0.332064) | 0.042252 / 0.043533 (-0.001281) | 0.343223 / 0.255139 (0.088084) | 0.368707 / 0.283200 (0.085508) | 0.093259 / 0.141683 (-0.048424) | 1.506904 / 1.452155 (0.054750) | 1.567583 / 1.492716 (0.074867) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.158962 / 0.018006 (0.140955) | 0.395982 / 0.000490 (0.395492) | 0.003604 / 0.000200 (0.003404) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025003 / 0.037411 (-0.012408) | 0.101176 / 0.014526 (0.086650) | 0.104494 / 0.176557 (-0.072062) | 0.140414 / 0.737135 (-0.596722) | 0.108398 / 0.296338 (-0.187941) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436849 / 0.215209 (0.221640) | 4.369428 / 2.077655 (2.291774) | 2.070613 / 1.504120 (0.566493) | 1.867511 / 1.541195 (0.326317) | 1.866589 / 1.468490 (0.398099) | 0.700036 / 4.584777 (-3.884741) | 3.407513 / 3.745712 (-0.338199) | 3.022409 / 5.269862 (-2.247453) | 1.581423 / 4.565676 (-2.984253) | 0.083425 / 0.424275 (-0.340850) | 0.012380 / 0.007607 (0.004773) | 0.535087 / 0.226044 (0.309043) | 5.374814 / 2.268929 (3.105886) | 2.504841 / 55.444624 (-52.939784) | 2.166484 / 6.876477 (-4.709993) | 2.166363 / 2.142072 (0.024291) | 0.803692 / 4.805227 (-4.001535) | 0.150873 / 6.500664 (-6.349791) | 0.066253 / 0.075469 (-0.009216) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.291256 / 1.841788 (-0.550532) | 13.827843 / 8.074308 (5.753535) | 13.839334 / 10.191392 (3.647942) | 0.153530 / 0.680424 (-0.526894) | 0.016896 / 0.534201 (-0.517305) | 0.379937 / 0.579283 (-0.199346) | 0.396241 / 0.434364 (-0.038123) | 0.461808 / 0.540337 (-0.078530) | 0.553023 / 1.386936 (-0.833913) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#779ddc5c7ebbd406b2a6c9092c3f455a2cc7f5e7 \"CML watermark\")\n" ]
2023-01-23T12:49:40
2023-02-13T20:23:34
2023-02-13T20:16:38
CONTRIBUTOR
null
Use the "shard generator approach with periodic progress updates" (used in `save_to_disk` and multi-proc `load_dataset`) in `Dataset.map` to enable having a single TQDM progress bar in the multi-proc mode. Closes https://github.com/huggingface/datasets/issues/771, closes https://github.com/huggingface/datasets/issues/3177 TODO: - [x] cleaner refactor of the `_map_single` decorators now that they also have to wrap generator functions (decorate `map` instead of `map_single` with the `transmit_` decorators and predict the shards' fingerprint in `map`)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5455/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 1, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5455/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5455", "html_url": "https://github.com/huggingface/datasets/pull/5455", "diff_url": "https://github.com/huggingface/datasets/pull/5455.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5455.patch", "merged_at": "2023-02-13T20:16:38" }
true
https://api.github.com/repos/huggingface/datasets/issues/5454
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5454/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5454/comments
https://api.github.com/repos/huggingface/datasets/issues/5454/events
https://github.com/huggingface/datasets/issues/5454
1,552,890,419
I_kwDODunzps5cjzoz
5,454
Save and resume the state of a DataLoader
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" }, { "id": 2067400324, "node_id": "MDU6TGFiZWwyMDY3NDAwMzI0", "url": "https://api.github.com/repos/huggingface/datasets/labels/generic%20discussion", "name": "generic discussion", "color": "c5def5", "default": false, "description": "Generic discussion on the library" } ]
open
false
null
[]
null
[ "Something that'd be nice to have is \"manual update of state\". One of the learning from training LLMs is the ability to skip some batches whenever we notice huge spike might be handy.", "Your outline spec is very sound and clear, @lhoestq - thank you!\r\n\r\n@thomasw21, indeed that would be a wonderful extra feature. In Megatron-Deepspeed we manually drained the dataloader for the range we wanted. I wasn't very satisfied with the way we did it, since its behavior would change if you were to do multiple range skips. I think it should remember all the ranges it skipped and not just skip the last range - since otherwise the data is inconsistent (but we probably should discuss this in a separate issue not to derail this much bigger one)." ]
2023-01-23T10:58:54
2023-01-24T01:45:48
null
MEMBER
null
It would be nice when using `datasets` with a PyTorch DataLoader to be able to resume a training from a DataLoader state (e.g. to resume a training that crashed) What I have in mind (but lmk if you have other ideas or comments): For map-style datasets, this requires to have a PyTorch Sampler state that can be saved and reloaded per node and worker. For iterable datasets, this requires to save the state of the dataset iterator, which includes: - the current shard idx and row position in the current shard - the epoch number - the rng state - the shuffle buffer Right now you can already resume the data loading of an iterable dataset by using `IterableDataset.skip` but it takes a lot of time because it re-iterates on all the past data until it reaches the resuming point. cc @stas00 @sgugger
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5454/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 2, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5454/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5453
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5453/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5453/comments
https://api.github.com/repos/huggingface/datasets/issues/5453/events
https://github.com/huggingface/datasets/pull/5453
1,552,727,425
PR_kwDODunzps5ITraa
5,453
Fix base directory while extracting insecure TAR files
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008215 / 0.011353 (-0.003138) | 0.004510 / 0.011008 (-0.006498) | 0.099270 / 0.038508 (0.060761) | 0.028682 / 0.023109 (0.005573) | 0.332726 / 0.275898 (0.056827) | 0.371025 / 0.323480 (0.047545) | 0.006665 / 0.007986 (-0.001320) | 0.003329 / 0.004328 (-0.001000) | 0.078509 / 0.004250 (0.074259) | 0.032388 / 0.037052 (-0.004664) | 0.348540 / 0.258489 (0.090051) | 0.382212 / 0.293841 (0.088371) | 0.033307 / 0.128546 (-0.095239) | 0.011642 / 0.075646 (-0.064004) | 0.322573 / 0.419271 (-0.096699) | 0.041297 / 0.043533 (-0.002236) | 0.322710 / 0.255139 (0.067571) | 0.361593 / 0.283200 (0.078394) | 0.082276 / 0.141683 (-0.059407) | 1.481932 / 1.452155 (0.029777) | 1.531677 / 1.492716 (0.038961) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194964 / 0.018006 (0.176958) | 0.406002 / 0.000490 (0.405512) | 0.001015 / 0.000200 (0.000815) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023317 / 0.037411 (-0.014095) | 0.097231 / 0.014526 (0.082705) | 0.103898 / 0.176557 (-0.072659) | 0.139864 / 0.737135 (-0.597271) | 0.106785 / 0.296338 (-0.189554) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419036 / 0.215209 (0.203827) | 4.193985 / 2.077655 (2.116330) | 1.879069 / 1.504120 (0.374949) | 1.675384 / 1.541195 (0.134190) | 1.696225 / 1.468490 (0.227735) | 0.695257 / 4.584777 (-3.889520) | 3.437971 / 3.745712 (-0.307741) | 2.656037 / 5.269862 (-2.613824) | 1.463320 / 4.565676 (-3.102356) | 0.082575 / 0.424275 (-0.341700) | 0.012593 / 0.007607 (0.004986) | 0.526643 / 0.226044 (0.300599) | 5.278366 / 2.268929 (3.009437) | 2.288106 / 55.444624 (-53.156518) | 1.954875 / 6.876477 (-4.921602) | 1.950641 / 2.142072 (-0.191431) | 0.808289 / 4.805227 (-3.996938) | 0.148790 / 6.500664 (-6.351875) | 0.064775 / 0.075469 (-0.010694) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.215219 / 1.841788 (-0.626569) | 13.551467 / 8.074308 (5.477159) | 13.841547 / 10.191392 (3.650155) | 0.153610 / 0.680424 (-0.526814) | 0.028308 / 0.534201 (-0.505893) | 0.397087 / 0.579283 (-0.182196) | 0.401724 / 0.434364 (-0.032640) | 0.458042 / 0.540337 (-0.082296) | 0.544955 / 1.386936 (-0.841981) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006321 / 0.011353 (-0.005032) | 0.004336 / 0.011008 (-0.006673) | 0.097196 / 0.038508 (0.058688) | 0.026933 / 0.023109 (0.003824) | 0.416520 / 0.275898 (0.140622) | 0.450703 / 0.323480 (0.127223) | 0.004831 / 0.007986 (-0.003155) | 0.003252 / 0.004328 (-0.001076) | 0.074981 / 0.004250 (0.070730) | 0.036136 / 0.037052 (-0.000917) | 0.423166 / 0.258489 (0.164677) | 0.460936 / 0.293841 (0.167095) | 0.031859 / 0.128546 (-0.096687) | 0.011500 / 0.075646 (-0.064146) | 0.318197 / 0.419271 (-0.101074) | 0.041472 / 0.043533 (-0.002061) | 0.419227 / 0.255139 (0.164088) | 0.444712 / 0.283200 (0.161512) | 0.088841 / 0.141683 (-0.052841) | 1.497237 / 1.452155 (0.045083) | 1.572111 / 1.492716 (0.079395) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239261 / 0.018006 (0.221255) | 0.400358 / 0.000490 (0.399868) | 0.003460 / 0.000200 (0.003261) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024016 / 0.037411 (-0.013395) | 0.098414 / 0.014526 (0.083888) | 0.107220 / 0.176557 (-0.069337) | 0.143538 / 0.737135 (-0.593598) | 0.108607 / 0.296338 (-0.187731) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.473896 / 0.215209 (0.258687) | 4.740386 / 2.077655 (2.662731) | 2.458046 / 1.504120 (0.953926) | 2.260895 / 1.541195 (0.719700) | 2.280218 / 1.468490 (0.811728) | 0.694843 / 4.584777 (-3.889934) | 3.349795 / 3.745712 (-0.395917) | 1.846970 / 5.269862 (-3.422892) | 1.151481 / 4.565676 (-3.414195) | 0.082054 / 0.424275 (-0.342221) | 0.012664 / 0.007607 (0.005057) | 0.573400 / 0.226044 (0.347355) | 5.750648 / 2.268929 (3.481720) | 2.904257 / 55.444624 (-52.540367) | 2.555181 / 6.876477 (-4.321295) | 2.595830 / 2.142072 (0.453758) | 0.799580 / 4.805227 (-4.005647) | 0.151088 / 6.500664 (-6.349576) | 0.066639 / 0.075469 (-0.008831) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.251413 / 1.841788 (-0.590375) | 13.743368 / 8.074308 (5.669060) | 13.808729 / 10.191392 (3.617337) | 0.144765 / 0.680424 (-0.535659) | 0.016606 / 0.534201 (-0.517594) | 0.376503 / 0.579283 (-0.202780) | 0.381510 / 0.434364 (-0.052854) | 0.440295 / 0.540337 (-0.100043) | 0.524248 / 1.386936 (-0.862688) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#eea1226779993687845da5ecd264cf047e46a128 \"CML watermark\")\n", "Thanks a lot, @albertvillanova - I validated that your fix solves the original problem!" ]
2023-01-23T08:57:40
2023-01-24T01:34:20
2023-01-23T10:10:42
MEMBER
null
This PR fixes the extraction of insecure TAR files by changing the base path against which TAR members are compared: - from: "." - to: `output_path` This PR also adds tests for extracting insecure TAR files. Related to: - #5441 - #5452 @stas00 please note this PR addresses just one of the issues you pointed out: the use of the cwd by the extractor. The other issues (actionable error messages, raise instead of log error) should be addressed in other PRs.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5453/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5453/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5453", "html_url": "https://github.com/huggingface/datasets/pull/5453", "diff_url": "https://github.com/huggingface/datasets/pull/5453.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5453.patch", "merged_at": "2023-01-23T10:10:42" }
true
https://api.github.com/repos/huggingface/datasets/issues/5452
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5452/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5452/comments
https://api.github.com/repos/huggingface/datasets/issues/5452/events
https://github.com/huggingface/datasets/pull/5452
1,552,655,939
PR_kwDODunzps5ITcA3
5,452
Swap log messages for symbolic/hard links in tar extractor
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011848 / 0.011353 (0.000495) | 0.006988 / 0.011008 (-0.004020) | 0.138078 / 0.038508 (0.099570) | 0.040310 / 0.023109 (0.017201) | 0.411857 / 0.275898 (0.135959) | 0.509496 / 0.323480 (0.186016) | 0.010695 / 0.007986 (0.002709) | 0.005275 / 0.004328 (0.000946) | 0.107157 / 0.004250 (0.102907) | 0.050987 / 0.037052 (0.013935) | 0.432387 / 0.258489 (0.173898) | 0.495136 / 0.293841 (0.201295) | 0.055273 / 0.128546 (-0.073273) | 0.019573 / 0.075646 (-0.056074) | 0.460356 / 0.419271 (0.041084) | 0.060916 / 0.043533 (0.017383) | 0.426140 / 0.255139 (0.171002) | 0.430461 / 0.283200 (0.147261) | 0.124569 / 0.141683 (-0.017114) | 1.989404 / 1.452155 (0.537250) | 1.942052 / 1.492716 (0.449335) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287233 / 0.018006 (0.269227) | 0.606056 / 0.000490 (0.605566) | 0.004435 / 0.000200 (0.004235) | 0.000144 / 0.000054 (0.000090) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032353 / 0.037411 (-0.005058) | 0.124237 / 0.014526 (0.109711) | 0.143280 / 0.176557 (-0.033276) | 0.182081 / 0.737135 (-0.555055) | 0.148085 / 0.296338 (-0.148253) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.613550 / 0.215209 (0.398341) | 6.172421 / 2.077655 (4.094766) | 2.466018 / 1.504120 (0.961898) | 2.166433 / 1.541195 (0.625238) | 2.192511 / 1.468490 (0.724021) | 1.248777 / 4.584777 (-3.336000) | 5.746150 / 3.745712 (2.000438) | 3.097184 / 5.269862 (-2.172678) | 2.078176 / 4.565676 (-2.487501) | 0.144351 / 0.424275 (-0.279924) | 0.014830 / 0.007607 (0.007223) | 0.761699 / 0.226044 (0.535655) | 7.713201 / 2.268929 (5.444272) | 3.359647 / 55.444624 (-52.084977) | 2.652595 / 6.876477 (-4.223882) | 2.721952 / 2.142072 (0.579880) | 1.493036 / 4.805227 (-3.312192) | 0.252336 / 6.500664 (-6.248328) | 0.082906 / 0.075469 (0.007436) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.643887 / 1.841788 (-0.197901) | 18.762775 / 8.074308 (10.688466) | 22.003583 / 10.191392 (11.812191) | 0.256361 / 0.680424 (-0.424062) | 0.048048 / 0.534201 (-0.486153) | 0.601971 / 0.579283 (0.022688) | 0.712801 / 0.434364 (0.278438) | 0.684473 / 0.540337 (0.144136) | 0.802566 / 1.386936 (-0.584370) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010410 / 0.011353 (-0.000943) | 0.006719 / 0.011008 (-0.004289) | 0.132862 / 0.038508 (0.094354) | 0.036973 / 0.023109 (0.013863) | 0.470925 / 0.275898 (0.195027) | 0.502864 / 0.323480 (0.179384) | 0.007447 / 0.007986 (-0.000539) | 0.005629 / 0.004328 (0.001301) | 0.091985 / 0.004250 (0.087734) | 0.057537 / 0.037052 (0.020485) | 0.458362 / 0.258489 (0.199873) | 0.518324 / 0.293841 (0.224483) | 0.056540 / 0.128546 (-0.072007) | 0.021266 / 0.075646 (-0.054380) | 0.448289 / 0.419271 (0.029018) | 0.064211 / 0.043533 (0.020678) | 0.492596 / 0.255139 (0.237457) | 0.495030 / 0.283200 (0.211830) | 0.121858 / 0.141683 (-0.019825) | 1.823821 / 1.452155 (0.371667) | 2.012165 / 1.492716 (0.519449) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.296252 / 0.018006 (0.278245) | 0.601688 / 0.000490 (0.601198) | 0.006369 / 0.000200 (0.006169) | 0.000107 / 0.000054 (0.000053) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035821 / 0.037411 (-0.001590) | 0.132722 / 0.014526 (0.118196) | 0.141819 / 0.176557 (-0.034738) | 0.205115 / 0.737135 (-0.532020) | 0.148917 / 0.296338 (-0.147422) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.678207 / 0.215209 (0.462998) | 6.969918 / 2.077655 (4.892263) | 3.077831 / 1.504120 (1.573711) | 2.689296 / 1.541195 (1.148102) | 2.706462 / 1.468490 (1.237972) | 1.249125 / 4.584777 (-3.335652) | 5.793917 / 3.745712 (2.048205) | 3.137565 / 5.269862 (-2.132297) | 2.056880 / 4.565676 (-2.508796) | 0.151918 / 0.424275 (-0.272357) | 0.015029 / 0.007607 (0.007422) | 0.833975 / 0.226044 (0.607930) | 8.575649 / 2.268929 (6.306720) | 3.812115 / 55.444624 (-51.632509) | 3.124219 / 6.876477 (-3.752258) | 3.178645 / 2.142072 (1.036572) | 1.488260 / 4.805227 (-3.316967) | 0.268239 / 6.500664 (-6.232425) | 0.089463 / 0.075469 (0.013993) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.645461 / 1.841788 (-0.196327) | 19.074412 / 8.074308 (11.000104) | 21.626726 / 10.191392 (11.435334) | 0.210525 / 0.680424 (-0.469899) | 0.032166 / 0.534201 (-0.502035) | 0.555572 / 0.579283 (-0.023711) | 0.654667 / 0.434364 (0.220303) | 0.632471 / 0.540337 (0.092133) | 0.756510 / 1.386936 (-0.630426) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6681c36bbaae9b8b1daa3dbbd4a96b35aaae271b \"CML watermark\")\n" ]
2023-01-23T07:53:38
2023-01-23T09:40:55
2023-01-23T08:31:17
MEMBER
null
The log messages do not match their if-condition. This PR swaps them. Found while investigating: - #5441 CC: @lhoestq
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5452/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5452/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5452", "html_url": "https://github.com/huggingface/datasets/pull/5452", "diff_url": "https://github.com/huggingface/datasets/pull/5452.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5452.patch", "merged_at": "2023-01-23T08:31:17" }
true
https://api.github.com/repos/huggingface/datasets/issues/5451
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5451/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5451/comments
https://api.github.com/repos/huggingface/datasets/issues/5451/events
https://github.com/huggingface/datasets/issues/5451
1,552,336,300
I_kwDODunzps5chsWs
5,451
ImageFolder BadZipFile: Bad offset for central directory
{ "login": "hmartiro", "id": 1524208, "node_id": "MDQ6VXNlcjE1MjQyMDg=", "avatar_url": "https://avatars.githubusercontent.com/u/1524208?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hmartiro", "html_url": "https://github.com/hmartiro", "followers_url": "https://api.github.com/users/hmartiro/followers", "following_url": "https://api.github.com/users/hmartiro/following{/other_user}", "gists_url": "https://api.github.com/users/hmartiro/gists{/gist_id}", "starred_url": "https://api.github.com/users/hmartiro/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hmartiro/subscriptions", "organizations_url": "https://api.github.com/users/hmartiro/orgs", "repos_url": "https://api.github.com/users/hmartiro/repos", "events_url": "https://api.github.com/users/hmartiro/events{/privacy}", "received_events_url": "https://api.github.com/users/hmartiro/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi ! Could you share the full stack trace ? Which dataset did you try to load ?\r\n\r\nit may be related to https://github.com/huggingface/datasets/pull/5640", "The `BadZipFile` error means the ZIP file is corrupted, so I'm closing this issue as it's not directly related to `datasets`.", "For others that find this issue following a `BadZipFile` error, I had the same problem because I had a file in a folder dataset `my-image.target` and the datasets library was incorrectly determining that the (PNG) file was a zip archive. When it tried to extract the file, this error occurred. \r\n\r\nUpdating to `datasets==2.12.0` fixed the problem for me." ]
2023-01-22T23:50:12
2023-05-23T10:35:48
2023-02-10T16:31:36
NONE
null
### Describe the bug I'm getting the following exception: ``` lib/python3.10/zipfile.py:1353 in _RealGetContents │ │ │ │ 1350 │ │ # self.start_dir: Position of start of central directory │ │ 1351 │ │ self.start_dir = offset_cd + concat │ │ 1352 │ │ if self.start_dir < 0: │ │ ❱ 1353 │ │ │ raise BadZipFile("Bad offset for central directory") │ │ 1354 │ │ fp.seek(self.start_dir, 0) │ │ 1355 │ │ data = fp.read(size_cd) │ │ 1356 │ │ fp = io.BytesIO(data) │ ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯ BadZipFile: Bad offset for central directory Extracting data files: 35%|█████████████████▊ | 38572/110812 [00:10<00:20, 3576.26it/s] ``` ### Steps to reproduce the bug ``` load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, ), ``` ### Expected behavior loads the dataset ### Environment info datasets==2.8.0 Python 3.10.8 Linux 129-146-3-202 5.15.0-52-generic #58~20.04.1-Ubuntu SMP Thu Oct 13 13:09:46 UTC 2022 x86_64 x86_64 x86_64 GNU/Linux
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5451/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5451/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5450
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5450/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5450/comments
https://api.github.com/repos/huggingface/datasets/issues/5450/events
https://github.com/huggingface/datasets/issues/5450
1,551,109,365
I_kwDODunzps5cdAz1
5,450
to_tf_dataset with a TF collator causes bizarrely persistent slowdown
{ "login": "Rocketknight1", "id": 12866554, "node_id": "MDQ6VXNlcjEyODY2NTU0", "avatar_url": "https://avatars.githubusercontent.com/u/12866554?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Rocketknight1", "html_url": "https://github.com/Rocketknight1", "followers_url": "https://api.github.com/users/Rocketknight1/followers", "following_url": "https://api.github.com/users/Rocketknight1/following{/other_user}", "gists_url": "https://api.github.com/users/Rocketknight1/gists{/gist_id}", "starred_url": "https://api.github.com/users/Rocketknight1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Rocketknight1/subscriptions", "organizations_url": "https://api.github.com/users/Rocketknight1/orgs", "repos_url": "https://api.github.com/users/Rocketknight1/repos", "events_url": "https://api.github.com/users/Rocketknight1/events{/privacy}", "received_events_url": "https://api.github.com/users/Rocketknight1/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "wtf", "Couldn't find what's causing this, this will need more investigation", "A possible hint: The function it seems to be spending a lot of time in (when iterating over the original dataset) is `_get_mp` in the PIL JPEG decoder: \r\n![image](https://user-images.githubusercontent.com/12866554/214057267-c889f05e-efaf-4036-b805-c5381fa62f4a.png)\r\n", "If \"mp\" is multiprocessing, this might suggest some kind of negative interaction between the JPEG decoder and TF's handling of processes/threads. Note that we haven't merged the parallel `to_tf_dataset` PR yet, so it's not caused by that PR!", "Update: MP isn't multiprocessing at all, it's an internal PIL method for loading metadata from JPEG files. No idea why that would be a bottleneck, but I'll see if a Python profiler can't figure out where the time is actually being spent.", "After further profiling, the slowdown is in the C methods for JPEG decoding that are included as part of PIL. Because Python profilers can't inspect inside that, I don't have any further information on which lines exactly are responsible for the slowdown or why.\r\n\r\nIn the meantime, I'm going to suggest switching from `return_tensors=\"tf\"` to `return_tensors=\"np\"` in most of our `transformers` code - this generally works better for pre-processing. Two relevant PRs are [here](https://github.com/huggingface/transformers/pull/21266) and [here](https://github.com/huggingface/notebooks/pull/308).", "Closing this issue as we've done what we can with this one! " ]
2023-01-20T16:08:37
2023-02-13T14:13:34
2023-02-13T14:13:34
MEMBER
null
### Describe the bug This will make more sense if you take a look at [a Colab notebook that reproduces this issue.](https://colab.research.google.com/drive/1rxyeciQFWJTI0WrZ5aojp4Ls1ut18fNH?usp=sharing) Briefly, there are several datasets that, when you iterate over them with `to_tf_dataset` **and** a data collator that returns `tf` tensors, become very slow. We haven't been able to figure this one out - it can be intermittent, and we have no idea what could possibly cause it. The weirdest thing is that **the slowdown affects other attempts to access the underlying dataset**. If you try to iterate over the `tf.data.Dataset`, then interrupt execution, and then try to iterate over the original dataset, the original dataset is now also very slow! This is true even if the dataset format is not set to `tf` - the iteration is slow even though it's not calling TF at all! There is a simple workaround for this - we can simply get our data collators to return `np` tensors. When we do this, the bug is never triggered and everything is fine. In general, `np` is preferred for this kind of preprocessing work anyway, when the preprocessing is not going to be compiled into a pure `tf.data` pipeline! However, the issue is fascinating, and the TF team were wondering if anyone in datasets (cc @lhoestq @mariosasko) might have an idea of what could cause this. ### Steps to reproduce the bug Run the attached Colab. ### Expected behavior The slowdown should go away, or at least not persist after we stop iterating over the `tf.data.Dataset` ### Environment info The issue occurs on multiple versions of Python and TF, both on local machines and on Colab. All testing was done using the latest versions of `transformers` and `datasets` from `main`
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5450/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 1, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5450/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5449
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5449/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5449/comments
https://api.github.com/repos/huggingface/datasets/issues/5449/events
https://github.com/huggingface/datasets/pull/5449
1,550,801,453
PR_kwDODunzps5INgD9
5,449
Support fsspec 2023.1.0 in CI
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008227 / 0.011353 (-0.003126) | 0.004496 / 0.011008 (-0.006512) | 0.099319 / 0.038508 (0.060811) | 0.029929 / 0.023109 (0.006820) | 0.296686 / 0.275898 (0.020788) | 0.355372 / 0.323480 (0.031892) | 0.006864 / 0.007986 (-0.001122) | 0.003458 / 0.004328 (-0.000871) | 0.077234 / 0.004250 (0.072983) | 0.037072 / 0.037052 (0.000020) | 0.311675 / 0.258489 (0.053186) | 0.338965 / 0.293841 (0.045124) | 0.033562 / 0.128546 (-0.094985) | 0.011399 / 0.075646 (-0.064248) | 0.322406 / 0.419271 (-0.096865) | 0.043034 / 0.043533 (-0.000499) | 0.298083 / 0.255139 (0.042944) | 0.323661 / 0.283200 (0.040462) | 0.089380 / 0.141683 (-0.052303) | 1.479363 / 1.452155 (0.027208) | 1.518337 / 1.492716 (0.025620) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.177822 / 0.018006 (0.159816) | 0.400806 / 0.000490 (0.400317) | 0.002121 / 0.000200 (0.001921) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021986 / 0.037411 (-0.015426) | 0.096749 / 0.014526 (0.082223) | 0.101443 / 0.176557 (-0.075113) | 0.137519 / 0.737135 (-0.599616) | 0.105558 / 0.296338 (-0.190780) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418983 / 0.215209 (0.203774) | 4.189579 / 2.077655 (2.111924) | 1.877831 / 1.504120 (0.373711) | 1.666213 / 1.541195 (0.125019) | 1.680735 / 1.468490 (0.212245) | 0.693033 / 4.584777 (-3.891744) | 3.420553 / 3.745712 (-0.325160) | 1.819647 / 5.269862 (-3.450214) | 1.144934 / 4.565676 (-3.420743) | 0.082209 / 0.424275 (-0.342066) | 0.012433 / 0.007607 (0.004826) | 0.526781 / 0.226044 (0.300737) | 5.273689 / 2.268929 (3.004760) | 2.323468 / 55.444624 (-53.121156) | 1.960508 / 6.876477 (-4.915969) | 2.035338 / 2.142072 (-0.106735) | 0.812789 / 4.805227 (-3.992438) | 0.148429 / 6.500664 (-6.352235) | 0.064727 / 0.075469 (-0.010742) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.253218 / 1.841788 (-0.588569) | 13.303426 / 8.074308 (5.229118) | 13.651074 / 10.191392 (3.459682) | 0.135178 / 0.680424 (-0.545246) | 0.028483 / 0.534201 (-0.505717) | 0.393284 / 0.579283 (-0.185999) | 0.401957 / 0.434364 (-0.032407) | 0.457136 / 0.540337 (-0.083201) | 0.535835 / 1.386936 (-0.851101) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006335 / 0.011353 (-0.005017) | 0.004454 / 0.011008 (-0.006554) | 0.097565 / 0.038508 (0.059057) | 0.026917 / 0.023109 (0.003808) | 0.350779 / 0.275898 (0.074881) | 0.391979 / 0.323480 (0.068499) | 0.004648 / 0.007986 (-0.003337) | 0.003204 / 0.004328 (-0.001124) | 0.076987 / 0.004250 (0.072737) | 0.035257 / 0.037052 (-0.001796) | 0.347193 / 0.258489 (0.088704) | 0.391462 / 0.293841 (0.097621) | 0.031244 / 0.128546 (-0.097302) | 0.011460 / 0.075646 (-0.064186) | 0.321606 / 0.419271 (-0.097665) | 0.041218 / 0.043533 (-0.002315) | 0.341884 / 0.255139 (0.086745) | 0.374920 / 0.283200 (0.091720) | 0.086383 / 0.141683 (-0.055300) | 1.501750 / 1.452155 (0.049595) | 1.565060 / 1.492716 (0.072344) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.165447 / 0.018006 (0.147441) | 0.401885 / 0.000490 (0.401395) | 0.000975 / 0.000200 (0.000775) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024494 / 0.037411 (-0.012917) | 0.097334 / 0.014526 (0.082808) | 0.105324 / 0.176557 (-0.071232) | 0.142430 / 0.737135 (-0.594705) | 0.107249 / 0.296338 (-0.189089) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441632 / 0.215209 (0.226423) | 4.407729 / 2.077655 (2.330074) | 2.078167 / 1.504120 (0.574047) | 1.864210 / 1.541195 (0.323015) | 1.885948 / 1.468490 (0.417458) | 0.693974 / 4.584777 (-3.890803) | 3.386837 / 3.745712 (-0.358875) | 1.840291 / 5.269862 (-3.429571) | 1.150524 / 4.565676 (-3.415153) | 0.082240 / 0.424275 (-0.342035) | 0.012488 / 0.007607 (0.004881) | 0.537589 / 0.226044 (0.311545) | 5.404007 / 2.268929 (3.135078) | 2.537467 / 55.444624 (-52.907157) | 2.190775 / 6.876477 (-4.685702) | 2.224746 / 2.142072 (0.082674) | 0.799524 / 4.805227 (-4.005703) | 0.150639 / 6.500664 (-6.350025) | 0.066473 / 0.075469 (-0.008997) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.258559 / 1.841788 (-0.583228) | 13.773583 / 8.074308 (5.699275) | 13.964322 / 10.191392 (3.772930) | 0.156295 / 0.680424 (-0.524129) | 0.016824 / 0.534201 (-0.517377) | 0.377476 / 0.579283 (-0.201807) | 0.390163 / 0.434364 (-0.044201) | 0.442541 / 0.540337 (-0.097796) | 0.529404 / 1.386936 (-0.857532) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8f500a5c554b213aafe87293bd593920567742c3 \"CML watermark\")\n" ]
2023-01-20T12:53:17
2023-01-20T13:32:50
2023-01-20T13:26:03
MEMBER
null
Support fsspec 2023.1.0 in CI. In the 2023.1.0 fsspec release, they replaced the type of `fsspec.registry`: - from `ReadOnlyRegistry`, with an attribute called `target` - to `MappingProxyType`, without that attribute Consequently, we need to change our `mock_fsspec` fixtures, that were using the `target` attribute. Fix #5448.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5449/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5449/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5449", "html_url": "https://github.com/huggingface/datasets/pull/5449", "diff_url": "https://github.com/huggingface/datasets/pull/5449.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5449.patch", "merged_at": "2023-01-20T13:26:03" }
true
https://api.github.com/repos/huggingface/datasets/issues/5448
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5448/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5448/comments
https://api.github.com/repos/huggingface/datasets/issues/5448/events
https://github.com/huggingface/datasets/issues/5448
1,550,618,514
I_kwDODunzps5cbI-S
5,448
Support fsspec 2023.1.0 in CI
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-01-20T10:26:31
2023-01-20T13:26:05
2023-01-20T13:26:05
MEMBER
null
Once we find out the root cause of: - #5445 we should revert the temporary pin on fsspec introduced by: - #5447
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5448/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5448/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5447
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5447/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5447/comments
https://api.github.com/repos/huggingface/datasets/issues/5447/events
https://github.com/huggingface/datasets/pull/5447
1,550,599,193
PR_kwDODunzps5IM0Nu
5,447
Fix CI by temporarily pinning fsspec < 2023.1.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011875 / 0.011353 (0.000522) | 0.008188 / 0.011008 (-0.002821) | 0.131137 / 0.038508 (0.092629) | 0.038127 / 0.023109 (0.015018) | 0.383864 / 0.275898 (0.107966) | 0.458617 / 0.323480 (0.135137) | 0.010989 / 0.007986 (0.003003) | 0.004892 / 0.004328 (0.000563) | 0.101955 / 0.004250 (0.097704) | 0.045081 / 0.037052 (0.008029) | 0.409768 / 0.258489 (0.151279) | 0.446597 / 0.293841 (0.152756) | 0.058588 / 0.128546 (-0.069958) | 0.020872 / 0.075646 (-0.054774) | 0.432982 / 0.419271 (0.013711) | 0.075875 / 0.043533 (0.032342) | 0.380923 / 0.255139 (0.125784) | 0.432994 / 0.283200 (0.149795) | 0.122678 / 0.141683 (-0.019005) | 1.857865 / 1.452155 (0.405710) | 1.927801 / 1.492716 (0.435085) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212941 / 0.018006 (0.194935) | 0.527977 / 0.000490 (0.527488) | 0.002996 / 0.000200 (0.002797) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030046 / 0.037411 (-0.007366) | 0.126384 / 0.014526 (0.111858) | 0.138307 / 0.176557 (-0.038250) | 0.185338 / 0.737135 (-0.551797) | 0.144733 / 0.296338 (-0.151606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.627096 / 0.215209 (0.411887) | 6.418014 / 2.077655 (4.340360) | 2.547675 / 1.504120 (1.043555) | 2.195552 / 1.541195 (0.654357) | 2.200377 / 1.468490 (0.731887) | 1.289935 / 4.584777 (-3.294842) | 5.670839 / 3.745712 (1.925127) | 5.252597 / 5.269862 (-0.017265) | 2.878470 / 4.565676 (-1.687207) | 0.143754 / 0.424275 (-0.280521) | 0.014814 / 0.007607 (0.007207) | 0.810073 / 0.226044 (0.584028) | 8.183757 / 2.268929 (5.914829) | 3.375525 / 55.444624 (-52.069099) | 2.594048 / 6.876477 (-4.282428) | 2.598095 / 2.142072 (0.456023) | 1.554493 / 4.805227 (-3.250734) | 0.263159 / 6.500664 (-6.237505) | 0.089822 / 0.075469 (0.014353) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.660847 / 1.841788 (-0.180941) | 18.434283 / 8.074308 (10.359975) | 21.764887 / 10.191392 (11.573495) | 0.264524 / 0.680424 (-0.415900) | 0.048519 / 0.534201 (-0.485682) | 0.587468 / 0.579283 (0.008185) | 0.634142 / 0.434364 (0.199778) | 0.675374 / 0.540337 (0.135037) | 0.777510 / 1.386936 (-0.609426) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010021 / 0.011353 (-0.001332) | 0.006207 / 0.011008 (-0.004801) | 0.130490 / 0.038508 (0.091982) | 0.037957 / 0.023109 (0.014848) | 0.489381 / 0.275898 (0.213483) | 0.536522 / 0.323480 (0.213042) | 0.008611 / 0.007986 (0.000626) | 0.004894 / 0.004328 (0.000565) | 0.101617 / 0.004250 (0.097367) | 0.052629 / 0.037052 (0.015577) | 0.509211 / 0.258489 (0.250721) | 0.545023 / 0.293841 (0.251182) | 0.057468 / 0.128546 (-0.071078) | 0.023393 / 0.075646 (-0.052253) | 0.431408 / 0.419271 (0.012137) | 0.064967 / 0.043533 (0.021434) | 0.495261 / 0.255139 (0.240122) | 0.527098 / 0.283200 (0.243898) | 0.113172 / 0.141683 (-0.028511) | 1.937072 / 1.452155 (0.484918) | 2.048413 / 1.492716 (0.555697) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245406 / 0.018006 (0.227399) | 0.526772 / 0.000490 (0.526283) | 0.004379 / 0.000200 (0.004179) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031785 / 0.037411 (-0.005626) | 0.130949 / 0.014526 (0.116424) | 0.145660 / 0.176557 (-0.030896) | 0.186991 / 0.737135 (-0.550144) | 0.151000 / 0.296338 (-0.145338) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.708643 / 0.215209 (0.493434) | 7.179252 / 2.077655 (5.101597) | 3.143375 / 1.504120 (1.639255) | 2.714298 / 1.541195 (1.173103) | 2.773441 / 1.468490 (1.304951) | 1.312821 / 4.584777 (-3.271956) | 5.798396 / 3.745712 (2.052684) | 3.253215 / 5.269862 (-2.016646) | 2.147260 / 4.565676 (-2.418416) | 0.154673 / 0.424275 (-0.269602) | 0.014918 / 0.007607 (0.007311) | 0.860618 / 0.226044 (0.634573) | 8.774455 / 2.268929 (6.505527) | 3.925020 / 55.444624 (-51.519604) | 3.139361 / 6.876477 (-3.737115) | 3.208883 / 2.142072 (1.066810) | 1.547305 / 4.805227 (-3.257922) | 0.268814 / 6.500664 (-6.231850) | 0.084578 / 0.075469 (0.009109) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.694990 / 1.841788 (-0.146798) | 18.619183 / 8.074308 (10.544875) | 21.929886 / 10.191392 (11.738494) | 0.265763 / 0.680424 (-0.414661) | 0.028325 / 0.534201 (-0.505876) | 0.552910 / 0.579283 (-0.026373) | 0.616864 / 0.434364 (0.182500) | 0.637858 / 0.540337 (0.097521) | 0.744508 / 1.386936 (-0.642428) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5f819ba3d0306748aaf9fd8ea040b981dd08e5e5 \"CML watermark\")\n" ]
2023-01-20T10:11:02
2023-01-20T10:38:13
2023-01-20T10:28:43
MEMBER
null
Temporarily pin fsspec < 2023.1.0 Fix #5445.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5447/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5447/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5447", "html_url": "https://github.com/huggingface/datasets/pull/5447", "diff_url": "https://github.com/huggingface/datasets/pull/5447.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5447.patch", "merged_at": "2023-01-20T10:28:43" }
true
https://api.github.com/repos/huggingface/datasets/issues/5446
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5446/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5446/comments
https://api.github.com/repos/huggingface/datasets/issues/5446/events
https://github.com/huggingface/datasets/pull/5446
1,550,591,588
PR_kwDODunzps5IMyka
5,446
test v0.12.0.rc0
{ "login": "Wauplin", "id": 11801849, "node_id": "MDQ6VXNlcjExODAxODQ5", "avatar_url": "https://avatars.githubusercontent.com/u/11801849?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Wauplin", "html_url": "https://github.com/Wauplin", "followers_url": "https://api.github.com/users/Wauplin/followers", "following_url": "https://api.github.com/users/Wauplin/following{/other_user}", "gists_url": "https://api.github.com/users/Wauplin/gists{/gist_id}", "starred_url": "https://api.github.com/users/Wauplin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Wauplin/subscriptions", "organizations_url": "https://api.github.com/users/Wauplin/orgs", "repos_url": "https://api.github.com/users/Wauplin/repos", "events_url": "https://api.github.com/users/Wauplin/events{/privacy}", "received_events_url": "https://api.github.com/users/Wauplin/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "@Wauplin I was testing it in a dedicated branch without opening a PR: https://github.com/huggingface/datasets/commits/test-hfh-0.12.0rc0", "Oops, sorry @albertvillanova. I thought for next time I'll start the CIs before pinging everyone.\r\nI'm closing this one.", "@Wauplin in your Slack message, you asked people from every major dependent library to check that our CI work. That is why I am checking it... :)\r\n\r\nAlso, I think for this purpose it is better to test it in a dedicated branch, rather than opening and closing a PR.", "Yes, yes I know. Completely my fault on this one" ]
2023-01-20T10:05:19
2023-01-20T10:43:22
2023-01-20T10:13:48
CONTRIBUTOR
null
DO NOT MERGE. Only to test the CI. cc @lhoestq @albertvillanova
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5446/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5446/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5446", "html_url": "https://github.com/huggingface/datasets/pull/5446", "diff_url": "https://github.com/huggingface/datasets/pull/5446.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5446.patch", "merged_at": null }
true
https://api.github.com/repos/huggingface/datasets/issues/5445
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5445/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5445/comments
https://api.github.com/repos/huggingface/datasets/issues/5445/events
https://github.com/huggingface/datasets/issues/5445
1,550,588,703
I_kwDODunzps5cbBsf
5,445
CI tests are broken: AttributeError: 'mappingproxy' object has no attribute 'target'
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-01-20T10:03:10
2023-01-20T10:28:44
2023-01-20T10:28:44
MEMBER
null
CI tests are broken, raising `AttributeError: 'mappingproxy' object has no attribute 'target'`. See: https://github.com/huggingface/datasets/actions/runs/3966497597/jobs/6797384185 ``` ... ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_rglob[mock://top_level-date=2019-10-0[1-4]/*-expected_paths4] - AttributeError: 'mappingproxy' object has no attribute 'target' ===== 2076 passed, 19 skipped, 15 warnings, 47 errors in 115.54s (0:01:55) ===== ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5445/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5445/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5444
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5444/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5444/comments
https://api.github.com/repos/huggingface/datasets/issues/5444/events
https://github.com/huggingface/datasets/issues/5444
1,550,185,071
I_kwDODunzps5cZfJv
5,444
info messages logged as warnings
{ "login": "davidgilbertson", "id": 4443482, "node_id": "MDQ6VXNlcjQ0NDM0ODI=", "avatar_url": "https://avatars.githubusercontent.com/u/4443482?v=4", "gravatar_id": "", "url": "https://api.github.com/users/davidgilbertson", "html_url": "https://github.com/davidgilbertson", "followers_url": "https://api.github.com/users/davidgilbertson/followers", "following_url": "https://api.github.com/users/davidgilbertson/following{/other_user}", "gists_url": "https://api.github.com/users/davidgilbertson/gists{/gist_id}", "starred_url": "https://api.github.com/users/davidgilbertson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/davidgilbertson/subscriptions", "organizations_url": "https://api.github.com/users/davidgilbertson/orgs", "repos_url": "https://api.github.com/users/davidgilbertson/repos", "events_url": "https://api.github.com/users/davidgilbertson/events{/privacy}", "received_events_url": "https://api.github.com/users/davidgilbertson/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Looks like a duplicate of https://github.com/huggingface/datasets/issues/1948. \r\n\r\nI also think these should be logged as INFO messages, but let's see what @lhoestq thinks.", "It can be considered unexpected to see a `map` function return instantaneously. The warning is here to explain this case by mentioning that the cache was used. I don't expect first time users (only seeing warnings) to guess that the cache works this way", "Oh, so it's intentional? Do all Hugging Face packages use `warning` when using cache?\r\nI guess feel free to close this issue then.", "Yes it's intentional for `map`. For `load_dataset` it's also intentional but for a different reason: it shows where in the cache the dataset is located, in case the user wants to clear the cache.", "OK I see. It's surprising to me that these are considered \"something unexpected happened\", the concept of cache is pretty common.\r\n\r\nHas a user every actually complained that they ran their code once, and it took a minute while the data downloaded, then ran their code again and it ran really fast (and completed successfully) but they were so baffled by the fact that it ran quickly, _and_ didn't set the log level to INFO, _and_ hadn't read the docs (or thought about it) to know that datasets are cached, that they logged an issue asking that this information be output as a warning every time they run their code?\r\n\r\nThat seems like a very niche scenario to cater for, given that the side effect is to flood the console with irrelevant warnings for every other user every other time they run a bit of `datasets` code. And the real world impact is that people TURN OFF warnings, which is a pretty bad habit to get into.\r\n\r\nAnyhoo, if there's no chance I'm going to change your mind, please close the issue :)", "I see your point and I'm not closed to switching to INFO, but I think those logs are important to make the library less opaque. I also just checked `transformers` scripts and they default to INFO which is nice. However for colab users the default is still WARNING iirc, and it counts as one of the main env where `datasets` is used.\r\n\r\nWe also use progress bars a lot in `datasets`, that are shown if the logger is at the WARNING level. But we offer a function to disable the progress bars if necessary.", "These kinds of messages are logged as INFO in Transformers, so we should probably be consistent with them" ]
2023-01-20T01:19:18
2023-07-12T17:19:31
2023-07-12T17:19:31
NONE
null
### Describe the bug Code in `datasets` is using `logger.warning` when it should be using `logger.info`. Some of these are probably a matter of opinion, but I think anything starting with `logger.warning(f"Loading chached` clearly falls into the info category. Definitions from the Python docs for reference: * INFO: Confirmation that things are working as expected. * WARNING: An indication that something unexpected happened, or indicative of some problem in the near future (e.g. ‘disk space low’). The software is still working as expected. In theory, a user should be able to resolve things such that there are no warnings. ### Steps to reproduce the bug Load any dataset that's already cached. ### Expected behavior No output when log level is at the default WARNING level. ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 - Python version: 3.10.8 - PyArrow version: 9.0.0 - Pandas version: 1.5.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5444/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5444/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5443
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5443/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5443/comments
https://api.github.com/repos/huggingface/datasets/issues/5443/events
https://github.com/huggingface/datasets/pull/5443
1,550,178,914
PR_kwDODunzps5ILbk8
5,443
Update share tutorial
{ "login": "stevhliu", "id": 59462357, "node_id": "MDQ6VXNlcjU5NDYyMzU3", "avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4", "gravatar_id": "", "url": "https://api.github.com/users/stevhliu", "html_url": "https://github.com/stevhliu", "followers_url": "https://api.github.com/users/stevhliu/followers", "following_url": "https://api.github.com/users/stevhliu/following{/other_user}", "gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}", "starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions", "organizations_url": "https://api.github.com/users/stevhliu/orgs", "repos_url": "https://api.github.com/users/stevhliu/repos", "events_url": "https://api.github.com/users/stevhliu/events{/privacy}", "received_events_url": "https://api.github.com/users/stevhliu/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009885 / 0.011353 (-0.001468) | 0.005338 / 0.011008 (-0.005670) | 0.099967 / 0.038508 (0.061459) | 0.036860 / 0.023109 (0.013751) | 0.295283 / 0.275898 (0.019385) | 0.369504 / 0.323480 (0.046024) | 0.008267 / 0.007986 (0.000281) | 0.004375 / 0.004328 (0.000046) | 0.076294 / 0.004250 (0.072043) | 0.047058 / 0.037052 (0.010006) | 0.314463 / 0.258489 (0.055974) | 0.348125 / 0.293841 (0.054284) | 0.038334 / 0.128546 (-0.090213) | 0.012102 / 0.075646 (-0.063544) | 0.333049 / 0.419271 (-0.086223) | 0.050727 / 0.043533 (0.007195) | 0.299244 / 0.255139 (0.044105) | 0.318210 / 0.283200 (0.035010) | 0.112609 / 0.141683 (-0.029074) | 1.450377 / 1.452155 (-0.001778) | 1.485177 / 1.492716 (-0.007539) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.287083 / 0.018006 (0.269077) | 0.564268 / 0.000490 (0.563778) | 0.003578 / 0.000200 (0.003378) | 0.000093 / 0.000054 (0.000039) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026755 / 0.037411 (-0.010657) | 0.105857 / 0.014526 (0.091331) | 0.118291 / 0.176557 (-0.058266) | 0.155735 / 0.737135 (-0.581401) | 0.122527 / 0.296338 (-0.173812) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.396992 / 0.215209 (0.181783) | 3.958562 / 2.077655 (1.880908) | 1.781570 / 1.504120 (0.277451) | 1.617743 / 1.541195 (0.076549) | 1.753504 / 1.468490 (0.285013) | 0.681509 / 4.584777 (-3.903268) | 3.816910 / 3.745712 (0.071198) | 2.087359 / 5.269862 (-3.182503) | 1.328380 / 4.565676 (-3.237297) | 0.083542 / 0.424275 (-0.340733) | 0.012081 / 0.007607 (0.004473) | 0.505127 / 0.226044 (0.279082) | 5.075136 / 2.268929 (2.806208) | 2.259871 / 55.444624 (-53.184753) | 1.944302 / 6.876477 (-4.932175) | 2.102624 / 2.142072 (-0.039449) | 0.819779 / 4.805227 (-3.985448) | 0.165584 / 6.500664 (-6.335080) | 0.061774 / 0.075469 (-0.013695) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.208258 / 1.841788 (-0.633530) | 14.841635 / 8.074308 (6.767327) | 14.484515 / 10.191392 (4.293123) | 0.156464 / 0.680424 (-0.523959) | 0.028839 / 0.534201 (-0.505362) | 0.440860 / 0.579283 (-0.138423) | 0.433892 / 0.434364 (-0.000472) | 0.515339 / 0.540337 (-0.024998) | 0.608838 / 1.386936 (-0.778098) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007548 / 0.011353 (-0.003804) | 0.005464 / 0.011008 (-0.005544) | 0.096987 / 0.038508 (0.058479) | 0.034472 / 0.023109 (0.011363) | 0.391249 / 0.275898 (0.115351) | 0.432779 / 0.323480 (0.109299) | 0.006170 / 0.007986 (-0.001816) | 0.004316 / 0.004328 (-0.000013) | 0.074184 / 0.004250 (0.069934) | 0.054254 / 0.037052 (0.017202) | 0.397947 / 0.258489 (0.139458) | 0.451253 / 0.293841 (0.157412) | 0.037098 / 0.128546 (-0.091449) | 0.012649 / 0.075646 (-0.062997) | 0.333533 / 0.419271 (-0.085739) | 0.050247 / 0.043533 (0.006714) | 0.390446 / 0.255139 (0.135307) | 0.410547 / 0.283200 (0.127347) | 0.110888 / 0.141683 (-0.030795) | 1.452160 / 1.452155 (0.000006) | 1.596331 / 1.492716 (0.103615) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.256061 / 0.018006 (0.238055) | 0.552674 / 0.000490 (0.552184) | 0.003362 / 0.000200 (0.003162) | 0.000095 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030199 / 0.037411 (-0.007213) | 0.110288 / 0.014526 (0.095762) | 0.127412 / 0.176557 (-0.049145) | 0.165428 / 0.737135 (-0.571707) | 0.131658 / 0.296338 (-0.164680) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441946 / 0.215209 (0.226737) | 4.414209 / 2.077655 (2.336555) | 2.284530 / 1.504120 (0.780410) | 2.110752 / 1.541195 (0.569557) | 2.210751 / 1.468490 (0.742260) | 0.698829 / 4.584777 (-3.885948) | 3.819044 / 3.745712 (0.073332) | 3.274021 / 5.269862 (-1.995840) | 1.781284 / 4.565676 (-2.784393) | 0.085264 / 0.424275 (-0.339011) | 0.012360 / 0.007607 (0.004753) | 0.553519 / 0.226044 (0.327475) | 5.466395 / 2.268929 (3.197467) | 2.825839 / 55.444624 (-52.618786) | 2.439451 / 6.876477 (-4.437026) | 2.582534 / 2.142072 (0.440462) | 0.841644 / 4.805227 (-3.963583) | 0.172288 / 6.500664 (-6.328376) | 0.067215 / 0.075469 (-0.008254) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.283623 / 1.841788 (-0.558165) | 15.753163 / 8.074308 (7.678855) | 14.983263 / 10.191392 (4.791871) | 0.187584 / 0.680424 (-0.492840) | 0.017999 / 0.534201 (-0.516202) | 0.427157 / 0.579283 (-0.152126) | 0.435456 / 0.434364 (0.001092) | 0.496800 / 0.540337 (-0.043537) | 0.592557 / 1.386936 (-0.794379) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8a72676689a4a3fb466cc5077884446c7302e605 \"CML watermark\")\n" ]
2023-01-20T01:09:14
2023-01-20T15:44:45
2023-01-20T15:37:30
MEMBER
null
Based on feedback from discussion #5423, this PR updates the sharing tutorial with a mention of writing your own dataset loading script to support more advanced dataset creation options like multiple configs. I'll open a separate PR to update the *Create a Dataset card* with the new Hub metadata UI update 😄
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5443/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5443/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5443", "html_url": "https://github.com/huggingface/datasets/pull/5443", "diff_url": "https://github.com/huggingface/datasets/pull/5443.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5443.patch", "merged_at": "2023-01-20T15:37:30" }
true
https://api.github.com/repos/huggingface/datasets/issues/5442
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5442/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5442/comments
https://api.github.com/repos/huggingface/datasets/issues/5442/events
https://github.com/huggingface/datasets/issues/5442
1,550,084,450
I_kwDODunzps5cZGli
5,442
OneDrive Integrations with HF Datasets
{ "login": "Mohammed20201991", "id": 59222637, "node_id": "MDQ6VXNlcjU5MjIyNjM3", "avatar_url": "https://avatars.githubusercontent.com/u/59222637?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Mohammed20201991", "html_url": "https://github.com/Mohammed20201991", "followers_url": "https://api.github.com/users/Mohammed20201991/followers", "following_url": "https://api.github.com/users/Mohammed20201991/following{/other_user}", "gists_url": "https://api.github.com/users/Mohammed20201991/gists{/gist_id}", "starred_url": "https://api.github.com/users/Mohammed20201991/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Mohammed20201991/subscriptions", "organizations_url": "https://api.github.com/users/Mohammed20201991/orgs", "repos_url": "https://api.github.com/users/Mohammed20201991/repos", "events_url": "https://api.github.com/users/Mohammed20201991/events{/privacy}", "received_events_url": "https://api.github.com/users/Mohammed20201991/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
null
[ "Hi! \r\n\r\nWe use [`fsspec`](https://github.com/fsspec/filesystem_spec) to integrate with storage providers. You can find more info (and the usage examples) in [our docs](https://huggingface.co/docs/datasets/v2.8.0/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage).\r\n\r\n[`gdrivefs`](https://github.com/fsspec/gdrivefs) makes it possible to use Google Drive as a storage service in Datasets, but this is not the case for OneDrive, since its[ Python SDK](https://github.com/OneDrive/onedrive-sdk-python) is not integrated with `fsspec`. Can you please request the integration with `fsspec` in their repo to address this limitation?", "I'm closing this issue as implementing a fsspec-compliant OneDrive filesystem is not our responsibility." ]
2023-01-19T23:12:08
2023-02-24T16:17:51
2023-02-24T16:17:51
NONE
null
### Feature request First of all , I would like to thank all community who are developed DataSet storage and make it free available How to integrate our Onedrive account or any other possible storage clouds (like google drive,...) with the **HF** datasets section. For example, if I have **50GB** on my **Onedrive** account and I want to move between drive and Hugging face repo or vis versa ### Motivation make the dataset section more flexible with other possible storage like the integration between Google Collab and Google drive the storage ### Your contribution Can be done using Hugging face CLI
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5442/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5442/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5441
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5441/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5441/comments
https://api.github.com/repos/huggingface/datasets/issues/5441/events
https://github.com/huggingface/datasets/pull/5441
1,548,417,594
PR_kwDODunzps5IFeCW
5,441
resolving a weird tar extract issue
{ "login": "stas00", "id": 10676103, "node_id": "MDQ6VXNlcjEwNjc2MTAz", "avatar_url": "https://avatars.githubusercontent.com/u/10676103?v=4", "gravatar_id": "", "url": "https://api.github.com/users/stas00", "html_url": "https://github.com/stas00", "followers_url": "https://api.github.com/users/stas00/followers", "following_url": "https://api.github.com/users/stas00/following{/other_user}", "gists_url": "https://api.github.com/users/stas00/gists{/gist_id}", "starred_url": "https://api.github.com/users/stas00/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stas00/subscriptions", "organizations_url": "https://api.github.com/users/stas00/orgs", "repos_url": "https://api.github.com/users/stas00/repos", "events_url": "https://api.github.com/users/stas00/events{/privacy}", "received_events_url": "https://api.github.com/users/stas00/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011815 / 0.011353 (0.000463) | 0.006407 / 0.011008 (-0.004601) | 0.132937 / 0.038508 (0.094429) | 0.040634 / 0.023109 (0.017525) | 0.398049 / 0.275898 (0.122151) | 0.498207 / 0.323480 (0.174727) | 0.010111 / 0.007986 (0.002126) | 0.007282 / 0.004328 (0.002954) | 0.103661 / 0.004250 (0.099411) | 0.046223 / 0.037052 (0.009171) | 0.411490 / 0.258489 (0.153001) | 0.480973 / 0.293841 (0.187132) | 0.058397 / 0.128546 (-0.070149) | 0.019952 / 0.075646 (-0.055695) | 0.440734 / 0.419271 (0.021463) | 0.064585 / 0.043533 (0.021052) | 0.392556 / 0.255139 (0.137417) | 0.437842 / 0.283200 (0.154643) | 0.130684 / 0.141683 (-0.010999) | 1.910552 / 1.452155 (0.458397) | 1.984644 / 1.492716 (0.491927) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.264417 / 0.018006 (0.246411) | 0.676519 / 0.000490 (0.676030) | 0.003369 / 0.000200 (0.003169) | 0.000125 / 0.000054 (0.000071) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034558 / 0.037411 (-0.002854) | 0.126561 / 0.014526 (0.112035) | 0.134478 / 0.176557 (-0.042079) | 0.202125 / 0.737135 (-0.535010) | 0.143273 / 0.296338 (-0.153066) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.618592 / 0.215209 (0.403383) | 6.224435 / 2.077655 (4.146780) | 2.636689 / 1.504120 (1.132569) | 2.243507 / 1.541195 (0.702313) | 2.312449 / 1.468490 (0.843959) | 1.188499 / 4.584777 (-3.396277) | 5.738347 / 3.745712 (1.992635) | 4.891933 / 5.269862 (-0.377929) | 2.697631 / 4.565676 (-1.868046) | 0.140200 / 0.424275 (-0.284076) | 0.015484 / 0.007607 (0.007877) | 0.781947 / 0.226044 (0.555903) | 7.946600 / 2.268929 (5.677671) | 3.365574 / 55.444624 (-52.079050) | 2.783443 / 6.876477 (-4.093034) | 2.738634 / 2.142072 (0.596561) | 1.487247 / 4.805227 (-3.317980) | 0.255681 / 6.500664 (-6.244983) | 0.084607 / 0.075469 (0.009138) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.717846 / 1.841788 (-0.123941) | 18.405566 / 8.074308 (10.331258) | 20.508578 / 10.191392 (10.317186) | 0.262364 / 0.680424 (-0.418060) | 0.050881 / 0.534201 (-0.483319) | 0.587516 / 0.579283 (0.008232) | 0.650900 / 0.434364 (0.216536) | 0.656168 / 0.540337 (0.115830) | 0.778876 / 1.386936 (-0.608061) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010817 / 0.011353 (-0.000536) | 0.007338 / 0.011008 (-0.003670) | 0.131949 / 0.038508 (0.093441) | 0.037244 / 0.023109 (0.014135) | 0.565994 / 0.275898 (0.290096) | 0.567434 / 0.323480 (0.243954) | 0.007733 / 0.007986 (-0.000252) | 0.005216 / 0.004328 (0.000887) | 0.096578 / 0.004250 (0.092328) | 0.056001 / 0.037052 (0.018949) | 0.538209 / 0.258489 (0.279720) | 0.580385 / 0.293841 (0.286544) | 0.053654 / 0.128546 (-0.074892) | 0.019471 / 0.075646 (-0.056176) | 0.448781 / 0.419271 (0.029509) | 0.064774 / 0.043533 (0.021241) | 0.540222 / 0.255139 (0.285083) | 0.563058 / 0.283200 (0.279858) | 0.122716 / 0.141683 (-0.018967) | 1.839402 / 1.452155 (0.387247) | 1.915523 / 1.492716 (0.422806) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.310448 / 0.018006 (0.292442) | 0.603664 / 0.000490 (0.603175) | 0.004833 / 0.000200 (0.004633) | 0.000145 / 0.000054 (0.000090) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032340 / 0.037411 (-0.005072) | 0.130115 / 0.014526 (0.115589) | 0.154192 / 0.176557 (-0.022364) | 0.200655 / 0.737135 (-0.536480) | 0.144961 / 0.296338 (-0.151377) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.671588 / 0.215209 (0.456379) | 6.691642 / 2.077655 (4.613988) | 2.915230 / 1.504120 (1.411110) | 2.573337 / 1.541195 (1.032143) | 2.578204 / 1.468490 (1.109714) | 1.249028 / 4.584777 (-3.335749) | 5.808539 / 3.745712 (2.062827) | 3.079317 / 5.269862 (-2.190545) | 2.033308 / 4.565676 (-2.532369) | 0.142411 / 0.424275 (-0.281864) | 0.015525 / 0.007607 (0.007918) | 0.800389 / 0.226044 (0.574345) | 8.228236 / 2.268929 (5.959308) | 3.660207 / 55.444624 (-51.784417) | 3.021033 / 6.876477 (-3.855444) | 3.088335 / 2.142072 (0.946263) | 1.380137 / 4.805227 (-3.425091) | 0.252065 / 6.500664 (-6.248599) | 0.084302 / 0.075469 (0.008833) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.709429 / 1.841788 (-0.132359) | 18.358770 / 8.074308 (10.284462) | 21.109844 / 10.191392 (10.918452) | 0.231549 / 0.680424 (-0.448875) | 0.029251 / 0.534201 (-0.504950) | 0.560719 / 0.579283 (-0.018564) | 0.610125 / 0.434364 (0.175761) | 0.630015 / 0.540337 (0.089678) | 0.751656 / 1.386936 (-0.635280) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#18baf4eebf71c0db1d9980f7ee164f1272ff8f26 \"CML watermark\")\n", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5441). All of your documentation changes will be reflected on that endpoint.", "I think I managed to reproduce it:\r\n\r\n```\r\nrm -rf ~/.cache/huggingface/datasets/HuggingFaceM4___cm4-synthetic-testing\r\nmkdir -p /tmp/xxx/hf-data\r\nsudo ln -s /tmp/xxx /test\r\nmkdir -p /tmp/yyy\r\nln -sf /test/hf-data /tmp/yyy/data\r\ncd /tmp/yyy\r\npython -c 'import sys; from datasets import load_dataset; ds=load_dataset(sys.argv[1])' HuggingFaceM4/cm4-synthetic-testing\r\n```\r\n\r\nPlease note it includes a creation of a symlink from the `/` (so `sudo`) - may be there is a simpler way but I'm just trying to replicate the real setup. Of course please be careful - it's mostly under `/tmp` not to destroy anything if you try to run this.\r\n\r\nthis fails with:\r\n\r\n```\r\nNo config specified, defaulting to: cm4-synthetic-testing/100.unique\r\nDownloading and preparing dataset cm4-synthetic-testing/100.unique (download: 20.71 KiB, generated: 49.99 MiB, post-processed: Unknown size, total: 50.01 MiB) to /home/stas/.cache/huggingface/datasets/HuggingFaceM4___cm4-synthetic-testing/100.unique/1.1.1/2e33dcc086c7209b8ccff4b19e44f1d41b5be53262e7d793142b96c2e984602b...\r\nExtraction of data is blocked (illegal path: /tmp/yyy)\r\n[...]\r\nExtraction of data/115/texts_03.txt is blocked (illegal path: /tmp/yyy)\r\nGenerating 100.unique split: 0%| | 0/100 [00:00<?, ? examples/s]Generating 100-long unique records split\r\n\r\nTraceback (most recent call last):\r\n File \"/mnt/nvme0/code/huggingface/datasets-master/src/datasets/builder.py\", line 1571, in _prepare_split_single\r\n for key, record in generator:\r\n File \"/home/stas/.cache/huggingface/modules/datasets_modules/datasets/HuggingFaceM4--cm4-synthetic-testing/2e33dcc086c7209b8ccff4b19e44f1d41b5be53262e7d793142b96c2e984602b/cm4-synthetic-testing.py\", line 190, in _generate_examples\r\n raise ValueError(f\"can't find any data - check {data_path}\")\r\nValueError: can't find any data - check /home/stas/.cache/huggingface/datasets/downloads/extracted/134227b9b94c4eccf19b205bf3021d4492d0227b9be6c2ddb6bf517d8d55a8cb/data\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"<string>\", line 1, in <module>\r\n File \"/mnt/nvme0/code/huggingface/datasets-master/src/datasets/load.py\", line 1757, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/mnt/nvme0/code/huggingface/datasets-master/src/datasets/builder.py\", line 860, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/mnt/nvme0/code/huggingface/datasets-master/src/datasets/builder.py\", line 1612, in _download_and_prepare\r\n super()._download_and_prepare(\r\n File \"/mnt/nvme0/code/huggingface/datasets-master/src/datasets/builder.py\", line 953, in _download_and_prepare\r\n self._prepare_split(split_generator, **prepare_split_kwargs)\r\n File \"/mnt/nvme0/code/huggingface/datasets-master/src/datasets/builder.py\", line 1450, in _prepare_split\r\n for job_id, done, content in self._prepare_split_single(\r\n File \"/mnt/nvme0/code/huggingface/datasets-master/src/datasets/builder.py\", line 1607, in _prepare_split_single\r\n raise DatasetGenerationError(\"An error occurred while generating the dataset\") from e\r\ndatasets.builder.DatasetGenerationError: An error occurred while generating the dataset\r\n```\r\n\r\nnote that `illegal path: /tmp/yyy` is now with the mods of this PR.\r\n\r\n----------------------\r\n\r\nAlso I think the whole thing should have failed at the first `illegal path` and not continue running. But as it continued and gave:\r\n\r\n\r\n> ValueError: can't find any data - check /home/stas/.cache/huggingface/datasets/downloads/extracted/134227b9b94c4eccf19b205bf3021d4492d0227b9be6c2ddb6bf517d8d55a8cb/data\r\n\r\nwhat can a user do with that other than confirming that that dir is indeed empty, but no clue is given to why and it's far from obvious that one needs to scroll up and discover earlier issues. Most users won't do that.\r\n\r\n(my apologies for writing out so much - was trying to make the situation clear)", "Thank you, Albert, for the explanation.\r\n\r\nTo summarize I think what's needed is:\r\n\r\n1. add a comment in the code to why this is done for someone being puzzled over the odd code\r\n2. and to use an actionable by the user error message\r\n3. perform an untrapped assert on that tar extract error and not continue, so that the user will not get a later misleading error that the folder is empty and is completely not actionable and it's is far from obvious that one needs to scroll up to find earlier errors, which were trapped.\r\n\r\nAfter reading the advisory I'm still not sure why `cwd` is used and not a designated `~/.cache/huggingface/datasets/downloads/extracted`, I can't see what difference does it make since I could `chdir` to the designated directory and it would be `cwd`. The security solution is trying to ensure that `/etc/passwd` won't get overriden. So why is the check done in `.` and not the real target base directory, since the extraction isn't done in the current working dir. By not using `.` you lower the chances that the user will have all sorts of local symlinks that could trigger the issue since `datasets` typically is the only one managing it's `~/.cache/huggingface/datasets` domain and 99.9% of the time the user won't manually create files in it.\r\n\r\nthank you!\r\n" ]
2023-01-19T02:17:21
2023-01-20T16:49:22
null
MEMBER
null
ok, every so often, I have been getting a strange failure on dataset install: ``` $ python -c 'import sys; from datasets import load_dataset; ds=load_dataset(sys.argv[1])' HuggingFaceM4/general-pmd-synthetic-testing No config specified, defaulting to: general-pmd-synthetic-testing/100.unique Downloading and preparing dataset general-pmd-synthetic-testing/100.unique (download: 3.21 KiB, generated: 16.01 MiB, post-processed: Unknown size, total: 16.02 MiB) to /home/stas/.cache/huggingface/datasets/HuggingFaceM4___general-pmd-synthetic-testing/100.unique/1.1.1/86bc445e3e48cb5ef79de109eb4e54ff85b318cd55c3835c4ee8f86eae33d9d2... Extraction of data is blocked (illegal path) Extraction of data/1 is blocked (illegal path) Extraction of data/1/text.null is blocked (illegal path) [...] ``` I had no idea what to do with that - what in the world does **illegal path** mean? I started looking at the code in `TarExtractor` and added a debug print of `base` so that told me that there was a problem with the current directory - which was a clone of one of the hf repos. This particular dataset extracts into a directory `data` and the current dir I was running the tests from already had `data` in it which was a symbolic link to another partition and somehow all that `badpath` code was blowing up there. https://github.com/huggingface/datasets/blob/80eb8db74f49b7ee9c0f73a819c22177fabd61db/src/datasets/utils/extract.py#L113-L114 I tried hard to come up with a repro, but no matter what I tried it only fails in that particular clone directory that has a `data` symlink and not anywhere else. In any case, in this PR I'm proposing to at least give a user a hint of what seems to be an issue. I'm not at all happy with the info I got with this proposed change, but at least it gave me a hint that `TarExtractor` tries to extract into the current directory without any respect to pre-existing files. Say what? https://github.com/huggingface/datasets/blob/80eb8db74f49b7ee9c0f73a819c22177fabd61db/src/datasets/utils/extract.py#L110 why won't it use the `datasets` designated directory for that? There would never be a problem if it were to do that. I had to look at all those `resolved`, `badpath` calls and see what it did and why it failed, since it was far from obvious. It appeared like it resolved a symlink and compared it to the original path which of course wasn't matching. So perhaps you have a better solution than what I proposed in this PR. I think that code line I quoted is the one that should be fixed instead. But if you can't think of a better solution let's merge this at least so that the user will have a clue that the current dir is somehow involved. p.s. I double checked that if I remove the pre-existing `data` symlink in the current dir I'm running the dataset install command from, the problem goes away too. Thanks.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5441/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5441/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5441", "html_url": "https://github.com/huggingface/datasets/pull/5441", "diff_url": "https://github.com/huggingface/datasets/pull/5441.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5441.patch", "merged_at": null }
true
https://api.github.com/repos/huggingface/datasets/issues/5440
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5440/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5440/comments
https://api.github.com/repos/huggingface/datasets/issues/5440/events
https://github.com/huggingface/datasets/pull/5440
1,538,361,143
PR_kwDODunzps5HpRbF
5,440
Fix documentation about batch samplers
{ "login": "thomasw21", "id": 24695242, "node_id": "MDQ6VXNlcjI0Njk1MjQy", "avatar_url": "https://avatars.githubusercontent.com/u/24695242?v=4", "gravatar_id": "", "url": "https://api.github.com/users/thomasw21", "html_url": "https://github.com/thomasw21", "followers_url": "https://api.github.com/users/thomasw21/followers", "following_url": "https://api.github.com/users/thomasw21/following{/other_user}", "gists_url": "https://api.github.com/users/thomasw21/gists{/gist_id}", "starred_url": "https://api.github.com/users/thomasw21/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/thomasw21/subscriptions", "organizations_url": "https://api.github.com/users/thomasw21/orgs", "repos_url": "https://api.github.com/users/thomasw21/repos", "events_url": "https://api.github.com/users/thomasw21/events{/privacy}", "received_events_url": "https://api.github.com/users/thomasw21/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008874 / 0.011353 (-0.002479) | 0.004685 / 0.011008 (-0.006323) | 0.101478 / 0.038508 (0.062970) | 0.031409 / 0.023109 (0.008300) | 0.305429 / 0.275898 (0.029531) | 0.371777 / 0.323480 (0.048297) | 0.007282 / 0.007986 (-0.000704) | 0.005545 / 0.004328 (0.001217) | 0.078583 / 0.004250 (0.074333) | 0.037171 / 0.037052 (0.000118) | 0.320186 / 0.258489 (0.061696) | 0.347881 / 0.293841 (0.054040) | 0.034005 / 0.128546 (-0.094541) | 0.011534 / 0.075646 (-0.064113) | 0.326079 / 0.419271 (-0.093193) | 0.040856 / 0.043533 (-0.002677) | 0.307327 / 0.255139 (0.052188) | 0.323521 / 0.283200 (0.040321) | 0.090407 / 0.141683 (-0.051276) | 1.481994 / 1.452155 (0.029840) | 1.490372 / 1.492716 (-0.002345) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.175161 / 0.018006 (0.157155) | 0.447009 / 0.000490 (0.446519) | 0.003570 / 0.000200 (0.003370) | 0.000072 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023868 / 0.037411 (-0.013543) | 0.100791 / 0.014526 (0.086265) | 0.108131 / 0.176557 (-0.068425) | 0.147993 / 0.737135 (-0.589142) | 0.111205 / 0.296338 (-0.185133) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425369 / 0.215209 (0.210160) | 4.241694 / 2.077655 (2.164040) | 2.145403 / 1.504120 (0.641283) | 1.913517 / 1.541195 (0.372322) | 1.887307 / 1.468490 (0.418817) | 0.691615 / 4.584777 (-3.893162) | 3.402233 / 3.745712 (-0.343480) | 1.992532 / 5.269862 (-3.277330) | 1.322292 / 4.565676 (-3.243385) | 0.082862 / 0.424275 (-0.341413) | 0.012595 / 0.007607 (0.004988) | 0.528490 / 0.226044 (0.302445) | 5.313338 / 2.268929 (3.044409) | 2.645037 / 55.444624 (-52.799587) | 2.326279 / 6.876477 (-4.550198) | 2.396955 / 2.142072 (0.254883) | 0.819354 / 4.805227 (-3.985873) | 0.150889 / 6.500664 (-6.349775) | 0.066517 / 0.075469 (-0.008952) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.233673 / 1.841788 (-0.608114) | 14.563293 / 8.074308 (6.488985) | 14.317989 / 10.191392 (4.126597) | 0.150767 / 0.680424 (-0.529657) | 0.028972 / 0.534201 (-0.505229) | 0.400547 / 0.579283 (-0.178736) | 0.402267 / 0.434364 (-0.032097) | 0.459375 / 0.540337 (-0.080962) | 0.544419 / 1.386936 (-0.842517) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006817 / 0.011353 (-0.004536) | 0.004588 / 0.011008 (-0.006421) | 0.099224 / 0.038508 (0.060716) | 0.027730 / 0.023109 (0.004621) | 0.412310 / 0.275898 (0.136412) | 0.445731 / 0.323480 (0.122252) | 0.005197 / 0.007986 (-0.002788) | 0.003601 / 0.004328 (-0.000728) | 0.076200 / 0.004250 (0.071950) | 0.041813 / 0.037052 (0.004761) | 0.415282 / 0.258489 (0.156793) | 0.457182 / 0.293841 (0.163341) | 0.031920 / 0.128546 (-0.096626) | 0.011712 / 0.075646 (-0.063934) | 0.320859 / 0.419271 (-0.098412) | 0.041466 / 0.043533 (-0.002067) | 0.418156 / 0.255139 (0.163017) | 0.435501 / 0.283200 (0.152302) | 0.090727 / 0.141683 (-0.050955) | 1.484014 / 1.452155 (0.031859) | 1.568072 / 1.492716 (0.075356) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263356 / 0.018006 (0.245350) | 0.410768 / 0.000490 (0.410278) | 0.015983 / 0.000200 (0.015783) | 0.000301 / 0.000054 (0.000246) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024522 / 0.037411 (-0.012889) | 0.103986 / 0.014526 (0.089460) | 0.109253 / 0.176557 (-0.067303) | 0.142308 / 0.737135 (-0.594827) | 0.114037 / 0.296338 (-0.182302) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.452617 / 0.215209 (0.237407) | 4.505215 / 2.077655 (2.427560) | 2.185546 / 1.504120 (0.681426) | 1.995540 / 1.541195 (0.454345) | 1.962875 / 1.468490 (0.494385) | 0.690237 / 4.584777 (-3.894540) | 3.448311 / 3.745712 (-0.297401) | 1.901572 / 5.269862 (-3.368289) | 1.170832 / 4.565676 (-3.394844) | 0.082333 / 0.424275 (-0.341942) | 0.012569 / 0.007607 (0.004962) | 0.547822 / 0.226044 (0.321778) | 5.504180 / 2.268929 (3.235251) | 2.693981 / 55.444624 (-52.750644) | 2.320710 / 6.876477 (-4.555767) | 2.270508 / 2.142072 (0.128435) | 0.803145 / 4.805227 (-4.002083) | 0.152168 / 6.500664 (-6.348496) | 0.067408 / 0.075469 (-0.008061) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.260689 / 1.841788 (-0.581099) | 14.281112 / 8.074308 (6.206804) | 14.549742 / 10.191392 (4.358350) | 0.129337 / 0.680424 (-0.551087) | 0.017181 / 0.534201 (-0.517020) | 0.380473 / 0.579283 (-0.198810) | 0.387689 / 0.434364 (-0.046675) | 0.446734 / 0.540337 (-0.093603) | 0.532479 / 1.386936 (-0.854457) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7972a0b5f1ad2c36023a79686f6ef026f4ffa64f \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008953 / 0.011353 (-0.002400) | 0.004917 / 0.011008 (-0.006091) | 0.098699 / 0.038508 (0.060191) | 0.034460 / 0.023109 (0.011351) | 0.294604 / 0.275898 (0.018706) | 0.322709 / 0.323480 (-0.000770) | 0.007780 / 0.007986 (-0.000206) | 0.004061 / 0.004328 (-0.000267) | 0.076134 / 0.004250 (0.071883) | 0.043786 / 0.037052 (0.006734) | 0.302155 / 0.258489 (0.043666) | 0.339779 / 0.293841 (0.045938) | 0.038305 / 0.128546 (-0.090241) | 0.012131 / 0.075646 (-0.063515) | 0.332656 / 0.419271 (-0.086615) | 0.048029 / 0.043533 (0.004496) | 0.303859 / 0.255139 (0.048720) | 0.315861 / 0.283200 (0.032662) | 0.100758 / 0.141683 (-0.040925) | 1.468072 / 1.452155 (0.015918) | 1.521325 / 1.492716 (0.028609) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244975 / 0.018006 (0.226969) | 0.524392 / 0.000490 (0.523902) | 0.003720 / 0.000200 (0.003520) | 0.000087 / 0.000054 (0.000032) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027704 / 0.037411 (-0.009707) | 0.109048 / 0.014526 (0.094522) | 0.118298 / 0.176557 (-0.058259) | 0.158748 / 0.737135 (-0.578388) | 0.125654 / 0.296338 (-0.170684) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.406973 / 0.215209 (0.191764) | 4.057502 / 2.077655 (1.979847) | 1.939847 / 1.504120 (0.435727) | 1.746457 / 1.541195 (0.205262) | 1.698866 / 1.468490 (0.230376) | 0.692884 / 4.584777 (-3.891893) | 3.736988 / 3.745712 (-0.008724) | 2.050122 / 5.269862 (-3.219740) | 1.299808 / 4.565676 (-3.265868) | 0.085285 / 0.424275 (-0.338990) | 0.012768 / 0.007607 (0.005161) | 0.510814 / 0.226044 (0.284770) | 5.105319 / 2.268929 (2.836391) | 2.304003 / 55.444624 (-53.140621) | 1.951123 / 6.876477 (-4.925354) | 1.998504 / 2.142072 (-0.143568) | 0.840235 / 4.805227 (-3.964993) | 0.164521 / 6.500664 (-6.336143) | 0.064215 / 0.075469 (-0.011254) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272520 / 1.841788 (-0.569268) | 14.648110 / 8.074308 (6.573802) | 14.573754 / 10.191392 (4.382362) | 0.170053 / 0.680424 (-0.510371) | 0.029389 / 0.534201 (-0.504811) | 0.438924 / 0.579283 (-0.140359) | 0.433572 / 0.434364 (-0.000792) | 0.517702 / 0.540337 (-0.022635) | 0.600389 / 1.386936 (-0.786547) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007362 / 0.011353 (-0.003991) | 0.005451 / 0.011008 (-0.005557) | 0.099336 / 0.038508 (0.060828) | 0.033284 / 0.023109 (0.010174) | 0.377143 / 0.275898 (0.101245) | 0.423724 / 0.323480 (0.100244) | 0.006194 / 0.007986 (-0.001792) | 0.004208 / 0.004328 (-0.000121) | 0.074473 / 0.004250 (0.070223) | 0.049874 / 0.037052 (0.012821) | 0.376012 / 0.258489 (0.117523) | 0.439942 / 0.293841 (0.146101) | 0.037860 / 0.128546 (-0.090686) | 0.012546 / 0.075646 (-0.063100) | 0.349123 / 0.419271 (-0.070148) | 0.048980 / 0.043533 (0.005447) | 0.391205 / 0.255139 (0.136066) | 0.396474 / 0.283200 (0.113274) | 0.105846 / 0.141683 (-0.035836) | 1.502475 / 1.452155 (0.050321) | 1.612303 / 1.492716 (0.119587) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300815 / 0.018006 (0.282809) | 0.542171 / 0.000490 (0.541681) | 0.005465 / 0.000200 (0.005265) | 0.000094 / 0.000054 (0.000039) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028904 / 0.037411 (-0.008508) | 0.110352 / 0.014526 (0.095827) | 0.123275 / 0.176557 (-0.053282) | 0.161958 / 0.737135 (-0.575178) | 0.133595 / 0.296338 (-0.162743) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438724 / 0.215209 (0.223515) | 4.373633 / 2.077655 (2.295979) | 2.178981 / 1.504120 (0.674861) | 1.992442 / 1.541195 (0.451247) | 2.063149 / 1.468490 (0.594659) | 0.696688 / 4.584777 (-3.888089) | 3.849370 / 3.745712 (0.103658) | 3.509495 / 5.269862 (-1.760367) | 1.923320 / 4.565676 (-2.642356) | 0.085554 / 0.424275 (-0.338721) | 0.012510 / 0.007607 (0.004903) | 0.535953 / 0.226044 (0.309909) | 5.365684 / 2.268929 (3.096755) | 2.686902 / 55.444624 (-52.757723) | 2.330922 / 6.876477 (-4.545554) | 2.353445 / 2.142072 (0.211373) | 0.878336 / 4.805227 (-3.926891) | 0.167296 / 6.500664 (-6.333368) | 0.064564 / 0.075469 (-0.010905) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244696 / 1.841788 (-0.597091) | 15.027981 / 8.074308 (6.953673) | 14.545797 / 10.191392 (4.354405) | 0.147229 / 0.680424 (-0.533194) | 0.018007 / 0.534201 (-0.516194) | 0.446196 / 0.579283 (-0.133087) | 0.437418 / 0.434364 (0.003054) | 0.510732 / 0.540337 (-0.029606) | 0.594814 / 1.386936 (-0.792122) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#80eb8db74f49b7ee9c0f73a819c22177fabd61db \"CML watermark\")\n" ]
2023-01-18T17:04:27
2023-01-18T17:57:29
2023-01-18T17:50:04
CONTRIBUTOR
null
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5440/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5440/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5440", "html_url": "https://github.com/huggingface/datasets/pull/5440", "diff_url": "https://github.com/huggingface/datasets/pull/5440.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5440.patch", "merged_at": "2023-01-18T17:50:04" }
true
https://api.github.com/repos/huggingface/datasets/issues/5439
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5439/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5439/comments
https://api.github.com/repos/huggingface/datasets/issues/5439/events
https://github.com/huggingface/datasets/issues/5439
1,537,973,564
I_kwDODunzps5bq508
5,439
[dataset request] Add Common Voice 12.0
{ "login": "MohammedRakib", "id": 31034499, "node_id": "MDQ6VXNlcjMxMDM0NDk5", "avatar_url": "https://avatars.githubusercontent.com/u/31034499?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MohammedRakib", "html_url": "https://github.com/MohammedRakib", "followers_url": "https://api.github.com/users/MohammedRakib/followers", "following_url": "https://api.github.com/users/MohammedRakib/following{/other_user}", "gists_url": "https://api.github.com/users/MohammedRakib/gists{/gist_id}", "starred_url": "https://api.github.com/users/MohammedRakib/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MohammedRakib/subscriptions", "organizations_url": "https://api.github.com/users/MohammedRakib/orgs", "repos_url": "https://api.github.com/users/MohammedRakib/repos", "events_url": "https://api.github.com/users/MohammedRakib/events{/privacy}", "received_events_url": "https://api.github.com/users/MohammedRakib/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
{ "login": "polinaeterna", "id": 16348744, "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "gravatar_id": "", "url": "https://api.github.com/users/polinaeterna", "html_url": "https://github.com/polinaeterna", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "repos_url": "https://api.github.com/users/polinaeterna/repos", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "type": "User", "site_admin": false }
[ { "login": "polinaeterna", "id": 16348744, "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "gravatar_id": "", "url": "https://api.github.com/users/polinaeterna", "html_url": "https://github.com/polinaeterna", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "repos_url": "https://api.github.com/users/polinaeterna/repos", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "type": "User", "site_admin": false } ]
null
[ "@polinaeterna any tentative date on when the Common Voice 12.0 dataset will be added ?", "This dataset is now hosted on the Hub here: https://huggingface.co/datasets/mozilla-foundation/common_voice_12_0" ]
2023-01-18T13:07:05
2023-07-21T14:26:10
2023-07-21T14:26:09
NONE
null
### Feature request Please add the common voice 12_0 datasets. Apart from English, a significant amount of audio-data has been added to the other minor-language datasets. ### Motivation The dataset link: https://commonvoice.mozilla.org/en/datasets
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5439/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5439/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5438
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5438/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5438/comments
https://api.github.com/repos/huggingface/datasets/issues/5438/events
https://github.com/huggingface/datasets/pull/5438
1,537,489,730
PR_kwDODunzps5HmWA8
5,438
Update actions/checkout in CD Conda release
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008470 / 0.011353 (-0.002883) | 0.004721 / 0.011008 (-0.006287) | 0.099024 / 0.038508 (0.060516) | 0.029831 / 0.023109 (0.006722) | 0.325887 / 0.275898 (0.049989) | 0.380753 / 0.323480 (0.057273) | 0.007101 / 0.007986 (-0.000885) | 0.004734 / 0.004328 (0.000406) | 0.077576 / 0.004250 (0.073326) | 0.037207 / 0.037052 (0.000154) | 0.320463 / 0.258489 (0.061974) | 0.369284 / 0.293841 (0.075443) | 0.033411 / 0.128546 (-0.095135) | 0.011610 / 0.075646 (-0.064037) | 0.321460 / 0.419271 (-0.097811) | 0.041315 / 0.043533 (-0.002217) | 0.349186 / 0.255139 (0.094047) | 0.384546 / 0.283200 (0.101347) | 0.088045 / 0.141683 (-0.053637) | 1.536341 / 1.452155 (0.084186) | 1.527806 / 1.492716 (0.035089) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.193435 / 0.018006 (0.175429) | 0.451732 / 0.000490 (0.451243) | 0.003165 / 0.000200 (0.002965) | 0.000082 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023203 / 0.037411 (-0.014208) | 0.096211 / 0.014526 (0.081685) | 0.105665 / 0.176557 (-0.070891) | 0.141074 / 0.737135 (-0.596061) | 0.108584 / 0.296338 (-0.187755) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419041 / 0.215209 (0.203832) | 4.187915 / 2.077655 (2.110261) | 1.855336 / 1.504120 (0.351216) | 1.660046 / 1.541195 (0.118851) | 1.674646 / 1.468490 (0.206156) | 0.692257 / 4.584777 (-3.892520) | 3.466853 / 3.745712 (-0.278860) | 1.900925 / 5.269862 (-3.368936) | 1.294696 / 4.565676 (-3.270980) | 0.082792 / 0.424275 (-0.341483) | 0.012808 / 0.007607 (0.005201) | 0.529622 / 0.226044 (0.303578) | 5.337025 / 2.268929 (3.068096) | 2.326558 / 55.444624 (-53.118066) | 1.956256 / 6.876477 (-4.920221) | 2.035911 / 2.142072 (-0.106161) | 0.815824 / 4.805227 (-3.989403) | 0.148720 / 6.500664 (-6.351944) | 0.064226 / 0.075469 (-0.011243) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.231347 / 1.841788 (-0.610440) | 13.724596 / 8.074308 (5.650288) | 13.933878 / 10.191392 (3.742486) | 0.150913 / 0.680424 (-0.529511) | 0.028460 / 0.534201 (-0.505741) | 0.393564 / 0.579283 (-0.185719) | 0.407185 / 0.434364 (-0.027179) | 0.458250 / 0.540337 (-0.082087) | 0.547993 / 1.386936 (-0.838943) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006653 / 0.011353 (-0.004699) | 0.004615 / 0.011008 (-0.006393) | 0.098062 / 0.038508 (0.059554) | 0.027849 / 0.023109 (0.004740) | 0.409116 / 0.275898 (0.133218) | 0.448770 / 0.323480 (0.125290) | 0.004856 / 0.007986 (-0.003130) | 0.003427 / 0.004328 (-0.000901) | 0.075748 / 0.004250 (0.071498) | 0.037942 / 0.037052 (0.000889) | 0.410232 / 0.258489 (0.151743) | 0.457394 / 0.293841 (0.163553) | 0.031927 / 0.128546 (-0.096620) | 0.011618 / 0.075646 (-0.064028) | 0.321231 / 0.419271 (-0.098040) | 0.041416 / 0.043533 (-0.002117) | 0.413535 / 0.255139 (0.158396) | 0.438196 / 0.283200 (0.154997) | 0.089551 / 0.141683 (-0.052132) | 1.459298 / 1.452155 (0.007143) | 1.552594 / 1.492716 (0.059878) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228186 / 0.018006 (0.210180) | 0.404393 / 0.000490 (0.403904) | 0.006944 / 0.000200 (0.006744) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025167 / 0.037411 (-0.012244) | 0.101282 / 0.014526 (0.086756) | 0.107282 / 0.176557 (-0.069275) | 0.139797 / 0.737135 (-0.597339) | 0.110477 / 0.296338 (-0.185861) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.479121 / 0.215209 (0.263912) | 4.778210 / 2.077655 (2.700555) | 2.464687 / 1.504120 (0.960567) | 2.255312 / 1.541195 (0.714118) | 2.287348 / 1.468490 (0.818858) | 0.694769 / 4.584777 (-3.890008) | 3.460860 / 3.745712 (-0.284852) | 3.078881 / 5.269862 (-2.190980) | 1.297726 / 4.565676 (-3.267950) | 0.082699 / 0.424275 (-0.341576) | 0.012652 / 0.007607 (0.005045) | 0.583308 / 0.226044 (0.357263) | 5.839199 / 2.268929 (3.570271) | 2.893724 / 55.444624 (-52.550900) | 2.546503 / 6.876477 (-4.329974) | 2.559570 / 2.142072 (0.417498) | 0.802357 / 4.805227 (-4.002870) | 0.151890 / 6.500664 (-6.348774) | 0.068593 / 0.075469 (-0.006876) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.262421 / 1.841788 (-0.579367) | 13.771848 / 8.074308 (5.697540) | 14.046017 / 10.191392 (3.854625) | 0.140950 / 0.680424 (-0.539474) | 0.016839 / 0.534201 (-0.517362) | 0.378870 / 0.579283 (-0.200413) | 0.385908 / 0.434364 (-0.048456) | 0.438539 / 0.540337 (-0.101799) | 0.522761 / 1.386936 (-0.864175) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8145ebfd4fc3508d0be0de9a0f9c58877f2b32f8 \"CML watermark\")\n" ]
2023-01-18T06:53:15
2023-01-18T13:49:51
2023-01-18T13:42:49
MEMBER
null
This PR updates the "checkout" GitHub Action to its latest version, as previous ones are deprecated: https://github.blog/changelog/2022-09-22-github-actions-all-actions-will-begin-running-on-node16-instead-of-node12/
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5438/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5438/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5438", "html_url": "https://github.com/huggingface/datasets/pull/5438", "diff_url": "https://github.com/huggingface/datasets/pull/5438.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5438.patch", "merged_at": "2023-01-18T13:42:48" }
true
https://api.github.com/repos/huggingface/datasets/issues/5437
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5437/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5437/comments
https://api.github.com/repos/huggingface/datasets/issues/5437/events
https://github.com/huggingface/datasets/issues/5437
1,536,837,144
I_kwDODunzps5bmkYY
5,437
Can't load png dataset with 4 channel (RGBA)
{ "login": "WiNE-iNEFF", "id": 41611046, "node_id": "MDQ6VXNlcjQxNjExMDQ2", "avatar_url": "https://avatars.githubusercontent.com/u/41611046?v=4", "gravatar_id": "", "url": "https://api.github.com/users/WiNE-iNEFF", "html_url": "https://github.com/WiNE-iNEFF", "followers_url": "https://api.github.com/users/WiNE-iNEFF/followers", "following_url": "https://api.github.com/users/WiNE-iNEFF/following{/other_user}", "gists_url": "https://api.github.com/users/WiNE-iNEFF/gists{/gist_id}", "starred_url": "https://api.github.com/users/WiNE-iNEFF/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/WiNE-iNEFF/subscriptions", "organizations_url": "https://api.github.com/users/WiNE-iNEFF/orgs", "repos_url": "https://api.github.com/users/WiNE-iNEFF/repos", "events_url": "https://api.github.com/users/WiNE-iNEFF/events{/privacy}", "received_events_url": "https://api.github.com/users/WiNE-iNEFF/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi! Can you please share the directory structure of your image folder and the `load_dataset` call? We decode images with Pillow, and Pillow supports RGBA PNGs, so this shouldn't be a problem.\r\n\r\n", "> Hi! Can you please share the directory structure of your image folder and the `load_dataset` call? We decode images with Pillow, and Pillow supports RGBA PNGs, so this shouldn't be a problem.\n> \n> \n\nI have only 1 folder that I use in the load_dataset function with the name \"IMGDATA\" and all my 9000 images are located in this folder.\n`\nfrom datasets import load_dataset\n\ndataset = load_dataset(\"IMGDATA\")\n`\nAt the same time, using another data set with images consisting of 3 RGB channels, everything works", "Okay, I figured out what was wrong. When uploading my dataset via Google Drive, the images broke and Pillow couldn't open them. As a result, I solved the problem by downloading the ZIP archive" ]
2023-01-17T18:22:27
2023-01-18T20:20:15
2023-01-18T20:20:15
NONE
null
I try to create dataset which contains about 9000 png images 64x64 in size, and they are all 4-channel (RGBA). When trying to use load_dataset() then a dataset is created from only 2 images. What exactly interferes I can not understand.![Screenshot_20230117_212213.jpg](https://user-images.githubusercontent.com/41611046/212980147-9aa68e30-76e9-4b61-a937-c2fdabd56564.jpg)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5437/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5437/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5436
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5436/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5436/comments
https://api.github.com/repos/huggingface/datasets/issues/5436/events
https://github.com/huggingface/datasets/pull/5436
1,536,633,173
PR_kwDODunzps5Hjh4v
5,436
Revert container image pin in CI benchmarks
{ "login": "0x2b3bfa0", "id": 11387611, "node_id": "MDQ6VXNlcjExMzg3NjEx", "avatar_url": "https://avatars.githubusercontent.com/u/11387611?v=4", "gravatar_id": "", "url": "https://api.github.com/users/0x2b3bfa0", "html_url": "https://github.com/0x2b3bfa0", "followers_url": "https://api.github.com/users/0x2b3bfa0/followers", "following_url": "https://api.github.com/users/0x2b3bfa0/following{/other_user}", "gists_url": "https://api.github.com/users/0x2b3bfa0/gists{/gist_id}", "starred_url": "https://api.github.com/users/0x2b3bfa0/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/0x2b3bfa0/subscriptions", "organizations_url": "https://api.github.com/users/0x2b3bfa0/orgs", "repos_url": "https://api.github.com/users/0x2b3bfa0/repos", "events_url": "https://api.github.com/users/0x2b3bfa0/events{/privacy}", "received_events_url": "https://api.github.com/users/0x2b3bfa0/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.013736 / 0.011353 (0.002383) | 0.006253 / 0.011008 (-0.004755) | 0.127076 / 0.038508 (0.088568) | 0.040997 / 0.023109 (0.017888) | 0.394744 / 0.275898 (0.118846) | 0.454285 / 0.323480 (0.130805) | 0.009864 / 0.007986 (0.001878) | 0.005093 / 0.004328 (0.000765) | 0.098714 / 0.004250 (0.094464) | 0.044308 / 0.037052 (0.007255) | 0.421951 / 0.258489 (0.163462) | 0.462280 / 0.293841 (0.168439) | 0.059979 / 0.128546 (-0.068567) | 0.020607 / 0.075646 (-0.055039) | 0.443593 / 0.419271 (0.024321) | 0.062332 / 0.043533 (0.018799) | 0.411335 / 0.255139 (0.156196) | 0.426524 / 0.283200 (0.143324) | 0.118233 / 0.141683 (-0.023450) | 1.877681 / 1.452155 (0.425527) | 1.865271 / 1.492716 (0.372555) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.234791 / 0.018006 (0.216784) | 0.557322 / 0.000490 (0.556833) | 0.000528 / 0.000200 (0.000328) | 0.000105 / 0.000054 (0.000051) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030260 / 0.037411 (-0.007151) | 0.122594 / 0.014526 (0.108068) | 0.142142 / 0.176557 (-0.034414) | 0.197098 / 0.737135 (-0.540037) | 0.150978 / 0.296338 (-0.145360) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.622644 / 0.215209 (0.407435) | 6.320078 / 2.077655 (4.242423) | 2.552755 / 1.504120 (1.048635) | 2.188647 / 1.541195 (0.647453) | 2.226602 / 1.468490 (0.758112) | 1.288083 / 4.584777 (-3.296694) | 5.624143 / 3.745712 (1.878431) | 3.208382 / 5.269862 (-2.061480) | 2.115222 / 4.565676 (-2.450455) | 0.146420 / 0.424275 (-0.277856) | 0.014464 / 0.007607 (0.006857) | 0.816470 / 0.226044 (0.590425) | 7.984049 / 2.268929 (5.715120) | 3.364942 / 55.444624 (-52.079682) | 2.552306 / 6.876477 (-4.324171) | 2.664575 / 2.142072 (0.522503) | 1.556177 / 4.805227 (-3.249050) | 0.263389 / 6.500664 (-6.237275) | 0.076861 / 0.075469 (0.001391) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.553734 / 1.841788 (-0.288054) | 18.365029 / 8.074308 (10.290721) | 20.993993 / 10.191392 (10.802601) | 0.235642 / 0.680424 (-0.444782) | 0.047084 / 0.534201 (-0.487117) | 0.555610 / 0.579283 (-0.023673) | 0.659413 / 0.434364 (0.225049) | 0.639284 / 0.540337 (0.098947) | 0.756317 / 1.386936 (-0.630620) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.014709 / 0.011353 (0.003356) | 0.006673 / 0.011008 (-0.004335) | 0.133718 / 0.038508 (0.095210) | 0.035699 / 0.023109 (0.012590) | 0.459089 / 0.275898 (0.183191) | 0.538071 / 0.323480 (0.214591) | 0.007376 / 0.007986 (-0.000610) | 0.004688 / 0.004328 (0.000360) | 0.104909 / 0.004250 (0.100659) | 0.064942 / 0.037052 (0.027890) | 0.466158 / 0.258489 (0.207669) | 0.566100 / 0.293841 (0.272259) | 0.057368 / 0.128546 (-0.071178) | 0.021572 / 0.075646 (-0.054075) | 0.413826 / 0.419271 (-0.005446) | 0.079543 / 0.043533 (0.036010) | 0.493313 / 0.255139 (0.238174) | 0.517787 / 0.283200 (0.234587) | 0.119836 / 0.141683 (-0.021847) | 1.833956 / 1.452155 (0.381801) | 2.003288 / 1.492716 (0.510572) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.276013 / 0.018006 (0.258007) | 0.549194 / 0.000490 (0.548704) | 0.010939 / 0.000200 (0.010739) | 0.000129 / 0.000054 (0.000075) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034983 / 0.037411 (-0.002428) | 0.131576 / 0.014526 (0.117050) | 0.140651 / 0.176557 (-0.035906) | 0.186455 / 0.737135 (-0.550681) | 0.146309 / 0.296338 (-0.150029) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.675973 / 0.215209 (0.460763) | 6.821862 / 2.077655 (4.744208) | 3.090307 / 1.504120 (1.586187) | 2.710679 / 1.541195 (1.169484) | 2.891577 / 1.468490 (1.423087) | 1.306160 / 4.584777 (-3.278617) | 5.629763 / 3.745712 (1.884051) | 4.662578 / 5.269862 (-0.607283) | 2.670195 / 4.565676 (-1.895482) | 0.153867 / 0.424275 (-0.270408) | 0.016028 / 0.007607 (0.008421) | 0.878702 / 0.226044 (0.652658) | 8.801612 / 2.268929 (6.532683) | 4.005520 / 55.444624 (-51.439104) | 3.124755 / 6.876477 (-3.751721) | 3.382132 / 2.142072 (1.240060) | 1.525951 / 4.805227 (-3.279277) | 0.263350 / 6.500664 (-6.237315) | 0.079285 / 0.075469 (0.003815) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.647591 / 1.841788 (-0.194197) | 18.281646 / 8.074308 (10.207338) | 21.072142 / 10.191392 (10.880750) | 0.232236 / 0.680424 (-0.448188) | 0.026126 / 0.534201 (-0.508075) | 0.546926 / 0.579283 (-0.032357) | 0.634496 / 0.434364 (0.200132) | 0.604345 / 0.540337 (0.064007) | 0.730159 / 1.386936 (-0.656777) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cfe8a6aa4cd2d3d0d7067f390152d1a4aeb4c710 \"CML watermark\")\n" ]
2023-01-17T15:59:50
2023-01-18T09:05:49
2023-01-18T06:29:06
CONTRIBUTOR
null
Closes #5433, reverts #5432, and also: * Uses [ghcr.io container images](https://cml.dev/doc/self-hosted-runners/#docker-images) for extra speed * Updates `actions/checkout` to `v3` (note that `v2` is [deprecated](https://github.blog/changelog/2022-09-22-github-actions-all-actions-will-begin-running-on-node16-instead-of-node12/)) * Follows the new naming convention for environment variables introduced with [iterative/cml#1272](https://github.com/iterative/cml/pull/1272)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5436/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5436/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5436", "html_url": "https://github.com/huggingface/datasets/pull/5436", "diff_url": "https://github.com/huggingface/datasets/pull/5436.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5436.patch", "merged_at": "2023-01-18T06:29:06" }
true
https://api.github.com/repos/huggingface/datasets/issues/5435
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5435/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5435/comments
https://api.github.com/repos/huggingface/datasets/issues/5435/events
https://github.com/huggingface/datasets/issues/5435
1,536,099,300
I_kwDODunzps5bjwPk
5,435
Wrong statement in "Load a Dataset in Streaming mode" leads to data leakage
{ "login": "DanielYang59", "id": 80093591, "node_id": "MDQ6VXNlcjgwMDkzNTkx", "avatar_url": "https://avatars.githubusercontent.com/u/80093591?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DanielYang59", "html_url": "https://github.com/DanielYang59", "followers_url": "https://api.github.com/users/DanielYang59/followers", "following_url": "https://api.github.com/users/DanielYang59/following{/other_user}", "gists_url": "https://api.github.com/users/DanielYang59/gists{/gist_id}", "starred_url": "https://api.github.com/users/DanielYang59/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DanielYang59/subscriptions", "organizations_url": "https://api.github.com/users/DanielYang59/orgs", "repos_url": "https://api.github.com/users/DanielYang59/repos", "events_url": "https://api.github.com/users/DanielYang59/events{/privacy}", "received_events_url": "https://api.github.com/users/DanielYang59/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Just for your information, Tensorflow confirmed this issue [here.](https://github.com/tensorflow/tensorflow/issues/59279)", "Thanks for reporting, @HaoyuYang59.\r\n\r\nPlease note that these are different \"dataset\" objects: our docs refer to Hugging Face `datasets.Dataset` and not to TensorFlow `tf.data.Dataset`.\r\n\r\nOur `datasets.Dataset.shuffle` method does not have a `reshuffle_each_iteration` argument. Therefore, I would say the statement in our docs is True because they refer to `datasets.Dataset.shuffle`, `datasets.Dataset.skip` and `datasets.Dataset.take`.\r\n\r\nI think this issue is restricted to TensorFlow dataset, and this would be addressed by them in the issue you opened in their repo: https://github.com/tensorflow/tensorflow/issues/59279", "Also note that you are referring to an outdated documentation page: datasets 1.10.2 version\r\n\r\nCurrent datasets version is 2.8.0 and the corresponding documentation page is: https://huggingface.co/docs/datasets/stream#split-dataset", "Hi @albertvillanova thanks for your reply and your explaination here. \r\n\r\nSorry for the confusion as I'm not actually a user of your repo and I just happen to find the thread by Google (and didn't read carefully).\r\n\r\nGreat to know that and you made everything very clear now.\r\n\r\nThanks for your time and sorry for the consusion.\r\n\r\nWishing you a wonderful time. \r\n\r\nRegards" ]
2023-01-17T10:04:16
2023-01-19T09:56:03
2023-01-19T09:56:03
NONE
null
### Describe the bug In the [Split your dataset with take and skip](https://huggingface.co/docs/datasets/v1.10.2/dataset_streaming.html#split-your-dataset-with-take-and-skip), it states: > Using take (or skip) prevents future calls to shuffle from shuffling the dataset shards order, otherwise the taken examples could come from other shards. In this case it only uses the shuffle buffer. Therefore it is advised to shuffle the dataset before splitting using take or skip. See more details in the [Shuffling the dataset: shuffle](https://huggingface.co/docs/datasets/v1.10.2/dataset_streaming.html#iterable-dataset-shuffling) section.` >> \# You can also create splits from a shuffled dataset >> train_dataset = shuffled_dataset.skip(1000) >> eval_dataset = shuffled_dataset.take(1000) Where the shuffled dataset comes from: `shuffled_dataset = dataset.shuffle(buffer_size=10_000, seed=42)` At least in Tensorflow 2.9/2.10/2.11, [docs](https://www.tensorflow.org/api_docs/python/tf/data/Dataset#shuffle) states the `reshuffle_each_iteration` argument is `True` by default. This means the dataset would be shuffled after each epoch, and as a result **the validation data would leak into training test**. ### Steps to reproduce the bug N/A ### Expected behavior The `reshuffle_each_iteration` argument should be set to `False`. ### Environment info Tensorflow 2.9/2.10/2.11
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5435/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5435/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5434
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5434/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5434/comments
https://api.github.com/repos/huggingface/datasets/issues/5434/events
https://github.com/huggingface/datasets/issues/5434
1,536,090,042
I_kwDODunzps5bjt-6
5,434
sample_dataset module not found
{ "login": "nickums", "id": 15816213, "node_id": "MDQ6VXNlcjE1ODE2MjEz", "avatar_url": "https://avatars.githubusercontent.com/u/15816213?v=4", "gravatar_id": "", "url": "https://api.github.com/users/nickums", "html_url": "https://github.com/nickums", "followers_url": "https://api.github.com/users/nickums/followers", "following_url": "https://api.github.com/users/nickums/following{/other_user}", "gists_url": "https://api.github.com/users/nickums/gists{/gist_id}", "starred_url": "https://api.github.com/users/nickums/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nickums/subscriptions", "organizations_url": "https://api.github.com/users/nickums/orgs", "repos_url": "https://api.github.com/users/nickums/repos", "events_url": "https://api.github.com/users/nickums/events{/privacy}", "received_events_url": "https://api.github.com/users/nickums/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi! Can you describe what the actual error is?", "working on the setfit example script\r\n\r\n from setfit import SetFitModel, SetFitTrainer, sample_dataset\r\n\r\nImportError: cannot import name 'sample_dataset' from 'setfit' (C:\\Python\\Python38\\lib\\site-packages\\setfit\\__init__.py)\r\n\r\n apart from that, I also had to hack these loads to import thses modules:\r\n from datasets.load import load_dataset \r\n from datasets.arrow_dataset import Dataset\r\n from datasets.dataset_dict import DatasetDict", "Hi! This issue is related to the [SetFit](https://github.com/huggingface/setfit) project, so can you please open it there?" ]
2023-01-17T09:57:54
2023-01-19T13:52:12
2023-01-19T07:55:11
NONE
null
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5434/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5434/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5433
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5433/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5433/comments
https://api.github.com/repos/huggingface/datasets/issues/5433/events
https://github.com/huggingface/datasets/issues/5433
1,536,017,901
I_kwDODunzps5bjcXt
5,433
Support latest Docker image in CI benchmarks
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
null
[ "Sorry, it was us:[^1] https://github.com/iterative/cml/pull/1317 & https://github.com/iterative/cml/issues/1319#issuecomment-1385599559; should be fixed with [v0.18.17](https://github.com/iterative/cml/releases/tag/v0.18.17).\r\n\r\n[^1]: More or less, see https://github.com/yargs/yargs/issues/873.", "Opened https://github.com/huggingface/datasets/pull/5436 unpinning again the container image.", "Hi @0x2b3bfa0, thanks a lot for the investigation, the context about the the root cause and for fixing it!!\r\n\r\nWe are reviewing your PR to unpin the container image." ]
2023-01-17T09:06:08
2023-01-18T06:29:08
2023-01-18T06:29:08
MEMBER
null
Once we find out the root cause of: - #5431 we should revert the temporary pin on the Docker image version introduced by: - #5432
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5433/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5433/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5432
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5432/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5432/comments
https://api.github.com/repos/huggingface/datasets/issues/5432/events
https://github.com/huggingface/datasets/pull/5432
1,535,893,019
PR_kwDODunzps5HhEA8
5,432
Fix CI benchmarks by temporarily pinning Docker image version
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008519 / 0.011353 (-0.002834) | 0.004451 / 0.011008 (-0.006558) | 0.102401 / 0.038508 (0.063893) | 0.029779 / 0.023109 (0.006669) | 0.302654 / 0.275898 (0.026756) | 0.366002 / 0.323480 (0.042522) | 0.007044 / 0.007986 (-0.000942) | 0.003350 / 0.004328 (-0.000978) | 0.078213 / 0.004250 (0.073963) | 0.035208 / 0.037052 (-0.001844) | 0.312980 / 0.258489 (0.054491) | 0.344217 / 0.293841 (0.050376) | 0.033089 / 0.128546 (-0.095457) | 0.011443 / 0.075646 (-0.064203) | 0.353143 / 0.419271 (-0.066128) | 0.040851 / 0.043533 (-0.002682) | 0.304501 / 0.255139 (0.049362) | 0.329118 / 0.283200 (0.045918) | 0.087399 / 0.141683 (-0.054284) | 1.500200 / 1.452155 (0.048046) | 1.536176 / 1.492716 (0.043459) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209626 / 0.018006 (0.191619) | 0.425551 / 0.000490 (0.425061) | 0.001168 / 0.000200 (0.000968) | 0.000069 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023664 / 0.037411 (-0.013748) | 0.096792 / 0.014526 (0.082266) | 0.105652 / 0.176557 (-0.070905) | 0.140796 / 0.737135 (-0.596340) | 0.109319 / 0.296338 (-0.187019) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.414802 / 0.215209 (0.199593) | 4.152619 / 2.077655 (2.074964) | 1.814403 / 1.504120 (0.310283) | 1.611392 / 1.541195 (0.070198) | 1.667350 / 1.468490 (0.198860) | 0.691855 / 4.584777 (-3.892922) | 3.406584 / 3.745712 (-0.339128) | 1.940332 / 5.269862 (-3.329530) | 1.279061 / 4.565676 (-3.286615) | 0.082938 / 0.424275 (-0.341337) | 0.012388 / 0.007607 (0.004781) | 0.521738 / 0.226044 (0.295693) | 5.233764 / 2.268929 (2.964835) | 2.306573 / 55.444624 (-53.138051) | 1.954631 / 6.876477 (-4.921845) | 2.048315 / 2.142072 (-0.093757) | 0.816921 / 4.805227 (-3.988306) | 0.150983 / 6.500664 (-6.349681) | 0.066628 / 0.075469 (-0.008842) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.235939 / 1.841788 (-0.605849) | 14.047114 / 8.074308 (5.972806) | 14.149842 / 10.191392 (3.958450) | 0.152836 / 0.680424 (-0.527588) | 0.028837 / 0.534201 (-0.505364) | 0.396232 / 0.579283 (-0.183051) | 0.409950 / 0.434364 (-0.024414) | 0.460296 / 0.540337 (-0.080041) | 0.556787 / 1.386936 (-0.830149) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006582 / 0.011353 (-0.004771) | 0.004491 / 0.011008 (-0.006518) | 0.100093 / 0.038508 (0.061585) | 0.026826 / 0.023109 (0.003717) | 0.413971 / 0.275898 (0.138073) | 0.445625 / 0.323480 (0.122145) | 0.004892 / 0.007986 (-0.003094) | 0.003295 / 0.004328 (-0.001034) | 0.077879 / 0.004250 (0.073628) | 0.039177 / 0.037052 (0.002125) | 0.353299 / 0.258489 (0.094810) | 0.406566 / 0.293841 (0.112725) | 0.031633 / 0.128546 (-0.096913) | 0.011517 / 0.075646 (-0.064130) | 0.320939 / 0.419271 (-0.098332) | 0.041487 / 0.043533 (-0.002046) | 0.353735 / 0.255139 (0.098596) | 0.434786 / 0.283200 (0.151586) | 0.087722 / 0.141683 (-0.053961) | 1.515134 / 1.452155 (0.062979) | 1.588908 / 1.492716 (0.096191) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225312 / 0.018006 (0.207305) | 0.398324 / 0.000490 (0.397834) | 0.000453 / 0.000200 (0.000253) | 0.000064 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024645 / 0.037411 (-0.012766) | 0.099399 / 0.014526 (0.084873) | 0.107006 / 0.176557 (-0.069550) | 0.145090 / 0.737135 (-0.592045) | 0.110046 / 0.296338 (-0.186292) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450573 / 0.215209 (0.235364) | 4.498030 / 2.077655 (2.420375) | 2.193164 / 1.504120 (0.689044) | 1.940103 / 1.541195 (0.398908) | 1.957137 / 1.468490 (0.488647) | 0.697599 / 4.584777 (-3.887178) | 3.465146 / 3.745712 (-0.280566) | 1.918209 / 5.269862 (-3.351653) | 1.183921 / 4.565676 (-3.381756) | 0.082540 / 0.424275 (-0.341735) | 0.012495 / 0.007607 (0.004888) | 0.549702 / 0.226044 (0.323658) | 5.526841 / 2.268929 (3.257912) | 2.658611 / 55.444624 (-52.786014) | 2.259542 / 6.876477 (-4.616935) | 2.310139 / 2.142072 (0.168066) | 0.810550 / 4.805227 (-3.994677) | 0.152369 / 6.500664 (-6.348295) | 0.066295 / 0.075469 (-0.009174) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.289240 / 1.841788 (-0.552547) | 14.032143 / 8.074308 (5.957834) | 13.973492 / 10.191392 (3.782100) | 0.140082 / 0.680424 (-0.540342) | 0.017113 / 0.534201 (-0.517088) | 0.386534 / 0.579283 (-0.192749) | 0.393723 / 0.434364 (-0.040641) | 0.448891 / 0.540337 (-0.091446) | 0.533085 / 1.386936 (-0.853851) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n" ]
2023-01-17T07:15:31
2023-01-17T08:58:22
2023-01-17T08:51:17
MEMBER
null
This PR fixes CI benchmarks, by temporarily pinning Docker image version, instead of "latest" tag. It also updates deprecated `cml-send-comment` command and using `cml comment create` instead. Fix #5431.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5432/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5432/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5432", "html_url": "https://github.com/huggingface/datasets/pull/5432", "diff_url": "https://github.com/huggingface/datasets/pull/5432.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5432.patch", "merged_at": "2023-01-17T08:51:17" }
true
https://api.github.com/repos/huggingface/datasets/issues/5431
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5431/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5431/comments
https://api.github.com/repos/huggingface/datasets/issues/5431/events
https://github.com/huggingface/datasets/issues/5431
1,535,862,621
I_kwDODunzps5bi2dd
5,431
CI benchmarks are broken: Unknown arguments: runnerPath, path
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 4296013012, "node_id": "LA_kwDODunzps8AAAABAA_01A", "url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance", "name": "maintenance", "color": "d4c5f9", "default": false, "description": "Maintenance tasks" } ]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-01-17T06:49:57
2023-01-18T06:33:24
2023-01-17T08:51:18
MEMBER
null
Our CI benchmarks are broken, raising `Unknown arguments` error: https://github.com/huggingface/datasets/actions/runs/3932397079/jobs/6724905161 ``` Unknown arguments: runnerPath, path ``` Stack trace: ``` 100%|██████████| 500/500 [00:01<00:00, 338.98ba/s] Updating lock file 'dvc.lock' To track the changes with git, run: git add dvc.lock To enable auto staging, run: dvc config core.autostage true Use `dvc push` to send your updates to remote storage. cml send-comment <markdown file> Global Options: --log Logging verbosity [string] [choices: "error", "warn", "info", "debug"] [default: "info"] --driver Git provider where the repository is hosted [string] [choices: "github", "gitlab", "bitbucket"] [default: infer from the environment] --repo Repository URL or slug [string] [default: infer from the environment] --driver-token, --token CI driver personal/project access token (PAT) [string] [default: infer from the environment] --help Show help [boolean] Options: --target Comment type (`commit`, `pr`, `commit/f00bar`, `pr/42`, `issue/1337`),default is automatic (`pr` but fallback to `commit`). [string] --watch Watch for changes and automatically update the comment [boolean] --publish Upload any local images found in the Markdown report [boolean] [default: true] --publish-url Self-hosted image server URL [string] [default: "https://asset.cml.dev/"] --publish-native, --native Uses driver's native capabilities to upload assets instead of CML's storage; not available on GitHub [boolean] --watermark-title Hidden comment marker (used for targeting in subsequent `cml comment update`); "{workflow}" & "{run}" are auto-replaced [string] [default: ""] Unknown arguments: runnerPath, path Error: Process completed with exit code 1. ``` Issue reported to iterative/cml: - iterative/cml#1319
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5431/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5431/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5430
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5430/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5430/comments
https://api.github.com/repos/huggingface/datasets/issues/5430/events
https://github.com/huggingface/datasets/issues/5430
1,535,856,503
I_kwDODunzps5bi093
5,430
Support Apache Beam >= 2.44.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[ "Some of the shard files now have 0 number of rows.\r\n\r\nWe have opened an issue in the Apache Beam repo:\r\n- https://github.com/apache/beam/issues/25041" ]
2023-01-17T06:42:12
2023-01-17T16:12:18
null
MEMBER
null
Once we find out the root cause of: - #5426 we should revert the temporary pin on apache-beam introduced by: - #5429
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5430/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5430/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5429
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5429/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5429/comments
https://api.github.com/repos/huggingface/datasets/issues/5429/events
https://github.com/huggingface/datasets/pull/5429
1,535,192,687
PR_kwDODunzps5HeuyT
5,429
Fix CI by temporarily pinning apache-beam < 2.44.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2023-01-16T16:20:09
2023-01-16T16:51:42
2023-01-16T16:49:03
MEMBER
null
Temporarily pin apache-beam < 2.44.0 Fix #5426.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5429/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5429/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5429", "html_url": "https://github.com/huggingface/datasets/pull/5429", "diff_url": "https://github.com/huggingface/datasets/pull/5429.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5429.patch", "merged_at": "2023-01-16T16:49:03" }
true
https://api.github.com/repos/huggingface/datasets/issues/5428
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5428/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5428/comments
https://api.github.com/repos/huggingface/datasets/issues/5428/events
https://github.com/huggingface/datasets/issues/5428
1,535,166,139
I_kwDODunzps5bgMa7
5,428
Load/Save FAISS index using fsspec
{ "login": "Dref360", "id": 8976546, "node_id": "MDQ6VXNlcjg5NzY1NDY=", "avatar_url": "https://avatars.githubusercontent.com/u/8976546?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Dref360", "html_url": "https://github.com/Dref360", "followers_url": "https://api.github.com/users/Dref360/followers", "following_url": "https://api.github.com/users/Dref360/following{/other_user}", "gists_url": "https://api.github.com/users/Dref360/gists{/gist_id}", "starred_url": "https://api.github.com/users/Dref360/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Dref360/subscriptions", "organizations_url": "https://api.github.com/users/Dref360/orgs", "repos_url": "https://api.github.com/users/Dref360/repos", "events_url": "https://api.github.com/users/Dref360/events{/privacy}", "received_events_url": "https://api.github.com/users/Dref360/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
null
[ "Hi! Sure, feel free to submit a PR. Maybe if we want to be consistent with the existing API, it would be cleaner to directly add support for `fsspec` paths in `Dataset.load_faiss_index`/`Dataset.save_faiss_index` in the same manner as it was done in `Dataset.load_from_disk`/`Dataset.save_to_disk`.", "That's a great idea! I'll do that instead. " ]
2023-01-16T16:08:12
2023-03-27T15:18:22
2023-03-27T15:18:22
CONTRIBUTOR
null
### Feature request From what I understand `faiss` already support this [link](https://github.com/facebookresearch/faiss/wiki/Index-IO,-cloning-and-hyper-parameter-tuning#generic-io-support) I would like to use a stream as input to `Dataset.load_faiss_index` and `Dataset.save_faiss_index`. ### Motivation In my case, I'm saving faiss index in cloud storage and use `fsspec` to load them. It would be ideal if I could send the stream directly instead of copying the file locally (or mounting the bucket) and then load the index. ### Your contribution I can submit the PR
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5428/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5428/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5427
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5427/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5427/comments
https://api.github.com/repos/huggingface/datasets/issues/5427/events
https://github.com/huggingface/datasets/issues/5427
1,535,162,889
I_kwDODunzps5bgLoJ
5,427
Unable to download dataset id_clickbait
{ "login": "ilos-vigil", "id": 45941585, "node_id": "MDQ6VXNlcjQ1OTQxNTg1", "avatar_url": "https://avatars.githubusercontent.com/u/45941585?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ilos-vigil", "html_url": "https://github.com/ilos-vigil", "followers_url": "https://api.github.com/users/ilos-vigil/followers", "following_url": "https://api.github.com/users/ilos-vigil/following{/other_user}", "gists_url": "https://api.github.com/users/ilos-vigil/gists{/gist_id}", "starred_url": "https://api.github.com/users/ilos-vigil/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ilos-vigil/subscriptions", "organizations_url": "https://api.github.com/users/ilos-vigil/orgs", "repos_url": "https://api.github.com/users/ilos-vigil/repos", "events_url": "https://api.github.com/users/ilos-vigil/events{/privacy}", "received_events_url": "https://api.github.com/users/ilos-vigil/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for reporting, @ilos-vigil.\r\n\r\nWe have transferred this issue to the corresponding dataset on the Hugging Face Hub: https://huggingface.co/datasets/id_clickbait/discussions/1 " ]
2023-01-16T16:05:36
2023-01-18T09:51:28
2023-01-18T09:25:19
NONE
null
### Describe the bug I tried to download dataset `id_clickbait`, but receive this error message. ``` FileNotFoundError: Couldn't find file at https://md-datasets-cache-zipfiles-prod.s3.eu-west-1.amazonaws.com/k42j7x2kpn-1.zip ``` When i open the link using browser, i got this XML data. ```xml <?xml version="1.0" encoding="UTF-8"?> <Error><Code>NoSuchBucket</Code><Message>The specified bucket does not exist</Message><BucketName>md-datasets-cache-zipfiles-prod</BucketName><RequestId>NVRM6VEEQD69SD00</RequestId><HostId>W/SPDxLGvlCGi0OD6d7mSDvfOAUqLAfvs9nTX50BkJrjMny+X9Jnqp/Li2lG9eTUuT4MUkAA2jjTfCrCiUmu7A==</HostId></Error> ``` ### Steps to reproduce the bug Code snippet: ``` from datasets import load_dataset load_dataset('id_clickbait', 'annotated') load_dataset('id_clickbait', 'raw') ``` Link to Kaggle notebook: https://www.kaggle.com/code/ilosvigil/bug-check-on-id-clickbait-dataset ### Expected behavior Successfully download and load `id_newspaper` dataset. ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.15.65+-x86_64-with-debian-bullseye-sid - Python version: 3.7.12 - PyArrow version: 8.0.0 - Pandas version: 1.3.5
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5427/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5427/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5426
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5426/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5426/comments
https://api.github.com/repos/huggingface/datasets/issues/5426/events
https://github.com/huggingface/datasets/issues/5426
1,535,158,555
I_kwDODunzps5bgKkb
5,426
CI tests are broken: SchemaInferenceError
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-01-16T16:02:07
2023-06-02T06:40:32
2023-01-16T16:49:04
MEMBER
null
CI test (unit, ubuntu-latest, deps-minimum) is broken, raising a `SchemaInferenceError`: see https://github.com/huggingface/datasets/actions/runs/3930901593/jobs/6721492004 ``` FAILED tests/test_beam.py::BeamBuilderTest::test_download_and_prepare_sharded - datasets.arrow_writer.SchemaInferenceError: Please pass `features` or at least one example when writing data ``` Stack trace: ``` ______________ BeamBuilderTest.test_download_and_prepare_sharded _______________ [gw1] linux -- Python 3.7.15 /opt/hostedtoolcache/Python/3.7.15/x64/bin/python self = <tests.test_beam.BeamBuilderTest testMethod=test_download_and_prepare_sharded> @require_beam def test_download_and_prepare_sharded(self): import apache_beam as beam original_write_parquet = beam.io.parquetio.WriteToParquet expected_num_examples = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: builder = DummyBeamDataset(cache_dir=tmp_cache_dir, beam_runner="DirectRunner") with patch("apache_beam.io.parquetio.WriteToParquet") as write_parquet_mock: write_parquet_mock.side_effect = partial(original_write_parquet, num_shards=2) > builder.download_and_prepare() tests/test_beam.py:97: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/datasets/builder.py:864: in download_and_prepare **download_and_prepare_kwargs, /opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/datasets/builder.py:1976: in _download_and_prepare num_examples, num_bytes = beam_writer.finalize(metrics.query(m_filter)) /opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/datasets/arrow_writer.py:694: in finalize shard_num_bytes, _ = parquet_to_arrow(source, destination) /opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/datasets/arrow_writer.py:740: in parquet_to_arrow num_bytes, num_examples = writer.finalize() _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <datasets.arrow_writer.ArrowWriter object at 0x7f6dcbb3e810> close_stream = True def finalize(self, close_stream=True): self.write_rows_on_file() # In case current_examples < writer_batch_size, but user uses finalize() if self._check_duplicates: self.check_duplicate_keys() # Re-intializing to empty list for next batch self.hkey_record = [] self.write_examples_on_file() # If schema is known, infer features even if no examples were written if self.pa_writer is None and self.schema: self._build_writer(self.schema) if self.pa_writer is not None: self.pa_writer.close() self.pa_writer = None if close_stream: self.stream.close() else: if close_stream: self.stream.close() > raise SchemaInferenceError("Please pass `features` or at least one example when writing data") E datasets.arrow_writer.SchemaInferenceError: Please pass `features` or at least one example when writing data /opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/datasets/arrow_writer.py:593: SchemaInferenceError ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5426/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5426/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5425
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5425/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5425/comments
https://api.github.com/repos/huggingface/datasets/issues/5425/events
https://github.com/huggingface/datasets/issues/5425
1,534,581,850
I_kwDODunzps5bd9xa
5,425
Sort on multiple keys with datasets.Dataset.sort()
{ "login": "rocco-fortuna", "id": 101344863, "node_id": "U_kgDOBgpmXw", "avatar_url": "https://avatars.githubusercontent.com/u/101344863?v=4", "gravatar_id": "", "url": "https://api.github.com/users/rocco-fortuna", "html_url": "https://github.com/rocco-fortuna", "followers_url": "https://api.github.com/users/rocco-fortuna/followers", "following_url": "https://api.github.com/users/rocco-fortuna/following{/other_user}", "gists_url": "https://api.github.com/users/rocco-fortuna/gists{/gist_id}", "starred_url": "https://api.github.com/users/rocco-fortuna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rocco-fortuna/subscriptions", "organizations_url": "https://api.github.com/users/rocco-fortuna/orgs", "repos_url": "https://api.github.com/users/rocco-fortuna/repos", "events_url": "https://api.github.com/users/rocco-fortuna/events{/privacy}", "received_events_url": "https://api.github.com/users/rocco-fortuna/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" }, { "id": 1935892877, "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue", "name": "good first issue", "color": "7057ff", "default": true, "description": "Good for newcomers" } ]
closed
false
null
[]
null
[ "Hi! \r\n\r\n`Dataset.sort` calls `df.sort_values` internally, and `df.sort_values` brings all the \"sort\" columns in memory, so sorting on multiple keys could be very expensive. This makes me think that maybe we can replace `df.sort_values` with `pyarrow.compute.sort_indices` - the latter can also sort on multiple keys and currently loads the data into memory; however, there is a plan to eventually implement \"memory-map\" friendly kernels for the Arrow compute ops (using the Acero execution engine). \r\n\r\nSo to address this issue, you should replace `df.sort_values` with `pyarrow.compute.sort_indices` in `Dataset.sort` and adjust the signature of this function (deprecate the `kind` parameter, etc.).\r\n\r\nPS: Feel free to ping us if you need some additional help/pointers", "@mariosasko If I understand the code right, using `pyarrow.compute.sort_indices` would also require changes to the `select` method if it is meant to sort multiple keys. That's because `select` only accepts 1D input for `indices`, not an iterable or similar which would be required for multiple keys unless you want some looping over selects. Doesn't seem that straight-forward but I might be missing something here... ", "@MichlF No, it doesn't require modifying select because sorting on multiple keys also returns a 1D array.\r\n\r\nIt's easier to understand with an example:\r\n```python\r\n>>> import pyarrow as pa\r\n>>> import pyarrow.compute as pc\r\n>>> table = pa.table({\r\n... \"name\": [\"John\", \"Eve\", \"Peter\", \"John\"],\r\n... \"surname\": [\"Johnson\", \"Smith\", \"Smith\", \"Doe\"],\r\n... \"age\": [20, 40, 30, 50],\r\n... })\r\n>>> indices = pc.sort_indices(table, sort_keys=[(\"name\", \"ascending\"), (\"surname\", \"ascending\")])\r\n>>> print(indices)\r\n[\r\n 1,\r\n 3,\r\n 0,\r\n 2\r\n]\r\n```\r\n\r\n", "Thanks for clarifying.\r\nI can prepare a PR to address this issue. This would be my first PR here so I have a few maybe silly questions but:\r\n- What is the preferred input type of `sort_keys` for the sort method? A sequence with name, order tuples like pyarrow's `sort_indices` requires?\r\n- What about backwards compatability: is it supposed to also accept the old way of calling sort() or should both `column` and `kind` be deprecated?\r\n- If `sort_keys` is provided in the same format as for pyarrow's `sort_indices` - i.e. along with order for each column -, `reverse` doesn't make much sense either and should be deprecated as well I assume.", "I think we can have the following signature:\r\n```python\r\ndef sort(\r\n self,\r\n column_names: Union[str, Sequence[str]],\r\n reverse: Union[bool, Sequence[bool]] = False,\r\n kind=\"deprecated\",\r\n null_placement: str = \"last\",\r\n keep_in_memory: bool = False,\r\n load_from_cache_file: bool = True,\r\n indices_cache_file_name: Optional[str] = None,\r\n writer_batch_size: Optional[int] = 1000,\r\n new_fingerprint: Optional[str] = None,\r\n ) -> \"Dataset\":\r\n``` \r\n\r\nSo we should:\r\n* rename`column` to `column_names`. `column` is a positional argument, so it's OK to rename it (not marked as positional-only with \"/\", but still should be fine)\r\n* deprecate `kind`\r\n* keep `reverse` instead of introducing `sort_keys`, but we should allow passing a list of booleans that defines the sort order of each column from `column_names` to it (`reverse = False` would be equal to `[False] * len(column_names)` and `reverse = True` to `[True] * len(column_names)`)", "I am pretty much done with the PR. Just one clarification: `Sequence` in `arrow_dataset.py` is a custom dataclass from `features.py` instead of the `type.hinting` class `Sequence` from Python. Do you suggest using that custom `Sequence` class somehow ? Otherwise signature currently reads instead:\r\n```Python\r\n def sort(\r\n self,\r\n column_names: Union[str, List[str]],\r\n reverse: Union[bool, List[bool]] = False,\r\n kind = \"deprecated\",\r\n null_placement: str = \"last\",\r\n keep_in_memory: bool = False,\r\n load_from_cache_file: bool = True,\r\n indices_cache_file_name: Optional[str] = None,\r\n writer_batch_size: Optional[int] = 1000,\r\n new_fingerprint: Optional[str] = None,\r\n )\r\n```\r\n\r\nAlso, to maintain backwards compatibility, I added conditionals for `null_placement`, because pyarrow's `null_placement` only accepts `at_start` and `at_end`, and not `last` and `first`.\r\nIf that is all good, I think I can open the PR.", "I meant `typing.Sequence` (`datasets.Sequence` is a feature type). \r\n\r\nRegarding `null_placement`, I think we can support both `at_start` and `at_end`, and `last` and `first` (for backward compatibility; convert internally to `at_end` and `at_start` respectively).", "> I meant typing.Sequence (datasets.Sequence is a feature type).\r\n\r\nSorry, I actually meant `typing.Sequence` and not `type.hinting`. However, the issue is still that `dataset.Sequence` is imported in `arrow_dataset.py` so I cannot import and use `typing.Sequence` for the `sort`'s signature without overwriting the `dataset.Sequence` import. The latter is used in the `align_labels_with_mapping` method so it's a necessary import for `arrow_dataset.py`. \r\nTo import `typing.Sequence` as something else than `Sequence` to avoid overwriting may only be confusing and doesn't seem good practice!? The other solution is to keep `List` type hinting as in the signature I posted in my previous post but this excludes other Sequence types and may cause problems further down the line.\r\nPlease advise,\r\nThanks for all the clarifications!", "You can avoid the name collision by renaming `typing.Sequence` to `Sequence_` when importing:\r\n```python\r\nfrom typing import Sequence as Sequence_\r\n```", "Resolved via #5502 " ]
2023-01-16T09:22:26
2023-02-24T16:15:11
2023-02-24T16:15:11
NONE
null
### Feature request From discussion on forum: https://discuss.huggingface.co/t/datasets-dataset-sort-does-not-preserve-ordering/29065/1 `sort()` does not preserve ordering, and it does not support sorting on multiple columns, nor a key function. The suggested solution: > ... having something similar to pandas and be able to specify multiple columns for sorting. We’re already using pandas under the hood to do the sorting in datasets. The suggested workaround: > convert your dataset to pandas and use `df.sort_values()` ### Motivation Preserved ordering when sorting is very handy when one needs to sort on multiple columns, A and B, so that e.g. whenever A is equal for two or more rows, B is kept sorted. Having a parameter to do this in 🤗datasets would be cleaner than going through pandas and back, and it wouldn't add much complexity to the library. Alternatives: - the possibility to specify multiple keys to sort by with decreasing priority (suggested solution), - the ability to provide a key function for sorting, so that one can manually specify the sorting criteria. ### Your contribution I'll be happy to contribute by submitting a PR. Will get documented on `CONTRIBUTING.MD`. Would love to get thoughts on this, if anyone has anything to add.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5425/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5425/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5424
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5424/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5424/comments
https://api.github.com/repos/huggingface/datasets/issues/5424/events
https://github.com/huggingface/datasets/issues/5424
1,534,394,756
I_kwDODunzps5bdQGE
5,424
When applying `ReadInstruction` to custom load it's not DatasetDict but list of Dataset?
{ "login": "macabdul9", "id": 25720695, "node_id": "MDQ6VXNlcjI1NzIwNjk1", "avatar_url": "https://avatars.githubusercontent.com/u/25720695?v=4", "gravatar_id": "", "url": "https://api.github.com/users/macabdul9", "html_url": "https://github.com/macabdul9", "followers_url": "https://api.github.com/users/macabdul9/followers", "following_url": "https://api.github.com/users/macabdul9/following{/other_user}", "gists_url": "https://api.github.com/users/macabdul9/gists{/gist_id}", "starred_url": "https://api.github.com/users/macabdul9/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/macabdul9/subscriptions", "organizations_url": "https://api.github.com/users/macabdul9/orgs", "repos_url": "https://api.github.com/users/macabdul9/repos", "events_url": "https://api.github.com/users/macabdul9/events{/privacy}", "received_events_url": "https://api.github.com/users/macabdul9/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi! You can get a `DatasetDict` if you pass a dictionary with read instructions as follows:\r\n```python\r\ninstructions = [\r\n ReadInstruction(split_name=\"train\", from_=0, to=10, unit='%', rounding='closest'),\r\n ReadInstruction(split_name=\"dev\", from_=0, to=10, unit='%', rounding='closest'),\r\n ReadInstruction(split_name=\"test\", from_=0, to=5, unit='%', rounding='closest')\r\n]\r\n\r\ndataset = load_dataset('csv', data_dir=\"data/\", data_files={\"train\":\"train.tsv\", \"dev\":\"dev.tsv\", \"test\":\"test.tsv\"}, delimiter=\"\\t\", split={inst.split_name: inst for inst in instructions})\r\n```\r\n" ]
2023-01-16T06:54:28
2023-02-24T16:19:00
2023-02-24T16:19:00
NONE
null
### Describe the bug I am loading datasets from custom `tsv` files stored locally and applying split instructions for each split. Although the ReadInstruction is being applied correctly and I was expecting it to be `DatasetDict` but instead it is a list of `Dataset`. ### Steps to reproduce the bug Steps to reproduce the behaviour: 1. Import `from datasets import load_dataset, ReadInstruction` 2. Instruction to load the dataset ``` instructions = [ ReadInstruction(split_name="train", from_=0, to=10, unit='%', rounding='closest'), ReadInstruction(split_name="dev", from_=0, to=10, unit='%', rounding='closest'), ReadInstruction(split_name="test", from_=0, to=5, unit='%', rounding='closest') ] ``` 3. Load `dataset = load_dataset('csv', data_dir="data/", data_files={"train":"train.tsv", "dev":"dev.tsv", "test":"test.tsv"}, delimiter="\t", split=instructions)` ### Expected behavior **Current behaviour** ![Screenshot from 2023-01-16 10-45-27](https://user-images.githubusercontent.com/25720695/212614754-306898d8-8c27-4475-9bb8-0321bd939561.png) : **Expected behaviour** ![Screenshot from 2023-01-16 10-45-42](https://user-images.githubusercontent.com/25720695/212614813-0d336bf7-5266-482e-bb96-ef51f64de204.png) ### Environment info ``datasets==2.8.0 `` `Python==3.8.5 ` `Platform - Ubuntu 20.04.4 LTS`
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5424/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5424/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5422
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5422/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5422/comments
https://api.github.com/repos/huggingface/datasets/issues/5422/events
https://github.com/huggingface/datasets/issues/5422
1,533,385,239
I_kwDODunzps5bZZoX
5,422
Datasets load error for saved github issues
{ "login": "folterj", "id": 7360564, "node_id": "MDQ6VXNlcjczNjA1NjQ=", "avatar_url": "https://avatars.githubusercontent.com/u/7360564?v=4", "gravatar_id": "", "url": "https://api.github.com/users/folterj", "html_url": "https://github.com/folterj", "followers_url": "https://api.github.com/users/folterj/followers", "following_url": "https://api.github.com/users/folterj/following{/other_user}", "gists_url": "https://api.github.com/users/folterj/gists{/gist_id}", "starred_url": "https://api.github.com/users/folterj/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/folterj/subscriptions", "organizations_url": "https://api.github.com/users/folterj/orgs", "repos_url": "https://api.github.com/users/folterj/repos", "events_url": "https://api.github.com/users/folterj/events{/privacy}", "received_events_url": "https://api.github.com/users/folterj/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "I can confirm that the error exists!\r\nI'm trying to read 3 parquet files locally:\r\n```python\r\nfrom datasets import load_dataset, Features, Value, ClassLabel\r\n\r\nreview_dataset = load_dataset(\r\n \"parquet\",\r\n data_files={\r\n \"train\": os.path.join(sentiment_analysis_data_path, \"train.parquet\"),\r\n \"validation\": os.path.join(sentiment_analysis_data_path, \"validation.parquet\"),\r\n \"test\": os.path.join(sentiment_analysis_data_path, \"test.parquet\"),\r\n },\r\n)\r\n```\r\n\r\nBut you can fix it, by specifying `features` for `load_dataset()` function like this:\r\n```python\r\nfrom datasets import load_dataset, Features, Value, ClassLabel\r\n\r\nfeatures = Features(\r\n {\r\n \"label\": ClassLabel(\r\n num_classes=3,\r\n names=[\"negative\", \"neutral\", \"positive\"],\r\n ),\r\n \"text\": Value(dtype=\"string\"),\r\n }\r\n)\r\n\r\nreview_dataset = load_dataset(\r\n \"parquet\",\r\n data_files={\r\n \"train\": os.path.join(sentiment_analysis_data_path, \"train.parquet\"),\r\n \"validation\": os.path.join(sentiment_analysis_data_path, \"validation.parquet\"),\r\n \"test\": os.path.join(sentiment_analysis_data_path, \"test.parquet\"),\r\n },\r\n features=features,\r\n)\r\n\r\nprint(review_dataset)\r\n```", "@Extremesarova I think this is a different issue, but understand using features could be a work-around.\r\nIt seems the field `closed_at` is `null` in many cases.\r\n\r\nI've not found a way to specify only a single feature without (succesfully) specifiying the full and quite detailed set of expected features. Using this features set gives an error the column names don't match.\r\n`features = Features({'closed_at': Value(dtype='timestamp[s]', id=None)})`\r\n\r\n", "Found this when searching for the same error, looks like based on #3965 it's just an issue with the data. I found that changing `df = pd.DataFrame.from_records(all_issues)` to `df = pd.DataFrame.from_records(all_issues).dropna(axis=1, how='all').drop(['milestone'], axis=1)` from the fetch_issues function fixed the issue. \r\nThe \"milestone\" column seemed to be problematic (only ~50 non null rows) and dropped any columns that were all null as well just in case.", "I have this same issue. I saved a dataset to disk and now I can't load it.", "Ok the solution was to use load_from_disk instead of load_dataset." ]
2023-01-14T17:29:38
2023-05-05T19:25:08
null
NONE
null
### Describe the bug Loading a previously downloaded & saved dataset as described in the HuggingFace course: issues_dataset = load_dataset("json", data_files="issues/datasets-issues.jsonl", split="train") Gives this error: datasets.builder.DatasetGenerationError: An error occurred while generating the dataset A work-around I found was to use streaming. ### Steps to reproduce the bug Reproduce by executing the code provided: https://huggingface.co/course/chapter5/5?fw=pt From the heading: 'let’s create a function that can download all the issues from a GitHub repository' ### Expected behavior No error ### Environment info Datasets version 2.8.0. Note that version 2.6.1 gives the same error (related to null timestamp). **[EDIT]** This is the complete error trace confirming the issue is related to the timestamp (`Couldn't cast array of type timestamp[s] to null`) ``` Using custom data configuration default-950028611d2860c8 Downloading and preparing dataset json/default to [...]/.cache/huggingface/datasets/json/default-950028611d2860c8/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51... Downloading data files: 100%|██████████| 1/1 [00:00<?, ?it/s] Extracting data files: 100%|██████████| 1/1 [00:00<00:00, 500.63it/s] Generating train split: 2619 examples [00:00, 7155.72 examples/s]Traceback (most recent call last): File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\builder.py", line 1831, in _prepare_split_single writer.write_table(table) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\arrow_writer.py", line 567, in write_table pa_table = table_cast(pa_table, self._schema) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 2282, in table_cast return cast_table_to_schema(table, schema) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 2241, in cast_table_to_schema arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 2241, in <listcomp> arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 1807, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 1807, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 2035, in cast_array_to_feature arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()] File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 2035, in <listcomp> arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()] File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 1809, in wrapper return func(array, *args, **kwargs) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 2101, in cast_array_to_feature return array_cast(array, feature(), allow_number_to_str=allow_number_to_str) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 1809, in wrapper return func(array, *args, **kwargs) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\table.py", line 1990, in array_cast raise TypeError(f"Couldn't cast array of type {array.type} to {pa_type}") TypeError: Couldn't cast array of type timestamp[s] to null The above exception was the direct cause of the following exception: Traceback (most recent call last): File "C:\Program Files\JetBrains\PyCharm 2022.1.3\plugins\python\helpers\pydev\pydevconsole.py", line 364, in runcode coro = func() File "<input>", line 1, in <module> File "C:\Program Files\JetBrains\PyCharm 2022.1.3\plugins\python\helpers\pydev\_pydev_bundle\pydev_umd.py", line 198, in runfile pydev_imports.execfile(filename, global_vars, local_vars) # execute the script File "C:\Program Files\JetBrains\PyCharm 2022.1.3\plugins\python\helpers\pydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "[...]\PycharmProjects\TransformersTesting\dataset_issues.py", line 20, in <module> issues_dataset = load_dataset("json", data_files="issues/datasets-issues.jsonl", split="train") File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\load.py", line 1757, in load_dataset builder_instance.download_and_prepare( File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\builder.py", line 860, in download_and_prepare self._download_and_prepare( File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\builder.py", line 953, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\builder.py", line 1706, in _prepare_split for job_id, done, content in self._prepare_split_single( File "[...]\miniconda3\envs\HuggingFace\lib\site-packages\datasets\builder.py", line 1849, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.builder.DatasetGenerationError: An error occurred while generating the dataset Generating train split: 2619 examples [00:19, 7155.72 examples/s] ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5422/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5422/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5421
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5421/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5421/comments
https://api.github.com/repos/huggingface/datasets/issues/5421/events
https://github.com/huggingface/datasets/issues/5421
1,532,278,307
I_kwDODunzps5bVLYj
5,421
Support case-insensitive Hub dataset name in load_dataset
{ "login": "severo", "id": 1676121, "node_id": "MDQ6VXNlcjE2NzYxMjE=", "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "gravatar_id": "", "url": "https://api.github.com/users/severo", "html_url": "https://github.com/severo", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "organizations_url": "https://api.github.com/users/severo/orgs", "repos_url": "https://api.github.com/users/severo/repos", "events_url": "https://api.github.com/users/severo/events{/privacy}", "received_events_url": "https://api.github.com/users/severo/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
null
[ "Closing as case-insensitivity should be only for URL redirection on the Hub. In the APIs, we will only support the canonical name (https://github.com/huggingface/moon-landing/pull/2399#issuecomment-1382085611)" ]
2023-01-13T13:07:07
2023-01-13T20:12:32
2023-01-13T20:12:32
CONTRIBUTOR
null
### Feature request The dataset name on the Hub is case-insensitive (see https://github.com/huggingface/moon-landing/pull/2399, internal issue), i.e., https://huggingface.co/datasets/GLUE redirects to https://huggingface.co/datasets/glue. Ideally, we could load the glue dataset using the following: ``` from datasets import load_dataset load_dataset('GLUE', 'cola') ``` It breaks because the loading script `GLUE.py` does not exist (`glue.py` should be selected instead). Minor additional comment: in other cases without a loading script, we can load the dataset, but the automatically generated config name depends on the casing: - `load_dataset('severo/danish-wit')` generates the config name `severo--danish-wit-e6fda5b070deb133`, while - `load_dataset('severo/danish-WIT')` generates the config name `severo--danish-WIT-e6fda5b070deb133` ### Motivation To follow the same UX on the Hub and in the datasets library. ### Your contribution ...
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5421/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5421/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5420
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5420/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5420/comments
https://api.github.com/repos/huggingface/datasets/issues/5420/events
https://github.com/huggingface/datasets/pull/5420
1,532,265,742
PR_kwDODunzps5HVAhL
5,420
ci: 🎡 remove two obsolete issue templates
{ "login": "severo", "id": 1676121, "node_id": "MDQ6VXNlcjE2NzYxMjE=", "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "gravatar_id": "", "url": "https://api.github.com/users/severo", "html_url": "https://github.com/severo", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "organizations_url": "https://api.github.com/users/severo/orgs", "repos_url": "https://api.github.com/users/severo/repos", "events_url": "https://api.github.com/users/severo/events{/privacy}", "received_events_url": "https://api.github.com/users/severo/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008450 / 0.011353 (-0.002902) | 0.004478 / 0.011008 (-0.006530) | 0.100440 / 0.038508 (0.061931) | 0.029568 / 0.023109 (0.006459) | 0.296705 / 0.275898 (0.020807) | 0.354565 / 0.323480 (0.031085) | 0.006887 / 0.007986 (-0.001098) | 0.003415 / 0.004328 (-0.000914) | 0.078876 / 0.004250 (0.074626) | 0.034927 / 0.037052 (-0.002125) | 0.307695 / 0.258489 (0.049206) | 0.340917 / 0.293841 (0.047076) | 0.033630 / 0.128546 (-0.094916) | 0.011626 / 0.075646 (-0.064020) | 0.322644 / 0.419271 (-0.096627) | 0.040254 / 0.043533 (-0.003279) | 0.297419 / 0.255139 (0.042280) | 0.321584 / 0.283200 (0.038384) | 0.086202 / 0.141683 (-0.055481) | 1.465579 / 1.452155 (0.013425) | 1.521456 / 1.492716 (0.028740) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200890 / 0.018006 (0.182884) | 0.410300 / 0.000490 (0.409811) | 0.001647 / 0.000200 (0.001447) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022569 / 0.037411 (-0.014843) | 0.096062 / 0.014526 (0.081536) | 0.102474 / 0.176557 (-0.074082) | 0.138596 / 0.737135 (-0.598539) | 0.106262 / 0.296338 (-0.190077) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415976 / 0.215209 (0.200766) | 4.144322 / 2.077655 (2.066667) | 1.871783 / 1.504120 (0.367663) | 1.669478 / 1.541195 (0.128283) | 1.718214 / 1.468490 (0.249724) | 0.687870 / 4.584777 (-3.896907) | 3.362084 / 3.745712 (-0.383628) | 1.844127 / 5.269862 (-3.425735) | 1.149611 / 4.565676 (-3.416066) | 0.081410 / 0.424275 (-0.342865) | 0.012278 / 0.007607 (0.004671) | 0.518245 / 0.226044 (0.292200) | 5.185164 / 2.268929 (2.916236) | 2.299029 / 55.444624 (-53.145595) | 1.960021 / 6.876477 (-4.916456) | 2.009751 / 2.142072 (-0.132322) | 0.803759 / 4.805227 (-4.001468) | 0.147340 / 6.500664 (-6.353324) | 0.063896 / 0.075469 (-0.011573) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.254142 / 1.841788 (-0.587646) | 13.799683 / 8.074308 (5.725375) | 13.940387 / 10.191392 (3.748995) | 0.151246 / 0.680424 (-0.529178) | 0.028709 / 0.534201 (-0.505491) | 0.391600 / 0.579283 (-0.187683) | 0.405750 / 0.434364 (-0.028614) | 0.455479 / 0.540337 (-0.084858) | 0.541022 / 1.386936 (-0.845914) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006462 / 0.011353 (-0.004891) | 0.004462 / 0.011008 (-0.006547) | 0.096588 / 0.038508 (0.058080) | 0.026931 / 0.023109 (0.003822) | 0.344595 / 0.275898 (0.068697) | 0.378743 / 0.323480 (0.055264) | 0.005672 / 0.007986 (-0.002314) | 0.003345 / 0.004328 (-0.000984) | 0.074363 / 0.004250 (0.070112) | 0.037300 / 0.037052 (0.000248) | 0.346895 / 0.258489 (0.088406) | 0.388585 / 0.293841 (0.094744) | 0.031459 / 0.128546 (-0.097088) | 0.011522 / 0.075646 (-0.064124) | 0.318507 / 0.419271 (-0.100764) | 0.041145 / 0.043533 (-0.002388) | 0.343866 / 0.255139 (0.088727) | 0.366490 / 0.283200 (0.083291) | 0.086793 / 0.141683 (-0.054890) | 1.483859 / 1.452155 (0.031704) | 1.574006 / 1.492716 (0.081290) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220436 / 0.018006 (0.202430) | 0.402988 / 0.000490 (0.402498) | 0.000435 / 0.000200 (0.000235) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024573 / 0.037411 (-0.012838) | 0.099190 / 0.014526 (0.084664) | 0.106796 / 0.176557 (-0.069761) | 0.142387 / 0.737135 (-0.594748) | 0.109991 / 0.296338 (-0.186347) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.473452 / 0.215209 (0.258243) | 4.749554 / 2.077655 (2.671899) | 2.433482 / 1.504120 (0.929362) | 2.224276 / 1.541195 (0.683082) | 2.261579 / 1.468490 (0.793088) | 0.699876 / 4.584777 (-3.884901) | 3.378366 / 3.745712 (-0.367346) | 1.835062 / 5.269862 (-3.434799) | 1.161249 / 4.565676 (-3.404427) | 0.082967 / 0.424275 (-0.341308) | 0.012745 / 0.007607 (0.005138) | 0.580006 / 0.226044 (0.353962) | 5.789868 / 2.268929 (3.520939) | 2.909496 / 55.444624 (-52.535128) | 2.539196 / 6.876477 (-4.337280) | 2.617737 / 2.142072 (0.475665) | 0.810320 / 4.805227 (-3.994907) | 0.152501 / 6.500664 (-6.348163) | 0.067201 / 0.075469 (-0.008268) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257844 / 1.841788 (-0.583943) | 13.865295 / 8.074308 (5.790987) | 14.169073 / 10.191392 (3.977680) | 0.135655 / 0.680424 (-0.544769) | 0.016597 / 0.534201 (-0.517604) | 0.374915 / 0.579283 (-0.204368) | 0.382771 / 0.434364 (-0.051593) | 0.431934 / 0.540337 (-0.108403) | 0.524617 / 1.386936 (-0.862319) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008748 / 0.011353 (-0.002605) | 0.004489 / 0.011008 (-0.006519) | 0.100923 / 0.038508 (0.062415) | 0.031436 / 0.023109 (0.008326) | 0.306508 / 0.275898 (0.030610) | 0.365110 / 0.323480 (0.041630) | 0.007161 / 0.007986 (-0.000824) | 0.005489 / 0.004328 (0.001160) | 0.078909 / 0.004250 (0.074658) | 0.036097 / 0.037052 (-0.000955) | 0.307907 / 0.258489 (0.049418) | 0.370277 / 0.293841 (0.076436) | 0.034184 / 0.128546 (-0.094362) | 0.011613 / 0.075646 (-0.064033) | 0.322896 / 0.419271 (-0.096375) | 0.041829 / 0.043533 (-0.001704) | 0.299669 / 0.255139 (0.044530) | 0.322217 / 0.283200 (0.039017) | 0.087751 / 0.141683 (-0.053932) | 1.476277 / 1.452155 (0.024122) | 1.548196 / 1.492716 (0.055480) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.183002 / 0.018006 (0.164995) | 0.415627 / 0.000490 (0.415138) | 0.003272 / 0.000200 (0.003072) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024881 / 0.037411 (-0.012531) | 0.103424 / 0.014526 (0.088898) | 0.106446 / 0.176557 (-0.070110) | 0.142806 / 0.737135 (-0.594330) | 0.110938 / 0.296338 (-0.185401) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421669 / 0.215209 (0.206460) | 4.207457 / 2.077655 (2.129802) | 1.882176 / 1.504120 (0.378056) | 1.677609 / 1.541195 (0.136415) | 1.734065 / 1.468490 (0.265575) | 0.695915 / 4.584777 (-3.888862) | 3.416731 / 3.745712 (-0.328981) | 1.872575 / 5.269862 (-3.397286) | 1.163612 / 4.565676 (-3.402064) | 0.082710 / 0.424275 (-0.341565) | 0.012659 / 0.007607 (0.005052) | 0.528785 / 0.226044 (0.302741) | 5.305328 / 2.268929 (3.036399) | 2.299850 / 55.444624 (-53.144774) | 1.968137 / 6.876477 (-4.908339) | 2.028326 / 2.142072 (-0.113746) | 0.813157 / 4.805227 (-3.992070) | 0.149997 / 6.500664 (-6.350668) | 0.066739 / 0.075469 (-0.008730) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206332 / 1.841788 (-0.635456) | 13.795510 / 8.074308 (5.721202) | 14.367695 / 10.191392 (4.176303) | 0.138106 / 0.680424 (-0.542318) | 0.028760 / 0.534201 (-0.505441) | 0.394822 / 0.579283 (-0.184461) | 0.403291 / 0.434364 (-0.031073) | 0.463273 / 0.540337 (-0.077065) | 0.540881 / 1.386936 (-0.846055) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006830 / 0.011353 (-0.004523) | 0.004606 / 0.011008 (-0.006402) | 0.097763 / 0.038508 (0.059255) | 0.027832 / 0.023109 (0.004723) | 0.422970 / 0.275898 (0.147072) | 0.460313 / 0.323480 (0.136833) | 0.005110 / 0.007986 (-0.002876) | 0.003428 / 0.004328 (-0.000901) | 0.075047 / 0.004250 (0.070797) | 0.038374 / 0.037052 (0.001322) | 0.422762 / 0.258489 (0.164273) | 0.469886 / 0.293841 (0.176045) | 0.032391 / 0.128546 (-0.096155) | 0.011804 / 0.075646 (-0.063843) | 0.320439 / 0.419271 (-0.098832) | 0.041939 / 0.043533 (-0.001594) | 0.422521 / 0.255139 (0.167382) | 0.446420 / 0.283200 (0.163220) | 0.090715 / 0.141683 (-0.050968) | 1.484578 / 1.452155 (0.032423) | 1.556154 / 1.492716 (0.063438) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260735 / 0.018006 (0.242728) | 0.415586 / 0.000490 (0.415096) | 0.026960 / 0.000200 (0.026760) | 0.000296 / 0.000054 (0.000241) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024926 / 0.037411 (-0.012486) | 0.099651 / 0.014526 (0.085125) | 0.107810 / 0.176557 (-0.068747) | 0.148685 / 0.737135 (-0.588451) | 0.112725 / 0.296338 (-0.183614) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472669 / 0.215209 (0.257460) | 4.718827 / 2.077655 (2.641172) | 2.475583 / 1.504120 (0.971463) | 2.260862 / 1.541195 (0.719667) | 2.307820 / 1.468490 (0.839330) | 0.699464 / 4.584777 (-3.885313) | 3.376282 / 3.745712 (-0.369431) | 1.872650 / 5.269862 (-3.397211) | 1.176399 / 4.565676 (-3.389277) | 0.082854 / 0.424275 (-0.341421) | 0.012845 / 0.007607 (0.005237) | 0.582088 / 0.226044 (0.356044) | 5.861609 / 2.268929 (3.592681) | 2.930728 / 55.444624 (-52.513896) | 2.624310 / 6.876477 (-4.252167) | 2.762130 / 2.142072 (0.620058) | 0.811902 / 4.805227 (-3.993325) | 0.152516 / 6.500664 (-6.348149) | 0.067670 / 0.075469 (-0.007799) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.289790 / 1.841788 (-0.551997) | 14.267607 / 8.074308 (6.193299) | 14.120655 / 10.191392 (3.929263) | 0.128442 / 0.680424 (-0.551982) | 0.017079 / 0.534201 (-0.517121) | 0.381807 / 0.579283 (-0.197476) | 0.400546 / 0.434364 (-0.033818) | 0.447629 / 0.540337 (-0.092709) | 0.532006 / 1.386936 (-0.854930) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n" ]
2023-01-13T12:58:43
2023-01-13T13:36:00
2023-01-13T13:29:01
CONTRIBUTOR
null
add-dataset is not needed anymore since the "canonical" datasets are on the Hub. And dataset-viewer is managed within the datasets-server project. See https://github.com/huggingface/datasets/issues/new/choose <img width="1245" alt="Capture d’écran 2023-01-13 à 13 59 58" src="https://user-images.githubusercontent.com/1676121/212325813-2d4c30e2-343e-4aa2-8cce-b2b77f45628e.png">
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5420/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 1, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5420/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5420", "html_url": "https://github.com/huggingface/datasets/pull/5420", "diff_url": "https://github.com/huggingface/datasets/pull/5420.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5420.patch", "merged_at": "2023-01-13T13:29:01" }
true
https://api.github.com/repos/huggingface/datasets/issues/5419
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5419/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5419/comments
https://api.github.com/repos/huggingface/datasets/issues/5419/events
https://github.com/huggingface/datasets/issues/5419
1,531,999,850
I_kwDODunzps5bUHZq
5,419
label_column='labels' in datasets.TextClassification and 'label' or 'label_ids' in transformers.DataColator
{ "login": "CreatixEA", "id": 172385, "node_id": "MDQ6VXNlcjE3MjM4NQ==", "avatar_url": "https://avatars.githubusercontent.com/u/172385?v=4", "gravatar_id": "", "url": "https://api.github.com/users/CreatixEA", "html_url": "https://github.com/CreatixEA", "followers_url": "https://api.github.com/users/CreatixEA/followers", "following_url": "https://api.github.com/users/CreatixEA/following{/other_user}", "gists_url": "https://api.github.com/users/CreatixEA/gists{/gist_id}", "starred_url": "https://api.github.com/users/CreatixEA/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/CreatixEA/subscriptions", "organizations_url": "https://api.github.com/users/CreatixEA/orgs", "repos_url": "https://api.github.com/users/CreatixEA/repos", "events_url": "https://api.github.com/users/CreatixEA/events{/privacy}", "received_events_url": "https://api.github.com/users/CreatixEA/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi! Thanks for pointing out this inconsistency. Changing the default value at this point is probably not worth it, considering we've started discussing the state of the task API internally - we will most likely deprecate the current one and replace it with a more robust solution that relies on the `train_eval_index` field stored in the YAML section of the dataset cards.", "The task templates API has been deprecated (will be removed in version 3.0), so I'm closing this issue." ]
2023-01-13T09:40:07
2023-07-21T14:27:08
2023-07-21T14:27:08
NONE
null
### Describe the bug When preparing a dataset for a task using `datasets.TextClassification`, the output feature is named `labels`. When preparing the trainer using the `transformers.DataCollator` the default column name is `label` if binary or `label_ids` if multi-class problem. It is required to rename the column accordingly to the expected name : `label` or `label_ids` ### Steps to reproduce the bug ```python from datasets import TextClassification, AutoTokenized, DataCollatorWithPadding ds_prepared = my_dataset.prepare_for_task(TextClassification(text_column='TEXT', label_column='MY_LABEL_COLUMN_1_OR_0')) print(ds_prepared) tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") ds_tokenized = ds_prepared.map(lambda x: tokenizer(x['text'], truncation=True), batched=True) print(ds_tokenized) data_collator = DataCollatorWithPadding(tokenizer=tokenizer, return_tensors="tf") tf_data = model.prepare_tf_dataset(ds_tokenized, shuffle=True, batch_size=16, collate_fn=data_collator) print(tf_data) ``` ### Expected behavior Without renaming the the column, the target column is not in the final tf_data since it is not in the column name expected by the data_collator. To correct this, we have to rename the column: ```python ds_prepared = my_dataset.prepare_for_task(TextClassification(text_column='TEXT', label_column='MY_LABEL_COLUMN_1_OR_0')).rename_column('labels', 'label') ``` ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.6 - PyArrow version: 10.0.1 - Pandas version: 1.5.2 - `transformers` version: 4.26.0.dev0 - Platform: Linux-5.15.79.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.6 - Huggingface_hub version: 0.11.1 - PyTorch version (GPU?): not installed (NA) - Tensorflow version (GPU?): 2.11.0 (True) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in>
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5419/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5419/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5418
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5418/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5418/comments
https://api.github.com/repos/huggingface/datasets/issues/5418/events
https://github.com/huggingface/datasets/issues/5418
1,530,111,184
I_kwDODunzps5bM6TQ
5,418
Add ProgressBar for `to_parquet`
{ "login": "zanussbaum", "id": 33707069, "node_id": "MDQ6VXNlcjMzNzA3MDY5", "avatar_url": "https://avatars.githubusercontent.com/u/33707069?v=4", "gravatar_id": "", "url": "https://api.github.com/users/zanussbaum", "html_url": "https://github.com/zanussbaum", "followers_url": "https://api.github.com/users/zanussbaum/followers", "following_url": "https://api.github.com/users/zanussbaum/following{/other_user}", "gists_url": "https://api.github.com/users/zanussbaum/gists{/gist_id}", "starred_url": "https://api.github.com/users/zanussbaum/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zanussbaum/subscriptions", "organizations_url": "https://api.github.com/users/zanussbaum/orgs", "repos_url": "https://api.github.com/users/zanussbaum/repos", "events_url": "https://api.github.com/users/zanussbaum/events{/privacy}", "received_events_url": "https://api.github.com/users/zanussbaum/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
{ "login": "zanussbaum", "id": 33707069, "node_id": "MDQ6VXNlcjMzNzA3MDY5", "avatar_url": "https://avatars.githubusercontent.com/u/33707069?v=4", "gravatar_id": "", "url": "https://api.github.com/users/zanussbaum", "html_url": "https://github.com/zanussbaum", "followers_url": "https://api.github.com/users/zanussbaum/followers", "following_url": "https://api.github.com/users/zanussbaum/following{/other_user}", "gists_url": "https://api.github.com/users/zanussbaum/gists{/gist_id}", "starred_url": "https://api.github.com/users/zanussbaum/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zanussbaum/subscriptions", "organizations_url": "https://api.github.com/users/zanussbaum/orgs", "repos_url": "https://api.github.com/users/zanussbaum/repos", "events_url": "https://api.github.com/users/zanussbaum/events{/privacy}", "received_events_url": "https://api.github.com/users/zanussbaum/received_events", "type": "User", "site_admin": false }
[ { "login": "zanussbaum", "id": 33707069, "node_id": "MDQ6VXNlcjMzNzA3MDY5", "avatar_url": "https://avatars.githubusercontent.com/u/33707069?v=4", "gravatar_id": "", "url": "https://api.github.com/users/zanussbaum", "html_url": "https://github.com/zanussbaum", "followers_url": "https://api.github.com/users/zanussbaum/followers", "following_url": "https://api.github.com/users/zanussbaum/following{/other_user}", "gists_url": "https://api.github.com/users/zanussbaum/gists{/gist_id}", "starred_url": "https://api.github.com/users/zanussbaum/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/zanussbaum/subscriptions", "organizations_url": "https://api.github.com/users/zanussbaum/orgs", "repos_url": "https://api.github.com/users/zanussbaum/repos", "events_url": "https://api.github.com/users/zanussbaum/events{/privacy}", "received_events_url": "https://api.github.com/users/zanussbaum/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for your proposal, @zanussbaum. Yes, I agree that would definitely be a nice feature to have!", "@albertvillanova I’m happy to make a quick PR for the feature! let me know ", "That would be awesome ! You can comment `#self-assign` to assign you to this issue and open a PR :) Will be happy to review", "Closing as this has been merged @lhoestq " ]
2023-01-12T05:06:20
2023-01-24T18:18:24
2023-01-24T18:18:24
CONTRIBUTOR
null
### Feature request Add a progress bar for `Dataset.to_parquet`, similar to how `to_json` works. ### Motivation It's a bit frustrating to not know how long a dataset will take to write to file and if it's stuck or not without a progress bar ### Your contribution Sure I can help if needed
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5418/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5418/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5416
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5416/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5416/comments
https://api.github.com/repos/huggingface/datasets/issues/5416/events
https://github.com/huggingface/datasets/pull/5416
1,526,988,113
PR_kwDODunzps5HDLmR
5,416
Fix RuntimeError: Sharding is ambiguous for this dataset
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "By the way, do we know how many datasets are impacted by this issue?\r\n\r\nMaybe we should do a patch release with this fix.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009256 / 0.011353 (-0.002097) | 0.005033 / 0.011008 (-0.005975) | 0.099346 / 0.038508 (0.060838) | 0.035204 / 0.023109 (0.012095) | 0.303017 / 0.275898 (0.027119) | 0.335632 / 0.323480 (0.012152) | 0.007953 / 0.007986 (-0.000033) | 0.005806 / 0.004328 (0.001477) | 0.076121 / 0.004250 (0.071871) | 0.041164 / 0.037052 (0.004112) | 0.305536 / 0.258489 (0.047047) | 0.348452 / 0.293841 (0.054611) | 0.037704 / 0.128546 (-0.090842) | 0.011982 / 0.075646 (-0.063664) | 0.333264 / 0.419271 (-0.086008) | 0.047738 / 0.043533 (0.004205) | 0.310126 / 0.255139 (0.054987) | 0.318719 / 0.283200 (0.035519) | 0.098933 / 0.141683 (-0.042750) | 1.421058 / 1.452155 (-0.031096) | 1.554771 / 1.492716 (0.062054) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.258627 / 0.018006 (0.240620) | 0.450814 / 0.000490 (0.450324) | 0.011288 / 0.000200 (0.011088) | 0.000136 / 0.000054 (0.000081) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027004 / 0.037411 (-0.010407) | 0.109067 / 0.014526 (0.094541) | 0.120401 / 0.176557 (-0.056155) | 0.158336 / 0.737135 (-0.578799) | 0.126244 / 0.296338 (-0.170094) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401847 / 0.215209 (0.186638) | 4.006003 / 2.077655 (1.928348) | 1.806342 / 1.504120 (0.302223) | 1.619751 / 1.541195 (0.078556) | 1.709660 / 1.468490 (0.241170) | 0.692444 / 4.584777 (-3.892333) | 3.853691 / 3.745712 (0.107979) | 2.143910 / 5.269862 (-3.125951) | 1.471600 / 4.565676 (-3.094076) | 0.084589 / 0.424275 (-0.339686) | 0.012276 / 0.007607 (0.004669) | 0.506529 / 0.226044 (0.280485) | 5.028361 / 2.268929 (2.759432) | 2.277660 / 55.444624 (-53.166964) | 1.930365 / 6.876477 (-4.946112) | 1.965494 / 2.142072 (-0.176579) | 0.826752 / 4.805227 (-3.978475) | 0.165050 / 6.500664 (-6.335614) | 0.062702 / 0.075469 (-0.012767) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.234539 / 1.841788 (-0.607249) | 15.067401 / 8.074308 (6.993093) | 14.041920 / 10.191392 (3.850528) | 0.162590 / 0.680424 (-0.517834) | 0.028941 / 0.534201 (-0.505260) | 0.438518 / 0.579283 (-0.140765) | 0.443787 / 0.434364 (0.009423) | 0.516671 / 0.540337 (-0.023666) | 0.609036 / 1.386936 (-0.777900) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007535 / 0.011353 (-0.003818) | 0.005283 / 0.011008 (-0.005725) | 0.097116 / 0.038508 (0.058608) | 0.033357 / 0.023109 (0.010247) | 0.383398 / 0.275898 (0.107500) | 0.425516 / 0.323480 (0.102037) | 0.006039 / 0.007986 (-0.001947) | 0.004074 / 0.004328 (-0.000255) | 0.073207 / 0.004250 (0.068956) | 0.052153 / 0.037052 (0.015101) | 0.386385 / 0.258489 (0.127896) | 0.429900 / 0.293841 (0.136059) | 0.038341 / 0.128546 (-0.090205) | 0.012417 / 0.075646 (-0.063230) | 0.333859 / 0.419271 (-0.085413) | 0.051157 / 0.043533 (0.007625) | 0.395022 / 0.255139 (0.139883) | 0.402462 / 0.283200 (0.119262) | 0.105207 / 0.141683 (-0.036475) | 1.510679 / 1.452155 (0.058524) | 1.584205 / 1.492716 (0.091489) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225805 / 0.018006 (0.207799) | 0.452109 / 0.000490 (0.451619) | 0.000429 / 0.000200 (0.000229) | 0.000057 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029653 / 0.037411 (-0.007759) | 0.112609 / 0.014526 (0.098083) | 0.121828 / 0.176557 (-0.054728) | 0.159003 / 0.737135 (-0.578133) | 0.129306 / 0.296338 (-0.167033) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.453001 / 0.215209 (0.237792) | 4.514882 / 2.077655 (2.437228) | 2.277494 / 1.504120 (0.773374) | 2.073870 / 1.541195 (0.532675) | 2.153346 / 1.468490 (0.684856) | 0.698363 / 4.584777 (-3.886414) | 3.921763 / 3.745712 (0.176051) | 2.123133 / 5.269862 (-3.146729) | 1.347618 / 4.565676 (-3.218058) | 0.085654 / 0.424275 (-0.338621) | 0.012059 / 0.007607 (0.004452) | 0.568183 / 0.226044 (0.342139) | 5.720047 / 2.268929 (3.451119) | 2.777973 / 55.444624 (-52.666651) | 2.453426 / 6.876477 (-4.423051) | 2.523977 / 2.142072 (0.381905) | 0.841979 / 4.805227 (-3.963248) | 0.167958 / 6.500664 (-6.332706) | 0.064929 / 0.075469 (-0.010540) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.235297 / 1.841788 (-0.606491) | 15.883598 / 8.074308 (7.809290) | 14.395328 / 10.191392 (4.203936) | 0.162401 / 0.680424 (-0.518022) | 0.017806 / 0.534201 (-0.516394) | 0.423853 / 0.579283 (-0.155430) | 0.423266 / 0.434364 (-0.011098) | 0.490351 / 0.540337 (-0.049986) | 0.588116 / 1.386936 (-0.798820) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bb3fbfa162bb4700e23d084826b4b7f6d97284be \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010759 / 0.011353 (-0.000594) | 0.005748 / 0.011008 (-0.005260) | 0.119195 / 0.038508 (0.080687) | 0.033476 / 0.023109 (0.010367) | 0.364081 / 0.275898 (0.088183) | 0.422456 / 0.323480 (0.098976) | 0.009780 / 0.007986 (0.001795) | 0.006170 / 0.004328 (0.001841) | 0.093242 / 0.004250 (0.088991) | 0.041049 / 0.037052 (0.003997) | 0.372132 / 0.258489 (0.113643) | 0.442501 / 0.293841 (0.148660) | 0.054889 / 0.128546 (-0.073657) | 0.018302 / 0.075646 (-0.057345) | 0.378899 / 0.419271 (-0.040373) | 0.058455 / 0.043533 (0.014922) | 0.356141 / 0.255139 (0.101002) | 0.400866 / 0.283200 (0.117666) | 0.103384 / 0.141683 (-0.038299) | 1.629867 / 1.452155 (0.177713) | 1.693939 / 1.492716 (0.201222) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240484 / 0.018006 (0.222478) | 0.509137 / 0.000490 (0.508648) | 0.000450 / 0.000200 (0.000250) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025856 / 0.037411 (-0.011555) | 0.113214 / 0.014526 (0.098689) | 0.119420 / 0.176557 (-0.057136) | 0.158663 / 0.737135 (-0.578473) | 0.123542 / 0.296338 (-0.172797) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.555900 / 0.215209 (0.340691) | 5.580295 / 2.077655 (3.502640) | 2.216640 / 1.504120 (0.712520) | 1.904944 / 1.541195 (0.363749) | 1.865839 / 1.468490 (0.397349) | 1.158325 / 4.584777 (-3.426452) | 5.097420 / 3.745712 (1.351708) | 2.881775 / 5.269862 (-2.388087) | 2.068896 / 4.565676 (-2.496780) | 0.129028 / 0.424275 (-0.295247) | 0.014075 / 0.007607 (0.006468) | 0.698874 / 0.226044 (0.472830) | 7.131225 / 2.268929 (4.862296) | 2.901686 / 55.444624 (-52.542939) | 2.186146 / 6.876477 (-4.690330) | 2.251172 / 2.142072 (0.109100) | 1.342264 / 4.805227 (-3.462963) | 0.232045 / 6.500664 (-6.268619) | 0.073520 / 0.075469 (-0.001949) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.431314 / 1.841788 (-0.410474) | 16.313055 / 8.074308 (8.238747) | 18.451552 / 10.191392 (8.260160) | 0.232875 / 0.680424 (-0.447549) | 0.042170 / 0.534201 (-0.492031) | 0.495261 / 0.579283 (-0.084022) | 0.582901 / 0.434364 (0.148537) | 0.582049 / 0.540337 (0.041712) | 0.681122 / 1.386936 (-0.705814) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008131 / 0.011353 (-0.003222) | 0.006162 / 0.011008 (-0.004847) | 0.113721 / 0.038508 (0.075213) | 0.030797 / 0.023109 (0.007688) | 0.413108 / 0.275898 (0.137210) | 0.449968 / 0.323480 (0.126488) | 0.006126 / 0.007986 (-0.001860) | 0.004848 / 0.004328 (0.000519) | 0.085465 / 0.004250 (0.081214) | 0.045817 / 0.037052 (0.008764) | 0.419360 / 0.258489 (0.160871) | 0.489077 / 0.293841 (0.195236) | 0.050841 / 0.128546 (-0.077705) | 0.020646 / 0.075646 (-0.055000) | 0.379838 / 0.419271 (-0.039434) | 0.068897 / 0.043533 (0.025365) | 0.422182 / 0.255139 (0.167043) | 0.435529 / 0.283200 (0.152330) | 0.115299 / 0.141683 (-0.026384) | 1.655134 / 1.452155 (0.202979) | 1.835198 / 1.492716 (0.342481) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207041 / 0.018006 (0.189034) | 0.491263 / 0.000490 (0.490773) | 0.003554 / 0.000200 (0.003354) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030830 / 0.037411 (-0.006582) | 0.127003 / 0.014526 (0.112477) | 0.142901 / 0.176557 (-0.033656) | 0.177570 / 0.737135 (-0.559565) | 0.137758 / 0.296338 (-0.158580) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.632820 / 0.215209 (0.417611) | 6.215535 / 2.077655 (4.137880) | 2.615310 / 1.504120 (1.111190) | 2.261431 / 1.541195 (0.720236) | 2.220570 / 1.468490 (0.752080) | 1.215820 / 4.584777 (-3.368957) | 5.247680 / 3.745712 (1.501968) | 3.120054 / 5.269862 (-2.149807) | 1.950947 / 4.565676 (-2.614730) | 0.149980 / 0.424275 (-0.274295) | 0.015241 / 0.007607 (0.007634) | 0.879714 / 0.226044 (0.653670) | 7.941913 / 2.268929 (5.672984) | 3.512456 / 55.444624 (-51.932168) | 2.693833 / 6.876477 (-4.182644) | 2.772780 / 2.142072 (0.630708) | 1.459581 / 4.805227 (-3.345646) | 0.264820 / 6.500664 (-6.235844) | 0.076698 / 0.075469 (0.001228) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.437719 / 1.841788 (-0.404068) | 16.750309 / 8.074308 (8.676001) | 18.646776 / 10.191392 (8.455384) | 0.227858 / 0.680424 (-0.452566) | 0.024239 / 0.534201 (-0.509962) | 0.486172 / 0.579283 (-0.093111) | 0.574731 / 0.434364 (0.140367) | 0.557776 / 0.540337 (0.017439) | 0.672921 / 1.386936 (-0.714015) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bb3fbfa162bb4700e23d084826b4b7f6d97284be \"CML watermark\")\n" ]
2023-01-10T08:43:19
2023-01-18T17:12:17
2023-01-18T14:09:02
MEMBER
null
This PR fixes the RuntimeError: Sharding is ambiguous for this dataset. The error for ambiguous sharding will be raised only if num_proc > 1. Fix #5415, fix #5414. Fix https://huggingface.co/datasets/ami/discussions/3.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5416/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5416/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5416", "html_url": "https://github.com/huggingface/datasets/pull/5416", "diff_url": "https://github.com/huggingface/datasets/pull/5416.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5416.patch", "merged_at": "2023-01-18T14:09:02" }
true
https://api.github.com/repos/huggingface/datasets/issues/5415
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5415/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5415/comments
https://api.github.com/repos/huggingface/datasets/issues/5415/events
https://github.com/huggingface/datasets/issues/5415
1,526,904,861
I_kwDODunzps5bArgd
5,415
RuntimeError: Sharding is ambiguous for this dataset
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2023-01-10T07:36:11
2023-01-18T14:09:04
2023-01-18T14:09:03
MEMBER
null
### Describe the bug When loading some datasets, a RuntimeError is raised. For example, for "ami" dataset: https://huggingface.co/datasets/ami/discussions/3 ``` .../huggingface/datasets/src/datasets/builder.py in _prepare_split(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size) 1415 fpath = path_join(self._output_dir, fname) 1416 -> 1417 num_input_shards = _number_of_shards_in_gen_kwargs(split_generator.gen_kwargs) 1418 if num_input_shards <= 1 and num_proc is not None: 1419 logger.warning( .../huggingface/datasets/src/datasets/utils/sharding.py in _number_of_shards_in_gen_kwargs(gen_kwargs) 10 lists_lengths = {key: len(value) for key, value in gen_kwargs.items() if isinstance(value, list)} 11 if len(set(lists_lengths.values())) > 1: ---> 12 raise RuntimeError( 13 ( 14 "Sharding is ambiguous for this dataset: " RuntimeError: Sharding is ambiguous for this dataset: we found several data sources lists of different lengths, and we don't know over which list we should parallelize: - key samples_paths has length 6 - key ids has length 7 - key verification_ids has length 6 To fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, and use tuples otherwise. In the end there should only be one single list, or several lists with the same length. ``` This behavior was introduced when implementing multiprocessing by PR: - #5107 ### Steps to reproduce the bug ```python ds = load_dataset("ami", "microphone-single", split="train", revision="2d7620bb7c3f1aab9f329615c3bdb598069d907a") ``` ### Expected behavior No error raised. ### Environment info Since datasets 2.7.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5415/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5415/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5414
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5414/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5414/comments
https://api.github.com/repos/huggingface/datasets/issues/5414/events
https://github.com/huggingface/datasets/issues/5414
1,525,733,818
I_kwDODunzps5a8Nm6
5,414
Sharding error with Multilingual LibriSpeech
{ "login": "Nithin-Holla", "id": 19574344, "node_id": "MDQ6VXNlcjE5NTc0MzQ0", "avatar_url": "https://avatars.githubusercontent.com/u/19574344?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Nithin-Holla", "html_url": "https://github.com/Nithin-Holla", "followers_url": "https://api.github.com/users/Nithin-Holla/followers", "following_url": "https://api.github.com/users/Nithin-Holla/following{/other_user}", "gists_url": "https://api.github.com/users/Nithin-Holla/gists{/gist_id}", "starred_url": "https://api.github.com/users/Nithin-Holla/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Nithin-Holla/subscriptions", "organizations_url": "https://api.github.com/users/Nithin-Holla/orgs", "repos_url": "https://api.github.com/users/Nithin-Holla/repos", "events_url": "https://api.github.com/users/Nithin-Holla/events{/privacy}", "received_events_url": "https://api.github.com/users/Nithin-Holla/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for reporting, @Nithin-Holla.\r\n\r\nThis is a known issue for multiple datasets and we are investigating it:\r\n- See e.g.: https://huggingface.co/datasets/ami/discussions/3", "Main issue:\r\n- #5415", "@albertvillanova Thanks! As a workaround for now, can I use the dataset in streaming mode?", "Yes, @Nithin-Holla, in the meantime you can use this dataset in streaming mode." ]
2023-01-09T14:45:31
2023-01-18T14:09:04
2023-01-18T14:09:04
NONE
null
### Describe the bug Loading the German Multilingual LibriSpeech dataset results in a RuntimeError regarding sharding with the following stacktrace: ``` Downloading and preparing dataset multilingual_librispeech/german to /home/nithin/datadrive/cache/huggingface/datasets/facebook___multilingual_librispeech/german/2.1.0/1904af50f57a5c370c9364cc337699cfe496d4e9edcae6648a96be23086362d0... Downloading data files: 100% 3/3 [00:00<00:00, 107.23it/s] Downloading data files: 100% 1/1 [00:00<00:00, 35.08it/s] Downloading data files: 100% 6/6 [00:00<00:00, 303.36it/s] Downloading data files: 100% 3/3 [00:00<00:00, 130.37it/s] Downloading data files: 100% 1049/1049 [00:00<00:00, 4491.40it/s] Downloading data files: 100% 37/37 [00:00<00:00, 1096.78it/s] Downloading data files: 100% 40/40 [00:00<00:00, 1003.93it/s] Extracting data files: 100% 3/3 [00:11<00:00, 2.62s/it] Generating train split: 469942/0 [34:13<00:00, 273.21 examples/s] Output exceeds the size limit. Open the full output data in a text editor --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-14-74fa6d092bdc> in <module> ----> 1 mls = load_dataset(MLS_DATASET, 2 LANGUAGE, 3 cache_dir="~/datadrive/cache/huggingface/datasets", 4 ignore_verifications=True) /anaconda/envs/py38_default/lib/python3.8/site-packages/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, **config_kwargs) 1755 1756 # Download and prepare data -> 1757 builder_instance.download_and_prepare( 1758 download_config=download_config, 1759 download_mode=download_mode, /anaconda/envs/py38_default/lib/python3.8/site-packages/datasets/builder.py in download_and_prepare(self, output_dir, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 858 if num_proc is not None: 859 prepare_split_kwargs["num_proc"] = num_proc --> 860 self._download_and_prepare( 861 dl_manager=dl_manager, 862 verify_infos=verify_infos, /anaconda/envs/py38_default/lib/python3.8/site-packages/datasets/builder.py in _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs) 1609 1610 def _download_and_prepare(self, dl_manager, verify_infos, **prepare_splits_kwargs): ... RuntimeError: Sharding is ambiguous for this dataset: we found several data sources lists of different lengths, and we don't know over which list we should parallelize: - key audio_archives has length 1049 - key local_extracted_archive has length 1049 - key limited_ids_paths has length 1 To fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, and use tuples otherwise. In the end there should only be one single list, or several lists with the same length. ``` ### Steps to reproduce the bug Here is the code to reproduce it: ```python from datasets import load_dataset MLS_DATASET = "facebook/multilingual_librispeech" LANGUAGE = "german" mls = load_dataset(MLS_DATASET, LANGUAGE, cache_dir="~/datadrive/cache/huggingface/datasets", ignore_verifications=True) ``` ### Expected behavior The expected behaviour is that the dataset is successfully loaded. ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.4.0-1094-azure-x86_64-with-glibc2.10 - Python version: 3.8.8 - PyArrow version: 10.0.1 - Pandas version: 1.2.4
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5414/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5414/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5413
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5413/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5413/comments
https://api.github.com/repos/huggingface/datasets/issues/5413/events
https://github.com/huggingface/datasets/issues/5413
1,524,591,837
I_kwDODunzps5a32zd
5,413
concatenate_datasets fails when two dataset with shards > 1 and unequal shard numbers
{ "login": "ZeguanXiao", "id": 38279341, "node_id": "MDQ6VXNlcjM4Mjc5MzQx", "avatar_url": "https://avatars.githubusercontent.com/u/38279341?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ZeguanXiao", "html_url": "https://github.com/ZeguanXiao", "followers_url": "https://api.github.com/users/ZeguanXiao/followers", "following_url": "https://api.github.com/users/ZeguanXiao/following{/other_user}", "gists_url": "https://api.github.com/users/ZeguanXiao/gists{/gist_id}", "starred_url": "https://api.github.com/users/ZeguanXiao/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ZeguanXiao/subscriptions", "organizations_url": "https://api.github.com/users/ZeguanXiao/orgs", "repos_url": "https://api.github.com/users/ZeguanXiao/repos", "events_url": "https://api.github.com/users/ZeguanXiao/events{/privacy}", "received_events_url": "https://api.github.com/users/ZeguanXiao/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[ { "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi ! Thanks for reporting :)\r\n\r\nI managed to reproduce the hub using\r\n```python\r\n\r\nfrom datasets import concatenate_datasets, Dataset, load_from_disk\r\n\r\nDataset.from_dict({\"a\": range(9)}).save_to_disk(\"tmp/ds1\")\r\nds1 = load_from_disk(\"tmp/ds1\")\r\nds1 = concatenate_datasets([ds1, ds1])\r\n\r\nDataset.from_dict({\"b\": range(6)}).save_to_disk(\"tmp/ds2\")\r\nds2 = load_from_disk(\"tmp/ds2\")\r\nds2 = concatenate_datasets([ds2, ds2, ds2])\r\n\r\nconcatenate_datasets([ds1, ds2], axis=1)\r\n```\r\nand I get\r\n```python\r\nTraceback (most recent call last): \r\n File \"test.py\", line 98, in <module>\r\n dds = concatenate_datasets([ds1, ds2], axis=1)\r\n File \"/Users/.../datasets/combine.py\", line 182, in concatenate_datasets\r\n return _concatenate_map_style_datasets(dsets, info=info, split=split, axis=axis)\r\n File \"/Users/.../datasets/arrow_dataset.py\", line 5499, in _concatenate_map_style_datasets\r\n table = concat_tables([dset._data for dset in dsets], axis=axis)\r\n File \"/Users/.../datasets/table.py\", line 1778, in concat_tables\r\n return ConcatenationTable.from_tables(tables, axis=axis)\r\n File \"/Users/.../datasets/table.py\", line 1483, in from_tables\r\n blocks = _extend_blocks(blocks, table_blocks, axis=axis)\r\n File \"/Users/.../datasets/table.py\", line 1477, in _extend_blocks\r\n result[i].extend(row_blocks)\r\nIndexError: list index out of range\r\n```\r\n\r\nIt appears to happen when the two datasets have a number of shards that is not the same" ]
2023-01-08T17:01:52
2023-01-26T09:27:21
2023-01-26T09:27:21
NONE
null
### Describe the bug When using `concatenate_datasets([dataset1, dataset2], axis = 1)` to concatenate two datasets with shards > 1, it fails: ``` File "/home/xzg/anaconda3/envs/tri-transfer/lib/python3.9/site-packages/datasets/combine.py", line 182, in concatenate_datasets return _concatenate_map_style_datasets(dsets, info=info, split=split, axis=axis) File "/home/xzg/anaconda3/envs/tri-transfer/lib/python3.9/site-packages/datasets/arrow_dataset.py", line 5499, in _concatenate_map_style_datasets table = concat_tables([dset._data for dset in dsets], axis=axis) File "/home/xzg/anaconda3/envs/tri-transfer/lib/python3.9/site-packages/datasets/table.py", line 1778, in concat_tables return ConcatenationTable.from_tables(tables, axis=axis) File "/home/xzg/anaconda3/envs/tri-transfer/lib/python3.9/site-packages/datasets/table.py", line 1483, in from_tables blocks = _extend_blocks(blocks, table_blocks, axis=axis) File "/home/xzg/anaconda3/envs/tri-transfer/lib/python3.9/site-packages/datasets/table.py", line 1477, in _extend_blocks result[i].extend(row_blocks) IndexError: list index out of range ``` ### Steps to reproduce the bug dataset = concatenate_datasets([dataset1, dataset2], axis = 1) ### Expected behavior The datasets are correctly concatenated. ### Environment info datasets==2.8.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5413/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5413/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5412
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5412/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5412/comments
https://api.github.com/repos/huggingface/datasets/issues/5412/events
https://github.com/huggingface/datasets/issues/5412
1,524,250,269
I_kwDODunzps5a2jad
5,412
load_dataset() cannot find dataset_info.json with multiple training runs in parallel
{ "login": "destigres", "id": 7139344, "node_id": "MDQ6VXNlcjcxMzkzNDQ=", "avatar_url": "https://avatars.githubusercontent.com/u/7139344?v=4", "gravatar_id": "", "url": "https://api.github.com/users/destigres", "html_url": "https://github.com/destigres", "followers_url": "https://api.github.com/users/destigres/followers", "following_url": "https://api.github.com/users/destigres/following{/other_user}", "gists_url": "https://api.github.com/users/destigres/gists{/gist_id}", "starred_url": "https://api.github.com/users/destigres/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/destigres/subscriptions", "organizations_url": "https://api.github.com/users/destigres/orgs", "repos_url": "https://api.github.com/users/destigres/repos", "events_url": "https://api.github.com/users/destigres/events{/privacy}", "received_events_url": "https://api.github.com/users/destigres/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi ! It fails because the dataset is already being prepared by your first run. I'd encourage you to prepare your dataset before using it for multiple trainings.\r\n\r\nYou can also specify another cache directory by passing `cache_dir=` to `load_dataset()`.", "Thank you! What do you mean by prepare it beforehand? I am unclear how to conduct dataset preparation outside of using the `load_dataset` function.", "You can have a separate script that does load_dataset + map + save_to_disk to save your prepared dataset somewhere. Then in your training script you can reload the dataset with load_from_disk", "Thank you! I believe I was running additional map steps after loading, resulting in the cache conflict. " ]
2023-01-08T00:44:32
2023-01-19T20:28:43
2023-01-19T20:28:43
NONE
null
### Describe the bug I have a custom local dataset in JSON form. I am trying to do multiple training runs in parallel. The first training run runs with no issue. However, when I start another run on another GPU, the following code throws this error. If there is a workaround to ignore the cache I think that would solve my problem too. I am using datasets version 2.8.0. ### Steps to reproduce the bug 1. Start training run of GPU 0 loading dataset from ``` load_dataset( "json", data_files=tr_dataset_path, split=f"train", download_mode="force_redownload", ) ``` 2. While GPU 0 is training, start an identical run on GPU 1. GPU 1 will produce the following error: ``` Traceback (most recent call last): File "/local-scratch1/data/mt/code/qq/train.py", line 198, in <module> main() File "/home/username/.local/lib/python3.8/site-packages/click/core.py", line 1130, in __call__ return self.main(*args, **kwargs) File "/home/username/.local/lib/python3.8/site-packages/click/core.py", line 1055, in main rv = self.invoke(ctx) File "/home/username/.local/lib/python3.8/site-packages/click/core.py", line 1404, in invoke return ctx.invoke(self.callback, **ctx.params) File "/home/username/.local/lib/python3.8/site-packages/click/core.py", line 760, in invoke return __callback(*args, **kwargs) File "/local-scratch1/data/mt/code/qq/train.py", line 113, in main load_dataset( File "/home/username/miniconda3/envs/qq3/lib/python3.8/site-packages/datasets/load.py", line 1734, in load_dataset builder_instance = load_dataset_builder( File "/home/username/miniconda3/envs/qq3/lib/python3.8/site-packages/datasets/load.py", line 1518, in load_dataset_builder builder_instance: DatasetBuilder = builder_cls( File "/home/username/miniconda3/envs/qq3/lib/python3.8/site-packages/datasets/builder.py", line 366, in __init__ self.info = DatasetInfo.from_directory(self._cache_dir) File "/home/username/miniconda3/envs/qq3/lib/python3.8/site-packages/datasets/info.py", line 313, in from_directory with fs.open(path_join(dataset_info_dir, config.DATASET_INFO_FILENAME), "r", encoding="utf-8") as f: File "/home/username/miniconda3/envs/qq3/lib/python3.8/site-packages/fsspec/spec.py", line 1094, in open self.open( File "/home/username/miniconda3/envs/qq3/lib/python3.8/site-packages/fsspec/spec.py", line 1106, in open f = self._open( File "/home/username/miniconda3/envs/qq3/lib/python3.8/site-packages/fsspec/implementations/local.py", line 175, in _open return LocalFileOpener(path, mode, fs=self, **kwargs) File "/home/username/miniconda3/envs/qq3/lib/python3.8/site-packages/fsspec/implementations/local.py", line 273, in __init__ self._open() File "/home/username/miniconda3/envs/qq3/lib/python3.8/site-packages/fsspec/implementations/local.py", line 278, in _open self.f = open(self.path, mode=self.mode) FileNotFoundError: [Errno 2] No such file or directory: '/home/username/.cache/huggingface/datasets/json/default-43d06a4aedb25e6d/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51/dataset_info.json' ``` ### Expected behavior Expected behavior: 2nd GPU training run should run the same as 1st GPU training run. ### Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 2.8.0 - Platform: Linux-5.4.0-120-generic-x86_64-with-glibc2.10 - Python version: 3.8.15 - PyArrow version: 9.0.0 - Pandas version: 1.5.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5412/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5412/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5411
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5411/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5411/comments
https://api.github.com/repos/huggingface/datasets/issues/5411/events
https://github.com/huggingface/datasets/pull/5411
1,523,297,786
PR_kwDODunzps5G23-T
5,411
Update docs of S3 filesystem with async aiobotocore
{ "login": "maheshpec", "id": 5677912, "node_id": "MDQ6VXNlcjU2Nzc5MTI=", "avatar_url": "https://avatars.githubusercontent.com/u/5677912?v=4", "gravatar_id": "", "url": "https://api.github.com/users/maheshpec", "html_url": "https://github.com/maheshpec", "followers_url": "https://api.github.com/users/maheshpec/followers", "following_url": "https://api.github.com/users/maheshpec/following{/other_user}", "gists_url": "https://api.github.com/users/maheshpec/gists{/gist_id}", "starred_url": "https://api.github.com/users/maheshpec/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maheshpec/subscriptions", "organizations_url": "https://api.github.com/users/maheshpec/orgs", "repos_url": "https://api.github.com/users/maheshpec/repos", "events_url": "https://api.github.com/users/maheshpec/events{/privacy}", "received_events_url": "https://api.github.com/users/maheshpec/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008587 / 0.011353 (-0.002766) | 0.004613 / 0.011008 (-0.006395) | 0.100446 / 0.038508 (0.061938) | 0.029606 / 0.023109 (0.006497) | 0.302102 / 0.275898 (0.026204) | 0.357364 / 0.323480 (0.033884) | 0.007031 / 0.007986 (-0.000954) | 0.003593 / 0.004328 (-0.000735) | 0.078110 / 0.004250 (0.073860) | 0.035495 / 0.037052 (-0.001557) | 0.312522 / 0.258489 (0.054033) | 0.349336 / 0.293841 (0.055495) | 0.033719 / 0.128546 (-0.094827) | 0.011449 / 0.075646 (-0.064197) | 0.321760 / 0.419271 (-0.097512) | 0.043697 / 0.043533 (0.000165) | 0.304476 / 0.255139 (0.049337) | 0.333126 / 0.283200 (0.049926) | 0.092756 / 0.141683 (-0.048927) | 1.506734 / 1.452155 (0.054579) | 1.547381 / 1.492716 (0.054664) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178177 / 0.018006 (0.160171) | 0.427814 / 0.000490 (0.427324) | 0.002505 / 0.000200 (0.002305) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023039 / 0.037411 (-0.014372) | 0.097113 / 0.014526 (0.082587) | 0.105014 / 0.176557 (-0.071543) | 0.141185 / 0.737135 (-0.595950) | 0.108843 / 0.296338 (-0.187495) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424148 / 0.215209 (0.208939) | 4.247599 / 2.077655 (2.169944) | 2.130720 / 1.504120 (0.626600) | 1.916349 / 1.541195 (0.375154) | 1.831515 / 1.468490 (0.363025) | 0.688301 / 4.584777 (-3.896476) | 3.381749 / 3.745712 (-0.363963) | 2.900045 / 5.269862 (-2.369817) | 1.576248 / 4.565676 (-2.989428) | 0.082354 / 0.424275 (-0.341921) | 0.012200 / 0.007607 (0.004593) | 0.525753 / 0.226044 (0.299709) | 5.277672 / 2.268929 (3.008743) | 2.603870 / 55.444624 (-52.840754) | 2.296203 / 6.876477 (-4.580273) | 2.308014 / 2.142072 (0.165942) | 0.809056 / 4.805227 (-3.996171) | 0.148122 / 6.500664 (-6.352542) | 0.066097 / 0.075469 (-0.009372) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.214059 / 1.841788 (-0.627728) | 13.671332 / 8.074308 (5.597024) | 13.694554 / 10.191392 (3.503162) | 0.151454 / 0.680424 (-0.528970) | 0.028514 / 0.534201 (-0.505687) | 0.391480 / 0.579283 (-0.187804) | 0.404499 / 0.434364 (-0.029865) | 0.458111 / 0.540337 (-0.082226) | 0.539454 / 1.386936 (-0.847482) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006795 / 0.011353 (-0.004558) | 0.004463 / 0.011008 (-0.006545) | 0.099542 / 0.038508 (0.061034) | 0.027588 / 0.023109 (0.004479) | 0.423023 / 0.275898 (0.147125) | 0.458459 / 0.323480 (0.134979) | 0.004981 / 0.007986 (-0.003005) | 0.003321 / 0.004328 (-0.001008) | 0.075727 / 0.004250 (0.071477) | 0.040541 / 0.037052 (0.003489) | 0.423724 / 0.258489 (0.165235) | 0.468334 / 0.293841 (0.174493) | 0.031732 / 0.128546 (-0.096814) | 0.011478 / 0.075646 (-0.064168) | 0.319807 / 0.419271 (-0.099465) | 0.041215 / 0.043533 (-0.002318) | 0.423060 / 0.255139 (0.167921) | 0.446157 / 0.283200 (0.162957) | 0.088884 / 0.141683 (-0.052799) | 1.553404 / 1.452155 (0.101250) | 1.607797 / 1.492716 (0.115080) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208314 / 0.018006 (0.190307) | 0.411627 / 0.000490 (0.411137) | 0.002416 / 0.000200 (0.002216) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024641 / 0.037411 (-0.012770) | 0.101047 / 0.014526 (0.086521) | 0.108410 / 0.176557 (-0.068147) | 0.142860 / 0.737135 (-0.594276) | 0.112486 / 0.296338 (-0.183852) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.485520 / 0.215209 (0.270311) | 4.864009 / 2.077655 (2.786355) | 2.541865 / 1.504120 (1.037745) | 2.339569 / 1.541195 (0.798374) | 2.378258 / 1.468490 (0.909768) | 0.698000 / 4.584777 (-3.886777) | 3.343137 / 3.745712 (-0.402575) | 1.842264 / 5.269862 (-3.427597) | 1.154707 / 4.565676 (-3.410969) | 0.082826 / 0.424275 (-0.341449) | 0.012379 / 0.007607 (0.004772) | 0.583335 / 0.226044 (0.357291) | 5.885934 / 2.268929 (3.617006) | 2.997769 / 55.444624 (-52.446856) | 2.653681 / 6.876477 (-4.222796) | 2.761656 / 2.142072 (0.619583) | 0.799883 / 4.805227 (-4.005344) | 0.151398 / 6.500664 (-6.349266) | 0.067445 / 0.075469 (-0.008024) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.292009 / 1.841788 (-0.549779) | 13.976180 / 8.074308 (5.901872) | 14.219469 / 10.191392 (4.028077) | 0.127810 / 0.680424 (-0.552614) | 0.016919 / 0.534201 (-0.517282) | 0.376401 / 0.579283 (-0.202882) | 0.388563 / 0.434364 (-0.045801) | 0.444904 / 0.540337 (-0.095433) | 0.532290 / 1.386936 (-0.854646) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#41d4378831cac1fe5fc624bf97a97b3cf81e0b8a \"CML watermark\")\n" ]
2023-01-06T23:19:17
2023-01-18T11:18:59
2023-01-18T11:12:04
CONTRIBUTOR
null
[s3fs has migrated to all async calls](https://github.com/fsspec/s3fs/commit/0de2c6fb3d87c08ea694de96dca0d0834034f8bf). Updating documentation to use `AioSession` while using s3fs for download manager as well as working with datasets
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5411/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5411/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5411", "html_url": "https://github.com/huggingface/datasets/pull/5411", "diff_url": "https://github.com/huggingface/datasets/pull/5411.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5411.patch", "merged_at": "2023-01-18T11:12:04" }
true
https://api.github.com/repos/huggingface/datasets/issues/5410
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5410/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5410/comments
https://api.github.com/repos/huggingface/datasets/issues/5410/events
https://github.com/huggingface/datasets/pull/5410
1,521,168,032
PR_kwDODunzps5GvnJH
5,410
Map-style Dataset to IterableDataset
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009812 / 0.011353 (-0.001540) | 0.005290 / 0.011008 (-0.005719) | 0.099728 / 0.038508 (0.061220) | 0.036712 / 0.023109 (0.013602) | 0.305924 / 0.275898 (0.030026) | 0.349844 / 0.323480 (0.026365) | 0.008353 / 0.007986 (0.000368) | 0.004464 / 0.004328 (0.000135) | 0.075329 / 0.004250 (0.071079) | 0.046146 / 0.037052 (0.009094) | 0.304197 / 0.258489 (0.045708) | 0.354245 / 0.293841 (0.060404) | 0.039270 / 0.128546 (-0.089276) | 0.012496 / 0.075646 (-0.063151) | 0.334390 / 0.419271 (-0.084882) | 0.049428 / 0.043533 (0.005896) | 0.297318 / 0.255139 (0.042179) | 0.315646 / 0.283200 (0.032447) | 0.106746 / 0.141683 (-0.034937) | 1.443562 / 1.452155 (-0.008593) | 1.546022 / 1.492716 (0.053305) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.303419 / 0.018006 (0.285413) | 0.536971 / 0.000490 (0.536481) | 0.001335 / 0.000200 (0.001135) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030484 / 0.037411 (-0.006927) | 0.110043 / 0.014526 (0.095518) | 0.125265 / 0.176557 (-0.051291) | 0.171410 / 0.737135 (-0.565725) | 0.128978 / 0.296338 (-0.167361) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.398354 / 0.215209 (0.183145) | 3.984180 / 2.077655 (1.906526) | 1.781134 / 1.504120 (0.277014) | 1.589656 / 1.541195 (0.048462) | 1.704192 / 1.468490 (0.235702) | 0.682271 / 4.584777 (-3.902506) | 3.731504 / 3.745712 (-0.014208) | 2.243520 / 5.269862 (-3.026342) | 1.511334 / 4.565676 (-3.054343) | 0.084243 / 0.424275 (-0.340032) | 0.012261 / 0.007607 (0.004654) | 0.507499 / 0.226044 (0.281454) | 5.066037 / 2.268929 (2.797109) | 2.246107 / 55.444624 (-53.198517) | 1.921032 / 6.876477 (-4.955444) | 2.144111 / 2.142072 (0.002039) | 0.845233 / 4.805227 (-3.959995) | 0.165392 / 6.500664 (-6.335272) | 0.064201 / 0.075469 (-0.011268) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.217649 / 1.841788 (-0.624138) | 15.890487 / 8.074308 (7.816179) | 14.772039 / 10.191392 (4.580647) | 0.192901 / 0.680424 (-0.487523) | 0.029119 / 0.534201 (-0.505082) | 0.442904 / 0.579283 (-0.136380) | 0.451035 / 0.434364 (0.016671) | 0.520788 / 0.540337 (-0.019550) | 0.623588 / 1.386936 (-0.763348) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007452 / 0.011353 (-0.003901) | 0.005426 / 0.011008 (-0.005582) | 0.096488 / 0.038508 (0.057980) | 0.033575 / 0.023109 (0.010465) | 0.375688 / 0.275898 (0.099790) | 0.412393 / 0.323480 (0.088913) | 0.006050 / 0.007986 (-0.001936) | 0.004424 / 0.004328 (0.000095) | 0.073102 / 0.004250 (0.068852) | 0.052672 / 0.037052 (0.015620) | 0.379352 / 0.258489 (0.120862) | 0.436065 / 0.293841 (0.142224) | 0.036594 / 0.128546 (-0.091952) | 0.012380 / 0.075646 (-0.063266) | 0.332899 / 0.419271 (-0.086373) | 0.048859 / 0.043533 (0.005326) | 0.373215 / 0.255139 (0.118076) | 0.386990 / 0.283200 (0.103791) | 0.105166 / 0.141683 (-0.036517) | 1.490762 / 1.452155 (0.038607) | 1.611310 / 1.492716 (0.118593) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.333142 / 0.018006 (0.315136) | 0.537137 / 0.000490 (0.536647) | 0.000452 / 0.000200 (0.000252) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030368 / 0.037411 (-0.007043) | 0.109608 / 0.014526 (0.095083) | 0.124220 / 0.176557 (-0.052336) | 0.162834 / 0.737135 (-0.574301) | 0.128037 / 0.296338 (-0.168302) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440991 / 0.215209 (0.225782) | 4.400825 / 2.077655 (2.323170) | 2.158768 / 1.504120 (0.654648) | 1.968158 / 1.541195 (0.426963) | 2.085115 / 1.468490 (0.616625) | 0.710757 / 4.584777 (-3.874020) | 3.835441 / 3.745712 (0.089729) | 2.204118 / 5.269862 (-3.065744) | 1.378909 / 4.565676 (-3.186767) | 0.089149 / 0.424275 (-0.335126) | 0.013066 / 0.007607 (0.005459) | 0.539165 / 0.226044 (0.313121) | 5.414176 / 2.268929 (3.145248) | 2.677020 / 55.444624 (-52.767604) | 2.328334 / 6.876477 (-4.548143) | 2.518933 / 2.142072 (0.376860) | 0.840902 / 4.805227 (-3.964325) | 0.170365 / 6.500664 (-6.330299) | 0.063909 / 0.075469 (-0.011561) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.237205 / 1.841788 (-0.604583) | 15.678776 / 8.074308 (7.604468) | 14.118576 / 10.191392 (3.927184) | 0.167236 / 0.680424 (-0.513188) | 0.018177 / 0.534201 (-0.516024) | 0.426680 / 0.579283 (-0.152603) | 0.425126 / 0.434364 (-0.009238) | 0.501755 / 0.540337 (-0.038582) | 0.592754 / 1.386936 (-0.794182) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008708 / 0.011353 (-0.002645) | 0.004462 / 0.011008 (-0.006546) | 0.100159 / 0.038508 (0.061651) | 0.029543 / 0.023109 (0.006434) | 0.304056 / 0.275898 (0.028158) | 0.367098 / 0.323480 (0.043618) | 0.007049 / 0.007986 (-0.000937) | 0.003294 / 0.004328 (-0.001034) | 0.076954 / 0.004250 (0.072703) | 0.036850 / 0.037052 (-0.000202) | 0.307556 / 0.258489 (0.049067) | 0.348327 / 0.293841 (0.054486) | 0.033520 / 0.128546 (-0.095026) | 0.011312 / 0.075646 (-0.064334) | 0.317588 / 0.419271 (-0.101684) | 0.040196 / 0.043533 (-0.003337) | 0.298330 / 0.255139 (0.043191) | 0.333821 / 0.283200 (0.050622) | 0.086584 / 0.141683 (-0.055099) | 1.480205 / 1.452155 (0.028050) | 1.520975 / 1.492716 (0.028259) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.186641 / 0.018006 (0.168635) | 0.414420 / 0.000490 (0.413930) | 0.003021 / 0.000200 (0.002821) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022953 / 0.037411 (-0.014458) | 0.097338 / 0.014526 (0.082812) | 0.104985 / 0.176557 (-0.071572) | 0.139208 / 0.737135 (-0.597927) | 0.108031 / 0.296338 (-0.188307) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417969 / 0.215209 (0.202759) | 4.173189 / 2.077655 (2.095534) | 1.862813 / 1.504120 (0.358693) | 1.653226 / 1.541195 (0.112031) | 1.725917 / 1.468490 (0.257426) | 0.701038 / 4.584777 (-3.883739) | 3.350500 / 3.745712 (-0.395213) | 1.913156 / 5.269862 (-3.356705) | 1.267597 / 4.565676 (-3.298079) | 0.082197 / 0.424275 (-0.342078) | 0.012499 / 0.007607 (0.004892) | 0.520173 / 0.226044 (0.294128) | 5.219981 / 2.268929 (2.951053) | 2.306029 / 55.444624 (-53.138595) | 1.948169 / 6.876477 (-4.928307) | 2.013160 / 2.142072 (-0.128912) | 0.813325 / 4.805227 (-3.991902) | 0.149729 / 6.500664 (-6.350935) | 0.065492 / 0.075469 (-0.009977) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.194163 / 1.841788 (-0.647625) | 13.739562 / 8.074308 (5.665254) | 13.881988 / 10.191392 (3.690596) | 0.138180 / 0.680424 (-0.542244) | 0.029031 / 0.534201 (-0.505170) | 0.387858 / 0.579283 (-0.191425) | 0.395171 / 0.434364 (-0.039193) | 0.446349 / 0.540337 (-0.093988) | 0.527073 / 1.386936 (-0.859863) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006504 / 0.011353 (-0.004849) | 0.004564 / 0.011008 (-0.006444) | 0.099108 / 0.038508 (0.060599) | 0.027420 / 0.023109 (0.004311) | 0.340712 / 0.275898 (0.064814) | 0.391613 / 0.323480 (0.068133) | 0.004977 / 0.007986 (-0.003009) | 0.003375 / 0.004328 (-0.000953) | 0.076403 / 0.004250 (0.072152) | 0.036650 / 0.037052 (-0.000402) | 0.341948 / 0.258489 (0.083459) | 0.392065 / 0.293841 (0.098224) | 0.031802 / 0.128546 (-0.096745) | 0.011659 / 0.075646 (-0.063987) | 0.320099 / 0.419271 (-0.099173) | 0.041615 / 0.043533 (-0.001918) | 0.342125 / 0.255139 (0.086986) | 0.372833 / 0.283200 (0.089633) | 0.089032 / 0.141683 (-0.052650) | 1.486691 / 1.452155 (0.034536) | 1.567326 / 1.492716 (0.074610) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.193123 / 0.018006 (0.175117) | 0.404062 / 0.000490 (0.403573) | 0.003460 / 0.000200 (0.003260) | 0.000079 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024565 / 0.037411 (-0.012846) | 0.098958 / 0.014526 (0.084432) | 0.108701 / 0.176557 (-0.067855) | 0.142567 / 0.737135 (-0.594569) | 0.111048 / 0.296338 (-0.185290) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.474549 / 0.215209 (0.259340) | 4.753776 / 2.077655 (2.676121) | 2.435528 / 1.504120 (0.931409) | 2.234491 / 1.541195 (0.693297) | 2.269474 / 1.468490 (0.800984) | 0.695636 / 4.584777 (-3.889141) | 3.367816 / 3.745712 (-0.377896) | 1.854828 / 5.269862 (-3.415034) | 1.159729 / 4.565676 (-3.405948) | 0.082267 / 0.424275 (-0.342008) | 0.012483 / 0.007607 (0.004876) | 0.578490 / 0.226044 (0.352446) | 5.814490 / 2.268929 (3.545561) | 2.893310 / 55.444624 (-52.551314) | 2.540555 / 6.876477 (-4.335922) | 2.573705 / 2.142072 (0.431633) | 0.800545 / 4.805227 (-4.004682) | 0.151306 / 6.500664 (-6.349358) | 0.067925 / 0.075469 (-0.007544) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.294645 / 1.841788 (-0.547142) | 13.641842 / 8.074308 (5.567534) | 14.015200 / 10.191392 (3.823808) | 0.128829 / 0.680424 (-0.551595) | 0.016870 / 0.534201 (-0.517331) | 0.389137 / 0.579283 (-0.190146) | 0.388384 / 0.434364 (-0.045980) | 0.447711 / 0.540337 (-0.092627) | 0.540637 / 1.386936 (-0.846299) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#45ad185b9040a68285080b6099ed3af58442ccb2 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012282 / 0.011353 (0.000929) | 0.006328 / 0.011008 (-0.004680) | 0.129666 / 0.038508 (0.091158) | 0.039403 / 0.023109 (0.016294) | 0.375464 / 0.275898 (0.099566) | 0.463167 / 0.323480 (0.139687) | 0.010329 / 0.007986 (0.002344) | 0.005111 / 0.004328 (0.000782) | 0.108727 / 0.004250 (0.104476) | 0.047156 / 0.037052 (0.010103) | 0.381869 / 0.258489 (0.123380) | 0.441936 / 0.293841 (0.148095) | 0.054750 / 0.128546 (-0.073796) | 0.019809 / 0.075646 (-0.055837) | 0.436389 / 0.419271 (0.017118) | 0.066585 / 0.043533 (0.023052) | 0.402108 / 0.255139 (0.146969) | 0.424571 / 0.283200 (0.141371) | 0.118326 / 0.141683 (-0.023357) | 1.870175 / 1.452155 (0.418020) | 1.878720 / 1.492716 (0.386004) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.012863 / 0.018006 (-0.005144) | 0.528670 / 0.000490 (0.528181) | 0.006057 / 0.000200 (0.005857) | 0.000124 / 0.000054 (0.000069) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030091 / 0.037411 (-0.007320) | 0.136143 / 0.014526 (0.121618) | 0.148931 / 0.176557 (-0.027626) | 0.179578 / 0.737135 (-0.557558) | 0.144528 / 0.296338 (-0.151810) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.594080 / 0.215209 (0.378871) | 6.029101 / 2.077655 (3.951446) | 2.443084 / 1.504120 (0.938964) | 2.123949 / 1.541195 (0.582754) | 2.183021 / 1.468490 (0.714531) | 1.235453 / 4.584777 (-3.349324) | 5.585121 / 3.745712 (1.839408) | 3.208510 / 5.269862 (-2.061351) | 2.090334 / 4.565676 (-2.475342) | 0.150353 / 0.424275 (-0.273922) | 0.016787 / 0.007607 (0.009180) | 0.797561 / 0.226044 (0.571516) | 7.756291 / 2.268929 (5.487363) | 3.283638 / 55.444624 (-52.160986) | 2.527441 / 6.876477 (-4.349036) | 2.590765 / 2.142072 (0.448692) | 1.446818 / 4.805227 (-3.358409) | 0.250563 / 6.500664 (-6.250101) | 0.077919 / 0.075469 (0.002450) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.612022 / 1.841788 (-0.229765) | 18.363316 / 8.074308 (10.289008) | 22.578570 / 10.191392 (12.387178) | 0.232801 / 0.680424 (-0.447623) | 0.048232 / 0.534201 (-0.485969) | 0.549518 / 0.579283 (-0.029766) | 0.624663 / 0.434364 (0.190299) | 0.674745 / 0.540337 (0.134408) | 0.803489 / 1.386936 (-0.583447) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009872 / 0.011353 (-0.001481) | 0.006593 / 0.011008 (-0.004415) | 0.139248 / 0.038508 (0.100740) | 0.035708 / 0.023109 (0.012598) | 0.551335 / 0.275898 (0.275437) | 0.544995 / 0.323480 (0.221515) | 0.007085 / 0.007986 (-0.000900) | 0.004742 / 0.004328 (0.000413) | 0.095823 / 0.004250 (0.091572) | 0.051674 / 0.037052 (0.014621) | 0.463405 / 0.258489 (0.204916) | 0.640392 / 0.293841 (0.346551) | 0.055242 / 0.128546 (-0.073304) | 0.022602 / 0.075646 (-0.053044) | 0.419171 / 0.419271 (-0.000100) | 0.062986 / 0.043533 (0.019453) | 0.503683 / 0.255139 (0.248544) | 0.568719 / 0.283200 (0.285519) | 0.113906 / 0.141683 (-0.027777) | 1.825248 / 1.452155 (0.373094) | 1.985667 / 1.492716 (0.492951) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237478 / 0.018006 (0.219472) | 0.528861 / 0.000490 (0.528371) | 0.008507 / 0.000200 (0.008307) | 0.000158 / 0.000054 (0.000103) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033536 / 0.037411 (-0.003875) | 0.144202 / 0.014526 (0.129677) | 0.139472 / 0.176557 (-0.037084) | 0.184540 / 0.737135 (-0.552596) | 0.147818 / 0.296338 (-0.148520) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.671654 / 0.215209 (0.456445) | 6.616368 / 2.077655 (4.538713) | 2.805634 / 1.504120 (1.301514) | 2.482890 / 1.541195 (0.941695) | 2.547686 / 1.468490 (1.079195) | 1.289169 / 4.584777 (-3.295608) | 5.551436 / 3.745712 (1.805724) | 5.228500 / 5.269862 (-0.041362) | 2.456706 / 4.565676 (-2.108970) | 0.148556 / 0.424275 (-0.275720) | 0.015290 / 0.007607 (0.007683) | 0.837090 / 0.226044 (0.611045) | 8.373561 / 2.268929 (6.104632) | 3.663910 / 55.444624 (-51.780714) | 2.927117 / 6.876477 (-3.949360) | 2.976785 / 2.142072 (0.834712) | 1.501618 / 4.805227 (-3.303609) | 0.263321 / 6.500664 (-6.237343) | 0.082644 / 0.075469 (0.007175) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.707419 / 1.841788 (-0.134368) | 18.371117 / 8.074308 (10.296809) | 22.015154 / 10.191392 (11.823762) | 0.232066 / 0.680424 (-0.448357) | 0.027149 / 0.534201 (-0.507052) | 0.544450 / 0.579283 (-0.034833) | 0.605134 / 0.434364 (0.170770) | 0.656063 / 0.540337 (0.115725) | 0.788121 / 1.386936 (-0.598815) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f1e0ec31e07e4bc0469f4acfed601d9c71e9a459 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008952 / 0.011353 (-0.002401) | 0.005592 / 0.011008 (-0.005416) | 0.101138 / 0.038508 (0.062630) | 0.035573 / 0.023109 (0.012464) | 0.295959 / 0.275898 (0.020060) | 0.365347 / 0.323480 (0.041867) | 0.008136 / 0.007986 (0.000150) | 0.004479 / 0.004328 (0.000150) | 0.078806 / 0.004250 (0.074556) | 0.045180 / 0.037052 (0.008127) | 0.321687 / 0.258489 (0.063198) | 0.345874 / 0.293841 (0.052033) | 0.038720 / 0.128546 (-0.089826) | 0.012534 / 0.075646 (-0.063112) | 0.335571 / 0.419271 (-0.083700) | 0.049048 / 0.043533 (0.005515) | 0.294756 / 0.255139 (0.039617) | 0.327496 / 0.283200 (0.044296) | 0.109181 / 0.141683 (-0.032502) | 1.417068 / 1.452155 (-0.035087) | 1.455473 / 1.492716 (-0.037244) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267774 / 0.018006 (0.249768) | 0.538546 / 0.000490 (0.538056) | 0.001755 / 0.000200 (0.001555) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026839 / 0.037411 (-0.010572) | 0.105862 / 0.014526 (0.091336) | 0.118278 / 0.176557 (-0.058279) | 0.157926 / 0.737135 (-0.579209) | 0.124700 / 0.296338 (-0.171638) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399060 / 0.215209 (0.183851) | 3.991409 / 2.077655 (1.913754) | 1.763569 / 1.504120 (0.259449) | 1.579602 / 1.541195 (0.038407) | 1.652928 / 1.468490 (0.184438) | 0.692962 / 4.584777 (-3.891815) | 3.784635 / 3.745712 (0.038922) | 3.249341 / 5.269862 (-2.020521) | 1.815711 / 4.565676 (-2.749966) | 0.084384 / 0.424275 (-0.339891) | 0.012546 / 0.007607 (0.004939) | 0.521397 / 0.226044 (0.295352) | 5.075824 / 2.268929 (2.806895) | 2.258353 / 55.444624 (-53.186272) | 1.925220 / 6.876477 (-4.951256) | 2.002821 / 2.142072 (-0.139252) | 0.830507 / 4.805227 (-3.974720) | 0.165845 / 6.500664 (-6.334819) | 0.063905 / 0.075469 (-0.011565) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.198726 / 1.841788 (-0.643061) | 14.804448 / 8.074308 (6.730139) | 12.855167 / 10.191392 (2.663775) | 0.167932 / 0.680424 (-0.512492) | 0.028643 / 0.534201 (-0.505558) | 0.441224 / 0.579283 (-0.138059) | 0.434924 / 0.434364 (0.000560) | 0.516188 / 0.540337 (-0.024150) | 0.605017 / 1.386936 (-0.781919) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007031 / 0.011353 (-0.004322) | 0.005157 / 0.011008 (-0.005851) | 0.086943 / 0.038508 (0.048434) | 0.031377 / 0.023109 (0.008268) | 0.334810 / 0.275898 (0.058912) | 0.368590 / 0.323480 (0.045110) | 0.005973 / 0.007986 (-0.002013) | 0.004173 / 0.004328 (-0.000155) | 0.067033 / 0.004250 (0.062783) | 0.054070 / 0.037052 (0.017018) | 0.332232 / 0.258489 (0.073743) | 0.384982 / 0.293841 (0.091141) | 0.034023 / 0.128546 (-0.094524) | 0.011301 / 0.075646 (-0.064345) | 0.295644 / 0.419271 (-0.123628) | 0.045589 / 0.043533 (0.002056) | 0.330739 / 0.255139 (0.075600) | 0.352841 / 0.283200 (0.069642) | 0.104829 / 0.141683 (-0.036854) | 1.329360 / 1.452155 (-0.122794) | 1.437956 / 1.492716 (-0.054760) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.299187 / 0.018006 (0.281181) | 0.563407 / 0.000490 (0.562917) | 0.004179 / 0.000200 (0.003979) | 0.000114 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027405 / 0.037411 (-0.010006) | 0.097498 / 0.014526 (0.082972) | 0.114265 / 0.176557 (-0.062292) | 0.146823 / 0.737135 (-0.590313) | 0.117948 / 0.296338 (-0.178391) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.378756 / 0.215209 (0.163547) | 3.774804 / 2.077655 (1.697150) | 1.804149 / 1.504120 (0.300029) | 1.626312 / 1.541195 (0.085117) | 1.731111 / 1.468490 (0.262620) | 0.633493 / 4.584777 (-3.951284) | 3.488220 / 3.745712 (-0.257492) | 3.064710 / 5.269862 (-2.205151) | 1.690647 / 4.565676 (-2.875029) | 0.076093 / 0.424275 (-0.348182) | 0.010820 / 0.007607 (0.003213) | 0.465091 / 0.226044 (0.239046) | 4.676842 / 2.268929 (2.407913) | 2.297381 / 55.444624 (-53.147244) | 1.960355 / 6.876477 (-4.916122) | 1.983742 / 2.142072 (-0.158330) | 0.739525 / 4.805227 (-4.065702) | 0.152663 / 6.500664 (-6.348001) | 0.057316 / 0.075469 (-0.018153) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.104721 / 1.841788 (-0.737067) | 14.577171 / 8.074308 (6.502863) | 13.680402 / 10.191392 (3.489010) | 0.182234 / 0.680424 (-0.498190) | 0.018853 / 0.534201 (-0.515348) | 0.426194 / 0.579283 (-0.153089) | 0.429202 / 0.434364 (-0.005162) | 0.543125 / 0.540337 (0.002788) | 0.645887 / 1.386936 (-0.741049) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f830952573bdc59f8732b8f1a13f70d9187e0a65 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010055 / 0.011353 (-0.001298) | 0.005576 / 0.011008 (-0.005432) | 0.100059 / 0.038508 (0.061551) | 0.038535 / 0.023109 (0.015425) | 0.297538 / 0.275898 (0.021640) | 0.368117 / 0.323480 (0.044637) | 0.008540 / 0.007986 (0.000555) | 0.004469 / 0.004328 (0.000141) | 0.075801 / 0.004250 (0.071551) | 0.046604 / 0.037052 (0.009552) | 0.307242 / 0.258489 (0.048753) | 0.343949 / 0.293841 (0.050108) | 0.039353 / 0.128546 (-0.089194) | 0.012446 / 0.075646 (-0.063200) | 0.334628 / 0.419271 (-0.084643) | 0.051628 / 0.043533 (0.008095) | 0.298726 / 0.255139 (0.043587) | 0.316010 / 0.283200 (0.032810) | 0.120564 / 0.141683 (-0.021119) | 1.459396 / 1.452155 (0.007241) | 1.493682 / 1.492716 (0.000965) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.011702 / 0.018006 (-0.006304) | 0.570261 / 0.000490 (0.569771) | 0.003760 / 0.000200 (0.003560) | 0.000091 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028806 / 0.037411 (-0.008605) | 0.112150 / 0.014526 (0.097625) | 0.123140 / 0.176557 (-0.053417) | 0.173055 / 0.737135 (-0.564080) | 0.130060 / 0.296338 (-0.166279) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.398216 / 0.215209 (0.183007) | 3.978677 / 2.077655 (1.901022) | 1.754229 / 1.504120 (0.250109) | 1.561892 / 1.541195 (0.020697) | 1.679138 / 1.468490 (0.210648) | 0.690254 / 4.584777 (-3.894523) | 3.817698 / 3.745712 (0.071986) | 2.177854 / 5.269862 (-3.092008) | 1.361860 / 4.565676 (-3.203816) | 0.084108 / 0.424275 (-0.340167) | 0.012640 / 0.007607 (0.005033) | 0.504385 / 0.226044 (0.278341) | 5.034103 / 2.268929 (2.765174) | 2.254032 / 55.444624 (-53.190593) | 1.910439 / 6.876477 (-4.966038) | 2.003515 / 2.142072 (-0.138558) | 0.839747 / 4.805227 (-3.965480) | 0.165654 / 6.500664 (-6.335010) | 0.063483 / 0.075469 (-0.011986) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.187521 / 1.841788 (-0.654267) | 15.381121 / 8.074308 (7.306812) | 14.579418 / 10.191392 (4.388026) | 0.199221 / 0.680424 (-0.481202) | 0.029335 / 0.534201 (-0.504866) | 0.443159 / 0.579283 (-0.136124) | 0.447772 / 0.434364 (0.013408) | 0.545071 / 0.540337 (0.004733) | 0.650494 / 1.386936 (-0.736442) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007675 / 0.011353 (-0.003677) | 0.005364 / 0.011008 (-0.005644) | 0.097921 / 0.038508 (0.059413) | 0.033645 / 0.023109 (0.010536) | 0.404818 / 0.275898 (0.128920) | 0.429983 / 0.323480 (0.106503) | 0.006106 / 0.007986 (-0.001879) | 0.005281 / 0.004328 (0.000953) | 0.073762 / 0.004250 (0.069512) | 0.053065 / 0.037052 (0.016012) | 0.400657 / 0.258489 (0.142168) | 0.447743 / 0.293841 (0.153902) | 0.036782 / 0.128546 (-0.091765) | 0.012593 / 0.075646 (-0.063054) | 0.332825 / 0.419271 (-0.086446) | 0.049424 / 0.043533 (0.005891) | 0.400397 / 0.255139 (0.145258) | 0.414794 / 0.283200 (0.131594) | 0.106555 / 0.141683 (-0.035128) | 1.466917 / 1.452155 (0.014762) | 1.571351 / 1.492716 (0.078635) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254337 / 0.018006 (0.236331) | 0.568360 / 0.000490 (0.567870) | 0.000445 / 0.000200 (0.000245) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031044 / 0.037411 (-0.006367) | 0.112282 / 0.014526 (0.097756) | 0.127205 / 0.176557 (-0.049352) | 0.166551 / 0.737135 (-0.570584) | 0.130520 / 0.296338 (-0.165818) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442906 / 0.215209 (0.227697) | 4.430218 / 2.077655 (2.352563) | 2.287251 / 1.504120 (0.783132) | 2.112345 / 1.541195 (0.571150) | 2.240952 / 1.468490 (0.772462) | 0.713800 / 4.584777 (-3.870977) | 3.884161 / 3.745712 (0.138449) | 2.166901 / 5.269862 (-3.102960) | 1.374490 / 4.565676 (-3.191187) | 0.087548 / 0.424275 (-0.336727) | 0.012369 / 0.007607 (0.004761) | 0.540783 / 0.226044 (0.314739) | 5.396187 / 2.268929 (3.127258) | 2.779636 / 55.444624 (-52.664988) | 2.434220 / 6.876477 (-4.442257) | 2.508180 / 2.142072 (0.366107) | 0.852470 / 4.805227 (-3.952757) | 0.171266 / 6.500664 (-6.329398) | 0.065463 / 0.075469 (-0.010006) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.241720 / 1.841788 (-0.600067) | 15.332568 / 8.074308 (7.258260) | 13.688723 / 10.191392 (3.497331) | 0.145150 / 0.680424 (-0.535273) | 0.017694 / 0.534201 (-0.516507) | 0.426078 / 0.579283 (-0.153205) | 0.441189 / 0.434364 (0.006825) | 0.540284 / 0.540337 (-0.000054) | 0.657548 / 1.386936 (-0.729388) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c47ecf71362f6b6290b6471b30e77184a5e1df31 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008604 / 0.011353 (-0.002749) | 0.004566 / 0.011008 (-0.006442) | 0.099607 / 0.038508 (0.061099) | 0.029628 / 0.023109 (0.006519) | 0.300481 / 0.275898 (0.024583) | 0.342596 / 0.323480 (0.019116) | 0.007003 / 0.007986 (-0.000982) | 0.003408 / 0.004328 (-0.000920) | 0.079076 / 0.004250 (0.074826) | 0.034104 / 0.037052 (-0.002948) | 0.303856 / 0.258489 (0.045367) | 0.348729 / 0.293841 (0.054888) | 0.033752 / 0.128546 (-0.094794) | 0.011497 / 0.075646 (-0.064149) | 0.321568 / 0.419271 (-0.097704) | 0.041472 / 0.043533 (-0.002061) | 0.303396 / 0.255139 (0.048257) | 0.331121 / 0.283200 (0.047921) | 0.086203 / 0.141683 (-0.055480) | 1.476995 / 1.452155 (0.024840) | 1.539428 / 1.492716 (0.046712) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.215810 / 0.018006 (0.197803) | 0.414292 / 0.000490 (0.413802) | 0.000388 / 0.000200 (0.000188) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023441 / 0.037411 (-0.013970) | 0.098463 / 0.014526 (0.083938) | 0.105435 / 0.176557 (-0.071121) | 0.139736 / 0.737135 (-0.597399) | 0.109467 / 0.296338 (-0.186872) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418244 / 0.215209 (0.203035) | 4.160693 / 2.077655 (2.083039) | 1.878895 / 1.504120 (0.374775) | 1.679338 / 1.541195 (0.138143) | 1.730384 / 1.468490 (0.261894) | 0.688603 / 4.584777 (-3.896174) | 3.393542 / 3.745712 (-0.352170) | 1.901337 / 5.269862 (-3.368525) | 1.447269 / 4.565676 (-3.118408) | 0.083003 / 0.424275 (-0.341272) | 0.012574 / 0.007607 (0.004967) | 0.526363 / 0.226044 (0.300318) | 5.275159 / 2.268929 (3.006230) | 2.323642 / 55.444624 (-53.120982) | 1.982929 / 6.876477 (-4.893548) | 2.014081 / 2.142072 (-0.127991) | 0.809466 / 4.805227 (-3.995761) | 0.149038 / 6.500664 (-6.351626) | 0.064394 / 0.075469 (-0.011075) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.207439 / 1.841788 (-0.634349) | 13.691048 / 8.074308 (5.616740) | 13.880965 / 10.191392 (3.689573) | 0.148553 / 0.680424 (-0.531871) | 0.028397 / 0.534201 (-0.505804) | 0.391818 / 0.579283 (-0.187465) | 0.407181 / 0.434364 (-0.027183) | 0.481163 / 0.540337 (-0.059175) | 0.570689 / 1.386936 (-0.816247) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006361 / 0.011353 (-0.004992) | 0.004520 / 0.011008 (-0.006488) | 0.097679 / 0.038508 (0.059171) | 0.027223 / 0.023109 (0.004113) | 0.407966 / 0.275898 (0.132068) | 0.439868 / 0.323480 (0.116388) | 0.004625 / 0.007986 (-0.003360) | 0.004039 / 0.004328 (-0.000289) | 0.074548 / 0.004250 (0.070298) | 0.034957 / 0.037052 (-0.002095) | 0.412762 / 0.258489 (0.154273) | 0.449716 / 0.293841 (0.155875) | 0.031272 / 0.128546 (-0.097274) | 0.011598 / 0.075646 (-0.064049) | 0.320922 / 0.419271 (-0.098349) | 0.041250 / 0.043533 (-0.002283) | 0.411439 / 0.255139 (0.156300) | 0.429722 / 0.283200 (0.146523) | 0.087161 / 0.141683 (-0.054522) | 1.512573 / 1.452155 (0.060418) | 1.569385 / 1.492716 (0.076668) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222612 / 0.018006 (0.204606) | 0.409086 / 0.000490 (0.408596) | 0.004246 / 0.000200 (0.004046) | 0.000083 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024324 / 0.037411 (-0.013087) | 0.099055 / 0.014526 (0.084530) | 0.106809 / 0.176557 (-0.069748) | 0.141275 / 0.737135 (-0.595860) | 0.109426 / 0.296338 (-0.186913) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.469736 / 0.215209 (0.254527) | 4.686900 / 2.077655 (2.609246) | 2.413392 / 1.504120 (0.909272) | 2.217366 / 1.541195 (0.676171) | 2.266957 / 1.468490 (0.798467) | 0.698647 / 4.584777 (-3.886129) | 3.389317 / 3.745712 (-0.356395) | 1.862315 / 5.269862 (-3.407546) | 1.160931 / 4.565676 (-3.404746) | 0.082829 / 0.424275 (-0.341446) | 0.012627 / 0.007607 (0.005020) | 0.568027 / 0.226044 (0.341983) | 5.683220 / 2.268929 (3.414291) | 2.865701 / 55.444624 (-52.578924) | 2.522401 / 6.876477 (-4.354076) | 2.542395 / 2.142072 (0.400323) | 0.801224 / 4.805227 (-4.004003) | 0.149946 / 6.500664 (-6.350718) | 0.065447 / 0.075469 (-0.010023) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.283756 / 1.841788 (-0.558032) | 13.903662 / 8.074308 (5.829354) | 13.238389 / 10.191392 (3.046997) | 0.142304 / 0.680424 (-0.538120) | 0.016922 / 0.534201 (-0.517279) | 0.377797 / 0.579283 (-0.201487) | 0.382460 / 0.434364 (-0.051904) | 0.464645 / 0.540337 (-0.075692) | 0.556270 / 1.386936 (-0.830666) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#675cf2910c5e6f083ed6664a7bffba9a58f78309 \"CML watermark\")\n", "> I think this would be more of a Conceptual Guide doc since this is more explanatory and compares the differences between a Dataset and an IterableDataset\r\n\r\nsounds good to me !\r\n\r\n> There are definitely places in the docs where we can add a nice and link to this doc though to build up the user's understanding of this topic. For example, in the Know your dataset [tutorial](https://huggingface.co/docs/datasets/access), we only introduce the regular Dataset object and not the IterableDataset. We can add a section there for IterableDataset and then link to this doc that explains the difference between the two 🙂\r\n\r\ngood idea, thanks :)", "I'll open a PR to add a section on `IterableDataset`'s in the tutorial, and once you're done editing this doc I can give it a final polish! 😄 ", "I moved the doc page to conceptual guides and took your suggestions into account :)\r\n\r\nI think this is ready for final review now", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009890 / 0.011353 (-0.001463) | 0.005156 / 0.011008 (-0.005852) | 0.099493 / 0.038508 (0.060984) | 0.036671 / 0.023109 (0.013562) | 0.304686 / 0.275898 (0.028788) | 0.339070 / 0.323480 (0.015590) | 0.008466 / 0.007986 (0.000481) | 0.005863 / 0.004328 (0.001534) | 0.075082 / 0.004250 (0.070832) | 0.045926 / 0.037052 (0.008874) | 0.303157 / 0.258489 (0.044668) | 0.363710 / 0.293841 (0.069870) | 0.038497 / 0.128546 (-0.090049) | 0.012063 / 0.075646 (-0.063583) | 0.334463 / 0.419271 (-0.084808) | 0.048161 / 0.043533 (0.004628) | 0.300431 / 0.255139 (0.045292) | 0.330344 / 0.283200 (0.047145) | 0.105509 / 0.141683 (-0.036174) | 1.475242 / 1.452155 (0.023087) | 1.550624 / 1.492716 (0.057908) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.245749 / 0.018006 (0.227743) | 0.575091 / 0.000490 (0.574601) | 0.001556 / 0.000200 (0.001357) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030447 / 0.037411 (-0.006964) | 0.110982 / 0.014526 (0.096456) | 0.126760 / 0.176557 (-0.049797) | 0.173375 / 0.737135 (-0.563760) | 0.128799 / 0.296338 (-0.167539) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.392861 / 0.215209 (0.177651) | 3.911231 / 2.077655 (1.833576) | 1.757413 / 1.504120 (0.253293) | 1.563287 / 1.541195 (0.022093) | 1.658678 / 1.468490 (0.190188) | 0.677244 / 4.584777 (-3.907533) | 3.754917 / 3.745712 (0.009205) | 3.779417 / 5.269862 (-1.490444) | 1.993159 / 4.565676 (-2.572517) | 0.084425 / 0.424275 (-0.339850) | 0.012500 / 0.007607 (0.004893) | 0.501788 / 0.226044 (0.275743) | 5.003173 / 2.268929 (2.734244) | 2.273547 / 55.444624 (-53.171077) | 1.909766 / 6.876477 (-4.966711) | 1.968287 / 2.142072 (-0.173785) | 0.834895 / 4.805227 (-3.970332) | 0.165312 / 6.500664 (-6.335352) | 0.062202 / 0.075469 (-0.013267) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.203080 / 1.841788 (-0.638708) | 15.158284 / 8.074308 (7.083976) | 14.174484 / 10.191392 (3.983092) | 0.171540 / 0.680424 (-0.508883) | 0.028604 / 0.534201 (-0.505597) | 0.438379 / 0.579283 (-0.140904) | 0.429447 / 0.434364 (-0.004917) | 0.540979 / 0.540337 (0.000642) | 0.630322 / 1.386936 (-0.756614) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007600 / 0.011353 (-0.003753) | 0.005400 / 0.011008 (-0.005608) | 0.097983 / 0.038508 (0.059475) | 0.033407 / 0.023109 (0.010297) | 0.384429 / 0.275898 (0.108531) | 0.415880 / 0.323480 (0.092400) | 0.006085 / 0.007986 (-0.001900) | 0.004330 / 0.004328 (0.000002) | 0.074654 / 0.004250 (0.070403) | 0.053076 / 0.037052 (0.016024) | 0.383958 / 0.258489 (0.125469) | 0.427289 / 0.293841 (0.133448) | 0.036710 / 0.128546 (-0.091836) | 0.012400 / 0.075646 (-0.063246) | 0.332712 / 0.419271 (-0.086560) | 0.058390 / 0.043533 (0.014857) | 0.377747 / 0.255139 (0.122608) | 0.398997 / 0.283200 (0.115798) | 0.117370 / 0.141683 (-0.024313) | 1.464211 / 1.452155 (0.012057) | 1.596465 / 1.492716 (0.103749) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212989 / 0.018006 (0.194983) | 0.554968 / 0.000490 (0.554479) | 0.004305 / 0.000200 (0.004105) | 0.000116 / 0.000054 (0.000061) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029167 / 0.037411 (-0.008244) | 0.109156 / 0.014526 (0.094631) | 0.122575 / 0.176557 (-0.053982) | 0.163058 / 0.737135 (-0.574077) | 0.127431 / 0.296338 (-0.168908) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.445395 / 0.215209 (0.230185) | 4.447534 / 2.077655 (2.369879) | 2.259186 / 1.504120 (0.755066) | 2.082956 / 1.541195 (0.541761) | 2.259126 / 1.468490 (0.790636) | 0.692271 / 4.584777 (-3.892506) | 3.795759 / 3.745712 (0.050047) | 3.603000 / 5.269862 (-1.666862) | 1.948556 / 4.565676 (-2.617120) | 0.084589 / 0.424275 (-0.339687) | 0.012751 / 0.007607 (0.005144) | 0.544783 / 0.226044 (0.318738) | 5.452278 / 2.268929 (3.183349) | 2.809467 / 55.444624 (-52.635157) | 2.479297 / 6.876477 (-4.397180) | 2.587756 / 2.142072 (0.445683) | 0.832258 / 4.805227 (-3.972970) | 0.167424 / 6.500664 (-6.333240) | 0.066064 / 0.075469 (-0.009405) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.262719 / 1.841788 (-0.579069) | 15.917869 / 8.074308 (7.843561) | 13.879301 / 10.191392 (3.687909) | 0.187712 / 0.680424 (-0.492712) | 0.018175 / 0.534201 (-0.516026) | 0.425840 / 0.579283 (-0.153443) | 0.426164 / 0.434364 (-0.008200) | 0.527465 / 0.540337 (-0.012872) | 0.629478 / 1.386936 (-0.757458) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5f7e178d6373e7d66a60662a22fd60af117f0885 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009064 / 0.011353 (-0.002289) | 0.004824 / 0.011008 (-0.006184) | 0.100869 / 0.038508 (0.062361) | 0.030803 / 0.023109 (0.007694) | 0.350880 / 0.275898 (0.074982) | 0.423816 / 0.323480 (0.100336) | 0.007581 / 0.007986 (-0.000405) | 0.003642 / 0.004328 (-0.000686) | 0.077682 / 0.004250 (0.073432) | 0.039856 / 0.037052 (0.002803) | 0.366097 / 0.258489 (0.107608) | 0.409226 / 0.293841 (0.115385) | 0.033698 / 0.128546 (-0.094848) | 0.011730 / 0.075646 (-0.063916) | 0.321683 / 0.419271 (-0.097588) | 0.041794 / 0.043533 (-0.001739) | 0.351175 / 0.255139 (0.096036) | 0.374328 / 0.283200 (0.091128) | 0.091833 / 0.141683 (-0.049850) | 1.507082 / 1.452155 (0.054927) | 1.543289 / 1.492716 (0.050572) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.010670 / 0.018006 (-0.007337) | 0.429674 / 0.000490 (0.429184) | 0.003246 / 0.000200 (0.003046) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025015 / 0.037411 (-0.012397) | 0.102155 / 0.014526 (0.087629) | 0.107010 / 0.176557 (-0.069546) | 0.144265 / 0.737135 (-0.592870) | 0.110635 / 0.296338 (-0.185703) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.414211 / 0.215209 (0.199002) | 4.125582 / 2.077655 (2.047928) | 1.997856 / 1.504120 (0.493736) | 1.847676 / 1.541195 (0.306481) | 1.994100 / 1.468490 (0.525610) | 0.694975 / 4.584777 (-3.889802) | 3.373629 / 3.745712 (-0.372083) | 2.863255 / 5.269862 (-2.406606) | 1.565723 / 4.565676 (-2.999953) | 0.082539 / 0.424275 (-0.341736) | 0.012650 / 0.007607 (0.005043) | 0.522989 / 0.226044 (0.296945) | 5.205720 / 2.268929 (2.936792) | 2.352292 / 55.444624 (-53.092332) | 2.080467 / 6.876477 (-4.796010) | 2.231014 / 2.142072 (0.088942) | 0.811252 / 4.805227 (-3.993975) | 0.149171 / 6.500664 (-6.351493) | 0.065207 / 0.075469 (-0.010262) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.203137 / 1.841788 (-0.638651) | 14.244903 / 8.074308 (6.170595) | 14.454368 / 10.191392 (4.262976) | 0.139090 / 0.680424 (-0.541334) | 0.028738 / 0.534201 (-0.505463) | 0.396394 / 0.579283 (-0.182889) | 0.407207 / 0.434364 (-0.027156) | 0.478036 / 0.540337 (-0.062302) | 0.568488 / 1.386936 (-0.818448) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006878 / 0.011353 (-0.004475) | 0.004636 / 0.011008 (-0.006372) | 0.099118 / 0.038508 (0.060610) | 0.028076 / 0.023109 (0.004967) | 0.416097 / 0.275898 (0.140199) | 0.451722 / 0.323480 (0.128242) | 0.005364 / 0.007986 (-0.002622) | 0.003506 / 0.004328 (-0.000822) | 0.075791 / 0.004250 (0.071541) | 0.041373 / 0.037052 (0.004321) | 0.416358 / 0.258489 (0.157869) | 0.458440 / 0.293841 (0.164599) | 0.031870 / 0.128546 (-0.096676) | 0.011751 / 0.075646 (-0.063896) | 0.321748 / 0.419271 (-0.097524) | 0.041780 / 0.043533 (-0.001752) | 0.425037 / 0.255139 (0.169898) | 0.444169 / 0.283200 (0.160969) | 0.093145 / 0.141683 (-0.048538) | 1.472151 / 1.452155 (0.019996) | 1.542942 / 1.492716 (0.050226) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224287 / 0.018006 (0.206281) | 0.415303 / 0.000490 (0.414813) | 0.003180 / 0.000200 (0.002980) | 0.000082 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026377 / 0.037411 (-0.011035) | 0.106222 / 0.014526 (0.091696) | 0.113873 / 0.176557 (-0.062684) | 0.143255 / 0.737135 (-0.593880) | 0.112642 / 0.296338 (-0.183697) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.444149 / 0.215209 (0.228940) | 4.421434 / 2.077655 (2.343779) | 2.082198 / 1.504120 (0.578078) | 1.879909 / 1.541195 (0.338715) | 1.968526 / 1.468490 (0.500036) | 0.697230 / 4.584777 (-3.887546) | 3.430800 / 3.745712 (-0.314912) | 1.893353 / 5.269862 (-3.376509) | 1.173271 / 4.565676 (-3.392406) | 0.082636 / 0.424275 (-0.341639) | 0.012357 / 0.007607 (0.004750) | 0.544008 / 0.226044 (0.317964) | 5.465472 / 2.268929 (3.196543) | 2.530017 / 55.444624 (-52.914608) | 2.178462 / 6.876477 (-4.698014) | 2.279570 / 2.142072 (0.137498) | 0.804890 / 4.805227 (-4.000337) | 0.152091 / 6.500664 (-6.348573) | 0.069442 / 0.075469 (-0.006027) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256722 / 1.841788 (-0.585065) | 14.554131 / 8.074308 (6.479823) | 13.499913 / 10.191392 (3.308521) | 0.144350 / 0.680424 (-0.536074) | 0.016977 / 0.534201 (-0.517224) | 0.378836 / 0.579283 (-0.200447) | 0.392004 / 0.434364 (-0.042360) | 0.468423 / 0.540337 (-0.071914) | 0.584711 / 1.386936 (-0.802225) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1e4894fcdf2a82b3355bb6a2dc5557c8e23f8144 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008542 / 0.011353 (-0.002811) | 0.004552 / 0.011008 (-0.006456) | 0.100543 / 0.038508 (0.062035) | 0.029717 / 0.023109 (0.006608) | 0.301948 / 0.275898 (0.026050) | 0.360211 / 0.323480 (0.036731) | 0.006881 / 0.007986 (-0.001105) | 0.003433 / 0.004328 (-0.000896) | 0.077760 / 0.004250 (0.073510) | 0.037069 / 0.037052 (0.000017) | 0.314084 / 0.258489 (0.055595) | 0.347759 / 0.293841 (0.053918) | 0.033255 / 0.128546 (-0.095291) | 0.011487 / 0.075646 (-0.064160) | 0.323873 / 0.419271 (-0.095399) | 0.041203 / 0.043533 (-0.002330) | 0.298397 / 0.255139 (0.043258) | 0.327174 / 0.283200 (0.043974) | 0.088892 / 0.141683 (-0.052791) | 1.560114 / 1.452155 (0.107959) | 1.532475 / 1.492716 (0.039759) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226080 / 0.018006 (0.208074) | 0.467492 / 0.000490 (0.467003) | 0.002198 / 0.000200 (0.001998) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023627 / 0.037411 (-0.013784) | 0.096696 / 0.014526 (0.082170) | 0.106196 / 0.176557 (-0.070360) | 0.140496 / 0.737135 (-0.596639) | 0.108859 / 0.296338 (-0.187480) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422335 / 0.215209 (0.207126) | 4.214879 / 2.077655 (2.137224) | 1.865866 / 1.504120 (0.361747) | 1.660914 / 1.541195 (0.119719) | 1.691869 / 1.468490 (0.223379) | 0.688164 / 4.584777 (-3.896613) | 3.432708 / 3.745712 (-0.313004) | 1.856852 / 5.269862 (-3.413010) | 1.243685 / 4.565676 (-3.321991) | 0.081552 / 0.424275 (-0.342723) | 0.012491 / 0.007607 (0.004884) | 0.524331 / 0.226044 (0.298287) | 5.255090 / 2.268929 (2.986162) | 2.269705 / 55.444624 (-53.174919) | 1.936722 / 6.876477 (-4.939755) | 2.018958 / 2.142072 (-0.123114) | 0.800658 / 4.805227 (-4.004569) | 0.148665 / 6.500664 (-6.351999) | 0.064210 / 0.075469 (-0.011259) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.235422 / 1.841788 (-0.606365) | 14.156755 / 8.074308 (6.082447) | 14.005916 / 10.191392 (3.814524) | 0.150983 / 0.680424 (-0.529441) | 0.028500 / 0.534201 (-0.505701) | 0.393013 / 0.579283 (-0.186270) | 0.408191 / 0.434364 (-0.026173) | 0.481017 / 0.540337 (-0.059320) | 0.581711 / 1.386936 (-0.805225) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006950 / 0.011353 (-0.004403) | 0.004575 / 0.011008 (-0.006434) | 0.076702 / 0.038508 (0.038194) | 0.028050 / 0.023109 (0.004941) | 0.342916 / 0.275898 (0.067018) | 0.378861 / 0.323480 (0.055381) | 0.005315 / 0.007986 (-0.002671) | 0.004822 / 0.004328 (0.000494) | 0.075560 / 0.004250 (0.071310) | 0.040441 / 0.037052 (0.003388) | 0.344284 / 0.258489 (0.085795) | 0.386519 / 0.293841 (0.092678) | 0.032122 / 0.128546 (-0.096424) | 0.011843 / 0.075646 (-0.063803) | 0.085798 / 0.419271 (-0.333473) | 0.043027 / 0.043533 (-0.000506) | 0.342910 / 0.255139 (0.087771) | 0.366618 / 0.283200 (0.083418) | 0.094766 / 0.141683 (-0.046917) | 1.492981 / 1.452155 (0.040827) | 1.566994 / 1.492716 (0.074278) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.166083 / 0.018006 (0.148076) | 0.409315 / 0.000490 (0.408826) | 0.003189 / 0.000200 (0.002989) | 0.000127 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024753 / 0.037411 (-0.012658) | 0.099112 / 0.014526 (0.084586) | 0.106668 / 0.176557 (-0.069889) | 0.142562 / 0.737135 (-0.594573) | 0.110648 / 0.296338 (-0.185690) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.452668 / 0.215209 (0.237459) | 4.501188 / 2.077655 (2.423534) | 2.086197 / 1.504120 (0.582077) | 1.873955 / 1.541195 (0.332761) | 1.935610 / 1.468490 (0.467120) | 0.708290 / 4.584777 (-3.876487) | 3.426986 / 3.745712 (-0.318726) | 2.805852 / 5.269862 (-2.464009) | 1.516918 / 4.565676 (-3.048759) | 0.084067 / 0.424275 (-0.340208) | 0.012776 / 0.007607 (0.005169) | 0.548853 / 0.226044 (0.322809) | 5.488198 / 2.268929 (3.219270) | 2.704464 / 55.444624 (-52.740161) | 2.377817 / 6.876477 (-4.498660) | 2.366152 / 2.142072 (0.224079) | 0.818192 / 4.805227 (-3.987035) | 0.152649 / 6.500664 (-6.348015) | 0.066914 / 0.075469 (-0.008555) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.273803 / 1.841788 (-0.567985) | 14.071633 / 8.074308 (5.997325) | 13.655586 / 10.191392 (3.464194) | 0.149471 / 0.680424 (-0.530953) | 0.016745 / 0.534201 (-0.517456) | 0.386850 / 0.579283 (-0.192434) | 0.393595 / 0.434364 (-0.040769) | 0.480396 / 0.540337 (-0.059942) | 0.573708 / 1.386936 (-0.813228) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8b2c7de67b326a635c0dc39ea5dd1ae982c958d6 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008173 / 0.011353 (-0.003180) | 0.004461 / 0.011008 (-0.006547) | 0.100284 / 0.038508 (0.061776) | 0.028900 / 0.023109 (0.005791) | 0.293639 / 0.275898 (0.017741) | 0.359450 / 0.323480 (0.035971) | 0.007567 / 0.007986 (-0.000418) | 0.003434 / 0.004328 (-0.000894) | 0.077913 / 0.004250 (0.073663) | 0.036313 / 0.037052 (-0.000740) | 0.308484 / 0.258489 (0.049995) | 0.347575 / 0.293841 (0.053734) | 0.033367 / 0.128546 (-0.095179) | 0.011508 / 0.075646 (-0.064138) | 0.323490 / 0.419271 (-0.095782) | 0.042285 / 0.043533 (-0.001248) | 0.295696 / 0.255139 (0.040557) | 0.332475 / 0.283200 (0.049276) | 0.089980 / 0.141683 (-0.051703) | 1.461851 / 1.452155 (0.009697) | 1.493030 / 1.492716 (0.000314) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191068 / 0.018006 (0.173062) | 0.396768 / 0.000490 (0.396278) | 0.002355 / 0.000200 (0.002155) | 0.000080 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023117 / 0.037411 (-0.014294) | 0.096155 / 0.014526 (0.081630) | 0.102424 / 0.176557 (-0.074132) | 0.142148 / 0.737135 (-0.594987) | 0.105954 / 0.296338 (-0.190384) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421227 / 0.215209 (0.206018) | 4.200403 / 2.077655 (2.122748) | 1.899410 / 1.504120 (0.395290) | 1.684091 / 1.541195 (0.142896) | 1.698084 / 1.468490 (0.229594) | 0.696195 / 4.584777 (-3.888582) | 3.364116 / 3.745712 (-0.381596) | 1.899133 / 5.269862 (-3.370728) | 1.281405 / 4.565676 (-3.284272) | 0.082958 / 0.424275 (-0.341317) | 0.012433 / 0.007607 (0.004826) | 0.521856 / 0.226044 (0.295812) | 5.217626 / 2.268929 (2.948698) | 2.309228 / 55.444624 (-53.135396) | 1.956828 / 6.876477 (-4.919648) | 2.018964 / 2.142072 (-0.123108) | 0.816855 / 4.805227 (-3.988373) | 0.152867 / 6.500664 (-6.347798) | 0.064764 / 0.075469 (-0.010705) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.219020 / 1.841788 (-0.622768) | 13.509058 / 8.074308 (5.434750) | 13.637826 / 10.191392 (3.446434) | 0.156620 / 0.680424 (-0.523804) | 0.028518 / 0.534201 (-0.505683) | 0.399138 / 0.579283 (-0.180146) | 0.399931 / 0.434364 (-0.034433) | 0.482902 / 0.540337 (-0.057435) | 0.574089 / 1.386936 (-0.812847) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006232 / 0.011353 (-0.005121) | 0.004467 / 0.011008 (-0.006542) | 0.075494 / 0.038508 (0.036986) | 0.026891 / 0.023109 (0.003782) | 0.356603 / 0.275898 (0.080705) | 0.371977 / 0.323480 (0.048497) | 0.004709 / 0.007986 (-0.003276) | 0.003230 / 0.004328 (-0.001099) | 0.074338 / 0.004250 (0.070088) | 0.035588 / 0.037052 (-0.001464) | 0.349554 / 0.258489 (0.091065) | 0.389672 / 0.293841 (0.095831) | 0.031524 / 0.128546 (-0.097022) | 0.011493 / 0.075646 (-0.064153) | 0.084584 / 0.419271 (-0.334688) | 0.041945 / 0.043533 (-0.001588) | 0.341057 / 0.255139 (0.085918) | 0.367876 / 0.283200 (0.084677) | 0.090113 / 0.141683 (-0.051569) | 1.507104 / 1.452155 (0.054949) | 1.567810 / 1.492716 (0.075094) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.210939 / 0.018006 (0.192933) | 0.392600 / 0.000490 (0.392110) | 0.002188 / 0.000200 (0.001988) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024294 / 0.037411 (-0.013118) | 0.100325 / 0.014526 (0.085799) | 0.104027 / 0.176557 (-0.072530) | 0.141189 / 0.737135 (-0.595947) | 0.107438 / 0.296338 (-0.188901) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443314 / 0.215209 (0.228105) | 4.429612 / 2.077655 (2.351957) | 2.129275 / 1.504120 (0.625156) | 1.940016 / 1.541195 (0.398821) | 2.008975 / 1.468490 (0.540485) | 0.695434 / 4.584777 (-3.889343) | 3.355137 / 3.745712 (-0.390575) | 2.606262 / 5.269862 (-2.663600) | 1.451283 / 4.565676 (-3.114394) | 0.082875 / 0.424275 (-0.341400) | 0.012398 / 0.007607 (0.004791) | 0.544262 / 0.226044 (0.318218) | 5.450829 / 2.268929 (3.181900) | 2.582074 / 55.444624 (-52.862550) | 2.220037 / 6.876477 (-4.656439) | 2.232473 / 2.142072 (0.090401) | 0.802094 / 4.805227 (-4.003134) | 0.150188 / 6.500664 (-6.350476) | 0.066543 / 0.075469 (-0.008926) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.269098 / 1.841788 (-0.572690) | 13.764780 / 8.074308 (5.690472) | 13.461490 / 10.191392 (3.270098) | 0.143841 / 0.680424 (-0.536583) | 0.016687 / 0.534201 (-0.517514) | 0.388548 / 0.579283 (-0.190736) | 0.385229 / 0.434364 (-0.049135) | 0.478966 / 0.540337 (-0.061371) | 0.570355 / 1.386936 (-0.816581) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0ba81f5b299f0918cb0c0c071412feadd0ea3ef5 \"CML watermark\")\n", "I took your comments into account :)\r\n\r\n> Regarding the docs, I think it would be better to add this info as notes/tips/sections to the existing docs (Process/Stream; e.g. a tip under Dataset.shuffle that explains how to make this operation more performant by using to_iterable + shuffle, etc.) rather than introducing a new doc page.\r\n\r\nI added a paragraph in the Dataset.shuffle docstring, and a note in the Process doc page", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010906 / 0.011353 (-0.000447) | 0.005995 / 0.011008 (-0.005014) | 0.120183 / 0.038508 (0.081675) | 0.042166 / 0.023109 (0.019057) | 0.350945 / 0.275898 (0.075046) | 0.433055 / 0.323480 (0.109575) | 0.009093 / 0.007986 (0.001107) | 0.004695 / 0.004328 (0.000366) | 0.090362 / 0.004250 (0.086112) | 0.051402 / 0.037052 (0.014350) | 0.368677 / 0.258489 (0.110188) | 0.410926 / 0.293841 (0.117086) | 0.044471 / 0.128546 (-0.084075) | 0.014051 / 0.075646 (-0.061595) | 0.397765 / 0.419271 (-0.021507) | 0.057227 / 0.043533 (0.013694) | 0.357587 / 0.255139 (0.102448) | 0.377470 / 0.283200 (0.094270) | 0.119482 / 0.141683 (-0.022201) | 1.719799 / 1.452155 (0.267645) | 1.758228 / 1.492716 (0.265511) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224385 / 0.018006 (0.206379) | 0.505070 / 0.000490 (0.504580) | 0.004863 / 0.000200 (0.004663) | 0.000379 / 0.000054 (0.000324) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030366 / 0.037411 (-0.007046) | 0.130481 / 0.014526 (0.115955) | 0.136429 / 0.176557 (-0.040128) | 0.182263 / 0.737135 (-0.554872) | 0.142871 / 0.296338 (-0.153468) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.467623 / 0.215209 (0.252414) | 4.665522 / 2.077655 (2.587868) | 2.130885 / 1.504120 (0.626766) | 1.903810 / 1.541195 (0.362615) | 2.019077 / 1.468490 (0.550587) | 0.820868 / 4.584777 (-3.763909) | 4.543118 / 3.745712 (0.797406) | 2.491541 / 5.269862 (-2.778321) | 1.585377 / 4.565676 (-2.980299) | 0.101850 / 0.424275 (-0.322426) | 0.014737 / 0.007607 (0.007129) | 0.597241 / 0.226044 (0.371197) | 5.938445 / 2.268929 (3.669516) | 2.695799 / 55.444624 (-52.748825) | 2.286890 / 6.876477 (-4.589587) | 2.363064 / 2.142072 (0.220991) | 0.986670 / 4.805227 (-3.818557) | 0.194407 / 6.500664 (-6.306257) | 0.074767 / 0.075469 (-0.000702) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.420630 / 1.841788 (-0.421158) | 17.537702 / 8.074308 (9.463394) | 16.521804 / 10.191392 (6.330412) | 0.173622 / 0.680424 (-0.506802) | 0.033944 / 0.534201 (-0.500257) | 0.520461 / 0.579283 (-0.058822) | 0.541283 / 0.434364 (0.106919) | 0.651906 / 0.540337 (0.111569) | 0.771724 / 1.386936 (-0.615212) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008448 / 0.011353 (-0.002905) | 0.005893 / 0.011008 (-0.005115) | 0.087995 / 0.038508 (0.049487) | 0.038602 / 0.023109 (0.015493) | 0.400048 / 0.275898 (0.124150) | 0.436998 / 0.323480 (0.113518) | 0.006414 / 0.007986 (-0.001572) | 0.004478 / 0.004328 (0.000149) | 0.086444 / 0.004250 (0.082194) | 0.056535 / 0.037052 (0.019483) | 0.402066 / 0.258489 (0.143577) | 0.458730 / 0.293841 (0.164889) | 0.041622 / 0.128546 (-0.086924) | 0.014014 / 0.075646 (-0.061632) | 0.101382 / 0.419271 (-0.317889) | 0.056986 / 0.043533 (0.013453) | 0.404527 / 0.255139 (0.149388) | 0.428105 / 0.283200 (0.144906) | 0.118321 / 0.141683 (-0.023361) | 1.716940 / 1.452155 (0.264785) | 1.834683 / 1.492716 (0.341967) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.252917 / 0.018006 (0.234910) | 0.485950 / 0.000490 (0.485461) | 0.000489 / 0.000200 (0.000289) | 0.000066 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035023 / 0.037411 (-0.002388) | 0.139055 / 0.014526 (0.124529) | 0.144165 / 0.176557 (-0.032392) | 0.189559 / 0.737135 (-0.547577) | 0.153213 / 0.296338 (-0.143126) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.505069 / 0.215209 (0.289860) | 5.024620 / 2.077655 (2.946965) | 2.429469 / 1.504120 (0.925349) | 2.186210 / 1.541195 (0.645015) | 2.275971 / 1.468490 (0.807481) | 0.829432 / 4.584777 (-3.755345) | 4.518600 / 3.745712 (0.772888) | 2.466418 / 5.269862 (-2.803443) | 1.558910 / 4.565676 (-3.006767) | 0.102017 / 0.424275 (-0.322258) | 0.015191 / 0.007607 (0.007584) | 0.619092 / 0.226044 (0.393048) | 6.241105 / 2.268929 (3.972176) | 3.044213 / 55.444624 (-52.400411) | 2.630194 / 6.876477 (-4.246282) | 2.723685 / 2.142072 (0.581613) | 0.994018 / 4.805227 (-3.811210) | 0.198722 / 6.500664 (-6.301942) | 0.075812 / 0.075469 (0.000343) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.545497 / 1.841788 (-0.296291) | 18.305250 / 8.074308 (10.230942) | 16.035275 / 10.191392 (5.843883) | 0.209339 / 0.680424 (-0.471085) | 0.020903 / 0.534201 (-0.513298) | 0.499909 / 0.579283 (-0.079374) | 0.488775 / 0.434364 (0.054411) | 0.581990 / 0.540337 (0.041653) | 0.697786 / 1.386936 (-0.689150) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#78dca62e8aaddb9e0cf0212841f2c8d861fe74c8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011706 / 0.011353 (0.000353) | 0.008406 / 0.011008 (-0.002602) | 0.130887 / 0.038508 (0.092379) | 0.037468 / 0.023109 (0.014359) | 0.385043 / 0.275898 (0.109145) | 0.458837 / 0.323480 (0.135357) | 0.013400 / 0.007986 (0.005414) | 0.004885 / 0.004328 (0.000557) | 0.107156 / 0.004250 (0.102905) | 0.046958 / 0.037052 (0.009906) | 0.419314 / 0.258489 (0.160825) | 0.456061 / 0.293841 (0.162220) | 0.058859 / 0.128546 (-0.069687) | 0.016682 / 0.075646 (-0.058965) | 0.428401 / 0.419271 (0.009129) | 0.062908 / 0.043533 (0.019376) | 0.370902 / 0.255139 (0.115763) | 0.433897 / 0.283200 (0.150697) | 0.125672 / 0.141683 (-0.016011) | 1.818279 / 1.452155 (0.366124) | 1.935767 / 1.492716 (0.443050) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.011928 / 0.018006 (-0.006078) | 0.591995 / 0.000490 (0.591506) | 0.008416 / 0.000200 (0.008216) | 0.000122 / 0.000054 (0.000067) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029640 / 0.037411 (-0.007772) | 0.121044 / 0.014526 (0.106518) | 0.141840 / 0.176557 (-0.034716) | 0.195856 / 0.737135 (-0.541280) | 0.146460 / 0.296338 (-0.149879) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.591838 / 0.215209 (0.376629) | 5.817309 / 2.077655 (3.739654) | 2.411864 / 1.504120 (0.907744) | 2.098517 / 1.541195 (0.557323) | 2.214609 / 1.468490 (0.746119) | 1.217542 / 4.584777 (-3.367235) | 5.658394 / 3.745712 (1.912682) | 5.155807 / 5.269862 (-0.114055) | 2.797313 / 4.565676 (-1.768363) | 0.141309 / 0.424275 (-0.282967) | 0.014462 / 0.007607 (0.006855) | 0.772274 / 0.226044 (0.546230) | 7.547357 / 2.268929 (5.278429) | 3.150178 / 55.444624 (-52.294446) | 2.500130 / 6.876477 (-4.376347) | 2.572036 / 2.142072 (0.429964) | 1.434498 / 4.805227 (-3.370729) | 0.257355 / 6.500664 (-6.243309) | 0.087491 / 0.075469 (0.012022) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.483899 / 1.841788 (-0.357889) | 17.990741 / 8.074308 (9.916433) | 20.398965 / 10.191392 (10.207573) | 0.239529 / 0.680424 (-0.440895) | 0.046118 / 0.534201 (-0.488083) | 0.528349 / 0.579283 (-0.050934) | 0.614333 / 0.434364 (0.179969) | 0.653621 / 0.540337 (0.113284) | 0.794654 / 1.386936 (-0.592282) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008732 / 0.011353 (-0.002621) | 0.006432 / 0.011008 (-0.004576) | 0.090811 / 0.038508 (0.052303) | 0.030154 / 0.023109 (0.007045) | 0.407885 / 0.275898 (0.131987) | 0.452457 / 0.323480 (0.128977) | 0.006966 / 0.007986 (-0.001020) | 0.006449 / 0.004328 (0.002120) | 0.094439 / 0.004250 (0.090188) | 0.050628 / 0.037052 (0.013576) | 0.401815 / 0.258489 (0.143326) | 0.451814 / 0.293841 (0.157973) | 0.047456 / 0.128546 (-0.081090) | 0.019019 / 0.075646 (-0.056628) | 0.112941 / 0.419271 (-0.306331) | 0.057677 / 0.043533 (0.014145) | 0.406160 / 0.255139 (0.151021) | 0.434469 / 0.283200 (0.151269) | 0.110515 / 0.141683 (-0.031167) | 1.601393 / 1.452155 (0.149238) | 1.745581 / 1.492716 (0.252865) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.280264 / 0.018006 (0.262258) | 0.630074 / 0.000490 (0.629585) | 0.006900 / 0.000200 (0.006700) | 0.000112 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027338 / 0.037411 (-0.010073) | 0.114772 / 0.014526 (0.100246) | 0.130436 / 0.176557 (-0.046121) | 0.168990 / 0.737135 (-0.568145) | 0.135842 / 0.296338 (-0.160496) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.666739 / 0.215209 (0.451530) | 6.212953 / 2.077655 (4.135298) | 2.781716 / 1.504120 (1.277596) | 2.369975 / 1.541195 (0.828781) | 2.338807 / 1.468490 (0.870317) | 1.174138 / 4.584777 (-3.410639) | 5.420297 / 3.745712 (1.674585) | 4.972669 / 5.269862 (-0.297192) | 2.214294 / 4.565676 (-2.351382) | 0.135429 / 0.424275 (-0.288846) | 0.013877 / 0.007607 (0.006270) | 0.750805 / 0.226044 (0.524761) | 7.145429 / 2.268929 (4.876500) | 3.215081 / 55.444624 (-52.229544) | 2.598307 / 6.876477 (-4.278170) | 2.690479 / 2.142072 (0.548406) | 1.344673 / 4.805227 (-3.460554) | 0.241536 / 6.500664 (-6.259128) | 0.075544 / 0.075469 (0.000074) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.473595 / 1.841788 (-0.368192) | 17.372237 / 8.074308 (9.297929) | 18.586588 / 10.191392 (8.395196) | 0.209300 / 0.680424 (-0.471124) | 0.030878 / 0.534201 (-0.503323) | 0.509131 / 0.579283 (-0.070152) | 0.617884 / 0.434364 (0.183520) | 0.633721 / 0.540337 (0.093383) | 0.727624 / 1.386936 (-0.659312) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#87f2062d47fdbec3fadf5b39bab0801f59c0f4a3 \"CML watermark\")\n", "Took your last comments into account !\r\n\r\n> so maybe a better title for it would be \"Optimize processing\" (or \"Working with datasets at scale\" as I mentioned earlier on Slack)\r\n\r\nI think the content would be slightly different, e.g. focus more on multiprocessing/sharding or what data formats to use. This can be a complementary page IMO\r\n\r\n> PS: I think it would be a good idea to add links to the Guide pages for better discoverability and to somewhat \"justify their presence in the docs\" (from the tutorial/how-to pages to the guides; some guides are not referenced at all)\r\n\r\nAdded a link in the how-to stream page. We may want to include it in the tutorial at one point at well - right now none of the tutorials mention streaming", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009167 / 0.011353 (-0.002186) | 0.005345 / 0.011008 (-0.005663) | 0.098302 / 0.038508 (0.059794) | 0.035649 / 0.023109 (0.012540) | 0.295597 / 0.275898 (0.019699) | 0.358843 / 0.323480 (0.035364) | 0.008011 / 0.007986 (0.000025) | 0.004229 / 0.004328 (-0.000100) | 0.075123 / 0.004250 (0.070872) | 0.046098 / 0.037052 (0.009046) | 0.310581 / 0.258489 (0.052092) | 0.343230 / 0.293841 (0.049389) | 0.038318 / 0.128546 (-0.090229) | 0.011954 / 0.075646 (-0.063693) | 0.331056 / 0.419271 (-0.088216) | 0.052875 / 0.043533 (0.009342) | 0.302758 / 0.255139 (0.047619) | 0.340596 / 0.283200 (0.057396) | 0.113676 / 0.141683 (-0.028007) | 1.448272 / 1.452155 (-0.003883) | 1.498008 / 1.492716 (0.005291) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.240524 / 0.018006 (0.222518) | 0.555823 / 0.000490 (0.555333) | 0.003143 / 0.000200 (0.002943) | 0.000098 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027764 / 0.037411 (-0.009647) | 0.105006 / 0.014526 (0.090480) | 0.120550 / 0.176557 (-0.056007) | 0.167052 / 0.737135 (-0.570084) | 0.124521 / 0.296338 (-0.171818) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.401758 / 0.215209 (0.186549) | 3.989629 / 2.077655 (1.911974) | 1.767307 / 1.504120 (0.263187) | 1.579451 / 1.541195 (0.038257) | 1.637642 / 1.468490 (0.169152) | 0.702524 / 4.584777 (-3.882253) | 3.714326 / 3.745712 (-0.031386) | 2.131829 / 5.269862 (-3.138033) | 1.487410 / 4.565676 (-3.078267) | 0.084901 / 0.424275 (-0.339374) | 0.012292 / 0.007607 (0.004685) | 0.505211 / 0.226044 (0.279166) | 5.074479 / 2.268929 (2.805551) | 2.243068 / 55.444624 (-53.201556) | 1.880199 / 6.876477 (-4.996278) | 2.003757 / 2.142072 (-0.138315) | 0.870719 / 4.805227 (-3.934508) | 0.167626 / 6.500664 (-6.333039) | 0.062024 / 0.075469 (-0.013445) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.192969 / 1.841788 (-0.648819) | 14.830812 / 8.074308 (6.756504) | 14.331178 / 10.191392 (4.139786) | 0.199222 / 0.680424 (-0.481202) | 0.029292 / 0.534201 (-0.504909) | 0.440427 / 0.579283 (-0.138857) | 0.437893 / 0.434364 (0.003529) | 0.547155 / 0.540337 (0.006818) | 0.645255 / 1.386936 (-0.741681) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007465 / 0.011353 (-0.003888) | 0.005386 / 0.011008 (-0.005622) | 0.073609 / 0.038508 (0.035100) | 0.033550 / 0.023109 (0.010440) | 0.341730 / 0.275898 (0.065832) | 0.371518 / 0.323480 (0.048038) | 0.005986 / 0.007986 (-0.001999) | 0.004264 / 0.004328 (-0.000065) | 0.073749 / 0.004250 (0.069498) | 0.051452 / 0.037052 (0.014399) | 0.347385 / 0.258489 (0.088896) | 0.392284 / 0.293841 (0.098444) | 0.036981 / 0.128546 (-0.091566) | 0.012431 / 0.075646 (-0.063216) | 0.086421 / 0.419271 (-0.332850) | 0.053014 / 0.043533 (0.009481) | 0.336660 / 0.255139 (0.081521) | 0.359155 / 0.283200 (0.075956) | 0.107666 / 0.141683 (-0.034017) | 1.424324 / 1.452155 (-0.027830) | 1.543027 / 1.492716 (0.050310) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.260862 / 0.018006 (0.242855) | 0.552057 / 0.000490 (0.551567) | 0.000449 / 0.000200 (0.000249) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029184 / 0.037411 (-0.008227) | 0.108799 / 0.014526 (0.094274) | 0.125136 / 0.176557 (-0.051421) | 0.157436 / 0.737135 (-0.579699) | 0.126333 / 0.296338 (-0.170005) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424054 / 0.215209 (0.208845) | 4.227847 / 2.077655 (2.150192) | 2.051102 / 1.504120 (0.546983) | 1.848651 / 1.541195 (0.307457) | 1.922728 / 1.468490 (0.454238) | 0.705903 / 4.584777 (-3.878874) | 3.800977 / 3.745712 (0.055265) | 2.099345 / 5.269862 (-3.170517) | 1.342919 / 4.565676 (-3.222757) | 0.086128 / 0.424275 (-0.338147) | 0.012539 / 0.007607 (0.004932) | 0.528767 / 0.226044 (0.302723) | 5.299989 / 2.268929 (3.031061) | 2.534280 / 55.444624 (-52.910345) | 2.229532 / 6.876477 (-4.646945) | 2.326704 / 2.142072 (0.184632) | 0.838533 / 4.805227 (-3.966694) | 0.168446 / 6.500664 (-6.332218) | 0.065158 / 0.075469 (-0.010311) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.250091 / 1.841788 (-0.591697) | 14.988651 / 8.074308 (6.914343) | 13.655103 / 10.191392 (3.463711) | 0.165079 / 0.680424 (-0.515345) | 0.017829 / 0.534201 (-0.516372) | 0.425903 / 0.579283 (-0.153381) | 0.419771 / 0.434364 (-0.014593) | 0.534309 / 0.540337 (-0.006028) | 0.635563 / 1.386936 (-0.751373) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f7d17ccc9b9dde2d94803b1305226c5a58d916c5 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010569 / 0.011353 (-0.000784) | 0.005790 / 0.011008 (-0.005218) | 0.118626 / 0.038508 (0.080118) | 0.040455 / 0.023109 (0.017346) | 0.342309 / 0.275898 (0.066411) | 0.411828 / 0.323480 (0.088349) | 0.008824 / 0.007986 (0.000839) | 0.005426 / 0.004328 (0.001098) | 0.088740 / 0.004250 (0.084489) | 0.050042 / 0.037052 (0.012990) | 0.352350 / 0.258489 (0.093861) | 0.396030 / 0.293841 (0.102189) | 0.043385 / 0.128546 (-0.085162) | 0.013805 / 0.075646 (-0.061841) | 0.396489 / 0.419271 (-0.022783) | 0.055667 / 0.043533 (0.012135) | 0.336165 / 0.255139 (0.081026) | 0.372912 / 0.283200 (0.089713) | 0.115343 / 0.141683 (-0.026340) | 1.656412 / 1.452155 (0.204257) | 1.708993 / 1.492716 (0.216277) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.011650 / 0.018006 (-0.006357) | 0.444415 / 0.000490 (0.443926) | 0.003985 / 0.000200 (0.003785) | 0.000136 / 0.000054 (0.000082) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031718 / 0.037411 (-0.005693) | 0.119640 / 0.014526 (0.105114) | 0.138519 / 0.176557 (-0.038037) | 0.188847 / 0.737135 (-0.548288) | 0.137891 / 0.296338 (-0.158448) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.447540 / 0.215209 (0.232331) | 4.577189 / 2.077655 (2.499534) | 2.106992 / 1.504120 (0.602872) | 1.889631 / 1.541195 (0.348436) | 1.972256 / 1.468490 (0.503766) | 0.778209 / 4.584777 (-3.806568) | 4.430279 / 3.745712 (0.684567) | 2.401226 / 5.269862 (-2.868636) | 1.481251 / 4.565676 (-3.084425) | 0.094244 / 0.424275 (-0.330031) | 0.013961 / 0.007607 (0.006354) | 0.570962 / 0.226044 (0.344917) | 5.809224 / 2.268929 (3.540295) | 2.663290 / 55.444624 (-52.781334) | 2.201228 / 6.876477 (-4.675249) | 2.319240 / 2.142072 (0.177168) | 0.938340 / 4.805227 (-3.866887) | 0.185546 / 6.500664 (-6.315118) | 0.069087 / 0.075469 (-0.006382) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.448597 / 1.841788 (-0.393191) | 17.188573 / 8.074308 (9.114265) | 16.197532 / 10.191392 (6.006140) | 0.194064 / 0.680424 (-0.486360) | 0.033694 / 0.534201 (-0.500507) | 0.507585 / 0.579283 (-0.071699) | 0.505470 / 0.434364 (0.071106) | 0.623270 / 0.540337 (0.082932) | 0.729964 / 1.386936 (-0.656972) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008529 / 0.011353 (-0.002824) | 0.005705 / 0.011008 (-0.005304) | 0.085594 / 0.038508 (0.047086) | 0.038377 / 0.023109 (0.015268) | 0.384221 / 0.275898 (0.108323) | 0.414678 / 0.323480 (0.091199) | 0.006195 / 0.007986 (-0.001791) | 0.004549 / 0.004328 (0.000221) | 0.082710 / 0.004250 (0.078460) | 0.054899 / 0.037052 (0.017847) | 0.404017 / 0.258489 (0.145528) | 0.450309 / 0.293841 (0.156468) | 0.040620 / 0.128546 (-0.087926) | 0.013774 / 0.075646 (-0.061872) | 0.099231 / 0.419271 (-0.320041) | 0.057183 / 0.043533 (0.013650) | 0.390806 / 0.255139 (0.135667) | 0.419334 / 0.283200 (0.136134) | 0.116449 / 0.141683 (-0.025234) | 1.709124 / 1.452155 (0.256969) | 1.812769 / 1.492716 (0.320052) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.225206 / 0.018006 (0.207199) | 0.440530 / 0.000490 (0.440040) | 0.002982 / 0.000200 (0.002782) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032256 / 0.037411 (-0.005155) | 0.127086 / 0.014526 (0.112560) | 0.138133 / 0.176557 (-0.038424) | 0.176168 / 0.737135 (-0.560968) | 0.146072 / 0.296338 (-0.150267) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.474374 / 0.215209 (0.259165) | 4.785106 / 2.077655 (2.707452) | 2.319344 / 1.504120 (0.815225) | 2.075239 / 1.541195 (0.534045) | 2.179231 / 1.468490 (0.710741) | 0.832124 / 4.584777 (-3.752653) | 4.376302 / 3.745712 (0.630590) | 3.966837 / 5.269862 (-1.303024) | 1.820230 / 4.565676 (-2.745446) | 0.100692 / 0.424275 (-0.323583) | 0.014748 / 0.007607 (0.007141) | 0.568702 / 0.226044 (0.342657) | 5.771548 / 2.268929 (3.502619) | 2.747431 / 55.444624 (-52.697193) | 2.448482 / 6.876477 (-4.427994) | 2.497206 / 2.142072 (0.355133) | 0.960842 / 4.805227 (-3.844385) | 0.192855 / 6.500664 (-6.307809) | 0.072494 / 0.075469 (-0.002975) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.474542 / 1.841788 (-0.367245) | 17.344804 / 8.074308 (9.270496) | 15.336082 / 10.191392 (5.144690) | 0.200134 / 0.680424 (-0.480290) | 0.020728 / 0.534201 (-0.513473) | 0.488854 / 0.579283 (-0.090429) | 0.490781 / 0.434364 (0.056418) | 0.626288 / 0.540337 (0.085950) | 0.721130 / 1.386936 (-0.665806) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cd7877892aa48a2470b01f52013390c54aca8a49 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008542 / 0.011353 (-0.002811) | 0.004624 / 0.011008 (-0.006384) | 0.100749 / 0.038508 (0.062241) | 0.029587 / 0.023109 (0.006478) | 0.298680 / 0.275898 (0.022782) | 0.359659 / 0.323480 (0.036180) | 0.007001 / 0.007986 (-0.000984) | 0.003398 / 0.004328 (-0.000930) | 0.078654 / 0.004250 (0.074404) | 0.036440 / 0.037052 (-0.000612) | 0.313245 / 0.258489 (0.054756) | 0.342776 / 0.293841 (0.048936) | 0.033195 / 0.128546 (-0.095352) | 0.011500 / 0.075646 (-0.064146) | 0.323957 / 0.419271 (-0.095314) | 0.039878 / 0.043533 (-0.003655) | 0.298189 / 0.255139 (0.043050) | 0.325488 / 0.283200 (0.042289) | 0.087276 / 0.141683 (-0.054407) | 1.480846 / 1.452155 (0.028691) | 1.507016 / 1.492716 (0.014300) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.189570 / 0.018006 (0.171564) | 0.406407 / 0.000490 (0.405917) | 0.003062 / 0.000200 (0.002862) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022865 / 0.037411 (-0.014546) | 0.096103 / 0.014526 (0.081578) | 0.106462 / 0.176557 (-0.070094) | 0.140888 / 0.737135 (-0.596247) | 0.108172 / 0.296338 (-0.188167) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415951 / 0.215209 (0.200742) | 4.172187 / 2.077655 (2.094532) | 1.842210 / 1.504120 (0.338090) | 1.636997 / 1.541195 (0.095802) | 1.706078 / 1.468490 (0.237588) | 0.695825 / 4.584777 (-3.888952) | 3.337354 / 3.745712 (-0.408358) | 1.877880 / 5.269862 (-3.391982) | 1.153882 / 4.565676 (-3.411794) | 0.082923 / 0.424275 (-0.341352) | 0.012814 / 0.007607 (0.005207) | 0.521793 / 0.226044 (0.295748) | 5.275980 / 2.268929 (3.007051) | 2.279230 / 55.444624 (-53.165394) | 1.941777 / 6.876477 (-4.934700) | 1.981297 / 2.142072 (-0.160775) | 0.809669 / 4.805227 (-3.995558) | 0.148753 / 6.500664 (-6.351911) | 0.064909 / 0.075469 (-0.010560) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.226757 / 1.841788 (-0.615031) | 13.717354 / 8.074308 (5.643046) | 12.925885 / 10.191392 (2.734493) | 0.137926 / 0.680424 (-0.542498) | 0.028788 / 0.534201 (-0.505413) | 0.396654 / 0.579283 (-0.182630) | 0.401931 / 0.434364 (-0.032432) | 0.460515 / 0.540337 (-0.079823) | 0.537903 / 1.386936 (-0.849033) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006757 / 0.011353 (-0.004596) | 0.004474 / 0.011008 (-0.006534) | 0.076571 / 0.038508 (0.038063) | 0.027580 / 0.023109 (0.004471) | 0.348231 / 0.275898 (0.072333) | 0.398403 / 0.323480 (0.074923) | 0.005089 / 0.007986 (-0.002897) | 0.004676 / 0.004328 (0.000347) | 0.076444 / 0.004250 (0.072194) | 0.038508 / 0.037052 (0.001456) | 0.348515 / 0.258489 (0.090026) | 0.401456 / 0.293841 (0.107615) | 0.031630 / 0.128546 (-0.096916) | 0.011698 / 0.075646 (-0.063949) | 0.085805 / 0.419271 (-0.333467) | 0.041962 / 0.043533 (-0.001570) | 0.343415 / 0.255139 (0.088276) | 0.383001 / 0.283200 (0.099801) | 0.090231 / 0.141683 (-0.051452) | 1.488114 / 1.452155 (0.035960) | 1.569039 / 1.492716 (0.076323) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.261751 / 0.018006 (0.243745) | 0.411354 / 0.000490 (0.410865) | 0.015103 / 0.000200 (0.014903) | 0.000262 / 0.000054 (0.000208) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025423 / 0.037411 (-0.011988) | 0.101334 / 0.014526 (0.086808) | 0.108835 / 0.176557 (-0.067722) | 0.143995 / 0.737135 (-0.593140) | 0.111751 / 0.296338 (-0.184588) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.446507 / 0.215209 (0.231298) | 4.461543 / 2.077655 (2.383888) | 2.104648 / 1.504120 (0.600528) | 1.895900 / 1.541195 (0.354706) | 1.985481 / 1.468490 (0.516991) | 0.699029 / 4.584777 (-3.885748) | 3.371064 / 3.745712 (-0.374648) | 1.883445 / 5.269862 (-3.386416) | 1.166150 / 4.565676 (-3.399527) | 0.082639 / 0.424275 (-0.341636) | 0.012605 / 0.007607 (0.004998) | 0.544860 / 0.226044 (0.318815) | 5.513223 / 2.268929 (3.244294) | 2.570661 / 55.444624 (-52.873963) | 2.206066 / 6.876477 (-4.670411) | 2.256346 / 2.142072 (0.114273) | 0.801142 / 4.805227 (-4.004085) | 0.150412 / 6.500664 (-6.350252) | 0.067742 / 0.075469 (-0.007727) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.303477 / 1.841788 (-0.538310) | 14.287767 / 8.074308 (6.213458) | 13.525563 / 10.191392 (3.334171) | 0.148202 / 0.680424 (-0.532222) | 0.016868 / 0.534201 (-0.517333) | 0.380729 / 0.579283 (-0.198555) | 0.388177 / 0.434364 (-0.046187) | 0.477410 / 0.540337 (-0.062927) | 0.569343 / 1.386936 (-0.817593) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#79c18b77113da3f2e31af0570ec119877ca2a390 \"CML watermark\")\n", "> PS: I think it would be a good idea to add links to the Guide pages for better discoverability and to somewhat \"justify their presence in the docs\" (from the tutorial/how-to pages to the guides; some guides are not referenced at all)\r\n\r\nJust merged #5485, which references this new doc! Will look for other pages in the docs where it'd make sense to add them :)" ]
2023-01-05T18:12:17
2023-02-01T18:11:45
2023-02-01T16:36:01
MEMBER
null
Added `ds.to_iterable()` to get an iterable dataset from a map-style arrow dataset. It also has a `num_shards` argument to split the dataset before converting to an iterable dataset. Sharding is important to enable efficient shuffling and parallel loading of iterable datasets. TODO: - [x] tests - [x] docs Fix https://github.com/huggingface/datasets/issues/5265
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5410/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5410/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5410", "html_url": "https://github.com/huggingface/datasets/pull/5410", "diff_url": "https://github.com/huggingface/datasets/pull/5410.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5410.patch", "merged_at": "2023-02-01T16:36:01" }
true
https://api.github.com/repos/huggingface/datasets/issues/5409
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5409/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5409/comments
https://api.github.com/repos/huggingface/datasets/issues/5409/events
https://github.com/huggingface/datasets/pull/5409
1,520,374,219
PR_kwDODunzps5Gs3nL
5,409
Fix deprecation warning when use_auth_token passed to download_and_prepare
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008627 / 0.011353 (-0.002726) | 0.004572 / 0.011008 (-0.006436) | 0.099653 / 0.038508 (0.061145) | 0.030010 / 0.023109 (0.006901) | 0.300492 / 0.275898 (0.024594) | 0.360443 / 0.323480 (0.036963) | 0.007125 / 0.007986 (-0.000860) | 0.003431 / 0.004328 (-0.000897) | 0.078103 / 0.004250 (0.073852) | 0.036884 / 0.037052 (-0.000168) | 0.312289 / 0.258489 (0.053800) | 0.345795 / 0.293841 (0.051954) | 0.034001 / 0.128546 (-0.094545) | 0.011405 / 0.075646 (-0.064242) | 0.321258 / 0.419271 (-0.098013) | 0.040591 / 0.043533 (-0.002942) | 0.301114 / 0.255139 (0.045975) | 0.337226 / 0.283200 (0.054027) | 0.088055 / 0.141683 (-0.053628) | 1.451892 / 1.452155 (-0.000263) | 1.494881 / 1.492716 (0.002164) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.186749 / 0.018006 (0.168743) | 0.414089 / 0.000490 (0.413600) | 0.002475 / 0.000200 (0.002275) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022413 / 0.037411 (-0.014999) | 0.097547 / 0.014526 (0.083021) | 0.104196 / 0.176557 (-0.072361) | 0.139819 / 0.737135 (-0.597316) | 0.108345 / 0.296338 (-0.187994) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424750 / 0.215209 (0.209541) | 4.261513 / 2.077655 (2.183859) | 2.150888 / 1.504120 (0.646768) | 1.935925 / 1.541195 (0.394730) | 1.867456 / 1.468490 (0.398966) | 0.694384 / 4.584777 (-3.890393) | 3.370539 / 3.745712 (-0.375173) | 1.886714 / 5.269862 (-3.383148) | 1.256542 / 4.565676 (-3.309135) | 0.082841 / 0.424275 (-0.341434) | 0.012344 / 0.007607 (0.004737) | 0.529801 / 0.226044 (0.303757) | 5.315438 / 2.268929 (3.046509) | 2.460517 / 55.444624 (-52.984107) | 2.261840 / 6.876477 (-4.614637) | 2.338710 / 2.142072 (0.196638) | 0.818433 / 4.805227 (-3.986794) | 0.150571 / 6.500664 (-6.350093) | 0.066524 / 0.075469 (-0.008945) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.253086 / 1.841788 (-0.588702) | 13.862614 / 8.074308 (5.788306) | 14.145149 / 10.191392 (3.953757) | 0.165867 / 0.680424 (-0.514557) | 0.029269 / 0.534201 (-0.504932) | 0.397579 / 0.579283 (-0.181704) | 0.401113 / 0.434364 (-0.033251) | 0.463269 / 0.540337 (-0.077068) | 0.551494 / 1.386936 (-0.835442) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006610 / 0.011353 (-0.004743) | 0.004583 / 0.011008 (-0.006425) | 0.096680 / 0.038508 (0.058172) | 0.027352 / 0.023109 (0.004242) | 0.409292 / 0.275898 (0.133394) | 0.445790 / 0.323480 (0.122310) | 0.004987 / 0.007986 (-0.002999) | 0.003462 / 0.004328 (-0.000866) | 0.074472 / 0.004250 (0.070221) | 0.037875 / 0.037052 (0.000822) | 0.411496 / 0.258489 (0.153007) | 0.454721 / 0.293841 (0.160880) | 0.031884 / 0.128546 (-0.096662) | 0.011682 / 0.075646 (-0.063964) | 0.318831 / 0.419271 (-0.100441) | 0.041781 / 0.043533 (-0.001752) | 0.411247 / 0.255139 (0.156108) | 0.436215 / 0.283200 (0.153016) | 0.090021 / 0.141683 (-0.051662) | 1.492385 / 1.452155 (0.040231) | 1.565182 / 1.492716 (0.072465) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221263 / 0.018006 (0.203257) | 0.399074 / 0.000490 (0.398584) | 0.000405 / 0.000200 (0.000205) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025139 / 0.037411 (-0.012272) | 0.097952 / 0.014526 (0.083426) | 0.106078 / 0.176557 (-0.070479) | 0.143231 / 0.737135 (-0.593904) | 0.109177 / 0.296338 (-0.187161) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441668 / 0.215209 (0.226459) | 4.403247 / 2.077655 (2.325592) | 2.072749 / 1.504120 (0.568629) | 1.866248 / 1.541195 (0.325053) | 1.906418 / 1.468490 (0.437927) | 0.697234 / 4.584777 (-3.887543) | 3.412016 / 3.745712 (-0.333696) | 1.852572 / 5.269862 (-3.417289) | 1.168270 / 4.565676 (-3.397407) | 0.082132 / 0.424275 (-0.342144) | 0.013191 / 0.007607 (0.005584) | 0.548932 / 0.226044 (0.322888) | 5.503891 / 2.268929 (3.234962) | 2.539784 / 55.444624 (-52.904841) | 2.181292 / 6.876477 (-4.695184) | 2.242197 / 2.142072 (0.100125) | 0.804027 / 4.805227 (-4.001200) | 0.151649 / 6.500664 (-6.349015) | 0.067088 / 0.075469 (-0.008381) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.296267 / 1.841788 (-0.545520) | 13.986484 / 8.074308 (5.912176) | 13.440705 / 10.191392 (3.249313) | 0.140787 / 0.680424 (-0.539637) | 0.017132 / 0.534201 (-0.517069) | 0.381899 / 0.579283 (-0.197384) | 0.385535 / 0.434364 (-0.048829) | 0.439957 / 0.540337 (-0.100380) | 0.532980 / 1.386936 (-0.853956) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n" ]
2023-01-05T09:10:58
2023-01-06T11:06:16
2023-01-06T10:59:13
MEMBER
null
The `DatasetBuilder.download_and_prepare` argument `use_auth_token` was deprecated in: - #5302 However, `use_auth_token` is still passed to `download_and_prepare` in our built-in `io` readers (csv, json, parquet,...). This PR fixes it, so that no deprecation warning is raised. Fix #5407.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5409/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5409/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5409", "html_url": "https://github.com/huggingface/datasets/pull/5409", "diff_url": "https://github.com/huggingface/datasets/pull/5409.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5409.patch", "merged_at": "2023-01-06T10:59:13" }
true
https://api.github.com/repos/huggingface/datasets/issues/5408
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5408/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5408/comments
https://api.github.com/repos/huggingface/datasets/issues/5408/events
https://github.com/huggingface/datasets/issues/5408
1,519,890,752
I_kwDODunzps5al7FA
5,408
dataset map function could not be hash properly
{ "login": "Tungway1990", "id": 68179274, "node_id": "MDQ6VXNlcjY4MTc5Mjc0", "avatar_url": "https://avatars.githubusercontent.com/u/68179274?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Tungway1990", "html_url": "https://github.com/Tungway1990", "followers_url": "https://api.github.com/users/Tungway1990/followers", "following_url": "https://api.github.com/users/Tungway1990/following{/other_user}", "gists_url": "https://api.github.com/users/Tungway1990/gists{/gist_id}", "starred_url": "https://api.github.com/users/Tungway1990/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Tungway1990/subscriptions", "organizations_url": "https://api.github.com/users/Tungway1990/orgs", "repos_url": "https://api.github.com/users/Tungway1990/repos", "events_url": "https://api.github.com/users/Tungway1990/events{/privacy}", "received_events_url": "https://api.github.com/users/Tungway1990/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi ! On macos I tried with\r\n- py 3.9.11\r\n- datasets 2.8.0\r\n- transformers 4.25.1\r\n- dill 0.3.4\r\n\r\nand I was able to hash `prepare_dataset` correctly:\r\n```python\r\nfrom datasets.fingerprint import Hasher\r\nHasher.hash(prepare_dataset)\r\n```\r\n\r\nWhat version of transformers do you have ? Can you try to call `Hasher.hash` on the the tokenizer and the feature extractor to see which one can't be hashed ?", "Thanks for your prompt reply.\r\n\r\nI update datasets version to 2.8.0 and the warning is gong." ]
2023-01-05T01:59:59
2023-01-06T13:22:19
2023-01-06T13:22:18
NONE
null
### Describe the bug I follow the [blog post](https://huggingface.co/blog/fine-tune-whisper#building-a-demo) to finetune a Cantonese transcribe model. When using map function to prepare dataset, following warning pop out: `common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=1)` > Parameter 'function'=<function prepare_dataset at 0x000001D1D9D79A60> of the transform datasets.arrow_dataset.Dataset._map_single couldn't be hashed properly, a random hash was used instead. Make sure your transforms and parameters are serializable with pickle or dill for the dataset fingerprinting and caching to work. If you reuse this transform, the caching mechanism will consider it to be different from the previous calls and recompute everything. This warning is only showed once. Subsequent hashing failures won't be showed. I read https://github.com/huggingface/datasets/issues/4521 and https://github.com/huggingface/datasets/issues/3178 but cannot solve the issue. ### Steps to reproduce the bug ```python from datasets import load_dataset, DatasetDict common_voice = DatasetDict() common_voice["train"] = load_dataset("mozilla-foundation/common_voice_11_0", "zh-HK", split="train+validation") common_voice["test"] = load_dataset("mozilla-foundation/common_voice_11_0", "zh-HK", split="test") common_voice = common_voice.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"]) from transformers import WhisperFeatureExtractor, WhisperTokenizer, WhisperProcessor feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-small") tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small", language="chinese", task="transcribe") processor = WhisperProcessor.from_pretrained("openai/whisper-small", language="chinese", task="transcribe") from datasets import Audio common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000)) def prepare_dataset(batch): # load and resample audio data from 48 to 16kHz audio = batch["audio"] # compute log-Mel input features from input audio array batch["input_features"] = feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0] # encode target text to label ids batch["labels"] = tokenizer(batch["sentence"]).input_ids return batch common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=1) ``` ### Expected behavior Should be no warning shown. ### Environment info - `datasets` version: 2.7.0 - Platform: Windows-10-10.0.19045-SP0 - Python version: 3.9.12 - PyArrow version: 8.0.0 - Pandas version: 1.3.5 - dill version: 0.3.4 - multiprocess version: 0.70.12.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5408/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5408/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5407
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5407/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5407/comments
https://api.github.com/repos/huggingface/datasets/issues/5407/events
https://github.com/huggingface/datasets/issues/5407
1,519,797,345
I_kwDODunzps5alkRh
5,407
Datasets.from_sql() generates deprecation warning
{ "login": "msummerfield", "id": 21002157, "node_id": "MDQ6VXNlcjIxMDAyMTU3", "avatar_url": "https://avatars.githubusercontent.com/u/21002157?v=4", "gravatar_id": "", "url": "https://api.github.com/users/msummerfield", "html_url": "https://github.com/msummerfield", "followers_url": "https://api.github.com/users/msummerfield/followers", "following_url": "https://api.github.com/users/msummerfield/following{/other_user}", "gists_url": "https://api.github.com/users/msummerfield/gists{/gist_id}", "starred_url": "https://api.github.com/users/msummerfield/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/msummerfield/subscriptions", "organizations_url": "https://api.github.com/users/msummerfield/orgs", "repos_url": "https://api.github.com/users/msummerfield/repos", "events_url": "https://api.github.com/users/msummerfield/events{/privacy}", "received_events_url": "https://api.github.com/users/msummerfield/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for reporting @msummerfield. We are fixing it." ]
2023-01-05T00:43:17
2023-01-06T10:59:14
2023-01-06T10:59:14
NONE
null
### Describe the bug Calling `Datasets.from_sql()` generates a warning: `.../site-packages/datasets/builder.py:712: FutureWarning: 'use_auth_token' was deprecated in version 2.7.1 and will be removed in 3.0.0. Pass 'use_auth_token' to the initializer/'load_dataset_builder' instead.` ### Steps to reproduce the bug Any valid call to `Datasets.from_sql()` will produce the deprecation warning. ### Expected behavior No warning. The fix should be simply to remove the parameter `use_auth_token` from the call to `builder.download_and_prepare()` at line 43 of `io/sql.py` (it is set to `None` anyway, and is not needed). ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-4.15.0-169-generic-x86_64-with-glibc2.27 - Python version: 3.9.15 - PyArrow version: 10.0.1 - Pandas version: 1.5.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5407/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5407/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5406
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5406/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5406/comments
https://api.github.com/repos/huggingface/datasets/issues/5406/events
https://github.com/huggingface/datasets/issues/5406
1,519,140,544
I_kwDODunzps5ajD7A
5,406
[2.6.1][2.7.0] Upgrade `datasets` to fix `TypeError: can only concatenate str (not "int") to str`
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "I still get this error on 2.9.0\r\n<img width=\"1925\" alt=\"image\" src=\"https://user-images.githubusercontent.com/7208470/215597359-2f253c76-c472-4612-8099-d3a74d16eb29.png\">\r\n", "Hi ! I just tested locally and or colab and it works fine for 2.9 on `sst2`.\r\n\r\nAlso the code that is shown in your stack trace is not present in the 2.9 source code - so I'm wondering how you installed `datasets` that could cause this ? (you can check by searching for `[0:{label_ids[-1] + 1}]` in the [2.9 codebase](https://github.dev/huggingface/datasets/tree/b5672a956d5de864e6f5550e493527d962d6ae55) - it doesn't find anything)\r\n\r\nAnyway you can try uninstalling `datasets` and install it again", "For what it's worth, I've also gotten this error on 2.9.0, and I've tried uninstalling an reinstalling\r\n![Screenshot 2023-02-01 at 11 06 55 AM](https://user-images.githubusercontent.com/22944438/216126466-6934e8f8-0be4-41f4-9822-8436dfafd61c.png)\r\n\r\nI'm very new to this package (I was following this tutorial: https://huggingface.co/docs/transformers/training), so there's a good chance I was doing something wrong 😅 but thought I'd pass along the feedback", "@ntrpnr @mtwichel Did you install `datasets` with conda ?\r\n\r\nI suspect that `datasets` 2.9 on conda still have this issue for some reason. When I install `datasets` with `pip` I don't have this error.", "> @ntrpnr @mtwichel Did you install datasets with conda ?\r\n\r\nI did yeah, I wonder if that's the issue", "I just checked on conda at https://anaconda.org/HuggingFace/datasets/files\r\n\r\nand everything looks fine, I got\r\n```python\r\n\r\nf\"ClassLabel expected a value for all label ids [0:{int(label_ids[-1]) + 1}] but some ids are missing.\"\r\n```\r\nas expected in features.py line 1760 (notice the \"int()\") to not have the TypeError.\r\n\r\nFrom where on conda did you install `datasets` ? You should use the `HuggingFace` official channel\r\n\r\nedit: the conda-forge one [here](https://anaconda.org/conda-forge/datasets/files) seems ok as well", "Could you also try this in your notebook ? In case your python kernel doesn't match the `pip` environment in your shell\r\n```python\r\nimport datasets; datasets.__version__\r\n```\r\nand\r\n```\r\n!which python\r\n```\r\n```python\r\nimport sys; sys.executable\r\n```", "Mmmm, just a potential clue:\r\n\r\nWhere are you running your Python code? Is it the Spyder IDE?\r\n\r\nI have recently seen some users reporting conflicting Python environments while using Spyder...\r\n\r\nMaybe related:\r\n- #5487", "Other potential clue:\r\n- Had you already imported `datasets` before pip-updating it? You should first update datasets, before importing it. Otherwise, you need to restart the kernel after updating it.", "I installed `datasets` with Conda using `conda install datasets` and got this issue.\r\n\r\nThen I tried to reinstall using\r\n`\r\nconda install -c huggingface -c conda-forge datasets\r\n`\r\nThe issue is now fixed.", "I'm still getting this error on 2.13.0" ]
2023-01-04T15:10:04
2023-06-21T18:45:38
null
MEMBER
null
`datasets` 2.6.1 and 2.7.0 started to stop supporting datasets like IMDB, ConLL or MNIST datasets. When loading a dataset using 2.6.1 or 2.7.0, you may this error when loading certain datasets: ```python TypeError: can only concatenate str (not "int") to str ``` This is because we started to update the metadata of those datasets to a format that is not supported in 2.6.1 and 2.7.0 This change is required or those datasets won't be supported by the Hugging Face Hub. Therefore if you encounter this error or if you're using `datasets` 2.6.1 or 2.7.0, we encourage you to update to a newer version. For example, versions 2.6.2 and 2.7.1 patch this issue. ```python pip install -U datasets ``` All the datasets affected are the ones with a ClassLabel feature type and YAML "dataset_info" metadata. More info [here](https://github.com/huggingface/datasets/issues/5275). We apologize for the inconvenience.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5406/reactions", "total_count": 11, "+1": 11, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5406/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5405
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5405/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5405/comments
https://api.github.com/repos/huggingface/datasets/issues/5405/events
https://github.com/huggingface/datasets/issues/5405
1,517,879,386
I_kwDODunzps5aeQBa
5,405
size_in_bytes the same for all splits
{ "login": "Breakend", "id": 1609857, "node_id": "MDQ6VXNlcjE2MDk4NTc=", "avatar_url": "https://avatars.githubusercontent.com/u/1609857?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Breakend", "html_url": "https://github.com/Breakend", "followers_url": "https://api.github.com/users/Breakend/followers", "following_url": "https://api.github.com/users/Breakend/following{/other_user}", "gists_url": "https://api.github.com/users/Breakend/gists{/gist_id}", "starred_url": "https://api.github.com/users/Breakend/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Breakend/subscriptions", "organizations_url": "https://api.github.com/users/Breakend/orgs", "repos_url": "https://api.github.com/users/Breakend/repos", "events_url": "https://api.github.com/users/Breakend/events{/privacy}", "received_events_url": "https://api.github.com/users/Breakend/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi @Breakend,\r\n\r\nIndeed, the attribute `size_in_bytes` refers to the size of the entire dataset configuration, for all splits (size of downloaded files + Arrow files), not the specific split.\r\nThis is also the case for `download_size` (downloaded files) and `dataset_size` (Arrow files).\r\n\r\nThe size of the Arrow files for a specific split can be accessed: e.g. size of the \"test\" split only\r\n```python\r\nds[\"train\"].info.splits[\"test\"].num_bytes\r\n```\r\n\r\nI agree this is confusing and maybe we should improve it." ]
2023-01-03T20:25:48
2023-01-04T09:22:59
null
NONE
null
### Describe the bug Hi, it looks like whenever you pull a dataset and get size_in_bytes, it returns the same size for all splits (and that size is the combined size of all splits). It seems like this shouldn't be the intended behavior since it is misleading. Here's an example: ``` >>> from datasets import load_dataset >>> x = load_dataset("glue", "wnli") Found cached dataset glue (/Users/breakend/.cache/huggingface/datasets/glue/wnli/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad) 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1097.70it/s] >>> x["train"].size_in_bytes 186159 >>> x["validation"].size_in_bytes 186159 >>> x["test"].size_in_bytes 186159 >>> ``` ### Steps to reproduce the bug ``` >>> from datasets import load_dataset >>> x = load_dataset("glue", "wnli") >>> x["train"].size_in_bytes 186159 >>> x["validation"].size_in_bytes 186159 >>> x["test"].size_in_bytes 186159 ``` ### Expected behavior The expected behavior is that it should return the separate sizes for all splits. ### Environment info - `datasets` version: 2.7.1 - Platform: macOS-12.5-arm64-arm-64bit - Python version: 3.10.8 - PyArrow version: 10.0.1 - Pandas version: 1.5.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5405/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5405/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5404
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5404/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5404/comments
https://api.github.com/repos/huggingface/datasets/issues/5404/events
https://github.com/huggingface/datasets/issues/5404
1,517,566,331
I_kwDODunzps5adDl7
5,404
Better integration of BIG-bench
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[ "Hi, I made my version : https://huggingface.co/datasets/tasksource/bigbench" ]
2023-01-03T15:37:57
2023-02-09T20:30:26
null
MEMBER
null
### Feature request Ideally, it would be nice to have a maintained PyPI package for `bigbench`. ### Motivation We'd like to allow anyone to access, explore and use any task. ### Your contribution @lhoestq has opened an issue in their repo: - https://github.com/google/BIG-bench/issues/906
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5404/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5404/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5403
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5403/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5403/comments
https://api.github.com/repos/huggingface/datasets/issues/5403/events
https://github.com/huggingface/datasets/pull/5403
1,517,466,492
PR_kwDODunzps5Gi3d9
5,403
Replace one letter import in docs
{ "login": "MKhalusova", "id": 1065417, "node_id": "MDQ6VXNlcjEwNjU0MTc=", "avatar_url": "https://avatars.githubusercontent.com/u/1065417?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MKhalusova", "html_url": "https://github.com/MKhalusova", "followers_url": "https://api.github.com/users/MKhalusova/followers", "following_url": "https://api.github.com/users/MKhalusova/following{/other_user}", "gists_url": "https://api.github.com/users/MKhalusova/gists{/gist_id}", "starred_url": "https://api.github.com/users/MKhalusova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MKhalusova/subscriptions", "organizations_url": "https://api.github.com/users/MKhalusova/orgs", "repos_url": "https://api.github.com/users/MKhalusova/repos", "events_url": "https://api.github.com/users/MKhalusova/events{/privacy}", "received_events_url": "https://api.github.com/users/MKhalusova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "> Thanks for the docs fix for consistency.\r\n> \r\n> Again for consistency, it would be nice to make the same fix across all the docs, e.g.\r\n> \r\n> https://github.com/huggingface/datasets/blob/310cdddd1c43f9658de172b85b6509d07d5e31a1/docs/source/image_classification.mdx?plain=1#L41\r\n\r\nExcellent point!", "@albertvillanova Should be all of them now :)", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008776 / 0.011353 (-0.002576) | 0.004534 / 0.011008 (-0.006474) | 0.101921 / 0.038508 (0.063413) | 0.029995 / 0.023109 (0.006886) | 0.307180 / 0.275898 (0.031282) | 0.371001 / 0.323480 (0.047521) | 0.007089 / 0.007986 (-0.000896) | 0.003474 / 0.004328 (-0.000855) | 0.079498 / 0.004250 (0.075248) | 0.036522 / 0.037052 (-0.000531) | 0.311729 / 0.258489 (0.053240) | 0.349861 / 0.293841 (0.056020) | 0.033815 / 0.128546 (-0.094731) | 0.011435 / 0.075646 (-0.064211) | 0.322924 / 0.419271 (-0.096347) | 0.040981 / 0.043533 (-0.002552) | 0.306174 / 0.255139 (0.051035) | 0.331979 / 0.283200 (0.048780) | 0.091293 / 0.141683 (-0.050389) | 1.480935 / 1.452155 (0.028780) | 1.522022 / 1.492716 (0.029306) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.195053 / 0.018006 (0.177047) | 0.424898 / 0.000490 (0.424408) | 0.003869 / 0.000200 (0.003669) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024323 / 0.037411 (-0.013088) | 0.098061 / 0.014526 (0.083535) | 0.105770 / 0.176557 (-0.070787) | 0.145799 / 0.737135 (-0.591336) | 0.109109 / 0.296338 (-0.187230) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420434 / 0.215209 (0.205225) | 4.194781 / 2.077655 (2.117126) | 2.030498 / 1.504120 (0.526378) | 1.885314 / 1.541195 (0.344120) | 1.996485 / 1.468490 (0.527995) | 0.708540 / 4.584777 (-3.876237) | 3.400694 / 3.745712 (-0.345018) | 2.888704 / 5.269862 (-2.381157) | 1.578100 / 4.565676 (-2.987577) | 0.082150 / 0.424275 (-0.342125) | 0.012277 / 0.007607 (0.004669) | 0.527312 / 0.226044 (0.301268) | 5.289566 / 2.268929 (3.020637) | 2.369997 / 55.444624 (-53.074628) | 2.040365 / 6.876477 (-4.836112) | 2.298857 / 2.142072 (0.156785) | 0.808446 / 4.805227 (-3.996781) | 0.149355 / 6.500664 (-6.351309) | 0.065993 / 0.075469 (-0.009477) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.231829 / 1.841788 (-0.609959) | 13.874762 / 8.074308 (5.800454) | 13.464379 / 10.191392 (3.272987) | 0.151105 / 0.680424 (-0.529319) | 0.028689 / 0.534201 (-0.505512) | 0.398720 / 0.579283 (-0.180564) | 0.402108 / 0.434364 (-0.032256) | 0.463426 / 0.540337 (-0.076912) | 0.541919 / 1.386936 (-0.845017) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006979 / 0.011353 (-0.004373) | 0.004723 / 0.011008 (-0.006285) | 0.099172 / 0.038508 (0.060664) | 0.027970 / 0.023109 (0.004861) | 0.415096 / 0.275898 (0.139198) | 0.455916 / 0.323480 (0.132437) | 0.005950 / 0.007986 (-0.002036) | 0.003423 / 0.004328 (-0.000906) | 0.075512 / 0.004250 (0.071262) | 0.040894 / 0.037052 (0.003842) | 0.419810 / 0.258489 (0.161321) | 0.461913 / 0.293841 (0.168072) | 0.033014 / 0.128546 (-0.095532) | 0.011613 / 0.075646 (-0.064033) | 0.320983 / 0.419271 (-0.098289) | 0.049902 / 0.043533 (0.006369) | 0.426378 / 0.255139 (0.171239) | 0.445594 / 0.283200 (0.162394) | 0.098978 / 0.141683 (-0.042705) | 1.485724 / 1.452155 (0.033570) | 1.563978 / 1.492716 (0.071262) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232137 / 0.018006 (0.214131) | 0.432785 / 0.000490 (0.432296) | 0.006173 / 0.000200 (0.005973) | 0.000085 / 0.000054 (0.000031) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024924 / 0.037411 (-0.012487) | 0.102878 / 0.014526 (0.088352) | 0.107976 / 0.176557 (-0.068581) | 0.143581 / 0.737135 (-0.593554) | 0.111644 / 0.296338 (-0.184694) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.490902 / 0.215209 (0.275693) | 4.914060 / 2.077655 (2.836405) | 2.569465 / 1.504120 (1.065345) | 2.346872 / 1.541195 (0.805677) | 2.412047 / 1.468490 (0.943557) | 0.704975 / 4.584777 (-3.879802) | 3.443669 / 3.745712 (-0.302043) | 3.172055 / 5.269862 (-2.097807) | 1.332152 / 4.565676 (-3.233525) | 0.083023 / 0.424275 (-0.341252) | 0.012699 / 0.007607 (0.005092) | 0.592511 / 0.226044 (0.366466) | 5.916376 / 2.268929 (3.647448) | 3.028472 / 55.444624 (-52.416152) | 2.691159 / 6.876477 (-4.185318) | 2.786132 / 2.142072 (0.644060) | 0.814045 / 4.805227 (-3.991182) | 0.156630 / 6.500664 (-6.344034) | 0.071330 / 0.075469 (-0.004139) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.277936 / 1.841788 (-0.563852) | 14.331367 / 8.074308 (6.257059) | 13.685694 / 10.191392 (3.494302) | 0.138915 / 0.680424 (-0.541509) | 0.016844 / 0.534201 (-0.517357) | 0.390307 / 0.579283 (-0.188976) | 0.385207 / 0.434364 (-0.049157) | 0.448128 / 0.540337 (-0.092210) | 0.532609 / 1.386936 (-0.854327) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n" ]
2023-01-03T14:26:32
2023-01-03T15:06:18
2023-01-03T14:59:01
CONTRIBUTOR
null
This PR updates a code example for consistency across the docs based on [feedback from this comment](https://github.com/huggingface/transformers/pull/20925/files/9fda31634d203a47d3212e4e8d43d3267faf9808#r1058769500): "In terms of style we usually stay away from one-letter imports like this (even if the community uses them) as they are not always known by beginners and one letter is very undescriptive. Here it wouldn't change anything to use albumentations instead of A."
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5403/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5403/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5403", "html_url": "https://github.com/huggingface/datasets/pull/5403", "diff_url": "https://github.com/huggingface/datasets/pull/5403.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5403.patch", "merged_at": "2023-01-03T14:59:01" }
true
https://api.github.com/repos/huggingface/datasets/issues/5402
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5402/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5402/comments
https://api.github.com/repos/huggingface/datasets/issues/5402/events
https://github.com/huggingface/datasets/issues/5402
1,517,409,429
I_kwDODunzps5acdSV
5,402
Missing state.json when creating a cloud dataset using a dataset_builder
{ "login": "danielfleischer", "id": 22022514, "node_id": "MDQ6VXNlcjIyMDIyNTE0", "avatar_url": "https://avatars.githubusercontent.com/u/22022514?v=4", "gravatar_id": "", "url": "https://api.github.com/users/danielfleischer", "html_url": "https://github.com/danielfleischer", "followers_url": "https://api.github.com/users/danielfleischer/followers", "following_url": "https://api.github.com/users/danielfleischer/following{/other_user}", "gists_url": "https://api.github.com/users/danielfleischer/gists{/gist_id}", "starred_url": "https://api.github.com/users/danielfleischer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/danielfleischer/subscriptions", "organizations_url": "https://api.github.com/users/danielfleischer/orgs", "repos_url": "https://api.github.com/users/danielfleischer/repos", "events_url": "https://api.github.com/users/danielfleischer/events{/privacy}", "received_events_url": "https://api.github.com/users/danielfleischer/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "`load_from_disk` must be used on datasets saved using `save_to_disk`: they correspond to fully serialized datasets including their state.\r\n\r\nOn the other hand, `download_and_prepare` just downloads the raw data and convert them to arrow (or parquet if you want). We are working on allowing you to reload a dataset saved on S3 with `download_and_prepare` using `load_dataset` in #5281 \r\n\r\nFor now I'd encourage you to keep using `save_to_disk`", "Thanks, I'll follow that issue. \r\n\r\nI was following the [cloud storage](https://huggingface.co/docs/datasets/filesystems) docs section and perhaps I'm missing some part of the flow; start with `load_dataset_builder` + `download_and_prepare`. You say I need an explicit `save_to_disk` but what object needs to be saved? the builder? is that related to the other issue?", "Right now `load_dataset_builder` + `download_and_prepare` is to be used with tools like dask or spark, but `load_dataset` will support private cloud storage soon as well so you'll be able to reload the dataset with `datasets`.\r\n\r\nRight now the only function that can load a dataset from a cloud storage is `load_from_disk`, that must be used with a dataset serialized with `save_to_disk`." ]
2023-01-03T13:39:59
2023-01-04T17:23:57
null
NONE
null
### Describe the bug Using `load_dataset_builder` to create a builder, run `download_and_prepare` do upload it to S3. However when trying to load it, there are missing `state.json` files. Complete example: ```python from aiobotocore.session import AioSession as Session from datasets import load_from_disk, load_datase, load_dataset_builder import s3fs storage_options = {"session": Session()} fs = s3fs.S3FileSystem(**storage_options) output_dir = "s3://bucket/imdb" builder = load_dataset_builder("imdb") builder.download_and_prepare(output_dir, storage_options=storage_options) load_from_disk(output_dir, fs=fs) # ERROR # [Errno 2] No such file or directory: '/tmp/tmpy22yys8o/bucket/imdb/state.json' ``` As a comparison, if you use the non lazy `load_dataset`, it works and the S3 folder has different structure + state.json files. Example: ```python from aiobotocore.session import AioSession as Session from datasets import load_from_disk, load_dataset, load_dataset_builder import s3fs storage_options = {"session": Session()} fs = s3fs.S3FileSystem(**storage_options) output_dir = "s3://bucket/imdb" dataset = load_dataset("imdb",) dataset.save_to_disk(output_dir, fs=fs) load_from_disk(output_dir, fs=fs) # WORKS ``` You still want the 1st option for the laziness and the parquet conversion. Thanks! ### Steps to reproduce the bug ```python from aiobotocore.session import AioSession as Session from datasets import load_from_disk, load_datase, load_dataset_builder import s3fs storage_options = {"session": Session()} fs = s3fs.S3FileSystem(**storage_options) output_dir = "s3://bucket/imdb" builder = load_dataset_builder("imdb") builder.download_and_prepare(output_dir, storage_options=storage_options) load_from_disk(output_dir, fs=fs) # ERROR # [Errno 2] No such file or directory: '/tmp/tmpy22yys8o/bucket/imdb/state.json' ``` BTW, you need the AioSession as s3fs is now based on aiobotocore, see https://github.com/fsspec/s3fs/issues/385. ### Expected behavior Expected to be able to load the dataset from S3. ### Environment info ``` s3fs 2022.11.0 s3transfer 0.6.0 datasets 2.8.0 aiobotocore 2.4.2 boto3 1.24.59 botocore 1.27.59 ``` python 3.7.15.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5402/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5402/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5401
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5401/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5401/comments
https://api.github.com/repos/huggingface/datasets/issues/5401/events
https://github.com/huggingface/datasets/pull/5401
1,517,160,935
PR_kwDODunzps5Gh1XQ
5,401
Support Dataset conversion from/to Spark
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5401). All of your documentation changes will be reflected on that endpoint.", "Cool thanks !\r\n\r\nSpark DataFrame are usually quite big, and I believe here `from_spark` would load everything in the driver node's RAM, which is quite limiting. Same for `to_spark` which would load everything in the driver node's RAM before sending the data to the executor. Maybe we can mention this in the docstring ?\r\n\r\nTo transfer big datasets from/into the HF ecosystem using Spark maybe we can just make sure that `pyspark` can read/write to the HF Hub, and that `datasets` can read from HDFS/S3/etc.", "Yes @lhoestq , consider this as a first integration of the Datasets library with Spark.\r\n- This PR implements the basic conversion between both.\r\n - And yes, we are using the Spark's `pandas` API (that uses `pyarrow` under the hood): everything is transferred to the driver.\r\n - Note that we are converting from/to a Datasets dataset: this is not distributed\r\n\r\nThe next step is to support the integration of the HF Hub with Spark, that I think should be done using `hffs`.", "Thinking more about it I don't really see how those two methods help in practice, since one can already do `datasets` <-> pandas <-> spark and those two methods don't add value over this.\r\n\r\nHowever I think it can be good documentation to explain that it's possible to do it and it's super simple" ]
2023-01-03T09:57:40
2023-01-05T14:21:33
null
MEMBER
null
This PR implements Spark integration by supporting `Dataset` conversion from/to Spark `DataFrame`.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5401/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5401/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5401", "html_url": "https://github.com/huggingface/datasets/pull/5401", "diff_url": "https://github.com/huggingface/datasets/pull/5401.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5401.patch", "merged_at": null }
true
https://api.github.com/repos/huggingface/datasets/issues/5400
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5400/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5400/comments
https://api.github.com/repos/huggingface/datasets/issues/5400/events
https://github.com/huggingface/datasets/pull/5400
1,517,032,972
PR_kwDODunzps5GhaGI
5,400
Support streaming datasets with os.path.exists and Path.exists
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008638 / 0.011353 (-0.002715) | 0.004565 / 0.011008 (-0.006444) | 0.098984 / 0.038508 (0.060476) | 0.030118 / 0.023109 (0.007009) | 0.321779 / 0.275898 (0.045881) | 0.366905 / 0.323480 (0.043426) | 0.006931 / 0.007986 (-0.001055) | 0.004728 / 0.004328 (0.000399) | 0.078358 / 0.004250 (0.074108) | 0.037755 / 0.037052 (0.000702) | 0.312694 / 0.258489 (0.054205) | 0.351781 / 0.293841 (0.057940) | 0.033266 / 0.128546 (-0.095280) | 0.011397 / 0.075646 (-0.064250) | 0.323501 / 0.419271 (-0.095771) | 0.040779 / 0.043533 (-0.002754) | 0.303533 / 0.255139 (0.048394) | 0.340940 / 0.283200 (0.057740) | 0.088701 / 0.141683 (-0.052982) | 1.472058 / 1.452155 (0.019904) | 1.529535 / 1.492716 (0.036818) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191803 / 0.018006 (0.173797) | 0.409773 / 0.000490 (0.409283) | 0.002704 / 0.000200 (0.002504) | 0.000217 / 0.000054 (0.000163) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023520 / 0.037411 (-0.013891) | 0.096967 / 0.014526 (0.082441) | 0.107911 / 0.176557 (-0.068646) | 0.146425 / 0.737135 (-0.590710) | 0.109025 / 0.296338 (-0.187314) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418565 / 0.215209 (0.203356) | 4.183429 / 2.077655 (2.105774) | 1.886534 / 1.504120 (0.382414) | 1.689015 / 1.541195 (0.147820) | 1.710757 / 1.468490 (0.242267) | 0.693211 / 4.584777 (-3.891566) | 3.380062 / 3.745712 (-0.365650) | 2.619910 / 5.269862 (-2.649952) | 1.457512 / 4.565676 (-3.108164) | 0.082421 / 0.424275 (-0.341854) | 0.012126 / 0.007607 (0.004519) | 0.525249 / 0.226044 (0.299205) | 5.244541 / 2.268929 (2.975613) | 2.305908 / 55.444624 (-53.138717) | 1.945298 / 6.876477 (-4.931178) | 2.015618 / 2.142072 (-0.126455) | 0.816746 / 4.805227 (-3.988481) | 0.148325 / 6.500664 (-6.352339) | 0.063939 / 0.075469 (-0.011530) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255790 / 1.841788 (-0.585998) | 13.433219 / 8.074308 (5.358911) | 13.916957 / 10.191392 (3.725565) | 0.153468 / 0.680424 (-0.526956) | 0.028722 / 0.534201 (-0.505479) | 0.398245 / 0.579283 (-0.181038) | 0.399067 / 0.434364 (-0.035296) | 0.457525 / 0.540337 (-0.082812) | 0.542391 / 1.386936 (-0.844545) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006411 / 0.011353 (-0.004942) | 0.004552 / 0.011008 (-0.006456) | 0.098036 / 0.038508 (0.059527) | 0.026532 / 0.023109 (0.003422) | 0.412270 / 0.275898 (0.136372) | 0.442771 / 0.323480 (0.119291) | 0.004891 / 0.007986 (-0.003094) | 0.003488 / 0.004328 (-0.000841) | 0.075437 / 0.004250 (0.071186) | 0.036228 / 0.037052 (-0.000824) | 0.413246 / 0.258489 (0.154757) | 0.453546 / 0.293841 (0.159705) | 0.031054 / 0.128546 (-0.097492) | 0.011589 / 0.075646 (-0.064058) | 0.318477 / 0.419271 (-0.100794) | 0.041075 / 0.043533 (-0.002457) | 0.411182 / 0.255139 (0.156043) | 0.436991 / 0.283200 (0.153792) | 0.086563 / 0.141683 (-0.055120) | 1.511948 / 1.452155 (0.059793) | 1.570925 / 1.492716 (0.078208) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200510 / 0.018006 (0.182504) | 0.403450 / 0.000490 (0.402960) | 0.000397 / 0.000200 (0.000197) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023950 / 0.037411 (-0.013461) | 0.097334 / 0.014526 (0.082808) | 0.105228 / 0.176557 (-0.071328) | 0.137699 / 0.737135 (-0.599436) | 0.107063 / 0.296338 (-0.189275) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.474420 / 0.215209 (0.259211) | 4.748212 / 2.077655 (2.670557) | 2.407318 / 1.504120 (0.903198) | 2.198949 / 1.541195 (0.657755) | 2.220377 / 1.468490 (0.751887) | 0.704022 / 4.584777 (-3.880755) | 3.366128 / 3.745712 (-0.379584) | 1.839454 / 5.269862 (-3.430408) | 1.151183 / 4.565676 (-3.414493) | 0.082818 / 0.424275 (-0.341457) | 0.012765 / 0.007607 (0.005158) | 0.571913 / 0.226044 (0.345868) | 5.722544 / 2.268929 (3.453615) | 2.858279 / 55.444624 (-52.586346) | 2.513479 / 6.876477 (-4.362998) | 2.574227 / 2.142072 (0.432154) | 0.803282 / 4.805227 (-4.001945) | 0.150603 / 6.500664 (-6.350061) | 0.066594 / 0.075469 (-0.008875) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.301161 / 1.841788 (-0.540627) | 13.580745 / 8.074308 (5.506436) | 13.301551 / 10.191392 (3.110159) | 0.141424 / 0.680424 (-0.539000) | 0.016579 / 0.534201 (-0.517622) | 0.380726 / 0.579283 (-0.198557) | 0.383011 / 0.434364 (-0.051353) | 0.438717 / 0.540337 (-0.101620) | 0.527085 / 1.386936 (-0.859851) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n" ]
2023-01-03T07:42:37
2023-01-06T10:42:44
2023-01-06T10:35:44
MEMBER
null
Support streaming datasets with `os.path.exists` and `pathlib.Path.exists`.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5400/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5400/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5400", "html_url": "https://github.com/huggingface/datasets/pull/5400", "diff_url": "https://github.com/huggingface/datasets/pull/5400.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5400.patch", "merged_at": "2023-01-06T10:35:44" }
true
https://api.github.com/repos/huggingface/datasets/issues/5399
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5399/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5399/comments
https://api.github.com/repos/huggingface/datasets/issues/5399/events
https://github.com/huggingface/datasets/issues/5399
1,515,548,427
I_kwDODunzps5aVW8L
5,399
Got disconnected from remote data host. Retrying in 5sec [2/20]
{ "login": "alhuri", "id": 46427957, "node_id": "MDQ6VXNlcjQ2NDI3OTU3", "avatar_url": "https://avatars.githubusercontent.com/u/46427957?v=4", "gravatar_id": "", "url": "https://api.github.com/users/alhuri", "html_url": "https://github.com/alhuri", "followers_url": "https://api.github.com/users/alhuri/followers", "following_url": "https://api.github.com/users/alhuri/following{/other_user}", "gists_url": "https://api.github.com/users/alhuri/gists{/gist_id}", "starred_url": "https://api.github.com/users/alhuri/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alhuri/subscriptions", "organizations_url": "https://api.github.com/users/alhuri/orgs", "repos_url": "https://api.github.com/users/alhuri/repos", "events_url": "https://api.github.com/users/alhuri/events{/privacy}", "received_events_url": "https://api.github.com/users/alhuri/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2023-01-01T13:00:11
2023-01-02T07:21:52
2023-01-02T07:21:52
NONE
null
### Describe the bug While trying to upload my image dataset of a CSV file type to huggingface by running the below code. The dataset consists of a little over 100k of image-caption pairs ### Steps to reproduce the bug ``` df = pd.read_csv('x.csv', encoding='utf-8-sig') features = Features({ 'link': Image(decode=True), 'caption': Value(dtype='string'), }) #make sure u r logged in to HF ds = Dataset.from_pandas(df, features=features) ds.features ds.push_to_hub("x/x") ``` I got the below error and It always stops at the same progress ``` 100%|██████████| 4/4 [23:53<00:00, 358.48s/ba] 100%|██████████| 4/4 [24:37<00:00, 369.47s/ba]%|▍ | 1/22 [00:06<02:09, 6.16s/it] 100%|██████████| 4/4 [25:00<00:00, 375.15s/ba]%|▉ | 2/22 [25:54<2:36:15, 468.80s/it] 100%|██████████| 4/4 [24:53<00:00, 373.29s/ba]%|█▎ | 3/22 [51:01<4:07:07, 780.39s/it] 100%|██████████| 4/4 [24:01<00:00, 360.34s/ba]%|█▊ | 4/22 [1:17:00<5:04:07, 1013.74s/it] 100%|██████████| 4/4 [23:59<00:00, 359.91s/ba]%|██▎ | 5/22 [1:41:07<5:24:06, 1143.90s/it] 100%|██████████| 4/4 [24:16<00:00, 364.06s/ba]%|██▋ | 6/22 [2:05:14<5:29:15, 1234.74s/it] 100%|██████████| 4/4 [25:24<00:00, 381.10s/ba]%|███▏ | 7/22 [2:29:38<5:25:52, 1303.52s/it] 100%|██████████| 4/4 [25:24<00:00, 381.24s/ba]%|███▋ | 8/22 [2:56:02<5:23:46, 1387.58s/it] 100%|██████████| 4/4 [25:08<00:00, 377.23s/ba]%|████ | 9/22 [3:22:24<5:13:17, 1445.97s/it] 100%|██████████| 4/4 [24:11<00:00, 362.87s/ba]%|████▌ | 10/22 [3:48:24<4:56:02, 1480.19s/it] 100%|██████████| 4/4 [24:44<00:00, 371.11s/ba]%|█████ | 11/22 [4:12:42<4:30:10, 1473.66s/it] 100%|██████████| 4/4 [24:35<00:00, 368.81s/ba]%|█████▍ | 12/22 [4:37:34<4:06:29, 1478.98s/it] 100%|██████████| 4/4 [24:02<00:00, 360.67s/ba]%|█████▉ | 13/22 [5:03:24<3:45:04, 1500.45s/it] 100%|██████████| 4/4 [24:07<00:00, 361.78s/ba]%|██████▎ | 14/22 [5:27:33<3:17:59, 1484.97s/it] 100%|██████████| 4/4 [23:39<00:00, 354.85s/ba]%|██████▊ | 15/22 [5:51:48<2:52:10, 1475.82s/it] Pushing dataset shards to the dataset hub: 73%|███████▎ | 16/22 [6:16:58<2:28:37, 1486.31s/it]Got disconnected from remote data host. Retrying in 5sec [1/20] Got disconnected from remote data host. Retrying in 5sec [2/20] Got disconnected from remote data host. Retrying in 5sec [3/20] Got disconnected from remote data host. Retrying in 5sec [4/20] Got disconnected from remote data host. Retrying in 5sec [5/20] Got disconnected from remote data host. Retrying in 5sec [6/20] Got disconnected from remote data host. Retrying in 5sec [7/20] Got disconnected from remote data host. Retrying in 5sec [8/20] Got disconnected from remote data host. Retrying in 5sec [9/20] ... Got disconnected from remote data host. Retrying in 5sec [19/20] Got disconnected from remote data host. Retrying in 5sec [20/20] 75%|███████▌ | 3/4 [24:47<08:15, 495.86s/ba] Pushing dataset shards to the dataset hub: 73%|███████▎ | 16/22 [6:41:46<2:30:39, 1506.65s/it] Output exceeds the size limit. Open the full output data in a text editor --------------------------------------------------------------------------- ConnectionError Traceback (most recent call last) <ipython-input-1-dbf8530779e9> in <module> 16 ds.features ``` ### Expected behavior I was trying to upload an image dataset and expected it to be fully uploaded ### Environment info - `datasets` version: 2.8.0 - Platform: Windows-10-10.0.19041-SP0 - Python version: 3.7.9 - PyArrow version: 10.0.1 - Pandas version: 1.3.5
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5399/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5399/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5398
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5398/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5398/comments
https://api.github.com/repos/huggingface/datasets/issues/5398/events
https://github.com/huggingface/datasets/issues/5398
1,514,425,231
I_kwDODunzps5aREuP
5,398
Unpin pydantic
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2022-12-30T10:37:31
2022-12-30T10:43:41
2022-12-30T10:43:41
MEMBER
null
Once `pydantic` fixes their issue in their 1.10.3 version, unpin it. See issue: - #5394 See temporary fix: - #5395
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5398/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5398/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5397
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5397/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5397/comments
https://api.github.com/repos/huggingface/datasets/issues/5397/events
https://github.com/huggingface/datasets/pull/5397
1,514,412,246
PR_kwDODunzps5GYirs
5,397
Unpin pydantic test dependency
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012922 / 0.011353 (0.001569) | 0.006568 / 0.011008 (-0.004440) | 0.139567 / 0.038508 (0.101059) | 0.039362 / 0.023109 (0.016253) | 0.444238 / 0.275898 (0.168340) | 0.529102 / 0.323480 (0.205622) | 0.010275 / 0.007986 (0.002290) | 0.006134 / 0.004328 (0.001805) | 0.107506 / 0.004250 (0.103255) | 0.047948 / 0.037052 (0.010896) | 0.460469 / 0.258489 (0.201980) | 0.516817 / 0.293841 (0.222976) | 0.058637 / 0.128546 (-0.069909) | 0.019516 / 0.075646 (-0.056130) | 0.464111 / 0.419271 (0.044839) | 0.062140 / 0.043533 (0.018607) | 0.445004 / 0.255139 (0.189865) | 0.460117 / 0.283200 (0.176917) | 0.116591 / 0.141683 (-0.025092) | 1.936834 / 1.452155 (0.484680) | 1.941837 / 1.492716 (0.449120) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.284130 / 0.018006 (0.266124) | 0.588109 / 0.000490 (0.587619) | 0.004383 / 0.000200 (0.004183) | 0.000143 / 0.000054 (0.000089) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032984 / 0.037411 (-0.004427) | 0.132811 / 0.014526 (0.118285) | 0.150932 / 0.176557 (-0.025625) | 0.203759 / 0.737135 (-0.533377) | 0.149612 / 0.296338 (-0.146726) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.677666 / 0.215209 (0.462457) | 6.627611 / 2.077655 (4.549956) | 2.679526 / 1.504120 (1.175406) | 2.272536 / 1.541195 (0.731342) | 2.371179 / 1.468490 (0.902689) | 1.205282 / 4.584777 (-3.379495) | 5.733537 / 3.745712 (1.987825) | 3.165279 / 5.269862 (-2.104583) | 2.287918 / 4.565676 (-2.277759) | 0.144581 / 0.424275 (-0.279695) | 0.016812 / 0.007607 (0.009205) | 0.841719 / 0.226044 (0.615675) | 8.379119 / 2.268929 (6.110191) | 3.507169 / 55.444624 (-51.937456) | 2.756666 / 6.876477 (-4.119811) | 2.814091 / 2.142072 (0.672018) | 1.495835 / 4.805227 (-3.309392) | 0.253651 / 6.500664 (-6.247013) | 0.081258 / 0.075469 (0.005789) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.651586 / 1.841788 (-0.190202) | 19.039628 / 8.074308 (10.965320) | 21.269814 / 10.191392 (11.078421) | 0.241024 / 0.680424 (-0.439400) | 0.047975 / 0.534201 (-0.486225) | 0.563727 / 0.579283 (-0.015556) | 0.666808 / 0.434364 (0.232445) | 0.661065 / 0.540337 (0.120728) | 0.762884 / 1.386936 (-0.624052) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010141 / 0.011353 (-0.001212) | 0.006216 / 0.011008 (-0.004792) | 0.135491 / 0.038508 (0.096983) | 0.035439 / 0.023109 (0.012330) | 0.482789 / 0.275898 (0.206891) | 0.520673 / 0.323480 (0.197193) | 0.006358 / 0.007986 (-0.001627) | 0.005432 / 0.004328 (0.001104) | 0.094448 / 0.004250 (0.090197) | 0.048379 / 0.037052 (0.011326) | 0.509359 / 0.258489 (0.250870) | 0.539583 / 0.293841 (0.245742) | 0.054621 / 0.128546 (-0.073925) | 0.021382 / 0.075646 (-0.054265) | 0.435539 / 0.419271 (0.016267) | 0.060630 / 0.043533 (0.017097) | 0.469593 / 0.255139 (0.214454) | 0.507838 / 0.283200 (0.224639) | 0.112062 / 0.141683 (-0.029621) | 1.829694 / 1.452155 (0.377539) | 1.972266 / 1.492716 (0.479549) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.291669 / 0.018006 (0.273663) | 0.590104 / 0.000490 (0.589614) | 0.000661 / 0.000200 (0.000461) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034933 / 0.037411 (-0.002479) | 0.134867 / 0.014526 (0.120341) | 0.138892 / 0.176557 (-0.037665) | 0.192619 / 0.737135 (-0.544516) | 0.153787 / 0.296338 (-0.142551) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.666762 / 0.215209 (0.451553) | 6.741736 / 2.077655 (4.664082) | 2.988712 / 1.504120 (1.484592) | 2.554823 / 1.541195 (1.013628) | 2.655651 / 1.468490 (1.187161) | 1.276603 / 4.584777 (-3.308174) | 5.827960 / 3.745712 (2.082247) | 5.046876 / 5.269862 (-0.222985) | 2.829775 / 4.565676 (-1.735902) | 0.151525 / 0.424275 (-0.272750) | 0.016504 / 0.007607 (0.008897) | 0.849749 / 0.226044 (0.623704) | 8.331675 / 2.268929 (6.062747) | 3.664529 / 55.444624 (-51.780096) | 2.976495 / 6.876477 (-3.899982) | 3.034737 / 2.142072 (0.892664) | 1.499036 / 4.805227 (-3.306191) | 0.261027 / 6.500664 (-6.239637) | 0.088306 / 0.075469 (0.012837) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.693506 / 1.841788 (-0.148282) | 18.939914 / 8.074308 (10.865605) | 20.685460 / 10.191392 (10.494068) | 0.218316 / 0.680424 (-0.462108) | 0.029010 / 0.534201 (-0.505191) | 0.565246 / 0.579283 (-0.014037) | 0.633573 / 0.434364 (0.199209) | 0.656895 / 0.540337 (0.116558) | 0.781975 / 1.386936 (-0.604961) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n" ]
2022-12-30T10:22:09
2022-12-30T10:53:11
2022-12-30T10:43:40
MEMBER
null
Once pydantic-1.10.3 has been yanked, we can unpin it: https://pypi.org/project/pydantic/1.10.3/ See reply by pydantic team https://github.com/pydantic/pydantic/issues/4885#issuecomment-1367819807 ``` v1.10.3 has been yanked. ``` in response to spacy request: https://github.com/pydantic/pydantic/issues/4885#issuecomment-1367810049 ``` On behalf of spacy-related packages: would it be possible for you to temporarily yank v1.10.3? To address this and be compatible with v1.10.4, we'd have to release new versions of a whole series of packages and nearly everyone (including me) is currently on vacation. Even if v1.10.4 is released with a fix, pip would still back off to v1.10.3 for spacy, etc. because of its current pins for typing_extensions. If it could instead back off to v1.10.2, we'd have a bit more breathing room to make the updates on our end. ``` Close #5398.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5397/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5397/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5397", "html_url": "https://github.com/huggingface/datasets/pull/5397", "diff_url": "https://github.com/huggingface/datasets/pull/5397.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5397.patch", "merged_at": "2022-12-30T10:43:40" }
true
https://api.github.com/repos/huggingface/datasets/issues/5396
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5396/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5396/comments
https://api.github.com/repos/huggingface/datasets/issues/5396/events
https://github.com/huggingface/datasets/pull/5396
1,514,002,934
PR_kwDODunzps5GXMhp
5,396
Fix checksum verification
{ "login": "daskol", "id": 9336514, "node_id": "MDQ6VXNlcjkzMzY1MTQ=", "avatar_url": "https://avatars.githubusercontent.com/u/9336514?v=4", "gravatar_id": "", "url": "https://api.github.com/users/daskol", "html_url": "https://github.com/daskol", "followers_url": "https://api.github.com/users/daskol/followers", "following_url": "https://api.github.com/users/daskol/following{/other_user}", "gists_url": "https://api.github.com/users/daskol/gists{/gist_id}", "starred_url": "https://api.github.com/users/daskol/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/daskol/subscriptions", "organizations_url": "https://api.github.com/users/daskol/orgs", "repos_url": "https://api.github.com/users/daskol/repos", "events_url": "https://api.github.com/users/daskol/events{/privacy}", "received_events_url": "https://api.github.com/users/daskol/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi ! If I'm not mistaken both `expected_checksums[url]` and `recorded_checksums[url]` are dictionaries with keys \"checksum\" and \"num_bytes\". So we need to check whether `expected_checksums[url] != recorded_checksums[url]` (or simply `expected_checksums[url][\"checksum\"] != recorded_checksums[url][\"checksum\"]`)\r\n\r\nBut in your fix you're checking `expected_checksums[url] != recorded_checksums[url]['checksum']`.\r\n\r\nSo I think it's fine to keep this as is", "No, the issue is that there is comparison of sclar value and dictionary.", "Acording to [`DatasetInfo`][1], we need specify a dictionary which maps a URL to a checksum as follows.\r\n\r\n```python\r\nCHECKSUMS = {\r\n URL: 'a5dc6bf63ea088ade6e98594bfa386f45211c38b2a3db3dd11b33bd530f3c481',\r\n}\r\n\r\nclass FancyDataset:\r\n def _info(self):\r\n return DatasetInfo(..., download_checksums=CHECKSUMS)\r\n```\r\n\r\nHowever, `load_dataset` fails with this checksum definition.\r\n\r\n[1]: https://github.com/huggingface/datasets/blob/main/src/datasets/info.py#L124-L125", "I think it has to be formatted like this right now. Maybe the DatasetInfo doc is unclear and we can improve it\r\n```python\r\nCHECKSUMS = {\r\n URL: {\"checksum\": checksum, \"num_bytes\": num_bytes},\r\n}\r\n```", "Right. I am not sure that this is a correct way to do it. People usually calculate sha256, md5, or whatever else but not size in bytes. Also, people use only some of checksum algorithms. This means that comparing dictionaries in `verify_checksums` is too strict (requires equality of all items) and raises compatibility issues in the future. Another issue is that a comparison of dictionaries assumes type constraints which imply type equality. \r\n\r\nSince almost noone uses checksums as far as I known, my PR suggests a minimal change to mitigate these issues except support of a specific checksum algorithm which is a separated feature and should be contributed in a separate PRs from my perspective.", "Applying this change will break the verification code, since the `expected_checksums` is a dict with those two keys.", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5396). All of your documentation changes will be reflected on that endpoint." ]
2022-12-29T19:45:17
2023-02-13T11:11:22
2023-02-13T11:11:22
CONTRIBUTOR
null
Expected checksum was verified against checksum dict (not checksum).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5396/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5396/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5396", "html_url": "https://github.com/huggingface/datasets/pull/5396", "diff_url": "https://github.com/huggingface/datasets/pull/5396.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5396.patch", "merged_at": null }
true
https://api.github.com/repos/huggingface/datasets/issues/5395
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5395/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5395/comments
https://api.github.com/repos/huggingface/datasets/issues/5395/events
https://github.com/huggingface/datasets/pull/5395
1,513,997,335
PR_kwDODunzps5GXLUl
5,395
Temporarily pin pydantic test dependency
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012220 / 0.011353 (0.000867) | 0.005943 / 0.011008 (-0.005065) | 0.128223 / 0.038508 (0.089715) | 0.037352 / 0.023109 (0.014242) | 0.397143 / 0.275898 (0.121245) | 0.483935 / 0.323480 (0.160455) | 0.010279 / 0.007986 (0.002293) | 0.004842 / 0.004328 (0.000513) | 0.101403 / 0.004250 (0.097153) | 0.042935 / 0.037052 (0.005883) | 0.421642 / 0.258489 (0.163153) | 0.456328 / 0.293841 (0.162487) | 0.065639 / 0.128546 (-0.062907) | 0.019820 / 0.075646 (-0.055826) | 0.426090 / 0.419271 (0.006818) | 0.069583 / 0.043533 (0.026051) | 0.402662 / 0.255139 (0.147523) | 0.428826 / 0.283200 (0.145626) | 0.116760 / 0.141683 (-0.024923) | 1.806216 / 1.452155 (0.354061) | 1.852629 / 1.492716 (0.359913) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226555 / 0.018006 (0.208548) | 0.584693 / 0.000490 (0.584203) | 0.008612 / 0.000200 (0.008412) | 0.000205 / 0.000054 (0.000150) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028393 / 0.037411 (-0.009018) | 0.123355 / 0.014526 (0.108829) | 0.134423 / 0.176557 (-0.042133) | 0.188536 / 0.737135 (-0.548600) | 0.141595 / 0.296338 (-0.154743) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.589359 / 0.215209 (0.374150) | 5.974655 / 2.077655 (3.897001) | 2.465580 / 1.504120 (0.961460) | 2.007618 / 1.541195 (0.466424) | 2.078788 / 1.468490 (0.610298) | 1.216646 / 4.584777 (-3.368131) | 5.217516 / 3.745712 (1.471804) | 3.107188 / 5.269862 (-2.162674) | 2.251641 / 4.565676 (-2.314036) | 0.138640 / 0.424275 (-0.285635) | 0.015046 / 0.007607 (0.007439) | 0.780092 / 0.226044 (0.554048) | 7.749564 / 2.268929 (5.480635) | 3.080708 / 55.444624 (-52.363917) | 2.393897 / 6.876477 (-4.482579) | 2.387738 / 2.142072 (0.245665) | 1.458844 / 4.805227 (-3.346384) | 0.252476 / 6.500664 (-6.248188) | 0.076594 / 0.075469 (0.001125) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.540868 / 1.841788 (-0.300919) | 17.295684 / 8.074308 (9.221376) | 19.669300 / 10.191392 (9.477908) | 0.250315 / 0.680424 (-0.430109) | 0.045068 / 0.534201 (-0.489133) | 0.538840 / 0.579283 (-0.040443) | 0.584443 / 0.434364 (0.150079) | 0.614476 / 0.540337 (0.074138) | 0.729928 / 1.386936 (-0.657008) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009218 / 0.011353 (-0.002135) | 0.006261 / 0.011008 (-0.004747) | 0.125541 / 0.038508 (0.087033) | 0.034405 / 0.023109 (0.011296) | 0.468381 / 0.275898 (0.192483) | 0.503336 / 0.323480 (0.179856) | 0.006839 / 0.007986 (-0.001146) | 0.004724 / 0.004328 (0.000396) | 0.097875 / 0.004250 (0.093625) | 0.051278 / 0.037052 (0.014225) | 0.473323 / 0.258489 (0.214834) | 0.537392 / 0.293841 (0.243551) | 0.055588 / 0.128546 (-0.072958) | 0.021041 / 0.075646 (-0.054605) | 0.416952 / 0.419271 (-0.002320) | 0.070128 / 0.043533 (0.026595) | 0.465224 / 0.255139 (0.210085) | 0.504678 / 0.283200 (0.221478) | 0.112504 / 0.141683 (-0.029179) | 1.865865 / 1.452155 (0.413710) | 1.988296 / 1.492716 (0.495580) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.314170 / 0.018006 (0.296164) | 0.526726 / 0.000490 (0.526236) | 0.018691 / 0.000200 (0.018491) | 0.000128 / 0.000054 (0.000073) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033772 / 0.037411 (-0.003639) | 0.124796 / 0.014526 (0.110270) | 0.134700 / 0.176557 (-0.041856) | 0.190595 / 0.737135 (-0.546541) | 0.143205 / 0.296338 (-0.153133) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.656708 / 0.215209 (0.441499) | 6.470503 / 2.077655 (4.392848) | 2.866430 / 1.504120 (1.362310) | 2.506846 / 1.541195 (0.965651) | 2.548669 / 1.468490 (1.080179) | 1.226695 / 4.584777 (-3.358082) | 5.117866 / 3.745712 (1.372153) | 3.032822 / 5.269862 (-2.237040) | 1.999152 / 4.565676 (-2.566524) | 0.142974 / 0.424275 (-0.281301) | 0.015011 / 0.007607 (0.007404) | 0.799729 / 0.226044 (0.573684) | 8.286313 / 2.268929 (6.017385) | 3.636482 / 55.444624 (-51.808142) | 2.888038 / 6.876477 (-3.988439) | 2.924982 / 2.142072 (0.782910) | 1.471996 / 4.805227 (-3.333231) | 0.257119 / 6.500664 (-6.243545) | 0.077294 / 0.075469 (0.001825) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.608290 / 1.841788 (-0.233497) | 17.599119 / 8.074308 (9.524811) | 18.917086 / 10.191392 (8.725694) | 0.236237 / 0.680424 (-0.444187) | 0.026061 / 0.534201 (-0.508140) | 0.527359 / 0.579283 (-0.051925) | 0.589176 / 0.434364 (0.154812) | 0.602310 / 0.540337 (0.061973) | 0.726756 / 1.386936 (-0.660180) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n", "Issue reported to `pydantic`: \r\n- https://github.com/pydantic/pydantic/issues/4885\r\n\r\nFixing PR at `pydantic`:\r\n- https://github.com/pydantic/pydantic/pull/4886" ]
2022-12-29T19:34:19
2022-12-30T06:36:57
2022-12-29T21:00:26
MEMBER
null
Temporarily pin `pydantic` until a permanent solution is found. Fix #5394.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5395/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5395/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5395", "html_url": "https://github.com/huggingface/datasets/pull/5395", "diff_url": "https://github.com/huggingface/datasets/pull/5395.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5395.patch", "merged_at": "2022-12-29T21:00:26" }
true
https://api.github.com/repos/huggingface/datasets/issues/5394
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5394/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5394/comments
https://api.github.com/repos/huggingface/datasets/issues/5394/events
https://github.com/huggingface/datasets/issues/5394
1,513,976,229
I_kwDODunzps5aPXGl
5,394
CI error: TypeError: dataclass_transform() got an unexpected keyword argument 'field_specifiers'
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[ "I still getting the same error :\r\n\r\n`python -m spacy download fr_core_news_lg\r\n`.\r\n`import spacy`", "@MFatnassi, this issue and the corresponding fix only affect our Continuous Integration testing environment.\r\n\r\nNote that `datasets` does not depend on `spacy`." ]
2022-12-29T18:58:44
2022-12-30T10:40:51
2022-12-29T21:00:27
MEMBER
null
### Describe the bug While installing the dependencies, the CI raises a TypeError: ``` Traceback (most recent call last): File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/runpy.py", line 183, in _run_module_as_main mod_name, mod_spec, code = _get_module_details(mod_name, _Error) File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/runpy.py", line 142, in _get_module_details return _get_module_details(pkg_main_name, error) File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/runpy.py", line 109, in _get_module_details __import__(pkg_name) File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/spacy/__init__.py", line 6, in <module> from .errors import setup_default_warnings File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/spacy/errors.py", line 2, in <module> from .compat import Literal File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/spacy/compat.py", line 3, in <module> from thinc.util import copy_array File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/thinc/__init__.py", line 5, in <module> from .config import registry File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/thinc/config.py", line 2, in <module> import confection File "/opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/confection/__init__.py", line 10, in <module> from pydantic import BaseModel, create_model, ValidationError, Extra File "pydantic/__init__.py", line 2, in init pydantic.__init__ File "pydantic/dataclasses.py", line 46, in init pydantic.dataclasses # | None | Attribute is set to None. | File "pydantic/main.py", line 121, in init pydantic.main TypeError: dataclass_transform() got an unexpected keyword argument 'field_specifiers' ``` See: https://github.com/huggingface/datasets/actions/runs/3793736481/jobs/6466356565 ### Steps to reproduce the bug ```shell pip install .[tests,metrics-tests] python -m spacy download en_core_web_sm ``` ### Expected behavior No error. ### Environment info See: https://github.com/huggingface/datasets/actions/runs/3793736481/jobs/6466356565
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5394/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5394/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5393
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5393/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5393/comments
https://api.github.com/repos/huggingface/datasets/issues/5393/events
https://github.com/huggingface/datasets/pull/5393
1,512,908,613
PR_kwDODunzps5GTg0a
5,393
Finish deprecating the fs argument
{ "login": "dconathan", "id": 15098095, "node_id": "MDQ6VXNlcjE1MDk4MDk1", "avatar_url": "https://avatars.githubusercontent.com/u/15098095?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dconathan", "html_url": "https://github.com/dconathan", "followers_url": "https://api.github.com/users/dconathan/followers", "following_url": "https://api.github.com/users/dconathan/following{/other_user}", "gists_url": "https://api.github.com/users/dconathan/gists{/gist_id}", "starred_url": "https://api.github.com/users/dconathan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dconathan/subscriptions", "organizations_url": "https://api.github.com/users/dconathan/orgs", "repos_url": "https://api.github.com/users/dconathan/repos", "events_url": "https://api.github.com/users/dconathan/events{/privacy}", "received_events_url": "https://api.github.com/users/dconathan/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "> Thanks for the deprecation. Some minor suggested fixes below...\r\n> \r\n> Also note that the corresponding tests should be updated as well.\r\n\r\nThanks for the suggestions/typo fixes. I updated the failing test - passing locally now", "Nice thanks !\r\n\r\nI believe you also need to update `_load_info` and `_save_info` in `builder.py` - they're still passing `fs=self._fs` instead of `storage_options=self._fs.storage_options`\r\n\r\nThis should remove the remaining warnings in the CI such as \r\n\r\n```python\r\ntests/test_builder.py::test_builder_with_filesystem_download_and_prepare_reload\r\ntests/test_load.py::test_load_dataset_local[False]\r\ntests/test_load.py::test_load_dataset_local[True]\r\ntests/test_load.py::test_load_dataset_zip_csv[csv_path-False]\r\ntests/test_load.py::test_load_dataset_then_move_then_reload\r\n /opt/hostedtoolcache/Python/3.7.15/x64/lib/python3.7/site-packages/datasets/info.py:344: FutureWarning: 'fs' was deprecated in favor of 'storage_options' in version 2.9.0 and will be removed in 3.0.0.\r\n You can remove this warning by passing 'storage_options=fs.storage_options' instead.\r\n```", "re: docstring, I assume passing in `storage_options=s3.storage_options` is correct/necessary to pass the secrets?", "what about \r\nhttps://github.com/huggingface/datasets/blob/5b793dd8c43bf6e85f165238becb3c64f6cd3ed0/src/datasets/filesystems/__init__.py#L43-L54\r\nleave as is? Is this function no longer necessary?", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008877 / 0.011353 (-0.002475) | 0.004725 / 0.011008 (-0.006283) | 0.100738 / 0.038508 (0.062230) | 0.030251 / 0.023109 (0.007141) | 0.301483 / 0.275898 (0.025585) | 0.374161 / 0.323480 (0.050681) | 0.007225 / 0.007986 (-0.000761) | 0.003654 / 0.004328 (-0.000674) | 0.078400 / 0.004250 (0.074149) | 0.035786 / 0.037052 (-0.001267) | 0.309744 / 0.258489 (0.051255) | 0.355834 / 0.293841 (0.061994) | 0.034344 / 0.128546 (-0.094202) | 0.011584 / 0.075646 (-0.064062) | 0.321462 / 0.419271 (-0.097810) | 0.041201 / 0.043533 (-0.002332) | 0.298808 / 0.255139 (0.043669) | 0.332626 / 0.283200 (0.049426) | 0.089131 / 0.141683 (-0.052552) | 1.477888 / 1.452155 (0.025734) | 1.530365 / 1.492716 (0.037649) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191647 / 0.018006 (0.173640) | 0.424339 / 0.000490 (0.423849) | 0.002941 / 0.000200 (0.002741) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023442 / 0.037411 (-0.013969) | 0.097264 / 0.014526 (0.082738) | 0.105655 / 0.176557 (-0.070901) | 0.145055 / 0.737135 (-0.592081) | 0.108750 / 0.296338 (-0.187588) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422925 / 0.215209 (0.207716) | 4.216022 / 2.077655 (2.138367) | 1.876441 / 1.504120 (0.372322) | 1.665115 / 1.541195 (0.123920) | 1.711105 / 1.468490 (0.242615) | 0.701820 / 4.584777 (-3.882957) | 3.389319 / 3.745712 (-0.356393) | 1.909868 / 5.269862 (-3.359994) | 1.270482 / 4.565676 (-3.295195) | 0.083680 / 0.424275 (-0.340595) | 0.012347 / 0.007607 (0.004740) | 0.531076 / 0.226044 (0.305031) | 5.344045 / 2.268929 (3.075117) | 2.310897 / 55.444624 (-53.133728) | 1.971953 / 6.876477 (-4.904524) | 2.113748 / 2.142072 (-0.028325) | 0.823766 / 4.805227 (-3.981462) | 0.150864 / 6.500664 (-6.349800) | 0.066263 / 0.075469 (-0.009206) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.253190 / 1.841788 (-0.588598) | 13.757887 / 8.074308 (5.683579) | 13.888195 / 10.191392 (3.696803) | 0.137285 / 0.680424 (-0.543139) | 0.029151 / 0.534201 (-0.505050) | 0.387402 / 0.579283 (-0.191881) | 0.401673 / 0.434364 (-0.032691) | 0.450474 / 0.540337 (-0.089863) | 0.533757 / 1.386936 (-0.853179) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006919 / 0.011353 (-0.004434) | 0.004655 / 0.011008 (-0.006353) | 0.096946 / 0.038508 (0.058438) | 0.028697 / 0.023109 (0.005588) | 0.420020 / 0.275898 (0.144122) | 0.460193 / 0.323480 (0.136713) | 0.005189 / 0.007986 (-0.002796) | 0.003425 / 0.004328 (-0.000904) | 0.074900 / 0.004250 (0.070649) | 0.041844 / 0.037052 (0.004792) | 0.421538 / 0.258489 (0.163049) | 0.468497 / 0.293841 (0.174656) | 0.032573 / 0.128546 (-0.095973) | 0.011731 / 0.075646 (-0.063916) | 0.320221 / 0.419271 (-0.099050) | 0.042113 / 0.043533 (-0.001420) | 0.422757 / 0.255139 (0.167618) | 0.445372 / 0.283200 (0.162172) | 0.090300 / 0.141683 (-0.051383) | 1.458598 / 1.452155 (0.006443) | 1.550060 / 1.492716 (0.057344) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.235489 / 0.018006 (0.217483) | 0.418207 / 0.000490 (0.417718) | 0.002511 / 0.000200 (0.002311) | 0.000080 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025603 / 0.037411 (-0.011808) | 0.100237 / 0.014526 (0.085711) | 0.108617 / 0.176557 (-0.067939) | 0.148417 / 0.737135 (-0.588719) | 0.110163 / 0.296338 (-0.186176) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.474804 / 0.215209 (0.259595) | 4.745370 / 2.077655 (2.667715) | 2.417819 / 1.504120 (0.913699) | 2.209892 / 1.541195 (0.668697) | 2.263296 / 1.468490 (0.794806) | 0.695537 / 4.584777 (-3.889240) | 3.381028 / 3.745712 (-0.364684) | 2.952271 / 5.269862 (-2.317591) | 1.507041 / 4.565676 (-3.058636) | 0.083334 / 0.424275 (-0.340941) | 0.012554 / 0.007607 (0.004947) | 0.578861 / 0.226044 (0.352817) | 5.795241 / 2.268929 (3.526313) | 2.858544 / 55.444624 (-52.586080) | 2.516270 / 6.876477 (-4.360207) | 2.557350 / 2.142072 (0.415278) | 0.801799 / 4.805227 (-4.003428) | 0.151579 / 6.500664 (-6.349085) | 0.068765 / 0.075469 (-0.006704) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.279935 / 1.841788 (-0.561853) | 14.049065 / 8.074308 (5.974757) | 13.972703 / 10.191392 (3.781311) | 0.140551 / 0.680424 (-0.539873) | 0.016831 / 0.534201 (-0.517370) | 0.383886 / 0.579283 (-0.195397) | 0.385661 / 0.434364 (-0.048703) | 0.444525 / 0.540337 (-0.095813) | 0.532197 / 1.386936 (-0.854739) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8d206848fb7afeafecf2a2581ca9a332bdedefa9 \"CML watermark\")\n" ]
2022-12-28T15:33:17
2023-01-18T12:42:33
2023-01-18T12:35:32
CONTRIBUTOR
null
See #5385 for some discussion on this The `fs=` arg was depcrecated from `Dataset.save_to_disk` and `Dataset.load_from_disk` in `2.8.0` (to be removed in `3.0.0`). There are a few other places where the `fs=` arg was still used (functions/methods in `datasets.info` and `datasets.load`). This PR adds a similar behavior, warnings and the `storage_options=` arg to these functions and methods. One question: should the "deprecated" / "added" versions be `2.8.1` for the docs/warnings on these? Right now I'm going with "fs was deprecated in 2.8.0" but "storage_options= was added in 2.8.1" where appropriate. @mariosasko
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5393/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 2, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5393/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5393", "html_url": "https://github.com/huggingface/datasets/pull/5393", "diff_url": "https://github.com/huggingface/datasets/pull/5393.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5393.patch", "merged_at": "2023-01-18T12:35:32" }
true
https://api.github.com/repos/huggingface/datasets/issues/5392
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5392/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5392/comments
https://api.github.com/repos/huggingface/datasets/issues/5392/events
https://github.com/huggingface/datasets/pull/5392
1,512,712,529
PR_kwDODunzps5GS2DF
5,392
Fix Colab notebook link
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011196 / 0.011353 (-0.000157) | 0.006039 / 0.011008 (-0.004969) | 0.122497 / 0.038508 (0.083989) | 0.043884 / 0.023109 (0.020774) | 0.372982 / 0.275898 (0.097084) | 0.444229 / 0.323480 (0.120749) | 0.009489 / 0.007986 (0.001503) | 0.004612 / 0.004328 (0.000284) | 0.093921 / 0.004250 (0.089670) | 0.052698 / 0.037052 (0.015646) | 0.372327 / 0.258489 (0.113838) | 0.426586 / 0.293841 (0.132745) | 0.046755 / 0.128546 (-0.081792) | 0.014848 / 0.075646 (-0.060799) | 0.410474 / 0.419271 (-0.008798) | 0.058206 / 0.043533 (0.014674) | 0.367051 / 0.255139 (0.111912) | 0.389950 / 0.283200 (0.106750) | 0.120857 / 0.141683 (-0.020826) | 1.795195 / 1.452155 (0.343040) | 1.823938 / 1.492716 (0.331222) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.215199 / 0.018006 (0.197192) | 0.482420 / 0.000490 (0.481930) | 0.001834 / 0.000200 (0.001634) | 0.000099 / 0.000054 (0.000044) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034483 / 0.037411 (-0.002928) | 0.135503 / 0.014526 (0.120977) | 0.149991 / 0.176557 (-0.026565) | 0.198482 / 0.737135 (-0.538653) | 0.153556 / 0.296338 (-0.142783) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.504492 / 0.215209 (0.289283) | 4.950949 / 2.077655 (2.873294) | 2.251186 / 1.504120 (0.747067) | 2.049195 / 1.541195 (0.508000) | 2.123325 / 1.468490 (0.654835) | 0.865651 / 4.584777 (-3.719126) | 4.652297 / 3.745712 (0.906585) | 4.417260 / 5.269862 (-0.852602) | 2.362390 / 4.565676 (-2.203287) | 0.098845 / 0.424275 (-0.325430) | 0.014675 / 0.007607 (0.007068) | 0.608048 / 0.226044 (0.382003) | 6.063863 / 2.268929 (3.794935) | 2.753041 / 55.444624 (-52.691583) | 2.340961 / 6.876477 (-4.535516) | 2.511934 / 2.142072 (0.369862) | 0.989297 / 4.805227 (-3.815930) | 0.195770 / 6.500664 (-6.304894) | 0.076027 / 0.075469 (0.000558) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.479617 / 1.841788 (-0.362170) | 18.917860 / 8.074308 (10.843552) | 18.219594 / 10.191392 (8.028202) | 0.218494 / 0.680424 (-0.461930) | 0.037207 / 0.534201 (-0.496994) | 0.571543 / 0.579283 (-0.007741) | 0.527884 / 0.434364 (0.093520) | 0.658661 / 0.540337 (0.118324) | 0.755449 / 1.386936 (-0.631487) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008762 / 0.011353 (-0.002591) | 0.006019 / 0.011008 (-0.004989) | 0.118756 / 0.038508 (0.080248) | 0.039584 / 0.023109 (0.016474) | 0.400127 / 0.275898 (0.124229) | 0.468114 / 0.323480 (0.144634) | 0.006771 / 0.007986 (-0.001215) | 0.004689 / 0.004328 (0.000360) | 0.087274 / 0.004250 (0.083023) | 0.055548 / 0.037052 (0.018496) | 0.419901 / 0.258489 (0.161412) | 0.459516 / 0.293841 (0.165675) | 0.044197 / 0.128546 (-0.084349) | 0.014162 / 0.075646 (-0.061484) | 0.409634 / 0.419271 (-0.009638) | 0.058668 / 0.043533 (0.015135) | 0.404758 / 0.255139 (0.149619) | 0.431562 / 0.283200 (0.148363) | 0.122361 / 0.141683 (-0.019322) | 1.726597 / 1.452155 (0.274442) | 1.798977 / 1.492716 (0.306260) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.250831 / 0.018006 (0.232825) | 0.489811 / 0.000490 (0.489321) | 0.000490 / 0.000200 (0.000290) | 0.000071 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035666 / 0.037411 (-0.001745) | 0.134899 / 0.014526 (0.120374) | 0.153156 / 0.176557 (-0.023401) | 0.202409 / 0.737135 (-0.534726) | 0.157350 / 0.296338 (-0.138989) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.522464 / 0.215209 (0.307254) | 5.204449 / 2.077655 (3.126794) | 2.617410 / 1.504120 (1.113290) | 2.406246 / 1.541195 (0.865052) | 2.494487 / 1.468490 (1.025997) | 0.834923 / 4.584777 (-3.749854) | 4.794186 / 3.745712 (1.048474) | 2.617939 / 5.269862 (-2.651922) | 1.648310 / 4.565676 (-2.917367) | 0.109785 / 0.424275 (-0.314490) | 0.015217 / 0.007607 (0.007610) | 0.682970 / 0.226044 (0.456926) | 6.853894 / 2.268929 (4.584966) | 3.277150 / 55.444624 (-52.167475) | 2.832502 / 6.876477 (-4.043975) | 2.984874 / 2.142072 (0.842802) | 1.005307 / 4.805227 (-3.799921) | 0.200623 / 6.500664 (-6.300041) | 0.076852 / 0.075469 (0.001383) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.556656 / 1.841788 (-0.285131) | 19.088978 / 8.074308 (11.014669) | 16.946406 / 10.191392 (6.755014) | 0.204419 / 0.680424 (-0.476004) | 0.021456 / 0.534201 (-0.512745) | 0.523603 / 0.579283 (-0.055680) | 0.530067 / 0.434364 (0.095703) | 0.604058 / 0.540337 (0.063721) | 0.731531 / 1.386936 (-0.655405) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n" ]
2022-12-28T11:44:53
2023-01-03T15:36:14
2023-01-03T15:27:31
MEMBER
null
Fix notebook link to open in Colab.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5392/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5392/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5392", "html_url": "https://github.com/huggingface/datasets/pull/5392", "diff_url": "https://github.com/huggingface/datasets/pull/5392.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5392.patch", "merged_at": "2023-01-03T15:27:31" }
true
https://api.github.com/repos/huggingface/datasets/issues/5391
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5391/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5391/comments
https://api.github.com/repos/huggingface/datasets/issues/5391/events
https://github.com/huggingface/datasets/issues/5391
1,510,350,400
I_kwDODunzps5aBh5A
5,391
Whisper Event - RuntimeError: The size of tensor a (504) must match the size of tensor b (448) at non-singleton dimension 1 100% 1000/1000 [2:52:21<00:00, 10.34s/it]
{ "login": "catswithbats", "id": 12885107, "node_id": "MDQ6VXNlcjEyODg1MTA3", "avatar_url": "https://avatars.githubusercontent.com/u/12885107?v=4", "gravatar_id": "", "url": "https://api.github.com/users/catswithbats", "html_url": "https://github.com/catswithbats", "followers_url": "https://api.github.com/users/catswithbats/followers", "following_url": "https://api.github.com/users/catswithbats/following{/other_user}", "gists_url": "https://api.github.com/users/catswithbats/gists{/gist_id}", "starred_url": "https://api.github.com/users/catswithbats/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/catswithbats/subscriptions", "organizations_url": "https://api.github.com/users/catswithbats/orgs", "repos_url": "https://api.github.com/users/catswithbats/repos", "events_url": "https://api.github.com/users/catswithbats/events{/privacy}", "received_events_url": "https://api.github.com/users/catswithbats/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hey @catswithbats! Super sorry for the late reply! This is happening because there is data with label length (504) that exceeds the model's max length (448). \r\n\r\nThere are two options here:\r\n1. Increase the model's `max_length` parameter: \r\n```python\r\nmodel.config.max_length = 512\r\n```\r\n2. Filter data with labels longer than max length: https://discuss.huggingface.co/t/open-to-the-community-whisper-fine-tuning-event/26681/21?u=sanchit-gandhi\r\n\r\nNote that the datasets repo is reserved for issues directly related to the HF datasets library. Issues related to custom fine-tuning implementations are more applicable to the HF Forum: https://discuss.huggingface.co. You're more likely to get a response by posting your issue in the most applicable place and boost the chance of someone sharing a working solution!", "@sanchit-gandhi Thank you for all your work on this topic.\r\n\r\nI'm finding that changing the `max_length` value does not make this error go away." ]
2022-12-25T15:17:14
2023-07-21T14:29:47
2023-07-21T14:29:47
NONE
null
Done in a VM with a GPU (Ubuntu) following the [Whisper Event - PYTHON](https://github.com/huggingface/community-events/tree/main/whisper-fine-tuning-event#python-script) instructions. Attempted using [RuntimeError: he size of tensor a (504) must match the size of tensor b (448) at non-singleton dimension 1 100% 1000/1000 - WEB](https://discuss.huggingface.co/t/trainer-runtimeerror-the-size-of-tensor-a-462-must-match-the-size-of-tensor-b-448-at-non-singleton-dimension-1/26010/10 ) - another person experiencing the same issue. But could not resolve the issue with the google/fleurs data. __Not clear what can be modified in the PY code to resolve the input data size mismatch, as the training data is already very small__. Tried posting on Discord, @sanchit-gandhi and @vaibhavs10. Was hoping that the event is over and some input/help is now available. [Hugging Face - whisper-small-amet](https://huggingface.co/drmeeseeks/whisper-small-amet). The paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356) am_et is a low resource language (Table E), with the WER results ranging from 120-229, based on model size. (Whisper small WER=120.2). # ---> Initial Training Output /usr/local/lib/python3.8/dist-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning warnings.warn( [INFO|trainer.py:1641] 2022-12-18 05:23:28,799 >> ***** Running training ***** [INFO|trainer.py:1642] 2022-12-18 05:23:28,799 >> Num examples = 446 [INFO|trainer.py:1643] 2022-12-18 05:23:28,799 >> Num Epochs = 72 [INFO|trainer.py:1644] 2022-12-18 05:23:28,799 >> Instantaneous batch size per device = 16 [INFO|trainer.py:1645] 2022-12-18 05:23:28,799 >> Total train batch size (w. parallel, distributed & accumulation) = 32 [INFO|trainer.py:1646] 2022-12-18 05:23:28,799 >> Gradient Accumulation steps = 2 [INFO|trainer.py:1647] 2022-12-18 05:23:28,800 >> Total optimization steps = 1000 [INFO|trainer.py:1648] 2022-12-18 05:23:28,801 >> Number of trainable parameters = 241734912 # ---> Error 14% 9/65 [07:07<48:34, 52.04s/it][INFO|configuration_utils.py:523] 2022-12-18 05:03:07,941 >> Generate config GenerationConfig { "begin_suppress_tokens": [ 220, 50257 ], "bos_token_id": 50257, "decoder_start_token_id": 50258, "eos_token_id": 50257, "max_length": 448, "pad_token_id": 50257, "transformers_version": "4.26.0.dev0", "use_cache": false } Traceback (most recent call last): File "run_speech_recognition_seq2seq_streaming.py", line 629, in <module> main() File "run_speech_recognition_seq2seq_streaming.py", line 578, in main train_result = trainer.train(resume_from_checkpoint=checkpoint) File "/usr/local/lib/python3.8/dist-packages/transformers/trainer.py", line 1534, in train return inner_training_loop( File "/usr/local/lib/python3.8/dist-packages/transformers/trainer.py", line 1859, in _inner_training_loop self._maybe_log_save_evaluate(tr_loss, model, trial, epoch, ignore_keys_for_eval) File "/usr/local/lib/python3.8/dist-packages/transformers/trainer.py", line 2122, in _maybe_log_save_evaluate metrics = self.evaluate(ignore_keys=ignore_keys_for_eval) File "/usr/local/lib/python3.8/dist-packages/transformers/trainer_seq2seq.py", line 78, in evaluate return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix) File "/usr/local/lib/python3.8/dist-packages/transformers/trainer.py", line 2818, in evaluate output = eval_loop( File "/usr/local/lib/python3.8/dist-packages/transformers/trainer.py", line 3000, in evaluation_loop loss, logits, labels = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) File "/usr/local/lib/python3.8/dist-packages/transformers/trainer_seq2seq.py", line 213, in prediction_step outputs = model(**inputs) File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1190, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.8/dist-packages/transformers/models/whisper/modeling_whisper.py", line 1197, in forward outputs = self.model( File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1190, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.8/dist-packages/transformers/models/whisper/modeling_whisper.py", line 1066, in forward decoder_outputs = self.decoder( File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1190, in _call_impl return forward_call(*input, **kwargs) File "/usr/local/lib/python3.8/dist-packages/transformers/models/whisper/modeling_whisper.py", line 873, in forward hidden_states = inputs_embeds + positions RuntimeError: The size of tensor a (504) must match the size of tensor b (448) at non-singleton dimension 1 100% 1000/1000 [2:52:21<00:00, 10.34s/it]
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5391/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5391/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5390
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5390/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5390/comments
https://api.github.com/repos/huggingface/datasets/issues/5390/events
https://github.com/huggingface/datasets/issues/5390
1,509,357,553
I_kwDODunzps5Z9vfx
5,390
Error when pushing to the CI hub
{ "login": "severo", "id": 1676121, "node_id": "MDQ6VXNlcjE2NzYxMjE=", "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "gravatar_id": "", "url": "https://api.github.com/users/severo", "html_url": "https://github.com/severo", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "organizations_url": "https://api.github.com/users/severo/orgs", "repos_url": "https://api.github.com/users/severo/repos", "events_url": "https://api.github.com/users/severo/events{/privacy}", "received_events_url": "https://api.github.com/users/severo/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hmmm, git bisect tells me that the behavior is the same since https://github.com/huggingface/datasets/commit/67e65c90e9490810b89ee140da11fdd13c356c9c (3 Oct), i.e. https://github.com/huggingface/datasets/pull/4926", "Maybe related to the discussions in https://github.com/huggingface/datasets/pull/5196", "Maybe the current version of moonlanding in Hub CI is the issue.\r\n\r\nI relaunched tests that were working two days ago: now they are failing. https://github.com/huggingface/datasets-server/commit/746414449cae4b311733f8a76e5b3b4ca73b38a9 for example\r\n\r\ncc @huggingface/moon-landing ", "Hi! I don't think this has anything to do with `datasets`. Hub CI seems to be the culprit - the identical failure can be found in [this](https://github.com/huggingface/datasets/pull/5389) PR (with unrelated changes) opened today.", "OK! Thanks for looking at it. Closing then." ]
2022-12-23T13:36:37
2022-12-23T20:29:02
2022-12-23T20:29:02
CONTRIBUTOR
null
### Describe the bug Note that it's a special case where the Hub URL is "https://hub-ci.huggingface.co", which does not appear if we do the same on the Hub (https://huggingface.co). The call to `dataset.push_to_hub(` fails: ``` Pushing dataset shards to the dataset hub: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.93s/it] Traceback (most recent call last): File "reproduce_hubci.py", line 16, in <module> dataset.push_to_hub(repo_id=repo_id, private=False, token=USER_TOKEN, embed_external_files=True) File "/home/slesage/hf/datasets/src/datasets/arrow_dataset.py", line 5025, in push_to_hub HfApi(endpoint=config.HF_ENDPOINT).upload_file( File "/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/huggingface_hub/hf_api.py", line 1346, in upload_file raise err File "/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/huggingface_hub/hf_api.py", line 1337, in upload_file r.raise_for_status() File "/home/slesage/.pyenv/versions/datasets/lib/python3.8/site-packages/requests/models.py", line 953, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 400 Client Error: Bad Request for url: https://hub-ci.huggingface.co/api/datasets/__DUMMY_DATASETS_SERVER_USER__/bug-16718047265472/upload/main/README.md ``` ### Steps to reproduce the bug ```python # reproduce.py from datasets import Dataset import time USER = "__DUMMY_DATASETS_SERVER_USER__" USER_TOKEN = "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" dataset = Dataset.from_dict({"a": [1, 2, 3]}) repo_id = f"{USER}/bug-{int(time.time() * 10e3)}" dataset.push_to_hub(repo_id=repo_id, private=False, token=USER_TOKEN, embed_external_files=True) ``` ```bash $ HF_ENDPOINT="https://hub-ci.huggingface.co" python reproduce.py ``` ### Expected behavior No error and the dataset should be uploaded to the Hub with the README file (which generates the error). ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.15.0-1026-aws-x86_64-with-glibc2.35 - Python version: 3.9.15 - PyArrow version: 7.0.0 - Pandas version: 1.5.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5390/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5390/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5389
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5389/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5389/comments
https://api.github.com/repos/huggingface/datasets/issues/5389/events
https://github.com/huggingface/datasets/pull/5389
1,509,348,626
PR_kwDODunzps5GHsOo
5,389
Fix link in `load_dataset` docstring
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008935 / 0.011353 (-0.002417) | 0.004582 / 0.011008 (-0.006426) | 0.100950 / 0.038508 (0.062442) | 0.030305 / 0.023109 (0.007196) | 0.299759 / 0.275898 (0.023861) | 0.378577 / 0.323480 (0.055097) | 0.007834 / 0.007986 (-0.000152) | 0.003399 / 0.004328 (-0.000930) | 0.078568 / 0.004250 (0.074318) | 0.037990 / 0.037052 (0.000938) | 0.313025 / 0.258489 (0.054536) | 0.359543 / 0.293841 (0.065702) | 0.033631 / 0.128546 (-0.094916) | 0.011681 / 0.075646 (-0.063966) | 0.324542 / 0.419271 (-0.094729) | 0.041014 / 0.043533 (-0.002519) | 0.302884 / 0.255139 (0.047745) | 0.337059 / 0.283200 (0.053859) | 0.089403 / 0.141683 (-0.052280) | 1.491262 / 1.452155 (0.039108) | 1.521626 / 1.492716 (0.028910) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.172627 / 0.018006 (0.154621) | 0.419406 / 0.000490 (0.418917) | 0.001974 / 0.000200 (0.001775) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023598 / 0.037411 (-0.013814) | 0.098127 / 0.014526 (0.083601) | 0.105611 / 0.176557 (-0.070946) | 0.142612 / 0.737135 (-0.594523) | 0.121687 / 0.296338 (-0.174651) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418512 / 0.215209 (0.203303) | 4.173099 / 2.077655 (2.095444) | 1.865900 / 1.504120 (0.361780) | 1.664053 / 1.541195 (0.122858) | 1.726289 / 1.468490 (0.257799) | 0.693214 / 4.584777 (-3.891563) | 3.499982 / 3.745712 (-0.245730) | 1.894278 / 5.269862 (-3.375583) | 1.178214 / 4.565676 (-3.387463) | 0.082391 / 0.424275 (-0.341884) | 0.012486 / 0.007607 (0.004878) | 0.532190 / 0.226044 (0.306145) | 5.286612 / 2.268929 (3.017684) | 2.316680 / 55.444624 (-53.127944) | 1.964020 / 6.876477 (-4.912457) | 2.016457 / 2.142072 (-0.125616) | 0.812290 / 4.805227 (-3.992937) | 0.149102 / 6.500664 (-6.351562) | 0.064215 / 0.075469 (-0.011254) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.281919 / 1.841788 (-0.559869) | 14.107509 / 8.074308 (6.033201) | 13.892369 / 10.191392 (3.700977) | 0.146164 / 0.680424 (-0.534260) | 0.028740 / 0.534201 (-0.505460) | 0.395218 / 0.579283 (-0.184066) | 0.406321 / 0.434364 (-0.028043) | 0.460880 / 0.540337 (-0.079458) | 0.545975 / 1.386936 (-0.840961) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006797 / 0.011353 (-0.004556) | 0.004522 / 0.011008 (-0.006486) | 0.098440 / 0.038508 (0.059932) | 0.027722 / 0.023109 (0.004613) | 0.423995 / 0.275898 (0.148097) | 0.456164 / 0.323480 (0.132684) | 0.005156 / 0.007986 (-0.002830) | 0.003439 / 0.004328 (-0.000889) | 0.075307 / 0.004250 (0.071057) | 0.039599 / 0.037052 (0.002547) | 0.423671 / 0.258489 (0.165181) | 0.463841 / 0.293841 (0.170001) | 0.032473 / 0.128546 (-0.096073) | 0.011674 / 0.075646 (-0.063972) | 0.320548 / 0.419271 (-0.098723) | 0.041618 / 0.043533 (-0.001915) | 0.426133 / 0.255139 (0.170994) | 0.443018 / 0.283200 (0.159819) | 0.091103 / 0.141683 (-0.050579) | 1.468758 / 1.452155 (0.016604) | 1.532695 / 1.492716 (0.039978) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.255314 / 0.018006 (0.237308) | 0.422982 / 0.000490 (0.422492) | 0.015405 / 0.000200 (0.015205) | 0.000103 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025260 / 0.037411 (-0.012152) | 0.102062 / 0.014526 (0.087537) | 0.108161 / 0.176557 (-0.068395) | 0.144205 / 0.737135 (-0.592930) | 0.111686 / 0.296338 (-0.184653) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.482633 / 0.215209 (0.267424) | 4.824777 / 2.077655 (2.747123) | 2.488626 / 1.504120 (0.984506) | 2.285410 / 1.541195 (0.744215) | 2.336793 / 1.468490 (0.868303) | 0.701894 / 4.584777 (-3.882883) | 3.506908 / 3.745712 (-0.238804) | 3.399789 / 5.269862 (-1.870072) | 1.536359 / 4.565676 (-3.029317) | 0.083621 / 0.424275 (-0.340655) | 0.012702 / 0.007607 (0.005094) | 0.581259 / 0.226044 (0.355215) | 5.829640 / 2.268929 (3.560711) | 2.932201 / 55.444624 (-52.512424) | 2.577175 / 6.876477 (-4.299301) | 2.621782 / 2.142072 (0.479710) | 0.812074 / 4.805227 (-3.993153) | 0.152840 / 6.500664 (-6.347824) | 0.067982 / 0.075469 (-0.007487) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.274915 / 1.841788 (-0.566873) | 14.345800 / 8.074308 (6.271492) | 14.242475 / 10.191392 (4.051083) | 0.143636 / 0.680424 (-0.536788) | 0.016824 / 0.534201 (-0.517377) | 0.376449 / 0.579283 (-0.202834) | 0.394219 / 0.434364 (-0.040145) | 0.435368 / 0.540337 (-0.104969) | 0.518393 / 1.386936 (-0.868544) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#187e4faa978fef267a055f6988564f922e51eaa4 \"CML watermark\")\n", "I also fixed the rest of the links that point to the markdown files. \r\n\r\nPS: the CI failures are unrelated ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008641 / 0.011353 (-0.002712) | 0.004560 / 0.011008 (-0.006448) | 0.100559 / 0.038508 (0.062051) | 0.029744 / 0.023109 (0.006635) | 0.300580 / 0.275898 (0.024682) | 0.359100 / 0.323480 (0.035620) | 0.007016 / 0.007986 (-0.000970) | 0.003393 / 0.004328 (-0.000936) | 0.078649 / 0.004250 (0.074399) | 0.038138 / 0.037052 (0.001086) | 0.307730 / 0.258489 (0.049241) | 0.347678 / 0.293841 (0.053837) | 0.033630 / 0.128546 (-0.094917) | 0.011452 / 0.075646 (-0.064194) | 0.320903 / 0.419271 (-0.098369) | 0.042659 / 0.043533 (-0.000874) | 0.298886 / 0.255139 (0.043747) | 0.324371 / 0.283200 (0.041171) | 0.092582 / 0.141683 (-0.049101) | 1.490017 / 1.452155 (0.037863) | 1.512825 / 1.492716 (0.020109) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178965 / 0.018006 (0.160958) | 0.420001 / 0.000490 (0.419512) | 0.002686 / 0.000200 (0.002486) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023568 / 0.037411 (-0.013843) | 0.097027 / 0.014526 (0.082502) | 0.104721 / 0.176557 (-0.071836) | 0.148757 / 0.737135 (-0.588378) | 0.110849 / 0.296338 (-0.185489) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415034 / 0.215209 (0.199825) | 4.155249 / 2.077655 (2.077594) | 1.837027 / 1.504120 (0.332907) | 1.627754 / 1.541195 (0.086559) | 1.687958 / 1.468490 (0.219468) | 0.699542 / 4.584777 (-3.885235) | 3.376707 / 3.745712 (-0.369005) | 2.900778 / 5.269862 (-2.369083) | 1.556168 / 4.565676 (-3.009508) | 0.082438 / 0.424275 (-0.341837) | 0.012339 / 0.007607 (0.004732) | 0.524952 / 0.226044 (0.298907) | 5.269852 / 2.268929 (3.000924) | 2.278770 / 55.444624 (-53.165854) | 1.917987 / 6.876477 (-4.958490) | 1.955000 / 2.142072 (-0.187072) | 0.821169 / 4.805227 (-3.984058) | 0.149019 / 6.500664 (-6.351645) | 0.064604 / 0.075469 (-0.010865) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.199768 / 1.841788 (-0.642020) | 13.760897 / 8.074308 (5.686589) | 13.911550 / 10.191392 (3.720158) | 0.161727 / 0.680424 (-0.518697) | 0.028615 / 0.534201 (-0.505586) | 0.393917 / 0.579283 (-0.185366) | 0.392524 / 0.434364 (-0.041840) | 0.451763 / 0.540337 (-0.088574) | 0.536880 / 1.386936 (-0.850056) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006407 / 0.011353 (-0.004946) | 0.004420 / 0.011008 (-0.006588) | 0.097244 / 0.038508 (0.058736) | 0.027114 / 0.023109 (0.004005) | 0.412512 / 0.275898 (0.136614) | 0.448189 / 0.323480 (0.124709) | 0.005831 / 0.007986 (-0.002155) | 0.005423 / 0.004328 (0.001095) | 0.076051 / 0.004250 (0.071801) | 0.038828 / 0.037052 (0.001776) | 0.414586 / 0.258489 (0.156097) | 0.457196 / 0.293841 (0.163355) | 0.031615 / 0.128546 (-0.096931) | 0.011542 / 0.075646 (-0.064104) | 0.316967 / 0.419271 (-0.102304) | 0.041278 / 0.043533 (-0.002254) | 0.411371 / 0.255139 (0.156232) | 0.436376 / 0.283200 (0.153177) | 0.090212 / 0.141683 (-0.051471) | 1.461831 / 1.452155 (0.009677) | 1.606515 / 1.492716 (0.113799) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221453 / 0.018006 (0.203447) | 0.404140 / 0.000490 (0.403650) | 0.000422 / 0.000200 (0.000222) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024588 / 0.037411 (-0.012824) | 0.098604 / 0.014526 (0.084078) | 0.113682 / 0.176557 (-0.062874) | 0.141141 / 0.737135 (-0.595994) | 0.110069 / 0.296338 (-0.186270) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.477267 / 0.215209 (0.262058) | 4.775086 / 2.077655 (2.697431) | 2.445449 / 1.504120 (0.941329) | 2.242220 / 1.541195 (0.701025) | 2.303542 / 1.468490 (0.835051) | 0.693448 / 4.584777 (-3.891329) | 3.413319 / 3.745712 (-0.332393) | 3.052734 / 5.269862 (-2.217127) | 1.434075 / 4.565676 (-3.131602) | 0.082429 / 0.424275 (-0.341846) | 0.012594 / 0.007607 (0.004987) | 0.584259 / 0.226044 (0.358214) | 5.865098 / 2.268929 (3.596169) | 2.926301 / 55.444624 (-52.518324) | 2.572555 / 6.876477 (-4.303921) | 2.608584 / 2.142072 (0.466512) | 0.805029 / 4.805227 (-4.000198) | 0.151247 / 6.500664 (-6.349417) | 0.067142 / 0.075469 (-0.008327) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.285454 / 1.841788 (-0.556334) | 14.296425 / 8.074308 (6.222117) | 14.147278 / 10.191392 (3.955886) | 0.151698 / 0.680424 (-0.528726) | 0.016876 / 0.534201 (-0.517325) | 0.383302 / 0.579283 (-0.195981) | 0.388461 / 0.434364 (-0.045902) | 0.438286 / 0.540337 (-0.102051) | 0.525249 / 1.386936 (-0.861687) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2a3b2f04f1fd62249ac43c534761ce151ad5c269 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008677 / 0.011353 (-0.002676) | 0.004863 / 0.011008 (-0.006145) | 0.096606 / 0.038508 (0.058098) | 0.034004 / 0.023109 (0.010895) | 0.296362 / 0.275898 (0.020464) | 0.323445 / 0.323480 (-0.000035) | 0.007341 / 0.007986 (-0.000644) | 0.005518 / 0.004328 (0.001189) | 0.073584 / 0.004250 (0.069334) | 0.041471 / 0.037052 (0.004419) | 0.302183 / 0.258489 (0.043694) | 0.339369 / 0.293841 (0.045528) | 0.037375 / 0.128546 (-0.091171) | 0.011827 / 0.075646 (-0.063819) | 0.330723 / 0.419271 (-0.088549) | 0.048751 / 0.043533 (0.005218) | 0.298370 / 0.255139 (0.043231) | 0.317781 / 0.283200 (0.034582) | 0.097488 / 0.141683 (-0.044195) | 1.456242 / 1.452155 (0.004088) | 1.530149 / 1.492716 (0.037433) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207053 / 0.018006 (0.189046) | 0.438165 / 0.000490 (0.437675) | 0.001161 / 0.000200 (0.000961) | 0.000078 / 0.000054 (0.000024) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025353 / 0.037411 (-0.012059) | 0.105536 / 0.014526 (0.091010) | 0.116122 / 0.176557 (-0.060434) | 0.151605 / 0.737135 (-0.585530) | 0.121777 / 0.296338 (-0.174561) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402780 / 0.215209 (0.187571) | 4.017882 / 2.077655 (1.940227) | 1.813111 / 1.504120 (0.308991) | 1.620000 / 1.541195 (0.078805) | 1.649186 / 1.468490 (0.180696) | 0.687523 / 4.584777 (-3.897254) | 3.712595 / 3.745712 (-0.033117) | 2.038535 / 5.269862 (-3.231326) | 1.414794 / 4.565676 (-3.150882) | 0.083357 / 0.424275 (-0.340918) | 0.012032 / 0.007607 (0.004425) | 0.502899 / 0.226044 (0.276854) | 5.038914 / 2.268929 (2.769985) | 2.250476 / 55.444624 (-53.194148) | 1.919954 / 6.876477 (-4.956523) | 1.930928 / 2.142072 (-0.211144) | 0.826634 / 4.805227 (-3.978593) | 0.161599 / 6.500664 (-6.339066) | 0.061356 / 0.075469 (-0.014113) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.228998 / 1.841788 (-0.612790) | 14.587914 / 8.074308 (6.513606) | 14.237514 / 10.191392 (4.046122) | 0.190913 / 0.680424 (-0.489510) | 0.029104 / 0.534201 (-0.505097) | 0.436160 / 0.579283 (-0.143123) | 0.431464 / 0.434364 (-0.002900) | 0.511670 / 0.540337 (-0.028668) | 0.609046 / 1.386936 (-0.777890) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006980 / 0.011353 (-0.004373) | 0.005260 / 0.011008 (-0.005748) | 0.095288 / 0.038508 (0.056780) | 0.032465 / 0.023109 (0.009356) | 0.410799 / 0.275898 (0.134901) | 0.423814 / 0.323480 (0.100334) | 0.005533 / 0.007986 (-0.002452) | 0.005764 / 0.004328 (0.001436) | 0.070713 / 0.004250 (0.066462) | 0.048193 / 0.037052 (0.011141) | 0.405742 / 0.258489 (0.147253) | 0.458773 / 0.293841 (0.164932) | 0.036415 / 0.128546 (-0.092131) | 0.012192 / 0.075646 (-0.063454) | 0.330655 / 0.419271 (-0.088617) | 0.055945 / 0.043533 (0.012412) | 0.407497 / 0.255139 (0.152358) | 0.421496 / 0.283200 (0.138296) | 0.106285 / 0.141683 (-0.035398) | 1.459837 / 1.452155 (0.007683) | 1.573147 / 1.492716 (0.080431) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.205776 / 0.018006 (0.187770) | 0.441523 / 0.000490 (0.441033) | 0.003073 / 0.000200 (0.002873) | 0.000092 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029207 / 0.037411 (-0.008205) | 0.110295 / 0.014526 (0.095770) | 0.130233 / 0.176557 (-0.046324) | 0.157489 / 0.737135 (-0.579647) | 0.125374 / 0.296338 (-0.170965) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440942 / 0.215209 (0.225733) | 4.389647 / 2.077655 (2.311992) | 2.234883 / 1.504120 (0.730763) | 2.029510 / 1.541195 (0.488315) | 2.082503 / 1.468490 (0.614013) | 0.698046 / 4.584777 (-3.886731) | 3.769127 / 3.745712 (0.023415) | 2.058511 / 5.269862 (-3.211351) | 1.324302 / 4.565676 (-3.241375) | 0.085695 / 0.424275 (-0.338580) | 0.012122 / 0.007607 (0.004515) | 0.552406 / 0.226044 (0.326362) | 5.527073 / 2.268929 (3.258145) | 2.711354 / 55.444624 (-52.733270) | 2.328848 / 6.876477 (-4.547629) | 2.340750 / 2.142072 (0.198678) | 0.846300 / 4.805227 (-3.958927) | 0.167465 / 6.500664 (-6.333199) | 0.063419 / 0.075469 (-0.012050) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.262452 / 1.841788 (-0.579336) | 15.043537 / 8.074308 (6.969229) | 14.212563 / 10.191392 (4.021171) | 0.170229 / 0.680424 (-0.510194) | 0.017696 / 0.534201 (-0.516505) | 0.423194 / 0.579283 (-0.156089) | 0.430908 / 0.434364 (-0.003456) | 0.491733 / 0.540337 (-0.048604) | 0.599267 / 1.386936 (-0.787669) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2a3b2f04f1fd62249ac43c534761ce151ad5c269 \"CML watermark\")\n", "Program enthusiastic " ]
2022-12-23T13:26:31
2023-01-25T19:00:43
2023-01-24T16:33:38
CONTRIBUTOR
null
Fix https://github.com/huggingface/datasets/issues/5387, fix https://github.com/huggingface/datasets/issues/4566
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5389/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5389/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5389", "html_url": "https://github.com/huggingface/datasets/pull/5389", "diff_url": "https://github.com/huggingface/datasets/pull/5389.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5389.patch", "merged_at": "2023-01-24T16:33:38" }
true
https://api.github.com/repos/huggingface/datasets/issues/5388
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5388/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5388/comments
https://api.github.com/repos/huggingface/datasets/issues/5388/events
https://github.com/huggingface/datasets/issues/5388
1,509,042,348
I_kwDODunzps5Z8iis
5,388
Getting Value Error while loading a dataset..
{ "login": "valmetisrinivas", "id": 51160232, "node_id": "MDQ6VXNlcjUxMTYwMjMy", "avatar_url": "https://avatars.githubusercontent.com/u/51160232?v=4", "gravatar_id": "", "url": "https://api.github.com/users/valmetisrinivas", "html_url": "https://github.com/valmetisrinivas", "followers_url": "https://api.github.com/users/valmetisrinivas/followers", "following_url": "https://api.github.com/users/valmetisrinivas/following{/other_user}", "gists_url": "https://api.github.com/users/valmetisrinivas/gists{/gist_id}", "starred_url": "https://api.github.com/users/valmetisrinivas/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/valmetisrinivas/subscriptions", "organizations_url": "https://api.github.com/users/valmetisrinivas/orgs", "repos_url": "https://api.github.com/users/valmetisrinivas/repos", "events_url": "https://api.github.com/users/valmetisrinivas/events{/privacy}", "received_events_url": "https://api.github.com/users/valmetisrinivas/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi! I can't reproduce this error locally (Mac) or in Colab. What version of `datasets` are you using?", "Hi [mariosasko](https://github.com/mariosasko), the datasets version is '2.8.0'.", "@valmetisrinivas you get that error because you imported `datasets` (and thus `fsspec`) before installing `zstandard`.\r\n\r\nPlease, restart your Colab runtime and execute the install commands before importing `datasets`:\r\n```python\r\n!pip install datasets\r\n!pip install zstandard\r\n\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset(\r\n \"json\",\r\n data_files=\"https://the-eye.eu/public/AI/pile_preliminary_components/FreeLaw_Opinions.jsonl.zst\",\r\n split=\"train\",\r\n streaming=True,\r\n)\r\nnext(iter(ds))\r\n```", "> @valmetisrinivas you get that error because you imported `datasets` (and thus `fsspec`) before installing `zstandard`.\r\n> \r\n> Please, restart your Colab runtime and execute the install commands before importing `datasets`:\r\n> \r\n> ```python\r\n> !pip install datasets\r\n> !pip install zstandard\r\n> \r\n> from datasets import load_dataset\r\n> \r\n> ds = load_dataset(\r\n> \"json\",\r\n> data_files=\"https://the-eye.eu/public/AI/pile_preliminary_components/FreeLaw_Opinions.jsonl.zst\",\r\n> split=\"train\",\r\n> streaming=True,\r\n> )\r\n> next(iter(ds))\r\n> ```\r\n\r\nI guess that was the problem, importing datasets before the installation of zstandard. Thank you for the feedback. " ]
2022-12-23T08:16:43
2022-12-29T08:36:33
2022-12-27T17:59:09
NONE
null
### Describe the bug I am trying to load a dataset using Hugging Face Datasets load_dataset method. I am getting the value error as show below. Can someone help with this? I am using Windows laptop and Google Colab notebook. ``` WARNING:datasets.builder:Using custom data configuration default-a1d9e8eaedd958cd --------------------------------------------------------------------------- ValueError Traceback (most recent call last) [<ipython-input-12-5b4fdcb8e6d5>](https://localhost:8080/#) in <module> 6 ) 7 ----> 8 next(iter(law_dataset_streamed)) 17 frames [/usr/local/lib/python3.8/dist-packages/fsspec/core.py](https://localhost:8080/#) in get_compression(urlpath, compression) 485 compression = infer_compression(urlpath) 486 if compression is not None and compression not in compr: --> 487 raise ValueError("Compression type %s not supported" % compression) 488 return compression 489 ValueError: Compression type zstd not supported ``` ### Steps to reproduce the bug ``` !pip install zstandard from datasets import load_dataset lds = load_dataset( "json", data_files="https://the-eye.eu/public/AI/pile_preliminary_components/FreeLaw_Opinions.jsonl.zst", split="train", streaming=True, ) ``` ### Expected behavior I expect an iterable object as the output 'lds' to be created. ### Environment info Windows laptop with Google Colab notebook
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5388/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5388/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5387
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5387/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5387/comments
https://api.github.com/repos/huggingface/datasets/issues/5387/events
https://github.com/huggingface/datasets/issues/5387
1,508,740,177
I_kwDODunzps5Z7YxR
5,387
Missing documentation page : improve-performance
{ "login": "astariul", "id": 43774355, "node_id": "MDQ6VXNlcjQzNzc0MzU1", "avatar_url": "https://avatars.githubusercontent.com/u/43774355?v=4", "gravatar_id": "", "url": "https://api.github.com/users/astariul", "html_url": "https://github.com/astariul", "followers_url": "https://api.github.com/users/astariul/followers", "following_url": "https://api.github.com/users/astariul/following{/other_user}", "gists_url": "https://api.github.com/users/astariul/gists{/gist_id}", "starred_url": "https://api.github.com/users/astariul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/astariul/subscriptions", "organizations_url": "https://api.github.com/users/astariul/orgs", "repos_url": "https://api.github.com/users/astariul/repos", "events_url": "https://api.github.com/users/astariul/events{/privacy}", "received_events_url": "https://api.github.com/users/astariul/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi! Our documentation builder does not support links to sections, hence the bug. This is the link it should point to https://huggingface.co/docs/datasets/v2.8.0/en/cache#improve-performance." ]
2022-12-23T01:12:57
2023-01-24T16:33:40
2023-01-24T16:33:40
NONE
null
### Describe the bug Trying to access https://huggingface.co/docs/datasets/v2.8.0/en/package_reference/cache#improve-performance, the page is missing. The link is in here : https://huggingface.co/docs/datasets/v2.8.0/en/package_reference/loading_methods#datasets.load_dataset.keep_in_memory ### Steps to reproduce the bug Access the page and see it's missing. ### Expected behavior Not missing page ### Environment info Doesn't matter
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5387/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5387/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5386
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5386/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5386/comments
https://api.github.com/repos/huggingface/datasets/issues/5386/events
https://github.com/huggingface/datasets/issues/5386
1,508,592,918
I_kwDODunzps5Z600W
5,386
`max_shard_size` in `datasets.push_to_hub()` breaks with large files
{ "login": "salieri", "id": 1086393, "node_id": "MDQ6VXNlcjEwODYzOTM=", "avatar_url": "https://avatars.githubusercontent.com/u/1086393?v=4", "gravatar_id": "", "url": "https://api.github.com/users/salieri", "html_url": "https://github.com/salieri", "followers_url": "https://api.github.com/users/salieri/followers", "following_url": "https://api.github.com/users/salieri/following{/other_user}", "gists_url": "https://api.github.com/users/salieri/gists{/gist_id}", "starred_url": "https://api.github.com/users/salieri/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/salieri/subscriptions", "organizations_url": "https://api.github.com/users/salieri/orgs", "repos_url": "https://api.github.com/users/salieri/repos", "events_url": "https://api.github.com/users/salieri/events{/privacy}", "received_events_url": "https://api.github.com/users/salieri/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi! \r\n\r\nThis behavior stems from the fact that we don't always embed image bytes in the underlying arrow table, which can lead to bad size estimation (we use the first 1000 table rows to [estimate](https://github.com/huggingface/datasets/blob/9a7272cd4222383a5b932b0083a4cc173fda44e8/src/datasets/arrow_dataset.py#L4627) the external file size). We plan to address this in the next major release by always embedding external bytes. In the meantime, you can either shuffle the dataset with `.shuffle().flatten_indices()` to make the estimation more precise or embed the bytes in the table like so:\r\n```python\r\nfrom datasets.table import embed_table_storage\r\nformat = ds.format\r\nds = ds.with_format(\"arrow\")\r\nds = ds.map(embed_table_storage, batched=True)\r\nds = ds.with_format(**format)\r\n...\r\nds.push_to_hub(...)\r\n```", "Embedding the bytes worked like charm. Thanks @mariosasko!" ]
2022-12-22T21:50:58
2022-12-26T23:45:51
2022-12-26T23:45:51
NONE
null
### Describe the bug `max_shard_size` parameter for `datasets.push_to_hub()` works unreliably with large files, generating shard files that are way past the specified limit. In my private dataset, which contains unprocessed images of all sizes (up to `~100MB` per file), I've encountered cases where `max_shard_size='100MB'` results in shard files that are `>2GB` in size. Setting `max_shard_size` to another value, such as `1GB` or `500MB` does not fix this problem. **The real problem is this:** When the shard file size grows too big, the entire dataset breaks because of #4721 and ultimately https://issues.apache.org/jira/browse/ARROW-5030. Since `max_shard_size` does not let one accurately control the size of the shard files, it becomes very easy to build a large dataset without any warnings that it will be broken -- even when you think you are mitigating this problem by setting `max_shard_size`. ``` File " /path/to/sd-test-suite-v1/venv/lib/site-packages/datasets/builder.py", line 1763, in _prepare_split_single for _, table in generator: File " /path/to/sd-test-suite-v1/venv/lib/site-packages/datasets/packaged_modules/parquet/parquet.py", line 69, in _generate_tables for batch_idx, record_batch in enumerate( File "pyarrow/_parquet.pyx", line 1323, in iter_batches File "pyarrow/error.pxi", line 121, in pyarrow.lib.check_status pyarrow.lib.ArrowNotImplementedError: Nested data conversions not implemented for chunked array outputs ``` ### Steps to reproduce the bug 1. Clone [example repo](https://github.com/salieri/hf-dataset-shard-size-bug) 2. Follow steps in [README.md](https://github.com/salieri/hf-dataset-shard-size-bug/blob/main/README.md) 3. After uploading the dataset, you will see that the shard file size varies between `30MB` and `200MB` -- way beyond the `max_shard_size='75MB'` limit (example: `train-00003-of-00131...` is `155MB` in [here](https://huggingface.co/datasets/slri/shard-size-test/tree/main/data)) (Note that this example repo does not generate shard files that are so large that they would trigger #4721) ### Expected behavior The shard file size should remain below or equal to `max_shard_size`. ### Environment info - `datasets` version: 2.8.0 - Platform: Linux-5.10.157-139.675.amzn2.aarch64-aarch64-with-glibc2.17 - Python version: 3.7.15 - PyArrow version: 10.0.1 - Pandas version: 1.3.5
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5386/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5386/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5385
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5385/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5385/comments
https://api.github.com/repos/huggingface/datasets/issues/5385/events
https://github.com/huggingface/datasets/issues/5385
1,508,535,532
I_kwDODunzps5Z6mzs
5,385
Is `fs=` deprecated in `load_from_disk()` as well?
{ "login": "dconathan", "id": 15098095, "node_id": "MDQ6VXNlcjE1MDk4MDk1", "avatar_url": "https://avatars.githubusercontent.com/u/15098095?v=4", "gravatar_id": "", "url": "https://api.github.com/users/dconathan", "html_url": "https://github.com/dconathan", "followers_url": "https://api.github.com/users/dconathan/followers", "following_url": "https://api.github.com/users/dconathan/following{/other_user}", "gists_url": "https://api.github.com/users/dconathan/gists{/gist_id}", "starred_url": "https://api.github.com/users/dconathan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dconathan/subscriptions", "organizations_url": "https://api.github.com/users/dconathan/orgs", "repos_url": "https://api.github.com/users/dconathan/repos", "events_url": "https://api.github.com/users/dconathan/events{/privacy}", "received_events_url": "https://api.github.com/users/dconathan/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi! Yes, we should deprecate the `fs` param here. Would you be interested in submitting a PR? ", "> Hi! Yes, we should deprecate the `fs` param here. Would you be interested in submitting a PR?\r\n\r\nYeah I can do that sometime next week. Should the storage_options be a new arg here? I’ll look around for anywhere else where fs is an arg.", "Closed by #5393." ]
2022-12-22T21:00:45
2023-01-23T10:50:05
2023-01-23T10:50:04
CONTRIBUTOR
null
### Describe the bug The `fs=` argument was deprecated from `Dataset.save_to_disk` and `Dataset.load_from_disk` in favor of automagically figuring it out via fsspec: https://github.com/huggingface/datasets/blob/9a7272cd4222383a5b932b0083a4cc173fda44e8/src/datasets/arrow_dataset.py#L1339-L1340 Is there a reason the same thing shouldn't also apply to `datasets.load.load_from_disk()` as well ? https://github.com/huggingface/datasets/blob/9a7272cd4222383a5b932b0083a4cc173fda44e8/src/datasets/load.py#L1779 ### Steps to reproduce the bug n/a ### Expected behavior n/a ### Environment info n/a
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5385/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5385/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5384
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5384/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5384/comments
https://api.github.com/repos/huggingface/datasets/issues/5384/events
https://github.com/huggingface/datasets/pull/5384
1,508,152,598
PR_kwDODunzps5GDmR6
5,384
Handle 0-dim tensors in `cast_to_python_objects`
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010576 / 0.011353 (-0.000777) | 0.006010 / 0.011008 (-0.004998) | 0.109375 / 0.038508 (0.070867) | 0.037780 / 0.023109 (0.014670) | 0.381552 / 0.275898 (0.105654) | 0.446039 / 0.323480 (0.122559) | 0.009004 / 0.007986 (0.001019) | 0.005653 / 0.004328 (0.001324) | 0.087027 / 0.004250 (0.082776) | 0.040346 / 0.037052 (0.003293) | 0.398827 / 0.258489 (0.140338) | 0.407281 / 0.293841 (0.113440) | 0.051723 / 0.128546 (-0.076824) | 0.020254 / 0.075646 (-0.055392) | 0.376841 / 0.419271 (-0.042430) | 0.055505 / 0.043533 (0.011972) | 0.383464 / 0.255139 (0.128325) | 0.436130 / 0.283200 (0.152930) | 0.117403 / 0.141683 (-0.024280) | 1.569016 / 1.452155 (0.116862) | 1.889831 / 1.492716 (0.397115) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.297962 / 0.018006 (0.279956) | 0.683699 / 0.000490 (0.683210) | 0.000918 / 0.000200 (0.000718) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026742 / 0.037411 (-0.010669) | 0.125293 / 0.014526 (0.110768) | 0.128769 / 0.176557 (-0.047787) | 0.179447 / 0.737135 (-0.557688) | 0.142032 / 0.296338 (-0.154306) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.588389 / 0.215209 (0.373180) | 5.943514 / 2.077655 (3.865859) | 2.631163 / 1.504120 (1.127043) | 1.865446 / 1.541195 (0.324252) | 2.055610 / 1.468490 (0.587120) | 1.090288 / 4.584777 (-3.494489) | 5.457151 / 3.745712 (1.711439) | 5.645614 / 5.269862 (0.375752) | 2.849492 / 4.565676 (-1.716184) | 0.140447 / 0.424275 (-0.283828) | 0.015421 / 0.007607 (0.007813) | 0.735528 / 0.226044 (0.509484) | 7.394097 / 2.268929 (5.125169) | 3.219714 / 55.444624 (-52.224911) | 2.504134 / 6.876477 (-4.372342) | 2.524291 / 2.142072 (0.382219) | 1.452776 / 4.805227 (-3.352452) | 0.256142 / 6.500664 (-6.244522) | 0.093809 / 0.075469 (0.018340) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.570046 / 1.841788 (-0.271742) | 17.360385 / 8.074308 (9.286077) | 20.750595 / 10.191392 (10.559203) | 0.218486 / 0.680424 (-0.461938) | 0.048527 / 0.534201 (-0.485674) | 0.549568 / 0.579283 (-0.029715) | 0.633993 / 0.434364 (0.199629) | 0.632585 / 0.540337 (0.092248) | 0.712817 / 1.386936 (-0.674119) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010524 / 0.011353 (-0.000829) | 0.006307 / 0.011008 (-0.004701) | 0.129671 / 0.038508 (0.091162) | 0.038952 / 0.023109 (0.015842) | 0.421936 / 0.275898 (0.146038) | 0.489911 / 0.323480 (0.166431) | 0.007661 / 0.007986 (-0.000325) | 0.005430 / 0.004328 (0.001102) | 0.091851 / 0.004250 (0.087600) | 0.059755 / 0.037052 (0.022703) | 0.449810 / 0.258489 (0.191321) | 0.519498 / 0.293841 (0.225657) | 0.061644 / 0.128546 (-0.066902) | 0.018950 / 0.075646 (-0.056696) | 0.399149 / 0.419271 (-0.020122) | 0.067670 / 0.043533 (0.024137) | 0.441091 / 0.255139 (0.185952) | 0.459327 / 0.283200 (0.176128) | 0.122476 / 0.141683 (-0.019207) | 1.760129 / 1.452155 (0.307974) | 1.767945 / 1.492716 (0.275228) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.276675 / 0.018006 (0.258669) | 0.606798 / 0.000490 (0.606308) | 0.000449 / 0.000200 (0.000249) | 0.000078 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027762 / 0.037411 (-0.009649) | 0.108330 / 0.014526 (0.093805) | 0.134714 / 0.176557 (-0.041843) | 0.175666 / 0.737135 (-0.561470) | 0.134917 / 0.296338 (-0.161421) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.676756 / 0.215209 (0.461547) | 6.746519 / 2.077655 (4.668864) | 2.660869 / 1.504120 (1.156750) | 2.273688 / 1.541195 (0.732494) | 2.392580 / 1.468490 (0.924090) | 1.127848 / 4.584777 (-3.456929) | 5.356499 / 3.745712 (1.610787) | 2.933006 / 5.269862 (-2.336855) | 1.872877 / 4.565676 (-2.692799) | 0.139504 / 0.424275 (-0.284771) | 0.013501 / 0.007607 (0.005894) | 0.749888 / 0.226044 (0.523843) | 8.157031 / 2.268929 (5.888103) | 3.627751 / 55.444624 (-51.816874) | 2.713152 / 6.876477 (-4.163324) | 2.934585 / 2.142072 (0.792512) | 1.376398 / 4.805227 (-3.428829) | 0.251537 / 6.500664 (-6.249127) | 0.083995 / 0.075469 (0.008526) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.635446 / 1.841788 (-0.206342) | 18.435807 / 8.074308 (10.361498) | 21.395291 / 10.191392 (11.203899) | 0.247238 / 0.680424 (-0.433186) | 0.030503 / 0.534201 (-0.503698) | 0.553096 / 0.579283 (-0.026187) | 0.597583 / 0.434364 (0.163219) | 0.594135 / 0.540337 (0.053797) | 0.673815 / 1.386936 (-0.713122) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n" ]
2022-12-22T16:15:30
2023-01-13T16:10:15
2023-01-13T16:00:52
CONTRIBUTOR
null
Fix #5229
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5384/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5384/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5384", "html_url": "https://github.com/huggingface/datasets/pull/5384", "diff_url": "https://github.com/huggingface/datasets/pull/5384.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5384.patch", "merged_at": "2023-01-13T16:00:52" }
true
https://api.github.com/repos/huggingface/datasets/issues/5383
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5383/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5383/comments
https://api.github.com/repos/huggingface/datasets/issues/5383/events
https://github.com/huggingface/datasets/issues/5383
1,507,293,968
I_kwDODunzps5Z13sQ
5,383
IterableDataset missing column_names, differs from Dataset interface
{ "login": "iceboundflame", "id": 933687, "node_id": "MDQ6VXNlcjkzMzY4Nw==", "avatar_url": "https://avatars.githubusercontent.com/u/933687?v=4", "gravatar_id": "", "url": "https://api.github.com/users/iceboundflame", "html_url": "https://github.com/iceboundflame", "followers_url": "https://api.github.com/users/iceboundflame/followers", "following_url": "https://api.github.com/users/iceboundflame/following{/other_user}", "gists_url": "https://api.github.com/users/iceboundflame/gists{/gist_id}", "starred_url": "https://api.github.com/users/iceboundflame/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/iceboundflame/subscriptions", "organizations_url": "https://api.github.com/users/iceboundflame/orgs", "repos_url": "https://api.github.com/users/iceboundflame/repos", "events_url": "https://api.github.com/users/iceboundflame/events{/privacy}", "received_events_url": "https://api.github.com/users/iceboundflame/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" }, { "id": 1935892877, "node_id": "MDU6TGFiZWwxOTM1ODkyODc3", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20first%20issue", "name": "good first issue", "color": "7057ff", "default": true, "description": "Good for newcomers" } ]
closed
false
{ "login": "patrickloeber", "id": 50772274, "node_id": "MDQ6VXNlcjUwNzcyMjc0", "avatar_url": "https://avatars.githubusercontent.com/u/50772274?v=4", "gravatar_id": "", "url": "https://api.github.com/users/patrickloeber", "html_url": "https://github.com/patrickloeber", "followers_url": "https://api.github.com/users/patrickloeber/followers", "following_url": "https://api.github.com/users/patrickloeber/following{/other_user}", "gists_url": "https://api.github.com/users/patrickloeber/gists{/gist_id}", "starred_url": "https://api.github.com/users/patrickloeber/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patrickloeber/subscriptions", "organizations_url": "https://api.github.com/users/patrickloeber/orgs", "repos_url": "https://api.github.com/users/patrickloeber/repos", "events_url": "https://api.github.com/users/patrickloeber/events{/privacy}", "received_events_url": "https://api.github.com/users/patrickloeber/received_events", "type": "User", "site_admin": false }
[ { "login": "patrickloeber", "id": 50772274, "node_id": "MDQ6VXNlcjUwNzcyMjc0", "avatar_url": "https://avatars.githubusercontent.com/u/50772274?v=4", "gravatar_id": "", "url": "https://api.github.com/users/patrickloeber", "html_url": "https://github.com/patrickloeber", "followers_url": "https://api.github.com/users/patrickloeber/followers", "following_url": "https://api.github.com/users/patrickloeber/following{/other_user}", "gists_url": "https://api.github.com/users/patrickloeber/gists{/gist_id}", "starred_url": "https://api.github.com/users/patrickloeber/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/patrickloeber/subscriptions", "organizations_url": "https://api.github.com/users/patrickloeber/orgs", "repos_url": "https://api.github.com/users/patrickloeber/repos", "events_url": "https://api.github.com/users/patrickloeber/events{/privacy}", "received_events_url": "https://api.github.com/users/patrickloeber/received_events", "type": "User", "site_admin": false } ]
null
[ "Another example is that `IterableDataset.map` does not have `fn_kwargs`, among other arguments. It makes it harder to convert code from Dataset to IterableDataset.", "Hi! `fn_kwargs` was added to `IterableDataset.map` in `datasets 2.5.0`, so please update your installation (`pip install -U datasets`) to use it.\r\n\r\nRegarding `column_names`, I agree we should add this property to `IterableDataset`. In the meantime, you can use `list(dataset.features.keys())` instead.", "Thanks! That's great news.\n\nOn Thu, Dec 22, 2022, 07:48 Mario Šaško ***@***.***> wrote:\n\n> Hi! fn_kwargs was added to IterableDataset.map in datasets 2.5.0, so\n> please update your installation (pip install -U datasets) to use it.\n>\n> Regarding column_names, I agree we should add this property to\n> IterableDataset. In the meantime, you can use\n> list(dataset.features.keys()) instead.\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/issues/5383#issuecomment-1362993633>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/AAHD6N2EQUFEOUFDW3VHSILWORZ45ANCNFSM6AAAAAATGKWVGM>\n> .\n> You are receiving this because you authored the thread.Message ID:\n> ***@***.***>\n>\n", "I'm marking this issue as a \"good first issue\", as it makes sense to have `IterableDataset.column_names` in the API. Besides the case when `features` are `None` (e.g., `features` are `None` after `map`), in which we can also return `column_names` as `None`, adding this property should be straightforward,", "Hi @mariosasko, I can work on this if that's ok?", "Yes! I've assigned you the issue." ]
2022-12-22T05:27:02
2023-03-13T19:03:33
2023-03-13T19:03:33
NONE
null
### Describe the bug The documentation on [Stream](https://huggingface.co/docs/datasets/v1.18.2/stream.html) seems to imply that IterableDataset behaves just like a Dataset. However, examples like ``` dataset.map(augment_data, batched=True, remove_columns=dataset.column_names, ...) ``` will not work because `.column_names` does not exist on IterableDataset. I cannot find any clear explanation on why this is not available, is it an oversight? We do have `iterable_ds.features` available. ### Steps to reproduce the bug See above ### Expected behavior Dataset and IterableDataset would be expected to have the same interface, with any differences noted in the documentation. ### Environment info n/a
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5383/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5383/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5382
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5382/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5382/comments
https://api.github.com/repos/huggingface/datasets/issues/5382/events
https://github.com/huggingface/datasets/pull/5382
1,504,788,691
PR_kwDODunzps5F4Q0V
5,382
Raise from disconnect error in xopen
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Could you review this small PR @albertvillanova ? :)", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011200 / 0.011353 (-0.000153) | 0.006156 / 0.011008 (-0.004852) | 0.119072 / 0.038508 (0.080564) | 0.042616 / 0.023109 (0.019507) | 0.348329 / 0.275898 (0.072431) | 0.418550 / 0.323480 (0.095070) | 0.009302 / 0.007986 (0.001316) | 0.004596 / 0.004328 (0.000267) | 0.090111 / 0.004250 (0.085860) | 0.053341 / 0.037052 (0.016289) | 0.361234 / 0.258489 (0.102745) | 0.400427 / 0.293841 (0.106586) | 0.045601 / 0.128546 (-0.082945) | 0.013806 / 0.075646 (-0.061841) | 0.393178 / 0.419271 (-0.026094) | 0.056809 / 0.043533 (0.013276) | 0.344090 / 0.255139 (0.088951) | 0.370610 / 0.283200 (0.087410) | 0.125728 / 0.141683 (-0.015955) | 1.671931 / 1.452155 (0.219776) | 1.703143 / 1.492716 (0.210427) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.226534 / 0.018006 (0.208527) | 0.496487 / 0.000490 (0.495998) | 0.002235 / 0.000200 (0.002035) | 0.000094 / 0.000054 (0.000039) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031298 / 0.037411 (-0.006113) | 0.137740 / 0.014526 (0.123214) | 0.153497 / 0.176557 (-0.023059) | 0.204201 / 0.737135 (-0.532934) | 0.162324 / 0.296338 (-0.134014) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.475922 / 0.215209 (0.260712) | 4.682344 / 2.077655 (2.604689) | 2.107387 / 1.504120 (0.603267) | 1.884792 / 1.541195 (0.343597) | 2.003180 / 1.468490 (0.534690) | 0.810212 / 4.584777 (-3.774564) | 4.631047 / 3.745712 (0.885334) | 4.467606 / 5.269862 (-0.802256) | 2.334196 / 4.565676 (-2.231480) | 0.099713 / 0.424275 (-0.324562) | 0.014732 / 0.007607 (0.007125) | 0.604587 / 0.226044 (0.378543) | 5.951679 / 2.268929 (3.682751) | 2.704761 / 55.444624 (-52.739863) | 2.280695 / 6.876477 (-4.595781) | 2.279489 / 2.142072 (0.137417) | 0.962474 / 4.805227 (-3.842753) | 0.195279 / 6.500664 (-6.305385) | 0.071503 / 0.075469 (-0.003966) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.558037 / 1.841788 (-0.283751) | 17.722140 / 8.074308 (9.647832) | 16.229016 / 10.191392 (6.037624) | 0.177148 / 0.680424 (-0.503276) | 0.034162 / 0.534201 (-0.500039) | 0.513945 / 0.579283 (-0.065338) | 0.533542 / 0.434364 (0.099178) | 0.672457 / 0.540337 (0.132119) | 0.762390 / 1.386936 (-0.624546) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009739 / 0.011353 (-0.001613) | 0.006095 / 0.011008 (-0.004914) | 0.105968 / 0.038508 (0.067460) | 0.046229 / 0.023109 (0.023120) | 0.449156 / 0.275898 (0.173258) | 0.462182 / 0.323480 (0.138702) | 0.006981 / 0.007986 (-0.001004) | 0.004867 / 0.004328 (0.000539) | 0.082142 / 0.004250 (0.077891) | 0.058652 / 0.037052 (0.021600) | 0.454542 / 0.258489 (0.196052) | 0.494910 / 0.293841 (0.201069) | 0.047159 / 0.128546 (-0.081387) | 0.014677 / 0.075646 (-0.060969) | 0.370819 / 0.419271 (-0.048452) | 0.064603 / 0.043533 (0.021070) | 0.441514 / 0.255139 (0.186375) | 0.442802 / 0.283200 (0.159603) | 0.138603 / 0.141683 (-0.003080) | 1.692810 / 1.452155 (0.240655) | 1.894596 / 1.492716 (0.401880) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.281681 / 0.018006 (0.263675) | 0.532693 / 0.000490 (0.532203) | 0.005484 / 0.000200 (0.005284) | 0.000156 / 0.000054 (0.000102) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032994 / 0.037411 (-0.004417) | 0.134614 / 0.014526 (0.120088) | 0.142286 / 0.176557 (-0.034270) | 0.187220 / 0.737135 (-0.549916) | 0.144897 / 0.296338 (-0.151441) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.519536 / 0.215209 (0.304327) | 5.214429 / 2.077655 (3.136775) | 2.612575 / 1.504120 (1.108455) | 2.369085 / 1.541195 (0.827891) | 2.503157 / 1.468490 (1.034667) | 0.834827 / 4.584777 (-3.749950) | 4.586789 / 3.745712 (0.841077) | 4.472605 / 5.269862 (-0.797257) | 2.314471 / 4.565676 (-2.251205) | 0.095817 / 0.424275 (-0.328458) | 0.014086 / 0.007607 (0.006478) | 0.605875 / 0.226044 (0.379831) | 6.153143 / 2.268929 (3.884214) | 3.187456 / 55.444624 (-52.257169) | 2.755377 / 6.876477 (-4.121100) | 2.777118 / 2.142072 (0.635046) | 0.967285 / 4.805227 (-3.837942) | 0.199202 / 6.500664 (-6.301462) | 0.075979 / 0.075469 (0.000510) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.481758 / 1.841788 (-0.360030) | 18.053769 / 8.074308 (9.979461) | 15.558780 / 10.191392 (5.367388) | 0.226135 / 0.680424 (-0.454288) | 0.021668 / 0.534201 (-0.512533) | 0.562618 / 0.579283 (-0.016666) | 0.518183 / 0.434364 (0.083819) | 0.628580 / 0.540337 (0.088243) | 0.740368 / 1.386936 (-0.646568) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4e4d46eec24c36799c0efcc1b7231f597039c497 \"CML watermark\")\n" ]
2022-12-20T15:52:44
2023-01-26T09:51:13
2023-01-26T09:42:45
MEMBER
null
this way we can know the cause of the disconnect related to https://github.com/huggingface/datasets/issues/5374
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5382/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5382/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5382", "html_url": "https://github.com/huggingface/datasets/pull/5382", "diff_url": "https://github.com/huggingface/datasets/pull/5382.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5382.patch", "merged_at": "2023-01-26T09:42:45" }
true
https://api.github.com/repos/huggingface/datasets/issues/5381
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5381/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5381/comments
https://api.github.com/repos/huggingface/datasets/issues/5381/events
https://github.com/huggingface/datasets/issues/5381
1,504,498,387
I_kwDODunzps5ZrNLT
5,381
Wrong URL for the_pile dataset
{ "login": "LeoGrin", "id": 45738728, "node_id": "MDQ6VXNlcjQ1NzM4NzI4", "avatar_url": "https://avatars.githubusercontent.com/u/45738728?v=4", "gravatar_id": "", "url": "https://api.github.com/users/LeoGrin", "html_url": "https://github.com/LeoGrin", "followers_url": "https://api.github.com/users/LeoGrin/followers", "following_url": "https://api.github.com/users/LeoGrin/following{/other_user}", "gists_url": "https://api.github.com/users/LeoGrin/gists{/gist_id}", "starred_url": "https://api.github.com/users/LeoGrin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LeoGrin/subscriptions", "organizations_url": "https://api.github.com/users/LeoGrin/orgs", "repos_url": "https://api.github.com/users/LeoGrin/repos", "events_url": "https://api.github.com/users/LeoGrin/events{/privacy}", "received_events_url": "https://api.github.com/users/LeoGrin/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi! This error can happen if there is a local file/folder with the same name as the requested dataset. And to avoid it, rename the local file/folder.\r\n\r\nSoon, it will be possible to explicitly request a Hub dataset as follows:https://github.com/huggingface/datasets/issues/5228#issuecomment-1313494020" ]
2022-12-20T12:40:14
2023-02-15T16:24:57
2023-02-15T16:24:57
NONE
null
### Describe the bug When trying to load `the_pile` dataset from the library, I get a `FileNotFound` error. ### Steps to reproduce the bug Steps to reproduce: Run: ``` from datasets import load_dataset dataset = load_dataset("the_pile") ``` I get the output: "name": "FileNotFoundError", "message": "Unable to resolve any data file that matches '['**']' at /storage/store/work/lgrinszt/memorization/the_pile with any supported extension ['csv', 'tsv', 'json', 'jsonl', 'parquet', 'txt', 'blp', 'bmp', 'dib', 'bufr', 'cur', 'pcx', 'dcx', 'dds', 'ps', 'eps', 'fit', 'fits', 'fli', 'flc', 'ftc', 'ftu', 'gbr', 'gif', 'grib', 'h5', 'hdf', 'png', 'apng', 'jp2', 'j2k', 'jpc', 'jpf', 'jpx', 'j2c', 'icns', 'ico', 'im', 'iim', 'tif', 'tiff', 'jfif', 'jpe', 'jpg', 'jpeg', 'mpg', 'mpeg', 'msp', 'pcd', 'pxr', 'pbm', 'pgm', 'ppm', 'pnm', 'psd', 'bw', 'rgb', 'rgba', 'sgi', 'ras', 'tga', 'icb', 'vda', 'vst', 'webp', 'wmf', 'emf', 'xbm', 'xpm', 'BLP', 'BMP', 'DIB', 'BUFR', 'CUR', 'PCX', 'DCX', 'DDS', 'PS', 'EPS', 'FIT', 'FITS', 'FLI', 'FLC', 'FTC', 'FTU', 'GBR', 'GIF', 'GRIB', 'H5', 'HDF', 'PNG', 'APNG', 'JP2', 'J2K', 'JPC', 'JPF', 'JPX', 'J2C', 'ICNS', 'ICO', 'IM', 'IIM', 'TIF', 'TIFF', 'JFIF', 'JPE', 'JPG', 'JPEG', 'MPG', 'MPEG', 'MSP', 'PCD', 'PXR', 'PBM', 'PGM', 'PPM', 'PNM', 'PSD', 'BW', 'RGB', 'RGBA', 'SGI', 'RAS', 'TGA', 'ICB', 'VDA', 'VST', 'WEBP', 'WMF', 'EMF', 'XBM', 'XPM', 'aiff', 'au', 'avr', 'caf', 'flac', 'htk', 'svx', 'mat4', 'mat5', 'mpc2k', 'ogg', 'paf', 'pvf', 'raw', 'rf64', 'sd2', 'sds', 'ircam', 'voc', 'w64', 'wav', 'nist', 'wavex', 'wve', 'xi', 'mp3', 'opus', 'AIFF', 'AU', 'AVR', 'CAF', 'FLAC', 'HTK', 'SVX', 'MAT4', 'MAT5', 'MPC2K', 'OGG', 'PAF', 'PVF', 'RAW', 'RF64', 'SD2', 'SDS', 'IRCAM', 'VOC', 'W64', 'WAV', 'NIST', 'WAVEX', 'WVE', 'XI', 'MP3', 'OPUS', 'zip']" ### Expected behavior `the_pile` dataset should be dowloaded. ### Environment info - `datasets` version: 2.7.1 - Platform: Linux-4.15.0-112-generic-x86_64-with-glibc2.27 - Python version: 3.10.8 - PyArrow version: 10.0.1 - Pandas version: 1.5.2
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5381/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5381/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5380
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5380/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5380/comments
https://api.github.com/repos/huggingface/datasets/issues/5380/events
https://github.com/huggingface/datasets/issues/5380
1,504,404,043
I_kwDODunzps5Zq2JL
5,380
Improve dataset `.skip()` speed in streaming mode
{ "login": "versae", "id": 173537, "node_id": "MDQ6VXNlcjE3MzUzNw==", "avatar_url": "https://avatars.githubusercontent.com/u/173537?v=4", "gravatar_id": "", "url": "https://api.github.com/users/versae", "html_url": "https://github.com/versae", "followers_url": "https://api.github.com/users/versae/followers", "following_url": "https://api.github.com/users/versae/following{/other_user}", "gists_url": "https://api.github.com/users/versae/gists{/gist_id}", "starred_url": "https://api.github.com/users/versae/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/versae/subscriptions", "organizations_url": "https://api.github.com/users/versae/orgs", "repos_url": "https://api.github.com/users/versae/repos", "events_url": "https://api.github.com/users/versae/events{/privacy}", "received_events_url": "https://api.github.com/users/versae/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" }, { "id": 3761482852, "node_id": "LA_kwDODunzps7gM6xk", "url": "https://api.github.com/repos/huggingface/datasets/labels/good%20second%20issue", "name": "good second issue", "color": "BDE59C", "default": false, "description": "Issues a bit more difficult than \"Good First\" issues" } ]
open
false
null
[]
null
[ "Hi! I agree `skip` can be inefficient to use in the current state.\r\n\r\nTo make it fast, we could use \"statistics\" stored in Parquet metadata and read only the chunks needed to form a dataset. \r\n\r\nAnd thanks to the \"datasets-server\" project, which aims to store the Parquet versions of the Hub datasets (only the smaller datasets are covered currently), this solution can also be applied to datasets stored in formats other than Parquet. (cc @severo)", "@mariosasko do the current parquet files created by the datasets-server already have the required \"statistics\"? If not, please open an issue on https://github.com/huggingface/datasets-server with some details to make sure we implement it.", "Yes, nothing has to be changed on the datasets-server side. What I mean by \"statistics\" is that we can use the \"row_group\" metadata embedded in a Parquet file (by default) to fetch the requested rows more efficiently.", "Glad to see the feature could be of interest. \r\n\r\nI'm sure there are many possible ways to implement this feature. I don't know enough about the datasets-server, but I guess that it is not instantaneous, in the sense that user-owned private datasets might need hours or days until they are ported to the datasets-server (if at all), which could be cumbersome. Having optionally that information in the `dataset_infos.json` file would make it easier for users to control the skip process a bit.", "re: statistics:\r\n\r\n- https://arrow.apache.org/docs/python/generated/pyarrow.parquet.FileMetaData.html\r\n- https://arrow.apache.org/docs/python/generated/pyarrow.parquet.RowGroupMetaData.html\r\n\r\n```python\r\n>>> import pyarrow.parquet as pq\r\n>>> import hffs\r\n>>> fs = hffs.HfFileSystem(\"glue\", repo_type=\"dataset\", revision=\"refs/convert/parquet\")\r\n>>> metadata = pq.read_metadata(\"ax/glue-test.parquet\", filesystem=fs)\r\n>>> metadata\r\n<pyarrow._parquet.FileMetaData object at 0x7f4537cec400>\r\n created_by: parquet-cpp-arrow version 7.0.0\r\n num_columns: 4\r\n num_rows: 1104\r\n num_row_groups: 2\r\n format_version: 1.0\r\n serialized_size: 2902\r\n>>> metadata.row_group(0)\r\n<pyarrow._parquet.RowGroupMetaData object at 0x7f45564bcbd0>\r\n num_columns: 4\r\n num_rows: 1000\r\n total_byte_size: 164474\r\n>>> metadata.row_group(1)\r\n<pyarrow._parquet.RowGroupMetaData object at 0x7f455005c400>\r\n num_columns: 4\r\n num_rows: 104\r\n total_byte_size: 13064\r\n```", "> user-owned private datasets might need hours or days until they are ported to the datasets-server (if at all)\r\n\r\nprivate datasets are not supported yet (https://github.com/huggingface/datasets-server/issues/39)", "@versae `Dataset.push_to_hub` writes shards in Parquet, so this solution would also work for such datasets (immediately after the push). ", "@mariosasko that is right. However, there are still a good amount of datasets for which the shards are created manually. In our very specific case, we create medium-sized datasets (rarely over 100-200GB) of both text and audio, we prepare the shards by hand and then upload then. It would be great to have immediate access to this download skipping feature for them too.", "From looking at Arrow's source, it seems Parquet stores metadata at the end, which means one needs to iterate over a Parquet file's data before accessing its metadata. We could mimic Dask to address this \"limitation\" and write metadata in a `_metadata`/`_common_metadata` file in `to_parquet`/`push_to_hub`, which we could then use to optimize reads (if present). Plus, it's handy that PyArrow can also parse these metadata files.", "So if Parquet metadata needs to be in its own file anyway, why not implement this skipping feature by storing the example counts per shard in `dataset_infos.json`? That would allow:\r\n- Support both private and public datasets\r\n- Immediate access to the feature upon uploading of shards\r\n- Use any dataset, not only those uploaded using `.push_to_hub()`\r\n\r\nA proper Parquet metadata file could still be created and \"overwrite\" the `dataset_infos.json` info in the datasets-server." ]
2022-12-20T11:25:23
2023-03-08T10:47:12
null
CONTRIBUTOR
null
### Feature request Add extra information to the `dataset_infos.json` file to include the number of samples/examples in each shard, for example in a new field `num_examples` alongside `num_bytes`. The `.skip()` function could use this information to ignore the download of a shard when in streaming mode, which AFAICT it should speed up the skipping process. ### Motivation When resuming from a checkpoint after a crashed run, using `dataset.skip()` is very convenient to recover the exact state of the data and to not train again over the same examples (assuming same seed, no shuffling). However, I have noticed that for audio datasets in streaming mode this is very costly in terms of time, as shards need to be downloaded every time before skipping the right number of examples. ### Your contribution I took a look already at the code, but it seems a change like this is way deeper than I am able to manage, as it touches the library in several parts. I could give it a try but might need some guidance on the internals.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5380/reactions", "total_count": 3, "+1": 3, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5380/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5379
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5379/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5379/comments
https://api.github.com/repos/huggingface/datasets/issues/5379/events
https://github.com/huggingface/datasets/pull/5379
1,504,010,639
PR_kwDODunzps5F1r2k
5,379
feat: depth estimation dataset guide.
{ "login": "sayakpaul", "id": 22957388, "node_id": "MDQ6VXNlcjIyOTU3Mzg4", "avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sayakpaul", "html_url": "https://github.com/sayakpaul", "followers_url": "https://api.github.com/users/sayakpaul/followers", "following_url": "https://api.github.com/users/sayakpaul/following{/other_user}", "gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}", "starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions", "organizations_url": "https://api.github.com/users/sayakpaul/orgs", "repos_url": "https://api.github.com/users/sayakpaul/repos", "events_url": "https://api.github.com/users/sayakpaul/events{/privacy}", "received_events_url": "https://api.github.com/users/sayakpaul/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "sayakpaul", "id": 22957388, "node_id": "MDQ6VXNlcjIyOTU3Mzg4", "avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sayakpaul", "html_url": "https://github.com/sayakpaul", "followers_url": "https://api.github.com/users/sayakpaul/followers", "following_url": "https://api.github.com/users/sayakpaul/following{/other_user}", "gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}", "starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions", "organizations_url": "https://api.github.com/users/sayakpaul/orgs", "repos_url": "https://api.github.com/users/sayakpaul/repos", "events_url": "https://api.github.com/users/sayakpaul/events{/privacy}", "received_events_url": "https://api.github.com/users/sayakpaul/received_events", "type": "User", "site_admin": false }
[ { "login": "sayakpaul", "id": 22957388, "node_id": "MDQ6VXNlcjIyOTU3Mzg4", "avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sayakpaul", "html_url": "https://github.com/sayakpaul", "followers_url": "https://api.github.com/users/sayakpaul/followers", "following_url": "https://api.github.com/users/sayakpaul/following{/other_user}", "gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}", "starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions", "organizations_url": "https://api.github.com/users/sayakpaul/orgs", "repos_url": "https://api.github.com/users/sayakpaul/repos", "events_url": "https://api.github.com/users/sayakpaul/events{/privacy}", "received_events_url": "https://api.github.com/users/sayakpaul/received_events", "type": "User", "site_admin": false } ]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Thanks for the changes, looks good to me!", "@stevhliu I have pushed some quality improvements both in terms of code and content. Would you be able to re-review? ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008325 / 0.011353 (-0.003028) | 0.004432 / 0.011008 (-0.006576) | 0.099794 / 0.038508 (0.061286) | 0.029469 / 0.023109 (0.006360) | 0.306554 / 0.275898 (0.030656) | 0.367373 / 0.323480 (0.043893) | 0.007532 / 0.007986 (-0.000454) | 0.003310 / 0.004328 (-0.001018) | 0.077453 / 0.004250 (0.073203) | 0.034836 / 0.037052 (-0.002216) | 0.311696 / 0.258489 (0.053207) | 0.349683 / 0.293841 (0.055842) | 0.033089 / 0.128546 (-0.095457) | 0.011339 / 0.075646 (-0.064307) | 0.321699 / 0.419271 (-0.097573) | 0.040213 / 0.043533 (-0.003320) | 0.304741 / 0.255139 (0.049602) | 0.331569 / 0.283200 (0.048369) | 0.090397 / 0.141683 (-0.051285) | 1.526001 / 1.452155 (0.073847) | 1.558863 / 1.492716 (0.066146) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.179446 / 0.018006 (0.161440) | 0.416308 / 0.000490 (0.415818) | 0.002390 / 0.000200 (0.002190) | 0.000075 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023641 / 0.037411 (-0.013770) | 0.096672 / 0.014526 (0.082147) | 0.104330 / 0.176557 (-0.072227) | 0.146338 / 0.737135 (-0.590797) | 0.108278 / 0.296338 (-0.188060) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420194 / 0.215209 (0.204985) | 4.196981 / 2.077655 (2.119326) | 1.861206 / 1.504120 (0.357086) | 1.658748 / 1.541195 (0.117554) | 1.704309 / 1.468490 (0.235819) | 0.691639 / 4.584777 (-3.893138) | 3.346303 / 3.745712 (-0.399409) | 1.932962 / 5.269862 (-3.336900) | 1.299395 / 4.565676 (-3.266281) | 0.081869 / 0.424275 (-0.342406) | 0.012415 / 0.007607 (0.004808) | 0.530805 / 0.226044 (0.304761) | 5.293486 / 2.268929 (3.024558) | 2.328327 / 55.444624 (-53.116297) | 1.964956 / 6.876477 (-4.911521) | 2.002793 / 2.142072 (-0.139280) | 0.813380 / 4.805227 (-3.991847) | 0.150030 / 6.500664 (-6.350634) | 0.065194 / 0.075469 (-0.010275) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.259421 / 1.841788 (-0.582367) | 13.667796 / 8.074308 (5.593488) | 13.819121 / 10.191392 (3.627729) | 0.136718 / 0.680424 (-0.543706) | 0.028510 / 0.534201 (-0.505691) | 0.402246 / 0.579283 (-0.177037) | 0.405279 / 0.434364 (-0.029085) | 0.467185 / 0.540337 (-0.073153) | 0.554213 / 1.386936 (-0.832723) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006738 / 0.011353 (-0.004615) | 0.004616 / 0.011008 (-0.006393) | 0.096978 / 0.038508 (0.058470) | 0.027750 / 0.023109 (0.004640) | 0.411505 / 0.275898 (0.135607) | 0.441796 / 0.323480 (0.118316) | 0.005073 / 0.007986 (-0.002913) | 0.003360 / 0.004328 (-0.000968) | 0.074445 / 0.004250 (0.070194) | 0.040654 / 0.037052 (0.003602) | 0.414277 / 0.258489 (0.155788) | 0.448665 / 0.293841 (0.154824) | 0.032346 / 0.128546 (-0.096200) | 0.011533 / 0.075646 (-0.064114) | 0.317349 / 0.419271 (-0.101923) | 0.041934 / 0.043533 (-0.001599) | 0.409102 / 0.255139 (0.153963) | 0.429977 / 0.283200 (0.146777) | 0.089459 / 0.141683 (-0.052224) | 1.518127 / 1.452155 (0.065973) | 1.569902 / 1.492716 (0.077186) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232648 / 0.018006 (0.214642) | 0.413751 / 0.000490 (0.413261) | 0.000404 / 0.000200 (0.000204) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025468 / 0.037411 (-0.011943) | 0.098195 / 0.014526 (0.083669) | 0.108882 / 0.176557 (-0.067674) | 0.150059 / 0.737135 (-0.587076) | 0.110742 / 0.296338 (-0.185597) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.445326 / 0.215209 (0.230117) | 4.449200 / 2.077655 (2.371545) | 2.098939 / 1.504120 (0.594819) | 1.861207 / 1.541195 (0.320012) | 1.901385 / 1.468490 (0.432894) | 0.695287 / 4.584777 (-3.889490) | 3.461775 / 3.745712 (-0.283938) | 2.998566 / 5.269862 (-2.271296) | 1.555036 / 4.565676 (-3.010641) | 0.082789 / 0.424275 (-0.341486) | 0.012772 / 0.007607 (0.005165) | 0.564855 / 0.226044 (0.338811) | 5.631049 / 2.268929 (3.362120) | 2.543771 / 55.444624 (-52.900854) | 2.194378 / 6.876477 (-4.682099) | 2.267168 / 2.142072 (0.125095) | 0.803330 / 4.805227 (-4.001898) | 0.151336 / 6.500664 (-6.349328) | 0.067015 / 0.075469 (-0.008454) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.298422 / 1.841788 (-0.543366) | 13.933637 / 8.074308 (5.859329) | 13.570848 / 10.191392 (3.379456) | 0.150787 / 0.680424 (-0.529637) | 0.016911 / 0.534201 (-0.517290) | 0.384771 / 0.579283 (-0.194512) | 0.397505 / 0.434364 (-0.036858) | 0.450931 / 0.540337 (-0.089406) | 0.534501 / 1.386936 (-0.852435) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n", "@lhoestq @nateraw made some changes as per the comments. PTAL and approve as necessary. ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009037 / 0.011353 (-0.002316) | 0.004970 / 0.011008 (-0.006038) | 0.099223 / 0.038508 (0.060715) | 0.034935 / 0.023109 (0.011826) | 0.297027 / 0.275898 (0.021129) | 0.352861 / 0.323480 (0.029382) | 0.007558 / 0.007986 (-0.000427) | 0.003903 / 0.004328 (-0.000425) | 0.075663 / 0.004250 (0.071413) | 0.042577 / 0.037052 (0.005524) | 0.307182 / 0.258489 (0.048693) | 0.344237 / 0.293841 (0.050396) | 0.041438 / 0.128546 (-0.087108) | 0.012159 / 0.075646 (-0.063487) | 0.333771 / 0.419271 (-0.085501) | 0.047847 / 0.043533 (0.004314) | 0.290797 / 0.255139 (0.035658) | 0.320517 / 0.283200 (0.037318) | 0.098334 / 0.141683 (-0.043349) | 1.446187 / 1.452155 (-0.005968) | 1.495506 / 1.492716 (0.002789) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203704 / 0.018006 (0.185698) | 0.441325 / 0.000490 (0.440835) | 0.001173 / 0.000200 (0.000973) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026694 / 0.037411 (-0.010718) | 0.103819 / 0.014526 (0.089294) | 0.116377 / 0.176557 (-0.060179) | 0.158280 / 0.737135 (-0.578856) | 0.119797 / 0.296338 (-0.176541) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.405723 / 0.215209 (0.190514) | 4.047633 / 2.077655 (1.969979) | 1.805652 / 1.504120 (0.301532) | 1.611382 / 1.541195 (0.070187) | 1.663117 / 1.468490 (0.194627) | 0.692589 / 4.584777 (-3.892188) | 3.689970 / 3.745712 (-0.055742) | 2.089760 / 5.269862 (-3.180101) | 1.450576 / 4.565676 (-3.115101) | 0.085276 / 0.424275 (-0.338999) | 0.012042 / 0.007607 (0.004434) | 0.513159 / 0.226044 (0.287115) | 5.123235 / 2.268929 (2.854306) | 2.281864 / 55.444624 (-53.162761) | 1.926170 / 6.876477 (-4.950307) | 2.035093 / 2.142072 (-0.106979) | 0.857457 / 4.805227 (-3.947770) | 0.166088 / 6.500664 (-6.334576) | 0.062115 / 0.075469 (-0.013354) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.197776 / 1.841788 (-0.644012) | 14.674452 / 8.074308 (6.600144) | 14.275990 / 10.191392 (4.084598) | 0.170848 / 0.680424 (-0.509576) | 0.028613 / 0.534201 (-0.505588) | 0.438650 / 0.579283 (-0.140633) | 0.439323 / 0.434364 (0.004959) | 0.515090 / 0.540337 (-0.025247) | 0.614216 / 1.386936 (-0.772720) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007159 / 0.011353 (-0.004194) | 0.005142 / 0.011008 (-0.005866) | 0.096953 / 0.038508 (0.058445) | 0.033036 / 0.023109 (0.009927) | 0.391790 / 0.275898 (0.115892) | 0.427120 / 0.323480 (0.103640) | 0.005691 / 0.007986 (-0.002294) | 0.004848 / 0.004328 (0.000519) | 0.072258 / 0.004250 (0.068008) | 0.049017 / 0.037052 (0.011965) | 0.387267 / 0.258489 (0.128778) | 0.437112 / 0.293841 (0.143272) | 0.036360 / 0.128546 (-0.092186) | 0.012249 / 0.075646 (-0.063397) | 0.336246 / 0.419271 (-0.083025) | 0.048777 / 0.043533 (0.005244) | 0.397872 / 0.255139 (0.142733) | 0.399768 / 0.283200 (0.116568) | 0.101283 / 0.141683 (-0.040400) | 1.443999 / 1.452155 (-0.008156) | 1.575496 / 1.492716 (0.082779) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220952 / 0.018006 (0.202946) | 0.442220 / 0.000490 (0.441730) | 0.000406 / 0.000200 (0.000206) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028626 / 0.037411 (-0.008786) | 0.109929 / 0.014526 (0.095403) | 0.120989 / 0.176557 (-0.055568) | 0.157377 / 0.737135 (-0.579758) | 0.125522 / 0.296338 (-0.170816) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436565 / 0.215209 (0.221356) | 4.380771 / 2.077655 (2.303117) | 2.200003 / 1.504120 (0.695883) | 2.013289 / 1.541195 (0.472094) | 2.052658 / 1.468490 (0.584168) | 0.703706 / 4.584777 (-3.881071) | 3.823289 / 3.745712 (0.077577) | 2.064882 / 5.269862 (-3.204980) | 1.330834 / 4.565676 (-3.234842) | 0.085945 / 0.424275 (-0.338330) | 0.012511 / 0.007607 (0.004904) | 0.544171 / 0.226044 (0.318127) | 5.476059 / 2.268929 (3.207130) | 2.695586 / 55.444624 (-52.749039) | 2.330239 / 6.876477 (-4.546238) | 2.429290 / 2.142072 (0.287218) | 0.843154 / 4.805227 (-3.962073) | 0.169334 / 6.500664 (-6.331330) | 0.064261 / 0.075469 (-0.011209) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268344 / 1.841788 (-0.573444) | 14.934342 / 8.074308 (6.860034) | 13.555389 / 10.191392 (3.363997) | 0.142725 / 0.680424 (-0.537699) | 0.017891 / 0.534201 (-0.516310) | 0.424833 / 0.579283 (-0.154450) | 0.420035 / 0.434364 (-0.014329) | 0.491009 / 0.540337 (-0.049329) | 0.586953 / 1.386936 (-0.799983) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n", "Merging this PR with approvals from @stevhliu @lhoestq. ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008586 / 0.011353 (-0.002767) | 0.004659 / 0.011008 (-0.006350) | 0.100343 / 0.038508 (0.061835) | 0.029861 / 0.023109 (0.006751) | 0.301090 / 0.275898 (0.025192) | 0.369528 / 0.323480 (0.046048) | 0.006920 / 0.007986 (-0.001065) | 0.003513 / 0.004328 (-0.000815) | 0.078514 / 0.004250 (0.074263) | 0.035285 / 0.037052 (-0.001767) | 0.311257 / 0.258489 (0.052768) | 0.353995 / 0.293841 (0.060154) | 0.033733 / 0.128546 (-0.094813) | 0.011489 / 0.075646 (-0.064157) | 0.323095 / 0.419271 (-0.096176) | 0.040808 / 0.043533 (-0.002725) | 0.301779 / 0.255139 (0.046640) | 0.348517 / 0.283200 (0.065318) | 0.086962 / 0.141683 (-0.054721) | 1.496270 / 1.452155 (0.044115) | 1.514260 / 1.492716 (0.021544) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.189502 / 0.018006 (0.171496) | 0.419326 / 0.000490 (0.418837) | 0.002160 / 0.000200 (0.001960) | 0.000084 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023669 / 0.037411 (-0.013742) | 0.096574 / 0.014526 (0.082048) | 0.105970 / 0.176557 (-0.070587) | 0.148531 / 0.737135 (-0.588605) | 0.109948 / 0.296338 (-0.186391) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424968 / 0.215209 (0.209759) | 4.246292 / 2.077655 (2.168637) | 1.911062 / 1.504120 (0.406943) | 1.700733 / 1.541195 (0.159538) | 1.760756 / 1.468490 (0.292266) | 0.696966 / 4.584777 (-3.887811) | 3.372320 / 3.745712 (-0.373392) | 2.886281 / 5.269862 (-2.383581) | 1.553082 / 4.565676 (-3.012594) | 0.082835 / 0.424275 (-0.341440) | 0.012688 / 0.007607 (0.005081) | 0.536352 / 0.226044 (0.310308) | 5.382510 / 2.268929 (3.113582) | 2.365664 / 55.444624 (-53.078960) | 1.995631 / 6.876477 (-4.880845) | 2.073865 / 2.142072 (-0.068207) | 0.819109 / 4.805227 (-3.986118) | 0.150278 / 6.500664 (-6.350386) | 0.065201 / 0.075469 (-0.010268) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.239835 / 1.841788 (-0.601953) | 13.911847 / 8.074308 (5.837539) | 13.500433 / 10.191392 (3.309041) | 0.137153 / 0.680424 (-0.543271) | 0.028451 / 0.534201 (-0.505750) | 0.394659 / 0.579283 (-0.184625) | 0.404915 / 0.434364 (-0.029449) | 0.458944 / 0.540337 (-0.081394) | 0.542288 / 1.386936 (-0.844648) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006791 / 0.011353 (-0.004562) | 0.004590 / 0.011008 (-0.006419) | 0.098697 / 0.038508 (0.060189) | 0.027634 / 0.023109 (0.004525) | 0.344383 / 0.275898 (0.068485) | 0.385607 / 0.323480 (0.062127) | 0.005413 / 0.007986 (-0.002573) | 0.003447 / 0.004328 (-0.000881) | 0.077268 / 0.004250 (0.073018) | 0.041823 / 0.037052 (0.004770) | 0.342904 / 0.258489 (0.084414) | 0.399371 / 0.293841 (0.105530) | 0.032668 / 0.128546 (-0.095879) | 0.011598 / 0.075646 (-0.064048) | 0.319973 / 0.419271 (-0.099299) | 0.041760 / 0.043533 (-0.001773) | 0.340510 / 0.255139 (0.085371) | 0.377929 / 0.283200 (0.094730) | 0.090889 / 0.141683 (-0.050793) | 1.496068 / 1.452155 (0.043913) | 1.574884 / 1.492716 (0.082168) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230489 / 0.018006 (0.212483) | 0.425234 / 0.000490 (0.424745) | 0.000406 / 0.000200 (0.000206) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024650 / 0.037411 (-0.012761) | 0.102706 / 0.014526 (0.088180) | 0.108017 / 0.176557 (-0.068539) | 0.143645 / 0.737135 (-0.593490) | 0.110556 / 0.296338 (-0.185782) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.468038 / 0.215209 (0.252829) | 4.670514 / 2.077655 (2.592860) | 2.446620 / 1.504120 (0.942500) | 2.241255 / 1.541195 (0.700060) | 2.286409 / 1.468490 (0.817919) | 0.698923 / 4.584777 (-3.885854) | 3.401121 / 3.745712 (-0.344592) | 1.892399 / 5.269862 (-3.377462) | 1.163101 / 4.565676 (-3.402575) | 0.082567 / 0.424275 (-0.341708) | 0.012662 / 0.007607 (0.005055) | 0.571262 / 0.226044 (0.345218) | 5.731740 / 2.268929 (3.462812) | 2.879649 / 55.444624 (-52.564975) | 2.533846 / 6.876477 (-4.342631) | 2.654789 / 2.142072 (0.512717) | 0.811345 / 4.805227 (-3.993882) | 0.152495 / 6.500664 (-6.348169) | 0.067748 / 0.075469 (-0.007721) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267852 / 1.841788 (-0.573935) | 14.114920 / 8.074308 (6.040612) | 14.355403 / 10.191392 (4.164011) | 0.150393 / 0.680424 (-0.530031) | 0.016855 / 0.534201 (-0.517346) | 0.378710 / 0.579283 (-0.200573) | 0.385380 / 0.434364 (-0.048984) | 0.439054 / 0.540337 (-0.101284) | 0.524343 / 1.386936 (-0.862593) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n" ]
2022-12-20T05:32:11
2023-01-13T12:30:31
2023-01-13T12:23:34
MEMBER
null
This PR adds a guide for prepping datasets for depth estimation. PR to add documentation images is up here: https://huggingface.co/datasets/huggingface/documentation-images/discussions/22
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5379/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 1, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5379/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5379", "html_url": "https://github.com/huggingface/datasets/pull/5379", "diff_url": "https://github.com/huggingface/datasets/pull/5379.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5379.patch", "merged_at": "2023-01-13T12:23:34" }
true
https://api.github.com/repos/huggingface/datasets/issues/5378
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5378/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5378/comments
https://api.github.com/repos/huggingface/datasets/issues/5378/events
https://github.com/huggingface/datasets/issues/5378
1,503,887,508
I_kwDODunzps5Zo4CU
5,378
The dataset "the_pile", subset "enron_emails" , load_dataset() failure
{ "login": "shaoyuta", "id": 52023469, "node_id": "MDQ6VXNlcjUyMDIzNDY5", "avatar_url": "https://avatars.githubusercontent.com/u/52023469?v=4", "gravatar_id": "", "url": "https://api.github.com/users/shaoyuta", "html_url": "https://github.com/shaoyuta", "followers_url": "https://api.github.com/users/shaoyuta/followers", "following_url": "https://api.github.com/users/shaoyuta/following{/other_user}", "gists_url": "https://api.github.com/users/shaoyuta/gists{/gist_id}", "starred_url": "https://api.github.com/users/shaoyuta/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shaoyuta/subscriptions", "organizations_url": "https://api.github.com/users/shaoyuta/orgs", "repos_url": "https://api.github.com/users/shaoyuta/repos", "events_url": "https://api.github.com/users/shaoyuta/events{/privacy}", "received_events_url": "https://api.github.com/users/shaoyuta/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Thanks for reporting @shaoyuta. We are investigating it.\r\n\r\nWe are transferring the issue to \"the_pile\" Community tab on the Hub: https://huggingface.co/datasets/the_pile/discussions/4" ]
2022-12-20T02:19:13
2022-12-20T07:52:54
2022-12-20T07:52:54
NONE
null
### Describe the bug When run "datasets.load_dataset("the_pile","enron_emails")" failure ![image](https://user-images.githubusercontent.com/52023469/208565302-cfab7b89-0b97-4fa6-a5ba-c11b0b629b1a.png) ### Steps to reproduce the bug Run below code in python cli: >>> import datasets >>> datasets.load_dataset("the_pile","enron_emails") ### Expected behavior Load dataset "the_pile", "enron_emails" successfully. ### Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 2.7.1 - Platform: Linux-5.15.0-53-generic-x86_64-with-glibc2.35 - Python version: 3.10.6 - PyArrow version: 10.0.0 - Pandas version: 1.4.3
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5378/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5378/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5377
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5377/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5377/comments
https://api.github.com/repos/huggingface/datasets/issues/5377/events
https://github.com/huggingface/datasets/pull/5377
1,503,477,833
PR_kwDODunzps5Fz5lw
5,377
Add a parallel implementation of to_tf_dataset()
{ "login": "Rocketknight1", "id": 12866554, "node_id": "MDQ6VXNlcjEyODY2NTU0", "avatar_url": "https://avatars.githubusercontent.com/u/12866554?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Rocketknight1", "html_url": "https://github.com/Rocketknight1", "followers_url": "https://api.github.com/users/Rocketknight1/followers", "following_url": "https://api.github.com/users/Rocketknight1/following{/other_user}", "gists_url": "https://api.github.com/users/Rocketknight1/gists{/gist_id}", "starred_url": "https://api.github.com/users/Rocketknight1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Rocketknight1/subscriptions", "organizations_url": "https://api.github.com/users/Rocketknight1/orgs", "repos_url": "https://api.github.com/users/Rocketknight1/repos", "events_url": "https://api.github.com/users/Rocketknight1/events{/privacy}", "received_events_url": "https://api.github.com/users/Rocketknight1/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Failing because the test server uses Py3.7 but the `SharedMemory` features require Py3.8! I forgot we still support 3.7 for another couple of months. I'm not sure exactly how to proceed, whether I should leave this PR until then, or just gate the feature behind a version check and skip the tests until the Python version catches up.", "I haven't played with `NumpyMultiprocessingGenerator` so I can't really help here, but this sounds promising :) Otherwise I think it's also fine to allow `num_workers` only for py>=3.8 for now. You can skip the test on 3.7 and make sure to raise an informative error if someone wants to use `num_workers` with 3.7", "Lots of comments here - I'll reply to the specific code comments underneath them, but in response to the general comments:\r\n\r\n@gante: I think this approach is much more performant than a `multiprocessing.Pool`. The reason is that when results are returned from a process `Pool`, the returned Python objects are pickled by the child processes, sent down a pipe and unpickled by the parent process. This creates a huge single-process bottleneck as the parent has to unpickle lots of large NumPy arrays, which is quite slow.\r\n\r\nWhen you use a `SharedMemory` approach, the data is just **there** for the parent process - the child and the parent are writing to exactly the same array in memory, and no pickling or unpickling occurs. This means the parent can just immediately copy the array (which is much faster than unpickling) and yield it to `tf.data`. We're taking advantage of the fact that we know the data is just big NumPy arrays and we don't need the full generality of `pickle`.\r\n\r\n@lhoestq: Sounds good! I'll add a clear error and skip the tests on Py<=3.7.", "Also, an extra technicality, just for information in case anyone looks at this PR later: Recent versions of Python allow [pickled objects to store out-of-band data](https://peps.python.org/pep-0574/). This allows for very efficient zero-copy unpickling of objects like NumPy arrays, with the unpickled object having a view on the same memory as the original. \r\n\r\nHowever, this explicitly does **not** work when the object is unpickled by a different process than the one that created it. For this to work you must explicitly allocate shared memory and create the array there, which pickle cannot handle for you. As a result, if you just benchmark unpickling vs copying of NumPy arrays it can seem like unpickling is very fast - but this is only true when the pickle was created in the unpickling process!", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008666 / 0.011353 (-0.002687) | 0.004624 / 0.011008 (-0.006384) | 0.099247 / 0.038508 (0.060739) | 0.029766 / 0.023109 (0.006657) | 0.303347 / 0.275898 (0.027449) | 0.370022 / 0.323480 (0.046542) | 0.007128 / 0.007986 (-0.000857) | 0.003446 / 0.004328 (-0.000883) | 0.076670 / 0.004250 (0.072420) | 0.038892 / 0.037052 (0.001840) | 0.313035 / 0.258489 (0.054546) | 0.350503 / 0.293841 (0.056662) | 0.033732 / 0.128546 (-0.094815) | 0.011644 / 0.075646 (-0.064003) | 0.323295 / 0.419271 (-0.095977) | 0.040336 / 0.043533 (-0.003196) | 0.302253 / 0.255139 (0.047114) | 0.337199 / 0.283200 (0.053999) | 0.089454 / 0.141683 (-0.052229) | 1.624906 / 1.452155 (0.172752) | 1.546187 / 1.492716 (0.053470) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.184614 / 0.018006 (0.166608) | 0.427397 / 0.000490 (0.426907) | 0.003342 / 0.000200 (0.003142) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023684 / 0.037411 (-0.013727) | 0.100095 / 0.014526 (0.085569) | 0.104996 / 0.176557 (-0.071560) | 0.144719 / 0.737135 (-0.592416) | 0.110759 / 0.296338 (-0.185579) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421108 / 0.215209 (0.205899) | 4.214094 / 2.077655 (2.136440) | 1.906231 / 1.504120 (0.402111) | 1.698000 / 1.541195 (0.156806) | 1.744856 / 1.468490 (0.276366) | 0.693671 / 4.584777 (-3.891106) | 3.362522 / 3.745712 (-0.383190) | 1.878470 / 5.269862 (-3.391392) | 1.167563 / 4.565676 (-3.398113) | 0.082455 / 0.424275 (-0.341820) | 0.012261 / 0.007607 (0.004654) | 0.525196 / 0.226044 (0.299152) | 5.257553 / 2.268929 (2.988624) | 2.298286 / 55.444624 (-53.146339) | 1.956106 / 6.876477 (-4.920371) | 2.006308 / 2.142072 (-0.135764) | 0.811069 / 4.805227 (-3.994158) | 0.150368 / 6.500664 (-6.350296) | 0.065699 / 0.075469 (-0.009771) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.224516 / 1.841788 (-0.617272) | 13.619084 / 8.074308 (5.544776) | 14.096666 / 10.191392 (3.905274) | 0.151068 / 0.680424 (-0.529356) | 0.028819 / 0.534201 (-0.505382) | 0.402071 / 0.579283 (-0.177212) | 0.408647 / 0.434364 (-0.025717) | 0.466605 / 0.540337 (-0.073733) | 0.547094 / 1.386936 (-0.839842) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006935 / 0.011353 (-0.004418) | 0.004590 / 0.011008 (-0.006419) | 0.099398 / 0.038508 (0.060890) | 0.028145 / 0.023109 (0.005036) | 0.426582 / 0.275898 (0.150684) | 0.465712 / 0.323480 (0.142233) | 0.005254 / 0.007986 (-0.002731) | 0.004956 / 0.004328 (0.000627) | 0.075616 / 0.004250 (0.071365) | 0.039871 / 0.037052 (0.002819) | 0.428859 / 0.258489 (0.170370) | 0.470839 / 0.293841 (0.176998) | 0.032150 / 0.128546 (-0.096396) | 0.011778 / 0.075646 (-0.063868) | 0.322358 / 0.419271 (-0.096913) | 0.041974 / 0.043533 (-0.001559) | 0.427459 / 0.255139 (0.172320) | 0.446685 / 0.283200 (0.163485) | 0.092000 / 0.141683 (-0.049683) | 1.509231 / 1.452155 (0.057076) | 1.578950 / 1.492716 (0.086234) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.168047 / 0.018006 (0.150041) | 0.418993 / 0.000490 (0.418503) | 0.002855 / 0.000200 (0.002655) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025652 / 0.037411 (-0.011759) | 0.100141 / 0.014526 (0.085616) | 0.107293 / 0.176557 (-0.069264) | 0.142857 / 0.737135 (-0.594278) | 0.110933 / 0.296338 (-0.185406) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.477556 / 0.215209 (0.262347) | 4.777951 / 2.077655 (2.700296) | 2.461885 / 1.504120 (0.957765) | 2.252307 / 1.541195 (0.711112) | 2.307983 / 1.468490 (0.839493) | 0.697570 / 4.584777 (-3.887207) | 3.370323 / 3.745712 (-0.375389) | 3.131333 / 5.269862 (-2.138529) | 1.594839 / 4.565676 (-2.970838) | 0.082333 / 0.424275 (-0.341942) | 0.012574 / 0.007607 (0.004967) | 0.583704 / 0.226044 (0.357660) | 5.817675 / 2.268929 (3.548746) | 2.927054 / 55.444624 (-52.517570) | 2.582929 / 6.876477 (-4.293548) | 2.634275 / 2.142072 (0.492202) | 0.806407 / 4.805227 (-3.998821) | 0.151438 / 6.500664 (-6.349226) | 0.067429 / 0.075469 (-0.008040) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.267011 / 1.841788 (-0.574776) | 13.989515 / 8.074308 (5.915207) | 14.087968 / 10.191392 (3.896576) | 0.142130 / 0.680424 (-0.538293) | 0.017201 / 0.534201 (-0.517000) | 0.383394 / 0.579283 (-0.195889) | 0.381921 / 0.434364 (-0.052443) | 0.439169 / 0.540337 (-0.101168) | 0.524215 / 1.386936 (-0.862721) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#be2ebc8f3cfeb532c933be2443094603bafcab04 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008489 / 0.011353 (-0.002864) | 0.004617 / 0.011008 (-0.006391) | 0.102035 / 0.038508 (0.063527) | 0.029850 / 0.023109 (0.006741) | 0.296789 / 0.275898 (0.020891) | 0.367270 / 0.323480 (0.043790) | 0.006934 / 0.007986 (-0.001052) | 0.004923 / 0.004328 (0.000595) | 0.079150 / 0.004250 (0.074900) | 0.036884 / 0.037052 (-0.000169) | 0.305747 / 0.258489 (0.047258) | 0.348510 / 0.293841 (0.054669) | 0.034074 / 0.128546 (-0.094472) | 0.011650 / 0.075646 (-0.063997) | 0.324226 / 0.419271 (-0.095045) | 0.041763 / 0.043533 (-0.001770) | 0.300887 / 0.255139 (0.045748) | 0.333393 / 0.283200 (0.050193) | 0.093838 / 0.141683 (-0.047844) | 1.499801 / 1.452155 (0.047646) | 1.505988 / 1.492716 (0.013272) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198610 / 0.018006 (0.180604) | 0.407380 / 0.000490 (0.406891) | 0.000367 / 0.000200 (0.000167) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022858 / 0.037411 (-0.014554) | 0.095727 / 0.014526 (0.081202) | 0.104014 / 0.176557 (-0.072543) | 0.138764 / 0.737135 (-0.598371) | 0.105860 / 0.296338 (-0.190478) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.416352 / 0.215209 (0.201143) | 4.150007 / 2.077655 (2.072352) | 1.878727 / 1.504120 (0.374607) | 1.678978 / 1.541195 (0.137783) | 1.711990 / 1.468490 (0.243500) | 0.691722 / 4.584777 (-3.893055) | 3.386466 / 3.745712 (-0.359246) | 1.835730 / 5.269862 (-3.434132) | 1.149975 / 4.565676 (-3.415702) | 0.081914 / 0.424275 (-0.342362) | 0.012238 / 0.007607 (0.004631) | 0.522945 / 0.226044 (0.296900) | 5.251793 / 2.268929 (2.982864) | 2.306907 / 55.444624 (-53.137717) | 1.968400 / 6.876477 (-4.908076) | 1.981154 / 2.142072 (-0.160919) | 0.810126 / 4.805227 (-3.995101) | 0.147876 / 6.500664 (-6.352788) | 0.064042 / 0.075469 (-0.011428) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.199150 / 1.841788 (-0.642637) | 13.913473 / 8.074308 (5.839165) | 14.079132 / 10.191392 (3.887740) | 0.137387 / 0.680424 (-0.543037) | 0.028456 / 0.534201 (-0.505745) | 0.394162 / 0.579283 (-0.185122) | 0.402051 / 0.434364 (-0.032313) | 0.461944 / 0.540337 (-0.078394) | 0.542648 / 1.386936 (-0.844288) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006393 / 0.011353 (-0.004960) | 0.004599 / 0.011008 (-0.006409) | 0.097389 / 0.038508 (0.058881) | 0.027719 / 0.023109 (0.004610) | 0.341060 / 0.275898 (0.065162) | 0.379604 / 0.323480 (0.056124) | 0.004955 / 0.007986 (-0.003030) | 0.003369 / 0.004328 (-0.000959) | 0.075390 / 0.004250 (0.071139) | 0.038518 / 0.037052 (0.001466) | 0.347085 / 0.258489 (0.088596) | 0.393468 / 0.293841 (0.099627) | 0.031482 / 0.128546 (-0.097064) | 0.011585 / 0.075646 (-0.064061) | 0.317969 / 0.419271 (-0.101302) | 0.041389 / 0.043533 (-0.002144) | 0.343812 / 0.255139 (0.088673) | 0.371047 / 0.283200 (0.087848) | 0.090020 / 0.141683 (-0.051663) | 1.461690 / 1.452155 (0.009536) | 1.552458 / 1.492716 (0.059741) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.188691 / 0.018006 (0.170684) | 0.415635 / 0.000490 (0.415145) | 0.005285 / 0.000200 (0.005085) | 0.000087 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024695 / 0.037411 (-0.012716) | 0.098939 / 0.014526 (0.084413) | 0.108472 / 0.176557 (-0.068085) | 0.152635 / 0.737135 (-0.584501) | 0.109947 / 0.296338 (-0.186391) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471975 / 0.215209 (0.256766) | 4.716437 / 2.077655 (2.638782) | 2.420148 / 1.504120 (0.916028) | 2.219864 / 1.541195 (0.678669) | 2.238647 / 1.468490 (0.770157) | 0.697628 / 4.584777 (-3.887149) | 3.530720 / 3.745712 (-0.214993) | 3.327354 / 5.269862 (-1.942508) | 1.665877 / 4.565676 (-2.899800) | 0.082650 / 0.424275 (-0.341625) | 0.012593 / 0.007607 (0.004986) | 0.576109 / 0.226044 (0.350065) | 5.744691 / 2.268929 (3.475762) | 2.863473 / 55.444624 (-52.581152) | 2.529616 / 6.876477 (-4.346861) | 2.562802 / 2.142072 (0.420730) | 0.805631 / 4.805227 (-3.999597) | 0.150788 / 6.500664 (-6.349876) | 0.065743 / 0.075469 (-0.009726) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.295134 / 1.841788 (-0.546654) | 14.096046 / 8.074308 (6.021738) | 13.901399 / 10.191392 (3.710007) | 0.127481 / 0.680424 (-0.552943) | 0.016666 / 0.534201 (-0.517535) | 0.381819 / 0.579283 (-0.197464) | 0.382629 / 0.434364 (-0.051735) | 0.439354 / 0.540337 (-0.100984) | 0.527662 / 1.386936 (-0.859274) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0fe2ad43f59e65d39f2f2ce7442c76990493deb7 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008509 / 0.011353 (-0.002844) | 0.004523 / 0.011008 (-0.006485) | 0.100616 / 0.038508 (0.062108) | 0.029573 / 0.023109 (0.006464) | 0.306414 / 0.275898 (0.030516) | 0.377034 / 0.323480 (0.053554) | 0.007621 / 0.007986 (-0.000365) | 0.003335 / 0.004328 (-0.000993) | 0.078598 / 0.004250 (0.074348) | 0.036902 / 0.037052 (-0.000150) | 0.318146 / 0.258489 (0.059657) | 0.355626 / 0.293841 (0.061785) | 0.033441 / 0.128546 (-0.095105) | 0.011552 / 0.075646 (-0.064094) | 0.322973 / 0.419271 (-0.096299) | 0.040564 / 0.043533 (-0.002968) | 0.306451 / 0.255139 (0.051312) | 0.337591 / 0.283200 (0.054392) | 0.086822 / 0.141683 (-0.054861) | 1.484601 / 1.452155 (0.032447) | 1.542777 / 1.492716 (0.050061) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201711 / 0.018006 (0.183705) | 0.418387 / 0.000490 (0.417898) | 0.002753 / 0.000200 (0.002553) | 0.000263 / 0.000054 (0.000209) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023016 / 0.037411 (-0.014395) | 0.097313 / 0.014526 (0.082787) | 0.103435 / 0.176557 (-0.073122) | 0.142665 / 0.737135 (-0.594470) | 0.107397 / 0.296338 (-0.188942) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422739 / 0.215209 (0.207530) | 4.220126 / 2.077655 (2.142471) | 1.865447 / 1.504120 (0.361327) | 1.649647 / 1.541195 (0.108453) | 1.711655 / 1.468490 (0.243165) | 0.704269 / 4.584777 (-3.880508) | 3.407390 / 3.745712 (-0.338322) | 1.929224 / 5.269862 (-3.340638) | 1.281225 / 4.565676 (-3.284452) | 0.082924 / 0.424275 (-0.341351) | 0.012588 / 0.007607 (0.004981) | 0.531025 / 0.226044 (0.304980) | 5.339441 / 2.268929 (3.070512) | 2.298969 / 55.444624 (-53.145656) | 1.952145 / 6.876477 (-4.924332) | 2.034754 / 2.142072 (-0.107318) | 0.823672 / 4.805227 (-3.981555) | 0.151465 / 6.500664 (-6.349199) | 0.066663 / 0.075469 (-0.008807) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.258981 / 1.841788 (-0.582807) | 13.791640 / 8.074308 (5.717332) | 14.001514 / 10.191392 (3.810122) | 0.149805 / 0.680424 (-0.530619) | 0.028614 / 0.534201 (-0.505587) | 0.400266 / 0.579283 (-0.179017) | 0.405891 / 0.434364 (-0.028473) | 0.471903 / 0.540337 (-0.068435) | 0.563656 / 1.386936 (-0.823280) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006751 / 0.011353 (-0.004601) | 0.004665 / 0.011008 (-0.006343) | 0.098362 / 0.038508 (0.059854) | 0.027451 / 0.023109 (0.004342) | 0.421859 / 0.275898 (0.145961) | 0.458089 / 0.323480 (0.134609) | 0.004885 / 0.007986 (-0.003101) | 0.003459 / 0.004328 (-0.000870) | 0.075871 / 0.004250 (0.071621) | 0.036591 / 0.037052 (-0.000462) | 0.423307 / 0.258489 (0.164818) | 0.467040 / 0.293841 (0.173199) | 0.031837 / 0.128546 (-0.096710) | 0.011604 / 0.075646 (-0.064042) | 0.321132 / 0.419271 (-0.098140) | 0.041806 / 0.043533 (-0.001727) | 0.421653 / 0.255139 (0.166514) | 0.445896 / 0.283200 (0.162696) | 0.087998 / 0.141683 (-0.053685) | 1.475818 / 1.452155 (0.023664) | 1.559487 / 1.492716 (0.066770) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203096 / 0.018006 (0.185090) | 0.401381 / 0.000490 (0.400892) | 0.004037 / 0.000200 (0.003837) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023757 / 0.037411 (-0.013654) | 0.099919 / 0.014526 (0.085393) | 0.108384 / 0.176557 (-0.068173) | 0.143780 / 0.737135 (-0.593355) | 0.111528 / 0.296338 (-0.184811) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.475896 / 0.215209 (0.260686) | 4.754567 / 2.077655 (2.676912) | 2.444986 / 1.504120 (0.940866) | 2.231055 / 1.541195 (0.689860) | 2.283646 / 1.468490 (0.815156) | 0.701303 / 4.584777 (-3.883474) | 3.381597 / 3.745712 (-0.364115) | 1.878714 / 5.269862 (-3.391148) | 1.171566 / 4.565676 (-3.394111) | 0.083106 / 0.424275 (-0.341169) | 0.012575 / 0.007607 (0.004967) | 0.582570 / 0.226044 (0.356526) | 5.813677 / 2.268929 (3.544748) | 2.908578 / 55.444624 (-52.536046) | 2.548459 / 6.876477 (-4.328017) | 2.581211 / 2.142072 (0.439139) | 0.807925 / 4.805227 (-3.997302) | 0.153516 / 6.500664 (-6.347148) | 0.068763 / 0.075469 (-0.006706) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.249595 / 1.841788 (-0.592193) | 14.208573 / 8.074308 (6.134265) | 14.179174 / 10.191392 (3.987781) | 0.156005 / 0.680424 (-0.524419) | 0.017045 / 0.534201 (-0.517156) | 0.377414 / 0.579283 (-0.201869) | 0.395291 / 0.434364 (-0.039073) | 0.444642 / 0.540337 (-0.095695) | 0.531626 / 1.386936 (-0.855311) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#52888645daa6854928474df6308bd997c8878ced \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008871 / 0.011353 (-0.002482) | 0.004616 / 0.011008 (-0.006392) | 0.100910 / 0.038508 (0.062402) | 0.030381 / 0.023109 (0.007272) | 0.304636 / 0.275898 (0.028737) | 0.384258 / 0.323480 (0.060778) | 0.007019 / 0.007986 (-0.000966) | 0.004262 / 0.004328 (-0.000066) | 0.077082 / 0.004250 (0.072832) | 0.035235 / 0.037052 (-0.001817) | 0.318293 / 0.258489 (0.059804) | 0.356578 / 0.293841 (0.062737) | 0.033568 / 0.128546 (-0.094978) | 0.011583 / 0.075646 (-0.064063) | 0.322442 / 0.419271 (-0.096830) | 0.041941 / 0.043533 (-0.001592) | 0.310469 / 0.255139 (0.055330) | 0.335626 / 0.283200 (0.052427) | 0.088195 / 0.141683 (-0.053487) | 1.466778 / 1.452155 (0.014623) | 1.512459 / 1.492716 (0.019743) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.184126 / 0.018006 (0.166120) | 0.413392 / 0.000490 (0.412902) | 0.002191 / 0.000200 (0.001992) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023426 / 0.037411 (-0.013985) | 0.096240 / 0.014526 (0.081715) | 0.105908 / 0.176557 (-0.070648) | 0.146331 / 0.737135 (-0.590804) | 0.107441 / 0.296338 (-0.188898) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420018 / 0.215209 (0.204809) | 4.198129 / 2.077655 (2.120474) | 1.998726 / 1.504120 (0.494606) | 1.870410 / 1.541195 (0.329215) | 1.925160 / 1.468490 (0.456670) | 0.688790 / 4.584777 (-3.895987) | 3.430629 / 3.745712 (-0.315083) | 2.875616 / 5.269862 (-2.394246) | 1.566269 / 4.565676 (-2.999408) | 0.082431 / 0.424275 (-0.341844) | 0.012409 / 0.007607 (0.004802) | 0.536178 / 0.226044 (0.310134) | 5.342918 / 2.268929 (3.073989) | 2.410814 / 55.444624 (-53.033811) | 2.056518 / 6.876477 (-4.819958) | 2.240148 / 2.142072 (0.098075) | 0.804848 / 4.805227 (-4.000379) | 0.147325 / 6.500664 (-6.353340) | 0.064217 / 0.075469 (-0.011252) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.285725 / 1.841788 (-0.556063) | 13.909739 / 8.074308 (5.835431) | 14.025774 / 10.191392 (3.834382) | 0.142413 / 0.680424 (-0.538011) | 0.028390 / 0.534201 (-0.505811) | 0.402345 / 0.579283 (-0.176939) | 0.404341 / 0.434364 (-0.030023) | 0.463055 / 0.540337 (-0.077282) | 0.556811 / 1.386936 (-0.830125) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006557 / 0.011353 (-0.004795) | 0.004668 / 0.011008 (-0.006340) | 0.098839 / 0.038508 (0.060331) | 0.027618 / 0.023109 (0.004508) | 0.409338 / 0.275898 (0.133440) | 0.444048 / 0.323480 (0.120568) | 0.004881 / 0.007986 (-0.003105) | 0.003434 / 0.004328 (-0.000895) | 0.076497 / 0.004250 (0.072247) | 0.038932 / 0.037052 (0.001880) | 0.411419 / 0.258489 (0.152930) | 0.451167 / 0.293841 (0.157326) | 0.031649 / 0.128546 (-0.096897) | 0.011691 / 0.075646 (-0.063955) | 0.321586 / 0.419271 (-0.097685) | 0.041984 / 0.043533 (-0.001549) | 0.407717 / 0.255139 (0.152578) | 0.434687 / 0.283200 (0.151487) | 0.086419 / 0.141683 (-0.055264) | 1.491755 / 1.452155 (0.039601) | 1.569081 / 1.492716 (0.076364) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231746 / 0.018006 (0.213739) | 0.412271 / 0.000490 (0.411781) | 0.000403 / 0.000200 (0.000203) | 0.000063 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024264 / 0.037411 (-0.013147) | 0.100478 / 0.014526 (0.085952) | 0.107065 / 0.176557 (-0.069491) | 0.140724 / 0.737135 (-0.596412) | 0.110631 / 0.296338 (-0.185707) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472476 / 0.215209 (0.257267) | 4.738919 / 2.077655 (2.661265) | 2.438049 / 1.504120 (0.933929) | 2.237855 / 1.541195 (0.696660) | 2.282885 / 1.468490 (0.814395) | 0.690420 / 4.584777 (-3.894357) | 3.426487 / 3.745712 (-0.319225) | 1.842443 / 5.269862 (-3.427418) | 1.154466 / 4.565676 (-3.411210) | 0.082166 / 0.424275 (-0.342109) | 0.012309 / 0.007607 (0.004701) | 0.574730 / 0.226044 (0.348686) | 5.737566 / 2.268929 (3.468638) | 2.882405 / 55.444624 (-52.562220) | 2.540276 / 6.876477 (-4.336201) | 2.552356 / 2.142072 (0.410283) | 0.796413 / 4.805227 (-4.008815) | 0.152705 / 6.500664 (-6.347959) | 0.068273 / 0.075469 (-0.007196) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244423 / 1.841788 (-0.597365) | 13.827750 / 8.074308 (5.753442) | 14.074083 / 10.191392 (3.882691) | 0.140291 / 0.680424 (-0.540133) | 0.017337 / 0.534201 (-0.516864) | 0.389314 / 0.579283 (-0.189969) | 0.390914 / 0.434364 (-0.043450) | 0.450333 / 0.540337 (-0.090004) | 0.543860 / 1.386936 (-0.843076) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2cdcddc51d3cda24c2d79ad137af9e55d0a38044 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009490 / 0.011353 (-0.001863) | 0.005211 / 0.011008 (-0.005798) | 0.100884 / 0.038508 (0.062376) | 0.035834 / 0.023109 (0.012725) | 0.293623 / 0.275898 (0.017724) | 0.378118 / 0.323480 (0.054638) | 0.008106 / 0.007986 (0.000120) | 0.005339 / 0.004328 (0.001010) | 0.076311 / 0.004250 (0.072061) | 0.045954 / 0.037052 (0.008902) | 0.308163 / 0.258489 (0.049674) | 0.353470 / 0.293841 (0.059629) | 0.038539 / 0.128546 (-0.090008) | 0.012174 / 0.075646 (-0.063472) | 0.334875 / 0.419271 (-0.084396) | 0.048602 / 0.043533 (0.005069) | 0.295803 / 0.255139 (0.040664) | 0.318894 / 0.283200 (0.035695) | 0.105487 / 0.141683 (-0.036195) | 1.433628 / 1.452155 (-0.018526) | 1.466843 / 1.492716 (-0.025873) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.203426 / 0.018006 (0.185419) | 0.456877 / 0.000490 (0.456387) | 0.001452 / 0.000200 (0.001252) | 0.000088 / 0.000054 (0.000033) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028308 / 0.037411 (-0.009103) | 0.108965 / 0.014526 (0.094439) | 0.119552 / 0.176557 (-0.057005) | 0.156371 / 0.737135 (-0.580765) | 0.124141 / 0.296338 (-0.172197) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400183 / 0.215209 (0.184973) | 3.990983 / 2.077655 (1.913329) | 1.806729 / 1.504120 (0.302609) | 1.611944 / 1.541195 (0.070750) | 1.740019 / 1.468490 (0.271529) | 0.699600 / 4.584777 (-3.885177) | 3.868711 / 3.745712 (0.122999) | 3.249758 / 5.269862 (-2.020103) | 1.832213 / 4.565676 (-2.733463) | 0.085282 / 0.424275 (-0.338993) | 0.012726 / 0.007607 (0.005119) | 0.509385 / 0.226044 (0.283341) | 5.066913 / 2.268929 (2.797984) | 2.325710 / 55.444624 (-53.118914) | 1.962238 / 6.876477 (-4.914239) | 2.017576 / 2.142072 (-0.124496) | 0.839444 / 4.805227 (-3.965783) | 0.166936 / 6.500664 (-6.333728) | 0.064546 / 0.075469 (-0.010923) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196396 / 1.841788 (-0.645392) | 15.077063 / 8.074308 (7.002755) | 14.268103 / 10.191392 (4.076711) | 0.163782 / 0.680424 (-0.516642) | 0.028794 / 0.534201 (-0.505407) | 0.440564 / 0.579283 (-0.138719) | 0.439826 / 0.434364 (0.005463) | 0.514786 / 0.540337 (-0.025551) | 0.603353 / 1.386936 (-0.783583) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007874 / 0.011353 (-0.003479) | 0.005347 / 0.011008 (-0.005661) | 0.099461 / 0.038508 (0.060953) | 0.034010 / 0.023109 (0.010901) | 0.384650 / 0.275898 (0.108752) | 0.423827 / 0.323480 (0.100347) | 0.006201 / 0.007986 (-0.001784) | 0.004212 / 0.004328 (-0.000117) | 0.074354 / 0.004250 (0.070104) | 0.051675 / 0.037052 (0.014623) | 0.392488 / 0.258489 (0.133999) | 0.425828 / 0.293841 (0.131987) | 0.037444 / 0.128546 (-0.091103) | 0.012388 / 0.075646 (-0.063258) | 0.334482 / 0.419271 (-0.084789) | 0.050715 / 0.043533 (0.007182) | 0.378323 / 0.255139 (0.123184) | 0.395450 / 0.283200 (0.112250) | 0.108403 / 0.141683 (-0.033280) | 1.426803 / 1.452155 (-0.025352) | 1.532417 / 1.492716 (0.039701) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.219989 / 0.018006 (0.201982) | 0.454101 / 0.000490 (0.453611) | 0.000407 / 0.000200 (0.000207) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030590 / 0.037411 (-0.006822) | 0.113483 / 0.014526 (0.098957) | 0.122603 / 0.176557 (-0.053954) | 0.161031 / 0.737135 (-0.576104) | 0.128039 / 0.296338 (-0.168300) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.430458 / 0.215209 (0.215249) | 4.286594 / 2.077655 (2.208940) | 2.056666 / 1.504120 (0.552546) | 1.861142 / 1.541195 (0.319948) | 1.937185 / 1.468490 (0.468695) | 0.701881 / 4.584777 (-3.882896) | 3.970144 / 3.745712 (0.224432) | 2.107118 / 5.269862 (-3.162744) | 1.351561 / 4.565676 (-3.214115) | 0.085470 / 0.424275 (-0.338805) | 0.012366 / 0.007607 (0.004759) | 0.525212 / 0.226044 (0.299168) | 5.301553 / 2.268929 (3.032625) | 2.593862 / 55.444624 (-52.850763) | 2.287315 / 6.876477 (-4.589161) | 2.368249 / 2.142072 (0.226176) | 0.855656 / 4.805227 (-3.949571) | 0.167846 / 6.500664 (-6.332818) | 0.064521 / 0.075469 (-0.010948) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.237008 / 1.841788 (-0.604779) | 15.784303 / 8.074308 (7.709995) | 14.613081 / 10.191392 (4.421689) | 0.161012 / 0.680424 (-0.519412) | 0.017928 / 0.534201 (-0.516273) | 0.423905 / 0.579283 (-0.155378) | 0.428316 / 0.434364 (-0.006048) | 0.500226 / 0.540337 (-0.040112) | 0.606725 / 1.386936 (-0.780211) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#08473e2ee66acb7e6f82d3591bb9b03924a661ed \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008874 / 0.011353 (-0.002479) | 0.004581 / 0.011008 (-0.006428) | 0.100180 / 0.038508 (0.061672) | 0.029990 / 0.023109 (0.006880) | 0.301616 / 0.275898 (0.025718) | 0.343662 / 0.323480 (0.020183) | 0.007111 / 0.007986 (-0.000875) | 0.003428 / 0.004328 (-0.000900) | 0.078031 / 0.004250 (0.073780) | 0.037332 / 0.037052 (0.000279) | 0.301977 / 0.258489 (0.043488) | 0.345581 / 0.293841 (0.051740) | 0.034305 / 0.128546 (-0.094241) | 0.011660 / 0.075646 (-0.063986) | 0.322289 / 0.419271 (-0.096982) | 0.041488 / 0.043533 (-0.002045) | 0.301612 / 0.255139 (0.046473) | 0.328174 / 0.283200 (0.044974) | 0.085561 / 0.141683 (-0.056122) | 1.482114 / 1.452155 (0.029959) | 1.556194 / 1.492716 (0.063478) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.186989 / 0.018006 (0.168983) | 0.421499 / 0.000490 (0.421009) | 0.001193 / 0.000200 (0.000993) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023551 / 0.037411 (-0.013861) | 0.099868 / 0.014526 (0.085343) | 0.105233 / 0.176557 (-0.071324) | 0.141628 / 0.737135 (-0.595507) | 0.109004 / 0.296338 (-0.187335) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.415189 / 0.215209 (0.199979) | 4.145716 / 2.077655 (2.068061) | 1.837917 / 1.504120 (0.333797) | 1.635043 / 1.541195 (0.093848) | 1.683299 / 1.468490 (0.214809) | 0.688538 / 4.584777 (-3.896239) | 3.412628 / 3.745712 (-0.333084) | 1.877456 / 5.269862 (-3.392405) | 1.154129 / 4.565676 (-3.411547) | 0.081850 / 0.424275 (-0.342425) | 0.012309 / 0.007607 (0.004702) | 0.522830 / 0.226044 (0.296785) | 5.238685 / 2.268929 (2.969756) | 2.277840 / 55.444624 (-53.166784) | 1.941787 / 6.876477 (-4.934690) | 1.999688 / 2.142072 (-0.142385) | 0.807590 / 4.805227 (-3.997637) | 0.148157 / 6.500664 (-6.352507) | 0.064898 / 0.075469 (-0.010571) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.253859 / 1.841788 (-0.587929) | 13.676097 / 8.074308 (5.601789) | 14.237837 / 10.191392 (4.046444) | 0.137178 / 0.680424 (-0.543246) | 0.028971 / 0.534201 (-0.505230) | 0.400380 / 0.579283 (-0.178903) | 0.409990 / 0.434364 (-0.024374) | 0.462552 / 0.540337 (-0.077786) | 0.552153 / 1.386936 (-0.834783) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006831 / 0.011353 (-0.004522) | 0.004627 / 0.011008 (-0.006381) | 0.099883 / 0.038508 (0.061375) | 0.028072 / 0.023109 (0.004962) | 0.343556 / 0.275898 (0.067658) | 0.386792 / 0.323480 (0.063312) | 0.005080 / 0.007986 (-0.002906) | 0.003508 / 0.004328 (-0.000820) | 0.077803 / 0.004250 (0.073552) | 0.040038 / 0.037052 (0.002985) | 0.345089 / 0.258489 (0.086600) | 0.396078 / 0.293841 (0.102238) | 0.032241 / 0.128546 (-0.096305) | 0.011711 / 0.075646 (-0.063935) | 0.320531 / 0.419271 (-0.098740) | 0.043658 / 0.043533 (0.000125) | 0.344696 / 0.255139 (0.089557) | 0.389847 / 0.283200 (0.106648) | 0.092328 / 0.141683 (-0.049355) | 1.477290 / 1.452155 (0.025136) | 1.548698 / 1.492716 (0.055982) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.236073 / 0.018006 (0.218067) | 0.422113 / 0.000490 (0.421624) | 0.000431 / 0.000200 (0.000231) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024738 / 0.037411 (-0.012673) | 0.100546 / 0.014526 (0.086020) | 0.107550 / 0.176557 (-0.069006) | 0.146056 / 0.737135 (-0.591079) | 0.112665 / 0.296338 (-0.183674) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.490259 / 0.215209 (0.275050) | 4.907994 / 2.077655 (2.830339) | 2.547175 / 1.504120 (1.043055) | 2.344419 / 1.541195 (0.803224) | 2.403985 / 1.468490 (0.935495) | 0.696011 / 4.584777 (-3.888766) | 3.442426 / 3.745712 (-0.303286) | 1.878702 / 5.269862 (-3.391159) | 1.158280 / 4.565676 (-3.407396) | 0.082300 / 0.424275 (-0.341975) | 0.012513 / 0.007607 (0.004906) | 0.602696 / 0.226044 (0.376651) | 6.014592 / 2.268929 (3.745663) | 3.014466 / 55.444624 (-52.430159) | 2.669376 / 6.876477 (-4.207101) | 2.724485 / 2.142072 (0.582412) | 0.799795 / 4.805227 (-4.005432) | 0.151220 / 6.500664 (-6.349444) | 0.067486 / 0.075469 (-0.007983) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.281265 / 1.841788 (-0.560523) | 14.362284 / 8.074308 (6.287976) | 14.313690 / 10.191392 (4.122298) | 0.142870 / 0.680424 (-0.537554) | 0.017206 / 0.534201 (-0.516995) | 0.380084 / 0.579283 (-0.199199) | 0.388161 / 0.434364 (-0.046203) | 0.442617 / 0.540337 (-0.097721) | 0.528487 / 1.386936 (-0.858449) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#452b7f8ae78967dc662f5436e751233d46c62e78 \"CML watermark\")\n", "@lhoestq @amyeroberts @gante I did a substantial rewrite and all tests are passing now (Windows seems to time out or something and I can't figure out why - not sure if that's related to this PR!). I also confirmed tests are passing locally with Py==3.10. \r\n\r\nAside from incorporating everyone's comments, I also made a context manager to create and handle shared memory - this ensures that shared memory is cleaned up even if execution is interrupted. Also, shared memory names include a UUID string now to avoid collisions. Finally, string arrays are now split up into fixed-width character arrays in the workers so that they can be passed through shared memory, and the parent process reconstructs them into string arrays.", "Update: `test_arrow_dataset.py` ran fine in this branch on my Windows machine (Py 3.10), so I have no idea what's up with those tests", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008852 / 0.011353 (-0.002500) | 0.004545 / 0.011008 (-0.006464) | 0.099814 / 0.038508 (0.061306) | 0.030314 / 0.023109 (0.007205) | 0.310426 / 0.275898 (0.034528) | 0.366893 / 0.323480 (0.043413) | 0.007183 / 0.007986 (-0.000802) | 0.003476 / 0.004328 (-0.000853) | 0.077566 / 0.004250 (0.073315) | 0.038269 / 0.037052 (0.001217) | 0.319133 / 0.258489 (0.060644) | 0.352399 / 0.293841 (0.058558) | 0.033847 / 0.128546 (-0.094700) | 0.011568 / 0.075646 (-0.064078) | 0.321355 / 0.419271 (-0.097917) | 0.040719 / 0.043533 (-0.002814) | 0.304812 / 0.255139 (0.049673) | 0.329512 / 0.283200 (0.046312) | 0.088045 / 0.141683 (-0.053638) | 1.514182 / 1.452155 (0.062027) | 1.529459 / 1.492716 (0.036742) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216749 / 0.018006 (0.198743) | 0.409909 / 0.000490 (0.409419) | 0.002790 / 0.000200 (0.002590) | 0.000081 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023390 / 0.037411 (-0.014021) | 0.095955 / 0.014526 (0.081430) | 0.104749 / 0.176557 (-0.071807) | 0.143414 / 0.737135 (-0.593721) | 0.109011 / 0.296338 (-0.187328) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420410 / 0.215209 (0.205201) | 4.185745 / 2.077655 (2.108090) | 1.910207 / 1.504120 (0.406087) | 1.679330 / 1.541195 (0.138135) | 1.727134 / 1.468490 (0.258644) | 0.692379 / 4.584777 (-3.892398) | 3.358731 / 3.745712 (-0.386982) | 2.914657 / 5.269862 (-2.355205) | 1.506083 / 4.565676 (-3.059594) | 0.081922 / 0.424275 (-0.342353) | 0.012691 / 0.007607 (0.005084) | 0.530942 / 0.226044 (0.304897) | 5.357642 / 2.268929 (3.088714) | 2.387347 / 55.444624 (-53.057277) | 2.030001 / 6.876477 (-4.846476) | 2.026405 / 2.142072 (-0.115667) | 0.809406 / 4.805227 (-3.995821) | 0.149003 / 6.500664 (-6.351661) | 0.066910 / 0.075469 (-0.008559) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.278160 / 1.841788 (-0.563627) | 13.632742 / 8.074308 (5.558434) | 13.995537 / 10.191392 (3.804145) | 0.136507 / 0.680424 (-0.543917) | 0.028817 / 0.534201 (-0.505384) | 0.394842 / 0.579283 (-0.184441) | 0.399526 / 0.434364 (-0.034838) | 0.459174 / 0.540337 (-0.081163) | 0.536877 / 1.386936 (-0.850059) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006814 / 0.011353 (-0.004539) | 0.004456 / 0.011008 (-0.006552) | 0.098386 / 0.038508 (0.059878) | 0.028124 / 0.023109 (0.005015) | 0.409004 / 0.275898 (0.133106) | 0.446746 / 0.323480 (0.123266) | 0.005108 / 0.007986 (-0.002877) | 0.004807 / 0.004328 (0.000479) | 0.075751 / 0.004250 (0.071500) | 0.039297 / 0.037052 (0.002244) | 0.413198 / 0.258489 (0.154709) | 0.452124 / 0.293841 (0.158283) | 0.032534 / 0.128546 (-0.096012) | 0.011689 / 0.075646 (-0.063957) | 0.325465 / 0.419271 (-0.093806) | 0.041347 / 0.043533 (-0.002185) | 0.411489 / 0.255139 (0.156350) | 0.447120 / 0.283200 (0.163920) | 0.093058 / 0.141683 (-0.048625) | 1.489903 / 1.452155 (0.037748) | 1.580771 / 1.492716 (0.088055) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192619 / 0.018006 (0.174613) | 0.399201 / 0.000490 (0.398711) | 0.002894 / 0.000200 (0.002694) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025120 / 0.037411 (-0.012292) | 0.100126 / 0.014526 (0.085600) | 0.108669 / 0.176557 (-0.067887) | 0.148687 / 0.737135 (-0.588448) | 0.112286 / 0.296338 (-0.184052) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438866 / 0.215209 (0.223657) | 4.382418 / 2.077655 (2.304764) | 2.106450 / 1.504120 (0.602330) | 1.885105 / 1.541195 (0.343910) | 1.922948 / 1.468490 (0.454458) | 0.693145 / 4.584777 (-3.891632) | 3.378206 / 3.745712 (-0.367506) | 1.867295 / 5.269862 (-3.402566) | 1.164999 / 4.565676 (-3.400678) | 0.081918 / 0.424275 (-0.342357) | 0.012225 / 0.007607 (0.004618) | 0.547114 / 0.226044 (0.321069) | 5.454208 / 2.268929 (3.185279) | 2.532112 / 55.444624 (-52.912512) | 2.192573 / 6.876477 (-4.683904) | 2.225364 / 2.142072 (0.083291) | 0.797165 / 4.805227 (-4.008062) | 0.151185 / 6.500664 (-6.349480) | 0.067512 / 0.075469 (-0.007957) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.303905 / 1.841788 (-0.537883) | 14.107678 / 8.074308 (6.033370) | 14.147630 / 10.191392 (3.956238) | 0.156597 / 0.680424 (-0.523827) | 0.017037 / 0.534201 (-0.517164) | 0.383202 / 0.579283 (-0.196081) | 0.385340 / 0.434364 (-0.049024) | 0.443338 / 0.540337 (-0.097000) | 0.542345 / 1.386936 (-0.844591) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#38228533a03767aab713a3806aac0e8503668c68 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009982 / 0.011353 (-0.001371) | 0.005327 / 0.011008 (-0.005681) | 0.099092 / 0.038508 (0.060584) | 0.035824 / 0.023109 (0.012715) | 0.303258 / 0.275898 (0.027360) | 0.335379 / 0.323480 (0.011899) | 0.008192 / 0.007986 (0.000207) | 0.004242 / 0.004328 (-0.000087) | 0.076277 / 0.004250 (0.072026) | 0.043851 / 0.037052 (0.006799) | 0.307750 / 0.258489 (0.049261) | 0.348459 / 0.293841 (0.054618) | 0.038943 / 0.128546 (-0.089604) | 0.012128 / 0.075646 (-0.063519) | 0.334143 / 0.419271 (-0.085128) | 0.047865 / 0.043533 (0.004332) | 0.300909 / 0.255139 (0.045770) | 0.320879 / 0.283200 (0.037680) | 0.103812 / 0.141683 (-0.037871) | 1.468646 / 1.452155 (0.016491) | 1.557660 / 1.492716 (0.064944) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.244108 / 0.018006 (0.226102) | 0.554895 / 0.000490 (0.554405) | 0.005311 / 0.000200 (0.005111) | 0.000120 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028771 / 0.037411 (-0.008640) | 0.108133 / 0.014526 (0.093608) | 0.120098 / 0.176557 (-0.056458) | 0.159815 / 0.737135 (-0.577320) | 0.125437 / 0.296338 (-0.170901) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397675 / 0.215209 (0.182466) | 3.975839 / 2.077655 (1.898184) | 1.797803 / 1.504120 (0.293683) | 1.612517 / 1.541195 (0.071322) | 1.659086 / 1.468490 (0.190596) | 0.679822 / 4.584777 (-3.904955) | 3.688321 / 3.745712 (-0.057391) | 2.155285 / 5.269862 (-3.114576) | 1.466453 / 4.565676 (-3.099223) | 0.084102 / 0.424275 (-0.340173) | 0.012074 / 0.007607 (0.004467) | 0.503744 / 0.226044 (0.277699) | 5.075599 / 2.268929 (2.806670) | 2.312149 / 55.444624 (-53.132476) | 1.975028 / 6.876477 (-4.901449) | 2.069554 / 2.142072 (-0.072519) | 0.828329 / 4.805227 (-3.976898) | 0.162816 / 6.500664 (-6.337849) | 0.063813 / 0.075469 (-0.011656) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.173327 / 1.841788 (-0.668461) | 15.281584 / 8.074308 (7.207276) | 14.450851 / 10.191392 (4.259459) | 0.165621 / 0.680424 (-0.514802) | 0.028779 / 0.534201 (-0.505422) | 0.438483 / 0.579283 (-0.140800) | 0.438477 / 0.434364 (0.004113) | 0.517703 / 0.540337 (-0.022634) | 0.615119 / 1.386936 (-0.771817) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007013 / 0.011353 (-0.004340) | 0.005272 / 0.011008 (-0.005736) | 0.097203 / 0.038508 (0.058695) | 0.033103 / 0.023109 (0.009994) | 0.380203 / 0.275898 (0.104305) | 0.414868 / 0.323480 (0.091388) | 0.006326 / 0.007986 (-0.001659) | 0.005433 / 0.004328 (0.001104) | 0.074299 / 0.004250 (0.070049) | 0.049418 / 0.037052 (0.012366) | 0.388771 / 0.258489 (0.130282) | 0.435169 / 0.293841 (0.141328) | 0.036170 / 0.128546 (-0.092377) | 0.012452 / 0.075646 (-0.063195) | 0.331215 / 0.419271 (-0.088056) | 0.048577 / 0.043533 (0.005044) | 0.381491 / 0.255139 (0.126352) | 0.396731 / 0.283200 (0.113531) | 0.106435 / 0.141683 (-0.035248) | 1.446437 / 1.452155 (-0.005718) | 1.542337 / 1.492716 (0.049621) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216714 / 0.018006 (0.198707) | 0.562460 / 0.000490 (0.561970) | 0.003636 / 0.000200 (0.003436) | 0.000100 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028726 / 0.037411 (-0.008686) | 0.111993 / 0.014526 (0.097467) | 0.125325 / 0.176557 (-0.051232) | 0.157779 / 0.737135 (-0.579356) | 0.130633 / 0.296338 (-0.165705) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.440520 / 0.215209 (0.225311) | 4.396283 / 2.077655 (2.318628) | 2.204714 / 1.504120 (0.700594) | 2.011667 / 1.541195 (0.470473) | 2.050518 / 1.468490 (0.582028) | 0.695204 / 4.584777 (-3.889573) | 3.779699 / 3.745712 (0.033987) | 2.096064 / 5.269862 (-3.173798) | 1.325446 / 4.565676 (-3.240230) | 0.085315 / 0.424275 (-0.338960) | 0.012178 / 0.007607 (0.004570) | 0.550478 / 0.226044 (0.324434) | 5.471872 / 2.268929 (3.202943) | 2.687147 / 55.444624 (-52.757478) | 2.348465 / 6.876477 (-4.528011) | 2.409700 / 2.142072 (0.267628) | 0.839468 / 4.805227 (-3.965760) | 0.167030 / 6.500664 (-6.333635) | 0.063243 / 0.075469 (-0.012226) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.257347 / 1.841788 (-0.584441) | 15.157821 / 8.074308 (7.083512) | 14.646381 / 10.191392 (4.454989) | 0.185550 / 0.680424 (-0.494874) | 0.018441 / 0.534201 (-0.515760) | 0.423330 / 0.579283 (-0.155954) | 0.426204 / 0.434364 (-0.008160) | 0.498985 / 0.540337 (-0.041352) | 0.608432 / 1.386936 (-0.778504) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0f96e349ec5665e1e4135b5a108ba5db227bd3b1 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010856 / 0.011353 (-0.000497) | 0.005897 / 0.011008 (-0.005111) | 0.117826 / 0.038508 (0.079317) | 0.041899 / 0.023109 (0.018790) | 0.353804 / 0.275898 (0.077906) | 0.431021 / 0.323480 (0.107541) | 0.009288 / 0.007986 (0.001303) | 0.004556 / 0.004328 (0.000227) | 0.089344 / 0.004250 (0.085094) | 0.052224 / 0.037052 (0.015172) | 0.373242 / 0.258489 (0.114753) | 0.420667 / 0.293841 (0.126826) | 0.044191 / 0.128546 (-0.084355) | 0.014083 / 0.075646 (-0.061564) | 0.400373 / 0.419271 (-0.018898) | 0.056119 / 0.043533 (0.012586) | 0.363302 / 0.255139 (0.108163) | 0.382073 / 0.283200 (0.098873) | 0.118646 / 0.141683 (-0.023037) | 1.696576 / 1.452155 (0.244422) | 1.756518 / 1.492716 (0.263802) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216388 / 0.018006 (0.198382) | 0.485732 / 0.000490 (0.485242) | 0.004012 / 0.000200 (0.003812) | 0.000104 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032095 / 0.037411 (-0.005316) | 0.128954 / 0.014526 (0.114429) | 0.137564 / 0.176557 (-0.038993) | 0.184315 / 0.737135 (-0.552820) | 0.144707 / 0.296338 (-0.151631) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472792 / 0.215209 (0.257583) | 4.723044 / 2.077655 (2.645390) | 2.115075 / 1.504120 (0.610955) | 1.898993 / 1.541195 (0.357798) | 1.972894 / 1.468490 (0.504404) | 0.807210 / 4.584777 (-3.777567) | 4.493139 / 3.745712 (0.747427) | 2.501053 / 5.269862 (-2.768808) | 1.686121 / 4.565676 (-2.879556) | 0.099545 / 0.424275 (-0.324730) | 0.014360 / 0.007607 (0.006753) | 0.596235 / 0.226044 (0.370191) | 5.944285 / 2.268929 (3.675357) | 2.654944 / 55.444624 (-52.789681) | 2.281451 / 6.876477 (-4.595026) | 2.448407 / 2.142072 (0.306334) | 1.000512 / 4.805227 (-3.804716) | 0.196413 / 6.500664 (-6.304251) | 0.075810 / 0.075469 (0.000341) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.435707 / 1.841788 (-0.406081) | 17.931070 / 8.074308 (9.856762) | 16.635522 / 10.191392 (6.444130) | 0.189119 / 0.680424 (-0.491304) | 0.034392 / 0.534201 (-0.499809) | 0.519041 / 0.579283 (-0.060242) | 0.516159 / 0.434364 (0.081795) | 0.601180 / 0.540337 (0.060843) | 0.713180 / 1.386936 (-0.673756) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008741 / 0.011353 (-0.002612) | 0.006102 / 0.011008 (-0.004906) | 0.114787 / 0.038508 (0.076279) | 0.039610 / 0.023109 (0.016501) | 0.451730 / 0.275898 (0.175832) | 0.488820 / 0.323480 (0.165340) | 0.006979 / 0.007986 (-0.001006) | 0.006458 / 0.004328 (0.002130) | 0.086505 / 0.004250 (0.082254) | 0.057684 / 0.037052 (0.020632) | 0.451354 / 0.258489 (0.192865) | 0.523143 / 0.293841 (0.229302) | 0.043224 / 0.128546 (-0.085323) | 0.014671 / 0.075646 (-0.060975) | 0.398030 / 0.419271 (-0.021241) | 0.063650 / 0.043533 (0.020117) | 0.448324 / 0.255139 (0.193185) | 0.476560 / 0.283200 (0.193361) | 0.125772 / 0.141683 (-0.015911) | 1.801051 / 1.452155 (0.348896) | 1.872736 / 1.492716 (0.380020) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.256146 / 0.018006 (0.238139) | 0.486915 / 0.000490 (0.486425) | 0.000513 / 0.000200 (0.000313) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035242 / 0.037411 (-0.002170) | 0.134322 / 0.014526 (0.119797) | 0.144786 / 0.176557 (-0.031770) | 0.188786 / 0.737135 (-0.548349) | 0.151737 / 0.296338 (-0.144602) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.506047 / 0.215209 (0.290838) | 5.028253 / 2.077655 (2.950598) | 2.393070 / 1.504120 (0.888950) | 2.157847 / 1.541195 (0.616652) | 2.229412 / 1.468490 (0.760922) | 0.828973 / 4.584777 (-3.755804) | 4.741470 / 3.745712 (0.995758) | 4.048118 / 5.269862 (-1.221744) | 2.573818 / 4.565676 (-1.991859) | 0.101019 / 0.424275 (-0.323256) | 0.014640 / 0.007607 (0.007033) | 0.632591 / 0.226044 (0.406546) | 6.289153 / 2.268929 (4.020224) | 2.977261 / 55.444624 (-52.467363) | 2.554396 / 6.876477 (-4.322081) | 2.619446 / 2.142072 (0.477374) | 0.988376 / 4.805227 (-3.816851) | 0.196895 / 6.500664 (-6.303769) | 0.076355 / 0.075469 (0.000886) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.493570 / 1.841788 (-0.348218) | 18.422758 / 8.074308 (10.348449) | 17.007352 / 10.191392 (6.815960) | 0.191903 / 0.680424 (-0.488521) | 0.020974 / 0.534201 (-0.513227) | 0.500573 / 0.579283 (-0.078710) | 0.489381 / 0.434364 (0.055017) | 0.580765 / 0.540337 (0.040428) | 0.698907 / 1.386936 (-0.688029) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fa9baa268a6d285ab0a61cc37413392c94cfe2e8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008979 / 0.011353 (-0.002374) | 0.004497 / 0.011008 (-0.006511) | 0.102227 / 0.038508 (0.063719) | 0.031302 / 0.023109 (0.008193) | 0.298488 / 0.275898 (0.022590) | 0.372589 / 0.323480 (0.049109) | 0.007261 / 0.007986 (-0.000725) | 0.003542 / 0.004328 (-0.000786) | 0.078503 / 0.004250 (0.074253) | 0.039474 / 0.037052 (0.002422) | 0.310991 / 0.258489 (0.052502) | 0.353245 / 0.293841 (0.059404) | 0.033798 / 0.128546 (-0.094749) | 0.011634 / 0.075646 (-0.064012) | 0.321141 / 0.419271 (-0.098131) | 0.041264 / 0.043533 (-0.002268) | 0.300900 / 0.255139 (0.045761) | 0.326255 / 0.283200 (0.043055) | 0.092477 / 0.141683 (-0.049205) | 1.478921 / 1.452155 (0.026766) | 1.514915 / 1.492716 (0.022198) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.184415 / 0.018006 (0.166408) | 0.428986 / 0.000490 (0.428497) | 0.002590 / 0.000200 (0.002390) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023730 / 0.037411 (-0.013681) | 0.099846 / 0.014526 (0.085320) | 0.107075 / 0.176557 (-0.069482) | 0.147475 / 0.737135 (-0.589661) | 0.111802 / 0.296338 (-0.184537) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.413704 / 0.215209 (0.198494) | 4.144498 / 2.077655 (2.066843) | 1.855900 / 1.504120 (0.351780) | 1.647958 / 1.541195 (0.106763) | 1.712437 / 1.468490 (0.243947) | 0.688382 / 4.584777 (-3.896395) | 3.432136 / 3.745712 (-0.313576) | 2.837211 / 5.269862 (-2.432651) | 1.519004 / 4.565676 (-3.046672) | 0.082429 / 0.424275 (-0.341846) | 0.012610 / 0.007607 (0.005003) | 0.525078 / 0.226044 (0.299034) | 5.272932 / 2.268929 (3.004003) | 2.340482 / 55.444624 (-53.104143) | 2.007372 / 6.876477 (-4.869104) | 2.060567 / 2.142072 (-0.081506) | 0.806476 / 4.805227 (-3.998752) | 0.149421 / 6.500664 (-6.351243) | 0.066252 / 0.075469 (-0.009218) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.235078 / 1.841788 (-0.606710) | 13.870758 / 8.074308 (5.796450) | 14.104582 / 10.191392 (3.913190) | 0.159375 / 0.680424 (-0.521049) | 0.029233 / 0.534201 (-0.504968) | 0.392184 / 0.579283 (-0.187099) | 0.407909 / 0.434364 (-0.026455) | 0.458757 / 0.540337 (-0.081581) | 0.547681 / 1.386936 (-0.839255) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007194 / 0.011353 (-0.004159) | 0.004578 / 0.011008 (-0.006431) | 0.098936 / 0.038508 (0.060428) | 0.029639 / 0.023109 (0.006530) | 0.347241 / 0.275898 (0.071343) | 0.378838 / 0.323480 (0.055358) | 0.005632 / 0.007986 (-0.002353) | 0.003469 / 0.004328 (-0.000860) | 0.075536 / 0.004250 (0.071285) | 0.043301 / 0.037052 (0.006249) | 0.348091 / 0.258489 (0.089602) | 0.388595 / 0.293841 (0.094754) | 0.033512 / 0.128546 (-0.095034) | 0.011754 / 0.075646 (-0.063892) | 0.321003 / 0.419271 (-0.098268) | 0.044634 / 0.043533 (0.001101) | 0.346688 / 0.255139 (0.091549) | 0.366346 / 0.283200 (0.083147) | 0.093650 / 0.141683 (-0.048033) | 1.509913 / 1.452155 (0.057759) | 1.596414 / 1.492716 (0.103698) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.230466 / 0.018006 (0.212459) | 0.417106 / 0.000490 (0.416617) | 0.000959 / 0.000200 (0.000759) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025581 / 0.037411 (-0.011830) | 0.105246 / 0.014526 (0.090720) | 0.108997 / 0.176557 (-0.067560) | 0.144342 / 0.737135 (-0.592794) | 0.113911 / 0.296338 (-0.182427) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.479608 / 0.215209 (0.264399) | 4.766081 / 2.077655 (2.688426) | 2.446597 / 1.504120 (0.942477) | 2.228278 / 1.541195 (0.687083) | 2.289943 / 1.468490 (0.821453) | 0.703146 / 4.584777 (-3.881631) | 3.414150 / 3.745712 (-0.331562) | 2.957730 / 5.269862 (-2.312132) | 1.531524 / 4.565676 (-3.034152) | 0.083449 / 0.424275 (-0.340826) | 0.012684 / 0.007607 (0.005077) | 0.587622 / 0.226044 (0.361578) | 5.888791 / 2.268929 (3.619863) | 2.884200 / 55.444624 (-52.560424) | 2.543739 / 6.876477 (-4.332737) | 2.596245 / 2.142072 (0.454173) | 0.813070 / 4.805227 (-3.992157) | 0.152706 / 6.500664 (-6.347958) | 0.069257 / 0.075469 (-0.006212) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.302945 / 1.841788 (-0.538842) | 14.484051 / 8.074308 (6.409743) | 14.216143 / 10.191392 (4.024751) | 0.154537 / 0.680424 (-0.525886) | 0.016909 / 0.534201 (-0.517292) | 0.389433 / 0.579283 (-0.189850) | 0.393280 / 0.434364 (-0.041084) | 0.446884 / 0.540337 (-0.093453) | 0.534394 / 1.386936 (-0.852542) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2bcdeb952c57c5f22643061d49d16014a7b6426a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008822 / 0.011353 (-0.002530) | 0.004826 / 0.011008 (-0.006182) | 0.102710 / 0.038508 (0.064202) | 0.030353 / 0.023109 (0.007244) | 0.297224 / 0.275898 (0.021326) | 0.371861 / 0.323480 (0.048381) | 0.007266 / 0.007986 (-0.000720) | 0.003632 / 0.004328 (-0.000696) | 0.079960 / 0.004250 (0.075710) | 0.036908 / 0.037052 (-0.000144) | 0.309582 / 0.258489 (0.051093) | 0.350108 / 0.293841 (0.056267) | 0.034280 / 0.128546 (-0.094266) | 0.011739 / 0.075646 (-0.063907) | 0.323217 / 0.419271 (-0.096054) | 0.043491 / 0.043533 (-0.000042) | 0.298454 / 0.255139 (0.043315) | 0.326735 / 0.283200 (0.043535) | 0.093955 / 0.141683 (-0.047728) | 1.494313 / 1.452155 (0.042159) | 1.562104 / 1.492716 (0.069388) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.182796 / 0.018006 (0.164790) | 0.420133 / 0.000490 (0.419643) | 0.002537 / 0.000200 (0.002337) | 0.000070 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023143 / 0.037411 (-0.014269) | 0.098560 / 0.014526 (0.084034) | 0.105060 / 0.176557 (-0.071496) | 0.140269 / 0.737135 (-0.596866) | 0.109120 / 0.296338 (-0.187219) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419907 / 0.215209 (0.204698) | 4.196179 / 2.077655 (2.118524) | 1.887663 / 1.504120 (0.383543) | 1.686232 / 1.541195 (0.145037) | 1.741741 / 1.468490 (0.273251) | 0.696222 / 4.584777 (-3.888555) | 3.400250 / 3.745712 (-0.345462) | 1.875058 / 5.269862 (-3.394803) | 1.159466 / 4.565676 (-3.406211) | 0.082520 / 0.424275 (-0.341755) | 0.012408 / 0.007607 (0.004801) | 0.525212 / 0.226044 (0.299168) | 5.283691 / 2.268929 (3.014762) | 2.314487 / 55.444624 (-53.130138) | 1.966212 / 6.876477 (-4.910265) | 2.023458 / 2.142072 (-0.118615) | 0.808896 / 4.805227 (-3.996331) | 0.148973 / 6.500664 (-6.351691) | 0.065378 / 0.075469 (-0.010091) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.223833 / 1.841788 (-0.617955) | 14.053651 / 8.074308 (5.979343) | 14.072165 / 10.191392 (3.880773) | 0.156006 / 0.680424 (-0.524418) | 0.028665 / 0.534201 (-0.505536) | 0.392099 / 0.579283 (-0.187184) | 0.401460 / 0.434364 (-0.032904) | 0.462184 / 0.540337 (-0.078153) | 0.540459 / 1.386936 (-0.846477) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006907 / 0.011353 (-0.004446) | 0.004585 / 0.011008 (-0.006423) | 0.099027 / 0.038508 (0.060519) | 0.028317 / 0.023109 (0.005208) | 0.421068 / 0.275898 (0.145170) | 0.450712 / 0.323480 (0.127233) | 0.005229 / 0.007986 (-0.002756) | 0.004873 / 0.004328 (0.000545) | 0.077374 / 0.004250 (0.073124) | 0.042530 / 0.037052 (0.005477) | 0.417392 / 0.258489 (0.158903) | 0.462605 / 0.293841 (0.168764) | 0.032195 / 0.128546 (-0.096351) | 0.011777 / 0.075646 (-0.063870) | 0.321927 / 0.419271 (-0.097344) | 0.041999 / 0.043533 (-0.001533) | 0.419402 / 0.255139 (0.164263) | 0.437179 / 0.283200 (0.153979) | 0.089549 / 0.141683 (-0.052134) | 1.469525 / 1.452155 (0.017370) | 1.586407 / 1.492716 (0.093691) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.209533 / 0.018006 (0.191526) | 0.413886 / 0.000490 (0.413396) | 0.003357 / 0.000200 (0.003157) | 0.000121 / 0.000054 (0.000067) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026133 / 0.037411 (-0.011278) | 0.103128 / 0.014526 (0.088602) | 0.110604 / 0.176557 (-0.065952) | 0.153055 / 0.737135 (-0.584080) | 0.112257 / 0.296338 (-0.184081) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.471281 / 0.215209 (0.256072) | 4.708361 / 2.077655 (2.630706) | 2.572681 / 1.504120 (1.068561) | 2.370536 / 1.541195 (0.829341) | 2.456010 / 1.468490 (0.987520) | 0.694173 / 4.584777 (-3.890603) | 3.434511 / 3.745712 (-0.311201) | 1.877169 / 5.269862 (-3.392693) | 1.158387 / 4.565676 (-3.407289) | 0.081849 / 0.424275 (-0.342426) | 0.012176 / 0.007607 (0.004569) | 0.581736 / 0.226044 (0.355692) | 5.803173 / 2.268929 (3.534245) | 3.040003 / 55.444624 (-52.404621) | 2.704698 / 6.876477 (-4.171779) | 2.760138 / 2.142072 (0.618065) | 0.802557 / 4.805227 (-4.002671) | 0.151397 / 6.500664 (-6.349268) | 0.068308 / 0.075469 (-0.007161) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.304062 / 1.841788 (-0.537725) | 14.364809 / 8.074308 (6.290501) | 14.192131 / 10.191392 (4.000739) | 0.150025 / 0.680424 (-0.530399) | 0.017020 / 0.534201 (-0.517181) | 0.389235 / 0.579283 (-0.190048) | 0.387557 / 0.434364 (-0.046807) | 0.454636 / 0.540337 (-0.085702) | 0.558182 / 1.386936 (-0.828754) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#663e5eddca188abbb37e2f803846f02fe4ca0d9b \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008519 / 0.011353 (-0.002834) | 0.004538 / 0.011008 (-0.006470) | 0.102066 / 0.038508 (0.063558) | 0.029700 / 0.023109 (0.006591) | 0.304573 / 0.275898 (0.028675) | 0.366232 / 0.323480 (0.042752) | 0.007154 / 0.007986 (-0.000832) | 0.003497 / 0.004328 (-0.000831) | 0.079119 / 0.004250 (0.074868) | 0.036088 / 0.037052 (-0.000964) | 0.311076 / 0.258489 (0.052587) | 0.352205 / 0.293841 (0.058364) | 0.033706 / 0.128546 (-0.094840) | 0.011657 / 0.075646 (-0.063990) | 0.324024 / 0.419271 (-0.095247) | 0.040777 / 0.043533 (-0.002756) | 0.302661 / 0.255139 (0.047522) | 0.329091 / 0.283200 (0.045891) | 0.086774 / 0.141683 (-0.054909) | 1.485874 / 1.452155 (0.033720) | 1.535726 / 1.492716 (0.043009) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.194284 / 0.018006 (0.176277) | 0.412875 / 0.000490 (0.412385) | 0.003348 / 0.000200 (0.003148) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022432 / 0.037411 (-0.014979) | 0.095008 / 0.014526 (0.080482) | 0.103268 / 0.176557 (-0.073288) | 0.140121 / 0.737135 (-0.597014) | 0.106619 / 0.296338 (-0.189719) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.414786 / 0.215209 (0.199577) | 4.146345 / 2.077655 (2.068690) | 1.873703 / 1.504120 (0.369583) | 1.673498 / 1.541195 (0.132303) | 1.716993 / 1.468490 (0.248502) | 0.692098 / 4.584777 (-3.892679) | 3.380991 / 3.745712 (-0.364721) | 1.846811 / 5.269862 (-3.423050) | 1.159617 / 4.565676 (-3.406059) | 0.081867 / 0.424275 (-0.342408) | 0.012371 / 0.007607 (0.004764) | 0.526228 / 0.226044 (0.300184) | 5.273139 / 2.268929 (3.004211) | 2.327147 / 55.444624 (-53.117477) | 1.968366 / 6.876477 (-4.908111) | 2.018053 / 2.142072 (-0.124019) | 0.816098 / 4.805227 (-3.989130) | 0.149438 / 6.500664 (-6.351226) | 0.065000 / 0.075469 (-0.010469) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244408 / 1.841788 (-0.597380) | 13.774354 / 8.074308 (5.700046) | 14.178923 / 10.191392 (3.987531) | 0.150032 / 0.680424 (-0.530392) | 0.029736 / 0.534201 (-0.504465) | 0.399134 / 0.579283 (-0.180149) | 0.404214 / 0.434364 (-0.030150) | 0.462096 / 0.540337 (-0.078242) | 0.542256 / 1.386936 (-0.844680) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006776 / 0.011353 (-0.004577) | 0.004586 / 0.011008 (-0.006422) | 0.097658 / 0.038508 (0.059150) | 0.027627 / 0.023109 (0.004517) | 0.423794 / 0.275898 (0.147896) | 0.447443 / 0.323480 (0.123963) | 0.005099 / 0.007986 (-0.002886) | 0.004846 / 0.004328 (0.000517) | 0.075135 / 0.004250 (0.070884) | 0.038068 / 0.037052 (0.001016) | 0.420999 / 0.258489 (0.162510) | 0.460368 / 0.293841 (0.166527) | 0.032107 / 0.128546 (-0.096439) | 0.011775 / 0.075646 (-0.063871) | 0.323854 / 0.419271 (-0.095418) | 0.045538 / 0.043533 (0.002005) | 0.420949 / 0.255139 (0.165810) | 0.441906 / 0.283200 (0.158706) | 0.091955 / 0.141683 (-0.049728) | 1.523736 / 1.452155 (0.071581) | 1.587865 / 1.492716 (0.095148) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.263297 / 0.018006 (0.245290) | 0.416170 / 0.000490 (0.415680) | 0.023161 / 0.000200 (0.022961) | 0.000243 / 0.000054 (0.000188) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024000 / 0.037411 (-0.013412) | 0.097787 / 0.014526 (0.083262) | 0.106884 / 0.176557 (-0.069672) | 0.140861 / 0.737135 (-0.596274) | 0.108228 / 0.296338 (-0.188111) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.477222 / 0.215209 (0.262013) | 4.774729 / 2.077655 (2.697074) | 2.451575 / 1.504120 (0.947455) | 2.251255 / 1.541195 (0.710060) | 2.281154 / 1.468490 (0.812664) | 0.699394 / 4.584777 (-3.885383) | 3.421575 / 3.745712 (-0.324137) | 2.704713 / 5.269862 (-2.565148) | 1.508464 / 4.565676 (-3.057212) | 0.082199 / 0.424275 (-0.342076) | 0.012586 / 0.007607 (0.004979) | 0.588783 / 0.226044 (0.362739) | 5.878434 / 2.268929 (3.609505) | 2.927422 / 55.444624 (-52.517202) | 2.574357 / 6.876477 (-4.302120) | 2.603626 / 2.142072 (0.461554) | 0.804706 / 4.805227 (-4.000521) | 0.152919 / 6.500664 (-6.347745) | 0.069316 / 0.075469 (-0.006153) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.280025 / 1.841788 (-0.561763) | 13.968407 / 8.074308 (5.894099) | 13.874506 / 10.191392 (3.683114) | 0.154711 / 0.680424 (-0.525713) | 0.016827 / 0.534201 (-0.517374) | 0.377775 / 0.579283 (-0.201508) | 0.393035 / 0.434364 (-0.041329) | 0.439405 / 0.540337 (-0.100932) | 0.528135 / 1.386936 (-0.858801) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#00b27a59b8af9075967b800e3b0f1de8616aa0ce \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009035 / 0.011353 (-0.002318) | 0.004518 / 0.011008 (-0.006490) | 0.102077 / 0.038508 (0.063569) | 0.030169 / 0.023109 (0.007060) | 0.297713 / 0.275898 (0.021815) | 0.364976 / 0.323480 (0.041496) | 0.007079 / 0.007986 (-0.000906) | 0.003438 / 0.004328 (-0.000890) | 0.079667 / 0.004250 (0.075416) | 0.035890 / 0.037052 (-0.001162) | 0.306065 / 0.258489 (0.047576) | 0.352133 / 0.293841 (0.058292) | 0.033800 / 0.128546 (-0.094746) | 0.011613 / 0.075646 (-0.064034) | 0.322917 / 0.419271 (-0.096354) | 0.040973 / 0.043533 (-0.002560) | 0.300896 / 0.255139 (0.045757) | 0.331540 / 0.283200 (0.048341) | 0.089579 / 0.141683 (-0.052103) | 1.466755 / 1.452155 (0.014600) | 1.522120 / 1.492716 (0.029404) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.193172 / 0.018006 (0.175166) | 0.408878 / 0.000490 (0.408389) | 0.001586 / 0.000200 (0.001386) | 0.000071 / 0.000054 (0.000017) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023496 / 0.037411 (-0.013915) | 0.098046 / 0.014526 (0.083520) | 0.104599 / 0.176557 (-0.071957) | 0.139054 / 0.737135 (-0.598081) | 0.111163 / 0.296338 (-0.185175) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417374 / 0.215209 (0.202165) | 4.145808 / 2.077655 (2.068153) | 1.847101 / 1.504120 (0.342981) | 1.637207 / 1.541195 (0.096012) | 1.676906 / 1.468490 (0.208416) | 0.689851 / 4.584777 (-3.894926) | 3.402099 / 3.745712 (-0.343614) | 1.896808 / 5.269862 (-3.373054) | 1.257876 / 4.565676 (-3.307801) | 0.081744 / 0.424275 (-0.342531) | 0.012206 / 0.007607 (0.004599) | 0.524830 / 0.226044 (0.298786) | 5.251344 / 2.268929 (2.982416) | 2.277907 / 55.444624 (-53.166717) | 1.933985 / 6.876477 (-4.942491) | 2.038500 / 2.142072 (-0.103573) | 0.808696 / 4.805227 (-3.996532) | 0.149488 / 6.500664 (-6.351176) | 0.065323 / 0.075469 (-0.010146) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.204294 / 1.841788 (-0.637493) | 13.696526 / 8.074308 (5.622218) | 13.947195 / 10.191392 (3.755802) | 0.136812 / 0.680424 (-0.543611) | 0.028625 / 0.534201 (-0.505576) | 0.397662 / 0.579283 (-0.181621) | 0.403423 / 0.434364 (-0.030941) | 0.465288 / 0.540337 (-0.075049) | 0.551919 / 1.386936 (-0.835017) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006467 / 0.011353 (-0.004886) | 0.004562 / 0.011008 (-0.006447) | 0.097514 / 0.038508 (0.059006) | 0.027471 / 0.023109 (0.004362) | 0.425504 / 0.275898 (0.149606) | 0.458856 / 0.323480 (0.135376) | 0.004816 / 0.007986 (-0.003169) | 0.003264 / 0.004328 (-0.001065) | 0.074947 / 0.004250 (0.070697) | 0.037147 / 0.037052 (0.000095) | 0.429513 / 0.258489 (0.171024) | 0.463971 / 0.293841 (0.170130) | 0.031638 / 0.128546 (-0.096908) | 0.011545 / 0.075646 (-0.064101) | 0.320261 / 0.419271 (-0.099010) | 0.041570 / 0.043533 (-0.001963) | 0.424809 / 0.255139 (0.169670) | 0.447158 / 0.283200 (0.163959) | 0.088418 / 0.141683 (-0.053265) | 1.492242 / 1.452155 (0.040087) | 1.545523 / 1.492716 (0.052807) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217865 / 0.018006 (0.199859) | 0.399925 / 0.000490 (0.399436) | 0.004853 / 0.000200 (0.004653) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024275 / 0.037411 (-0.013137) | 0.098249 / 0.014526 (0.083723) | 0.107110 / 0.176557 (-0.069446) | 0.143870 / 0.737135 (-0.593265) | 0.108796 / 0.296338 (-0.187542) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.470856 / 0.215209 (0.255647) | 4.687921 / 2.077655 (2.610266) | 2.448631 / 1.504120 (0.944511) | 2.247748 / 1.541195 (0.706553) | 2.287713 / 1.468490 (0.819223) | 0.687534 / 4.584777 (-3.897243) | 3.421099 / 3.745712 (-0.324613) | 2.977280 / 5.269862 (-2.292582) | 1.274837 / 4.565676 (-3.290839) | 0.081611 / 0.424275 (-0.342664) | 0.012603 / 0.007607 (0.004996) | 0.574600 / 0.226044 (0.348556) | 5.802826 / 2.268929 (3.533898) | 2.913178 / 55.444624 (-52.531446) | 2.589486 / 6.876477 (-4.286991) | 2.630004 / 2.142072 (0.487932) | 0.790087 / 4.805227 (-4.015140) | 0.150019 / 6.500664 (-6.350645) | 0.067346 / 0.075469 (-0.008123) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.266521 / 1.841788 (-0.575267) | 13.818770 / 8.074308 (5.744462) | 13.872277 / 10.191392 (3.680885) | 0.147375 / 0.680424 (-0.533049) | 0.016837 / 0.534201 (-0.517363) | 0.376421 / 0.579283 (-0.202862) | 0.400236 / 0.434364 (-0.034128) | 0.436623 / 0.540337 (-0.103714) | 0.527173 / 1.386936 (-0.859763) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5f347cf8443aa35401ba6a4159600b92bc6a156b \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009341 / 0.011353 (-0.002012) | 0.005188 / 0.011008 (-0.005820) | 0.101831 / 0.038508 (0.063323) | 0.035141 / 0.023109 (0.012032) | 0.299324 / 0.275898 (0.023426) | 0.334749 / 0.323480 (0.011269) | 0.007958 / 0.007986 (-0.000027) | 0.005482 / 0.004328 (0.001153) | 0.077070 / 0.004250 (0.072820) | 0.044733 / 0.037052 (0.007680) | 0.310398 / 0.258489 (0.051909) | 0.347925 / 0.293841 (0.054084) | 0.038141 / 0.128546 (-0.090405) | 0.012135 / 0.075646 (-0.063512) | 0.333799 / 0.419271 (-0.085472) | 0.048881 / 0.043533 (0.005348) | 0.301336 / 0.255139 (0.046197) | 0.314592 / 0.283200 (0.031393) | 0.103635 / 0.141683 (-0.038048) | 1.437321 / 1.452155 (-0.014833) | 1.598781 / 1.492716 (0.106065) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.248911 / 0.018006 (0.230905) | 0.528932 / 0.000490 (0.528442) | 0.002495 / 0.000200 (0.002295) | 0.000094 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027903 / 0.037411 (-0.009509) | 0.106716 / 0.014526 (0.092190) | 0.122650 / 0.176557 (-0.053907) | 0.162481 / 0.737135 (-0.574654) | 0.126402 / 0.296338 (-0.169937) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.352819 / 0.215209 (0.137610) | 3.522761 / 2.077655 (1.445106) | 1.576761 / 1.504120 (0.072641) | 1.411631 / 1.541195 (-0.129563) | 1.449689 / 1.468490 (-0.018801) | 0.608987 / 4.584777 (-3.975790) | 3.705121 / 3.745712 (-0.040592) | 2.085071 / 5.269862 (-3.184790) | 1.308653 / 4.565676 (-3.257024) | 0.083763 / 0.424275 (-0.340512) | 0.011957 / 0.007607 (0.004350) | 0.502182 / 0.226044 (0.276137) | 5.008829 / 2.268929 (2.739900) | 2.244687 / 55.444624 (-53.199937) | 1.891411 / 6.876477 (-4.985065) | 1.940789 / 2.142072 (-0.201284) | 0.825966 / 4.805227 (-3.979261) | 0.165267 / 6.500664 (-6.335397) | 0.063020 / 0.075469 (-0.012449) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196707 / 1.841788 (-0.645081) | 14.236877 / 8.074308 (6.162569) | 14.872954 / 10.191392 (4.681562) | 0.168560 / 0.680424 (-0.511864) | 0.029038 / 0.534201 (-0.505163) | 0.440192 / 0.579283 (-0.139091) | 0.437021 / 0.434364 (0.002657) | 0.519612 / 0.540337 (-0.020725) | 0.612013 / 1.386936 (-0.774923) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007170 / 0.011353 (-0.004183) | 0.005303 / 0.011008 (-0.005705) | 0.098503 / 0.038508 (0.059995) | 0.032573 / 0.023109 (0.009463) | 0.398203 / 0.275898 (0.122305) | 0.446075 / 0.323480 (0.122595) | 0.005712 / 0.007986 (-0.002274) | 0.004165 / 0.004328 (-0.000164) | 0.074273 / 0.004250 (0.070023) | 0.049587 / 0.037052 (0.012534) | 0.399458 / 0.258489 (0.140969) | 0.459167 / 0.293841 (0.165327) | 0.036063 / 0.128546 (-0.092483) | 0.012394 / 0.075646 (-0.063253) | 0.332559 / 0.419271 (-0.086713) | 0.048499 / 0.043533 (0.004967) | 0.404044 / 0.255139 (0.148905) | 0.410462 / 0.283200 (0.127262) | 0.104104 / 0.141683 (-0.037579) | 1.488141 / 1.452155 (0.035986) | 1.535517 / 1.492716 (0.042801) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.292976 / 0.018006 (0.274970) | 0.569139 / 0.000490 (0.568649) | 0.000553 / 0.000200 (0.000353) | 0.000063 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030144 / 0.037411 (-0.007267) | 0.098699 / 0.014526 (0.084173) | 0.114437 / 0.176557 (-0.062120) | 0.156657 / 0.737135 (-0.580478) | 0.117449 / 0.296338 (-0.178890) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.441921 / 0.215209 (0.226712) | 4.413090 / 2.077655 (2.335435) | 2.190458 / 1.504120 (0.686338) | 2.008919 / 1.541195 (0.467724) | 2.049657 / 1.468490 (0.581167) | 0.691751 / 4.584777 (-3.893026) | 3.767524 / 3.745712 (0.021812) | 3.395564 / 5.269862 (-1.874297) | 1.633480 / 4.565676 (-2.932196) | 0.084880 / 0.424275 (-0.339395) | 0.012133 / 0.007607 (0.004526) | 0.555372 / 0.226044 (0.329327) | 5.522820 / 2.268929 (3.253892) | 2.723331 / 55.444624 (-52.721293) | 2.337583 / 6.876477 (-4.538894) | 2.368746 / 2.142072 (0.226674) | 0.830127 / 4.805227 (-3.975100) | 0.166239 / 6.500664 (-6.334425) | 0.064279 / 0.075469 (-0.011190) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.123421 / 1.841788 (-0.718367) | 14.413392 / 8.074308 (6.339084) | 12.865143 / 10.191392 (2.673751) | 0.132198 / 0.680424 (-0.548226) | 0.016138 / 0.534201 (-0.518063) | 0.380760 / 0.579283 (-0.198523) | 0.387223 / 0.434364 (-0.047141) | 0.445574 / 0.540337 (-0.094764) | 0.535658 / 1.386936 (-0.851278) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a89564d3d17b5960db2435662cb9c49f8ad7488a \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008316 / 0.011353 (-0.003037) | 0.004503 / 0.011008 (-0.006505) | 0.100565 / 0.038508 (0.062057) | 0.030388 / 0.023109 (0.007279) | 0.304417 / 0.275898 (0.028519) | 0.369655 / 0.323480 (0.046175) | 0.007796 / 0.007986 (-0.000190) | 0.003450 / 0.004328 (-0.000878) | 0.078694 / 0.004250 (0.074443) | 0.038068 / 0.037052 (0.001016) | 0.316353 / 0.258489 (0.057864) | 0.352344 / 0.293841 (0.058503) | 0.033271 / 0.128546 (-0.095276) | 0.011427 / 0.075646 (-0.064220) | 0.322367 / 0.419271 (-0.096904) | 0.041497 / 0.043533 (-0.002036) | 0.305876 / 0.255139 (0.050737) | 0.332279 / 0.283200 (0.049079) | 0.086719 / 0.141683 (-0.054964) | 1.488367 / 1.452155 (0.036212) | 1.528943 / 1.492716 (0.036227) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.171072 / 0.018006 (0.153066) | 0.421048 / 0.000490 (0.420558) | 0.003622 / 0.000200 (0.003422) | 0.000075 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022632 / 0.037411 (-0.014779) | 0.095304 / 0.014526 (0.080778) | 0.106254 / 0.176557 (-0.070302) | 0.138437 / 0.737135 (-0.598698) | 0.107258 / 0.296338 (-0.189080) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.423201 / 0.215209 (0.207992) | 4.208397 / 2.077655 (2.130742) | 1.899800 / 1.504120 (0.395680) | 1.682782 / 1.541195 (0.141587) | 1.708840 / 1.468490 (0.240350) | 0.694492 / 4.584777 (-3.890285) | 3.380369 / 3.745712 (-0.365344) | 1.851731 / 5.269862 (-3.418130) | 1.151615 / 4.565676 (-3.414061) | 0.082446 / 0.424275 (-0.341829) | 0.012483 / 0.007607 (0.004876) | 0.533688 / 0.226044 (0.307643) | 5.373434 / 2.268929 (3.104505) | 2.346403 / 55.444624 (-53.098221) | 1.978505 / 6.876477 (-4.897971) | 2.005875 / 2.142072 (-0.136198) | 0.820785 / 4.805227 (-3.984442) | 0.150728 / 6.500664 (-6.349936) | 0.065761 / 0.075469 (-0.009708) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.244550 / 1.841788 (-0.597237) | 13.219096 / 8.074308 (5.144788) | 13.960463 / 10.191392 (3.769071) | 0.135572 / 0.680424 (-0.544852) | 0.028746 / 0.534201 (-0.505455) | 0.393082 / 0.579283 (-0.186201) | 0.402852 / 0.434364 (-0.031512) | 0.461191 / 0.540337 (-0.079147) | 0.543500 / 1.386936 (-0.843436) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006316 / 0.011353 (-0.005037) | 0.004394 / 0.011008 (-0.006615) | 0.096478 / 0.038508 (0.057970) | 0.026965 / 0.023109 (0.003855) | 0.340371 / 0.275898 (0.064473) | 0.368334 / 0.323480 (0.044854) | 0.004744 / 0.007986 (-0.003242) | 0.004652 / 0.004328 (0.000324) | 0.074479 / 0.004250 (0.070228) | 0.036358 / 0.037052 (-0.000694) | 0.342968 / 0.258489 (0.084479) | 0.383675 / 0.293841 (0.089834) | 0.031439 / 0.128546 (-0.097107) | 0.011529 / 0.075646 (-0.064117) | 0.319560 / 0.419271 (-0.099711) | 0.041370 / 0.043533 (-0.002163) | 0.342594 / 0.255139 (0.087455) | 0.363237 / 0.283200 (0.080038) | 0.087316 / 0.141683 (-0.054367) | 1.468690 / 1.452155 (0.016535) | 1.553974 / 1.492716 (0.061257) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.198366 / 0.018006 (0.180360) | 0.401581 / 0.000490 (0.401091) | 0.000400 / 0.000200 (0.000200) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023150 / 0.037411 (-0.014261) | 0.097797 / 0.014526 (0.083271) | 0.106198 / 0.176557 (-0.070359) | 0.139599 / 0.737135 (-0.597536) | 0.108361 / 0.296338 (-0.187978) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.472962 / 0.215209 (0.257753) | 4.702688 / 2.077655 (2.625033) | 2.401002 / 1.504120 (0.896882) | 2.193857 / 1.541195 (0.652663) | 2.219188 / 1.468490 (0.750697) | 0.689993 / 4.584777 (-3.894784) | 3.369409 / 3.745712 (-0.376304) | 1.824801 / 5.269862 (-3.445061) | 1.150815 / 4.565676 (-3.414862) | 0.082197 / 0.424275 (-0.342078) | 0.012287 / 0.007607 (0.004679) | 0.581963 / 0.226044 (0.355918) | 5.786943 / 2.268929 (3.518015) | 2.871235 / 55.444624 (-52.573389) | 2.516009 / 6.876477 (-4.360468) | 2.535669 / 2.142072 (0.393597) | 0.804733 / 4.805227 (-4.000494) | 0.150545 / 6.500664 (-6.350119) | 0.066964 / 0.075469 (-0.008505) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.285431 / 1.841788 (-0.556356) | 14.097108 / 8.074308 (6.022800) | 13.821497 / 10.191392 (3.630105) | 0.141922 / 0.680424 (-0.538502) | 0.016964 / 0.534201 (-0.517237) | 0.374784 / 0.579283 (-0.204500) | 0.381034 / 0.434364 (-0.053330) | 0.435487 / 0.540337 (-0.104850) | 0.521894 / 1.386936 (-0.865042) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#462000c2b12a11f1fc26853e842d3f6e40287737 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009486 / 0.011353 (-0.001867) | 0.005363 / 0.011008 (-0.005645) | 0.101008 / 0.038508 (0.062500) | 0.036355 / 0.023109 (0.013246) | 0.290575 / 0.275898 (0.014677) | 0.391634 / 0.323480 (0.068154) | 0.009085 / 0.007986 (0.001099) | 0.005780 / 0.004328 (0.001451) | 0.077848 / 0.004250 (0.073598) | 0.049062 / 0.037052 (0.012009) | 0.310900 / 0.258489 (0.052411) | 0.358224 / 0.293841 (0.064383) | 0.038838 / 0.128546 (-0.089708) | 0.012244 / 0.075646 (-0.063402) | 0.333701 / 0.419271 (-0.085570) | 0.048021 / 0.043533 (0.004488) | 0.289584 / 0.255139 (0.034445) | 0.317556 / 0.283200 (0.034356) | 0.109807 / 0.141683 (-0.031876) | 1.465966 / 1.452155 (0.013811) | 1.526341 / 1.492716 (0.033625) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246221 / 0.018006 (0.228215) | 0.580659 / 0.000490 (0.580169) | 0.000627 / 0.000200 (0.000427) | 0.000089 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028352 / 0.037411 (-0.009059) | 0.110569 / 0.014526 (0.096043) | 0.126456 / 0.176557 (-0.050100) | 0.163633 / 0.737135 (-0.573503) | 0.128252 / 0.296338 (-0.168087) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397271 / 0.215209 (0.182062) | 3.975336 / 2.077655 (1.897682) | 1.786957 / 1.504120 (0.282837) | 1.598468 / 1.541195 (0.057273) | 1.645299 / 1.468490 (0.176809) | 0.686221 / 4.584777 (-3.898556) | 3.753184 / 3.745712 (0.007472) | 2.089505 / 5.269862 (-3.180356) | 1.325799 / 4.565676 (-3.239878) | 0.084608 / 0.424275 (-0.339667) | 0.012343 / 0.007607 (0.004736) | 0.509951 / 0.226044 (0.283907) | 5.092102 / 2.268929 (2.823174) | 2.297551 / 55.444624 (-53.147073) | 1.938177 / 6.876477 (-4.938300) | 2.012448 / 2.142072 (-0.129625) | 0.835206 / 4.805227 (-3.970021) | 0.166373 / 6.500664 (-6.334291) | 0.063996 / 0.075469 (-0.011473) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.212936 / 1.841788 (-0.628851) | 15.067370 / 8.074308 (6.993062) | 14.165214 / 10.191392 (3.973822) | 0.157041 / 0.680424 (-0.523383) | 0.029612 / 0.534201 (-0.504589) | 0.440006 / 0.579283 (-0.139277) | 0.439165 / 0.434364 (0.004801) | 0.524970 / 0.540337 (-0.015368) | 0.608305 / 1.386936 (-0.778631) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007433 / 0.011353 (-0.003920) | 0.005310 / 0.011008 (-0.005698) | 0.097194 / 0.038508 (0.058686) | 0.033265 / 0.023109 (0.010156) | 0.369908 / 0.275898 (0.094010) | 0.411508 / 0.323480 (0.088028) | 0.006000 / 0.007986 (-0.001986) | 0.005647 / 0.004328 (0.001319) | 0.075597 / 0.004250 (0.071347) | 0.051951 / 0.037052 (0.014899) | 0.378469 / 0.258489 (0.119980) | 0.424849 / 0.293841 (0.131008) | 0.036700 / 0.128546 (-0.091846) | 0.012535 / 0.075646 (-0.063111) | 0.333197 / 0.419271 (-0.086074) | 0.049046 / 0.043533 (0.005513) | 0.381845 / 0.255139 (0.126706) | 0.397846 / 0.283200 (0.114646) | 0.109152 / 0.141683 (-0.032531) | 1.432407 / 1.452155 (-0.019748) | 1.555509 / 1.492716 (0.062793) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.265433 / 0.018006 (0.247427) | 0.559590 / 0.000490 (0.559100) | 0.000492 / 0.000200 (0.000292) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029748 / 0.037411 (-0.007663) | 0.110490 / 0.014526 (0.095964) | 0.124125 / 0.176557 (-0.052431) | 0.160089 / 0.737135 (-0.577046) | 0.128755 / 0.296338 (-0.167583) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.443976 / 0.215209 (0.228767) | 4.416960 / 2.077655 (2.339305) | 2.239408 / 1.504120 (0.735288) | 2.055341 / 1.541195 (0.514147) | 2.093479 / 1.468490 (0.624988) | 0.688846 / 4.584777 (-3.895930) | 3.797526 / 3.745712 (0.051814) | 3.578137 / 5.269862 (-1.691725) | 2.015073 / 4.565676 (-2.550603) | 0.084126 / 0.424275 (-0.340149) | 0.012581 / 0.007607 (0.004974) | 0.549774 / 0.226044 (0.323730) | 5.492185 / 2.268929 (3.223256) | 2.739851 / 55.444624 (-52.704773) | 2.371091 / 6.876477 (-4.505386) | 2.400178 / 2.142072 (0.258105) | 0.831227 / 4.805227 (-3.974001) | 0.166156 / 6.500664 (-6.334508) | 0.063901 / 0.075469 (-0.011568) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.236127 / 1.841788 (-0.605660) | 15.236884 / 8.074308 (7.162576) | 14.434351 / 10.191392 (4.242959) | 0.163725 / 0.680424 (-0.516699) | 0.018009 / 0.534201 (-0.516192) | 0.430612 / 0.579283 (-0.148671) | 0.420426 / 0.434364 (-0.013938) | 0.497062 / 0.540337 (-0.043275) | 0.590924 / 1.386936 (-0.796012) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#63377dc53fc94f19bc2b0bbfb118a90d01a1d020 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010862 / 0.011353 (-0.000491) | 0.005741 / 0.011008 (-0.005267) | 0.111911 / 0.038508 (0.073403) | 0.042316 / 0.023109 (0.019207) | 0.347665 / 0.275898 (0.071767) | 0.377335 / 0.323480 (0.053855) | 0.009400 / 0.007986 (0.001414) | 0.006814 / 0.004328 (0.002486) | 0.087194 / 0.004250 (0.082943) | 0.046878 / 0.037052 (0.009826) | 0.348920 / 0.258489 (0.090430) | 0.393347 / 0.293841 (0.099507) | 0.044212 / 0.128546 (-0.084334) | 0.013925 / 0.075646 (-0.061722) | 0.386076 / 0.419271 (-0.033195) | 0.054195 / 0.043533 (0.010662) | 0.358486 / 0.255139 (0.103347) | 0.360132 / 0.283200 (0.076932) | 0.109783 / 0.141683 (-0.031900) | 1.679875 / 1.452155 (0.227720) | 1.794379 / 1.492716 (0.301663) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221927 / 0.018006 (0.203921) | 0.487352 / 0.000490 (0.486863) | 0.003494 / 0.000200 (0.003294) | 0.000091 / 0.000054 (0.000037) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032201 / 0.037411 (-0.005210) | 0.125861 / 0.014526 (0.111335) | 0.133905 / 0.176557 (-0.042652) | 0.183319 / 0.737135 (-0.553817) | 0.142646 / 0.296338 (-0.153693) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442720 / 0.215209 (0.227511) | 4.602619 / 2.077655 (2.524964) | 2.050214 / 1.504120 (0.546094) | 1.837968 / 1.541195 (0.296773) | 1.961199 / 1.468490 (0.492709) | 0.793426 / 4.584777 (-3.791351) | 4.472078 / 3.745712 (0.726366) | 2.364903 / 5.269862 (-2.904959) | 1.515076 / 4.565676 (-3.050600) | 0.103087 / 0.424275 (-0.321188) | 0.014676 / 0.007607 (0.007068) | 0.576887 / 0.226044 (0.350843) | 5.785525 / 2.268929 (3.516596) | 2.765231 / 55.444624 (-52.679393) | 2.365364 / 6.876477 (-4.511113) | 2.448335 / 2.142072 (0.306262) | 0.978726 / 4.805227 (-3.826501) | 0.191417 / 6.500664 (-6.309247) | 0.073295 / 0.075469 (-0.002174) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.378995 / 1.841788 (-0.462792) | 16.583655 / 8.074308 (8.509347) | 14.944731 / 10.191392 (4.753339) | 0.168916 / 0.680424 (-0.511508) | 0.035272 / 0.534201 (-0.498928) | 0.489729 / 0.579283 (-0.089554) | 0.496231 / 0.434364 (0.061867) | 0.576218 / 0.540337 (0.035880) | 0.673558 / 1.386936 (-0.713378) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008104 / 0.011353 (-0.003249) | 0.005179 / 0.011008 (-0.005829) | 0.103908 / 0.038508 (0.065400) | 0.034661 / 0.023109 (0.011552) | 0.398119 / 0.275898 (0.122221) | 0.411765 / 0.323480 (0.088286) | 0.006016 / 0.007986 (-0.001970) | 0.005637 / 0.004328 (0.001308) | 0.073662 / 0.004250 (0.069412) | 0.052411 / 0.037052 (0.015359) | 0.391826 / 0.258489 (0.133337) | 0.455217 / 0.293841 (0.161376) | 0.039924 / 0.128546 (-0.088622) | 0.013390 / 0.075646 (-0.062256) | 0.390319 / 0.419271 (-0.028953) | 0.054312 / 0.043533 (0.010779) | 0.395492 / 0.255139 (0.140353) | 0.446324 / 0.283200 (0.163124) | 0.116461 / 0.141683 (-0.025222) | 1.502163 / 1.452155 (0.050008) | 1.731541 / 1.492716 (0.238825) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.282612 / 0.018006 (0.264606) | 0.503170 / 0.000490 (0.502680) | 0.005307 / 0.000200 (0.005107) | 0.000100 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029071 / 0.037411 (-0.008340) | 0.123831 / 0.014526 (0.109306) | 0.133284 / 0.176557 (-0.043272) | 0.172029 / 0.737135 (-0.565106) | 0.140639 / 0.296338 (-0.155700) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.496812 / 0.215209 (0.281603) | 4.958915 / 2.077655 (2.881260) | 2.559188 / 1.504120 (1.055068) | 2.262434 / 1.541195 (0.721240) | 2.371126 / 1.468490 (0.902636) | 0.780150 / 4.584777 (-3.804627) | 4.417060 / 3.745712 (0.671348) | 2.401909 / 5.269862 (-2.867953) | 1.527943 / 4.565676 (-3.037733) | 0.100074 / 0.424275 (-0.324201) | 0.014853 / 0.007607 (0.007246) | 0.630192 / 0.226044 (0.404147) | 6.409685 / 2.268929 (4.140757) | 3.224718 / 55.444624 (-52.219906) | 2.795301 / 6.876477 (-4.081176) | 2.927205 / 2.142072 (0.785132) | 0.989537 / 4.805227 (-3.815690) | 0.199775 / 6.500664 (-6.300889) | 0.076725 / 0.075469 (0.001256) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.433504 / 1.841788 (-0.408284) | 17.117134 / 8.074308 (9.042825) | 16.606367 / 10.191392 (6.414975) | 0.165653 / 0.680424 (-0.514771) | 0.020818 / 0.534201 (-0.513383) | 0.496782 / 0.579283 (-0.082501) | 0.473895 / 0.434364 (0.039531) | 0.576796 / 0.540337 (0.036459) | 0.703272 / 1.386936 (-0.683664) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6627fb6f2639ac3b1435b3386545612db038a42e \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012501 / 0.011353 (0.001148) | 0.006437 / 0.011008 (-0.004571) | 0.129387 / 0.038508 (0.090878) | 0.035847 / 0.023109 (0.012737) | 0.339243 / 0.275898 (0.063345) | 0.423274 / 0.323480 (0.099794) | 0.008489 / 0.007986 (0.000503) | 0.004596 / 0.004328 (0.000268) | 0.103322 / 0.004250 (0.099071) | 0.043570 / 0.037052 (0.006517) | 0.357004 / 0.258489 (0.098515) | 0.426511 / 0.293841 (0.132670) | 0.062923 / 0.128546 (-0.065623) | 0.021168 / 0.075646 (-0.054478) | 0.387485 / 0.419271 (-0.031787) | 0.059745 / 0.043533 (0.016213) | 0.341101 / 0.255139 (0.085962) | 0.365530 / 0.283200 (0.082331) | 0.102110 / 0.141683 (-0.039573) | 1.729408 / 1.452155 (0.277253) | 1.759510 / 1.492716 (0.266794) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.187065 / 0.018006 (0.169059) | 0.499685 / 0.000490 (0.499196) | 0.004677 / 0.000200 (0.004478) | 0.000120 / 0.000054 (0.000065) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025827 / 0.037411 (-0.011584) | 0.113780 / 0.014526 (0.099255) | 0.146060 / 0.176557 (-0.030496) | 0.158169 / 0.737135 (-0.578966) | 0.136133 / 0.296338 (-0.160206) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.608421 / 0.215209 (0.393211) | 5.907395 / 2.077655 (3.829741) | 2.193140 / 1.504120 (0.689021) | 1.870315 / 1.541195 (0.329120) | 1.885660 / 1.468490 (0.417170) | 1.227637 / 4.584777 (-3.357140) | 5.319242 / 3.745712 (1.573530) | 2.991595 / 5.269862 (-2.278267) | 2.043906 / 4.565676 (-2.521771) | 0.151829 / 0.424275 (-0.272447) | 0.018974 / 0.007607 (0.011367) | 0.778035 / 0.226044 (0.551991) | 7.705796 / 2.268929 (5.436868) | 2.990156 / 55.444624 (-52.454468) | 2.372643 / 6.876477 (-4.503834) | 2.240847 / 2.142072 (0.098775) | 1.407209 / 4.805227 (-3.398018) | 0.242336 / 6.500664 (-6.258328) | 0.069847 / 0.075469 (-0.005622) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.445817 / 1.841788 (-0.395970) | 16.059632 / 8.074308 (7.985324) | 18.541971 / 10.191392 (8.350579) | 0.237830 / 0.680424 (-0.442594) | 0.041060 / 0.534201 (-0.493141) | 0.496765 / 0.579283 (-0.082518) | 0.609666 / 0.434364 (0.175302) | 0.584614 / 0.540337 (0.044277) | 0.680858 / 1.386936 (-0.706078) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009037 / 0.011353 (-0.002315) | 0.005961 / 0.011008 (-0.005047) | 0.127204 / 0.038508 (0.088696) | 0.030664 / 0.023109 (0.007555) | 0.417968 / 0.275898 (0.142070) | 0.515316 / 0.323480 (0.191836) | 0.006549 / 0.007986 (-0.001436) | 0.004456 / 0.004328 (0.000128) | 0.083715 / 0.004250 (0.079464) | 0.043701 / 0.037052 (0.006648) | 0.521153 / 0.258489 (0.262664) | 0.565456 / 0.293841 (0.271615) | 0.055298 / 0.128546 (-0.073248) | 0.018103 / 0.075646 (-0.057544) | 0.403990 / 0.419271 (-0.015282) | 0.060162 / 0.043533 (0.016629) | 0.486383 / 0.255139 (0.231244) | 0.470342 / 0.283200 (0.187142) | 0.102269 / 0.141683 (-0.039414) | 1.643241 / 1.452155 (0.191086) | 1.763850 / 1.492716 (0.271133) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.185602 / 0.018006 (0.167596) | 0.489163 / 0.000490 (0.488674) | 0.000426 / 0.000200 (0.000226) | 0.000086 / 0.000054 (0.000031) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026689 / 0.037411 (-0.010722) | 0.111520 / 0.014526 (0.096994) | 0.119838 / 0.176557 (-0.056719) | 0.153698 / 0.737135 (-0.583437) | 0.130969 / 0.296338 (-0.165370) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.616170 / 0.215209 (0.400961) | 6.219702 / 2.077655 (4.142048) | 2.533554 / 1.504120 (1.029434) | 2.256009 / 1.541195 (0.714815) | 2.217617 / 1.468490 (0.749127) | 1.156920 / 4.584777 (-3.427857) | 5.175759 / 3.745712 (1.430046) | 2.848419 / 5.269862 (-2.421442) | 1.943864 / 4.565676 (-2.621813) | 0.138342 / 0.424275 (-0.285933) | 0.013140 / 0.007607 (0.005533) | 0.782105 / 0.226044 (0.556060) | 7.602003 / 2.268929 (5.333075) | 3.629577 / 55.444624 (-51.815047) | 2.713849 / 6.876477 (-4.162628) | 2.663888 / 2.142072 (0.521816) | 1.418381 / 4.805227 (-3.386847) | 0.250649 / 6.500664 (-6.250015) | 0.073564 / 0.075469 (-0.001905) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.483739 / 1.841788 (-0.358049) | 16.386204 / 8.074308 (8.311896) | 20.685262 / 10.191392 (10.493870) | 0.237084 / 0.680424 (-0.443340) | 0.039097 / 0.534201 (-0.495104) | 0.525399 / 0.579283 (-0.053884) | 0.587541 / 0.434364 (0.153177) | 0.566605 / 0.540337 (0.026268) | 0.677384 / 1.386936 (-0.709552) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b3b67d42733dabb15ce4997c8324f8e047ce12bd \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.014050 / 0.011353 (0.002697) | 0.005981 / 0.011008 (-0.005028) | 0.126307 / 0.038508 (0.087799) | 0.035400 / 0.023109 (0.012290) | 0.387821 / 0.275898 (0.111923) | 0.462785 / 0.323480 (0.139305) | 0.009427 / 0.007986 (0.001441) | 0.005081 / 0.004328 (0.000753) | 0.097273 / 0.004250 (0.093023) | 0.044699 / 0.037052 (0.007647) | 0.396025 / 0.258489 (0.137536) | 0.450137 / 0.293841 (0.156296) | 0.055660 / 0.128546 (-0.072886) | 0.022710 / 0.075646 (-0.052936) | 0.443784 / 0.419271 (0.024513) | 0.065756 / 0.043533 (0.022223) | 0.379350 / 0.255139 (0.124211) | 0.396783 / 0.283200 (0.113583) | 0.114088 / 0.141683 (-0.027594) | 1.856834 / 1.452155 (0.404679) | 1.839292 / 1.492716 (0.346576) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.206748 / 0.018006 (0.188742) | 0.517711 / 0.000490 (0.517222) | 0.008302 / 0.000200 (0.008102) | 0.000494 / 0.000054 (0.000440) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033987 / 0.037411 (-0.003424) | 0.131067 / 0.014526 (0.116542) | 0.155539 / 0.176557 (-0.021018) | 0.188598 / 0.737135 (-0.548537) | 0.156000 / 0.296338 (-0.140338) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.641413 / 0.215209 (0.426204) | 6.156680 / 2.077655 (4.079025) | 2.428858 / 1.504120 (0.924738) | 2.086195 / 1.541195 (0.545000) | 2.109604 / 1.468490 (0.641114) | 1.209426 / 4.584777 (-3.375351) | 5.139398 / 3.745712 (1.393686) | 3.041337 / 5.269862 (-2.228524) | 2.294809 / 4.565676 (-2.270868) | 0.142206 / 0.424275 (-0.282069) | 0.015167 / 0.007607 (0.007560) | 0.816269 / 0.226044 (0.590224) | 7.953931 / 2.268929 (5.685002) | 3.201793 / 55.444624 (-52.242832) | 2.448620 / 6.876477 (-4.427857) | 2.521670 / 2.142072 (0.379597) | 1.484094 / 4.805227 (-3.321133) | 0.255069 / 6.500664 (-6.245595) | 0.076031 / 0.075469 (0.000561) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.590951 / 1.841788 (-0.250836) | 17.661353 / 8.074308 (9.587045) | 21.097837 / 10.191392 (10.906445) | 0.229265 / 0.680424 (-0.451159) | 0.042618 / 0.534201 (-0.491583) | 0.535942 / 0.579283 (-0.043342) | 0.590195 / 0.434364 (0.155831) | 0.623985 / 0.540337 (0.083648) | 0.742637 / 1.386936 (-0.644299) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009264 / 0.011353 (-0.002088) | 0.008798 / 0.011008 (-0.002210) | 0.122208 / 0.038508 (0.083700) | 0.034835 / 0.023109 (0.011726) | 0.462618 / 0.275898 (0.186720) | 0.505632 / 0.323480 (0.182152) | 0.006320 / 0.007986 (-0.001665) | 0.005383 / 0.004328 (0.001054) | 0.091229 / 0.004250 (0.086979) | 0.045828 / 0.037052 (0.008775) | 0.477507 / 0.258489 (0.219018) | 0.539616 / 0.293841 (0.245775) | 0.061913 / 0.128546 (-0.066633) | 0.019390 / 0.075646 (-0.056257) | 0.420016 / 0.419271 (0.000745) | 0.065958 / 0.043533 (0.022425) | 0.468603 / 0.255139 (0.213464) | 0.486246 / 0.283200 (0.203046) | 0.107924 / 0.141683 (-0.033759) | 1.843614 / 1.452155 (0.391459) | 1.988159 / 1.492716 (0.495442) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.247043 / 0.018006 (0.229037) | 0.515580 / 0.000490 (0.515090) | 0.005630 / 0.000200 (0.005430) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030674 / 0.037411 (-0.006737) | 0.130783 / 0.014526 (0.116258) | 0.147669 / 0.176557 (-0.028888) | 0.175656 / 0.737135 (-0.561479) | 0.138317 / 0.296338 (-0.158022) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.727119 / 0.215209 (0.511909) | 6.848208 / 2.077655 (4.770553) | 3.121418 / 1.504120 (1.617298) | 2.701799 / 1.541195 (1.160604) | 2.749179 / 1.468490 (1.280689) | 1.312058 / 4.584777 (-3.272719) | 5.400562 / 3.745712 (1.654850) | 3.058142 / 5.269862 (-2.211719) | 2.076361 / 4.565676 (-2.489316) | 0.142169 / 0.424275 (-0.282106) | 0.014340 / 0.007607 (0.006733) | 0.853534 / 0.226044 (0.627490) | 8.734484 / 2.268929 (6.465556) | 3.968130 / 55.444624 (-51.476495) | 3.118032 / 6.876477 (-3.758444) | 3.078757 / 2.142072 (0.936684) | 1.460694 / 4.805227 (-3.344533) | 0.261858 / 6.500664 (-6.238806) | 0.081089 / 0.075469 (0.005620) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.611473 / 1.841788 (-0.230315) | 17.660545 / 8.074308 (9.586237) | 20.526023 / 10.191392 (10.334631) | 0.223320 / 0.680424 (-0.457103) | 0.027939 / 0.534201 (-0.506261) | 0.542704 / 0.579283 (-0.036579) | 0.563826 / 0.434364 (0.129462) | 0.639936 / 0.540337 (0.099599) | 0.755974 / 1.386936 (-0.630962) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#942141e13ba2be853e2231d9edbfa38044e2632d \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008776 / 0.011353 (-0.002577) | 0.004532 / 0.011008 (-0.006476) | 0.100373 / 0.038508 (0.061865) | 0.029706 / 0.023109 (0.006597) | 0.304374 / 0.275898 (0.028476) | 0.337223 / 0.323480 (0.013743) | 0.007021 / 0.007986 (-0.000965) | 0.003420 / 0.004328 (-0.000908) | 0.077754 / 0.004250 (0.073504) | 0.034411 / 0.037052 (-0.002642) | 0.302926 / 0.258489 (0.044437) | 0.342654 / 0.293841 (0.048813) | 0.034528 / 0.128546 (-0.094018) | 0.011926 / 0.075646 (-0.063721) | 0.322971 / 0.419271 (-0.096301) | 0.041384 / 0.043533 (-0.002149) | 0.306433 / 0.255139 (0.051294) | 0.332293 / 0.283200 (0.049093) | 0.084972 / 0.141683 (-0.056711) | 1.493426 / 1.452155 (0.041271) | 1.570446 / 1.492716 (0.077729) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.189090 / 0.018006 (0.171084) | 0.433904 / 0.000490 (0.433414) | 0.001323 / 0.000200 (0.001124) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023531 / 0.037411 (-0.013880) | 0.097774 / 0.014526 (0.083248) | 0.106383 / 0.176557 (-0.070174) | 0.139158 / 0.737135 (-0.597977) | 0.109443 / 0.296338 (-0.186896) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.419078 / 0.215209 (0.203869) | 4.182657 / 2.077655 (2.105002) | 1.887276 / 1.504120 (0.383156) | 1.679542 / 1.541195 (0.138347) | 1.718035 / 1.468490 (0.249545) | 0.692628 / 4.584777 (-3.892149) | 3.361354 / 3.745712 (-0.384358) | 1.928583 / 5.269862 (-3.341278) | 1.317291 / 4.565676 (-3.248386) | 0.081799 / 0.424275 (-0.342476) | 0.012318 / 0.007607 (0.004711) | 0.525927 / 0.226044 (0.299883) | 5.285905 / 2.268929 (3.016977) | 2.317524 / 55.444624 (-53.127100) | 1.966478 / 6.876477 (-4.909998) | 2.054869 / 2.142072 (-0.087204) | 0.807579 / 4.805227 (-3.997649) | 0.149854 / 6.500664 (-6.350810) | 0.065285 / 0.075469 (-0.010184) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180516 / 1.841788 (-0.661271) | 13.889734 / 8.074308 (5.815426) | 14.076163 / 10.191392 (3.884771) | 0.156276 / 0.680424 (-0.524148) | 0.029187 / 0.534201 (-0.505013) | 0.403859 / 0.579283 (-0.175424) | 0.404998 / 0.434364 (-0.029366) | 0.471467 / 0.540337 (-0.068871) | 0.564526 / 1.386936 (-0.822410) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006739 / 0.011353 (-0.004614) | 0.004644 / 0.011008 (-0.006364) | 0.097326 / 0.038508 (0.058818) | 0.027728 / 0.023109 (0.004619) | 0.413537 / 0.275898 (0.137639) | 0.452012 / 0.323480 (0.128532) | 0.005346 / 0.007986 (-0.002639) | 0.003338 / 0.004328 (-0.000991) | 0.075670 / 0.004250 (0.071420) | 0.038825 / 0.037052 (0.001772) | 0.415612 / 0.258489 (0.157123) | 0.454680 / 0.293841 (0.160839) | 0.031866 / 0.128546 (-0.096680) | 0.011616 / 0.075646 (-0.064031) | 0.319527 / 0.419271 (-0.099745) | 0.041283 / 0.043533 (-0.002250) | 0.412046 / 0.255139 (0.156907) | 0.435244 / 0.283200 (0.152044) | 0.088400 / 0.141683 (-0.053283) | 1.478125 / 1.452155 (0.025970) | 1.553677 / 1.492716 (0.060960) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229919 / 0.018006 (0.211913) | 0.415446 / 0.000490 (0.414956) | 0.000386 / 0.000200 (0.000186) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024365 / 0.037411 (-0.013046) | 0.098225 / 0.014526 (0.083699) | 0.106674 / 0.176557 (-0.069883) | 0.144755 / 0.737135 (-0.592380) | 0.109221 / 0.296338 (-0.187117) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457665 / 0.215209 (0.242456) | 4.597849 / 2.077655 (2.520195) | 2.171275 / 1.504120 (0.667155) | 1.945547 / 1.541195 (0.404352) | 2.014043 / 1.468490 (0.545553) | 0.699732 / 4.584777 (-3.885045) | 3.420711 / 3.745712 (-0.325001) | 3.298702 / 5.269862 (-1.971159) | 1.390324 / 4.565676 (-3.175353) | 0.082668 / 0.424275 (-0.341607) | 0.012556 / 0.007607 (0.004949) | 0.550406 / 0.226044 (0.324361) | 5.501060 / 2.268929 (3.232132) | 2.659841 / 55.444624 (-52.784783) | 2.243443 / 6.876477 (-4.633034) | 2.266006 / 2.142072 (0.123934) | 0.806295 / 4.805227 (-3.998933) | 0.151399 / 6.500664 (-6.349265) | 0.067048 / 0.075469 (-0.008421) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.291404 / 1.841788 (-0.550384) | 14.164728 / 8.074308 (6.090419) | 13.980219 / 10.191392 (3.788827) | 0.140599 / 0.680424 (-0.539824) | 0.016880 / 0.534201 (-0.517321) | 0.379073 / 0.579283 (-0.200210) | 0.385770 / 0.434364 (-0.048594) | 0.442516 / 0.540337 (-0.097822) | 0.533569 / 1.386936 (-0.853367) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#29fa15df972353f51fc434cf8eceb574b60a415f \"CML watermark\")\n", "Tests seem to be failing for unrelated reasons.", "Tests are failing because of a bug on the Hub side - this is being fixed :)\r\n\r\nlmk once the TF documentation page is updated and we can merge !", "@lhoestq Docs updated!" ]
2022-12-19T19:40:27
2023-01-25T16:28:44
2023-01-25T16:21:40
MEMBER
null
Hey all! Here's a first draft of the PR to add a multiprocessing implementation for `to_tf_dataset()`. It worked in some quick testing for me, but obviously I need to do some much more rigorous testing/benchmarking, and add some proper library tests. The core idea is that we do everything using `multiprocessing` and `numpy`, and just wrap a `tf.data.Dataset` around the output. We could also rewrite the existing single-threaded implementation based on this code, which might simplify it a bit. Checklist: - [X] Add initial draft - [x] Check that it works regardless of whether the `collate_fn` or dataset returns `tf` or `np` arrays - [x] Check that it works with `tf.string` return data - [x] Check indices are correctly reshuffled each epoch - [x] Make sure workers don't try to initialize a GPU device!! - [x] Check `fit()` with multiple epochs works fine and that the progress bar is correct - [x] Check there are no memory leaks or zombie processes - [x] Benchmark performance - [x] Tweak params for dataset inference - can we speed things up there a bit? - [x] Add tests to the library - [x] Add a PR to `transformers` to expose the `num_workers` argument via `prepare_tf_dataset` (will merge after this one is released) - [x] Stop TF console spam!! (almost) - [x] Add a method for creating SHM that doesn't crash if it was left and still linked - [x] Add a barrier for Py <= 3.7 because it doesn't support SharedMemory - [x] Support string dtypes by converting them into fixed-width character arrays
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5377/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5377/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5377", "html_url": "https://github.com/huggingface/datasets/pull/5377", "diff_url": "https://github.com/huggingface/datasets/pull/5377.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5377.patch", "merged_at": "2023-01-25T16:21:40" }
true
https://api.github.com/repos/huggingface/datasets/issues/5376
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5376/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5376/comments
https://api.github.com/repos/huggingface/datasets/issues/5376/events
https://github.com/huggingface/datasets/pull/5376
1,502,730,559
PR_kwDODunzps5FxWkM
5,376
set dev version
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5376). All of your documentation changes will be reflected on that endpoint." ]
2022-12-19T10:56:56
2022-12-19T11:01:55
2022-12-19T10:57:16
MEMBER
null
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5376/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5376/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5376", "html_url": "https://github.com/huggingface/datasets/pull/5376", "diff_url": "https://github.com/huggingface/datasets/pull/5376.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5376.patch", "merged_at": "2022-12-19T10:57:16" }
true
https://api.github.com/repos/huggingface/datasets/issues/5375
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5375/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5375/comments
https://api.github.com/repos/huggingface/datasets/issues/5375/events
https://github.com/huggingface/datasets/pull/5375
1,502,720,404
PR_kwDODunzps5FxUbG
5,375
Release: 2.8.0
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-12-19T10:48:26
2022-12-19T10:55:43
2022-12-19T10:53:15
MEMBER
null
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5375/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5375/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5375", "html_url": "https://github.com/huggingface/datasets/pull/5375", "diff_url": "https://github.com/huggingface/datasets/pull/5375.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5375.patch", "merged_at": "2022-12-19T10:53:15" }
true
https://api.github.com/repos/huggingface/datasets/issues/5374
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5374/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5374/comments
https://api.github.com/repos/huggingface/datasets/issues/5374/events
https://github.com/huggingface/datasets/issues/5374
1,501,872,945
I_kwDODunzps5ZhMMx
5,374
Using too many threads results in: Got disconnected from remote data host. Retrying in 5sec
{ "login": "Muennighoff", "id": 62820084, "node_id": "MDQ6VXNlcjYyODIwMDg0", "avatar_url": "https://avatars.githubusercontent.com/u/62820084?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Muennighoff", "html_url": "https://github.com/Muennighoff", "followers_url": "https://api.github.com/users/Muennighoff/followers", "following_url": "https://api.github.com/users/Muennighoff/following{/other_user}", "gists_url": "https://api.github.com/users/Muennighoff/gists{/gist_id}", "starred_url": "https://api.github.com/users/Muennighoff/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Muennighoff/subscriptions", "organizations_url": "https://api.github.com/users/Muennighoff/orgs", "repos_url": "https://api.github.com/users/Muennighoff/repos", "events_url": "https://api.github.com/users/Muennighoff/events{/privacy}", "received_events_url": "https://api.github.com/users/Muennighoff/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The data files are hosted on HF at https://huggingface.co/datasets/allenai/c4/tree/main\r\n\r\nYou have 200 runs streaming the same files in parallel. So this is probably a Hub limitation. Maybe rate limiting ? cc @julien-c \r\n\r\nMaybe you can also try to reduce the number of HTTP requests by increasing the block size of each request. This can be done by increasing `DEFAULT_BLOCK_SIZE` in `fsspec.implementations.http`. Default is `5 * 2**20` (5MiB)\r\n\r\nAnyway maybe it's just better to save the dataset locally in that case ?", "you don't get an HTTP error code or something in your stack trace? Kinda hard to debug with this info", "You could try to re-run using this `datasets` branch: [raise-err-when-disconnect](https://github.com/huggingface/datasets/compare/raise-err-when-disconnect?expand=1)\r\nIt should raise the fsspec error", "The weird thing is that I already have it saved locally & it seems to indeed be using the cached one 🧐 ; I'm also using offline mode, so I don't think it has something to do with the Hub.\r\n```\r\nWARNING:datasets.load:Using the latest cached version of the module from /users/muennighoff/.cache/huggingface/modules/datasets_modules/datasets/c4/df532b158939272d032cc63ef19cd5b83e9b4d00c922b833e4cb18b2e9869b01 (last modified on Mon Dec 12 10:45:02 2022) since it couldn't be found locally at c4.\r\n```\r\n\r\n", "No, you passed `streaming=True` so it streams the data from the Hub.\r\nThis message just shows that you use the cached version of the `c4` **module**, aka the python script that is run to generate the examples from the raw data files.\r\n\r\nMaybe the offline mode should also disable `fsspec`/`aiohttp` HTTP calls in `datasets` and not just the `requests` ones.", "> This message just shows that you use the cached version of the c4 module\r\n\r\nAh my bad you're right about the module, but it's also using the downloaded & cached c4 dataset. There's no internet during the runs so it wouldn't work otherwise", "You don't have internet, therefore you get an error while trying to stream ;)" ]
2022-12-18T11:38:58
2023-07-24T15:23:07
2023-07-24T15:23:07
CONTRIBUTOR
null
### Describe the bug `streaming_download_manager` seems to disconnect if too many runs access the same underlying dataset 🧐 The code works fine for me if I have ~100 runs in parallel, but disconnects once scaling to 200. Possibly related: - https://github.com/huggingface/datasets/pull/3100 - https://github.com/huggingface/datasets/pull/3050 ### Steps to reproduce the bug Running ```python c4 = datasets.load_dataset("c4", "en", split="train", streaming=True).skip(args.start).take(args.end-args.start) df = pd.DataFrame(c4, index=None) ``` with different start & end arguments on 200 CPUs in parallel yields: ``` WARNING:datasets.load:Using the latest cached version of the module from /users/muennighoff/.cache/huggingface/modules/datasets_modules/datasets/c4/df532b158939272d032cc63ef19cd5b83e9b4d00c922b833e4cb18b2e9869b01 (last modified on Mon Dec 12 10:45:02 2022) since it couldn't be found locally at c4. WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [1/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [2/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [3/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [4/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [5/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [6/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [7/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [8/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [9/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [10/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [11/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [12/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [13/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [14/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [15/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [16/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [17/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [18/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [19/20] WARNING:datasets.download.streaming_download_manager:Got disconnected from remote data host. Retrying in 5sec [20/20] ╭───────────────────── Traceback (most recent call last) ──────────────────────╮ │ /pfs/lustrep4/scratch/project_462000119/muennighoff/dec-2022-tasky/inference │ │ _c4.py:68 in <module> │ │ │ │ 65 │ model.eval() │ │ 66 │ │ │ 67 │ c4 = datasets.load_dataset("c4", "en", split="train", streaming=Tru │ │ ❱ 68 │ df = pd.DataFrame(c4, index=None) │ │ 69 │ texts = df["text"].to_list() │ │ 70 │ preds = batch_inference(texts, batch_size=args.batch_size) │ │ 71 │ │ │ │ /opt/cray/pe/python/3.9.12.1/lib/python3.9/site-packages/pandas/core/frame.p │ │ y:684 in __init__ │ │ │ │ 681 │ │ # For data is list-like, or Iterable (will consume into list │ │ 682 │ │ elif is_list_like(data): │ │ 683 │ │ │ if not isinstance(data, (abc.Sequence, ExtensionArray)): │ │ ❱ 684 │ │ │ │ data = list(data) │ │ 685 │ │ │ if len(data) > 0: │ │ 686 │ │ │ │ if is_dataclass(data[0]): │ │ 687 │ │ │ │ │ data = dataclasses_to_dicts(data) │ │ │ │ /pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/venv/ │ │ lib/python3.9/site-packages/datasets/iterable_dataset.py:751 in __iter__ │ │ │ │ 748 │ │ yield from ex_iterable.shard_data_sources(shard_idx) │ │ 749 │ │ │ 750 │ def __iter__(self): │ │ ❱ 751 │ │ for key, example in self._iter(): │ │ 752 │ │ │ if self.features: │ │ 753 │ │ │ │ # `IterableDataset` automatically fills missing colum │ │ 754 │ │ │ │ # This is done with `_apply_feature_types`. │ │ │ │ /pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/venv/ │ │ lib/python3.9/site-packages/datasets/iterable_dataset.py:741 in _iter │ │ │ │ 738 │ │ │ ex_iterable = self._ex_iterable.shuffle_data_sources(self │ │ 739 │ │ else: │ │ 740 │ │ │ ex_iterable = self._ex_iterable │ │ ❱ 741 │ │ yield from ex_iterable │ │ 742 │ │ │ 743 │ def _iter_shard(self, shard_idx: int): │ │ 744 │ │ if self._shuffling: │ │ │ │ /pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/venv/ │ │ lib/python3.9/site-packages/datasets/iterable_dataset.py:617 in __iter__ │ │ │ │ 614 │ │ self.n = n │ │ 615 │ │ │ 616 │ def __iter__(self): │ │ ❱ 617 │ │ yield from islice(self.ex_iterable, self.n) │ │ 618 │ │ │ 619 │ def shuffle_data_sources(self, generator: np.random.Generator) -> │ │ 620 │ │ """Doesn't shuffle the wrapped examples iterable since it wou │ │ │ │ /pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/venv/ │ │ lib/python3.9/site-packages/datasets/iterable_dataset.py:594 in __iter__ │ │ │ │ 591 │ │ │ 592 │ def __iter__(self): │ │ 593 │ │ #ex_iterator = iter(self.ex_iterable) │ │ ❱ 594 │ │ yield from islice(self.ex_iterable, self.n, None) │ │ 595 │ │ #for _ in range(self.n): │ │ 596 │ │ # next(ex_iterator) │ │ 597 │ │ #yield from islice(ex_iterator, self.n, None) │ │ │ │ /pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/venv/ │ │ lib/python3.9/site-packages/datasets/iterable_dataset.py:106 in __iter__ │ │ │ │ 103 │ │ self.kwargs = kwargs │ │ 104 │ │ │ 105 │ def __iter__(self): │ │ ❱ 106 │ │ yield from self.generate_examples_fn(**self.kwargs) │ │ 107 │ │ │ 108 │ def shuffle_data_sources(self, generator: np.random.Generator) -> │ │ 109 │ │ return ShardShuffledExamplesIterable(self.generate_examples_f │ │ │ │ /users/muennighoff/.cache/huggingface/modules/datasets_modules/datasets/c4/d │ │ f532b158939272d032cc63ef19cd5b83e9b4d00c922b833e4cb18b2e9869b01/c4.py:89 in │ │ _generate_examples │ │ │ │ 86 │ │ for filepath in filepaths: │ │ 87 │ │ │ logger.info("generating examples from = %s", filepath) │ │ 88 │ │ │ with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8" │ │ ❱ 89 │ │ │ │ for line in f: │ │ 90 │ │ │ │ │ if line: │ │ 91 │ │ │ │ │ │ example = json.loads(line) │ │ 92 │ │ │ │ │ │ yield id_, example │ │ │ │ /opt/cray/pe/python/3.9.12.1/lib/python3.9/gzip.py:313 in read1 │ │ │ │ 310 │ │ │ │ 311 │ │ if size < 0: │ │ 312 │ │ │ size = io.DEFAULT_BUFFER_SIZE │ │ ❱ 313 │ │ return self._buffer.read1(size) │ │ 314 │ │ │ 315 │ def peek(self, n): │ │ 316 │ │ self._check_not_closed() │ │ │ │ /opt/cray/pe/python/3.9.12.1/lib/python3.9/_compression.py:68 in readinto │ │ │ │ 65 │ │ │ 66 │ def readinto(self, b): │ │ 67 │ │ with memoryview(b) as view, view.cast("B") as byte_view: │ │ ❱ 68 │ │ │ data = self.read(len(byte_view)) │ │ 69 │ │ │ byte_view[:len(data)] = data │ │ 70 │ │ return len(data) │ │ 71 │ │ │ │ /opt/cray/pe/python/3.9.12.1/lib/python3.9/gzip.py:493 in read │ │ │ │ 490 │ │ │ │ self._new_member = False │ │ 491 │ │ │ │ │ 492 │ │ │ # Read a chunk of data from the file │ │ ❱ 493 │ │ │ buf = self._fp.read(io.DEFAULT_BUFFER_SIZE) │ │ 494 │ │ │ │ │ 495 │ │ │ uncompress = self._decompressor.decompress(buf, size) │ │ 496 │ │ │ if self._decompressor.unconsumed_tail != b"": │ │ │ │ /opt/cray/pe/python/3.9.12.1/lib/python3.9/gzip.py:96 in read │ │ │ │ 93 │ │ │ read = self._read │ │ 94 │ │ │ self._read = None │ │ 95 │ │ │ return self._buffer[read:] + \ │ │ ❱ 96 │ │ │ │ self.file.read(size-self._length+read) │ │ 97 │ │ │ 98 │ def prepend(self, prepend=b''): │ │ 99 │ │ if self._read is None: │ │ │ │ /pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/venv/ │ │ lib/python3.9/site-packages/datasets/download/streaming_download_manager.py: │ │ 365 in read_with_retries │ │ │ │ 362 │ │ │ │ ) │ │ 363 │ │ │ │ time.sleep(config.STREAMING_READ_RETRY_INTERVAL) │ │ 364 │ │ else: │ │ ❱ 365 │ │ │ raise ConnectionError("Server Disconnected") │ │ 366 │ │ return out │ │ 367 │ │ │ 368 │ file_obj.read = read_with_retries │ ╰──────────────────────────────────────────────────────────────────────────────╯ ConnectionError: Server Disconnected ``` ### Expected behavior There should be no disconnect I think. ### Environment info ``` datasets=2.7.0 Python 3.9.12 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5374/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5374/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5373
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5373/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5373/comments
https://api.github.com/repos/huggingface/datasets/issues/5373/events
https://github.com/huggingface/datasets/pull/5373
1,501,484,197
PR_kwDODunzps5FtRU4
5,373
Simplify skipping
{ "login": "Muennighoff", "id": 62820084, "node_id": "MDQ6VXNlcjYyODIwMDg0", "avatar_url": "https://avatars.githubusercontent.com/u/62820084?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Muennighoff", "html_url": "https://github.com/Muennighoff", "followers_url": "https://api.github.com/users/Muennighoff/followers", "following_url": "https://api.github.com/users/Muennighoff/following{/other_user}", "gists_url": "https://api.github.com/users/Muennighoff/gists{/gist_id}", "starred_url": "https://api.github.com/users/Muennighoff/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Muennighoff/subscriptions", "organizations_url": "https://api.github.com/users/Muennighoff/orgs", "repos_url": "https://api.github.com/users/Muennighoff/repos", "events_url": "https://api.github.com/users/Muennighoff/events{/privacy}", "received_events_url": "https://api.github.com/users/Muennighoff/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-12-17T17:23:52
2022-12-18T21:43:31
2022-12-18T21:40:21
CONTRIBUTOR
null
Was hoping to find a way to speed up the skipping as I'm running into bottlenecks skipping 100M examples on C4 (it takes 12 hours to skip), but didn't find anything better than this small change :( Maybe there's a way to directly skip whole shards to speed it up? 🧐
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5373/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5373/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5373", "html_url": "https://github.com/huggingface/datasets/pull/5373", "diff_url": "https://github.com/huggingface/datasets/pull/5373.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5373.patch", "merged_at": "2022-12-18T21:40:21" }
true
https://api.github.com/repos/huggingface/datasets/issues/5372
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5372/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5372/comments
https://api.github.com/repos/huggingface/datasets/issues/5372/events
https://github.com/huggingface/datasets/pull/5372
1,501,377,802
PR_kwDODunzps5Fs9w5
5,372
Fix streaming pandas.read_excel
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009517 / 0.011353 (-0.001835) | 0.005210 / 0.011008 (-0.005798) | 0.098916 / 0.038508 (0.060408) | 0.036123 / 0.023109 (0.013014) | 0.301564 / 0.275898 (0.025666) | 0.358086 / 0.323480 (0.034606) | 0.008159 / 0.007986 (0.000174) | 0.004122 / 0.004328 (-0.000206) | 0.075899 / 0.004250 (0.071648) | 0.046082 / 0.037052 (0.009030) | 0.302871 / 0.258489 (0.044382) | 0.351162 / 0.293841 (0.057321) | 0.038215 / 0.128546 (-0.090331) | 0.012026 / 0.075646 (-0.063620) | 0.330988 / 0.419271 (-0.088284) | 0.048351 / 0.043533 (0.004818) | 0.291840 / 0.255139 (0.036701) | 0.320387 / 0.283200 (0.037187) | 0.105018 / 0.141683 (-0.036665) | 1.447158 / 1.452155 (-0.004997) | 1.491205 / 1.492716 (-0.001511) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.250870 / 0.018006 (0.232863) | 0.562974 / 0.000490 (0.562484) | 0.001789 / 0.000200 (0.001589) | 0.000252 / 0.000054 (0.000197) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028208 / 0.037411 (-0.009203) | 0.110897 / 0.014526 (0.096371) | 0.120394 / 0.176557 (-0.056163) | 0.164980 / 0.737135 (-0.572156) | 0.126283 / 0.296338 (-0.170056) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.397922 / 0.215209 (0.182713) | 3.969233 / 2.077655 (1.891578) | 1.766422 / 1.504120 (0.262302) | 1.577503 / 1.541195 (0.036308) | 1.672344 / 1.468490 (0.203854) | 0.695708 / 4.584777 (-3.889069) | 3.770763 / 3.745712 (0.025051) | 3.369592 / 5.269862 (-1.900269) | 1.851122 / 4.565676 (-2.714554) | 0.084063 / 0.424275 (-0.340212) | 0.012156 / 0.007607 (0.004549) | 0.534639 / 0.226044 (0.308594) | 5.021955 / 2.268929 (2.753027) | 2.215438 / 55.444624 (-53.229186) | 1.890459 / 6.876477 (-4.986018) | 2.071361 / 2.142072 (-0.070712) | 0.834623 / 4.805227 (-3.970604) | 0.165588 / 6.500664 (-6.335076) | 0.064336 / 0.075469 (-0.011133) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.205651 / 1.841788 (-0.636136) | 14.916871 / 8.074308 (6.842563) | 14.559495 / 10.191392 (4.368103) | 0.166889 / 0.680424 (-0.513535) | 0.028645 / 0.534201 (-0.505556) | 0.433634 / 0.579283 (-0.145649) | 0.429849 / 0.434364 (-0.004515) | 0.508617 / 0.540337 (-0.031720) | 0.595261 / 1.386936 (-0.791675) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007696 / 0.011353 (-0.003657) | 0.005434 / 0.011008 (-0.005574) | 0.099234 / 0.038508 (0.060725) | 0.033904 / 0.023109 (0.010795) | 0.379181 / 0.275898 (0.103283) | 0.401858 / 0.323480 (0.078379) | 0.006257 / 0.007986 (-0.001729) | 0.004406 / 0.004328 (0.000077) | 0.073174 / 0.004250 (0.068923) | 0.056033 / 0.037052 (0.018981) | 0.379375 / 0.258489 (0.120886) | 0.425928 / 0.293841 (0.132087) | 0.037476 / 0.128546 (-0.091071) | 0.012520 / 0.075646 (-0.063127) | 0.364975 / 0.419271 (-0.054297) | 0.049341 / 0.043533 (0.005808) | 0.370519 / 0.255139 (0.115380) | 0.390585 / 0.283200 (0.107385) | 0.113339 / 0.141683 (-0.028344) | 1.460575 / 1.452155 (0.008421) | 1.564951 / 1.492716 (0.072235) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.246217 / 0.018006 (0.228210) | 0.554358 / 0.000490 (0.553869) | 0.000451 / 0.000200 (0.000251) | 0.000059 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029557 / 0.037411 (-0.007855) | 0.110472 / 0.014526 (0.095946) | 0.122652 / 0.176557 (-0.053904) | 0.159396 / 0.737135 (-0.577739) | 0.128852 / 0.296338 (-0.167486) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.447927 / 0.215209 (0.232718) | 4.448292 / 2.077655 (2.370637) | 2.228874 / 1.504120 (0.724754) | 2.030231 / 1.541195 (0.489036) | 2.116417 / 1.468490 (0.647927) | 0.702713 / 4.584777 (-3.882064) | 3.774063 / 3.745712 (0.028351) | 3.521662 / 5.269862 (-1.748200) | 1.476700 / 4.565676 (-3.088976) | 0.084921 / 0.424275 (-0.339354) | 0.012862 / 0.007607 (0.005255) | 0.559142 / 0.226044 (0.333098) | 5.512233 / 2.268929 (3.243305) | 2.750024 / 55.444624 (-52.694600) | 2.388845 / 6.876477 (-4.487632) | 2.541786 / 2.142072 (0.399714) | 0.842256 / 4.805227 (-3.962971) | 0.168088 / 6.500664 (-6.332576) | 0.064211 / 0.075469 (-0.011258) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.239001 / 1.841788 (-0.602787) | 15.286345 / 8.074308 (7.212036) | 13.883981 / 10.191392 (3.692589) | 0.186212 / 0.680424 (-0.494212) | 0.018305 / 0.534201 (-0.515896) | 0.420459 / 0.579283 (-0.158824) | 0.421039 / 0.434364 (-0.013325) | 0.487348 / 0.540337 (-0.052989) | 0.587730 / 1.386936 (-0.799206) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n" ]
2022-12-17T12:58:52
2023-01-06T11:50:58
2023-01-06T11:43:37
MEMBER
null
This PR fixes `xpandas_read_excel`: - Support passing a path string, besides a file-like object - Support passing `use_auth_token` - First assumes the host server supports HTTP range requests; only if a ValueError is thrown (Cannot seek streaming HTTP file), then it preserves previous behavior (see [#3355](https://github.com/huggingface/datasets/pull/3355)). Fix https://huggingface.co/datasets/bigbio/meqsum/discussions/1 Fix: - https://github.com/bigscience-workshop/biomedical/issues/801 Related to: - #3355
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5372/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5372/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5372", "html_url": "https://github.com/huggingface/datasets/pull/5372", "diff_url": "https://github.com/huggingface/datasets/pull/5372.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5372.patch", "merged_at": "2023-01-06T11:43:37" }
true
https://api.github.com/repos/huggingface/datasets/issues/5371
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5371/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5371/comments
https://api.github.com/repos/huggingface/datasets/issues/5371/events
https://github.com/huggingface/datasets/issues/5371
1,501,369,036
I_kwDODunzps5ZfRLM
5,371
Add a robustness benchmark dataset for vision
{ "login": "sayakpaul", "id": 22957388, "node_id": "MDQ6VXNlcjIyOTU3Mzg4", "avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sayakpaul", "html_url": "https://github.com/sayakpaul", "followers_url": "https://api.github.com/users/sayakpaul/followers", "following_url": "https://api.github.com/users/sayakpaul/following{/other_user}", "gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}", "starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions", "organizations_url": "https://api.github.com/users/sayakpaul/orgs", "repos_url": "https://api.github.com/users/sayakpaul/repos", "events_url": "https://api.github.com/users/sayakpaul/events{/privacy}", "received_events_url": "https://api.github.com/users/sayakpaul/received_events", "type": "User", "site_admin": false }
[ { "id": 2067376369, "node_id": "MDU6TGFiZWwyMDY3Mzc2MzY5", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset%20request", "name": "dataset request", "color": "e99695", "default": false, "description": "Requesting to add a new dataset" } ]
open
false
{ "login": "sayakpaul", "id": 22957388, "node_id": "MDQ6VXNlcjIyOTU3Mzg4", "avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sayakpaul", "html_url": "https://github.com/sayakpaul", "followers_url": "https://api.github.com/users/sayakpaul/followers", "following_url": "https://api.github.com/users/sayakpaul/following{/other_user}", "gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}", "starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions", "organizations_url": "https://api.github.com/users/sayakpaul/orgs", "repos_url": "https://api.github.com/users/sayakpaul/repos", "events_url": "https://api.github.com/users/sayakpaul/events{/privacy}", "received_events_url": "https://api.github.com/users/sayakpaul/received_events", "type": "User", "site_admin": false }
[ { "login": "sayakpaul", "id": 22957388, "node_id": "MDQ6VXNlcjIyOTU3Mzg4", "avatar_url": "https://avatars.githubusercontent.com/u/22957388?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sayakpaul", "html_url": "https://github.com/sayakpaul", "followers_url": "https://api.github.com/users/sayakpaul/followers", "following_url": "https://api.github.com/users/sayakpaul/following{/other_user}", "gists_url": "https://api.github.com/users/sayakpaul/gists{/gist_id}", "starred_url": "https://api.github.com/users/sayakpaul/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sayakpaul/subscriptions", "organizations_url": "https://api.github.com/users/sayakpaul/orgs", "repos_url": "https://api.github.com/users/sayakpaul/repos", "events_url": "https://api.github.com/users/sayakpaul/events{/privacy}", "received_events_url": "https://api.github.com/users/sayakpaul/received_events", "type": "User", "site_admin": false } ]
null
[ "Ccing @nazneenrajani @lvwerra @osanseviero " ]
2022-12-17T12:35:13
2022-12-20T06:21:41
null
MEMBER
null
### Name ImageNet-C ### Paper Benchmarking Neural Network Robustness to Common Corruptions and Perturbations ### Data https://github.com/hendrycks/robustness ### Motivation It's a known fact that vision models are brittle when they meet with slightly corrupted and perturbed data. This is also correlated to the robustness aspects of vision models. Researchers use different benchmark datasets to evaluate the robustness aspects of vision models. ImageNet-C is one of them. Having this dataset in 🤗 Datasets would allow researchers to evaluate and study the robustness aspects of vision models. Since the metric associated with these evaluations is top-1 accuracy, researchers should be able to easily take advantage of the evaluation benchmarks on the Hub and perform comprehensive reporting. ImageNet-C is a large dataset. Once it's in, it can act as a reference and we can also reach out to the authors of the other robustness benchmark datasets in vision, such as ObjectNet, WILDS, Metashift, etc. These datasets cater to different aspects. For example, ObjectNet is related to assessing how well a model performs under sub-population shifts. Related thread: https://huggingface.slack.com/archives/C036H4A5U8Z/p1669994598060499
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5371/reactions", "total_count": 2, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 2, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5371/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/5369
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5369/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5369/comments
https://api.github.com/repos/huggingface/datasets/issues/5369/events
https://github.com/huggingface/datasets/pull/5369
1,500,622,276
PR_kwDODunzps5Fqaj-
5,369
Distributed support
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._", "Alright all the tests are passing - this is ready for review", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==6.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.015146 / 0.011353 (0.003793) | 0.006683 / 0.011008 (-0.004326) | 0.125994 / 0.038508 (0.087486) | 0.041345 / 0.023109 (0.018235) | 0.378609 / 0.275898 (0.102711) | 0.483139 / 0.323480 (0.159659) | 0.009669 / 0.007986 (0.001684) | 0.005143 / 0.004328 (0.000814) | 0.092015 / 0.004250 (0.087765) | 0.052728 / 0.037052 (0.015676) | 0.397166 / 0.258489 (0.138677) | 0.465820 / 0.293841 (0.171979) | 0.051025 / 0.128546 (-0.077521) | 0.018451 / 0.075646 (-0.057196) | 0.397311 / 0.419271 (-0.021960) | 0.054842 / 0.043533 (0.011309) | 0.391203 / 0.255139 (0.136064) | 0.412743 / 0.283200 (0.129543) | 0.111356 / 0.141683 (-0.030327) | 1.697526 / 1.452155 (0.245372) | 1.795017 / 1.492716 (0.302301) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.253737 / 0.018006 (0.235731) | 0.583071 / 0.000490 (0.582581) | 0.005958 / 0.000200 (0.005758) | 0.000110 / 0.000054 (0.000056) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030397 / 0.037411 (-0.007014) | 0.112242 / 0.014526 (0.097716) | 0.138807 / 0.176557 (-0.037749) | 0.209820 / 0.737135 (-0.527316) | 0.139530 / 0.296338 (-0.156808) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.574111 / 0.215209 (0.358902) | 5.623713 / 2.077655 (3.546058) | 2.416880 / 1.504120 (0.912760) | 1.951013 / 1.541195 (0.409819) | 2.124565 / 1.468490 (0.656075) | 1.268854 / 4.584777 (-3.315923) | 5.942368 / 3.745712 (2.196656) | 5.413814 / 5.269862 (0.143952) | 2.931638 / 4.565676 (-1.634038) | 0.135070 / 0.424275 (-0.289205) | 0.014290 / 0.007607 (0.006683) | 0.708384 / 0.226044 (0.482340) | 7.487994 / 2.268929 (5.219065) | 3.074210 / 55.444624 (-52.370414) | 2.380583 / 6.876477 (-4.495893) | 2.522298 / 2.142072 (0.380226) | 1.336741 / 4.805227 (-3.468486) | 0.236761 / 6.500664 (-6.263903) | 0.076592 / 0.075469 (0.001123) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.629415 / 1.841788 (-0.212373) | 19.000640 / 8.074308 (10.926332) | 21.474058 / 10.191392 (11.282666) | 0.231227 / 0.680424 (-0.449197) | 0.046213 / 0.534201 (-0.487988) | 0.565703 / 0.579283 (-0.013580) | 0.662956 / 0.434364 (0.228592) | 0.656475 / 0.540337 (0.116137) | 0.762534 / 1.386936 (-0.624402) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010952 / 0.011353 (-0.000400) | 0.006259 / 0.011008 (-0.004749) | 0.132430 / 0.038508 (0.093922) | 0.037920 / 0.023109 (0.014811) | 0.483565 / 0.275898 (0.207667) | 0.528190 / 0.323480 (0.204710) | 0.008116 / 0.007986 (0.000130) | 0.006768 / 0.004328 (0.002440) | 0.100520 / 0.004250 (0.096270) | 0.055208 / 0.037052 (0.018155) | 0.484672 / 0.258489 (0.226183) | 0.556937 / 0.293841 (0.263096) | 0.057938 / 0.128546 (-0.070609) | 0.020821 / 0.075646 (-0.054826) | 0.430735 / 0.419271 (0.011464) | 0.066317 / 0.043533 (0.022785) | 0.496652 / 0.255139 (0.241513) | 0.502004 / 0.283200 (0.218804) | 0.125403 / 0.141683 (-0.016280) | 1.833396 / 1.452155 (0.381241) | 1.974517 / 1.492716 (0.481800) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269198 / 0.018006 (0.251191) | 0.620314 / 0.000490 (0.619824) | 0.000535 / 0.000200 (0.000335) | 0.000083 / 0.000054 (0.000029) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032373 / 0.037411 (-0.005039) | 0.130043 / 0.014526 (0.115517) | 0.146217 / 0.176557 (-0.030339) | 0.200187 / 0.737135 (-0.536948) | 0.152839 / 0.296338 (-0.143499) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.677478 / 0.215209 (0.462268) | 6.678856 / 2.077655 (4.601201) | 3.025870 / 1.504120 (1.521750) | 2.678196 / 1.541195 (1.137001) | 2.740640 / 1.468490 (1.272150) | 1.237163 / 4.584777 (-3.347614) | 5.752621 / 3.745712 (2.006908) | 3.170435 / 5.269862 (-2.099427) | 2.049174 / 4.565676 (-2.516502) | 0.147663 / 0.424275 (-0.276612) | 0.016107 / 0.007607 (0.008500) | 0.849666 / 0.226044 (0.623621) | 8.395212 / 2.268929 (6.126283) | 3.741120 / 55.444624 (-51.703505) | 3.102926 / 6.876477 (-3.773550) | 3.233655 / 2.142072 (1.091583) | 1.520349 / 4.805227 (-3.284878) | 0.267159 / 6.500664 (-6.233505) | 0.083646 / 0.075469 (0.008177) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.640458 / 1.841788 (-0.201330) | 19.043169 / 8.074308 (10.968861) | 22.786126 / 10.191392 (12.594734) | 0.218040 / 0.680424 (-0.462384) | 0.032948 / 0.534201 (-0.501253) | 0.569574 / 0.579283 (-0.009710) | 0.658746 / 0.434364 (0.224382) | 0.650501 / 0.540337 (0.110164) | 0.730588 / 1.386936 (-0.656348) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png \"CML watermark\")\n", "just added a note :)", "Hi @lhoestq ,\r\nCan you please throw some light on the following statement\r\n`If the dataset has a number of shards that is a factor of world_size (i.e. if dataset.n_shards % world_size == 0), then the shards are evenly assigned across the nodes, which is the most optimized. Otherwise, each node keeps 1 example out of world_size, skipping the other examples.`\r\n\r\nLet's assume I have 127 parquet files and world_size is 4. I was not able to fully comprehend the above statement\r\nWhat does this statement mean?\r\n`each node keeps 1 example out of world_size, skipping the other examples.`\r\nThank you!", "If you have 128 parquet files, then `dataset.n_shards % world_size == 0`. In this case each worker can take care of 32 parquet files.\r\n\r\nOn the other hand if you have `dataset.n_shards % world_size != 0` (in your case 127 files), then we can't assign the same number of files to each worker. This is an issue because it may under-utilize your GPU at the end of your training since some workers will take longer to iterate on the dataset than others.\r\n\r\nTherefore in this case, all the workers take care of the 127 parquet files but workers will skip examples to not end up with duplicates. That's what \"each node keeps 1 example out of world_size, skipping the other examples\" means, and in your case it implies:\r\n- rank=0 will read the samples with idx=0, 4, 8 etc.\r\n- rank=1 will read the samples with idx=1, 5, 9 etc.\r\n- rank=2 will read the samples with idx=2, 6, 10 etc.\r\n- rank=3 will read the samples with idx=3, 7, 11 etc.", "Thanks a lot @lhoestq , this helps!", "Hi, in the case above, if we use `keep_in_memory=True` for `Dataset`, then we still need to read in n times the dataset if we use DDP on n GPUs (1 node), right? That means we need n times the memory. Is there any way to only load the data once, to save memory?", "`Dataset` objects are memory mapped from disk so they use almost no RAM (only the current batch)\r\n\r\nAlso they are perfectly sharded using `split_dataset_by_node` so it's going to be read exactly once in total using DDP.\r\nYou can also achieve the same thing using a DistributedSampler in pytorch for DDP instead of using `split_dataset_by_node`.", "Hi, please correct if I mistake anything: \r\n1. `Dataset` with `keep_in_memory=True` would explicitly pre-load the data into memory, instead of reading from disk via the memory map for every batch. The former way should be faster than the latter.\r\n2. When using DDP, before sending the `Dataset` object into `split_dataset_by_node` or incorporate it with `DistributedSampler`, every process still needs to pre-load the entire data into memory (when `keep_in_memory=True`) and then select the chunked indices from the loaded data. \r\n\r\nGenerally, the dilemma I'm facing is:\r\nSuppose we have a data around 120GB, and we want to use `DistributedLengthGroupedSampler` to optimize batching. When using DDP and `keep_in_memory=True`, every process loads 120GB which is not acceptable. For now, I turned off `keep_in_memory` and try to increase the number of workers for `DataLoader` to get better pipelining. \r\n\r\n**But is it possible to load 120GB once into 4 * A100 (which has around 4*120GB memory) and make each process read from this shared data from memory? Theoretically, maybe it should be faster?** ", "Feel free to ask your questions on the [forum](https://discuss.huggingface.co/c/datasets/10) if you don't mind, this way the discussions may be useful to other people ;) " ]
2022-12-16T17:43:47
2023-07-25T12:00:31
2023-01-16T13:33:32
MEMBER
null
To split your dataset across your training nodes, you can use the new [`datasets.distributed.split_dataset_by_node`]: ```python import os from datasets.distributed import split_dataset_by_node ds = split_dataset_by_node(ds, rank=int(os.environ["RANK"]), world_size=int(os.environ["WORLD_SIZE"])) ``` This works for both map-style datasets and iterable datasets. The dataset is split for the node at rank `rank` in a pool of nodes of size `world_size`. For map-style datasets: Each node is assigned a chunk of data, e.g. rank 0 is given the first chunk of the dataset. For iterable datasets: If the dataset has a number of shards that is a factor of `world_size` (i.e. if `dataset.n_shards % world_size == 0`), then the shards are evenly assigned across the nodes, which is the most optimized. Otherwise, each node keeps 1 example out of `world_size`, skipping the other examples. This can also be combined with a `torch.utils.data.DataLoader` if you want each node to use multiple workers to load the data. This also supports shuffling. At each epoch, the iterable dataset shards are reshuffled across all the nodes - you just have to call `iterable_ds.set_epoch(epoch_number)`. TODO: - [x] docs for usage in PyTorch - [x] unit tests - [x] integration tests with torch.distributed.launch Related to https://github.com/huggingface/transformers/issues/20770 Close https://github.com/huggingface/datasets/issues/5360
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5369/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5369/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5369", "html_url": "https://github.com/huggingface/datasets/pull/5369", "diff_url": "https://github.com/huggingface/datasets/pull/5369.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5369.patch", "merged_at": "2023-01-16T13:33:32" }
true
https://api.github.com/repos/huggingface/datasets/issues/5368
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5368/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5368/comments
https://api.github.com/repos/huggingface/datasets/issues/5368/events
https://github.com/huggingface/datasets/pull/5368
1,500,322,973
PR_kwDODunzps5FpZyx
5,368
Align remove columns behavior and input dict mutation in `map` with previous behavior
{ "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-12-16T14:28:47
2022-12-16T16:28:08
2022-12-16T16:25:12
CONTRIBUTOR
null
Align the `remove_columns` behavior and input dict mutation in `map` with the behavior before https://github.com/huggingface/datasets/pull/5252.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5368/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5368/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5368", "html_url": "https://github.com/huggingface/datasets/pull/5368", "diff_url": "https://github.com/huggingface/datasets/pull/5368.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5368.patch", "merged_at": "2022-12-16T16:25:12" }
true
https://api.github.com/repos/huggingface/datasets/issues/5367
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5367/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5367/comments
https://api.github.com/repos/huggingface/datasets/issues/5367/events
https://github.com/huggingface/datasets/pull/5367
1,499,174,749
PR_kwDODunzps5FlevK
5,367
Fix remove columns from lazy dict
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-12-15T22:04:12
2022-12-15T22:27:53
2022-12-15T22:24:50
MEMBER
null
This was introduced in https://github.com/huggingface/datasets/pull/5252 and causing the transformers CI to break: https://app.circleci.com/pipelines/github/huggingface/transformers/53886/workflows/522faf2e-a053-454c-94f8-a617fde33393/jobs/648597 Basically this code should return a dataset with only one column: ```python from datasets import * ds = Dataset.from_dict({"a": range(5)}) def f(x): x["b"] = x["a"] return x ds = ds.map(f, remove_columns=["a"]) assert ds.column_names == ["b"] ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5367/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5367/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5367", "html_url": "https://github.com/huggingface/datasets/pull/5367", "diff_url": "https://github.com/huggingface/datasets/pull/5367.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5367.patch", "merged_at": "2022-12-15T22:24:50" }
true
https://api.github.com/repos/huggingface/datasets/issues/5366
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/5366/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/5366/comments
https://api.github.com/repos/huggingface/datasets/issues/5366/events
https://github.com/huggingface/datasets/pull/5366
1,498,530,851
PR_kwDODunzps5FjSFl
5,366
ExamplesIterable fixes
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "_The documentation is not available anymore as the PR was closed or merged._" ]
2022-12-15T14:23:05
2022-12-15T14:44:47
2022-12-15T14:41:45
MEMBER
null
fix typing and ExamplesIterable.shard_data_sources
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/5366/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/5366/timeline
null
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/5366", "html_url": "https://github.com/huggingface/datasets/pull/5366", "diff_url": "https://github.com/huggingface/datasets/pull/5366.diff", "patch_url": "https://github.com/huggingface/datasets/pull/5366.patch", "merged_at": "2022-12-15T14:41:45" }
true