input
stringlengths
2.65k
237k
output
stringclasses
1 value
ClassVar[str] = "case to entity association mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.CaseToEntityAssociationMixin subject: Union[str, CaseId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, CaseId): self.subject = CaseId(self.subject) super().__post_init__(**kwargs) @dataclass class ChemicalToChemicalAssociation(Association): """ A relationship between two chemical entities. This can encompass actual interactions as well as temporal causal edges, e.g. one chemical converted to another. """ _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = BIOLINK.ChemicalToChemicalAssociation class_class_curie: ClassVar[str] = "biolink:ChemicalToChemicalAssociation" class_name: ClassVar[str] = "chemical to chemical association" class_model_uri: ClassVar[URIRef] = BIOLINK.ChemicalToChemicalAssociation id: Union[str, ChemicalToChemicalAssociationId] = None subject: Union[str, NamedThingId] = None predicate: Union[str, PredicateType] = None object: Union[str, ChemicalEntityId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): self.MissingRequiredField("id") if not isinstance(self.id, ChemicalToChemicalAssociationId): self.id = ChemicalToChemicalAssociationId(self.id) if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, ChemicalEntityId): self.object = ChemicalEntityId(self.object) super().__post_init__(**kwargs) @dataclass class ReactionToParticipantAssociation(ChemicalToChemicalAssociation): _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = BIOLINK.ReactionToParticipantAssociation class_class_curie: ClassVar[str] = "biolink:ReactionToParticipantAssociation" class_name: ClassVar[str] = "reaction to participant association" class_model_uri: ClassVar[URIRef] = BIOLINK.ReactionToParticipantAssociation id: Union[str, ReactionToParticipantAssociationId] = None predicate: Union[str, PredicateType] = None object: Union[str, ChemicalEntityId] = None subject: Union[str, MolecularEntityId] = None stoichiometry: Optional[int] = None reaction_direction: Optional[Union[str, "ReactionDirectionEnum"]] = None reaction_side: Optional[Union[str, "ReactionSideEnum"]] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): self.MissingRequiredField("id") if not isinstance(self.id, ReactionToParticipantAssociationId): self.id = ReactionToParticipantAssociationId(self.id) if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, MolecularEntityId): self.subject = MolecularEntityId(self.subject) if self.stoichiometry is not None and not isinstance(self.stoichiometry, int): self.stoichiometry = int(self.stoichiometry) if self.reaction_direction is not None and not isinstance(self.reaction_direction, ReactionDirectionEnum): self.reaction_direction = ReactionDirectionEnum(self.reaction_direction) if self.reaction_side is not None and not isinstance(self.reaction_side, ReactionSideEnum): self.reaction_side = ReactionSideEnum(self.reaction_side) super().__post_init__(**kwargs) @dataclass class ReactionToCatalystAssociation(ReactionToParticipantAssociation): _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = BIOLINK.ReactionToCatalystAssociation class_class_curie: ClassVar[str] = "biolink:ReactionToCatalystAssociation" class_name: ClassVar[str] = "reaction to catalyst association" class_model_uri: ClassVar[URIRef] = BIOLINK.ReactionToCatalystAssociation id: Union[str, ReactionToCatalystAssociationId] = None predicate: Union[str, PredicateType] = None subject: Union[str, MolecularEntityId] = None object: Union[dict, GeneOrGeneProduct] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): self.MissingRequiredField("id") if not isinstance(self.id, ReactionToCatalystAssociationId): self.id = ReactionToCatalystAssociationId(self.id) if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, GeneOrGeneProduct): self.object = GeneOrGeneProduct(**self.object) super().__post_init__(**kwargs) @dataclass class ChemicalToChemicalDerivationAssociation(ChemicalToChemicalAssociation): """ A causal relationship between two chemical entities, where the subject represents the upstream entity and the object represents the downstream. For any such association there is an implicit reaction: IF R has-input C1 AND R has-output C2 AND R enabled-by P AND R type Reaction THEN C1 derives-into C2 <<catalyst qualifier P>> """ _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = BIOLINK.ChemicalToChemicalDerivationAssociation class_class_curie: ClassVar[str] = "biolink:ChemicalToChemicalDerivationAssociation" class_name: ClassVar[str] = "chemical to chemical derivation association" class_model_uri: ClassVar[URIRef] = BIOLINK.ChemicalToChemicalDerivationAssociation id: Union[str, ChemicalToChemicalDerivationAssociationId] = None subject: Union[str, ChemicalEntityId] = None object: Union[str, ChemicalEntityId] = None predicate: Union[str, PredicateType] = None catalyst_qualifier: Optional[Union[Union[dict, MacromolecularMachineMixin], List[Union[dict, MacromolecularMachineMixin]]]] = empty_list() def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): self.MissingRequiredField("id") if not isinstance(self.id, ChemicalToChemicalDerivationAssociationId): self.id = ChemicalToChemicalDerivationAssociationId(self.id) if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, ChemicalEntityId): self.subject = ChemicalEntityId(self.subject) if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, ChemicalEntityId): self.object = ChemicalEntityId(self.object) if self._is_empty(self.predicate): self.MissingRequiredField("predicate") if not isinstance(self.predicate, PredicateType): self.predicate = PredicateType(self.predicate) if not isinstance(self.catalyst_qualifier, list): self.catalyst_qualifier = [self.catalyst_qualifier] if self.catalyst_qualifier is not None else [] self.catalyst_qualifier = [v if isinstance(v, MacromolecularMachineMixin) else MacromolecularMachineMixin(**v) for v in self.catalyst_qualifier] super().__post_init__(**kwargs) @dataclass class ChemicalToDiseaseOrPhenotypicFeatureAssociation(Association): """ An interaction between a chemical entity and a phenotype or disease, where the presence of the chemical gives rise to or exacerbates the phenotype. """ _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = BIOLINK.ChemicalToDiseaseOrPhenotypicFeatureAssociation class_class_curie: ClassVar[str] = "biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation" class_name: ClassVar[str] = "chemical to disease or phenotypic feature association" class_model_uri: ClassVar[URIRef] = BIOLINK.ChemicalToDiseaseOrPhenotypicFeatureAssociation id: Union[str, ChemicalToDiseaseOrPhenotypicFeatureAssociationId] = None subject: Union[str, NamedThingId] = None predicate: Union[str, PredicateType] = None object: Union[str, DiseaseOrPhenotypicFeatureId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): self.MissingRequiredField("id") if not isinstance(self.id, ChemicalToDiseaseOrPhenotypicFeatureAssociationId): self.id = ChemicalToDiseaseOrPhenotypicFeatureAssociationId(self.id) if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, DiseaseOrPhenotypicFeatureId): self.object = DiseaseOrPhenotypicFeatureId(self.object) super().__post_init__(**kwargs) @dataclass class ChemicalToPathwayAssociation(Association): """ An interaction between a chemical entity and a biological process or pathway. """ _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = BIOLINK.ChemicalToPathwayAssociation class_class_curie: ClassVar[str] = "biolink:ChemicalToPathwayAssociation" class_name: ClassVar[str] = "chemical to pathway association" class_model_uri: ClassVar[URIRef] = BIOLINK.ChemicalToPathwayAssociation id: Union[str, ChemicalToPathwayAssociationId] = None subject: Union[str, NamedThingId] = None predicate: Union[str, PredicateType] = None object: Union[str, PathwayId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): self.MissingRequiredField("id") if not isinstance(self.id, ChemicalToPathwayAssociationId): self.id = ChemicalToPathwayAssociationId(self.id) if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, PathwayId): self.object = PathwayId(self.object) super().__post_init__(**kwargs) @dataclass class ChemicalToGeneAssociation(Association): """ An interaction between a chemical entity and a gene or gene product. """ _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = BIOLINK.ChemicalToGeneAssociation class_class_curie: ClassVar[str] = "biolink:ChemicalToGeneAssociation" class_name: ClassVar[str] = "chemical to gene association" class_model_uri: ClassVar[URIRef] = BIOLINK.ChemicalToGeneAssociation id: Union[str, ChemicalToGeneAssociationId] = None subject: Union[str, NamedThingId] = None predicate: Union[str, PredicateType] = None object: Union[dict, GeneOrGeneProduct] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): self.MissingRequiredField("id") if not isinstance(self.id, ChemicalToGeneAssociationId): self.id = ChemicalToGeneAssociationId(self.id) if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, GeneOrGeneProduct): self.object = GeneOrGeneProduct(**self.object) super().__post_init__(**kwargs) @dataclass class DrugToGeneAssociation(Association): """ An interaction between a drug and a gene or gene product. """ _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = BIOLINK.DrugToGeneAssociation class_class_curie: ClassVar[str] = "biolink:DrugToGeneAssociation" class_name: ClassVar[str] = "drug to gene association" class_model_uri: ClassVar[URIRef] = BIOLINK.DrugToGeneAssociation id: Union[str, DrugToGeneAssociationId] = None subject: Union[str, NamedThingId] = None predicate: Union[str, PredicateType] = None object: Union[dict, GeneOrGeneProduct] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): self.MissingRequiredField("id") if not isinstance(self.id, DrugToGeneAssociationId): self.id = DrugToGeneAssociationId(self.id) if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, GeneOrGeneProduct): self.object = GeneOrGeneProduct(**self.object) super().__post_init__(**kwargs) @dataclass class MaterialSampleToEntityAssociationMixin(YAMLRoot): """ An association between a material sample and something. """ _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = BIOLINK.MaterialSampleToEntityAssociationMixin class_class_curie: ClassVar[str] = "biolink:MaterialSampleToEntityAssociationMixin" class_name: ClassVar[str] = "material sample to entity association mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.MaterialSampleToEntityAssociationMixin subject: Union[str, MaterialSampleId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, MaterialSampleId): self.subject = MaterialSampleId(self.subject) super().__post_init__(**kwargs) @dataclass class MaterialSampleDerivationAssociation(Association): """ An association between a material sample and the material entity from which it is derived. """ _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = BIOLINK.MaterialSampleDerivationAssociation class_class_curie: ClassVar[str] = "biolink:MaterialSampleDerivationAssociation" class_name: ClassVar[str] = "material sample derivation association" class_model_uri: ClassVar[URIRef] = BIOLINK.MaterialSampleDerivationAssociation id: Union[str, MaterialSampleDerivationAssociationId] = None subject: Union[str, MaterialSampleId] = None object: Union[str, NamedThingId] = None predicate: Union[str, PredicateType] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): self.MissingRequiredField("id") if not isinstance(self.id, MaterialSampleDerivationAssociationId): self.id = MaterialSampleDerivationAssociationId(self.id) if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, MaterialSampleId): self.subject = MaterialSampleId(self.subject) if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, NamedThingId): self.object = NamedThingId(self.object) if self._is_empty(self.predicate): self.MissingRequiredField("predicate") if not isinstance(self.predicate, PredicateType): self.predicate = PredicateType(self.predicate) super().__post_init__(**kwargs) @dataclass class MaterialSampleToDiseaseOrPhenotypicFeatureAssociation(Association): """ An association between a material sample and a disease or phenotype. """ _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = BIOLINK.MaterialSampleToDiseaseOrPhenotypicFeatureAssociation class_class_curie: ClassVar[str] = "biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation" class_name: ClassVar[str] = "material sample to disease or phenotypic feature association" class_model_uri: ClassVar[URIRef] = BIOLINK.MaterialSampleToDiseaseOrPhenotypicFeatureAssociation id: Union[str, MaterialSampleToDiseaseOrPhenotypicFeatureAssociationId] = None subject: Union[str, NamedThingId] = None predicate: Union[str, PredicateType] = None object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.id): self.MissingRequiredField("id") if not isinstance(self.id, MaterialSampleToDiseaseOrPhenotypicFeatureAssociationId): self.id = MaterialSampleToDiseaseOrPhenotypicFeatureAssociationId(self.id) super().__post_init__(**kwargs) @dataclass class DiseaseToEntityAssociationMixin(YAMLRoot): _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = BIOLINK.DiseaseToEntityAssociationMixin class_class_curie: ClassVar[str] = "biolink:DiseaseToEntityAssociationMixin" class_name: ClassVar[str] = "disease to entity association mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.DiseaseToEntityAssociationMixin subject: Union[str, DiseaseId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.subject): self.MissingRequiredField("subject") if not isinstance(self.subject, DiseaseId): self.subject = DiseaseId(self.subject) super().__post_init__(**kwargs) @dataclass class EntityToExposureEventAssociationMixin(YAMLRoot): """ An association between some entity and an exposure event. """ _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = BIOLINK.EntityToExposureEventAssociationMixin class_class_curie: ClassVar[str] = "biolink:EntityToExposureEventAssociationMixin" class_name: ClassVar[str] = "entity to exposure event association mixin" class_model_uri: ClassVar[URIRef] = BIOLINK.EntityToExposureEventAssociationMixin object: Union[dict, ExposureEvent] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str, Any]): if self._is_empty(self.object): self.MissingRequiredField("object") if not isinstance(self.object, ExposureEvent): self.object = ExposureEvent(**self.object) super().__post_init__(**kwargs) @dataclass class DiseaseToExposureEventAssociation(Association): """ An association between an exposure event and a disease. """ _inherited_slots: ClassVar[List[str]] = [] class_class_uri: ClassVar[URIRef] = BIOLINK.DiseaseToExposureEventAssociation class_class_curie: ClassVar[str] = "biolink:DiseaseToExposureEventAssociation" class_name: ClassVar[str] = "disease to exposure event association" class_model_uri: ClassVar[URIRef] = BIOLINK.DiseaseToExposureEventAssociation id: Union[str, DiseaseToExposureEventAssociationId] = None subject: Union[str, NamedThingId] = None predicate: Union[str, PredicateType] = None object: Union[str, NamedThingId] = None def __post_init__(self, *_: List[str], **kwargs: Dict[str,
<reponame>emilydolson/avida-spatial-tools from .utils import * from scipy.spatial.distance import pdist import scipy.cluster.hierarchy as hierarchicalcluster def rank_environment_and_phenotypes(environment, phenotypes, k=15): """ Clusters sets of resources/tasks using a weighted hamming distance such that you can have few enough values to give each group of similar things a different color. This function is designed for cases when you want to color both an environment and a set of phenotypes such that the colors corespond to each other. Takes an EnvironmentFile object, a 2d array of phenotypes, and, optionally, a number indicating the maximum number of clusters (default 15). Returns: - An EnvironmentFile in which the grid has been replaced with integers indicating which cluster a cell is a member of. Integers are assigned such that cells containing more or more complex resources have higher numbers. - A 2D grid of numbers representing the clusters each phenotype was assigned to. - An integer representing the total number of clusters. """ environment = convert_world_to_phenotype(environment) ranks = get_ranks_for_environment_and_phenotypes(environment, phenotypes) environment, n = assign_ranks_by_cluster(environment, k, ranks) phenotypes, n = assign_ranks_by_cluster(phenotypes, k, ranks) return environment, phenotypes, n def do_clustering(types, max_clust): """ Helper method for clustering that takes a list of all of the things being clustered (which are assumed to be binary numbers represented as strings), and an int representing the maximum number of clusters that are allowed. Returns: A dictionary mapping cluster ids to lists of numbers that are part of that cluster. """ # Fill in leading zeros to make all numbers same length. ls = [list(t[t.find("b")+1:]) for t in types] prepend_zeros_to_lists(ls) dist_matrix = pdist(ls, weighted_hamming) clusters = hierarchicalcluster.complete(dist_matrix) clusters = hierarchicalcluster.fcluster(clusters, max_clust, criterion="maxclust") # Group members of each cluster together cluster_dict = dict((c, []) for c in set(clusters)) for i in range(len(types)): cluster_dict[clusters[i]].append(types[i]) return cluster_dict def rank_clusters(cluster_dict): """ Helper function for clustering that takes a dictionary mapping cluster ids to lists of the binary strings that are part of that cluster and returns a dictionary mapping cluster ids to integers representing their "rank". Ranks provide an ordering for the clusters such that each cluster has its own rank, and clusters are ordered from simplest to most complex. """ # Figure out the relative rank of each cluster cluster_ranks = dict.fromkeys(cluster_dict.keys()) for key in cluster_dict: cluster_ranks[key] = eval(string_avg(cluster_dict[key], binary=True)) i = len(cluster_ranks) for key in sorted(cluster_ranks, key=cluster_ranks.get): cluster_ranks[key] = i i -= 1 return cluster_ranks def get_ranks_for_environment_and_phenotypes(environment, phenotypes, k=15): """ Takes an EnvironmentFile and a 2d array represemtimg phenotypes at each location. Optionally also takes an integer indicating the maximum number of clusters allowed to be created (default 15). Environment is expected to already have been converted to binary numbers (generally because this is being called by rank_environment_and_phenotypes) Return a dictionary mapping binary strings representing groups of resources/tasks that are present/performed in a given cell to integers indicating the ranked order of the cluster they're part of. """ # Create list of all niches and all phenotypes, in phenotype format niches = flatten_array(environment) phenotypes = flatten_array(phenotypes) types = set(phenotypes+niches) types.discard("-0b1") # We'll handle this specially types.discard("0b0") # We'll handle this specially # Do all clustering ahead of time so colors remain consistent. ranks = generate_ranks(list(types), k) ranks["-0b1"] = -1 # The empty phenotype/niche should always be rank -1 ranks["0b0"] = 0 # The empty phenotype/niche should always be rank 0 return ranks def assign_ranks_by_cluster(grid, n, ranks=None): """ Takes a 2D array representing phenotypes or resource sets across the world, and integer rpresenting the maximum number of clusters allowed, and optionally a dictionary indicating the rank of the cluster of each phenotype/resource set. If this dictionary is not provided, one will be generated. Returns: - A 2d array of numbers indicating the ranks of the clusters of the resource set/phenotype in each cell - An integer representing the number of clusters created. """ if ranks is None: ranks = generate_ranks(grid, n) return assign_ranks_to_grid(grid, ranks), len(ranks) def generate_ranks(grid, n): """ Takes a grid of phenotypes or resource sets representing as strings representing binary numbers, and an integer indicating the maximum number of clusters to generated. Clusters the data in grid into a maximum of n groups, ranks each group by the complexity and length of its "average" member, and returns a dictionary mapping binary numbers to integers representing the rank of the cluster they're part of. """ phenotypes = deepcopy(grid) if type(phenotypes) is list and type(phenotypes[0]) is list: phenotypes = flatten_array(phenotypes) # Remove duplicates from types types = list(frozenset(phenotypes)) if len(types) < n: ranks = rank_types(types) else: ranks = cluster_types(types, n) return ranks def assign_ranks_to_grid(grid, ranks): """ Takes a 2D array of binary numbers represented as strings and a dictionary mapping binary strings to integers representing the rank of the cluster they belong to, and returns a grid in which each binary number has been replaced with the rank of its cluster. """ assignments = deepcopy(grid) ranks["0b0"] = 0 ranks["-0b1"] = -1 for i in range(len(grid)): for j in range(len(grid[i])): if type(grid[i][j]) is list: for k in range(len(grid[i][j])): assignments[i][j][k] = ranks[grid[i][j][k]] else: assignments[i][j] = ranks[grid[i][j]] return assignments def cluster_types(types, max_clust=12): """ Generates a dictionary mapping each binary number in types to an integer from 0 to max_clust. Hierarchical clustering is used to determine which which binary numbers should map to the same integer. """ if len(types) < max_clust: max_clust = len(types) # Do actual clustering cluster_dict = do_clustering(types, max_clust) cluster_ranks = rank_clusters(cluster_dict) # Create a dictionary mapping binary numbers to indices ranks = {} for key in cluster_dict: for typ in cluster_dict[key]: ranks[typ] = cluster_ranks[key] return ranks def rank_types(types): """ Takes a list of binary numbers and returns a dictionary mapping each binary number to an integer indicating it's rank within the list. This is basically the better alternative to cluster_types, that works in that perfect world where we have few enough types to represent each as its own color. """ include_null = '0b0' in types sorted_types = deepcopy(types) for i in range(len(sorted_types)): sorted_types[i] = int(sorted_types[i], 2) sorted_types.sort() ranks = {} for t in types: ranks[t] = sorted_types.index(eval(t)) + int(not include_null) return ranks def make_count_grid(data): """ Takes a 2 or 3d grid of strings representing binary numbers. Returns a grid of the same dimensions in which each binary number has been replaced by an integer indicating the number of ones that were in that number. """ data = deepcopy(data) for i in range(len(data)): for j in range(len(data[i])): for k in range(len(data[i][j])): if type(data[i][j][k]) is list: for l in range(len(data[i][j][k])): try: data[i][j][k] = data[i][j][k][l].count("1") except: data[i][j][k] = len(data[i][j][k][l]) else: try: data[i][j][k] = data[i][j][k].count("1") except: data[i][j][k] = len(data[i][j][k]) return data def make_optimal_phenotype_grid(environment, phenotypes): """ Takes an EnvironmentFile object and a 2d array of phenotypes and returns a 2d array in which each location contains an index representing the distance between the phenotype in that location and the optimal phenotype for that location. This is acheived by using the task list in the EnvironmentFile to convert the phenotypes to sets of tasks, and comparing them to the sets of resources in the environment. So if the environment file that you created the EnvironmentFile object from for some reason doesn't contain all of the tasks, or doesn't contain them in the right order this won't work. If this is the environment file that you used for the run of Avida that generated this data, you should be fine. """ world_size = environment.size phenotypes = deepcopy(phenotypes) for i in range(world_size[1]): for j in range(world_size[0]): for k in range(len(phenotypes[i][j])): phenotype = phenotype_to_res_set(phenotypes[i][j][k], environment.tasks) diff = len(environment[i][j].symmetric_difference(phenotype)) phenotypes[i][j][k] = diff return phenotypes def task_percentages(data, n_tasks=9): """ Takes a 3D array of strings representing binary numbers and calculates the percentage of organisms in each cell (across multiple files) that were doing a given task. Returns an m x n x n_tasks array indicating the percentages of organisms at each location (across the 3rd dimension) that were doing each task. """ pdata = deepcopy(data)
duplicate if parametercollision: # parameters disagree if name != "": raise ooferror.ErrSetupError("Named property in datafile conflicts with existing property '%s'" % name) # reparametrization of unnamed property if reg.materials: raise ooferror.ErrSetupError("Unnamed property in datafile conflicts with existing property '%s'" % name) # Unnamed property is being reparametrized, but it's # not used in any materials, so it's ok. reg.new_params(**kwargs) switchboard.notify("redraw") # A name collision with no parameter collision doesn't # require any action. The data file contained a property # identical to an existing property. else: # No collision, we must create a new NamedRegistration. # We know it's a NamedRegistration because unnamed # property registrations *always* produce a name conflict. fullname = string.join( treepath + [name], ":") newreg = reg.named_copy(fullname, menuitem.params[1:]) switchboard.notify("redraw") #=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=# # _PropertyStructureInfo and its helper classes, _PropertyFieldInfo # and _PSInfo, keep track of how a Property is used, ie, how it # interacts with Fields, Fluxes, and Equations. class _PropertyFieldInfo: def __init__(self, time_derivs, nonlinear, time_dependent): self.time_derivs = time_derivs self.nonlinear = nonlinear self.time_dependent = time_dependent class _PSInfo: # _PSInfo is used within _PropertyStructureInfo to store the # fields used by a single Flux or Equation. def __init__(self): self._fields = {} def add(self, field, time_derivs, nonlinear, time_dependent): # field might be None if the property doesn't have any field dependence self._fields[field] = _PropertyFieldInfo(time_derivs, nonlinear, time_dependent) def fields(self): return self._fields.keys() def fields_of_order(self, order): return [f for f in self._fields if (f is not None and order in self._fields[f].time_derivs)] def nonlinear(self, fields): # Is the property nonlinear in any of the given fields? for field in fields+[None]: try: if self._fields[field].nonlinear: return True except KeyError: pass return False def timeDependent(self, fields): for field in fields+[None]: try: if self._fields[field].time_dependent: return True except KeyError: pass return False class _PropertyStructureInfo: def __init__(self): self._dict = {} # key = Flux or Equation obj, value = _PSInfo def add(self, obj, field, time_derivs=[], nonlinear=False, time_dependent=False): # obj is either a Flux or an Equation try: info = self._dict[obj] except KeyError: info = self._dict[obj] = _PSInfo() info.add(field, time_derivs, nonlinear, time_dependent) def fields(self): flds = set() for pinfo in self._dict.values(): flds.update(pinfo.fields()) return [f for f in flds if f is not None] # These functions *could* use the "fields_of_order(x)" scheme, but # in the calling context (subproblem and materials), they're # really clearer this way. def first_order_fields(self, objs): flds = set() for obj in objs: try: flds.update(self._dict[obj].fields_of_order(1)) except KeyError: pass return list(flds) def second_order_fields(self, objs): flds = set() for obj in objs: try: flds.update(self._dict[obj].fields_of_order(2)) except KeyError: pass return list(flds) def time_deriv_fields(self, objs): flds = set() for obj in objs: try: flds.update(self._dict[obj].fields_of_order(1)) flds.update(self._dict[obj].fields_of_order(2)) except KeyError: pass return list(flds) def all(self): return self._dict.keys() def nonlinear(self, fields): for key,pinfo in self._dict.items(): if pinfo.nonlinear(fields): return True return False def timeDependent(self, fields): for pinfo in self._dict.values(): if pinfo.timeDependent(fields): return True return False #=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=##=-=# # Property registrations live in the tree data structure of the # PropertyManager, and consequently are managed separately from the # usual OOF Registration mechanism. They do their own tree-based # collision detection, and are not known to the global OOF namespace. # Properties are instanced via the "OOF.Property.Create..." menu in # scripts, and parametrized via the "OOF.Property.Parametrize..." # menu. PropertyRegistration and NamedPropertyRegistration objects # differ in that the former construct a default name for themselves, # whereas the latter accept one as an argument. Both prepend the # resulting name as a parameter to their parameter list. class PropertyRegistrationParent: def __init__(self, subclass, modulename, ordering, secret): self.subclass = subclass # for PythonExportability of Property self.modulename = modulename # ditto self.ordering = ordering properties.Property.registry.append(self) self._secret = secret def unregister(self): del properties.Property.registry[self.getIndex()] def getIndex(self): for i in range(len(properties.Property.registry)): if properties.Property.registry[i] is self: return i def secret(self): return self._secret # PropertyRegistration knows special things about itself, like the # fact that all properties have names as their first arguments. # Property nonlinearity is stored here at registration-time, by # passing "nonlinear=1" in to here. Nonlinear properties force the # recomputation of the stiffness matrix when mesh.make_stiffness is # called, even if the mesh itself hasn't changed. class PropertyRegistration(PropertyRegistrationParent): def __init__(self, name, subclass, modulename, ordering, params=[], propertyType=None, outputs=[], secret=0, interfaceCompatibility=interfaceparameters.COMPATIBILITY_BULK_ONLY, interfaceDiscontinuousFields=[], tip=None, discussion=None): PropertyRegistrationParent.__init__(self, subclass, modulename, ordering, secret) # Save the fully-qualified name for error reporting. This # datum should not be confused with the parameter "name", # which contains only the leaf part of the FQN. self._name = name # Keep a copy of the local parameters. self.params = params # Equations to which this property makes *direct* # contributions (ie, not via a flux). This is a basically a # dictionary of _PSInfo objects, keyed by Equation. self._equations = _PropertyStructureInfo() # Ditto, for Fluxes instead of Equations self._fluxes = _PropertyStructureInfo() self._constraints = _PropertyStructureInfo() self._outputs = outputs # names of PropOutputs it contributes to self.tip = tip self.discussion = discussion # discussion string or loadFile if propertyType is None: raise ooferror.ErrPyProgrammingError( "Missing propertyType in PropertyRegistration %s" % name) self._propertyType=propertyType #Interface branch self._interfaceCompatibility=interfaceCompatibility self._interfaceDiscontinuities=interfaceDiscontinuousFields # name-indexed dictionary of materials in which this property # occurs -- it is managed by the MaterialProps objects, except # in the new_params call, where it is local. self.materials = {} # At creation time, all parameters are new. self.new_params() # Add yourself to the AllProperties data object. "name" # must be the fully qualified name of the property. AllProperties[name]=self # This returns the fully-qualified name in the labeltree. def name(self): return self._name def baseName(self): # different in NamedPropertyRegistration return self._name # After creating a Registration, eqnInfo and fluxInfo must be # called to indicate which Fields the Property uses, and how they # appear in the Equations and Fluxes. # # The nonlinear arg can be either a list or tuple of Fields in # which the Property is nonlinear, or a bool. If it's a bool, it # applies to all Fields in the fields arg. def fluxInfo(self, fluxes, fields=[None], time_derivs=[], nonlinear=False, time_dependent=False): for flux in fluxes: for field in fields: nl = ((isinstance(nonlinear, (types.ListType, types.TupleType)) and field in nonlinear) or nonlinear) self._fluxes.add(flux, field, time_derivs, nl, time_dependent) def eqnInfo(self, equations, fields=[None], time_derivs=[], nonlinear=False, time_dependent=False): # fields == [None] means that the property makes a # contribution to the equation when no fields are defined. # fields==[] is different! It means that the property makes # no contributions. for eqn in equations: for field in fields: nl = ((isinstance(nonlinear, (types.ListType, types.TupleType)) and field in nonlinear) or nonlinear) self._equations.add(eqn, field, time_derivs, nl, time_dependent) def constraintInfo(self,equations,fields=[None]): # Constraint equations the property contributes to, if any. # The fields mentioned must be defined but need not be active. for eqn in equations: for field in fields: self._constraints.add(eqn, field) def discontinuousFields(self): return self._interfaceDiscontinuities # These functions are different in the NamedPropertyRegistration def nonlinear(self, fields): return (self._fluxes.nonlinear(fields) or self._equations.nonlinear(fields)) def timeDependent(self, fields): return (self._fluxes.timeDependent(fields) or self._equations.timeDependent(fields)) def fields(self): return set(self._equations.fields() + self._fluxes.fields()) def second_order_fields(self, *equations): return self._equations.second_order_fields(equations) def first_order_fields(self, *equations): return self._equations.first_order_fields(equations) def time_deriv_fields(self, *equations): return self._equations.time_deriv_fields(equations) def fluxes(self): return self._fluxes.all() def equations(self): return self._equations.all() def propertyType(self): return self._propertyType def outputs(self): return self._outputs def is_property_type(self, other_name): # Don't use self._propertyType, you might be the derived class. return self.propertyType()==other_name #Interface branch def interfaceCompatibility(self): return self._interfaceCompatibility # "Call" method creates a property instance from a registration. # This is the only way to create a property instance, and this # routine does not do any book-keeping with the AllProperties # object. We do not use the Registration class's __call__ method, # because we need to pass the registration itself as an argument to # the property constructor. def __call__(self): return self.subclass(self, self._name, *[p.value for p in self.params]) # Collision looks for the name under this tree, and if it finds # it, checks if the parameter values are all equal. Called by # PropertyManager.creatorcallback, which is the callback for # OOF.LoadData.Property. # Return value is (namecollision, parametercollision) def collision(self, name, params): if name == "": for ppair in zip(params, self.params): if ppair[0].value !=
# -*- coding: utf-8 -*- # # *********************************************************************************** # MIT License # # Copyright (c) 2020 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is furnished # to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF # CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # *********************************************************************************** from ..utils import * IID_IDXGIObject = MIDL_INTERFACE( "{AEC22FB8-76F3-4639-9BE0-28EB43A67A2E}" ) class IDXGIObject(comtypes.IUnknown): _case_insensitive_ = True _idlflags_ = [] _iid_ = IID_IDXGIObject class DXGI_FRAME_STATISTICS(ctypes.Structure): pass class DXGI_MAPPED_RECT(ctypes.Structure): pass class _LUID(ctypes.Structure): pass LUID = _LUID class DXGI_ADAPTER_DESC(ctypes.Structure): pass class DXGI_OUTPUT_DESC(ctypes.Structure): pass class DXGI_SHARED_RESOURCE(ctypes.Structure): pass class DXGI_SURFACE_DESC(ctypes.Structure): pass class DXGI_SWAP_CHAIN_DESC(ctypes.Structure): pass class DXGI_ADAPTER_DESC1(ctypes.Structure): pass class DXGI_DISPLAY_COLOR_SPACE(ctypes.Structure): pass class IDXGIDeviceSubObject(comtypes.IUnknown): _case_insensitive_ = True _iid_ = None _idlflags_ = [] class IDXGIResource(comtypes.IUnknown): _case_insensitive_ = True _iid_ = None _idlflags_ = [] class IDXGIKeyedMutex(comtypes.IUnknown): _case_insensitive_ = True _iid_ = None _idlflags_ = [] class IDXGISurface(comtypes.IUnknown): _case_insensitive_ = True _iid_ = None _idlflags_ = [] class IDXGISurface1(comtypes.IUnknown): _case_insensitive_ = True _iid_ = None _idlflags_ = [] class IDXGIAdapter(comtypes.IUnknown): _case_insensitive_ = True _iid_ = None _idlflags_ = [] class IDXGIOutput(comtypes.IUnknown): _case_insensitive_ = True _iid_ = None _idlflags_ = [] class IDXGISwapChain(comtypes.IUnknown): _case_insensitive_ = True _iid_ = None _idlflags_ = [] class IDXGIFactory(comtypes.IUnknown): _case_insensitive_ = True _iid_ = None _idlflags_ = [] class IDXGIDevice(comtypes.IUnknown): _case_insensitive_ = True _iid_ = None _idlflags_ = [] class IDXGIFactory1(comtypes.IUnknown): _case_insensitive_ = True _iid_ = None _idlflags_ = [] class IDXGIAdapter1(comtypes.IUnknown): _case_insensitive_ = True _iid_ = None _idlflags_ = [] class IDXGIDevice1(comtypes.IUnknown): _case_insensitive_ = True _iid_ = None _idlflags_ = [] from .dxgicommon_h import * # NOQA from .dxgitype_h import * # NOQA DXGI_USAGE = UINT DXGI_FRAME_STATISTICS._fields_ = [ ('PresentCount', UINT), ('PresentRefreshCount', UINT), ('SyncRefreshCount', UINT), ('SyncQPCTime', LARGE_INTEGER), ('SyncGPUTime', LARGE_INTEGER), ] DXGI_MAPPED_RECT._fields_ = [ ('Pitch', INT), ('pBits', POINTER(BYTE)), ] _LUID._fields_ = [ ('LowPart', DWORD), ('HighPart', LONG), ] PLUID = POINTER(_LUID) DXGI_ADAPTER_DESC._fields_ = [ ('Description', WCHAR * 128), ('VendorId', UINT), ('DeviceId', UINT), ('SubSysId', UINT), ('Revision', UINT), ('DedicatedVideoMemory', SIZE_T), ('DedicatedSystemMemory', SIZE_T), ('SharedSystemMemory', SIZE_T), ('AdapterLuid', LUID), ] HMONITOR = HANDLE DXGI_OUTPUT_DESC._fields_ = [ ('DeviceName', WCHAR * 32), ('DesktopCoordinates', RECT), ('AttachedToDesktop', BOOL), ('Rotation', DXGI_MODE_ROTATION), ('Monitor', HMONITOR), ] DXGI_SHARED_RESOURCE._fields_ = [ ('Handle', HANDLE), ] class DXGI_RESIDENCY(ENUM): DXGI_RESIDENCY_FULLY_RESIDENT = 1 DXGI_RESIDENCY_RESIDENT_IN_SHARED_MEMORY = 2 DXGI_RESIDENCY_EVICTED_TO_DISK = 3 DXGI_SURFACE_DESC._fields_ = [ ('Width', UINT), ('Height', UINT), ('Format', DXGI_FORMAT), ('SampleDesc', DXGI_SAMPLE_DESC), ] class DXGI_SWAP_EFFECT(ENUM): DXGI_SWAP_EFFECT_DISCARD = 0 DXGI_SWAP_EFFECT_SEQUENTIAL = 1 DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL = 3 DXGI_SWAP_EFFECT_FLIP_DISCARD = 4 class DXGI_SWAP_CHAIN_FLAG(ENUM): DXGI_SWAP_CHAIN_FLAG_NONPREROTATED = 1 DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH = 2 DXGI_SWAP_CHAIN_FLAG_GDI_COMPATIBLE = 4 DXGI_SWAP_CHAIN_FLAG_RESTRICTED_CONTENT = 8 DXGI_SWAP_CHAIN_FLAG_RESTRICT_SHARED_RESOURCE_DRIVER = 16 DXGI_SWAP_CHAIN_FLAG_DISPLAY_ONLY = 32 DXGI_SWAP_CHAIN_FLAG_FRAME_LATENCY_WAITABLE_OBJECT = 64 DXGI_SWAP_CHAIN_FLAG_FOREGROUND_LAYER = 128 DXGI_SWAP_CHAIN_FLAG_FULLSCREEN_VIDEO = 256 DXGI_SWAP_CHAIN_FLAG_YUV_VIDEO = 512 DXGI_SWAP_CHAIN_FLAG_HW_PROTECTED = 1024 DXGI_SWAP_CHAIN_FLAG_ALLOW_TEARING = 2048 DXGI_SWAP_CHAIN_FLAG_RESTRICTED_TO_ALL_HOLOGRAPHIC_DISPLAYS = 4096 DXGI_SWAP_CHAIN_DESC._fields_ = [ ('BufferDesc', DXGI_MODE_DESC), ('SampleDesc', DXGI_SAMPLE_DESC), ('BufferUsage', DXGI_USAGE), ('BufferCount', UINT), ('OutputWindow', HWND), ('Windowed', BOOL), ('SwapEffect', DXGI_SWAP_EFFECT), ('Flags', UINT), ] IID_IDXGIObject = MIDL_INTERFACE( "{AEC22FB8-76F3-4639-9BE0-28EB43A67A2E}" ) IDXGIObject._iid_ = IID_IDXGIObject IDXGIObject._methods_ = [ COMMETHOD( [helpstring('Method SetPrivateData')], HRESULT, 'SetPrivateData', (['in'], REFGUID, 'Name'), (['in'], UINT, 'DataSize'), (['in'], POINTER(VOID), 'pData'), ), COMMETHOD( [helpstring('Method SetPrivateDataInterface')], HRESULT, 'SetPrivateDataInterface', (['in'], REFGUID, 'Name'), (['in'], POINTER(comtypes.IUnknown), 'pUnknown'), ), COMMETHOD( [helpstring('Method GetPrivateData')], HRESULT, 'GetPrivateData', (['in'], REFGUID, 'Name'), (['out', 'in'], POINTER(UINT), 'pDataSize'), (['out'], POINTER(VOID), 'pData'), ), COMMETHOD( [helpstring('Method GetParent')], HRESULT, 'GetParent', (['in'], REFIID, 'riid'), (['out'], POINTER(POINTER(VOID)), 'ppParent'), ), ] IID_IDXGIDeviceSubObject = MIDL_INTERFACE( "{3D3E0379-F9DE-4D58-BB6C-18D62992F1A6}" ) IDXGIDeviceSubObject._iid_ = IID_IDXGIDeviceSubObject IDXGIDeviceSubObject._methods_ = [ COMMETHOD( [helpstring('Method GetDevice')], HRESULT, 'GetDevice', (['in'], REFIID, 'riid'), (['out'], POINTER(POINTER(VOID)), 'ppDevice'), ), ] IID_IDXGIResource = MIDL_INTERFACE( "{035F3AB4-482E-4E50-B41F-8A7F8BD8960B}" ) IDXGIResource._iid_ = IID_IDXGIResource IDXGIResource._methods_ = [ COMMETHOD( [helpstring('Method GetSharedHandle')], HRESULT, 'GetSharedHandle', (['out'], POINTER(HANDLE), 'pSharedHandle'), ), COMMETHOD( [helpstring('Method GetUsage')], HRESULT, 'GetUsage', (['out'], POINTER(DXGI_USAGE), 'pUsage'), ), COMMETHOD( [helpstring('Method SetEvictionPriority')], HRESULT, 'SetEvictionPriority', (['in'], UINT, 'EvictionPriority'), ), COMMETHOD( [helpstring('Method GetEvictionPriority')], HRESULT, 'GetEvictionPriority', (['out'], POINTER(UINT), 'pEvictionPriority'), ), ] IID_IDXGIKeyedMutex = MIDL_INTERFACE( "{9D8E1289-D7B3-465F-8126-250E349AF85D}" ) IDXGIKeyedMutex._iid_ = IID_IDXGIKeyedMutex IDXGIKeyedMutex._methods_ = [ COMMETHOD( [helpstring('Method AcquireSync')], HRESULT, 'AcquireSync', (['in'], UINT64, 'Key'), (['in'], DWORD, 'dwMilliseconds'), ), COMMETHOD( [helpstring('Method ReleaseSync')], HRESULT, 'ReleaseSync', (['in'], UINT64, 'Key'), ), ] IID_IDXGISurface = MIDL_INTERFACE( "{CAFCB56C-6AC3-4889-BF47-9E23BBD260EC}" ) IDXGISurface._iid_ = IID_IDXGISurface IDXGISurface._methods_ = [ COMMETHOD( [helpstring('Method GetDesc')], HRESULT, 'GetDesc', (['out'], POINTER(DXGI_SURFACE_DESC), 'pDesc'), ), COMMETHOD( [helpstring('Method Map')], HRESULT, 'Map', (['out'], POINTER(DXGI_MAPPED_RECT), 'pLockedRect'), (['in'], UINT, 'MapFlags'), ), COMMETHOD( [helpstring('Method Unmap')], HRESULT, 'Unmap', ), ] IID_IDXGISurface1 = MIDL_INTERFACE( "{4AE63092-6327-4C1B-80AE-BFE12EA32B86}" ) IDXGISurface1._iid_ = IID_IDXGISurface1 IDXGISurface1._methods_ = [ COMMETHOD( [helpstring('Method GetDC')], HRESULT, 'GetDC', (['in'], BOOL, 'Discard'), (['out'], POINTER(HDC), 'phdc'), ), COMMETHOD( [helpstring('Method ReleaseDC')], HRESULT, 'ReleaseDC', (['in'], POINTER(RECT), 'pDirtyRect'), ), ] IID_IDXGIAdapter = MIDL_INTERFACE( "{2411E7E1-12AC-4CCF-BD14-9798E8534DC0}" ) IDXGIAdapter._iid_ = IID_IDXGIAdapter IDXGIAdapter._methods_ = [ COMMETHOD( [helpstring('Method EnumOutputs')], HRESULT, 'EnumOutputs', (['in'], UINT, 'Output'), (['out'], POINTER(POINTER(IDXGIOutput)), 'ppOutput'), ), COMMETHOD( [helpstring('Method GetDesc')], HRESULT, 'GetDesc', (['out'], POINTER(DXGI_ADAPTER_DESC), 'pDesc'), ), COMMETHOD( [helpstring('Method CheckInterfaceSupport')], HRESULT, 'CheckInterfaceSupport', (['in'], REFGUID, 'InterfaceName'), (['out'], POINTER(LARGE_INTEGER), 'pUMDVersion'), ), ] IID_IDXGIOutput = MIDL_INTERFACE( "{AE02EEDB-C735-4690-8D52-5A8DC20213AA}" ) IDXGIOutput._iid_ = IID_IDXGIOutput IDXGIOutput._methods_ = [ COMMETHOD( [helpstring('Method GetDesc')], HRESULT, 'GetDesc', (['out'], POINTER(DXGI_OUTPUT_DESC), 'pDesc'), ), COMMETHOD( [helpstring('Method GetDisplayModeList')], HRESULT, 'GetDisplayModeList', (['in'], DXGI_FORMAT, 'EnumFormat'), (['in'], UINT, 'Flags'), (['out', 'in'], POINTER(UINT), 'pNumModes'), (['out'], POINTER(DXGI_MODE_DESC), 'pDesc'), ), COMMETHOD( [helpstring('Method FindClosestMatchingMode')], HRESULT, 'FindClosestMatchingMode', (['in'], POINTER(DXGI_MODE_DESC), 'pModeToMatch'), (['out'], POINTER(DXGI_MODE_DESC), 'pClosestMatch'), (['in'], POINTER(comtypes.IUnknown), 'pConcernedDevice'), ), COMMETHOD( [helpstring('Method WaitForVBlank')], HRESULT, 'WaitForVBlank', ), COMMETHOD( [helpstring('Method TakeOwnership')], HRESULT, 'TakeOwnership', (['in'], POINTER(comtypes.IUnknown), 'pDevice'), ([], BOOL, 'Exclusive'), ), COMMETHOD( [helpstring('Method ReleaseOwnership')], VOID, 'ReleaseOwnership', ), COMMETHOD( [helpstring('Method GetGammaControlCapabilities')], HRESULT, 'GetGammaControlCapabilities', ( ['out'], POINTER(DXGI_GAMMA_CONTROL_CAPABILITIES), 'pGammaCaps' ), ), COMMETHOD( [helpstring('Method SetGammaControl')], HRESULT, 'SetGammaControl', (['in'], POINTER(DXGI_GAMMA_CONTROL), 'pArray'), ), COMMETHOD( [helpstring('Method GetGammaControl')], HRESULT, 'GetGammaControl', (['out'], POINTER(DXGI_GAMMA_CONTROL), 'pArray'), ), COMMETHOD( [helpstring('Method SetDisplaySurface')], HRESULT, 'SetDisplaySurface', (['in'], POINTER(IDXGISurface), 'pScanoutSurface'), ), COMMETHOD( [helpstring('Method GetDisplaySurfaceData')], HRESULT, 'GetDisplaySurfaceData', (['in'], POINTER(IDXGISurface), 'pDestination'), ), COMMETHOD( [helpstring('Method GetFrameStatistics')], HRESULT, 'GetFrameStatistics', (['out'], POINTER(DXGI_FRAME_STATISTICS), 'pStats'), ), ] IID_IDXGISwapChain = MIDL_INTERFACE( "{310D36A0-D2E7-4C0A-AA04-6A9D23B8886A}" ) IDXGISwapChain._iid_ = IID_IDXGISwapChain IDXGISwapChain._methods_ = [ COMMETHOD( [helpstring('Method Present')], HRESULT, 'Present', (['in'], UINT, 'SyncInterval'), (['in'], UINT, 'Flags'), ), COMMETHOD( [helpstring('Method GetBuffer')], HRESULT, 'GetBuffer', (['in'], UINT, 'Buffer'), (['in'], REFIID, 'riid'), (['out'], POINTER(POINTER(VOID)), 'ppSurface'), ), COMMETHOD( [helpstring('Method SetFullscreenState')], HRESULT, 'SetFullscreenState', (['in'], BOOL, 'Fullscreen'), (['in'], POINTER(IDXGIOutput), 'pTarget'), ), COMMETHOD( [helpstring('Method GetFullscreenState')], HRESULT, 'GetFullscreenState', (['out'], POINTER(BOOL), 'pFullscreen'), (['out'], POINTER(POINTER(IDXGIOutput)), 'ppTarget'), ), COMMETHOD( [helpstring('Method GetDesc')], HRESULT, 'GetDesc', (['out'], POINTER(DXGI_SWAP_CHAIN_DESC), 'pDesc'), ), COMMETHOD( [helpstring('Method ResizeBuffers')], HRESULT, 'ResizeBuffers', (['in'], UINT, 'BufferCount'), (['in'], UINT, 'Width'), (['in'], UINT, 'Height'), (['in'], DXGI_FORMAT, 'NewFormat'), (['in'], UINT, 'SwapChainFlags'), ), COMMETHOD( [helpstring('Method ResizeTarget')], HRESULT, 'ResizeTarget', (['in'], POINTER(DXGI_MODE_DESC), 'pNewTargetParameters'), ), COMMETHOD( [helpstring('Method GetContainingOutput')], HRESULT, 'GetContainingOutput', (['out'], POINTER(POINTER(IDXGIOutput)), 'ppOutput'), ), COMMETHOD( [helpstring('Method GetFrameStatistics')], HRESULT, 'GetFrameStatistics', (['out'], POINTER(DXGI_FRAME_STATISTICS), 'pStats'), ), COMMETHOD( [helpstring('Method GetLastPresentCount')], HRESULT, 'GetLastPresentCount', (['out'], POINTER(UINT), 'pLastPresentCount'), ), ] IID_IDXGIFactory = MIDL_INTERFACE( "{7B7166EC-21C7-44AE-B21A-C9AE321AE369}" ) IDXGIFactory._iid_ = IID_IDXGIFactory IDXGIFactory._methods_ = [ COMMETHOD( [helpstring('Method EnumAdapters')], HRESULT, 'EnumAdapters', (['in'], UINT, 'Adapter'), (['out'], POINTER(POINTER(IDXGIAdapter)), 'ppAdapter'), ), COMMETHOD( [helpstring('Method MakeWindowAssociation')], HRESULT, 'MakeWindowAssociation', (['in'], HWND, 'WindowHandle'), (['in'], UINT, 'Flags'), ), COMMETHOD( [helpstring('Method GetWindowAssociation')], HRESULT, 'GetWindowAssociation', (['out'], POINTER(HWND), 'pWindowHandle'), ), COMMETHOD( [helpstring('Method CreateSwapChain')], HRESULT, 'CreateSwapChain', (['in'], POINTER(comtypes.IUnknown), 'pDevice'), (['in'], POINTER(DXGI_SWAP_CHAIN_DESC), 'pDesc'), ( ['out'], POINTER(POINTER(IDXGISwapChain)), 'ppSwapChain' ), ), COMMETHOD( [helpstring('Method CreateSoftwareAdapter')], HRESULT, 'CreateSoftwareAdapter', (['in'], HMODULE, 'Module'), (['out'], POINTER(POINTER(IDXGIAdapter)), 'ppAdapter'), ), ] dxgi = ctypes.windll.DXGI # HRESULT WINAPI CreateDXGIFactory(REFIID riid, _COM_Outptr_ VOID **ppFactory); CreateDXGIFactory = dxgi.CreateDXGIFactory CreateDXGIFactory.restype = HRESULT # HRESULT WINAPI CreateDXGIFactory1(REFIID riid, _COM_Outptr_ VOID **ppFactory); CreateDXGIFactory1 = dxgi.CreateDXGIFactory1 CreateDXGIFactory1.restype = HRESULT IID_IDXGIDevice = MIDL_INTERFACE( "{54EC77FA-1377-44E6-8C32-88FD5F44C84C}" ) IDXGIDevice._iid_ = IID_IDXGIDevice IDXGIDevice._methods_ = [ COMMETHOD( [helpstring('Method GetAdapter')], HRESULT, 'GetAdapter', (['out'], POINTER(POINTER(IDXGIAdapter)), 'pAdapter'), ), COMMETHOD( [helpstring('Method CreateSurface')], HRESULT, 'CreateSurface', (['in'], POINTER(DXGI_SURFACE_DESC), 'pDesc'), (['in'], UINT, 'NumSurfaces'), (['in'], DXGI_USAGE, 'Usage'), ( ['in'], POINTER(DXGI_SHARED_RESOURCE), 'pSharedResource' ), (['out'], POINTER(POINTER(IDXGISurface)), 'ppSurface'), ), COMMETHOD( [helpstring('Method QueryResourceResidency')], HRESULT, 'QueryResourceResidency', (['in'], POINTER(comtypes.IUnknown), 'ppResources'), (['out'], POINTER(DXGI_RESIDENCY), 'pResidencyStatus'), (['in'], UINT, 'NumResources'), ), COMMETHOD( [helpstring('Method SetGPUThreadPriority')], HRESULT, 'SetGPUThreadPriority', (['in'], INT, 'Priority'), ), COMMETHOD( [helpstring('Method GetGPUThreadPriority')], HRESULT, 'GetGPUThreadPriority', (['out'], POINTER(INT), 'pPriority'), ), ] class DXGI_ADAPTER_FLAG(ENUM): DXGI_ADAPTER_FLAG_NONE = 0 DXGI_ADAPTER_FLAG_REMOTE = 1 DXGI_ADAPTER_FLAG_SOFTWARE = 2 DXGI_ADAPTER_FLAG_FORCE_DWORD = 0xFFFFFFFF DXGI_ADAPTER_DESC1._fields_ = [ ('Description', WCHAR * 128), ('VendorId', UINT), ('DeviceId', UINT), ('SubSysId', UINT), ('Revision', UINT), ('DedicatedVideoMemory', SIZE_T), ('DedicatedSystemMemory', SIZE_T), ('SharedSystemMemory', SIZE_T), ('AdapterLuid', LUID), ('Flags', UINT), ] DXGI_DISPLAY_COLOR_SPACE._fields_ = [ ('PrimaryCoordinates', (FLOAT * 8) * 2), ('WhitePoints', (FLOAT * 16) * 2), ] IID_IDXGIFactory1 = MIDL_INTERFACE( "{770AAE78-F26F-4DBA-A829-253C83D1B387}" ) IDXGIFactory1._iid_ = IID_IDXGIFactory1 IDXGIFactory1._methods_ = [ COMMETHOD( [helpstring('Method EnumAdapters1')], HRESULT, 'EnumAdapters1', (['in'], UINT, 'Adapter'), (['out'], POINTER(POINTER(IDXGIAdapter1)), 'ppAdapter'), ), COMMETHOD( [helpstring('Method IsCurrent')], BOOL, 'IsCurrent', ), ] IID_IDXGIAdapter1 = MIDL_INTERFACE( "{29038F61-3839-4626-91FD-086879011A05}" ) IDXGIAdapter1._iid_ = IID_IDXGIAdapter1 IDXGIAdapter1._methods_ = [ COMMETHOD( [helpstring('Method GetDesc1')], HRESULT, 'GetDesc1', (['out'], POINTER(DXGI_ADAPTER_DESC1), 'pDesc'),
to libcgroup path.") bz2FileName = g_OSlib.getBz2FilePath() curPath = os.path.dirname(os.path.realpath(__file__)) libCgroupPath = os.path.realpath("%s/../../libcgroup" % curPath) if not os.path.exists(libCgroupPath): os.makedirs(libCgroupPath) cmd = "tar -xf %s -C %s" % (bz2FileName, libCgroupPath) (status, output) = subprocess.getstatusoutput(cmd) if status != 0: self.logger.logExit(ErrorCode.GAUSS_502["GAUSS_50217"] % bz2FileName + " Error: \n%s" % output) # load library path env ld_path = os.path.join(libCgroupPath, "lib") if 'LD_LIBRARY_PATH' not in os.environ: os.environ['LD_LIBRARY_PATH'] = ld_path os.execve(os.path.realpath(__file__), sys.argv, os.environ) if not os.environ.get('LD_LIBRARY_PATH').startswith(ld_path): os.environ['LD_LIBRARY_PATH'] = ld_path + ":" + os.environ['LD_LIBRARY_PATH'] os.execve(os.path.realpath(__file__), sys.argv, os.environ) def setCgroup(self): """ function: Setting Cgroup input : NA output: NA """ if self.needSetCgroup(): return self.logger.debug("Setting Cgroup.") # decompress server pakcage self.decompressPkg2Cgroup() #create temp directory for libcgroup etc cgroup_etc_dir = "%s/%s/etc" % (self.clusterToolPath, self.user) dirName = os.path.dirname(os.path.realpath(__file__)) libcgroup_dir = os.path.realpath("%s/../../libcgroup/lib/libcgroup.so" % dirName) cgroup_exe_dir = os.path.realpath("%s/../../libcgroup/bin/gs_cgroup" % dirName) cmd = "rm -rf '%s/%s'" % (self.clusterToolPath, self.user) (status, output) = DefaultValue.retryGetstatusoutput(cmd) if status != 0: self.logger.logExit(ErrorCode.GAUSS_502["GAUSS_50207"] % 'crash Cgroup congiguration file' + " Error: \n%s" % output) cmd = "if [ ! -d '%s' ];then mkdir -p '%s' && " % (cgroup_etc_dir, cgroup_etc_dir) cmd += "chmod %s '%s'/../ -R && chown %s:%s '%s'/../ -R -h;fi" %\ (DefaultValue.KEY_DIRECTORY_MODE, cgroup_etc_dir, self.user, self.group, cgroup_etc_dir) (status, output) = subprocess.getstatusoutput(cmd) if status != 0: self.logger.logExit(ErrorCode.GAUSS_502["GAUSS_50208"] % cgroup_etc_dir + " Error: \n%s" % output) # check or prepare libcgroup lib libcgroup_target = "/usr/local/lib/libcgroup.so.1" cmd = "ldd %s | grep 'libcgroup.so.1'" % cgroup_exe_dir (status, output) = subprocess.getstatusoutput(cmd) if status != 0: self.logger.logExit(ErrorCode.GAUSS_514["GAUSS_51400"] % cmd + " Error: \n%s" % output) elif str(output).find("not found") != -1: cmd = "cp '%s' '%s' && ldconfig" % (libcgroup_dir, libcgroup_target) self.logger.debug("Need copy libcgroup.so.1 from %s to %s." % (libcgroup_dir, libcgroup_target)) (status, output) = subprocess.getstatusoutput(cmd) if status != 0: self.logger.logExit(ErrorCode.GAUSS_502["GAUSS_50214"] % libcgroup_target + " Error: \n%s" % output) GPHOME_cgroupCfgFile = "%s/%s/etc/gscgroup_%s.cfg" % (self.clusterToolPath, self.user, self.user) GAUSSHOME_cgroupCfgFile = "%s/etc/gscgroup_%s.cfg" % (self.clusterInfo.appPath, self.user) cmd = "(if [ -f '%s' ]; then cp '%s' '%s';fi)" % (GAUSSHOME_cgroupCfgFile, GAUSSHOME_cgroupCfgFile, GPHOME_cgroupCfgFile) self.logger.debug("Command for copying GAUSSHOME gscgroup's config file to GPHOME: %s\n" % cmd) (status, output) = subprocess.getstatusoutput(cmd) if status != 0: self.logger.logExit(ErrorCode.GAUSS_502["GAUSS_50214"] % GAUSSHOME_cgroupCfgFile + " Error:\n%s" % output) #create cgroup log file. binPath = self.clusterInfo.logPath + "/%s/bin/gs_cgroup/" % self.user if not os.path.exists(binPath): g_file.createDirectory(binPath) cgroupLog = binPath + "gs_cgroup.log" c_logger = GaussLog(cgroupLog, "gs_cgroup") #Get OS startup file initFile = DefaultValue.getOSInitFile() if initFile == "": raise Exception(ErrorCode.GAUSS_502["GAUSS_50201"] % "startup file of current OS" + "The startup file for euleros OS is /etc/rc.d/rc.local.") # call cgroup # generate cgroup config file under cluster tool path. # and then copy it to GAUSSHOME path in gs_install step. execute_cmd = "%s -U %s --upgrade -c -H %s/%s" % (cgroup_exe_dir, self.user, self.clusterToolPath, self.user) c_logger.debug("Command for executing gs_cgroup: %s\n" % execute_cmd) (status, output) = subprocess.getstatusoutput(execute_cmd) c_logger.debug("The result of execute gs_cgroup is:\n%s." % output) # set cgroup cmd to OS initFile. it will be executed at restart os system. gauss_home = self.clusterInfo.appPath init_cmd = "export LD_LIBRARY_PATH=%s/lib/ && %s/bin/gs_cgroup -U %s --upgrade -c -H %s" % \ (gauss_home, gauss_home, self.user, gauss_home) set_init_cmd = "sed -i \"/.* -U %s .* -c -H .*/d\" %s && " % (self.user, initFile) set_init_cmd += "echo \"%s\" >> %s" % (init_cmd, initFile) c_logger.debug("Command for call cgroup cmd to init file: %s\n" % set_init_cmd) (status, output) = subprocess.getstatusoutput(set_init_cmd) c_logger.debug("The result of init gs_cgroup is:\n%s." % output) c_logger.debug(str(output)) #Change the owner and permission. g_OSlib.checkLink(binPath) g_file.changeOwner(self.user, binPath, True, retryFlag = True) g_file.changeMode(DefaultValue.KEY_DIRECTORY_MODE, binPath, retryFlag = True) g_file.changeMode(DefaultValue.KEY_FILE_MODE, (binPath + "*"), retryFlag = True) if self.clusterInfo.logPath.strip() != "": pre_bin_path = self.clusterInfo.logPath + "/%s/bin" % self.user g_file.changeOwner(self.user, pre_bin_path, True, retryFlag = True) c_logger.closeLog() if status != 0: self.logger.logExit(str(output)) self.logger.debug("Successfully set Cgroup.") def checkaio(self): # check libaio.so file exist cmd = "ls /usr/local/lib | grep '^libaio.so' | wc -l" (status, output) = subprocess.getstatusoutput(cmd) if status != 0: self.logger.logExit(ErrorCode.GAUSS_514["GAUSS_51400"] % cmd + " Error: \n%s" % output) elif int(output) == 0: cmd = "ls /usr/lib64 | grep '^libaio.so' | wc -l" (status, output) = subprocess.getstatusoutput(cmd) if status != 0: self.logger.logExit(ErrorCode.GAUSS_514["GAUSS_51400"] % cmd + " Error: \n%s" % output) elif int(output) == 0: raise Exception(ErrorCode.GAUSS_502["GAUSS_50201"] % "libaio.so or libaio.so.*") def checkPlatformArm(self): """ function: Setting ARM Optimization input : NA output: NA """ self.logger.debug("Check if platform is ARM.") try: global ARM_PLATE cmd = "python3 -c 'import platform;print(platform.machine())'" self.logger.debug("Command for getting querying platform: %s" % cmd) (status, output) = subprocess.getstatusoutput(cmd) if status != 0: self.logger.logExit(ErrorCode.GAUSS_514["GAUSS_51400"] % cmd + " Error: \n%s" % output) if str(output) == "aarch64": ARM_PLATE = True except Exception as e: self.logger.logExit(str(e)) self.logger.debug("Successfully check platform ARM.") def setArmOptimization(self): """ function: Setting ARM Optimization input : NA output: NA """ self.logger.debug("Set ARM Optimization.") try: initFile = DefaultValue.getOSInitFile() clusterToolPath = self.clusterToolPath # set_arm_optimization init_cmd = "sed -i \"/(if test -f \'.*setArmOptimization.sh\';" \ " then export LC_ALL=C;" \ " sh .*setArmOptimization.sh;fi)/d\" %s && " \ % initFile init_cmd += "echo " \ "\"(if test -f \'%s/sudo/setArmOptimization.sh\';" \ " then export LC_ALL=C;" \ "sh %s/sudo/setArmOptimization.sh;fi)\" >> %s" \ % (clusterToolPath, clusterToolPath, initFile) (status, output) = subprocess.getstatusoutput(init_cmd) if status != 0: self.logger.logExit(ErrorCode.GAUSS_514["GAUSS_51400"] % init_cmd + " Error: \n%s" % output) cmd = "if test -f \'%s/sudo/setArmOptimization.sh\'; then export" \ " LC_ALL=C;sh %s/sudo/setArmOptimization.sh;fi" \ % (clusterToolPath, clusterToolPath) (status, output) = subprocess.getstatusoutput(cmd) if status != 0: self.logger.logExit(ErrorCode.GAUSS_514["GAUSS_51400"] % cmd + " Error: \n%s" % output) except Exception as e: self.logger.logExit(str(e)) self.logger.debug("Successfully set ARM Optimization.") def checkVirtualIp(self): """ function: Checking virtual IP input : NA output: NA """ self.logger.debug("Checking virtual IP...") try: global configuredIps configuredIps = DefaultValue.checkIsPing(g_nodeInfo.virtualIp) # check the self.hostnameList values are whether or not local IPs # obtain the all local IPs localAddrs = DefaultValue.getIpAddressList() for ip in g_nodeInfo.virtualIp: if (ip not in configuredIps) and (ip not in localAddrs): self.logger.logExit(ErrorCode.GAUSS_512["GAUSS_51224"] % ip) except Exception as e: self.logger.logExit(str(e)) self.logger.debug("Successfully check virtual IP.") # IP do operation with netmask def netNum(self, ip, mask): """ function: net number input : ip,mask output: netAddress """ ipArr = ip.split(".") maskArr = mask.split(".") binaryIpArr = [] binaryMaskArr = [] for element in ipArr: biElement = bin(int(element)).split("b")[1] binaryIpArr.append("0" * (8 - len(biElement)) + biElement) for element in maskArr: biElement = bin(int(element)).split("b")[1] binaryMaskArr.append("0" * (8 - len(biElement)) + biElement) binaryIp = ".".join(binaryIpArr) binaryMask = ".".join(binaryMaskArr) netAddress = "" for i in range(len(binaryMask)): if binaryMask[i] == ".": netAddress += "." elif binaryIp[i] == "0" or binaryMask[i] == "0": netAddress += "0" else: netAddress += "1" return netAddress def setVirtualIp(self): """ function: creating Virtual Ip input : NA output: NA """ # The node instance initialization information self.initNodeInfo() # Add temporary files, save the virtual IP The actual # configuration for the failure rollback if os.path.exists(self.tmpFile): g_file.removeFile(self.tmpFile) tmpFileFp = None # If this node is not configured virtual IP, exit if g_nodeInfo.virtualIp == []: return # Check whether have configured the virtual ip self.checkVirtualIp() # If the current node virtual iP are configured, Exit if configuredIps == []: self.logger.debug("All virtual IP are configured.") return self.logger.debug("Start setting virtual IP...") try: # check if the file is a link g_OSlib.checkLink(self.tmpFile) tmpFileFp = open(self.tmpFile, "w+") # Obtain network interface card of backIp, # get this virtual IP network adapter card through it. backIpNIC = DefaultValue.getNICNum(g_nodeInfo.backIps[0]) # Get this node netcard identifier already existing netcard cmd = "/sbin/ifconfig -a | grep '%s' | awk '{print $1}'" \ % backIpNIC (status, output) = subprocess.getstatusoutput(cmd) if status != 0: raise Exception(ErrorCode.GAUSS_506["GAUSS_50604"] % g_nodeInfo.backIps[0] + " Error: \n%s" % output) # Gets the currently available virtual NIC nicList = output.split('\n') flagValues = [] for nic in nicList: if nic.find(':') >= 0: flagList = nic.split(':') flag = flagList[1].strip() if flag.isdigit(): flagValues.append(int(flag)) vipNo = 0 if flagValues != []: flagValues.sort() vipNo = flagValues[-1] + 1 # Determine whether the same IP network segment. subnetMasks = [] for backIp in g_nodeInfo.backIps: # Get backIP subnet mask subnetMask = "" allNetworkInfo = g_network.getAllNetworkInfo() for network in allNetworkInfo: if backIp == network.ipAddress: subnetMask = network.networkMask # Check whether the same subnet mask backIP if not len(subnetMasks): subnetMasks.append(subnetMask) else: if subnetMask
return self._files def run(self): gem.copyNumberDistribution( self._input(True), output = self.files(), sampleName = self.pipeline.name ) class DuplicationStep(PipelineStep): """ Duplication call step """ def files(self): """Return the output files generated by this step. """ if self._files is None: self._files = [] duplication_file = self.pipeline.create_file_name(self.name, sub_directory=self.name + "/M1", file_suffix="final.calls.dups.bed") duplication_without_gaps_file = self.pipeline.create_file_name(self.name, sub_directory=self.name + "/M1" , file_suffix="final.calls.dups.woGaps.bed") filteredSwCall = self.pipeline.create_file_name(self.name, sub_directory=self.name + "/M2", file_suffix="calls.sw_norm_wochrXMY.bed") filteredLwCall = self.pipeline.create_file_name(self.name, sub_directory=self.name + "/M2", file_suffix="calls.lw_norm_wochrXMY.bed") filteredCwCall = self.pipeline.create_file_name(self.name, sub_directory=self.name + "/M2", file_suffix="calls.cw_norm_wochrXMY.bed") wssdPicked = self.pipeline.create_file_name(self.name, sub_directory=self.name + "/M2/WSSD", file_suffix="sd_woChrXMY.tab") wssdMerged = self.pipeline.create_file_name(self.name, sub_directory=self.name + "/M2/WSSD", file_suffix="sd_woChrXMY.merged") wssdMerged10K = self.pipeline.create_file_name(self.name, sub_directory=self.name + "/M2/WSSD", file_suffix="sd_woChrXMY_10K.merged") wssdMerged10KNoGaps = self.pipeline.create_file_name(self.name, sub_directory=self.name + "/M2/WSSD", file_suffix="sd_woChrXMY_10K.woGaps.merged") self._files.append(duplication_file) self._files.append(duplication_without_gaps_file) self._files.append(filteredSwCall) self._files.append(filteredLwCall) self._files.append(filteredCwCall) self._files.append(wssdPicked) self._files.append(wssdMerged) self._files.append(wssdMerged10K) self._files.append(wssdMerged10KNoGaps) return self._files def run(self): cfg = self.configuration gem.callDuplications( self._input(), output = self.files(), sampleName = self.pipeline.name, bed_repeat_regions = cfg["bed_repeat_regions"], bed_gaps_coordinates = cfg["bed_gaps_coordinates"] ) def _input(self): """Return the output of all dependencies""" if not self.dependencies: raise PipelineError("This step depends on mrCaNaVar and copy number analysis!") return [self.pipeline.steps[i].files() for i in self.dependencies if i >= 0] class DocumentationBamStep(PipelineStep): """Documentation Bam Step""" def files(self): """Return the output files generated by this step. """ if self._files is None: self._files = [] stats_file = self.pipeline.create_file_name(self.name, sub_directory=self.name,file_suffix="txt") html_file = self.pipeline.create_file_name(self.name, sub_directory=self.name,file_suffix="html") json_file = self.pipeline.create_file_name(self.name, sub_directory=self.name,file_suffix="json") self._files.append(stats_file) self._files.append(html_file) self._files.append(json_file) return self._files def run(self): cfg = self.configuration bam_file = self._input()[0][0] gem.runBamSummaryMetrics(input=bam_file,output=self.files()[0],picard_tools_path=cfg["picard_path"],java_heap=cfg["java_heap"],tmp_folder=cfg["tmp_folder"],reference=cfg["bwa_reference"]) gem.cnvReport.create_bam_report(metrics=self.files()[0],html_file=self.files()[1],json_file=self.files()[2],sample_description=cfg["sample_description"]) def _input(self): """Return the output of all dependencies""" if not self.dependencies: raise PipelineError("This step depends on mapping BAM mapping generation step!") return [self.pipeline.steps[i].files() for i in self.dependencies if i >= 0] class DocumentationRmDupStep(PipelineStep): """Build HTML and json documentation for the remove duplicates process""" def files(self): """Return the output files generated by this step. """ if self._files is None: self._files = [] html_file = self.pipeline.create_file_name(self.name, sub_directory=self.name,file_suffix="html") json_file = self.pipeline.create_file_name(self.name, sub_directory=self.name,file_suffix="json") self._files.append(html_file) self._files.append(json_file) return self._files def run(self): cfg = self.configuration metrics = self._input()[0][0] gem.cnvReport.create_duplicates_report(metrics=metrics,html_file=self.files()[0],json_file=self.files()[1],sample_description=cfg["sample_description"]) def _input(self): """Return the output of all dependencies""" if not self.dependencies: raise PipelineError("This step depends on mapping BAM mapping generation step!") return [self.pipeline.steps[i].files() for i in self.dependencies if i >= 0] class DocumentationStep(PipelineStep): """Documentation Step""" def files(self): """Return the output files generated by this step. """ if self._files is None: self._files = [] html_file = self.pipeline.create_file_name(self.name, sub_directory=self.name,file_suffix="html") json_file = self.pipeline.create_file_name(self.name, sub_directory=self.name,file_suffix="json") self._files.append(html_file) self._files.append(json_file) return self._files def run(self): cfg = self.configuration filesOut = self.files() html_doc = filesOut[0] json_doc = filesOut[1] inputsList = self._input() map_json_files = cfg["map_json_list"] calls_log_file = gem._prepare_calls_log(inputsList[0][0]) dup_m1 = None dup_m2 = None if self.pipeline.duplications_create == True: dup_m1 = inputsList[2][1] dup_m2 = inputsList[2][8] gem.cnvReport.create_report(html_file=html_doc,json_file=json_doc,mapping_stats_files=map_json_files, mrcanavar_log_file=calls_log_file,control_regions_distribution=inputsList[1][3], control_regions_plot=inputsList[1][2],cutoffs_file=inputsList[1][1], duplications_M1=dup_m1, duplications_M2=dup_m2,sample_description=cfg["sample_description"]) def _input(self): """Return the output of all dependencies""" if not self.dependencies: raise PipelineError("This step depends on mapping stats,mrCaNaVar,copy number analysis and duplications!") return [self.pipeline.steps[i].files() for i in self.dependencies if i >= 0] class BasePipeline: """Basic Base Pipeline """ def __init__(self, args=None): self.steps = [] # pipeline steps self.run_steps = [] # steps to run # general parameter self.input = None # input files self.name = None # target name self.names = [] # target names in case more than one set of fastq to be processes self.multiFastq = False #If more than a fastq file or a Pair End combination file is going to be processed self.sample_name_multi_fastq = None self.remove_temp = True # remove temporary self.output_dir = None # Output directory self.threads = 1 # number of threads self.write_config = None # write configuration self.dry = False # only dry run self.sort_memory = "768M" # samtools sort memory self.direct_input = False # if true, skip the preparation step self.force = False # force computation of all steps self.compress_all = False self.compress = False #PicardTools self.picard_path = None self.java_heap = "25g" self.tmp_folder = "/tmp/" #Documentation files self.sample_description = None self.membersInitiation() if args is not None: # initialize from arguments # load configuration try: if args.load_configuration is not None: self.load(args.load_configuration) except AttributeError: pass ## update parameter self.update(vars(args)) ## initialize pipeline and check values self.initialize() def membersInitiation(self): #To fullfill in the child class pass def update(self, configuration): """Update configuration from given map configuration -- the input configuration """ for k, v in configuration.items(): try: if v is not None: setattr(self, k, v) except AttributeError: pass def __update_dict(self, target, source): if source is None: return for k, v in source.items(): #if v is not None: target[k] = v def open_input(self,pair_end_files = None): if pair_end_files is not None: return gem.filter.interleave([gem.files.open(f) for f in pair_end_files], threads=max(1, self.threads / 2)) """Open the original input files""" if len(self.input) == 1: return gem.files.open(self.input[0]) else: return gem.filter.interleave([gem.files.open(f) for f in self.input], threads=max(1, self.threads / 2)) def open_step(self, id, raw=False): """Open the original input files""" return self.steps[id].open(raw=raw) def initialize(self, silent=False): # check general parameter errors = [] if self.input is None: errors.append("No input file specified") else: if len(self.input) == 1 and not self.single_end: # search for second file (n, p) = gem.utils.find_pair(self.input[0]) if p is None: #errors.append("Unable to deduce second pair input file from %s " % self.input[0]) logging.gemtools.warning("No second input file specified, assuming interleaved paird end reads!") else: logging.gemtools.warning("Second pair input file found: %s " % p) if self.name is None: self.name = n self.input.append(p) # check file counts if self.single_end and len(self.input) != 1 and self.sample_name_multi_fastq is None: errors.append("Specify exactly one input file in single end mode") elif not self.single_end and self.sample_name_multi_fastq is not None: #PE and multiple fastq files for a given sample # check input files input_abs = [] name_abs = [] for f in self.input: #f is not a name file that means is a list and comes from a configuration file if type(f) is ListType: f = f[0] #search for second pair (n, p) = gem.utils.find_pair(f) if p is None: errors.append("No second pair file found!!") else: logging.gemtools.warning("Second pair input file found: %s " % p) input_abs.append([f,p]) name_abs.append(n) self.input = input_abs self.names = name_abs self.multiFastq = True if self.sample_name_multi_fastq is None: errors.append('''No sample name was defined. You must specify a sample name when working with more than one combination of pair end files. You must use -sample-name-multi-fastq parameter''') else: self.name = self.sample_name_multi_fastq else: # check input files input_abs = [] for f in self.input: if f is None or not os.path.exists(f): errors.append("Input file not found: %s" % (f)) else: # make aboslute path input_abs.append(os.path.abspath(f)) self.input = input_abs if self.name is None and self.input is not None and len(self.input) > 0: # get name from input files name = os.path.basename(self.input[0]) if name.endswith(".gz"): name = name[:-3] idx = name.rfind(".") if idx > 0: self.name = name[:idx] if self.name is None or len(self.name) == 0: errors.append("No name specified and unable to guess one. Please use --name to set a name explicitly.") self.referenceCheck(errors) if self.output_dir is None: self.output_dir = os.getcwd() self.output_dir = os.path.abspath(self.output_dir) if self.threads <= 0: self.threads = 1 self.noStandardParameterChecking(errors) if not silent and len(errors) > 0 and self.write_config is None: raise PipelineError("Failed to initialize neccessary parameters:\n\n%s" % ("\n".join(errors))) if self.write_config is not None: # log configuration errors logging.gemtools.warning("---------------------------------------------") logging.gemtools.warning("Writing configuration") logging.gemtools.warning("") logging.gemtools.warning("Note that some of the parameters are missing:\n") for e in errors: logging.gemtools.warning("\t" + str(e)) logging.gemtools.warning("---------------------------------------------") def pairingInfoControl(self,fileDescriptor): '''Returns true if en error of pairing information must be reported''' # check pairing information p1 = None p2 = None c = 0 inp = fileDescriptor for template in inp: if template.num_alignments == 2: ## paired alignment p1 = 1 p2 = 2 inp.close() break else: if c == 0: p1 = template.get_pair() elif c == 1: p2 = template.get_pair() c += 1 if c >= 2: inp.close() break inp.close() if p1 == 0 or p2 == 0 or (p1 == 1 and
<reponame>kaparna126/magellanmapper # Regional volume and density management # Author: <NAME>, 2018, 2019 """Measure volumes and densities by regions. Intended to be higher-level, relatively atlas-agnostic measurements. """ from enum import Enum from time import time import numpy as np import pandas as pd from scipy.spatial.distance import cdist from skimage import measure from magmap.cv import chunking from magmap.stats import atlas_stats, clustering from magmap.settings import config from magmap.io import libmag from magmap.atlas import ontology from magmap.cv import cv_nd from magmap.io import df_io # metric keys and column names LabelMetrics = Enum( "LabelMetrics", [ "Region", "Volume", # volume, converted to physical units "VolAlt", # alternate volume, eg smoothed volume "VolPx", # volume in pixels "VolAltPx", # alternate volume in pixels "Intensity", "Nuclei", # densities; "Density" = nuclei density # TODO: change density to nuclei density # TODO: consider changing enum for KEY: name format "Density", "DensityIntens", "RegVolMean", "RegNucMean", "RegDensityMean", # per region "VarNuclei", "VarNucIn", "VarNucOut", "VarIntensity", "VarIntensIn", "VarIntensOut", "MeanIntensity", "MedIntensity", "LowIntensity", "HighIntensity", "EntropyIntensity", "VarIntensMatch", "VarIntensDiff", "MeanNuclei", "VarNucMatch", # Distances "EdgeSize", # edge pixels "EdgeDistSum", # sum of distances between edges in two images "EdgeDistMean", # mean of these distances "Dist", # generic distance # Variation "CoefVarIntens", "CoefVarNuc", # Shape measurements "SurfaceArea", "Compactness", # Overlap metrics "VolDSC", "NucDSC", # volume/nuclei Dice Similarity Coefficient "VolOut", "NucOut", # volume/nuclei shifted out of orig position # Point cloud measurements "NucCluster", # number of nuclei clusters "NucClusNoise", # number of nuclei that do not fit into a cluster "NucClusLarg", # number of nuclei in the largest cluster ] ) # variation metrics VAR_METRICS = ( LabelMetrics.RegVolMean, LabelMetrics.RegNucMean, LabelMetrics.VarNuclei, LabelMetrics.VarNucIn, LabelMetrics.VarNucOut, LabelMetrics.VarIntensity, LabelMetrics.VarIntensIn, LabelMetrics.VarIntensOut, LabelMetrics.MeanIntensity, LabelMetrics.MedIntensity, LabelMetrics.LowIntensity, LabelMetrics.HighIntensity, LabelMetrics.EntropyIntensity, LabelMetrics.VarIntensMatch, LabelMetrics.VarIntensDiff, LabelMetrics.MeanNuclei, LabelMetrics.VarNucMatch, LabelMetrics.CoefVarIntens, LabelMetrics.CoefVarNuc, ) # nuclei metrics NUC_METRICS = ( LabelMetrics.Nuclei, LabelMetrics.RegNucMean, LabelMetrics.MeanNuclei, LabelMetrics.VarNuclei, LabelMetrics.VarNucIn, LabelMetrics.VarNucOut, LabelMetrics.VarNucMatch, LabelMetrics.CoefVarNuc, ) # metrics computed from weighted averages WT_METRICS = ( *VAR_METRICS, LabelMetrics.EdgeDistMean, ) def _coef_var(df): # calculate coefficient of variation from data frame columns, # where first column is std and second is mean return np.divide(df.iloc[:, 0], df.iloc[:, 1]) class MetricCombos(Enum): """Combinations of metrics. Each combination should be a tuple of combination name, a tuple of metric Enums, and a function to use for aggregation applied across colums to give a new metric value for each row. """ # sum of columns measuring regional homogeneity; missing columns # will be ignored HOMOGENEITY = ( "Homogeneity", (LabelMetrics.VarIntensity, #LabelMetrics.VarIntensDiff, LabelMetrics.EdgeDistSum, LabelMetrics.VarNuclei), lambda x: np.nanmean(x, axis=1)) # coefficient of variation of intensity values COEFVAR_INTENS = ( "CoefVarIntensity", (LabelMetrics.VarIntensity, LabelMetrics.MeanIntensity), _coef_var) # coefficient of variation of intensity values COEFVAR_NUC = ( "CoefVarNuclei", (LabelMetrics.VarNuclei, LabelMetrics.MeanNuclei), _coef_var) class LabelToEdge(object): """Convert a label to an edge with class methods as an encapsulated way to use in multiprocessing without requirement for global variables. Attributes: labels_img_np: Integer labels images as a Numpy array. """ labels_img_np = None @classmethod def set_labels_img_np(cls, val): """Set the labels image. Args: val: Labels image to set as class attribute. """ cls.labels_img_np = val @classmethod def find_label_edge(cls, label_id): """Convert a label into just its border. Args: label_id: Integer of the label to extract from :attr:``labels_img_np``. Returns: Tuple of the given label ID; list of slices defining the location of the ROI where the edges can be found; and the ROI as a volume mask defining where the edges exist. """ print("getting edge for {}".format(label_id)) slices = None borders = None # get mask of label to get bounding box label_mask = cls.labels_img_np == label_id props = measure.regionprops(label_mask.astype(np.int)) if len(props) > 0 and props[0].bbox is not None: _, slices = cv_nd.get_bbox_region(props[0].bbox) # work on a view of the region for efficiency, obtaining borders # as eroded region and writing into new array region = cls.labels_img_np[tuple(slices)] label_mask_region = region == label_id borders = cv_nd.perimeter_nd(label_mask_region) return label_id, slices, borders def make_labels_edge(labels_img_np): """Convert labels image into label borders image. The atlas is assumed to be a sample (eg microscopy) image on which an edge-detection filter will be applied. Args: labels_img_np: Image as a Numpy array, assumed to be an annotated image whose edges will be found by obtaining the borders of all annotations. Returns: Binary image array the same shape as ``labels_img_np`` with labels reduced to their corresponding borders. """ start_time = time() labels_edge = np.zeros_like(labels_img_np) label_ids = np.unique(labels_img_np) # use a class to set and process the label without having to # reference the labels image as a global variable LabelToEdge.set_labels_img_np(labels_img_np) pool = chunking.get_mp_pool() pool_results = [] for label_id in label_ids: pool_results.append( pool.apply_async( LabelToEdge.find_label_edge, args=(label_id, ))) for result in pool_results: label_id, slices, borders = result.get() if slices is not None: borders_region = labels_edge[tuple(slices)] borders_region[borders] = label_id pool.close() pool.join() print("time elapsed to make labels edge:", time() - start_time) return labels_edge class MeasureLabel(object): """Measure metrics within image labels in a way that allows multiprocessing without global variables. All images should be of the same shape. If :attr:``df`` is available, it will be used in place of underlying images. Typically this data frame contains metrics for labels only at the lowest level, such as drawn or non-overlapping labels. These labels can then be used to aggregate values through summation or weighted means to generate metrics for superseding labels that contains these individual labels. Attributes: atlas_img_np: Sample image as a Numpy array. labels_img_np: Integer labels image as a Numpy array. labels_edge: Numpy array of labels reduced to their edges. dist_to_orig: Distance map of labels to edges, with intensity values in the same placement as in ``labels_edge``. heat_map: Numpy array as a density map. blobs (:obj:`np.ndarray`): 2D array of blobs such as nuclei in the format, ``[[z, y, x, label_id, ...], ...]``. Defaults to None. subseg: Integer sub-segmentations labels image as Numpy array. df: Pandas data frame with a row for each sub-region. """ # metric keys _COUNT_METRICS = ( LabelMetrics.Volume, LabelMetrics.Intensity, LabelMetrics.Nuclei) _EDGE_METRICS = ( LabelMetrics.EdgeSize, LabelMetrics.EdgeDistSum, LabelMetrics.EdgeDistMean) _SHAPE_METRICS = ( LabelMetrics.SurfaceArea, LabelMetrics.Compactness) _PCL_METRICS = ( LabelMetrics.NucCluster, LabelMetrics.NucClusNoise, LabelMetrics.NucClusLarg, ) # images and data frame atlas_img_np = None labels_img_np = None labels_edge = None dist_to_orig = None labels_interior = None heat_map = None blobs = None subseg = None df = None spacing = None @classmethod def set_data(cls, atlas_img_np, labels_img_np, labels_edge=None, dist_to_orig=None, labels_interior=None, heat_map=None, blobs=None, subseg=None, df=None, spacing=None): """Set the images and data frame.""" cls.atlas_img_np = atlas_img_np cls.labels_img_np = labels_img_np cls.labels_edge = labels_edge cls.dist_to_orig = dist_to_orig cls.labels_interior = labels_interior cls.heat_map = heat_map cls.blobs = blobs cls.subseg = subseg cls.df = df cls.spacing = spacing @classmethod def label_metrics(cls, label_id, extra_metrics=None): """Calculate metrics for a given label or set of labels. Wrapper to call :func:``measure_variation``, :func:``measure_variation``, and :func:``measure_edge_dist``. Args: label_id: Integer of the label or sequence of multiple labels in :attr:``labels_img_np`` for which to measure variation. extra_metrics (List[:obj:`config.MetricGroups`]): Sequence of additional metric groups to measure; defaults to None. Returns: Tuple of the given label ID, intensity variation, number of pixels in the label, density variation, number of blobs, sum edge distances, mean of edge distances, and number of pixels in the label edge. """ # process basic metrics #print("getting label metrics for {}".format(label_id)) _, count_metrics = cls.measure_counts(label_id) _, var_metrics = cls.measure_variation(label_id) _, edge_metrics = cls.measure_edge_dist(label_id) metrics = {**count_metrics, **var_metrics, **edge_metrics} if extra_metrics: for extra_metric in extra_metrics: # process additional metrics by applying corresponding function fn = None if extra_metric is config.MetricGroups.SHAPES: fn = cls.measure_shapes elif extra_metric is config.MetricGroups.POINT_CLOUD: fn = cls.measure_point_cloud if fn: _, extra_metrics = fn(label_id) metrics.update(extra_metrics) return label_id, metrics @classmethod def measure_counts(cls, label_ids): """Measure the distance between edge images.
file with no "src" or "dest".') if not src: raise BuildConfigError('"bundle" has a file with no "src".') if not dest: raise BuildConfigError('"bundle" has a file with no "dest".') src = StringTemplate(src).substitute(src_vars) dest = do_parse_level_substitutions( dest, src, allow_lang=False, extra_vars=extra_vars ) file_list.append(BundleFile(src=src, dest=dest)) return Bundle(zipfile=zipfile, files=file_list) def parse_misc_file( obj: Dict[str, Any], extra_vars: Dict[str, str] ) -> Optional[MiscFileData]: src = required(obj, "src", "misc_files") dest = required(obj, "dest", "misc_files") if bool_field(obj, "skip"): verbose(f"Skipping file {src}") return None else: dest = do_parse_level_substitutions( dest, src, allow_lang=False, extra_vars=extra_vars ) mf = MiscFileData( src=src, dest=dest, dest_is_dir=obj.get("dest_is_dir", None), is_template=obj.get("template", False), only_in_profile=obj.get("only_in_profile", None), ) # Sanity checks: A Markdown file can be translated to Markdown, # PDF or HTML. An HTML file can be translated to HTML or PDF. # is_template is disallowed for non-text files. if mf.is_template and (not is_text_file(src)): raise BuildConfigError( f'Section misc_files: "{src}" is marked as a template' + "but it is not a text file." ) # We can't check to see whether the target is a directory, since # nothing exists yet. But if it has an extension, we can assume it # is not a directory. if has_extension(dest): # It's a file, not a directory. if mf.dest_is_dir: raise BuildConfigError( f'Section misc_files: "{src}" uses a "dest" of ' + f'"{dest}", which has an extension, so it is assumed ' + 'to be a file. But, "dest_is_dir" is set to true.' ) if is_markdown(src): if not (is_pdf(dest) or is_html(dest) or is_markdown(dest)): raise BuildConfigError( f'Section misc_files: "{src}" is Markdown, the ' + f'target ("{dest}") is not a directory and is ' + "not PDF, HTML or Markdown." ) if is_html(src): if not (is_pdf(dest) or is_html(dest)): raise BuildConfigError( f'Section misc_files: "{src}" is HTML, the ' + f'target ("{dest}") is not a directory and is ' + "not PDF or HTML." ) else: # No extension. Assume dest_is_dir is True, if not set. if mf.dest_is_dir is None: mf = dataclasses.replace(mf, dest_is_dir=True) # Some simple sanity checks. if (not mf.dest_is_dir) and (dest in (".", "..")): raise BuildConfigError( f'Section misc_files: "{src}" has a "dest" of ' + f'"{dest}", but "dest_is_dir" is set to false. ' + "That's just silly." ) return mf def parse_dataset( obj: Dict[str, Any], extra_vars: Dict[str, Any], build_yaml_dir: str ) -> Optional[DatasetData]: src = required(obj, "src", "notebooks") dest = required(obj, "dest", "notebooks") if bool_field(obj, "skip"): verbose(f"Skipping data set {src}") return None else: src_dir = path.dirname(src) license = joinpath(src_dir, "LICENSE.md") readme = joinpath(src_dir, "README.md") p = joinpath(build_yaml_dir, src) if not path.exists(p): raise BuildConfigError(f'Dataset file "{p}" does not exist') for i in (license, readme): p = joinpath(build_yaml_dir, i) if not path.exists(p): raise BuildConfigError( f'Dataset "{src}": Required "{p}" does not exist.' ) if os.stat(p).st_size == 0: raise BuildConfigError(f'Dataset "{src}": "{p}" is empty.') adj_dest = do_parse_level_substitutions( dest, src, allow_lang=False, extra_vars=extra_vars ) return DatasetData(src=src, dest=adj_dest, license=license, readme=readme) def parse_file_section( section: Sequence[Dict[str, Any]], parse: Callable[[Any, *Any], Any], *args: Any ) -> Tuple: # Use the supplied parse function to parse each element in the # supplied section, filtering out None results from the function. # Convert the entire result to a tuple. return tuple([o for o in [parse(i, *args) for i in section] if o != None]) def parse_markdown(obj: Dict[str, Any]) -> MarkdownInfo: if obj: stylesheet = obj.get("html_stylesheet") else: stylesheet = None return MarkdownInfo(html_stylesheet=stylesheet) def parse_notebook_types(contents: Dict[str, Any]) -> Dict[NotebookType, Any]: res = NotebookType.default_mappings() names_to_keys = dict([(t.value, t) for t in NotebookType]) invalid_keys = set() for k, v in list(contents.get("notebook_type_name", {}).items()): t = names_to_keys.get(k) if not t: invalid_keys.add(k) else: res[t] = v if invalid_keys: key_str = ", ".join(invalid_keys) raise BuildConfigError( f'Unknown key(s) in "notebook_type_name" section: {key_str}' ) return res def parse_min_version(key: str, value: str) -> Optional[Tuple[int, int]]: res = contents.get(key) if res is not None: if isinstance(res, float): raise BuildConfigError( f'"{key}" of the form <major>.<minor> must be quoted.' ) try: # Ignore the match version. res = parse_version_string(res)[0:2] except ValueError as e: raise BuildConfigError(f'Bad value of "{res}" for "{key}": {e}') return res def parse_course_type( data: Dict[str, Any], section: str ) -> master_parse.CourseType: course_type = data.get("type") if not course_type: raise BuildConfigError( f'Missing required "{section}.type" setting in "{yaml_file}"' ) if course_type.lower() == "self-paced": return master_parse.CourseType.SELF_PACED if course_type.lower() == "ilt": return master_parse.CourseType.ILT raise BuildConfigError( f'Unknown value of "{course_type}" for "{course_type}.type". ' + 'Legal values are "ilt" and "self-paced".' ) def parse_course_info( course_info_cfg: Dict[str, Any], section_name: str ) -> CourseInfo: ilt_only = {"class_setup": None, "schedule": None, "instructor_prep": None} name = required(course_info_cfg, "name", section_name) version = required(course_info_cfg, "version", section_name) ilt_only["class_setup"] = course_info_cfg.get("class_setup") ilt_only["schedule"] = course_info_cfg.get("schedule") ilt_only["instructor_prep"] = course_info_cfg.get("prep") course_type = parse_course_type(course_info_cfg, section_name) deprecated = course_info_cfg.get("deprecated", False) copyright_year = course_info_cfg.get("copyright_year", str(datetime.now().year)) if type == master_parse.CourseType.SELF_PACED: for k, v in list(ilt_only.items()): if v: warn(f"course_info.{k} is ignored for self-paced courses") ilt_only[k] = None return CourseInfo( name=name, title=course_info_cfg.get("title", name), version=version, class_setup=ilt_only["class_setup"], schedule=ilt_only["schedule"], instructor_prep=ilt_only["instructor_prep"], course_type=course_type, deprecated=deprecated, copyright_year=copyright_year, ) def parse_output_info( contents: Dict[str, Any], course_info: CourseInfo ) -> OutputInfo: student_dir = contents.get("student_dir", DEFAULT_STUDENT_FILES_SUBDIR) instructor_dir = contents.get("instructor_dir", DEFAULT_INSTRUCTOR_FILES_SUBDIR) student_dbc = contents.get("student_dbc", DEFAULT_STUDENT_LABS_DBC) instructor_dbc = contents.get("instructor_dbc", DEFAULT_INSTRUCTOR_LABS_DBC) for (k, v) in ( ("student_dbc", student_dbc), ("instructor_dbc", instructor_dbc), ): if path.dirname(v) != "": raise BuildConfigError(f'"{k}" value "{v}" is not a simple file name.') if student_dir == instructor_dir: raise BuildConfigError( '"student_dir" and "instructor_dir" cannot be the same. ' + f'"student_dir" is "{student_dir}". ' + f'"instructor_dir" is "{instructor_dir}".' ) # Allow substitution of ${course_name}, {course_version} and/or # ${course_id} in the file names. fields = { "course_name": course_info.name, "course_version": course_info.version, "course_id": course_info.course_id, } def sub(filename: str) -> str: return VariableSubstituter(filename).substitute(fields) return OutputInfo( student_dir=student_dir, instructor_dir=instructor_dir, student_dbc=sub(student_dbc), instructor_dbc=sub(instructor_dbc), ) def parse_profiles(contents: Dict[str, Any]) -> Set[master_parse.Profile]: profiles = contents.get("profiles") use_profiles = bool_field(contents, "use_profiles", False) if profiles and use_profiles: raise BuildConfigError( 'You cannot specify both "use_profiles" and "profiles".' ) if profiles: res = set() for thing in profiles: if isinstance(thing, dict): if len(list(thing.keys())) != 1: raise BuildConfigError(f"Malformed profile: {thing}") n = list(thing.keys())[0] v = thing[n] if not isinstance(v, str): raise BuildConfigError( f'The value of profile "{n}" ("{v}") is not ' + "a string." ) res.add(master_parse.Profile(name=n, value=v)) continue if isinstance(thing, str): res.add(master_parse.Profile(name=thing, value=thing)) continue raise BuildConfigError( f'Profile "{thing}" is neither a simple string nor a ' + '"name: value"' ) elif use_profiles: warn('"use_profiles" is deprecated. Use explicit profiles.') res = { master_parse.Profile(name="amazon", value="Amazon"), master_parse.Profile(name="azure", value="azure"), } else: res = set() return res # Main function logic verbose(f"Loading {yaml_file}...") contents = read_yaml_file(yaml_file) bdc_min_version = parse_min_version( "bdc_min_version", required(contents, "bdc_min_version", "build") ) cur_major_minor = parse_version_string(VERSION)[0:2] if bdc_min_version > cur_major_minor: version_str = ".".join(map(str, bdc_min_version)) raise BuildConfigError( f"This build requires bdc version {version_str}.x or greater, " + f"but you're using bdc version {VERSION}." ) profiles = parse_profiles(contents) variables = contents.get("variables", {}) notebooks_cfg = required(contents, "notebooks", "build") slides_cfg = contents.get("slides", []) misc_files_cfg = contents.get("misc_files", []) datasets_cfg = contents.get("datasets", []) course_info_cfg = required(contents, "course_info", "build") course_info = parse_course_info(course_info_cfg, "course_info") src_base = required(contents, "src_base", "build") build_yaml_full = path.abspath(yaml_file) build_yaml_dir = path.dirname(build_yaml_full) src_base = path.abspath(joinpath(build_yaml_dir, src_base)) notebook_defaults = parse_notebook_defaults( contents, "notebook_defaults", build_yaml_dir ) if slides_cfg: slides = parse_file_section(slides_cfg, parse_slide, variables) else: slides = None if datasets_cfg: datasets = parse_file_section( datasets_cfg, parse_dataset, variables, build_yaml_dir ) else: datasets = None if misc_files_cfg: misc_files = parse_file_section(misc_files_cfg, parse_misc_file, variables) else: misc_files = None if notebooks_cfg: notebooks = parse_file_section( notebooks_cfg, parse_notebook, notebook_defaults, variables, profiles, build_yaml_dir, ) else: notebooks = None need_master = any([n.master.enabled for n in notebooks]) if need_master: required_master_min_version = parse_min_version( "master_parse_min_version", required( contents, "master_parse_min_version", "build", error='"master_parse_min_version" is required if any ' + "notebooks use the master parser.", ), ) master_version = parse_version_string(master_parse.VERSION)[0:2] if required_master_min_version > master_version: version_str = ".".join(map(str, required_master_min_version)) raise BuildConfigError( f"This build requires master_parse version {version_str}.x " + "or greater, but you're using master_parse version " + f"{master_parse.VERSION}." ) output_info = parse_output_info(contents, course_info) bundle_info = parse_bundle( contents.get("bundle"), output_info, course_info, variables ) data = BuildData( build_file_path=build_yaml_full, top_dbc_folder_name=contents.get("top_dbc_folder_name"), course_info=course_info, output_info=output_info, notebooks=notebooks, slides=slides, datasets=datasets, source_base=src_base, misc_files=misc_files, keep_lab_dirs=bool_field(contents, "keep_lab_dirs"), markdown_cfg=parse_markdown(contents.get("markdown")), notebook_type_map=parse_notebook_types(contents), variables=variables, profiles=profiles, bundle_info=bundle_info, ) return data def parse_args() -> Dict[str, Any]: """ Parse the command line parameters. """ from docopt import docopt return docopt(USAGE, version=VERSION) def expand_template( src_template_file: str, build: BuildData, tempdir:
ParallelLoggingManager): self.logging_module: ParallelLoggingManager = logging_module self.api_key = kwargs['api_key'] self.server = kwargs['server'] self.conf, self.secret_conf = self._load_conf_files(kwargs['conf'], kwargs['secret']) self.env_json = self._load_env_results_json() self.is_nightly = kwargs['nightly'] self.slack_client = SlackClient(kwargs['slack']) self.circleci_token = kwargs['circleci'] self.build_number = kwargs['build_number'] self.build_name = kwargs['branch_name'] self.isAMI = kwargs['is_ami'] self.memCheck = kwargs['mem_check'] self.server_version = kwargs['server_version'] self.is_local_run = (self.server is not None) self.server_numeric_version = self._get_server_numeric_version() self.instances_ips = self._get_instances_ips() self.filtered_tests = self._extract_filtered_tests() self.tests_data_keeper = TestResults(self.conf.unmockable_integrations) self.conf_unmockable_tests = self._get_unmockable_tests_from_conf() self.unmockable_test_ids: Set[str] = set() self.mockable_tests_to_run, self.unmockable_tests_to_run = self._get_tests_to_run() self.slack_user_id = self._retrieve_slack_user_id() self.all_integrations_configurations = self._get_all_integration_config(self.instances_ips) def _get_all_integration_config(self, instances_ips: dict) -> Optional[list]: """ Gets all integration configuration as it exists on the demisto server Since in all packs are installed the data returned from this request is very heavy and we want to avoid running it in multiple threads. Args: instances_ips: The mapping of the urls to the ports used to tunnel it's traffic Returns: A dict containing the configuration for the integration if found, else empty list """ if not self.is_nightly: return [] url, port = list(instances_ips.items())[0] server_url = f'https://localhost:{port}' if port else f'https://{url}' return self.get_all_installed_integrations_configurations(server_url) def get_all_installed_integrations_configurations(self, server_url: str) -> list: """ Gets all integration configuration as it exists on the demisto server Args: server_url: The url of the server to create integration in Returns: A dict containing the configuration for the integration if found else empty list """ tmp_client = demisto_client.configure(base_url=server_url, api_key=self.api_key, verify_ssl=False) self.logging_module.debug('Getting all integrations instances') try: res_raw = demisto_client.generic_request_func(self=tmp_client, path='/settings/integration/search', method='POST', body={}) except ApiException: self.logging_module.exception('failed to get all integrations configuration') return [] res = ast.literal_eval(res_raw[0]) TIMEOUT = 180 SLEEP_INTERVAL = 5 total_sleep = 0 while 'configurations' not in res: if total_sleep == TIMEOUT: self.logging_module.error( f"Timeout - failed to get all integration configuration. Error: {res}") return [] time.sleep(SLEEP_INTERVAL) total_sleep += SLEEP_INTERVAL all_configurations = res['configurations'] return all_configurations def _generate_tests_queue(self, tests_to_run: List[TestConfiguration]) -> Queue: """ Generates a queue containing test playbooks to run Args: tests_to_run: A list containing playbook names """ queue: Queue = Queue() for test in tests_to_run: playbook = TestPlaybook(self, test) if playbook.should_test_run(): queue.put(playbook) return queue def _get_tests_to_run(self) -> Tuple[Queue, Queue]: """ Gets tests to run in the current build and updates the unmockable tests ids set Returns: - A queue with mockable TestPlaybook instances to run in the current build - A queue with unmockable TestPlaybook instances to run in the current build """ unmockable_tests = [] all_tests = self._get_all_tests() if self.server or not self.isAMI: unmockable_tests = all_tests self.unmockable_test_ids = {test.playbook_id for test in all_tests} elif self.isAMI: unmockable_tests = self.conf_unmockable_tests self.unmockable_test_ids = {test.playbook_id for test in self.conf_unmockable_tests} self.logging_module.debug(f'Unmockable tests selected: {pformat(self.unmockable_test_ids)}') mockable_tests = [test for test in all_tests if test.playbook_id not in self.unmockable_test_ids] self.logging_module.debug(f'Mockable tests selected: {pformat([test.playbook_id for test in mockable_tests])}') mockable_tests_queue = self._generate_tests_queue(mockable_tests) unmockable_tests_queue = self._generate_tests_queue(unmockable_tests) return mockable_tests_queue, unmockable_tests_queue @staticmethod def _extract_filtered_tests() -> list: """ Reads the content from ./Tests/filter_file.txt and parses it into a list of test playbook IDs that should be run in the current build Returns: A list of playbook IDs that should be run in the current build """ with open(FILTER_CONF, 'r') as filter_file: filtered_tests = [line.strip('\n') for line in filter_file.readlines()] return filtered_tests def _get_unmockable_tests_from_conf(self) -> list: """ Extracts the unmockable test playbook by looking at all playbooks that has unmockable integrations Returns: A with unmockable playbook names """ unmockable_integrations = self.conf.unmockable_integrations tests = self.conf.tests unmockable_tests = [] for test_record in tests: test_name = test_record.playbook_id unmockable_integrations_used = [integration_name for integration_name in test_record.test_integrations if integration_name in unmockable_integrations] if test_name and (not test_record.test_integrations or unmockable_integrations_used) or not self.isAMI: unmockable_tests.append(test_record) # In case a test has both - an unmockable integration and is configured with is_mockable=False - # it will be added twice if we don't continue. continue if test_record.is_mockable is False: unmockable_tests.append(test_record) return unmockable_tests @staticmethod def _get_used_integrations(test_configuration: dict) -> list: """ Gets the integration used in a test playbook configurations Args: test_configuration: A test configuration from content conf.json file. Returns: A list with integration names """ tested_integrations = test_configuration.get("integrations", []) if isinstance(tested_integrations, list): return tested_integrations else: return [tested_integrations] def _get_all_tests(self) -> List[TestConfiguration]: """ Gets a list of all playbooks configured in content conf.json Returns: A list with playbook names """ tests_records = self.conf.tests return [test for test in tests_records if test.playbook_id] def _get_instances_ips(self) -> Dict[str, Any]: """ Parses the env_results.json and extracts the instance ip from each server configured in it. Returns: A dict contains a mapping from server internal ip to the port used to tunnel it. """ if self.server: return {self.server: None} instances_ips = {env.get('InstanceDNS'): env.get('TunnelPort') for env in self.env_json if env.get('Role') == self.server_version} return instances_ips def get_public_ip_from_server_url(self, server_url: str) -> str: """ Gets a tunnel server url in the form of https://localhost:<port>, from that url checks in self.instance_ips if there is a url that is mapped into that port and return that url if found. Args: server_url: The server url to parse the port from. Returns: A URL with the private IP of the server. """ port_pattern = re.compile(r'https://localhost:([0-9]+)') port_match = port_pattern.findall(server_url) if port_match: port = int(port_match[0]) else: # If the server URL has no port in the end - it means it's a local build and we can return the # server URL as is. return server_url for server_private_ip, tunnel_port in self.instances_ips.items(): if tunnel_port == port: return f'https://{server_private_ip}' raise Exception(f'Could not find private ip for the server mapped to port {port}') @staticmethod def _parse_tests_list_arg(tests_list: str): """ Parses the test list arguments if present. :param tests_list: CSV string of tests to run. :return: List of tests if there are any, otherwise empty list. """ tests_to_run = tests_list.split(",") if tests_list else [] return tests_to_run @staticmethod def _load_env_results_json(): if not os.path.isfile(ENV_RESULTS_PATH): return {} with open(ENV_RESULTS_PATH, 'r') as json_file: return json.load(json_file) def _get_server_numeric_version(self) -> str: """ Gets the current server version Returns: Server numeric version """ default_version = '99.99.98' if self.is_local_run: self.logging_module.info(f'Local run, assuming server version is {default_version}', real_time=True) return default_version if not self.env_json: self.logging_module.warning( f'Did not find {ENV_RESULTS_PATH} file, assuming server version is {default_version}.', real_time=True) return default_version server_version_mapping = { 'Server 5.0': '5.0.0', 'Server 5.5': '5.5.0', 'Server 6.0': '6.0.0', 'Server Master': default_version } server_numeric_version = server_version_mapping.get(self.server_version, default_version) self.logging_module.info(f'Server version: {server_numeric_version}', real_time=True) return server_numeric_version @staticmethod def _load_conf_files(conf_path, secret_conf_path): with open(conf_path) as data_file: conf = Conf(json.load(data_file)) secret_conf = None if secret_conf_path: with open(secret_conf_path) as data_file: secret_conf = SecretConf(json.load(data_file)) return conf, secret_conf def _get_user_name_from_circle(self): url = f"https://circleci.com/api/v1.1/project/github/demisto/content/{self.build_number}?" \ f"circle-token={self.circleci_token}" res = self._http_request(url) user_details = res.get('user', {}) return user_details.get('name', '') @staticmethod def _http_request(url, params_dict=None): try: res = requests.request("GET", url, verify=True, params=params_dict, ) res.raise_for_status() return res.json() except Exception as e: raise e def _retrieve_slack_user_id(self): """ Gets the user id of the circle user who triggered the current build """ circle_user_name = self._get_user_name_from_circle() user_id = '' res = self.slack_client.api_call('users.list') user_list = res.get('members', []) for user in user_list: profile = user.get('profile', {}) name = profile.get('real_name_normalized', '') if name == circle_user_name: user_id = user.get('id', '') return user_id class TestResults: def __init__(self, unmockable_integrations): self.succeeded_playbooks = [] self.failed_playbooks = set() self.skipped_tests = dict() self.skipped_integrations = dict() self.rerecorded_tests = [] self.empty_files = [] self.unmockable_integrations = unmockable_integrations self.playbook_skipped_integration = set() def add_proxy_related_test_data(self, proxy): # Using multiple appends and not extend since append is guaranteed to be thread safe for playbook_id in proxy.rerecorded_tests: self.rerecorded_tests.append(playbook_id) for playbook_id in proxy.empty_files: self.empty_files.append(playbook_id) def create_result_files(self): with open("./Tests/failed_tests.txt", "w") as failed_tests_file: failed_tests_file.write('\n'.join(self.failed_playbooks)) with open('./Tests/skipped_tests.txt', "w") as skipped_tests_file: skipped_tests_file.write('\n'.join(self.skipped_tests)) with open('./Tests/skipped_integrations.txt', "w") as skipped_integrations_file: skipped_integrations_file.write('\n'.join(self.skipped_integrations)) def print_test_summary(self, is_ami: bool = True, logging_module: Union[Any, ParallelLoggingManager] = logging) -> None: """ Takes the information stored in the tests_data_keeper and prints it in a human readable way. Args: is_ami: indicating if the server running the tests is an AMI or not. logging_module: Logging module to use for test_summary """ succeed_playbooks = self.succeeded_playbooks failed_playbooks = self.failed_playbooks skipped_tests = self.skipped_tests unmocklable_integrations = self.unmockable_integrations skipped_integration = self.skipped_integrations rerecorded_tests = self.rerecorded_tests empty_files = self.empty_files succeed_count = len(succeed_playbooks) failed_count = len(failed_playbooks) rerecorded_count = len(rerecorded_tests) if is_ami else 0 empty_mocks_count = len(empty_files) if is_ami else 0 logging_module.real_time_logs_only = True logging_module.info('TEST RESULTS:') logging_module.info(f'Number of playbooks tested - {succeed_count +
map.get('items'): temp_model = BaseFileResponse() self.items.append(temp_model.from_map(k)) if map.get('next_marker') is not None: self.next_marker = map.get('next_marker') return self class SharePermissionPolicy(TeaModel): """ * """ def __init__(self, file_path=None, permission_inheritable=None, permission_list=None, permission_type=None): self.file_path = file_path # type: str self.permission_inheritable = permission_inheritable # type: bool self.permission_list = permission_list # type: List[str] self.permission_type = permission_type # type: str def validate(self): pass def to_map(self): result = {} if self.file_path is not None: result['file_path'] = self.file_path if self.permission_inheritable is not None: result['permission_inheritable'] = self.permission_inheritable if self.permission_list is not None: result['permission_list'] = self.permission_list if self.permission_type is not None: result['permission_type'] = self.permission_type return result def from_map(self, map={}): if map.get('file_path') is not None: self.file_path = map.get('file_path') if map.get('permission_inheritable') is not None: self.permission_inheritable = map.get('permission_inheritable') if map.get('permission_list') is not None: self.permission_list = map.get('permission_list') if map.get('permission_type') is not None: self.permission_type = map.get('permission_type') return self class StoreFile(TeaModel): """ * """ def __init__(self, domain_id=None, name=None, parent_file_path=None, store_id=None, type=None): self.domain_id = domain_id # type: str self.name = name # type: str self.parent_file_path = parent_file_path # type: str self.store_id = store_id # type: str self.type = type # type: str def validate(self): pass def to_map(self): result = {} if self.domain_id is not None: result['domain_id'] = self.domain_id if self.name is not None: result['name'] = self.name if self.parent_file_path is not None: result['parent_file_path'] = self.parent_file_path if self.store_id is not None: result['store_id'] = self.store_id if self.type is not None: result['type'] = self.type return result def from_map(self, map={}): if map.get('domain_id') is not None: self.domain_id = map.get('domain_id') if map.get('name') is not None: self.name = map.get('name') if map.get('parent_file_path') is not None: self.parent_file_path = map.get('parent_file_path') if map.get('store_id') is not None: self.store_id = map.get('store_id') if map.get('type') is not None: self.type = map.get('type') return self class StoreItemResponse(TeaModel): """ * """ def __init__(self, accelerate_endpoint=None, base_path=None, bucket=None, cdn_endpoint=None, customized_accelerate_endpoint=None, customized_cdn_endpoint=None, customized_endpoint=None, customized_internal_endpoint=None, domain_id=None, endpoint=None, internal_endpoint=None, location=None, ownership=None, policy=None, role_arn=None, store_id=None, type=None): # 全球加速地址 self.accelerate_endpoint = accelerate_endpoint # type: str # 存储公共前缀 self.base_path = base_path # type: str # bucket名称 self.bucket = bucket # type: str # 内容分发地址 self.cdn_endpoint = cdn_endpoint # type: str # 自定义全球加速地址 self.customized_accelerate_endpoint = customized_accelerate_endpoint # type: str # 自定义内容分发地址 self.customized_cdn_endpoint = customized_cdn_endpoint # type: str # 自定义Public访问地址 self.customized_endpoint = customized_endpoint # type: str # 自定义vpc访问地址 self.customized_internal_endpoint = customized_internal_endpoint # type: str self.domain_id = domain_id # type: str # Public访问地址 self.endpoint = endpoint # type: str # vpc访问地址 self.internal_endpoint = internal_endpoint # type: str # 地点 self.location = location # type: str # 存储归属,system表示系统提供,custom表示使用自己的存储 self.ownership = ownership # type: str # Policy授权,system类型store会将bucket权限授予当前云账号 self.policy = policy # type: str # 访问Bucket的角色ARN self.role_arn = role_arn # type: str # store ID self.store_id = store_id # type: str # 存储类型,当前只支持oss self.type = type # type: str def validate(self): self.validate_required(self.bucket, 'bucket') self.validate_required(self.endpoint, 'endpoint') self.validate_required(self.ownership, 'ownership') self.validate_required(self.policy, 'policy') self.validate_required(self.store_id, 'store_id') self.validate_required(self.type, 'type') def to_map(self): result = {} if self.accelerate_endpoint is not None: result['accelerate_endpoint'] = self.accelerate_endpoint if self.base_path is not None: result['base_path'] = self.base_path if self.bucket is not None: result['bucket'] = self.bucket if self.cdn_endpoint is not None: result['cdn_endpoint'] = self.cdn_endpoint if self.customized_accelerate_endpoint is not None: result['customized_accelerate_endpoint'] = self.customized_accelerate_endpoint if self.customized_cdn_endpoint is not None: result['customized_cdn_endpoint'] = self.customized_cdn_endpoint if self.customized_endpoint is not None: result['customized_endpoint'] = self.customized_endpoint if self.customized_internal_endpoint is not None: result['customized_internal_endpoint'] = self.customized_internal_endpoint if self.domain_id is not None: result['domain_id'] = self.domain_id if self.endpoint is not None: result['endpoint'] = self.endpoint if self.internal_endpoint is not None: result['internal_endpoint'] = self.internal_endpoint if self.location is not None: result['location'] = self.location if self.ownership is not None: result['ownership'] = self.ownership if self.policy is not None: result['policy'] = self.policy if self.role_arn is not None: result['role_arn'] = self.role_arn if self.store_id is not None: result['store_id'] = self.store_id if self.type is not None: result['type'] = self.type return result def from_map(self, map={}): if map.get('accelerate_endpoint') is not None: self.accelerate_endpoint = map.get('accelerate_endpoint') if map.get('base_path') is not None: self.base_path = map.get('base_path') if map.get('bucket') is not None: self.bucket = map.get('bucket') if map.get('cdn_endpoint') is not None: self.cdn_endpoint = map.get('cdn_endpoint') if map.get('customized_accelerate_endpoint') is not None: self.customized_accelerate_endpoint = map.get('customized_accelerate_endpoint') if map.get('customized_cdn_endpoint') is not None: self.customized_cdn_endpoint = map.get('customized_cdn_endpoint') if map.get('customized_endpoint') is not None: self.customized_endpoint = map.get('customized_endpoint') if map.get('customized_internal_endpoint') is not None: self.customized_internal_endpoint = map.get('customized_internal_endpoint') if map.get('domain_id') is not None: self.domain_id = map.get('domain_id') if map.get('endpoint') is not None: self.endpoint = map.get('endpoint') if map.get('internal_endpoint') is not None: self.internal_endpoint = map.get('internal_endpoint') if map.get('location') is not None: self.location = map.get('location') if map.get('ownership') is not None: self.ownership = map.get('ownership') if map.get('policy') is not None: self.policy = map.get('policy') if map.get('role_arn') is not None: self.role_arn = map.get('role_arn') if map.get('store_id') is not None: self.store_id = map.get('store_id') if map.get('type') is not None: self.type = map.get('type') return self class StreamInfo(TeaModel): """ * """ def __init__(self, crc_64hash=None, download_url=None, thumbnail=None, url=None): # crc64_hash self.crc_64hash = crc_64hash # type: str # download_url self.download_url = download_url # type: str # thumbnail self.thumbnail = thumbnail # type: str # url self.url = url # type: str def validate(self): pass def to_map(self): result = {} if self.crc_64hash is not None: result['crc64_hash'] = self.crc_64hash if self.download_url is not None: result['download_url'] = self.download_url if self.thumbnail is not None: result['thumbnail'] = self.thumbnail if self.url is not None: result['url'] = self.url return result def from_map(self, map={}): if map.get('crc64_hash') is not None: self.crc_64hash = map.get('crc64_hash') if map.get('download_url') is not None: self.download_url = map.get('download_url') if map.get('thumbnail') is not None: self.thumbnail = map.get('thumbnail') if map.get('url') is not None: self.url = map.get('url') return self class StreamUploadInfo(TeaModel): """ * """ def __init__(self, part_info_list=None, pre_rapid_upload=None, rapid_upload=None, upload_id=None): # part_info_list self.part_info_list = part_info_list # type: List[UploadPartInfo] # pre_rapid_upload # type: boolean self.pre_rapid_upload = pre_rapid_upload # type: bool # rapid_upload # type: boolean self.rapid_upload = rapid_upload # type: bool # upload_id self.upload_id = upload_id # type: str def validate(self): if self.part_info_list: for k in self.part_info_list: if k: k.validate() def to_map(self): result = {} result['part_info_list'] = [] if self.part_info_list is not None: for k in self.part_info_list: result['part_info_list'].append(k.to_map() if k else None) if self.pre_rapid_upload is not None: result['pre_rapid_upload'] = self.pre_rapid_upload if self.rapid_upload is not None: result['rapid_upload'] = self.rapid_upload if self.upload_id is not None: result['upload_id'] = self.upload_id return result def from_map(self, map={}): self.part_info_list = [] if map.get('part_info_list') is not None: for k in map.get('part_info_list'): temp_model = UploadPartInfo() self.part_info_list.append(temp_model.from_map(k)) if map.get('pre_rapid_upload') is not None: self.pre_rapid_upload = map.get('pre_rapid_upload') if map.get('rapid_upload') is not None: self.rapid_upload = map.get('rapid_upload') if map.get('upload_id') is not None: self.upload_id = map.get('upload_id') return self class SystemTag(TeaModel): """ * """ def __init__(self, confidence=None, en_name=None, name=None, parent_en_name=None, parent_name=None, selected=None, tag_level=None): self.confidence = confidence # type: float self.en_name = en_name # type: str self.name = name # type: str self.parent_en_name = parent_en_name # type: str self.parent_name = parent_name # type: str self.selected = selected # type: bool self.tag_level = tag_level # type: int def validate(self): pass def to_map(self): result = {} if self.confidence is not None: result['confidence'] = self.confidence if self.en_name is not None: result['en_name'] = self.en_name if self.name is not None: result['name'] = self.name if self.parent_en_name is not None: result['parent_en_name'] = self.parent_en_name if self.parent_name is not None: result['parent_name'] = self.parent_name if self.selected is not None: result['selected'] = self.selected if self.tag_level is not None: result['tag_level'] = self.tag_level return result def from_map(self, map={}): if map.get('confidence') is not None: self.confidence = map.get('confidence') if map.get('en_name') is not None: self.en_name = map.get('en_name') if map.get('name') is not None: self.name = map.get('name') if map.get('parent_en_name') is not None: self.parent_en_name = map.get('parent_en_name') if map.get('parent_name') is not None: self.parent_name = map.get('parent_name') if map.get('selected') is not None: self.selected = map.get('selected') if map.get('tag_level') is not None: self.tag_level = map.get('tag_level') return self class TokenRequest(TeaModel): """ * """ def __init__(self, headers=None, addition_data=None, app_id=None, grant_type=None, refresh_token=None): self.headers = headers # type: Dict[str, str] # addition_data self.addition_data = addition_data # type: dict # App ID, 当前访问的App self.app_id = app_id # type: str # 只能填refresh_token self.grant_type = grant_type # type: str # refresh token, 登录时返回的 self.refresh_token = refresh_token # type: str def validate(self): self.validate_required(self.app_id, 'app_id') self.validate_required(self.grant_type, 'grant_type') self.validate_required(self.refresh_token, 'refresh_token') def to_map(self): result = {} if self.headers is not None: result['headers'] = self.headers if self.addition_data is not None: result['addition_data'] = self.addition_data if self.app_id is not None: result['app_id'] = self.app_id if self.grant_type is not None: result['grant_type'] = self.grant_type if self.refresh_token is not None: result['refresh_token']
not AWS_REGION: print("Please set and export environment variable AWS_ACCOUNT_NUMBER and AWS_REGION!") exit(1) if not buckets: print("WARNING: Without setting buckets (using --buckets)," + "Tibanna would have access to only public buckets." + "To give permission to Tibanna for private buckets," + "use --buckets=<bucket1>,<bucket2>,...") time.sleep(2) if buckets: bucket_names = buckets.split(',') else: bucket_names = None if bucket_names and not do_not_delete_public_access_block: client = boto3.client('s3') for b in bucket_names: printlog("Deleting public access block for bucket %s" % b) response = client.delete_public_access_block(Bucket=b) tibanna_iam = self.IAM(usergroup_tag, bucket_names, no_randomize=no_randomize) tibanna_iam.create_tibanna_iam(verbose=verbose) print("Tibanna usergroup %s has been created on AWS." % tibanna_iam.user_group_name) return tibanna_iam.user_group_name def deploy_tibanna(self, suffix=None, usergroup='', setup=False, buckets='', setenv=False, do_not_delete_public_access_block=False): """deploy tibanna unicorn or pony to AWS cloud (pony is for 4DN-DCIC only)""" if setup: if usergroup: usergroup = self.setup_tibanna_env(buckets, usergroup, True, do_not_delete_public_access_block=do_not_delete_public_access_block) else: # override usergroup usergroup = self.setup_tibanna_env(buckets, do_not_delete_public_access_block=do_not_delete_public_access_block) # this function will remove existing step function on a conflict step_function_name = self.create_stepfunction(suffix, usergroup=usergroup) print("creating a new step function... %s" % step_function_name) if setenv: os.environ['TIBANNA_DEFAULT_STEP_FUNCTION_NAME'] = step_function_name with open(os.getenv('HOME') + "/.bashrc", "a") as outfile: # 'a' stands for "append" outfile.write("\nexport TIBANNA_DEFAULT_STEP_FUNCTION_NAME=%s\n" % step_function_name) print("deploying lambdas...") self.deploy_core('all', suffix=suffix, usergroup=usergroup) dd_utils.create_dynamo_table(DYNAMODB_TABLE, DYNAMODB_KEYNAME) return step_function_name def deploy_unicorn(self, suffix=None, no_setup=False, buckets='', no_setenv=False, usergroup='', do_not_delete_public_access_block=False): """deploy tibanna unicorn to AWS cloud""" self.deploy_tibanna(suffix=suffix, usergroup=usergroup, setup=not no_setup, buckets=buckets, setenv=not no_setenv, do_not_delete_public_access_block=do_not_delete_public_access_block) def add_user(self, user, usergroup): """add a user to a tibanna group""" groupname_prefix = 'tibanna_' if self.lambda_type: groupname_prefix += self.lambda_type + '_' boto3.client('iam').add_user_to_group( GroupName=groupname_prefix + usergroup, UserName=user ) def users(self): """list all users along with their associated tibanna user groups""" client = boto3.client('iam') marker = None while True: if marker: res = client.list_users(Marker=marker) else: res = client.list_users() print("user\ttibanna_usergroup") for r in res['Users']: res_groups = client.list_groups_for_user( UserName=r['UserName'] ) groups = [rg['GroupName'] for rg in res_groups['Groups']] groups = filter(lambda x: 'tibanna_' in x, groups) groups = [x.replace('tibanna_', '') for x in groups] print("%s\t%s" % (r['UserName'], ','.join(groups))) marker = res.get('Marker', '') if not marker: break def create_stepfunction(self, dev_suffix=None, region_name=AWS_REGION, aws_acc=AWS_ACCOUNT_NUMBER, usergroup=None): if not aws_acc or not region_name: print("Please set and export environment variable AWS_ACCOUNT_NUMBER and AWS_REGION!") exit(1) # create a step function definition object sfndef = self.StepFunction(dev_suffix, region_name, aws_acc, usergroup) # if this encouters an existing step function with the same name, delete sfn = boto3.client('stepfunctions', region_name=region_name) retries = 12 # wait 10 seconds between retries for total of 120s for i in range(retries): try: sfn.create_state_machine( name=sfndef.sfn_name, definition=json.dumps(sfndef.definition, indent=4, sort_keys=True), roleArn=sfndef.sfn_role_arn ) except sfn.exceptions.StateMachineAlreadyExists as e: # get ARN from the error and format as necessary exc_str = str(e) if 'State Machine Already Exists:' not in exc_str: print('Cannot delete state machine. Exiting...' % exc_str) raise(e) sfn_arn = exc_str.split('State Machine Already Exists:')[-1].strip().strip("''") print('Step function with name %s already exists!' % sfndef.sfn_name) print('Updating the state machine...') try: sfn.update_state_machine( stateMachineArn=sfn_arn, definition=json.dumps(sfndef.definition, indent=4, sort_keys=True), roleArn=sfndef.sfn_role_arn ) except Exception as e: print('Error updating state machine %s' % str(e)) raise(e) except Exception as e: raise(e) break return sfndef.sfn_name def check_metrics_plot(self, job_id, log_bucket): return True if does_key_exist(log_bucket, job_id + '.metrics/metrics.html', quiet=True) else False def check_metrics_lock(self, job_id, log_bucket): return True if does_key_exist(log_bucket, job_id + '.metrics/lock', quiet=True) else False def plot_metrics(self, job_id, sfn=None, directory='.', open_browser=True, force_upload=False, update_html_only=False, endtime='', filesystem='/dev/nvme1n1'): ''' retrieve instance_id and plots metrics ''' if not sfn: sfn = self.default_stepfunction_name postrunjsonstr = self.log(job_id=job_id, sfn=sfn, postrunjson=True, quiet=True) if postrunjsonstr: postrunjson = AwsemPostRunJson(**json.loads(postrunjsonstr)) job_complete = True job = postrunjson.Job log_bucket = postrunjson.config.log_bucket instance_type = postrunjson.config.instance_type or 'unknown' else: runjsonstr = self.log(job_id=job_id, sfn=sfn, runjson=True, quiet=True) job_complete = False if runjsonstr: runjson = AwsemRunJson(**json.loads(runjsonstr)) job = runjson.Job log_bucket = runjson.config.log_bucket instance_type = runjson.config.instance_type or 'unknown' else: raise Exception("Neither postrun json nor run json can be retrieved." + "Check job_id or step function?") # report already on s3 with a lock if self.check_metrics_plot(job_id, log_bucket) and \ self.check_metrics_lock(job_id, log_bucket) and \ not force_upload: printlog("Metrics plot is already on S3 bucket.") printlog('metrics url= ' + METRICS_URL(log_bucket, job_id)) # open metrics html in browser if open_browser: webbrowser.open(METRICS_URL(log_bucket, job_id)) return None # report not already on s3 with a lock starttime = job.start_time_as_str if not endtime: if hasattr(job, 'end_time_as_str') and job.end_time_as_str: endtime = job.end_time_as_str else: endtime = datetime.utcnow() if hasattr(job, 'filesystem') and job.filesystem: filesystem = job.filesystem else: filesystem = filesystem instance_id = '' if hasattr(job, 'instance_id') and job.instance_id: instance_id = job.instance_id else: ddres = dict() try: dd = boto3.client('dynamodb') ddres = dd.query(TableName=DYNAMODB_TABLE, KeyConditions={'Job Id': {'AttributeValueList': [{'S': job_id}], 'ComparisonOperator': 'EQ'}}) except Exception as e: pass if 'Items' in ddres: instance_id = ddres['Items'][0].get('instance_id', {}).get('S', '') if not instance_id: ec2 = boto3.client('ec2') res = ec2.describe_instances(Filters=[{'Name': 'tag:Name', 'Values': ['awsem-' + job_id]}]) if res['Reservations']: instance_id = res['Reservations'][0]['Instances'][0]['InstanceId'] instance_status = res['Reservations'][0]['Instances'][0]['State']['Name'] if instance_status in ['terminated', 'shutting-down']: job_complete = True # job failed else: job_complete = False # still running else: # waiting 10 min to be sure the istance is starting if (datetime.utcnow() - starttime) / timedelta(minutes=1) < 5: raise Exception("the instance is still setting up. " + "Wait a few seconds/minutes and try again.") else: raise Exception("instance id not available for this run.") # plotting if update_html_only: self.TibannaResource.update_html(log_bucket, job_id + '.metrics/') else: try: M = self.TibannaResource(instance_id, filesystem, starttime, endtime) M.plot_metrics(instance_type, directory) except Exception as e: raise MetricRetrievalException(e) # upload files M.upload(bucket=log_bucket, prefix=job_id + '.metrics/', lock=job_complete) # clean up uploaded files for f in M.list_files: os.remove(f) printlog('metrics url= ' + METRICS_URL(log_bucket, job_id)) # open metrics html in browser if open_browser: webbrowser.open(METRICS_URL(log_bucket, job_id)) def cost(self, job_id, sfn=None, update_tsv=False): if not sfn: sfn = self.default_stepfunction_name postrunjsonstr = self.log(job_id=job_id, sfn=sfn, postrunjson=True) if not postrunjsonstr: return None postrunjson = AwsemPostRunJson(**json.loads(postrunjsonstr)) job = postrunjson.Job def reformat_time(t, delta): d = datetime.strptime(t, '%Y%m%d-%H:%M:%S-UTC') + timedelta(days=delta) return d.strftime("%Y-%m-%d") start_time = reformat_time(job.start_time, -1) # give more room end_time = reformat_time(job.end_time, 1) # give more room billing_args = {'Filter': {'Tags': {'Key': 'Name', 'Values': ['awsem-' + job_id]}}, 'Granularity': 'DAILY', 'TimePeriod': {'Start': start_time, 'End': end_time}, 'Metrics': ['BlendedCost']} billingres = boto3.client('ce').get_cost_and_usage(**billing_args) cost = sum([float(_['Total']['BlendedCost']['Amount']) for _ in billingres['ResultsByTime']]) if update_tsv: log_bucket = postrunjson.config.log_bucket # reading from metrics_report.tsv does_key_exist(log_bucket, job_id + '.metrics/metrics_report.tsv') read_file = read_s3(log_bucket, os.path.join(job_id + '.metrics/', 'metrics_report.tsv')) if 'Cost' not in read_file: write_file = read_file + 'Cost\t' + str(cost) + '\n' # writing with open('metrics_report.tsv', 'w') as fo: fo.write(write_file) # upload new metrics_report.tsv upload('metrics_report.tsv', log_bucket, job_id + '.metrics/') os.remove('metrics_report.tsv') else: printlog("cost already in the tsv file. not updating") return cost def does_dynamo_table_exist(self, tablename): try: res = boto3.client('dynamodb').describe_table( TableName=tablename ) if res: return True else: raise Exception("error describing table %s" % tablename) except Exception as e: if 'Requested resource not found' in str(e): return False else: raise Exception("error describing table %s" % tablename) def create_dynamo_table(self, tablename, keyname): if self.does_dynamo_table_exist(tablename): print("dynamodb table %s already exists. skip creating db" % tablename) else: response = boto3.client('dynamodb').create_table( TableName=tablename, AttributeDefinitions=[ { 'AttributeName': keyname, 'AttributeType': 'S' } ], KeySchema=[ { 'AttributeName': keyname, 'KeyType': 'HASH' } ], BillingMode='PAY_PER_REQUEST' ) def is_idle(self, instance_id, max_cpu_percent_threshold=1.0): """returns True if the instance is idle i.e. not doing anything for the past 1 hour and is safe to kill""" end = datetime.now(tzutc()) start = end - timedelta(hours=1) filesystem = '/dev/nvme1n1' # doesn't matter for cpu utilization try: cw_res = self.TibannaResource(instance_id, filesystem, start, end).as_dict() except Exception as e: raise MetricRetrievalException(e) if not cw_res['max_cpu_utilization_percent']: return True if cw_res['max_cpu_utilization_percent'] < max_cpu_percent_threshold: return True return False def cleanup(self, user_group_name, suffix='', ignore_errors=True, do_not_remove_iam_group=False, purge_history=False, verbose=False): def handle_error(errmsg): if ignore_errors: if verbose: printlog(errmsg) printlog("continue to remove the other components") else: raise Exception(errmsg) if user_group_name.startswith('tibanna'): raise Exception("User_group_name does not start with tibanna or tibanna_unicorn.") if suffix: lambda_suffix = '_' + user_group_name + '_' + suffix else: lambda_suffix = '_' + user_group_name # delete step function sfn = 'tibanna_' + self.sfn_type + lambda_suffix if verbose: printlog("deleting step function %s" % sfn) try: boto3.client('stepfunctions').delete_state_machine(stateMachineArn=STEP_FUNCTION_ARN(sfn)) except Exception as e: handle_error("Failed to cleanup step function: %s" % str(e)) # delete lambdas lambda_client = boto3.client('lambda') for lmb in self.lambda_names: if verbose: printlog("deleting lambda functions %s" % lmb + lambda_suffix) try: lambda_client.delete_function(FunctionName=lmb + lambda_suffix) except Exception as e: handle_error("Failed to cleanup lambda: %s" % str(e)) # delete IAM policies, roles and groups if not do_not_remove_iam_group: if
returnValue(response) @twisted_async @inlineCallbacks def GetAllChannelpartitionConfig(self, request, context): log.info('grpc-request', request=request) response = yield self.dispatcher.dispatch( 'GetAllChannelpartitionConfig', Empty(), context, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Channelpartition error') context.set_code(response.error_code) returnValue(Empty()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def CreateChannelpartition(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.ChannelpartitionConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.ChannelpartitionConfig()) response = yield self.dispatcher.dispatch( 'CreateChannelpartition', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Channelpartition\'{}\' error'.format( request.id)) context.set_code(response.error_code) returnValue(fb.ChannelpartitionConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def UpdateChannelpartition(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.ChannelpartitionConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.ChannelpartitionConfig()) response = yield self.dispatcher.dispatch( 'UpdateChannelpartition', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Channelpartition\'{}\' error'.format( request.id)) context.set_code(response.error_code) returnValue(fb.ChannelpartitionConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def DeleteChannelpartition(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.ChannelpartitionConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.ChannelpartitionConfig()) response = yield self.dispatcher.dispatch( 'DeleteChannelpartition', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Channelpartition\'{}\' error'.format( request.id)) context.set_code(response.error_code) returnValue(fb.ChannelpartitionConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def GetAllChannelpairConfig(self, request, context): log.info('grpc-request', request=request) response = yield self.dispatcher.dispatch( 'GetAllChannelpairConfig', Empty(), context, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Channelpair error') context.set_code(response.error_code) returnValue(Empty()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def CreateChannelpair(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.ChannelpairConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.ChannelpairConfig()) response = yield self.dispatcher.dispatch( 'CreateChannelpair', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Channelpair\'{}\' error'.format(request.id)) context.set_code(response.error_code) returnValue(fb.ChannelpairConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def UpdateChannelpair(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.ChannelpairConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.ChannelpairConfig()) response = yield self.dispatcher.dispatch( 'UpdateChannelpair', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Channelpair\'{}\' error'.format(request.id)) context.set_code(response.error_code) returnValue(fb.ChannelpairConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def DeleteChannelpair(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.ChannelpairConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.ChannelpairConfig()) response = yield self.dispatcher.dispatch( 'DeleteChannelpair', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Channelpair\'{}\' error'.format(request.id)) context.set_code(response.error_code) returnValue(fb.ChannelpairConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def GetAllChannelterminationConfig(self, request, context): log.info('grpc-request', request=request) response = yield self.dispatcher.dispatch( 'GetAllChannelterminationConfig', request, context, id=request.id) log.info('grpc-response', response=response) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Channeltermination \'{}\' error'.format( request.id)) context.set_code(response.error_code) returnValue(fb.ChannelterminationConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def CreateChanneltermination(self, request, context): log.info('grpc-request', request=request) response = yield self.dispatcher.dispatch( 'CreateChanneltermination', request, context, id=request.id) log.info('grpc-response', response=response) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Channeltermination \'{}\' error'.format( request.id)) context.set_code(response.error_code) returnValue(fb.ChannelterminationConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def UpdateChanneltermination(self, request, context): log.info('grpc-request', request=request) response = yield self.dispatcher.dispatch( 'UpdateChanneltermination', request, context, id=request.id) log.info('grpc-response', response=response) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Channeltermination \'{}\' error'.format( request.id)) context.set_code(response.error_code) returnValue(fb.ChannelterminationConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def DeleteChanneltermination(self, request, context): log.info('grpc-request', request=request) response = yield self.dispatcher.dispatch( 'DeleteChanneltermination', request, context, id=request.id) log.info('grpc-response', response=response) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Channeltermination \'{}\' error'.format( request.id)) context.set_code(response.error_code) returnValue(fb.ChannelterminationConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def GetAllOntaniConfig(self, request, context): log.info('grpc-request', request=request) response = yield self.dispatcher.dispatch( 'GetAllOntaniConfig', Empty(), context, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Ontani error') context.set_code(response.error_code) returnValue(Empty()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def CreateOntani(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.OntaniConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.OntaniConfig()) response = yield self.dispatcher.dispatch( 'CreateOntani', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Ontani \'{}\' error'.format(request.id)) context.set_code(response.error_code) returnValue(fb.OntaniConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def UpdateOntani(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.OntaniConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.OntaniConfig()) response = yield self.dispatcher.dispatch( 'UpdateOntani', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Ontani \'{}\' error'.format(request.id)) context.set_code(response.error_code) returnValue(fb.OntaniConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def DeleteOntani(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.OntaniConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.OntaniConfig()) response = yield self.dispatcher.dispatch( 'DeleteOntani', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('Ontani \'{}\' error'.format(request.id)) context.set_code(response.error_code) returnValue(fb.OntaniConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def GetAllVOntaniConfig(self, request, context): log.info('grpc-request', request=request) response = yield self.dispatcher.dispatch( 'GetAllVOntaniConfig', Empty(), context, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('VOntani error') context.set_code(response.error_code) returnValue(Empty()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def CreateVOntani(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.VOntaniConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.VOntaniConfig()) response = yield self.dispatcher.dispatch( 'CreateVOntani', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('VOntani \'{}\' error'.format(request.id)) context.set_code(response.error_code) returnValue(fb.VOntaniConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def UpdateVOntani(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.VOntaniConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.VOntaniConfig()) response = yield self.dispatcher.dispatch( 'UpdateVOntani', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('VOntani \'{}\' error'.format(request.id)) context.set_code(response.error_code) returnValue(fb.VOntaniConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def DeleteVOntani(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.VOntaniConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.VOntaniConfig()) response = yield self.dispatcher.dispatch( 'DeleteVOntani', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('VOntani \'{}\' error'.format(request.id)) context.set_code(response.error_code) returnValue(fb.VOntaniConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def GetAllVEnetConfig(self, request, context): log.info('grpc-request', request=request) response = yield self.dispatcher.dispatch( 'GetAllVEnetConfig', request, context, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('VEnet error') context.set_code(response.error_code) returnValue(Empty()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def CreateVEnet(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.VEnetConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.VEnetConfig()) response = yield self.dispatcher.dispatch( 'CreateVEnet', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('VEnet \'{}\' error'.format(request.id)) context.set_code(response.error_code) returnValue(fb.VEnetConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def UpdateVEnet(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.VEnetConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.VEnetConfig()) response = yield self.dispatcher.dispatch( 'UpdateVEnet', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('VEnet \'{}\' error'.format(request.id)) context.set_code(response.error_code) returnValue(fb.VEnetConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def DeleteVEnet(self, request, context): log.info('grpc-request', request=request) try: assert isinstance(request, fb.VEnetConfig) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(fb.VEnetConfig()) response = yield self.dispatcher.dispatch( 'DeleteVEnet', request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('VEnet \'{}\' error'.format(request.id)) context.set_code(response.error_code) returnValue(fb.VEnetConfig()) else: log.debug('grpc-success-response', response=response) returnValue(response) @twisted_async @inlineCallbacks def GetAllTrafficDescriptorProfileData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.get_all_global_xpon_object_data (request, context, _method_name) @twisted_async @inlineCallbacks def CreateTrafficDescriptorProfileData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) @twisted_async @inlineCallbacks def UpdateTrafficDescriptorProfileData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) @twisted_async @inlineCallbacks def DeleteTrafficDescriptorProfileData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) @twisted_async @inlineCallbacks def GetAllTcontsConfigData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.get_all_global_xpon_object_data (request, context, _method_name) @twisted_async @inlineCallbacks def CreateTcontsConfigData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) @twisted_async @inlineCallbacks def UpdateTcontsConfigData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) @twisted_async @inlineCallbacks def DeleteTcontsConfigData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) @twisted_async @inlineCallbacks def GetAllGemportsConfigData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.get_all_global_xpon_object_data (request, context, _method_name) @twisted_async @inlineCallbacks def CreateGemportsConfigData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) @twisted_async @inlineCallbacks def UpdateGemportsConfigData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) @twisted_async @inlineCallbacks def DeleteGemportsConfigData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) @twisted_async @inlineCallbacks def GetAllMulticastGemportsConfigData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.get_all_global_xpon_object_data (request, context, _method_name) @twisted_async @inlineCallbacks def CreateMulticastGemportsConfigData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) @twisted_async @inlineCallbacks def UpdateMulticastGemportsConfigData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) @twisted_async @inlineCallbacks def DeleteMulticastGemportsConfigData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) @twisted_async @inlineCallbacks def GetAllMulticastDistributionSetData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.get_all_global_xpon_object_data (request, context, _method_name) @twisted_async @inlineCallbacks def CreateMulticastDistributionSetData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) @twisted_async @inlineCallbacks def UpdateMulticastDistributionSetData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) @twisted_async @inlineCallbacks def DeleteMulticastDistributionSetData(self, request, context): _method_name = sys._getframe().f_code.co_name return self.manage_global_xpon_object (request, context, _method_name) def get_all_global_xpon_object_data(self, request, context, method_name): log.info('grpc-request', request=request) response = yield self.dispatcher.dispatch( method_name, Empty(), context, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response', error=response.error_code) context.set_details('{}\' error' .format(type(request).__name__)) context.set_code(response.error_code) returnValue(Empty()) else: log.debug('grpc-success-response', response=response) returnValue(response) def manage_global_xpon_object(self, request, context, method_name): log.info('grpc-request', request=request) _xpon_object_type = self.xpon_object_type[method_name] try: assert isinstance(request, _xpon_object_type) request.id = create_empty_broadcast_id() except AssertionError, e: context.set_details(e.message) context.set_code(StatusCode.INVALID_ARGUMENT) returnValue(_xpon_object_type()) response = yield self.dispatcher.dispatch( method_name, request, context, id=request.id, broadcast=True) if isinstance(response, DispatchError): log.warn('grpc-error-response',
<reponame>t-young31/thesis #!/usr/bin/env python3 import argparse import numpy as np from scipy.spatial import distance_matrix from scipy import integrate class Constants: hbar_au = 1.0 h_au = hbar_au * 2.0 * np.pi amu_to_au = 1822.888486 # m_e amu-1 kj_mol_to_au = 0.00038087980 # Ha (kJ mol-1)-1 kcal_mol_to_au = 0.001593601 # Ha (kcal mol-1)-1 inverse_ang_inverse_au = 1.0 / 1.88973 # au-1 Å kb_au = 3.1668114E-6 k_b = 1.38064852E-23 # J K-1 h = 6.62607004E-34 # J s n_a = 6.022140857E23 # molecules mol-1 ha_to_j = 4.359744650E-18 # J Ha-1 ha_to_j_mol = ha_to_j * n_a # J mol-1 Ha-1 j_to_kcal = 0.239006 * 1E-3 # kcal J-1 atm_to_pa = 101325 # Pa dm_to_m = 0.1 # m amu_to_kg = 1.660539040E-27 # Kg r = k_b * n_a # J K-1 mol-1 c = 299792458 # m s-1 c_in_cm = c * 100 # cm s-1 ang_to_m = 1E-10 # m # Atomic weights in amu from: # IUPAC-CIAWW's Atomic weights of the elements: Review 2000 atomic_masses = {"H": 1.00794, "He": 4.002602, "Li": 6.941, "Be": 9.012182, "B": 10.811, "C": 12.0107, "N": 14.0067, "O": 15.9994, "F": 18.9984032, "Ne": 2.01797, "Na": 22.989770, "Mg": 24.3050, "Al": 26.981538, "Si": 28.0855, "P": 30.973761, "S": 32.065, "Cl": 35.453, "Ar": 39.948, "K": 39.0983, "Ca": 40.078, "Sc": 44.955910, "Ti": 47.867, "V": 50.9415, "Cr": 51.9961, "Mn": 54.938049, "Fe": 55.845, "Co": 58.933200, "Ni": 58.6934, "Cu": 63.546, "Zn": 65.409, "Ga": 69.723, "Ge": 72.64, "As": 74.92160, "Se": 78.96, "Br": 79.904, "Kr": 83.798, "Rb": 85.4678, "Sr": 87.62, "Y": 88.90585, "Zr": 91.224, "Nb": 92.90638, "Mo": 95.94, "Ru": 101.07, "Rh": 102.90550, "Pd": 106.42, "Ag": 107.8682, "Cd": 112.411, "In": 114.818, "Sn": 118.710, "Sb": 121.760, "Te": 127.60, "I": 126.90447, "Xe": 131.293, "Cs": 132.90545, "Ba": 137.327, "La": 138.9055, "Ce": 140.116, "Pr": 140.90765, "Nd": 144.24, "Sm": 150.36, "Eu": 151.964, "Gd": 157.25, "Tb": 158.92534, "Dy": 162.500, "Ho": 164.93032, "Er": 167.259, "Tm": 168.93421, "Yb": 173.04, "Lu": 174.967, "Hf": 178.49, "Ta": 180.9479, "W": 183.84, "Re": 186.207, "Os": 190.23, "Ir": 192.217, "Pt": 195.078, "Au": 196.96655, "Hg": 200.59, "Tl": 204.3833, "Pb": 207.2, "Bi": 208.98038, "Th": 232.0381, "Pa": 231.03588, "U": 238.02891} def get_args(): """Get command line arguments with argparse""" parser = argparse.ArgumentParser() parser.add_argument("filename", action='store', help='.out file with freq calculation performed') parser.add_argument('-t', '--temp', type=float, default=298, help="Temperature (K) at which to calculate G, H and " "S. Default: %(default)s") parser.add_argument('-ss', '--standard_state', type=str, default='1M', help="Standard state. 1atm for gas phase and 1M for " "solution phase. Default: %(default)s") parser.add_argument('-m', '--method', default='grimme', nargs='?', choices=['igm', 'truhlar', 'grimme'], help='Method by which to calculate G, H and S. ' 'Default: %(default)s') parser.add_argument('-s', '--shift', type=float, default=100, help="Cut-off (in cm-1) to use in Truhlar's method. " "Frequencies below this will be shifted to this " "value. Default: %(default)s") parser.add_argument('-w', '--w0', type=float, default=100, help="Value of w0 to use in Grimme's interpolation " "method Chem. Eur. J. 2012, 18, 9955 eqn. 8. " "Default: %(default)s") parser.add_argument('-a', '--alpha', type=float, default=4, help="Value of alpha to use in Grimme's interpolation " "method Chem. Eur. J. 2012, 18, 9955 eqn. 8. " "Default: %(default)s") parser.add_argument('-cs', '--calc_sym', action='store_true', default=False, help="Force calculation of symmetry number " "(N^3 algorithm) used for n_atoms < 50." " Default: %(default)s") parser.add_argument('-sn', '--symn', type=int, default=None, help="Override the symmetry number calculation. " "Default: %(default)s") parser.add_argument('-r', '--real_freqs', action='store_true', default=False, help='Convert any imaginary frequencies to their real ' 'counterparts') parser.add_argument('-ts', '--transition_state', action='store_true', default=False, help='This species is a transition state so the lowest' 'imaginary should be ignored in calculating the' 'thermochemical contributions') return parser.parse_args() def print_output(molecule): print("----------------------------------------------------------------------------------\n" "| |\n" "| /$$$$$$ /$$$$$$$$ /$$ /$$ /$$$$$$$$ /$$$$$$$ /$$ /$$ |\n" "| /$$__ $$|__ $$__/| $$ | $$| $$_____/| $$__ $$| $$$ /$$$ |\n" "| | $$ \ $$ | $$ | $$ | $$| $$ | $$ \ $$| $$$$ /$$$$ |\n" "| | $$ | $$ | $$ | $$$$$$$$| $$$$$ | $$$$$$$/| $$ $$/$$ $$ |\n" "| | $$ | $$ | $$ | $$__ $$| $$__/ | $$__ $$| $$ $$$| $$ |\n" "| | $$ | $$ | $$ | $$ | $$| $$ | $$ \ $$| $$\ $ | $$ |\n" "| | $$$$$$/ | $$ | $$ | $$| $$$$$$$$| $$ | $$| $$ \/ | $$ |\n" "| \______/ |__/ |__/ |__/|________/|__/ |__/|__/ |__/ |\n" "| |\n" "-----------------------------------------------------------------------------------\n\n") print("{:<50s}{:>33s}".format('Filename', args.filename)) print("{:<50s}{:>33.1f}".format('Temperature (K)', args.temp)) print("{:<50s}{:>33s}".format('Standard state is', args.standard_state)) if args.real_freqs: print("{:<50s}{:>33s}".format('Treat imaginary (negative) frequencies ' 'as real', 'True')) print("{:<50s}{:>33s}".format('Calculating using the method of', args.method)) if args.method.lower() == 'grimme': print("{:<50s}{:>33s}".format('', '<NAME>. 2012, 18, 9955')) if args.method.lower() == 'truhlar': print("{:<50s}{:>33s}".format('', '<NAME>, 2011, 115, 14556')) print() print("{:<50s}{:>33s}".format('Symmetry number (σ)', str(molecule.sigma_r))) print("{:<50s}{:>33.2f}".format('Molecular weight (amu)', molecule.mass / Constants.amu_to_kg)) print() if any(freq < 0 for freq in molecule.freqs): print('---------------------------------------WARNING--------------------------------------') print(' Found imaginary frequencies', ) print('------------------------------------------------------------------------------------\n') print("{:<50s}{:>33.2f}".format('Total entropy (J K-1 mol-1)', molecule.s)) print("{:<50s}{:>33.2f}".format('Total enthalpy (J mol-1)', molecule.h)) print("{:<50s}{:>33.2f}".format('Total free energy (J mol-1)', molecule.g)) print() e_elec_ha = molecule.e / (Constants.ha_to_j * Constants.n_a) h_ha = molecule.h / (Constants.ha_to_j * Constants.n_a) g_ha = molecule.g / (Constants.ha_to_j * Constants.n_a) print("{:<50s}{:>33}".format('For convenience E, H, <NAME> Hartrees', '')) print(e_elec_ha, h_ha, g_ha, sep=',') print("----------------------------------------------------------------------------------") return None def extract_frequencies(filename): """ Extract the frequencies from an ORCA output file. Iterate through the reversed file to find the frequencies (in cm-1) so if multiple Hessians have been calculated, the final one is found. :param filename: Name of the ORCA output file :return: (list(float)) List of frequencies (high to low, in cm-1) """ orca_out_file_lines = open(filename, 'r').readlines() freq_block = False freq_list = [] for line in reversed(orca_out_file_lines): if 'NORMAL MODES' in line: freq_block = True if 'VIBRATIONAL FREQUENCIES' in line: break if 'cm**-1' in line and freq_block: try: # Line is in the form " 0: 0.00 cm**-1" freq_list.append(float(line.split()[1])) except TypeError: raise Exception("Couldn't extract frequencies") if len(freq_list) == 0: raise Exception('Frequencies not found') return freq_list def extract_final_electronic_energy(filename): """ Get the final electronic energy from an ORCA output file :param filename: (str) :return: (float) """ for line in reversed(open(filename, 'r').readlines()): if 'FINAL SINGLE POINT ENERGY' in line: return Constants.ha_to_j * Constants.n_a * float(line.split()[4]) raise Exception('Final electronic energy not found') def extract_xyzs(filename): """ Extract the xyzs from a ORCA output file in the format [[C, 0.0000, 0.0000, 0.0000], ....] :param filename: Name of the ORCA output file :return: List of xyzs """ xyzs = [] orca_out_file_lines = open(filename, 'r').readlines() cart_coords_block = False for line in reversed(orca_out_file_lines): xyz_block = True if len(line.split()) == 4 else False if cart_coords_block and xyz_block: atom, x, y, z = line.split()[-4:] xyzs.append([atom, float(x), float(y), float(z)]) if 'CARTESIAN COORDINATES (A.U.)' in line: cart_coords_block = True if 'CARTESIAN COORDINATES (ANGSTROEM)' in line: break return xyzs def rotation_matrix(axis, theta): """ Return the rotation matrix associated with counterclockwise rotation about the given axis by theta radians. """ axis = np.asarray(axis) axis = axis/np.linalg.norm(axis) a = np.cos(theta/2.0) b, c, d = -axis*np.sin(theta/2.0) aa, bb, cc, dd = a*a, b*b, c*c, d*d bc, ad, ac, ab, bd, cd = b*c, a*d, a*c, a*b, b*d, c*d return np.array([[aa+bb-cc-dd, 2*(bc+ad), 2*(bd-ac)], [2*(bc-ad), aa+cc-bb-dd, 2*(cd+ab)], [2*(bd+ac), 2*(cd-ab), aa+dd-bb-cc]]) def normalised_vector(coord1, coord2): vec = coord2 - coord1 return vec / np.linalg.norm(vec) def strip_identical_and_inv_axes(axes, sim_axis_tol): """ For a list of axes remove those which are similar to within some distance tolerance, or are inverses to within that tolerance :param axes: list of axes :param sim_axis_tol: distance tolerance in Å :return: """ unique_possible_axes = [] for i in range(len(axes)): unique = True for unique_axis in unique_possible_axes: if np.linalg.norm(axes[i] - unique_axis) < sim_axis_tol: unique = False if np.linalg.norm(-axes[i] - unique_axis) < sim_axis_tol: unique = False if unique: unique_possible_axes.append(axes[i]) return unique_possible_axes def get_possible_axes(coords, max_triple_dist=2.0, sim_axis_tol=0.05): """ Possible rotation axes in a molecule. Currently limited to average vectors and cross products i.e. Y Y ---> / \ / \ X Y X Z | | , :param coords: :param max_triple_dist: :param sim_axis_tol: :return: """ possible_axes = [] n_atoms = len(coords) for i in range(n_atoms): for j in range(n_atoms): if i > j: # For the unique pairs add the i–j vector possible_axes.append(normalised_vector(coords[i], coords[j])) for k in range(n_atoms): # Triple must not have any of the same atoms if any((i == j, i == k, j == k)): continue
<gh_stars>0 # Copyright 2021 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from collections import defaultdict from enum import Enum import os import requests from sushy_tools.emulator import constants from sushy_tools.emulator.resources.systems.base import AbstractSystemsDriver from sushy_tools import error vmware_loaded = True try: from pyVim.connect import Disconnect from pyVim.connect import SmartConnectNoSSL from pyVmomi import vim except ImportError: vmware_loaded = False is_loaded = bool(vmware_loaded) class ErrMsg(object): IDENTITY_NOT_FOUND = \ "VMWAREDRV_ERR_000 - Identity {0} Not Found." POWER_STATE_CANNOT_SET = \ "VMWAREDRV_ERR_010 - Power state {0} for Identity {1} cannot set." INVALID_BOOT_SOURCE = \ "VMWAREDRV_ERR_020 - Boot Source {0} is not valid." NO_VIRT_DEV_TO_SUPPORT_BOOT_SRC = \ ("VMWAREDRV_ERR_021 - No VirtualDevice exists in {0} " "to support boot source: {1}.") NO_BOOTABLE_DEVICE = \ ("VMWAREDRV_ERR_022 - No Bootable Device Found. " "Cannot get boot device.") INVALID_DEVICE_TYPE = \ ("VMWAREDRV_ERR_023 - Invalid Device Type {0}. " "Valid values are: Pxe, Hdd, Cd, Floppy") INVALID_BOOT_MODE = \ ("VMWAREDRV_ERR_030 - Invalid boot mode. " "Valid values are UEFI or Legacy.") BOOT_IMAGE_CANNOT_BE_SET = \ ("VMWAREDRV_ERR_031 - Boot image {0} " "cannot be set for device {1}") ERR_VMWARE_OPEN = \ "VMWAREDRV_ERR_040 - Error connecting to vmware host. {0}" DRV_OP_NOT_SUPPORTED = \ ("VMWAREDRV_ERR_050 - Operation not supported by " "the virtualization driver. VMware API does not support {0}") class PowerStates(Enum): ON = 'On' FORCE_ON = 'ForceOn' FORCE_OFF = 'ForceOff' GRACEFUL_SHUTDOWN = 'GracefulShutdown' GRACEFUL_RESTART = 'GracefulRestart' FORCE_RESTART = 'ForceRestart' NMI = 'Nmi' class VmwareOpen(object): def __init__(self, host, port, username, password): self._host = host self._port = port self._username = username self._password = password def __enter__(self): try: self._service_instance = SmartConnectNoSSL( host=self._host, user=self._username, pwd=self._password, port=self._port) return self._service_instance except IOError as e: error_msg = ErrMsg.ERR_VMWARE_OPEN.format(e) raise error.FishyError(error_msg) def __exit__(self, type, value, traceback): Disconnect(self._service_instance) class VmwareDriver(AbstractSystemsDriver): """Vmware driver""" def _get_vms(self, service_instance): content = service_instance.RetrieveContent() # Starting point to look into container = content.rootFolder # object types to look for view_type = [vim.VirtualMachine] # whether we should look into it recursively recursive = True container_view = content.viewManager.CreateContainerView( container, view_type, recursive) vms = container_view.view return vms def _get_vm(self, identity, service_instance): vmlist = self._get_vms(service_instance) for vm in vmlist: # NOTE. vCenter supports Virtual Machines with the same name # provided they are on a separate Virtual Machine Folder # in a Datacener. # This complicates the search by name as we have not other input # to further filter the results. # At this point the first VM with the matching name will be # returned and we assume two vms will not be named the same # within a vSphere host due to naming conventions. vm_name = vm.summary.config.name vm_uuid = vm.summary.config.uuid if (vm_name == identity or vm_uuid == identity): return vm raise error.FishyError( ErrMsg.IDENTITY_NOT_FOUND.format( identity)) # Helper method to upload an image to the hypervisor # PLEASE NOTE! This method is not covered by the Unit Tests at this point, # due to complexity. # It should NOT require any updates unless the pyvimomi API changes, # which is unlikely for the managed objects it is using. # PLEASE TEST EXTENSIVELY IF EVER MODIFIED. def _upload_image(self, service_instance, host, port, boot_image, datastore_name): content = service_instance.RetrieveContent() boot_image_folder = 'vmedia' # Get the list of all datacenters we have available to us datacenters_object_view = content.viewManager.CreateContainerView( content.rootFolder, [vim.Datacenter], True) # Find the datastore and datacenter we are using datacenter = None datastore = None for dc_obj in datacenters_object_view.view: datastores_object_view = content.viewManager.CreateContainerView( dc_obj, [vim.Datastore], True) for ds_obj in datastores_object_view.view: if ds_obj.info.name == datastore_name: datacenter = dc_obj datastore = ds_obj if not datacenter or not datastore: raise Exception("Could not find the datastore specified") # Clean up the views now that we have what we need datastores_object_view.Destroy() datacenters_object_view.Destroy() # Create the Virtual Media Directory try: vmedia_directory = "[{0}] {1}".format( datastore.info.name, boot_image_folder) file_manager = content.fileManager file_manager.MakeDirectory(vmedia_directory, datacenter, True) except vim.fault.FileAlreadyExists: # Directory already exists so do nothing. pass # Prepare http PUT call isoname = os.path.basename(boot_image) http_url = "https://{0}:{1}/folder/{2}/{3}".format( self._host, self._port, boot_image_folder, isoname) params = {"dsName": datastore.info.name, "dcPath": datacenter.name} # Get the cookie built from the current session client_cookie = service_instance._stub.cookie # Break apart the cookie into it's component parts - This is more than # is needed, but a good example of how to break apart the cookie # anyways. The verbosity makes it clear what is happening. cookie_name = client_cookie.split("=", 1)[0] cookie_value = client_cookie.split("=", 1)[1].split(";", 1)[0] cookie_path = client_cookie.split("=", 1)[1].split(";", 1)[ 1].split(";", 1)[0].lstrip() cookie_text = " " + cookie_value + "; $" + cookie_path # Make a cookie cookie = dict() cookie[cookie_name] = cookie_text # Get the request headers set up headers = {'Content-Type': 'application/octet-stream'} # Get the file to upload ready, extra protection by using with against # leaving open threads with open(boot_image, "rb") as f: # Connect and upload the file requests.put(http_url, params=params, data=f, headers=headers, cookies=cookie, verify=False) hypervisor_boot_image = "[{0}] {1}/{2}".format( datastore.info.name, boot_image_folder, isoname) return hypervisor_boot_image def vmware_boot_dev_to_sushydev(self, bootable_device): if isinstance(bootable_device, vim.VirtualMachineBootOptionsBootableEthernetDevice): return 'Pxe' elif isinstance(bootable_device, vim.VirtualMachineBootOptionsBootableDiskDevice): return 'Hdd' elif isinstance(bootable_device, vim.VirtualMachineBootOptionsBootableCdromDevice): return 'Cd' else: return 'None' def is_bootable_ethernet_dev(self, dev): res = isinstance(dev, vim.VirtualMachineBootOptionsBootableEthernetDevice) return res def is_bootable_disk_dev(self, dev): res = isinstance(dev, vim.VirtualMachineBootOptionsBootableDiskDevice) return res def is_bootable_cd_dev(self, dev): res = isinstance(dev, vim.VirtualMachineBootOptionsBootableCdromDevice) return res def is_bootable_floppy_dev(self, dev): res = isinstance(dev, vim.VirtualMachineBootOptionsBootableFloppyDevice) return res def is_dev_vmxnet3(self, dev): res = isinstance(dev, vim.vm.device.VirtualVmxnet3) return res def is_dev_vdisk(self, dev): res = isinstance(dev, vim.vm.device.VirtualDisk) return res def is_dev_vcd(self, dev): res = isinstance(dev, vim.vm.device.VirtualCdrom) return res def is_dev_flp(self, dev): res = isinstance(dev, vim.vm.device.VirtualFloppy) return res def is_dev_scsi_cntl(self, dev): res = isinstance(dev, vim.vm.device.VirtualSCSIController) return res def is_dev_sata_cntl(self, dev): res = isinstance(dev, vim.vm.device.VirtualSATAController) return res def is_dev_nvme_cntl(self, dev): res = isinstance(dev, vim.vm.device.VirtualNVMEController) return res def is_iso_backing(self, backing): res = isinstance(backing, vim.vm.device.VirtualCdrom.IsoBackingInfo) return res def reorder_boot_devs(self, boot_source, vm): new_boot_order = [] # Bootable devices exist. # Check if the boot_source exists in the list and make it first # in the sequence if (boot_source == 'Pxe'): bootable_eth_dev_found = False virtual_eth_dev_found = False # Find the device and put it first in the list for bootable_dev in vm.config.bootOptions.bootOrder: if self.is_bootable_ethernet_dev(bootable_dev): # Found it. Moved it first in the boot list new_boot_order.append(bootable_dev) bootable_eth_dev_found = True if not bootable_eth_dev_found: # boot_source device was not found in the bootOrder so # we need to find the device in the virtual device list # and create a bootable device linking to it for device in vm.config.hardware.device: if self.is_dev_vmxnet3(device): net_device = \ vim.\ VirtualMachineBootOptionsBootableEthernetDevice() net_device.deviceKey = device.key # Add to the VM Boot Order new_boot_order.append(net_device) virtual_eth_dev_found = True # boot_source does not exist in the virtual device list # so raise an exception if not virtual_eth_dev_found: vm_name = vm.summary.config.name error_msg = ErrMsg.NO_VIRT_DEV_TO_SUPPORT_BOOT_SRC.format( vm_name, boot_source) raise error.FishyError(error_msg) # Add the remaining boot devices from the boot order # ommiting the boot_source device for bootable_dev in vm.config.bootOptions.bootOrder: if not self.is_bootable_ethernet_dev(bootable_dev): new_boot_order.append(bootable_dev) elif (boot_source == 'Hdd'): bootable_hdd_device_found = False virtual_hdd_device_found = False # Find the device and put it first in the list for bootable_dev in vm.config.bootOptions.bootOrder: if self.is_bootable_disk_dev(bootable_dev): # Found it. Moved it first in the boot list new_boot_order.append(bootable_dev) bootable_hdd_device_found = True if not bootable_hdd_device_found: # boot_source device was not found in the bootOrder so # we need to find the device in the virtual device list # and create a bootable device linking to it for device in vm.config.hardware.device: if self.is_dev_vdisk(device): hdd_device = \ vim.VirtualMachineBootOptionsBootableDiskDevice() hdd_device.deviceKey = device.key # Add to the VM Boot Order new_boot_order.append(hdd_device) virtual_hdd_device_found = True # boot_source does not exist in the virtual device list # so raise an exception if not virtual_hdd_device_found: vm_name = vm.summary.config.name error_msg = ErrMsg.NO_VIRT_DEV_TO_SUPPORT_BOOT_SRC.format( vm_name, boot_source) raise error.FishyError(error_msg) # Add the remaining boot devices from
'''Represents the content of a INDEX_ROOT attribute. The structure of an index is a B+ tree, as such an root is always present. Note: This class receives an Iterable as argument, the "Parameters/Args" section represents what must be inside the Iterable. The Iterable MUST preserve order or things might go boom. Args: content[0] (:obj:`AttrTypes`): Attribute type content[1] (:obj:`CollationRule`): Collation rule content[2] (int): Index record size in bytes content[3] (int): Index record size in clusters node_header (IndexNodeHeader) - Node header related to this index root idx_entry_list (list(IndexEntry))- List of index entries that belong to this index root Attributes: attr_type (:obj:`AttrTypes`): Attribute type collation_rule (:obj:`CollationRule`): Collation rule index_len_in_bytes (int): Index record size in bytes index_len_in_cluster (int): Index record size in clusters node_header (IndexNodeHeader): Node header related to this index root index_entry_list (list(IndexEntry)): List of index entries that belong to ''' _idx_root_namespace = {"__len__" : _len_idx_root, "create_from_binary" : classmethod(_from_binary_idx_root) } IndexRoot = _create_attrcontent_class("IndexRoot", ("attr_type", "collation_rule", "index_len_in_bytes", "index_len_in_cluster", "node_header", "index_entry_list"), inheritance=(AttributeContentRepr,), data_structure="<3IB3x", extra_functions=_idx_root_namespace, docstring=_docstring_idx_root) #****************************************************************************** # BITMAP ATTRIBUTE #****************************************************************************** def _allocated_entries_bitmap(self): '''Creates a generator that returns all allocated entries in the bitmap. Yields: int: The bit index of the allocated entries. ''' for entry_number in range(len(self._bitmap) * 8): if self.entry_allocated(entry_number): yield entry_number def _entry_allocated_bitmap(self, entry_number): """Checks if a particular index is allocated. Args: entry_number (int): Index to verify Returns: bool: True if it is allocated, False otherwise. """ index, offset = divmod(entry_number, 8) return bool(self._bitmap[index] & (1 << offset)) def _get_next_empty_bitmap(self): """Returns the next empty entry. Returns: int: The value of the empty entry """ #TODO probably not the best way, redo for i, byte in enumerate(self._bitmap): if byte != 255: for offset in range(8): if not byte & (1 << offset): return (i * 8) + offset def _from_binary_bitmap(cls, binary_stream): """See base class.""" return cls(binary_stream.tobytes()) def _len_bitmap(self): '''Returns the size of the bitmap in bytes''' return len(self._bitmap) _docstring_bitmap = """Represents the content of a BITMAP attribute. Correctly represents a bitmap as seen by the MFT. That basically means that the underlying data structure is interpreted bit by bit, where if the bit is 1, the entry is "occupied"/allocated. Args: binary_data (:obj:`bytes`): The bytes where the data is maintained """ _bitmap_namespace = {"__len__" : _len_bitmap, "get_next_empty" : _get_next_empty_bitmap, "entry_allocated" : _entry_allocated_bitmap, "allocated_entries" : _allocated_entries_bitmap, "create_from_binary" : classmethod(_from_binary_bitmap) } Bitmap = _create_attrcontent_class("Bitmap", ("_bitmap", ), inheritance=(AttributeContentNoRepr,), data_structure=None, extra_functions=_bitmap_namespace, docstring=_docstring_bitmap) #****************************************************************************** # REPARSE_POINT ATTRIBUTE #****************************************************************************** def _from_binary_junc_mnt(cls, binary_stream): """See base class.""" ''' Offset to target name - 2 (relative to 16th byte) Length of target name - 2 Offset to print name - 2 (relative to 16th byte) Length of print name - 2 ''' offset_target_name, len_target_name, offset_print_name, len_print_name = \ cls._REPR.unpack(binary_stream[:cls._REPR.size]) offset = cls._REPR.size + offset_target_name target_name = binary_stream[offset:offset+len_target_name].tobytes().decode("utf_16_le") offset = cls._REPR.size + offset_print_name print_name = binary_stream[offset:offset+len_print_name].tobytes().decode("utf_16_le") nw_obj = cls((target_name, print_name)) _MOD_LOGGER.debug("Attempted to unpack Junction or MNT point from \"%s\"\nResult: %s", binary_stream.tobytes(), nw_obj) return nw_obj def _len_junc_mnt(self): '''Returns the size of the bitmap in bytes''' return len(self.target_name.encode("utf_16_le")) + len(self.print_nameencode("utf_16_le")) + 4 #size of offsets _docstring_junc_mnt = """Represents the content of a REPARSE_POINT attribute when it is a junction or mount point. Args: target_name (str): Target name print_name (str): Print name Attributes: target_name (str): Target name print_name (str): Print name """ _junc_mnt_namespace = {"__len__" : _len_junc_mnt, "create_from_binary" : classmethod(_from_binary_junc_mnt) } JunctionOrMount = _create_attrcontent_class("JunctionOrMount", ("target_name", "print_name"), inheritance=(AttributeContentRepr,), data_structure="<4H", extra_functions=_junc_mnt_namespace, docstring=_docstring_junc_mnt) #------------------------------------------------------------------------------ def _from_binary_syn_link(cls, binary_stream): """See base class.""" ''' Offset to target name - 2 (relative to 16th byte) Length of target name - 2 Offset to print name - 2 (relative to 16th byte) Length of print name - 2 Symbolic link flags - 4 ''' offset_target_name, len_target_name, offset_print_name, \ len_print_name, syn_flags = \ cls._REPR.unpack(binary_stream[:cls._REPR.size]) offset = cls._REPR.size + offset_target_name target_name = binary_stream[offset:offset+len_target_name].tobytes().decode("utf_16_le") offset = cls._REPR.size + offset_print_name print_name = binary_stream[offset:offset+len_print_name].tobytes().decode("utf_16_le") nw_obj = cls((target_name, print_name, SymbolicLinkFlags(syn_flags))) _MOD_LOGGER.debug("Attempted to unpack Symbolic Link from \"%s\"\nResult: %s", binary_stream.tobytes(), nw_obj) return nw_obj def _len_syn_link(self): '''Returns the size of the bitmap in bytes''' return len(self.target_name.encode("utf_16_le")) + len(self.print_nameencode("utf_16_le")) + 8 #size of offsets + flags _docstring_syn_link = """Represents the content of a REPARSE_POINT attribute when it is a symbolic link. Args: target_name (str): Target name print_name (str): Print name sym_flags (:obj:`SymbolicLinkFlags`): Symbolic link flags Attributes: target_name (str): Target name print_name (str): Print name sym_flags (:obj:`SymbolicLinkFlags`): Symbolic link flags """ _syn_link_namespace = {"__len__" : _len_syn_link, "create_from_binary" : classmethod(_from_binary_syn_link) } SymbolicLink = _create_attrcontent_class("SymbolicLink", ("target_name", "print_name", "symbolic_flags"), inheritance=(AttributeContentRepr,), data_structure="<4HI", extra_functions=_syn_link_namespace, docstring=_docstring_junc_mnt) #------------------------------------------------------------------------------ def _from_binary_reparse(cls, binary_stream): """See base class.""" ''' Reparse type flags - 4 Reparse tag - 4 bits Reserved - 12 bits Reparse type - 2 bits Reparse data length - 2 Padding - 2 ''' #content = cls._REPR.unpack(binary_view[:cls._REPR.size]) reparse_tag, data_len = cls._REPR.unpack(binary_stream[:cls._REPR.size]) #reparse_tag (type, flags) data_len, guid, data reparse_type = ReparseType(reparse_tag & 0x0000FFFF) reparse_flags = ReparseFlags((reparse_tag & 0xF0000000) >> 28) guid = None #guid exists only in third party reparse points if reparse_flags & ReparseFlags.IS_MICROSOFT:#a microsoft tag if reparse_type is ReparseType.SYMLINK: data = SymbolicLink.create_from_binary(binary_stream[cls._REPR.size:]) elif reparse_type is ReparseType.MOUNT_POINT: data = JunctionOrMount.create_from_binary(binary_stream[cls._REPR.size:]) else: data = binary_stream[cls._REPR.size:].tobytes() else: guid = UUID(bytes_le=binary_stream[cls._REPR.size:cls._REPR.size+16].tobytes()) data = binary_stream[cls._REPR.size+16:].tobytes() nw_obj = cls((reparse_type, reparse_flags, data_len, guid, data)) _MOD_LOGGER.debug("Attempted to unpack REPARSE_POINT from \"%s\"\nResult: %s", binary_stream.tobytes(), nw_obj) return nw_obj def _len_reparse(self): '''Returns the size of the bitmap in bytes''' return ReparsePoint._REPR.size + self.data_len _docstring_reparse = '''Represents the content of a REPARSE_POINT attribute. The REPARSE_POINT attribute is a little more complicated. We can have Microsoft predefinied content and third-party content. As expected, this completely changes how the data is interpreted. All Microsoft types of REPARSE_POINT can be gathered from the winnt.h file. However, as of now, only two have been implemented: * Symbolic Links - SYMLINK * Mount or junction point - MOUNT_POINT As for third-party data, this is always saved in raw (bytes). Note: This class receives an Iterable as argument, the "Parameters/Args" section represents what must be inside the Iterable. The Iterable MUST preserve order or things might go boom. Args: content[0] (:obj:`ReparseType`): Reparse point type content[1] (:obj:`ReparseFlags`): Reparse point flags content[2] (int): Reparse data length content[3] (:obj:`UUID`): GUID content[4] (*variable*): Content of the reparse type Attributes: reparse_type (:obj:`ReparseType`): Reparse point type reparse_flags (:obj:`ReparseFlags`): Reparse point flags data_len (int): Reparse data length guid (:obj:`UUID`): GUID. This exists only in the third-party reparse points. If it is a Microsoft one, it defaults to ``None`` data (*variable*): Content of the reparse type ''' _reparse_namespace = {"__len__" : _len_reparse, "create_from_binary" : classmethod(_from_binary_reparse) } ReparsePoint = _create_attrcontent_class("ReparsePoint", ("reparse_type", "reparse_flags", "data_len", "guid", "data"), inheritance=(AttributeContentRepr,), data_structure="<IH2x", extra_functions=_reparse_namespace, docstring=_docstring_reparse) #****************************************************************************** # EA_INFORMATION ATTRIBUTE #****************************************************************************** def _from_binary_ea_info(cls, binary_stream): """See base class.""" ''' Size of Extended Attribute entry - 2 Number of Extended Attributes which have NEED_EA set - 2 Size of extended attribute data - 4 ''' return cls(cls._REPR.unpack(binary_stream[:cls._REPR.size])) def _len_ea_info(self): return EaInformation._REPR.size _docstring_ea_info = '''Represents the content of a EA_INFORMATION attribute. The (HPFS) extended attribute information ($EA_INFORMATION) contains information about the extended attribute ($EA). Note: This class receives an Iterable as argument, the "Parameters/Args" section represents what must be inside the Iterable. The Iterable MUST preserve order or things might go boom. Args: content[0] (int): Size of the EA attribute entry content[1] (int): Number of EA attributes with NEED_EA set content[2] (int): Size of the EA data Attributes: entry_len (int): Size of the EA attribute entry ea_set_number (int): Number of EA attributes with NEED_EA set ea_size (int): Size of the EA data ''' _ea_info_namespace = {"__len__" : _len_ea_info, "create_from_binary" : classmethod(_from_binary_ea_info) } EaInformation = _create_attrcontent_class("EaInformation", ("entry_len", "ea_set_number", "ea_size"), inheritance=(AttributeContentRepr,), data_structure="<2HI", extra_functions=_ea_info_namespace, docstring=_docstring_ea_info) #****************************************************************************** # EA ATTRIBUTE #****************************************************************************** def _from_binary_ea_entry(cls, binary_stream): """See base class.""" ''' Offset to the next EA - 4 Flags - 1 Name length - 1 Value length - 2 ''' offset_next_ea, flags, name_len, value_len = cls._REPR.unpack(binary_stream[:cls._REPR.size]) name = binary_stream[cls._REPR.size:cls._REPR.size + name_len].tobytes().decode("ascii") #it looks like the value is 8 byte aligned, do some math to compensate #TODO confirm if this is true value_alignment = (_ceil((cls._REPR.size + name_len) / 8) * 8) value = binary_stream[value_alignment:value_alignment + value_len].tobytes() nw_obj = cls((offset_next_ea, EAFlags(flags), name, value)) _MOD_LOGGER.debug("Attempted to unpack EA entry from \"%s\"\nResult: %s", binary_stream.tobytes(), nw_obj) return nw_obj def _len_ea_entry(self): '''Returns the size of the entry''' return EaEntry._REPR.size + len(self.name.encode("ascii")) + self.value_len _docstring_ea_entry = '''Represents an entry for EA. The EA attribute is composed by multiple EaEntries. Some information is not completely understood for this. One of those is if it is necessary some kind of aligment from the name to the value. The code considers
""" This module has functions that compares the contrast calculation from different methods: 1. E2E coronagraph 2. (Image-based PASTIS) 3. Matrix-based PASTIS All three methods are currently only supported for JWST, and you can pick between the analytical or numerical matrix. HiCAT and LUVOIR only have an E2E vs numerical PASTIS comparison (1 + 3). """ import os import time import numpy as np from astropy.io import fits import astropy.units as u import logging import matplotlib.pyplot as plt from matplotlib.colors import LogNorm import hcipy as hc from config import CONFIG_INI import util_pastis as util import image_pastis as impastis from e2e_simulators.luvoir_imaging import LuvoirAPLC log = logging.getLogger() @u.quantity_input(rms=u.nm) def contrast_jwst_ana_num(matdir, matrix_mode="analytical", rms=1. * u.nm, im_pastis=False, plotting=False): """ Calculate the contrast for an RMS WFE with image PASTIS, matrix PASTIS :param matdir: data directory to use for matrix and calibration coefficients from :param matrix_mode: use 'analytical or 'numerical' matrix :param rms: RMS wavefront error in pupil to calculate contrast for; in NANOMETERS :param im_pastis: default False, whether to also calculate contrast from image PASTIS :param plotting: default False, whether to save E2E and PASTIS DH PSFs; works only if im_pastis=True :return: """ from e2e_simulators import webbpsf_imaging as webbim log.warning("THIS ONLY WORKS FOR PISTON FOR NOW") # Keep track of time start_time = time.time() # runtime currently is around 12 min # Parameters dataDir = os.path.join(CONFIG_INI.get('local', 'local_data_path'), matdir) which_tel = CONFIG_INI.get('telescope', 'name') nb_seg = CONFIG_INI.getint(which_tel, 'nb_subapertures') filter = CONFIG_INI.get(which_tel, 'filter_name') fpm = CONFIG_INI.get(which_tel, 'focal_plane_mask') # focal plane mask lyot_stop = CONFIG_INI.get(which_tel, 'pupil_plane_stop') # Lyot stop inner_wa = CONFIG_INI.getint(which_tel, 'IWA') outer_wa = CONFIG_INI.getint(which_tel, 'OWA') tel_size_px = CONFIG_INI.getint('numerical', 'tel_size_px') sampling = CONFIG_INI.getfloat('numerical', 'sampling') #real_samp = sampling * tel_size_px / im_size zern_number = CONFIG_INI.getint('calibration', 'local_zernike') zern_mode = util.ZernikeMode(zern_number) zern_max = CONFIG_INI.getint('zernikes', 'max_zern') # Import PASTIS matrix matrix_pastis = None if matrix_mode == 'numerical': filename = 'PASTISmatrix_num_' + zern_mode.name + '_' + zern_mode.convention + str(zern_mode.index) matrix_pastis = fits.getdata(os.path.join(dataDir, 'matrix_numerical', filename + '.fits')) elif matrix_mode == 'analytical': filename = 'PASTISmatrix_' + zern_mode.name + '_' + zern_mode.convention + str(zern_mode.index) matrix_pastis = fits.getdata(os.path.join(dataDir, 'matrix_analytical', filename + '.fits')) # Create random aberration coefficients aber = np.random.random([nb_seg]) # piston values in input units #log.info(f'PISTON ABERRATIONS: {aber}') # Normalize to the RMS value I want rms_init = util.rms(aber) aber *= rms.value / rms_init calc_rms = util.rms(aber) * u.nm aber *= u.nm # making sure the aberration has the correct units log.info(f"Calculated RMS: {calc_rms}") # Remove global piston aber -= np.mean(aber) # Make equivalent aberration array that goes into the WebbPSF function Aber_WSS = np.zeros([nb_seg, zern_max]) Aber_WSS[:,0] = aber.to(u.m).value # index "0" works because we're using piston currently; convert to meters ### BASELINE PSF - NO ABERRATIONS, NO CORONAGRAPH log.info('Generating baseline PSF from E2E - no coronagraph, no aberrations') psf_perfect = webbim.nircam_nocoro(filter, np.zeros_like(Aber_WSS)) normp = np.max(psf_perfect) psf_perfect = psf_perfect / normp ### WEBBPSF log.info('Generating E2E coro contrast') start_webb = time.time() # Set up NIRCam and coronagraph, get PSF psf_webbpsf = webbim.nircam_coro(filter, fpm, lyot_stop, Aber_WSS) psf_webbpsf = psf_webbpsf / normp # Create dark hole dh_area = util.create_dark_hole(psf_webbpsf, inner_wa, outer_wa, sampling) # Get the mean contrast from the WebbPSF coronagraph webb_dh_psf = psf_webbpsf * dh_area contrast_webbpsf = np.mean(webb_dh_psf[np.where(webb_dh_psf != 0)]) end_webb = time.time() #TODO: save plots of phase on segmented pupil # Load in baseline contrast contrastname = 'base-contrast_' + zern_mode.name + '_' + zern_mode.convention + str(zern_mode.index) coro_floor = float(np.loadtxt(os.path.join(dataDir, 'calibration', contrastname+'.txt'))) ### IMAGE PASTIS contrast_am = np.nan if im_pastis: log.info('Generating contrast from image-PASTIS') start_impastis = time.time() # Create calibrated image from analytical model psf_am, full_psf = impastis.analytical_model(zern_number, aber, cali=True) # Get the mean contrast from image PASTIS contrast_am = np.mean(psf_am[np.where(psf_am != 0)]) + coro_floor end_impastis = time.time() ### MATRIX PASTIS log.info('Generating contrast from matrix-PASTIS') start_matrixpastis = time.time() # Get mean contrast from matrix PASTIS contrast_matrix = util.pastis_contrast(aber, matrix_pastis) + coro_floor # calculating contrast with PASTIS matrix model end_matrixpastis = time.time() ratio = None if im_pastis: ratio = contrast_am / contrast_matrix # Outputs log.info('\n--- CONTRASTS: ---') log.info(f'Mean contrast from E2E: {contrast_webbpsf}') log.info(f'Mean contrast with image PASTIS: {contrast_am}') log.info(f'Contrast from matrix PASTIS: {contrast_matrix}') log.info(f'Ratio image PASTIS / matrix PASTIS: {ratio}') log.info('\n--- RUNTIMES: ---') log.info(f'E2E: {end_webb-start_webb}sec = {(end_webb-start_webb)/60}min') if im_pastis: log.info(f'Image PASTIS: {end_impastis-start_impastis}sec = {(end_impastis-start_impastis)/60}min') log.info(f'Matrix PASTIS: {end_matrixpastis-start_matrixpastis}sec = {(end_matrixpastis-start_matrixpastis)/60}min') end_time = time.time() runtime = end_time - start_time log.info(f'Runtime for contrast_calculation_simple.py: {runtime} sec = {runtime/60} min') # Save the PSFs if im_pastis: if plotting: # As fits files util.write_fits(util.zoom_cen(webb_dh_psf, psf_am.shape[0]/2), os.path.join(dataDir, 'results', 'dh_images_'+matrix_mode, '{:.2e}'.format(rms.value)+str(rms.unit)+'RMS_e2e.fits')) util.write_fits(psf_am, os.path.join(dataDir, 'results', 'dh_images_'+matrix_mode, '{:.2e}'.format(rms.value)+str(rms.unit)+'RMS_am.fits')) # As PDF plot plt.clf() plt.figure() plt.suptitle('{:.2e}'.format(rms.value) + str(rms.unit) + " RMS") plt.subplot(1, 2, 1) plt.title("E2E") plt.imshow(util.zoom_cen(webb_dh_psf, psf_am.shape[0]/2), norm=LogNorm()) plt.colorbar() plt.subplot(1, 2, 2) plt.title("PASTIS image") plt.imshow(psf_am, norm=LogNorm()) plt.colorbar() plt.savefig(os.path.join(dataDir, 'results', 'dh_images_'+matrix_mode, '{:.2e}'.format(rms.value)+'DH_PSFs.pdf')) #TODO: check image rotation, I think there is a 90 degree difference in them for the JWST simulations return contrast_webbpsf, contrast_am, contrast_matrix def contrast_hicat_num(matrix_dir, matrix_mode='hicat', rms=1*u.nm): """ Compute the contrast for a random IrisAO mislignment on the HiCAT simulator. :param matrix_dir: str, directory of saved matrix :param matrix_mode: str, analytical or numerical; currently only numerical supported :param rms: astropy quantity, rms wfe to be put randomly on the SM :return: 2x float, E2E and matrix contrast """ import hicat.simulators # Keep track of time start_time = time.time() # runtime currently is around 12 min # Parameters nb_seg = CONFIG_INI.getint('HiCAT', 'nb_subapertures') iwa = CONFIG_INI.getfloat('HiCAT', 'IWA') owa = CONFIG_INI.getfloat('HiCAT', 'OWA') # Import numerical PASTIS matrix for HiCAT sim filename = 'PASTISmatrix_num_HiCAT_piston_Noll1' matrix_pastis = fits.getdata(os.path.join(matrix_dir, filename + '.fits')) # Create random aberration coefficients aber = np.random.random([nb_seg]) # piston values in input units log.info(f'PISTON ABERRATIONS: {aber}') # Normalize to the RMS value I want rms_init = util.rms(aber) aber *= rms.value / rms_init calc_rms = util.rms(aber) * u.nm aber *= u.nm # making sure the aberration has the correct units log.info(f"Calculated RMS: {calc_rms}") # Remove global piston aber -= np.mean(aber) ### BASELINE PSF - NO ABERRATIONS, NO CORONAGRAPH log.info('Generating baseline PSF from E2E - no coronagraph, no aberrations') hc = hicat.simulators.hicat_sim.HICAT_Sim() hc.iris_ao = 'iris_ao' hc.apodizer = 'cnt1_apodizer' hc.lyot_stop = 'cnt1_apodizer_lyot_stop' hc.include_fpm = False psf_perfect = hc.calc_psf(display=False, return_intermediates=False) normp = np.max(psf_perfect[0].data) #psf_perfect = psf_perfect[0].data / normp don't actually need the perfect PSF ### HiCAT sim start_e2e = time.time() # Set up the HiCAT simulator, get PSF hc.apodizer = 'cnt1_apodizer' hc.lyot_stop = 'cnt1_apodizer_lyot_stop' hc.include_fpm = True # Calculate coro PSF without aberrations psf_coro = hc.calc_psf(display=False, return_intermediates=False) psf_coro = psf_coro[0].data / normp log.info('Calculating E2E contrast...') # Put aberration on Iris AO for nseg in range(nb_seg): hc.iris_dm.set_actuator(nseg+1, aber[nseg], 0, 0) psf_hicat = hc.calc_psf(display=False, return_intermediates=False) psf_hicat = psf_hicat[0].data / normp # Create DH dh_mask = util.create_dark_hole(psf_hicat, iwa=iwa, owa=owa, samp=13 / 4) # Get the mean contrast hicat_dh_psf = psf_hicat * dh_mask contrast_hicat = np.mean(hicat_dh_psf[np.where(hicat_dh_psf != 0)]) end_e2e = time.time() ### # Calculate coronagraph contrast floor baseline_dh = psf_coro * dh_mask coro_floor = np.mean(baseline_dh[np.where(baseline_dh != 0)]) ## MATRIX PASTIS log.info('Generating contrast from matrix-PASTIS') start_matrixpastis = time.time() # Get mean contrast from matrix PASTIS contrast_matrix = util.pastis_contrast(aber, matrix_pastis) + coro_floor # calculating contrast with PASTIS matrix model end_matrixpastis = time.time() ## Outputs log.info('\n--- CONTRASTS: ---') log.info(f'Mean contrast from E2E: {contrast_hicat}') log.info(f'Contrast from matrix PASTIS: {contrast_matrix}') log.info('\n--- RUNTIMES: ---') log.info(f'E2E: {end_e2e-start_e2e}sec = {(end_e2e-start_e2e)/60}min') log.info(f'Matrix PASTIS: {end_matrixpastis-start_matrixpastis}sec = {(end_matrixpastis-start_matrixpastis)/60}min') end_time = time.time() runtime = end_time - start_time log.info(f'Runtime for contrast_calculation_simple.py: {runtime} sec = {runtime/60} min') return contrast_hicat, contrast_matrix def contrast_luvoir_num(apodizer_choice, matrix_dir, rms=1*u.nm): """ Compute the contrast for a random segmented mirror misalignment on the LUVOIR simulator. :param matrix_dir: str, directory of saved matrix :param rms: astropy quantity (e.g. m or nm), WFE rms (OPD) to be put randomly over the entire segmented mirror :return: 2x float, E2E and matrix contrast """ # Keep track of time start_time = time.time() # Parameters nb_seg = CONFIG_INI.getint('LUVOIR', 'nb_subapertures') sampling = 4 # Import numerical PASTIS matrix for HiCAT sim filename = 'PASTISmatrix_num_piston_Noll1' matrix_pastis = fits.getdata(os.path.join(matrix_dir, filename + '.fits')) # Create random aberration coefficients aber = np.random.random([nb_seg]) # piston values in input units log.info(f'PISTON ABERRATIONS: {aber}') # Normalize to the WFE RMS value I want rms_init = util.rms(aber) aber *= rms.value / rms_init calc_rms = util.rms(aber) * u.nm aber *= u.nm
pass return sections @staticmethod def write_prox_lua(lua_config): """ Write an .ini-format config file for PROX (parameters.lua) PROX does not allow a space before/after the =, so we need a custom method """ out = [] for key in lua_config: value = '"' + lua_config[key] + '"' if key == "__name__": continue if value is not None and value != '@': key = "=".join((key, str(value).replace('\n', '\n\t'))) out.append(key) else: key = str(key).replace('\n', '\n\t') out.append(key) return os.linesep.join(out) @staticmethod def write_prox_config(prox_config): """ Write an .ini-format config file for PROX PROX does not allow a space before/after the =, so we need a custom method """ out = [] for i, (section_name, section) in enumerate(prox_config): out.append("[{}]".format(section_name)) for index, item in enumerate(section): key, value = item if key == "__name__": continue if value is not None and value != '@': key = "=".join((key, str(value).replace('\n', '\n\t'))) out.append(key) else: key = str(key).replace('\n', '\n\t') out.append(key) return os.linesep.join(out) def put_string_to_file(self, s, remote_path): file_obj = cStringIO(s) self.ssh_helper.put_file_obj(file_obj, remote_path) return remote_path def generate_prox_lua_file(self): p = OrderedDict() all_ports = self.vnfd_helper.port_pairs.all_ports for port_name in all_ports: port_num = self.vnfd_helper.port_num(port_name) intf = self.vnfd_helper.find_interface(name=port_name) vintf = intf['virtual-interface'] p["tester_mac{0}".format(port_num)] = vintf["dst_mac"] p["src_mac{0}".format(port_num)] = vintf["local_mac"] return p def upload_prox_lua(self, config_file, lua_data): # prox can't handle spaces around ' = ' so use custom method out = StringIO(self.write_prox_lua(lua_data)) out.seek(0) remote_path = os.path.join("/tmp", config_file) self.ssh_helper.put_file_obj(out, remote_path) return remote_path def upload_prox_config(self, config_file, prox_config_data): # prox can't handle spaces around ' = ' so use custom method out = StringIO(self.write_prox_config(prox_config_data)) out.seek(0) remote_path = os.path.join("/tmp", config_file) self.ssh_helper.put_file_obj(out, remote_path) return remote_path def build_config_file(self): task_path = self.scenario_helper.task_path options = self.scenario_helper.options config_path = options['prox_config'] config_file = os.path.basename(config_path) config_path = find_relative_file(config_path, task_path) self.additional_files = {} try: if options['prox_generate_parameter']: self.lua = [] self.lua = self.generate_prox_lua_file() if len(self.lua) > 0: self.upload_prox_lua("parameters.lua", self.lua) except: pass prox_files = options.get('prox_files', []) if isinstance(prox_files, six.string_types): prox_files = [prox_files] for key_prox_file in prox_files: base_prox_file = os.path.basename(key_prox_file) key_prox_path = find_relative_file(key_prox_file, task_path) remote_prox_file = self.copy_to_target(key_prox_path, base_prox_file) self.additional_files[base_prox_file] = remote_prox_file self._prox_config_data = self.generate_prox_config_file(config_path) # copy config to queue so we can read it from traffic_runner process self.config_queue.put(self._prox_config_data) self.remote_path = self.upload_prox_config(config_file, self._prox_config_data) def build_config(self): self.build_config_file() options = self.scenario_helper.options prox_args = options['prox_args'] LOG.info("Provision and start the %s", self.APP_NAME) self._build_pipeline_kwargs() self.pipeline_kwargs["args"] = " ".join( " ".join([k, v if v else ""]) for k, v in prox_args.items()) self.pipeline_kwargs["cfg_file"] = self.remote_path cmd_template = "sudo bash -c 'cd {tool_dir}; {tool_path} -o cli {args} -f {cfg_file} '" prox_cmd = cmd_template.format(**self.pipeline_kwargs) return prox_cmd # this might be bad, sometimes we want regular ResourceHelper methods, like collect_kpi class ProxResourceHelper(ClientResourceHelper): RESOURCE_WORD = 'prox' PROX_MODE = "" WAIT_TIME = 3 @staticmethod def find_pci(pci, bound_pci): # we have to substring match PCI bus address from the end return any(b.endswith(pci) for b in bound_pci) def __init__(self, setup_helper): super(ProxResourceHelper, self).__init__(setup_helper) self.mgmt_interface = self.vnfd_helper.mgmt_interface self._user = self.mgmt_interface["user"] self._ip = self.mgmt_interface["ip"] self.done = False self._vpci_to_if_name_map = None self.additional_file = {} self.remote_prox_file_name = None self.lower = None self.upper = None self.step_delta = 1 self.step_time = 0.5 self._test_type = None @property def sut(self): if not self.client: self.client = self._connect() return self.client @property def test_type(self): if self._test_type is None: self._test_type = self.setup_helper.find_in_section('global', 'name', None) return self._test_type def run_traffic(self, traffic_profile): self._queue.cancel_join_thread() self.lower = 0.0 self.upper = 100.0 traffic_profile.init(self._queue) # this frees up the run_traffic loop self.client_started.value = 1 while not self._terminated.value: # move it all to traffic_profile self._run_traffic_once(traffic_profile) def _run_traffic_once(self, traffic_profile): traffic_profile.execute_traffic(self) if traffic_profile.done: self._queue.put({'done': True}) LOG.debug("tg_prox done") self._terminated.value = 1 # For VNF use ResourceHelper method to collect KPIs directly. # for TG leave the superclass ClientResourceHelper collect_kpi_method intact def collect_collectd_kpi(self): return self._collect_resource_kpi() def collect_kpi(self): result = super(ProxResourceHelper, self).collect_kpi() # add in collectd kpis manually if result: result['collect_stats'] = self._collect_resource_kpi() return result def terminate(self): # should not be called, use VNF terminate raise NotImplementedError() def up_post(self): return self.sut # force connection def execute(self, cmd, *args, **kwargs): func = getattr(self.sut, cmd, None) if func: return func(*args, **kwargs) def _connect(self, client=None): """Run and connect to prox on the remote system """ # De-allocating a large amount of hugepages takes some time. If a new # PROX instance is started immediately after killing the previous one, # it might not be able to allocate hugepages, because they are still # being freed. Hence the -w switch. # self.connection.execute("sudo killall -w Prox 2>/dev/null") # prox_cmd = "export TERM=xterm; cd "+ self.bin_path +"; ./Prox -t # -f ./handle_none-4.cfg" # prox_cmd = "export TERM=xterm; export RTE_SDK=" + self._dpdk_dir + # "; " \ # + "export RTE_TARGET=" + self._dpdk_target + ";" \ # + " cd " + self._prox_dir + "; make HW_DIRECT_STATS=y -j50; # sudo " \ # + "./build/Prox " + prox_args # log.debug("Starting PROX with command [%s]", prox_cmd) # thread.start_new_thread(self.ssh_check_quit, (self, self._user, # self._ip, prox_cmd)) if client is None: client = ProxSocketHelper() # try connecting to Prox for 60s for _ in range(RETRY_SECONDS): time.sleep(RETRY_INTERVAL) try: client.connect(self._ip, PROX_PORT) except (socket.gaierror, socket.error): continue else: return client msg = "Failed to connect to prox, please check if system {} accepts connections on port {}" raise Exception(msg.format(self._ip, PROX_PORT)) class ProxDataHelper(object): def __init__(self, vnfd_helper, sut, pkt_size, value, tolerated_loss): super(ProxDataHelper, self).__init__() self.vnfd_helper = vnfd_helper self.sut = sut self.pkt_size = pkt_size self.value = value self.tolerated_loss = tolerated_loss self.port_count = len(self.vnfd_helper.port_pairs.all_ports) self.tsc_hz = None self.measured_stats = None self.latency = None self._totals_and_pps = None self.result_tuple = None @property def totals_and_pps(self): if self._totals_and_pps is None: rx_total, tx_total = self.sut.port_stats(range(self.port_count))[6:8] pps = self.value / 100.0 * self.line_rate_to_pps() self._totals_and_pps = rx_total, tx_total, pps return self._totals_and_pps @property def rx_total(self): return self.totals_and_pps[0] @property def tx_total(self): return self.totals_and_pps[1] @property def pps(self): return self.totals_and_pps[2] @property def samples(self): samples = {} for port_name, port_num in self.vnfd_helper.ports_iter(): port_rx_total, port_tx_total = self.sut.port_stats([port_num])[6:8] samples[port_name] = { "in_packets": port_rx_total, "out_packets": port_tx_total, } return samples def __enter__(self): self.check_interface_count() return self def __exit__(self, exc_type, exc_val, exc_tb): self.make_tuple() def make_tuple(self): if self.result_tuple: return self.result_tuple = ProxTestDataTuple( self.tolerated_loss, self.tsc_hz, self.measured_stats['delta'].rx, self.measured_stats['delta'].tx, self.measured_stats['delta'].tsc, self.latency, self.rx_total, self.tx_total, self.pps, ) self.result_tuple.log_data() @contextmanager def measure_tot_stats(self): with self.sut.measure_tot_stats() as self.measured_stats: yield def check_interface_count(self): # do this assert in init? unless we expect interface count to # change from one run to another run... assert self.port_count in {1, 2, 4}, \ "Invalid number of ports: 1, 2 or 4 ports only supported at this time" def capture_tsc_hz(self): self.tsc_hz = float(self.sut.hz()) def line_rate_to_pps(self): # FIXME Don't hardcode 10Gb/s return self.port_count * TEN_GIGABIT / BITS_PER_BYTE / (self.pkt_size + 20) class ProxProfileHelper(object): __prox_profile_type__ = "Generic" PROX_CORE_GEN_MODE = "gen" PROX_CORE_LAT_MODE = "lat" @classmethod def get_cls(cls, helper_type): """Return class of specified type.""" if not helper_type: return ProxProfileHelper for profile_helper_class in utils.itersubclasses(cls): if helper_type == profile_helper_class.__prox_profile_type__: return profile_helper_class return ProxProfileHelper @classmethod def make_profile_helper(cls, resource_helper): return cls.get_cls(resource_helper.test_type)(resource_helper) def __init__(self, resource_helper): super(ProxProfileHelper, self).__init__() self.resource_helper = resource_helper self._cpu_topology = None self._test_cores = None self._latency_cores = None @property def cpu_topology(self): if not self._cpu_topology: stdout = io.BytesIO() self.ssh_helper.get_file_obj("/proc/cpuinfo", stdout) self._cpu_topology = SocketTopology.parse_cpuinfo(stdout.getvalue().decode('utf-8')) return self._cpu_topology @property def test_cores(self): if not self._test_cores: self._test_cores = self.get_cores(self.PROX_CORE_GEN_MODE) return self._test_cores @property def latency_cores(self): if not self._latency_cores: self._latency_cores = self.get_cores(self.PROX_CORE_LAT_MODE) return self._latency_cores @contextmanager def traffic_context(self, pkt_size, value): self.sut.stop_all() self.sut.reset_stats() try: self.sut.set_pkt_size(self.test_cores, pkt_size) self.sut.set_speed(self.test_cores, value) self.sut.start_all() yield finally: self.sut.stop_all() def get_cores(self, mode): cores = [] for section_name, section in self.setup_helper.prox_config_data: if not section_name.startswith("core"): continue for key, value in section: if key == "mode" and value == mode: core_tuple = CoreSocketTuple(section_name) core = core_tuple.find_in_topology(self.cpu_topology) cores.append(core) return cores def run_test(self, pkt_size, duration, value, tolerated_loss=0.0): data_helper = ProxDataHelper(self.vnfd_helper, self.sut, pkt_size, value, tolerated_loss) with data_helper, self.traffic_context(pkt_size, value): with data_helper.measure_tot_stats(): time.sleep(duration) # Getting statistics to calculate PPS at right speed.... data_helper.capture_tsc_hz() data_helper.latency = self.get_latency() return data_helper.result_tuple, data_helper.samples def get_latency(self): """ :return: return lat_min, lat_max, lat_avg :rtype: list """ if self._latency_cores: return self.sut.lat_stats(self._latency_cores) return [] def terminate(self): pass def __getattr__(self, item): return getattr(self.resource_helper, item) class ProxMplsProfileHelper(ProxProfileHelper): __prox_profile_type__ = "MPLS tag/untag" def __init__(self, resource_helper): super(ProxMplsProfileHelper, self).__init__(resource_helper) self._cores_tuple = None @property def mpls_cores(self): if not self._cores_tuple: self._cores_tuple = self.get_cores_mpls() return self._cores_tuple @property def tagged_cores(self): return self.mpls_cores[0] @property def plain_cores(self): return self.mpls_cores[1] def get_cores_mpls(self): cores_tagged = [] cores_plain = [] for section_name, section in self.resource_helper.setup_helper.prox_config_data: if not section_name.startswith("core"): continue if all(key != "mode" or
is not drawn, but can appear as a legend item (provided that the legend itself is visible). row : 'all', int or None (default) Subplot row index (starting from 1) for the trace to be added. Only valid if figure was created using `plotly.tools.make_subplots`.If 'all', addresses all rows in the specified column(s). col : 'all', int or None (default) Subplot col index (starting from 1) for the trace to be added. Only valid if figure was created using `plotly.tools.make_subplots`.If 'all', addresses all columns in the specified row(s). Returns ------- Figure """ from plotly.graph_objs import Table new_trace = Table( cells=cells, columnorder=columnorder, columnordersrc=columnordersrc, columnwidth=columnwidth, columnwidthsrc=columnwidthsrc, customdata=customdata, customdatasrc=customdatasrc, domain=domain, header=header, hoverinfo=hoverinfo, hoverinfosrc=hoverinfosrc, hoverlabel=hoverlabel, ids=ids, idssrc=idssrc, meta=meta, metasrc=metasrc, name=name, stream=stream, uid=uid, uirevision=uirevision, visible=visible, **kwargs ) return self.add_trace(new_trace, row=row, col=col) def add_treemap( self, branchvalues=None, count=None, customdata=None, customdatasrc=None, domain=None, hoverinfo=None, hoverinfosrc=None, hoverlabel=None, hovertemplate=None, hovertemplatesrc=None, hovertext=None, hovertextsrc=None, ids=None, idssrc=None, insidetextfont=None, labels=None, labelssrc=None, level=None, marker=None, maxdepth=None, meta=None, metasrc=None, name=None, opacity=None, outsidetextfont=None, parents=None, parentssrc=None, pathbar=None, sort=None, stream=None, text=None, textfont=None, textinfo=None, textposition=None, textsrc=None, texttemplate=None, texttemplatesrc=None, tiling=None, uid=None, uirevision=None, values=None, valuessrc=None, visible=None, row=None, col=None, **kwargs ): """ Add a new Treemap trace Visualize hierarchal data from leaves (and/or outer branches) towards root with rectangles. The treemap sectors are determined by the entries in "labels" or "ids" and in "parents". Parameters ---------- branchvalues Determines how the items in `values` are summed. When set to "total", items in `values` are taken to be value of all its descendants. When set to "remainder", items in `values` corresponding to the root and the branches sectors are taken to be the extra part not part of the sum of the values at their leaves. count Determines default for `values` when it is not provided, by inferring a 1 for each of the "leaves" and/or "branches", otherwise 0. customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for customdata . domain :class:`plotly.graph_objects.treemap.Domain` instance or dict with compatible properties hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for hoverinfo . hoverlabel :class:`plotly.graph_objects.treemap.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time-format#locale_format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs-events/#event- data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variables `currentPath`, `root`, `entry`, `percentRoot`, `percentEntry` and `percentParent`. Anything contained in tag `<extra>` is displayed in the secondary box, for example "<extra>{fullData.name}</extra>". To hide the secondary box completely, use an empty tag `<extra></extra>`. hovertemplatesrc Sets the source reference on Chart Studio Cloud for hovertemplate . hovertext Sets hover text elements associated with each sector. If a single string, the same string appears for all data points. If an array of string, the items are mapped in order of this trace's sectors. To be seen, trace `hoverinfo` must contain a "text" flag. hovertextsrc Sets the source reference on Chart Studio Cloud for hovertext . ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for ids . insidetextfont Sets the font used for `textinfo` lying inside the sector. labels Sets the labels of each of the sectors. labelssrc Sets the source reference on Chart Studio Cloud for labels . level Sets the level from which this trace hierarchy is rendered. Set `level` to `''` to start from the root node in the hierarchy. Must be an "id" if `ids` is filled in, otherwise plotly attempts to find a matching item in `labels`. marker :class:`plotly.graph_objects.treemap.Marker` instance or dict with compatible properties maxdepth Sets the number of rendered sectors from any given `level`. Set `maxdepth` to "-1" to render all the levels in the hierarchy. meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for meta . name Sets the trace name. The trace name appear as the legend item and on hover. opacity Sets the opacity of the trace. outsidetextfont Sets the font used for `textinfo` lying outside the sector. This option refers to the root of the hierarchy presented on top left corner of a treemap graph. Please note that if a hierarchy has multiple root nodes, this option won't have any effect and `insidetextfont` would be used. parents Sets the parent sectors for each of the sectors. Empty string items '' are understood to reference the root node in the hierarchy. If `ids` is filled, `parents` items are understood to be "ids" themselves. When `ids` is not set, plotly attempts to find matching items in `labels`, but beware they must be unique. parentssrc Sets the source reference on Chart Studio Cloud for parents . pathbar :class:`plotly.graph_objects.treemap.Pathbar` instance or dict with compatible properties sort Determines whether or not the sectors are reordered from largest to smallest. stream :class:`plotly.graph_objects.treemap.Stream` instance or dict with compatible properties text Sets text elements associated with each sector. If trace `textinfo` contains a "text" flag, these elements will be seen on the chart. If trace `hoverinfo` contains a "text" flag and "hovertext" is not set, these elements will be seen in the hover labels. textfont Sets the font used for `textinfo`. textinfo Determines which trace information appear on the graph. textposition Sets the positions of the `text` elements. textsrc Sets the source reference on Chart Studio Cloud for text . texttemplate Template string used for rendering the information text that appear on points. Note that this will override `textinfo`. Variables are inserted using %{variable}, for example "y: %{y}". Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time- format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time-format#locale_format for details on the date formatting syntax. Every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. variables `currentPath`, `root`, `entry`, `percentRoot`, `percentEntry`, `percentParent`, `label` and `value`. texttemplatesrc Sets the source reference on Chart Studio Cloud for texttemplate . tiling :class:`plotly.graph_objects.treemap.Tiling` instance or dict with compatible properties uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user-driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by
"""Module to help with executing commands over SSH.""" ## # Copyright 2016 Canonical Ltd. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. ## # from charmhelpers.core import unitdata # from charmhelpers.core.hookenv import log import io import ipaddress import os import socket import shlex import traceback import sys from subprocess import ( check_call, Popen, CalledProcessError, PIPE, ) def install_dependencies(): # Make sure Python3 + PIP are available if not os.path.exists("/usr/bin/python3") or not os.path.exists("/usr/bin/pip3"): # This is needed when running as a k8s charm, as the ubuntu:latest # image doesn't include either package. # Update the apt cache check_call(["apt-get", "update"]) # Install the Python3 package check_call(["apt-get", "install", "-y", "python3", "python3-pip"],) # Install the build dependencies for our requirements (paramiko) check_call(["apt-get", "install", "-y", "libffi-dev", "libssl-dev"],) check_call( [sys.executable, "-m", "pip", "install", "paramiko"], ) try: import paramiko except Exception as ex: install_dependencies() import paramiko class SSHProxy: private_key_path = "/root/.ssh/id_sshproxy" public_key_path = "/root/.ssh/id_sshproxy.pub" key_type = "rsa" key_bits = 4096 def __init__(self, hostname: str, username: str, password: str = ""): self.hostname = hostname self.username = username self.password = password @staticmethod def generate_ssh_key(): """Generate a 4096-bit rsa keypair.""" if not os.path.exists(SSHProxy.private_key_path): cmd = "ssh-keygen -t {} -b {} -N '' -f {}".format( SSHProxy.key_type, SSHProxy.key_bits, SSHProxy.private_key_path, ) try: check_call(cmd, shell=True) except CalledProcessError: return False return True @staticmethod def write_ssh_keys(public, private): """Write a 4096-bit rsa keypair.""" with open(SSHProxy.public_key_path, "w") as f: f.write(public) f.close() with open(SSHProxy.private_key_path, "w") as f: f.write(private) f.close() @staticmethod def get_ssh_public_key(): publickey = "" if os.path.exists(SSHProxy.private_key_path): with open(SSHProxy.public_key_path, "r") as f: publickey = f.read() return publickey @staticmethod def get_ssh_private_key(): privatekey = "" if os.path.exists(SSHProxy.private_key_path): with open(SSHProxy.private_key_path, "r") as f: privatekey = f.read() return privatekey @staticmethod def has_ssh_key(): return True if os.path.exists(SSHProxy.private_key_path) else False def run(self, cmd: str) -> (str, str): """Run a command remotely via SSH. Note: The previous behavior was to run the command locally if SSH wasn't configured, but that can lead to cases where execution succeeds when you'd expect it not to. """ if isinstance(cmd, str): cmd = shlex.split(cmd) host = self._get_hostname() user = self.username passwd = <PASSWORD> key = self.private_key_path # Make sure we have everything we need to connect if host and user: return self._ssh(cmd) raise Exception("Invalid SSH credentials.") def sftp(self, local, remote): client = self._get_ssh_client() # Create an sftp connection from the underlying transport sftp = paramiko.SFTPClient.from_transport(client.get_transport()) sftp.put(local, remote) client.close() pass def verify_credentials(self): """Verify the SSH credentials.""" try: (stdout, stderr) = self.run("hostname") except CalledProcessError as e: stderr = "Command failed: {} ({})".format(" ".join(e.cmd), str(e.output)) except paramiko.ssh_exception.AuthenticationException as e: stderr = "{}.".format(e) except paramiko.ssh_exception.BadAuthenticationType as e: stderr = "{}".format(e.explanation) except paramiko.ssh_exception.BadHostKeyException as e: stderr = "Host key mismatch: expected {} but got {}.".format( e.expected_key, e.got_key, ) except (TimeoutError, socket.timeout): stderr = "Timeout attempting to reach {}".format(self._get_hostname()) except Exception as error: tb = traceback.format_exc() stderr = "Unhandled exception: {}".format(tb) if len(stderr) == 0: return True return False ################### # Private methods # ################### def _get_hostname(self): """Get the hostname for the ssh target. HACK: This function was added to work around an issue where the ssh-hostname was passed in the format of a.b.c.d;a.b.c.d, where the first is the floating ip, and the second the non-floating ip, for an Openstack instance. """ return self.hostname.split(";")[0] def _get_ssh_client(self): """Return a connected Paramiko ssh object.""" client = paramiko.SSHClient() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) pkey = None # Otherwise, check for the auto-generated private key if os.path.exists(self.private_key_path): with open(self.private_key_path) as f: pkey = paramiko.RSAKey.from_private_key(f) ########################################################################### # There is a bug in some versions of OpenSSH 4.3 (CentOS/RHEL 5) where # # the server may not send the SSH_MSG_USERAUTH_BANNER message except when # # responding to an auth_none request. For example, paramiko will attempt # # to use password authentication when a password is set, but the server # # could deny that, instead requesting keyboard-interactive. The hack to # # workaround this is to attempt a reconnect, which will receive the right # # banner, and authentication can proceed. See the following for more info # # https://github.com/paramiko/paramiko/issues/432 # # https://github.com/paramiko/paramiko/pull/438 # ########################################################################### try: client.connect( self.hostname, port=22, username=self.username, password=<PASSWORD>, pkey=pkey, ) except paramiko.ssh_exception.SSHException as e: if "Error reading SSH protocol banner" == str(e): # Once more, with feeling client.connect( host, port=22, username=user, password=password, pkey=pkey ) else: # Reraise the original exception raise e return client def _ssh(self, cmd): """Run an arbitrary command over SSH. Returns a tuple of (stdout, stderr) """ client = self._get_ssh_client() cmds = " ".join(cmd) stdin, stdout, stderr = client.exec_command(cmds, get_pty=True) retcode = stdout.channel.recv_exit_status() client.close() # @TODO re-use connections if retcode > 0: output = stderr.read().strip() raise CalledProcessError(returncode=retcode, cmd=cmd, output=output) return ( stdout.read().decode("utf-8").strip(), stderr.read().decode("utf-8").strip(), ) ## OLD ## # def get_config(): # """Get the current charm configuration. # Get the "live" kv store every time we need to access the charm config, in # case it has recently been changed by a config-changed event. # """ # db = unitdata.kv() # return db.get('config') # def get_host_ip(): # """Get the IP address for the ssh host. # HACK: This function was added to work around an issue where the # ssh-hostname was passed in the format of a.b.c.d;a.b.c.d, where the first # is the floating ip, and the second the non-floating ip, for an Openstack # instance. # """ # cfg = get_config() # return cfg['ssh-hostname'].split(';')[0] # def is_valid_hostname(hostname): # """Validate the ssh-hostname.""" # print("Hostname: {}".format(hostname)) # if hostname == "0.0.0.0": # return False # try: # ipaddress.ip_address(hostname) # except ValueError: # return False # return True # def verify_ssh_credentials(): # """Verify the ssh credentials have been installed to the VNF. # Attempts to run a stock command - `hostname` on the remote host. # """ # verified = False # status = '' # cfg = get_config() # try: # host = get_host_ip() # if is_valid_hostname(host): # if len(cfg['ssh-hostname']) and len(cfg['ssh-username']): # cmd = 'hostname' # status, err = _run(cmd) # if len(err) == 0: # verified = True # else: # status = "Invalid IP address." # except CalledProcessError as e: # status = 'Command failed: {} ({})'.format( # ' '.join(e.cmd), # str(e.output) # ) # except paramiko.ssh_exception.AuthenticationException as e: # status = '{}.'.format(e) # except paramiko.ssh_exception.BadAuthenticationType as e: # status = '{}'.format(e.explanation) # except paramiko.ssh_exception.BadHostKeyException as e: # status = 'Host key mismatch: expected {} but got {}.'.format( # e.expected_key, # e.got_key, # ) # except (TimeoutError, socket.timeout): # status = "Timeout attempting to reach {}".format(cfg['ssh-hostname']) # except Exception as error: # tb = traceback.format_exc() # status = 'Unhandled exception: {}'.format(tb) # return (verified, status) # def charm_dir(): # """Return the root directory of the current charm.""" # d = os.environ.get('JUJU_CHARM_DIR') # if d is not None: # return d # return os.environ.get('CHARM_DIR') # def run_local(cmd, env=None): # """Run a command locally.""" # if isinstance(cmd, str): # cmd = shlex.split(cmd) if ' ' in cmd else [cmd] # if type(cmd) is not list: # cmd = [cmd] # p = Popen(cmd, # env=env, # shell=True, # stdout=PIPE, # stderr=PIPE) # stdout, stderr = p.communicate() # retcode = p.poll() # if retcode > 0: # raise CalledProcessError(returncode=retcode, # cmd=cmd, # output=stderr.decode("utf-8").strip()) # return (stdout.decode('utf-8').strip(), stderr.decode('utf-8').strip()) # def _run(cmd, env=None): # """Run a command remotely via SSH. # Note: The previous behavior was to run the command locally if SSH wasn't # configured, but that can lead to cases where execution succeeds when you'd # expect it not to. # """ # if isinstance(cmd, str): # cmd = shlex.split(cmd) # if type(cmd) is not list: # cmd = [cmd] # cfg = get_config() # if cfg: # if all(k in cfg for k in ['ssh-hostname', 'ssh-username', # 'ssh-password', 'ssh-private-key']): # host = get_host_ip() # user = cfg['ssh-username'] # passwd = cfg['<PASSWORD>'] # key = cfg['ssh-private-key'] # DEPRECATED # if host and user: # return ssh(cmd, host, user, passwd, key) # raise Exception("Invalid SSH credentials.") # def get_ssh_client(host, user, password=None, key=None): # """Return a connected Paramiko ssh object.""" # client = paramiko.SSHClient() # client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # pkey = None # # Check for the DEPRECATED private-key # if key: # f = io.StringIO(key) # pkey = paramiko.RSAKey.from_private_key(f) # else: # # Otherwise, check for the auto-generated private key # if os.path.exists('/root/.ssh/id_juju_sshproxy'): # with open('/root/.ssh/id_juju_sshproxy', 'r') as f: # pkey = paramiko.RSAKey.from_private_key(f) # ########################################################################### # # There is a bug in some versions of
<reponame>amirdel/dispersion-continua # Copyright 2017 <NAME>, <EMAIL> # # Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee # is hereby granted, provided that the above copyright notice and this permission notice appear in all # copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE # INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE # FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM # LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, # ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. import random as random import bisect as bs import numpy as np from py_dp.dispersion.binning import get_cdf from py_dp.dispersion.second_order_markov import find_1d_bins from py_dp.dispersion.dispersion_models import dispersionModelGeneral # These classes are not used now. Just kept for reference. class dispModelUncorrStencil(dispersionModelGeneral): def __init__(self, n_particles, n_steps, dt, dx_array, x_max, inj_location = "start", verbose = True): super(dispModelUncorrStencil,self).__init__(n_particles, n_steps, inj_location, verbose) self.dx_array = dx_array self.dt = dt self.table_size = len(dx_array) - 1 self.x_max = x_max def advance_one_step(self, particle_number, current_index): x_max = self.x_max end_of_domain_reached = False dx_array = self.dx_array dt = self.dt table_size = self.table_size rand_ind = random.randint(0,table_size) dx = dx_array[rand_ind] current_t = self.time_array[particle_number, current_index] current_x = self.x_array[particle_number, current_index] next_x = current_x + dx if next_x > x_max: velocity = dx/dt distance_to_end = x_max - current_x dt = distance_to_end/velocity next_x = x_max end_of_domain_reached = True next_index = current_index + 1 self.time_array[particle_number,next_index] = current_t + dt self.x_array[particle_number,next_index] = next_x return end_of_domain_reached def follow_specific_paticle(self,particle_number): n_steps = self.n_steps for step in range(n_steps): #x_array, pore_nr_array, time_array entries are changed inside #advance_to_next_pore current_index = step end_flag = self.advance_one_step(particle_number, current_index) if end_flag: freeze_idx = current_index + 1 self.freeze_particle(particle_number, freeze_idx) break def follow_all_particles(self): n_particles = self.n_particles for particle in range(n_particles): self.follow_specific_paticle(particle) def freeze_particle(self,particle_number,current_index): """ after a particle gets to the end of the domain it would stay there. this function would copy the value at current_idx to all following values for x and time """ self.x_array[particle_number,current_index:] = self.x_array[particle_number,current_index] self.time_array[particle_number,current_index:] = self.time_array[particle_number,current_index] #self.freeze_time[particle_number] = self.time_array[particle_number,current_index] self.last_index_array[particle_number] = current_index class dispModelCorrelatedStencil(dispersionModelGeneral): def __init__(self, n_particles, n_steps, dt, x_max, trans_matrix, class_velocity, init_class_count, inj_location = "start", verbose = True): super(dispModelCorrelatedStencil,self).__init__(n_particles, n_steps, inj_location, verbose) self.trans_matrix = trans_matrix self.init_class_count = init_class_count self.class_velocity = class_velocity self.dt = dt self.x_max = x_max self.init_class_cdf = get_cdf(init_class_count) self.cdf_matrix = np.cumsum(trans_matrix, axis=0) def draw_from_init_calss_idx(self): return bs.bisect(self.init_class_cdf, random.random()) def choose_next_class(self, current_class): cdf = self.cdf_matrix[:, current_class] return bs.bisect(cdf, random.random()) def follow_one_particle(self, particle_number): dt = self.dt class_velocity = self.class_velocity x_array = self.x_array t_array = self.time_array x = 0.0 t = 0.0 out_put_idx = 1 #initialize the particle velocity class_idx = self.draw_from_init_calss_idx() next_idx = 0 v = class_velocity[class_idx] idx_max = self.n_steps + 1 while out_put_idx < idx_max: x += dt*v t += dt x_array[particle_number, out_put_idx] = x t_array[particle_number, out_put_idx] = t out_put_idx += 1 next_idx = self.choose_next_class(class_idx) v = class_velocity[next_idx] class_idx = next_idx def follow_all_particles(self): for i in range(self.n_particles): self.follow_one_particle(i) class dispModelCorrelatedStencilFix(dispModelCorrelatedStencil): def __init__(self, n_particles, n_steps, dt, x_max, trans_matrix, class_velocity, init_class_count, length, inj_location = "start", verbose = True): super(dispModelCorrelatedStencilFix,self).__init__(n_particles, n_steps, dt, x_max, trans_matrix, class_velocity, init_class_count, inj_location, verbose) self.length = length def follow_one_particle(self, particle_number): l = self.length dt = self.dt class_velocity = self.class_velocity x_array = self.x_array t_array = self.time_array x = 0.0 t = 0.0 out_put_idx = 1 # initialize the particle velocity class_idx = self.draw_from_init_calss_idx() next_idx = 0 v = class_velocity[class_idx] idx_max = self.n_steps + 1 while out_put_idx < idx_max: dx = v*dt abs_dx = abs(dx) if abs_dx < l: length_traveled = 0.0 while abs(length_traveled) <= l - abs_dx and out_put_idx < idx_max: length_traveled += dx x += dx t += dt x_array[particle_number, out_put_idx] = x t_array[particle_number, out_put_idx] = t out_put_idx += 1 else: x += dt * v t += dt x_array[particle_number, out_put_idx] = x t_array[particle_number, out_put_idx] = t out_put_idx += 1 next_idx = self.choose_next_class(class_idx) v = class_velocity[next_idx] class_idx = next_idx class dispModelCorrelatedSpace(dispersionModelGeneral): def __init__(self, n_particles, n_steps, dx, x_max, trans_matrix, class_velocity, init_class_count, inj_location = "start", verbose = True): super(dispModelCorrelatedSpace,self).__init__(n_particles, n_steps, inj_location, verbose) self.trans_matrix = trans_matrix self.init_class_count = init_class_count self.class_velocity = class_velocity self.dx = dx self.x_max = x_max self.init_class_cdf = get_cdf(init_class_count) self.cdf_matrix = np.cumsum(trans_matrix, axis=0) def draw_from_init_calss_idx(self): return bs.bisect(self.init_class_cdf, random.random()) def choose_next_class(self, current_class): cdf = self.cdf_matrix[:, current_class] return bs.bisect(cdf, random.random()) def follow_one_particle(self, particle_number): dx = self.dx class_velocity = self.class_velocity x_array = self.x_array t_array = self.time_array x = 0.0 t = 0.0 out_put_idx = 1 #initialize the particle velocity class_idx = self.draw_from_init_calss_idx() v = class_velocity[class_idx] idx_max = self.n_steps + 1 while out_put_idx < idx_max: x += np.sign(v)*dx t += dx/abs(v) x_array[particle_number, out_put_idx] = x t_array[particle_number, out_put_idx] = t out_put_idx += 1 next_idx = self.choose_next_class(class_idx) v = class_velocity[next_idx] class_idx = next_idx def follow_all_particles(self): for i in range(self.n_particles): self.follow_one_particle(i) class dispModelCorrelatedSpaceKang(dispersionModelGeneral): def __init__(self, n_particles, n_steps, dx, x_max, trans_matrix, class_log_edges, init_class_count, inj_location = "start", verbose = True): super(dispModelCorrelatedSpaceKang,self).__init__(n_particles, n_steps, inj_location, verbose) self.trans_matrix = trans_matrix self.init_class_count = init_class_count self.class_log_edges = class_log_edges self.class_velocity = self.get_class_velocity(class_log_edges) self.dx = dx self.x_max = x_max self.init_class_cdf = get_cdf(init_class_count) self.cdf_matrix = np.cumsum(trans_matrix, axis=0) def get_class_velocity(self, class_log_edges): v_log_edges = self.class_log_edges n_class = len(class_log_edges) - 1 class_velocity = np.zeros(n_class) for i in range(n_class): log_value = 0.5*(v_log_edges[i] + v_log_edges[i+1]) class_velocity[i] = np.exp(log_value) return class_velocity def draw_from_class_velocity(self, idx): v_log_edges = self.class_log_edges x = random.random() log_v = v_log_edges[idx]*x + v_log_edges[idx+1]*(1-x) return np.exp(log_v) def draw_from_init_calss_idx(self): return bs.bisect(self.init_class_cdf, random.random()) def choose_next_class(self, current_class): cdf = self.cdf_matrix[:, current_class] return bs.bisect(cdf, random.random()) def follow_one_particle(self, particle_number): dx = self.dx class_velocity = self.class_velocity x_array = self.x_array t_array = self.time_array x = 0.0 t = 0.0 out_put_idx = 1 #initialize the particle velocity v_class_idx = self.draw_from_init_calss_idx() class_idx = 2*v_class_idx v = self.draw_from_class_velocity(v_class_idx) v_sign = 1.0 idx_max = self.n_steps + 1 while out_put_idx < idx_max: x += v_sign*dx t += dx/v x_array[particle_number, out_put_idx] = x t_array[particle_number, out_put_idx] = t out_put_idx += 1 next_idx = self.choose_next_class(class_idx) v_class_idx = np.floor(next_idx/2) v_sign = -1.0 + 2.0*((next_idx - 2*v_class_idx) == 0) v = self.draw_from_class_velocity(v_class_idx) class_idx = next_idx def follow_all_particles(self): for i in range(self.n_particles): self.follow_one_particle(i) class dispModelCorrelatedStencilKang(dispersionModelGeneral): """ Class to model plume spreading using a Markov model in time, The velocity is binned using the binning strategy in Kang 2010 """ def __init__(self, n_particles, n_steps, dt, x_max, trans_matrix, class_log_edges, init_class_count, inj_location = "start", verbose = True): super(dispModelCorrelatedStencilKang,self).__init__(n_particles, n_steps, inj_location, verbose) self.trans_matrix = trans_matrix self.init_class_count = init_class_count self.class_log_edges = class_log_edges self.dt = dt self.x_max = x_max self.init_class_cdf = get_cdf(init_class_count) self.cdf_matrix = np.cumsum(trans_matrix, axis=0) def draw_from_init_calss_idx(self): return bs.bisect(self.init_class_cdf, random.random()) def choose_next_class(self, current_class): cdf = self.cdf_matrix[:, current_class] return bs.bisect(cdf, random.random()) def draw_from_class_velocity(self, idx): v_log_edges = self.class_log_edges x = random.random() log_v = v_log_edges[idx]*x + v_log_edges[idx+1]*(1-x) return np.exp(log_v) def follow_one_particle(self, particle_number): dt = self.dt x_array = self.x_array t_array = self.time_array x = 0.0 t = 0.0 out_put_idx = 1 #initialize the particle velocity v_class_idx = self.draw_from_init_calss_idx() class_idx = 2*v_class_idx #v is the abs value of velocity v = self.draw_from_class_velocity(v_class_idx) v_sign = 1.0 idx_max = self.n_steps + 1 while out_put_idx < idx_max: x += dt*v*v_sign t += dt x_array[particle_number, out_put_idx] = x t_array[particle_number, out_put_idx] = t out_put_idx += 1 next_idx = self.choose_next_class(class_idx) v_class_idx = np.floor(next_idx/2) v_sign = -1.0 + 2.0*((next_idx - 2*v_class_idx) == 0) v = self.draw_from_class_velocity(v_class_idx) class_idx = next_idx def follow_all_particles(self): for i in range(self.n_particles): self.follow_one_particle(i) class dispModelOrderTwo(dispersionModelGeneral): def __init__(self, n_particles, n_steps, dx, x_max, trans_matrix, class_log_edges, init_class_count, inj_location = "start", verbose = True): super(dispModelOrderTwo,self).__init__(n_particles, n_steps, inj_location, verbose) self.trans_matrix = trans_matrix self.init_class_count = init_class_count self.class_log_edges = class_log_edges self.class_velocity = self.get_class_velocity(class_log_edges) self.dx = dx self.x_max = x_max self.init_class_cdf = get_cdf(init_class_count) self.n_class = np.sqrt(trans_matrix.shape[0]) self.blocked_particles = [] def get_class_velocity(self, class_log_edges): v_log_edges = self.class_log_edges n_class = len(class_log_edges) - 1 class_velocity = np.zeros(n_class) for i in range(n_class): log_value = 0.5*(v_log_edges[i] + v_log_edges[i+1]) class_velocity[i] = np.exp(log_value) return class_velocity def draw_from_class_velocity(self, idx): v_log_edges = self.class_log_edges x = random.random() log_v = v_log_edges[idx]*x + v_log_edges[idx+1]*(1-x) return np.exp(log_v) def draw_from_init_calss_idx(self): return bs.bisect_right(self.init_class_cdf, random.random()) def choose_next_class(self, current_class): indptr = self.trans_matrix.indptr start = indptr[current_class] end = indptr[current_class+1] rows = self.trans_matrix.indices[start:end] values = self.trans_matrix.data[start:end] if len(values) == 0: return -12 cdf = get_cdf(values) return rows[bs.bisect(cdf, random.random())] def
# quality = self._select_valid_quality(track, quality) quality = track_formats.TRACK_FORMAT_MAP[quality_key] title = tags["title"] ext = quality["ext"] if not filename: filename = title + ext if not str(filename).endswith(ext): filename += ext filename = util.clean_filename(filename) download_dir = path.normpath(download_dir) download_path = path.join(download_dir, filename) util.create_folders(download_dir) print("Starting download of:", title) res = self.session.get(url, cookies=self.get_cookies(), stream=True) chunk_size = 2048 total_filesize = int(res.headers["Content-Length"]) current_filesize = 0 i = 0 pbar = tqdm(res.iter_content(chunk_size), total=total_filesize, unit="B", unit_scale=True, unit_divisor=1024, leave=False, desc=title) with open(download_path, "wb") as f: f.seek(current_filesize) for chunk in pbar: chunk_len = len(chunk) if i % 3 > 0: f.write(chunk) elif len(chunk) < chunk_size: f.write(chunk) pbar.update(chunk_len) break else: cipher = Cipher(algorithms.Blowfish(blowfish_key), modes.CBC( bytes([i for i in range(8)])), default_backend()) decryptor = cipher.decryptor() dec_data = decryptor.update( chunk) + decryptor.finalize() f.write(dec_data) chunk_len = len(dec_data) i += 1 current_filesize += chunk_size pbar.update(chunk_len) pbar.close() if with_metadata: if ext.lower() == ".flac": self._write_flac_tags(download_path, track, tags=tags) else: self._write_mp3_tags(download_path, track, tags=tags) if with_lyrics: lyrics_path = path.join(download_dir, title) self.save_lyrics(lyric_data, lyrics_path) print("Track downloaded to:", download_path) def get_tracks(self, track_ids): """Gets the list of the tracks that corresponds with the given {track_ids} Arguments: track_ids {list} -- List of track id Returns: dict -- List of tracks """ data = self._api_call(api_methods.SONG_GET_LIST_DATA, params={ "SNG_IDS": track_ids }) data = data["results"] valid_ids = [str(song["SNG_ID"]) for song in data["data"]] data["errors"] = [] for id in track_ids: if not str(id) in valid_ids: data["errors"].append(id) return data def get_track_lyrics(self, track_id): """Gets the lyrics data of the given {track_id} Arguments: track_id {str} -- Track Id Returns: dict -- Dictionary that containts the {info}, and {save} partial function. """ data = self._api_call(api_methods.SONG_LYRICS, params={ "SNG_ID": track_id }) data = data["results"] return { "info": data, "save": partial(self.save_lyrics, data) } def save_lyrics(self, lyric_data, save_path): """Saves the {lyric_data} into a .lrc file. Arguments: lyric_data {dict} -- The 'info' value returned from {get_track_lyrics()} save_path {str} -- Full path on where the file is to be saved Returns: bool -- Operation success """ filename = path.basename(save_path) filename = util.clean_filename(filename) save_path = path.join(path.dirname(save_path), filename) if not str(save_path).endswith(".lrc"): save_path += ".lrc" util.create_folders(path.dirname(save_path)) with open(save_path, "w", encoding="utf-8") as f: if not "LYRICS_SYNC_JSON" in lyric_data: return False sync_data = lyric_data["LYRICS_SYNC_JSON"] for line in sync_data: if str(line["line"]): f.write("{0}{1}".format( line["lrc_timestamp"], line["line"])) f.write("\n") return True def get_album(self, album_id): """Gets the album data of the given {album_id} Arguments: album_id {str} -- Album Id Returns: dict -- Album data """ # data = self._api_call(api_methods.ALBUM_GET_DATA, params={ # "ALB_ID": album_id, # "LANG": "en" # }) # return data["results"] data = self._legacy_api_call("/album/{0}".format(album_id)) # TODO: maybe better logic? data["cover_id"] = str(data["cover_small"]).split( "cover/")[1].split("/")[0] return data def get_album_poster(self, album, size=500, ext="jpg"): """Gets the album poster as a binary data Arguments: album {dict} -- Album data Keyword Arguments: size {int} -- Size of the image, {size}x{size} (default: {500}) ext {str} -- Extension of the image, can be ('.jpg' or '.png') (default: {"jpg"}) Returns: bytes -- Binary data of the image """ # return self._get_poster(album["ALB_PICTURE"], size=size, ext=ext) return self._get_poster(album["cover_id"], size=size, ext=ext) def get_album_tracks(self, album_id): """Gets the tracks of the given {album_id} Arguments: album_id {str} -- Album Id Returns: list -- List of tracks """ data = self._api_call(api_methods.ALBUM_TRACKS, params={ "ALB_ID": album_id, "NB": -1 }) for i, track in enumerate(data["results"]["data"]): track["_POSITION"] = i + 1 return data["results"]["data"] def get_artist(self, artist_id): """Gets the artist data from the given {artist_id} Arguments: artist_id {str} -- Artist Id Returns: dict -- Artist data """ data = self._api_call(api_methods.PAGE_ARTIST, params={ "ART_ID": artist_id, "LANG": "en" }) return data["results"] def get_artist_poster(self, artist, size=500, ext="jpg"): """Gets the artist poster as a binary data Arguments: artist {dict} -- artist data Keyword Arguments: size {int} -- Size of the image, {size}x{size} (default: {500}) ext {str} -- Extension of the image, can be ('.jpg' or '.png') (default: {"jpg"}) Returns: bytes -- Binary data of the image """ if not "ART_PICTURE" in artist and "DATA" in artist: artist = artist["DATA"] return self._get_poster(artist["ART_PICTURE"], size=size, ext=ext) def get_artist_discography(self, artist_id): """Gets the artist's discography (tracks) Arguments: artist_id {str} -- Artist Id Returns: dict -- Artist discography data """ data = self._api_call(api_methods.ARTIST_DISCOGRAPHY, params={ "ART_ID": artist_id, "NB": 500, "NB_SONGS": -1, "START": 0 }) return data["results"]["data"] def get_artist_top_tracks(self, artist_id): """Gets the top tracks of the given artist Arguments: artist_id {str} -- Artist Id Returns: list -- List of track """ data = self._api_call(api_methods.ARTIST_TOP_TRACKS, params={ "ART_ID": artist_id, "NB": 100 }) for i, track in enumerate(data["results"]["data"]): track["_POSITION"] = i + 1 return data["results"]["data"] def get_playlist(self, playlist_id): """Gets the playlist data from the given playlist_id Arguments: playlist_id {str} -- Playlist Id Returns: dict -- Playlist data """ data = self._api_call(api_methods.PAGE_PLAYLIST, params={ "playlist_id": playlist_id, "LANG": "en" }) return data["results"] def get_playlist_tracks(self, playlist_id): """Gets the tracks inside the playlist Arguments: playlist_id {str} -- Playlist Id Returns: list -- List of tracks """ data = self._api_call(api_methods.PLAYLIST_TRACKS, params={ "PLAYLIST_ID": playlist_id, "NB": -1 }) for i, track in enumerate(data["results"]["data"]): track["_POSITION"] = i + 1 return data["results"]["data"] def get_suggested_queries(self, query): """Gets suggestion based on the given {query} Arguments: query {str} -- Query keyword Returns: list -- List of suggestions """ data = self._api_call(api_methods.GET_SUGGESTED_QUERIES, params={ "QUERY": query }) results = data["results"]["SUGGESTION"] for result in results: if "HIGHLIGHT" in result: del result["HIGHLIGHT"] return results def search_tracks(self, query, limit=30, index=0): """Searches tracks on a given query Arguments: query {str} -- Query keyword Keyword Arguments: limit {int} -- Number of results (default: {30}) index {int} -- Offset (default: {0}) Returns: list -- List of tracks """ return self._legacy_search(api_methods.SEARCH_TRACK, query, limit=limit, index=index) def search_albums(self, query, limit=30, index=0): """Searches albums on a given query Arguments: query {str} -- Query keyword Keyword Arguments: limit {int} -- Number of results (default: {30}) index {int} -- Offset (default: {0}) Returns: list -- List of albums """ return self._legacy_search(api_methods.SEARCH_ALBUM, query, limit=limit, index=index) def search_artists(self, query, limit=30, index=0): """Searches artists on a given query Arguments: query {str} -- Query keyword Keyword Arguments: limit {int} -- Number of tracks (default: {30}) index {int} -- Offset (default: {0}) Returns: list -- List of artists """ return self._legacy_search(api_methods.SEARCH_ARTIST, query, limit=limit, index=index) def search_playlists(self, query, limit=30, index=0): """Searches playlists on a given query Arguments: query {str} -- Query keyword Keyword Arguments: limit {int} -- Number of tracks (default: {30}) index {int} -- Offset (default: {0}) Returns: list -- List of playlists """ return self._legacy_search(api_methods.SEARCH_PLAYLIST, query, limit=limit, index=index) def _legacy_search(self, method, query, limit=30, index=0): query = util.clean_query(query) data = self._legacy_api_call(method, { "q": query, "limit": limit, "index": index }) return data["data"] def _get_poster(self, poster_id, size=500, ext="jpg"): ext = ext.lower() if ext != "jpg" and ext != "png": raise ValueError("Image extension should only be jpg or png!") url = f'https://e-cdns-images.dzcdn.net/images/cover/{poster_id}/{size}x{size}.{ext}' return { "image": self.session.get(url, params=networking_settings.HTTP_HEADERS, cookies=self.get_cookies()).content, "size": (size, size), "ext": ext, "mime_type": "image/jpeg" if ext == "jpg" else "image/png" } def _write_mp3_tags(self, path, track, tags=None): if "DATA" in track: track = track["DATA"] if not tags: tags = self.get_track_tags(track) audio = MP3(path, ID3=EasyID3) audio.delete() EasyID3.RegisterTextKey("label", "TPUB") cover = tags["_albumart"] del tags["_albumart"] for key, val in tags.items(): if val: audio[key] = str(val) audio.save() if cover: cover_handle = ID3(path) cover_handle["APIC"] = APIC( type=3, mime=cover["mime_type"], data=cover["image"] ) cover_handle.save(path) return True def _write_flac_tags(self, path, track, tags=None): if "DATA" in track: track = track["DATA"] if not tags: tags = self.get_track_tags(track) audio = File(path) audio.delete() cover = tags["_albumart"] del tags["_albumart"] if cover: pic = mutagen.flac.Picture() pic.data = cover["image"] audio.clear_pictures() audio.add_picture(pic) for key, val in tags.items(): if val: audio[key] = str(val) audio.save() return True def _select_valid_quality(self, track, quality): # If the track does not support the desired quality or if the given quality is not in the TRACK_FORMAT_MAP, # Use the default quality valid_qualities = self.get_track_valid_quality(track) if not quality or not quality in valid_qualities: default_size = int(track["FILESIZE"]) for key in track_formats.TRACK_FORMAT_MAP.keys(): if f"FILESIZE_{key}" in track and int(track[f"FILESIZE_{key}"]) == default_size: quality = track_formats.TRACK_FORMAT_MAP[key] break else: quality = track_formats.TRACK_FORMAT_MAP[quality] return quality def _api_call(self, method, params={}): token = "null" if method != api_methods.GET_USER_DATA: token = self.token res = self.session.post(api_urls.API_URL, json=params, params={ "api_version": "1.0", "api_token": token, "input": "3", "method": method }, cookies=self.get_cookies()) data = res.json() if "error" in data and data["error"]: error_type = list(data["error"].keys())[0] error_message = data["error"][error_type]
<reponame>Derekt2/PyProofpoint import requests class ProofpointAPIError(BaseException): pass class ProofPoint(object): '''ProofPoint Threat Insights API Class. ''' def __init__(self, servicePrincipal, APISecret): self.auth = (servicePrincipal, APISecret) self.base_url = "https://tap-api-v2.proofpoint.com" def get_campaign_ids(self, interval, size=100, page=1): '''Fetch a list of IDs of campaigns active in a time window sorted by the last updated timestamp. :param interval:A string containing an ISO8601-formatted interval. The minimum interval is 30 seconds. The maximum interval is 1 day. E.G: 2020-05-01T12:00:00Z/2020-05-01T13:00:00Z, or PT30M/2020-05-01T12:30:00Z :param size:The maximum number of campaign IDs to produce in the response. Defaults to 100 and the max supported value is 200. :param page: The page of results to return, in multiples of the specified size (or 100, if no size is explicitly chosen). Defaults to 1. ''' uri = "/v2/campaign/ids" params = {"interval": interval, 'page': page, 'size': size} return self.send_request(uri, params=params) def get_vap(self, window, size=1000, page=1): '''Fetch the identities and attack index breakdown of Very Attacked People within your organization for a given period. :param window:An integer indicating how many days the data should be retrieved for. Accepted values are 14, 30 and 90. :param size:The maximum number of VAPs to produce in the response. The attackIndex value determine the order of results. Defaults to 1000. :param page: The page of results to return, in multiples of the specified size (or 1000, if no size is explicitly chosen). Defaults to 1. ''' uri = "/v2/people/vap" params = {"window": window, 'page': page, 'size': size} return self.send_request(uri, params=params) def get_top_clickers(self, window, size=100, page=1): '''Fetch the identities and attack index of the top clickers within your organization for a given period. Top clickers are the users who have demonstrated a tendency to click on malicious URLs, regardless of whether the clicks were blocked or not. :param window:An integer indicating how many days the data should be retrieved for. Accepted values are 14, 30 and 90. :param size:The maximum number of top clickers to produce in the response. The attackIndex value determine the order of results. Defaults to 100 and the max supported value is 200. :param page: The page of results to return, in multiples of the specified size (or 100, if no size is explicitly chosen). Defaults to 1. ''' uri = "/v2/people/top-clickers" params = {"window": window, 'page': page, 'size': size} return self.send_request(uri, params=params) def get_campaign(self, cid): '''Fetch detailed information for a given campaign. :param cid:A string representing a campaignID ''' uri = f"/v2/campaign/{cid}" return self.send_request(uri) def get_forensic(self, threatId=None, campaignId=None, includeCampaignForensics=False): '''Fetch forensic information for a given threat or campaign. :param threatId:A string containing a threat identifier. :param campaignId:A string containing a campaignId. :param includeCampaignForensics:A boolean value, defaulting to false. May optionally be used with the threatId parameter. It cannot be used with the campaignId parameter. ''' uri = f"/v2/forensics" if not (threatId or campaignId): raise ValueError("Must provide threatID or CampaignID") params = { 'threatId': threatId, 'campaignId': campaignId, 'includeCampaignForensics': includeCampaignForensics } return self.send_request(uri, params=params) def get_clicks_blocked(self, interval=None, sinceSeconds=None, sinceTime=None, dataformat='syslog', threatType=None, threatStatus=None): '''Fetch events for clicks to malicious URLs blocked in the specified time period :param interval:A string containing an ISO8601-formatted interval. If this interval overlaps with previous requests for data, records from the previous request may be duplicated. The minimum interval is thirty seconds. The maximum interval is one hour. :param sinceSeconds:An integer representing a time window in seconds from the current API server time. The start of the window is the current API server time, rounded to the nearest minute, less the number of seconds provided. The end of the window is the current API server time rounded to the nearest minute. If JSON output is selected, the end time is included in the returned result. :param sinceTime:A string containing an ISO8601 date. It represents the start of the data retrieval period. The end of the period is determined by current API server time rounded to the nearest minute. If JSON output is selected, the end time is included in the returned result. :param dataformat:A string specifying the format in which data is returned. If no format is specified, syslog will be used as the default. The following values are accepted: JSON, syslog :param threatType:A string specifying which threat type will be returned in the data. If no value is specified, all threat types are returned. The following values are accepted: url, attachment, messageText :param threatStatus:A string specifying which threat statuses will be returned in the data. If no value is specified, active and cleared threats are returned. The following values are accepted: active, cleared, falsePositive ''' uri = f"/v2/siem/clicks/blocked" if not (interval or sinceSeconds or sinceTime): raise ValueError("Must provide sinceTime or sinceSeconds or interval") params = { 'interval': interval, 'sinceSeconds': sinceSeconds, 'sinceTime': sinceTime, 'format': dataformat, 'threatType': threatType, 'threatStatus': threatStatus } return self.send_request(uri, params=params) def get_clicks_permitted(self, interval=None, sinceSeconds=None, sinceTime=None, dataformat='syslog', threatType=None, threatStatus=None): '''Fetch events for clicks to malicious URLs permitted in the specified time period :param interval:A string containing an ISO8601-formatted interval. If this interval overlaps with previous requests for data, records from the previous request may be duplicated. The minimum interval is thirty seconds. The maximum interval is one hour. :param sinceSeconds:An integer representing a time window in seconds from the current API server time. The start of the window is the current API server time, rounded to the nearest minute, less the number of seconds provided. The end of the window is the current API server time rounded to the nearest minute. If JSON output is selected, the end time is included in the returned result. :param sinceTime:A string containing an ISO8601 date. It represents the start of the data retrieval period. The end of the period is determined by current API server time rounded to the nearest minute. If JSON output is selected, the end time is included in the returned result. :param dataformat:A string specifying the format in which data is returned. If no format is specified, syslog will be used as the default. The following values are accepted: JSON, syslog :param threatType:A string specifying which threat type will be returned in the data. If no value is specified, all threat types are returned. The following values are accepted: url, attachment, messageText :param threatStatus:A string specifying which threat statuses will be returned in the data. If no value is specified, active and cleared threats are returned. The following values are accepted: active, cleared, falsePositive ''' uri = f"/v2/siem/clicks/permitted" if not (interval or sinceSeconds or sinceTime): raise ValueError("Must provide sinceTime or sinceSeconds or interval") params = { 'interval': interval, 'sinceSeconds': sinceSeconds, 'sinceTime': sinceTime, 'format': dataformat, 'threatType': threatType, 'threatStatus': threatStatus } return self.send_request(uri, params=params) def get_messages_blocked(self, interval=None, sinceSeconds=None, sinceTime=None, dataformat='syslog', threatType=None, threatStatus=None): '''Fetch events for messages blocked in the specified time period which contained a known threat :param interval:A string containing an ISO8601-formatted interval. If this interval overlaps with previous requests for data, records from the previous request may be duplicated. The minimum interval is thirty seconds. The maximum interval is one hour. :param sinceSeconds:An integer representing a time window in seconds from the current API server time. The start of the window is the current API server time, rounded to the nearest minute, less the number of seconds provided. The end of the window is the current API server time rounded to the nearest minute. If JSON output is selected, the end time is included in the returned result. :param sinceTime:A string containing an ISO8601 date. It represents the start of the data retrieval period. The end of the period is determined by current API server time rounded to the nearest minute. If JSON output is selected, the end time is included in the returned result. :param
isinstance(ret, str): if not self._error_reply(msg=retmsg, err_code=EINVALID_COMMAND, txt=ret): user_message_routing.direct_send_to_user(socket, retmsg) else: retmsg.update(ret) umr.send_message_to_user(retmsg) elif cmd == MsgType.RESPONSE_SIGNATURE: if not self._param_check([KeyType.domain_id, KeyType.destination_user_id, KeyType.source_user_id], dat): self.logger.debug("RESPONSE_SIGNATURE: bad format") return False, None retmsg = _make_message_structure(domain_id, MsgType.RESPONSE_GATHER_SIGNATURE, dat[KeyType.destination_user_id], dat[KeyType.query_id]) if KeyType.signature in dat: if KeyType.transaction_data_format in dat: # -- for backward compatibility retmsg[KeyType.transaction_data_format] = dat[KeyType.transaction_data_format] retmsg[KeyType.signature] = dat[KeyType.signature] retmsg[KeyType.ref_index] = dat[KeyType.ref_index] elif KeyType.status not in dat: retmsg[KeyType.status] = EOTHER retmsg[KeyType.reason] = dat[KeyType.reason] elif dat[KeyType.status] < ESUCCESS: retmsg[KeyType.status] = dat[KeyType.status] retmsg[KeyType.reason] = dat[KeyType.reason] retmsg[KeyType.source_user_id] = dat[KeyType.source_user_id] umr.send_message_to_user(retmsg) elif cmd == MsgType.MESSAGE: if not self._param_check([KeyType.domain_id, KeyType.source_user_id, KeyType.destination_user_id], dat): self.logger.debug("MESSAGE: bad format") return False, None if KeyType.is_anycast in dat: dat[KeyType.anycast_ttl] = DEFAULT_ANYCAST_TTL umr.send_message_to_user(dat) elif cmd == MsgType.REQUEST_CROSS_REF_VERIFY: if not self._param_check([KeyType.domain_id, KeyType.source_user_id, KeyType.transaction_id], dat): self.logger.debug("REQUEST_CROSS_REF_VERIFY: bad format") return False, None dat[KeyType.command] = domain0_manager.Domain0Manager.REQUEST_VERIFY self.networking.send_message_to_a_domain0_manager(domain_id, dat) elif cmd == MsgType.REQUEST_CROSS_REF_LIST: if not self._param_check([KeyType.domain_id, KeyType.source_user_id], dat): self.logger.debug("REQUEST_CROSS_REF_LIST: bad format") return False, None retmsg = _make_message_structure(domain_id, MsgType.RESPONSE_CROSS_REF_LIST, dat[KeyType.source_user_id], dat[KeyType.query_id]) domain_list = self.networking.domains[domain_id]['data'].search_domain_having_cross_ref() # domain_list = list of ["id", "transaction_id", "outer_domain_id", "txid_having_cross_ref"] retmsg[KeyType.transaction_id_list] = [row[1] for row in domain_list] umr.send_message_to_user(retmsg) elif cmd == MsgType.REQUEST_REGISTER_HASH_IN_SUBSYS: if not self._param_check([KeyType.transaction_id], dat): self.logger.debug("REQUEST_REGISTER_HASH_IN_SUBSYS: bad format") return False, None retmsg = _make_message_structure(domain_id, MsgType.RESPONSE_REGISTER_HASH_IN_SUBSYS, dat[KeyType.source_user_id], dat[KeyType.query_id]) if domain_id in self.ledger_subsystems: transaction_id = dat[KeyType.transaction_id] self.ledger_subsystems[domain_id].register_transaction(transaction_id=transaction_id) umr.send_message_to_user(retmsg) else: self._error_reply(msg=retmsg, err_code=ENOSUBSYSTEM, txt="Ledger_subsystem is not activated") elif cmd == MsgType.REQUEST_VERIFY_HASH_IN_SUBSYS: if not self._param_check([KeyType.transaction_id], dat): self.logger.debug("REQUEST_REGISTER_HASH_IN_SUBSYS: bad format") return False, None retmsg = _make_message_structure(domain_id, MsgType.RESPONSE_VERIFY_HASH_IN_SUBSYS, dat[KeyType.source_user_id], dat[KeyType.query_id]) if domain_id in self.ledger_subsystems: transaction_id = dat[KeyType.transaction_id] result = self.ledger_subsystems[domain_id].verify_transaction(transaction_id=transaction_id) retmsg[KeyType.merkle_tree] = result umr.send_message_to_user(retmsg) else: self._error_reply(msg=retmsg, err_code=ENOSUBSYSTEM, txt="Ledger_subsystem is not activated") elif cmd == MsgType.REGISTER: if domain_id is None: return False, None if not self._param_check([KeyType.domain_id, KeyType.source_user_id], dat): self.logger.debug("REGISTER: bad format") return False, None user_id = dat[KeyType.source_user_id] self.logger.debug("[%s] register_user: %s" % (binascii.b2a_hex(domain_id[:2]), binascii.b2a_hex(user_id[:4]))) umr.register_user(user_id, socket, on_multiple_nodes=dat.get(KeyType.on_multinodes, False)) return False, (domain_id, user_id) elif cmd == MsgType.UNREGISTER: if umr is not None: umr.unregister_user(dat[KeyType.source_user_id], socket) return True, None elif cmd == MsgType.REQUEST_INSERT_NOTIFICATION: self._register_to_notification_list(domain_id, dat[KeyType.asset_group_id], dat[KeyType.source_user_id]) elif cmd == MsgType.CANCEL_INSERT_NOTIFICATION: self.remove_from_notification_list(domain_id, dat[KeyType.asset_group_id], dat[KeyType.source_user_id]) elif cmd == MsgType.REQUEST_GET_STATS: retmsg = _make_message_structure(domain_id, MsgType.RESPONSE_GET_STATS, dat[KeyType.source_user_id], dat[KeyType.query_id]) retmsg[KeyType.stats] = copy.deepcopy(self.stats.get_stats()) user_message_routing.direct_send_to_user(socket, retmsg) elif cmd == MsgType.NOTIFY_DOMAIN_KEY_UPDATE: if domain_id is not None: self.networking.get_domain_keypair(domain_id) elif cmd == MsgType.REQUEST_REPAIR: if KeyType.transaction_id in dat: dat[KeyType.command] = repair_manager.RepairManager.REQUEST_REPAIR_TRANSACTION self.networking.domains[domain_id]['repair'].put_message(dat) elif KeyType.asset_group_id in dat and KeyType.asset_id in dat: dat[KeyType.command] = repair_manager.RepairManager.REQUEST_REPAIR_ASSET_FILE self.networking.domains[domain_id]['repair'].put_message(dat) else: self.logger.debug("REQUEST_REPAIR: bad format") return False, None elif cmd == MsgType.REQUEST_GET_NEIGHBORLIST: retmsg = _make_message_structure(domain_id, MsgType.RESPONSE_GET_NEIGHBORLIST, dat[KeyType.source_user_id], dat[KeyType.query_id]) if domain_id in self.networking.domains: retmsg[KeyType.domain_id] = domain_id retmsg[KeyType.neighbor_list] = self.networking.domains[domain_id]['topology'].make_neighbor_list() else: retmsg[KeyType.status] = False retmsg[KeyType.reason] = "No such domain" user_message_routing.direct_send_to_user(socket, retmsg) elif cmd == MsgType.REQUEST_GET_CONFIG: retmsg = _make_message_structure(domain_id, MsgType.RESPONSE_GET_CONFIG, dat[KeyType.source_user_id], dat[KeyType.query_id]) jsondat = self.config.get_json_config() retmsg[KeyType.bbc_configuration] = jsondat user_message_routing.direct_send_to_user(socket, retmsg) elif cmd == MsgType.REQUEST_GET_DOMAINLIST: retmsg = _make_message_structure(domain_id, MsgType.RESPONSE_GET_DOMAINLIST, dat[KeyType.source_user_id], dat[KeyType.query_id]) data = bytearray() data.extend(to_2byte(len(self.networking.domains))) for domain_id in self.networking.domains: data.extend(domain_id) retmsg[KeyType.domain_list] = bytes(data) user_message_routing.direct_send_to_user(socket, retmsg) elif cmd == MsgType.REQUEST_GET_FORWARDING_LIST: retmsg = _make_message_structure(domain_id, MsgType.RESPONSE_GET_FORWARDING_LIST, dat[KeyType.source_user_id], dat[KeyType.query_id]) data = bytearray() data.extend(to_2byte(len(umr.forwarding_entries))) for user_id in umr.forwarding_entries: data.extend(user_id) data.extend(to_2byte(len(umr.forwarding_entries[user_id]['nodes']))) for node_id in umr.forwarding_entries[user_id]['nodes']: data.extend(node_id) retmsg[KeyType.forwarding_list] = bytes(data) user_message_routing.direct_send_to_user(socket, retmsg) elif cmd == MsgType.REQUEST_GET_USERS: retmsg = _make_message_structure(domain_id, MsgType.RESPONSE_GET_USERS, dat[KeyType.source_user_id], dat[KeyType.query_id]) data = bytearray() data.extend(to_2byte(len(umr.registered_users))) for user_id in umr.registered_users.keys(): data.extend(user_id) retmsg[KeyType.user_list] = bytes(data) user_message_routing.direct_send_to_user(socket, retmsg) elif cmd == MsgType.REQUEST_GET_NODEID: retmsg = _make_message_structure(domain_id, MsgType.RESPONSE_GET_NODEID, dat[KeyType.source_user_id], dat[KeyType.query_id]) data = bytearray() data.extend(self.networking.domains[domain_id]['topology'].my_node_id) retmsg[KeyType.node_id] = bytes(data) user_message_routing.direct_send_to_user(socket, retmsg) elif cmd == MsgType.REQUEST_GET_NOTIFICATION_LIST: retmsg = _make_message_structure(domain_id, MsgType.RESPONSE_GET_NOTIFICATION_LIST, dat[KeyType.source_user_id], dat[KeyType.query_id]) data = bytearray() data.extend(to_2byte(len(self.insert_notification_user_list[domain_id]))) for asset_group_id in self.insert_notification_user_list[domain_id].keys(): data.extend(asset_group_id) data.extend(to_2byte(len(self.insert_notification_user_list[domain_id][asset_group_id]))) for user_id in self.insert_notification_user_list[domain_id][asset_group_id]: data.extend(user_id) retmsg[KeyType.notification_list] = bytes(data) user_message_routing.direct_send_to_user(socket, retmsg) elif cmd == MsgType.REQUEST_SETUP_DOMAIN: if not self._param_check([KeyType.domain_id], dat): self.logger.debug("REQUEST_SETUP_DOMAIN: bad format") return False, None conf = None if KeyType.bbc_configuration in dat: conf = json.loads(dat[KeyType.bbc_configuration]) retmsg = _make_message_structure(None, MsgType.RESPONSE_SETUP_DOMAIN, dat[KeyType.source_user_id], dat[KeyType.query_id]) retmsg[KeyType.result] = self.networking.create_domain(domain_id=domain_id, config=conf) if not retmsg[KeyType.result]: retmsg[KeyType.reason] = "Already exists" retmsg[KeyType.domain_id] = domain_id self.config.update_config() user_message_routing.direct_send_to_user(socket, retmsg) elif cmd == MsgType.REQUEST_CLOSE_DOMAIN: retmsg = _make_message_structure(None, MsgType.RESPONSE_CLOSE_DOMAIN, dat[KeyType.source_user_id], dat[KeyType.query_id]) retmsg[KeyType.result] = self.networking.remove_domain(domain_id) if not retmsg[KeyType.result]: retmsg[KeyType.reason] = "No such domain" user_message_routing.direct_send_to_user(socket, retmsg) elif cmd == MsgType.REQUEST_ECDH_KEY_EXCHANGE: retmsg = _make_message_structure(None, MsgType.RESPONSE_ECDH_KEY_EXCHANGE, dat[KeyType.source_user_id], dat[KeyType.query_id]) privatekey_for_ecdh, peer_pub_key_to_send, my_keyname = message_key_types.get_ECDH_parameters() if privatekey_for_ecdh is None: return False, None nonce = dat[KeyType.nonce] rand = dat[KeyType.random] shared_key = message_key_types.derive_shared_key(privatekey_for_ecdh, dat[KeyType.ecdh], rand) retmsg[KeyType.ecdh] = peer_pub_key_to_send retmsg[KeyType.nonce] = nonce retmsg[KeyType.random] = rand retmsg[KeyType.hint] = my_keyname user_message_routing.direct_send_to_user(socket, retmsg) message_key_types.set_cipher(shared_key, nonce, my_keyname, dat[KeyType.hint]) umr.set_aes_name(socket, my_keyname) elif cmd == MsgType.DOMAIN_PING: if not self._param_check([KeyType.domain_id, KeyType.source_user_id, KeyType.port_number], dat): return False, None ipv4 = dat.get(KeyType.ipv4_address, None) ipv6 = dat.get(KeyType.ipv6_address, None) if ipv4 is None and ipv6 is None: return False, None port = dat[KeyType.port_number] self.networking.send_domain_ping(domain_id, ipv4, ipv6, port) elif cmd == MsgType.REQUEST_SET_STATIC_NODE: retmsg = _make_message_structure(domain_id, MsgType.RESPONSE_SET_STATIC_NODE, dat[KeyType.source_user_id], dat[KeyType.query_id]) retmsg[KeyType.domain_id] = domain_id node_info = dat.get(KeyType.node_info, None) if node_info is None: retmsg[KeyType.result] = False else: self.networking.add_neighbor(domain_id, *node_info, is_static=True) self.config.update_config() retmsg[KeyType.result] = True user_message_routing.direct_send_to_user(socket, retmsg) elif cmd == MsgType.REQUEST_MANIP_LEDGER_SUBSYS: retmsg = _make_message_structure(domain_id, MsgType.RESPONSE_MANIP_LEDGER_SUBSYS, dat[KeyType.source_user_id], dat[KeyType.query_id]) if self.ledger_subsystems[domain_id] is not None: if dat[KeyType.ledger_subsys_manip]: self.ledger_subsystems[domain_id].enable() else: self.ledger_subsystems[domain_id].disable() user_message_routing.direct_send_to_user(socket, retmsg) else: self._error_reply(msg=retmsg, err_code=ENOSUBSYSTEM, txt="Ledger_subsystem is not installed") else: self.logger.error("Bad command/response: %s" % cmd) return False, None def _register_to_notification_list(self, domain_id, asset_group_id, user_id): """Register user_id in insert completion notification list Args: domain_id (bytes): target domain_id asset_group_id (bytes): target asset_group_id of which you want to get notification about the insertion user_id (bytes): user_id that registers in the list """ self.insert_notification_user_list.setdefault(domain_id, dict()) self.insert_notification_user_list[domain_id].setdefault(asset_group_id, set()) self.insert_notification_user_list[domain_id][asset_group_id].add(user_id) umr = self.networking.domains[domain_id]['user'] umr.send_multicast_join(asset_group_id, permanent=True) def remove_from_notification_list(self, domain_id, asset_group_id, user_id): """Remove entry from insert completion notification list This method checks validation only. Args: domain_id (bytes): target domain_id asset_group_id (bytes): target asset_group_id of which you want to get notification about the insertion user_id (bytes): user_id that registers in the list """ if domain_id not in self.insert_notification_user_list: return if asset_group_id is not None: if asset_group_id in self.insert_notification_user_list[domain_id]: self._remove_notification_entry(domain_id, asset_group_id, user_id) else: for asset_group_id in list(self.insert_notification_user_list[domain_id]): self._remove_notification_entry(domain_id, asset_group_id, user_id) def _remove_notification_entry(self, domain_id, asset_group_id, user_id): """Remove entry from insert completion notification list Args: domain_id (bytes): target domain_id asset_group_id (bytes): target asset_group_id of which you want to get notification about the insertion user_id (bytes): user_id that registers in the list """ self.insert_notification_user_list[domain_id][asset_group_id].remove(user_id) if len(self.insert_notification_user_list[domain_id][asset_group_id]) == 0: self.insert_notification_user_list[domain_id].pop(asset_group_id, None) umr = self.networking.domains[domain_id]['user'] umr.send_multicast_leave(asset_group_id) if len(self.insert_notification_user_list[domain_id]) == 0: self.insert_notification_user_list.pop(domain_id, None) def validate_transaction(self, txdata, asset_files=None): """Validate transaction by verifying signature Args: txdata (bytes): serialized transaction data asset_files (dict): dictionary of {asset_id: content} for the transaction Returns: BBcTransaction: if validation fails, None returns. int (short): 2-byte value of BBcFormat type or None """ txobj, fmt_type = bbclib.deserialize(txdata) if not txobj: self.stats.update_stats_increment("transaction", "invalid", 1) self.logger.error("Fail to deserialize transaction data") return None, None txobj.digest() txobj_is_valid, valid_assets, invalid_assets = bbclib.validate_transaction_object(txobj, asset_files) if not txobj_is_valid: self.stats.update_stats_increment("transaction", "invalid", 1) if len(invalid_assets) > 0: self.stats.update_stats_increment("asset_file", "invalid", 1) if txobj_is_valid and len(invalid_assets) == 0: return txobj, fmt_type else: return None, None def insert_transaction(self, domain_id, txdata, asset_files): """Insert transaction into ledger Args: domain_id (bytes): target domain_id txdata (bytes): serialized transaction data asset_files (dict): dictionary of {asset_id: content} for the transaction Returns: dict|str: inserted transaction_id or error message """ self.stats.update_stats_increment("transaction", "insert_count", 1) if domain_id is None: self.stats.update_stats_increment("transaction", "insert_fail_count", 1) self.logger.error("No such domain") return "Set up the domain, first!" if domain_id == bbclib.domain_global_0: self.stats.update_stats_increment("transaction", "insert_fail_count", 1) self.logger.error("Insert is not allowed in domain_global_0") return "Insert is not allowed in domain_global_0" txobj, fmt_type = self.validate_transaction(txdata, asset_files) if txobj is None: self.stats.update_stats_increment("transaction", "insert_fail_count", 1) self.logger.error("Bad transaction format") return "Bad transaction format" self.logger.debug("[node:%s] insert_transaction %s" % (self.networking.domains[domain_id]['name'], binascii.b2a_hex(txobj.transaction_id[:4]))) asset_group_ids = self.networking.domains[domain_id]['data'].insert_transaction(txdata, txobj=txobj, fmt_type=fmt_type, asset_files=asset_files) if asset_group_ids is None: self.stats.update_stats_increment("transaction", "insert_fail_count", 1) self.logger.error("[%s] Fail to insert a transaction into the ledger" % self.networking.domains[domain_id]['name']) return "Failed to insert a transaction into the ledger" self.send_inserted_notification(domain_id, asset_group_ids, txobj.transaction_id) return {KeyType.transaction_id: txobj.transaction_id} def send_inserted_notification(self, domain_id, asset_group_ids, transaction_id, only_registered_user=False): """Broadcast NOTIFY_INSERTED Args: domain_id (bytes): target domain_id asset_group_ids (list): list of asset_group_ids transaction_id (bytes): transaction_id that has just inserted only_registered_user (bool): If True, notification is not sent to other nodes """ umr = self.networking.domains[domain_id]['user'] destination_users = set() destination_nodes = set() for asset_group_id in asset_group_ids: if domain_id in self.insert_notification_user_list: if asset_group_id in self.insert_notification_user_list[domain_id]: for user_id in self.insert_notification_user_list[domain_id][asset_group_id]: destination_users.add(user_id) if not only_registered_user: if asset_group_id in umr.forwarding_entries: for node_id in umr.forwarding_entries[asset_group_id]['nodes']: destination_nodes.add(node_id) if len(destination_users) == 0 and len(destination_nodes) == 0: return msg = { KeyType.domain_id: domain_id, KeyType.infra_command: data_handler.DataHandler.NOTIFY_INSERTED, KeyType.command: MsgType.NOTIFY_INSERTED, KeyType.transaction_id:
'americat', 'amethyst', 'amidships', 'amidst', 'amigas', 'amigo', 'amigos', 'amine', 'amir', 'amiss', 'amnesia', 'among', 'amongst', 'amore', 'amos', 'amount', 'amounted', 'amounter', 'amounters', 'amounting', 'amounts', 'amp', 'amphitrite', 'ample', 'amputated', 'amry', 'ams', 'amt', 'amts', 'amuck', 'amulets', 'amuse', 'amused', 'amusement', "amusement's", 'amusements', 'amuses', 'amusing', 'amy', 'an', "an'", 'anachronistic', 'analog', 'analytical', 'analyze', 'analyzing', 'anarchy', 'anatomy', 'ancestors', 'anchor', 'anchorage', 'anchored', 'anchoring', 'anchors', 'anchovies', 'ancient', 'anciently', 'ancients', 'and', 'andaba', 'andago', 'andaire', 'andama', 'anddd', 'andi', 'andila', 'andira', 'andoso', 'andrea', "andrea's", 'andrew', 'andrina', "andrina's", 'andro', 'andromeda', 'andros', 'andumal', 'andy', 'anegola', 'anegoso', 'anemic', 'anemone', 'anemones', 'anent', 'anew', 'angaba', 'angama', 'angassa', 'ange', 'angel', "angel's", 'angelfish', 'angelfood', 'angelica', 'angels', 'anger', 'angered', 'angering', 'angers', 'angle', 'angled', 'angler', "angler's", 'anglers', 'angles', 'angling', 'angrier', 'angries', 'angriest', 'angrily', 'angry', 'angst', 'angus', 'animal', "animal's", 'animal-talent', 'animal-talents', 'animally', 'animals', 'animate', 'animated', 'animates', 'animatings', 'animation', 'animations', 'animator', "animator's", 'animators', 'anime', 'anita', 'ankle', 'anklet', 'anklets', 'ankoku', 'ann', "ann's", 'anna', "anna's", 'anne', "anne's", 'anneliese', "anneliese's", 'annie', "annie's", 'annihilate', 'annihilated', 'annihilation', 'anniversary', 'annos', 'annotate', 'announce', 'announced', 'announcement', 'announcements', 'announcer', "announcer's", 'announcers', 'announces', 'announcing', 'annoy', 'annoyance', "annoyance's", 'annoyances', 'annoyed', 'annoyer', 'annoyers', 'annoying', 'annoyingly', 'annoys', 'annual', 'annually', 'annuals', 'annul', 'anomaly', 'anon', 'anonymity', 'another', "another's", 'anselmo', 'answer', 'answered', 'answerer', 'answerers', 'answering', 'answers', 'ant', "ant's", 'antacid', 'antagonist', 'antagonize', 'antagonized', 'antagonizing', 'antama', 'antarctic', 'antassa', 'ante', 'antelope', "antelope's", 'antelopes', 'antenna', 'antes', 'anthem', 'anther', 'anthers', 'anthill', "anthill's", 'anthills', 'anthony', 'anthropology', 'anti', 'anti-cog', 'anti-gravity', 'antiano', 'antibacterial', 'antibiotic', 'antibiotics', 'antibodies', 'antic', 'anticipate', 'anticipated', 'anticipating', 'anticipation', 'anticipatively', 'anticlimactic', 'antics', 'antidisestablishmentarianism', 'antigue', 'antik', 'antima', 'antios', 'antique', 'antiques', 'antiros', 'antis', 'antisocial', 'antivirus', 'anton', "anton's", 'ants', 'antsy', 'antumal', 'anuberos', 'anubi', 'anubos', 'anvil', 'anvils', 'anxieties', 'anxiety', 'anxious', 'anxiously', 'any', 'anybodies', 'anybody', "anybody's", 'anyhow', 'anymore', 'anyone', "anyone's", 'anyones', 'anyplace', 'anything', "anything's", 'anythings', 'anytime', 'anywas', 'anyway', 'anyways', 'anywhere', 'anywheres', 'aoba', 'aobasar', 'aoboshi', 'aoi', 'aoogah', 'aoogahs', 'aoteoroa', 'apart', 'apartment', 'apartments', 'apathetic', 'apathy', 'ape', "ape's", 'apes', 'apex', 'aphoristic', 'apiece', 'aplenty', 'apocalyptyca', 'apodous', 'apologies', 'apologize', 'apologized', 'apologizes', 'apologizing', 'apology', "apology's", 'apostles', 'apostrophe', "apostrophe's", 'apostrophes', 'app', 'appalled', 'apparel', 'apparent', 'apparently', 'appeal', 'appealed', 'appealer', 'appealers', 'appealing', 'appeals', 'appear', 'appearance', 'appearances', 'appeared', 'appearer', 'appearers', 'appearing', 'appears', 'appease', 'appeasing', 'append', 'appendices', 'appendix', 'appetite', 'appetites', 'appetizer', 'appetizers', 'appetizing', 'applaud', 'applauded', 'applauder', 'applauding', 'applauds', 'applause', 'apple', 'apples', 'applesauce', 'appliances', 'applicable', 'applicants', 'application', "application's", 'applications', 'applied', 'applier', 'appliers', 'applies', 'apply', 'applying', 'appoint', 'appointed', 'appointer', 'appointers', 'appointing', 'appointive', 'appointment', 'appointments', 'appoints', 'appose', 'apposed', 'appreciate', 'appreciated', 'appreciates', 'appreciation', 'appreciative', 'apprehension', 'apprehensive', 'apprentice', 'approach', 'approached', 'approacher', 'approachers', 'approaches', 'approaching', 'appropriate', 'appropriated', 'appropriately', 'appropriates', 'appropriatest', 'appropriating', 'appropriation', 'appropriations', 'appropriative', 'approval', 'approve', 'approved', 'approver', "approver's", 'approvers', 'approves', 'approving', 'approx', 'approximate', 'approximately', 'apps', 'appt', 'apr', 'apricot', 'april', "april's", 'apron', 'apt', 'aptly', 'aqua', 'aquablue', 'aquarium', 'aquariums', 'aquarius', 'aquatic', 'aquatta', 'arabia', 'arabian', 'aradia', 'arbitrage', 'arbitrarily', 'arbitrary', 'arbok', 'arbor', 'arboreal', 'arc', "arc's", 'arcade', 'arcades', 'arcadia', 'arcane', 'arcanine', 'arch', 'archaeology', 'archaic', 'archer', "archer's", 'archers', 'arches', 'archibald', 'architect', 'architects', 'architecture', 'archway', 'archways', 'arctic', "arctic's", 'arduous', 'are', 'area', "area's", 'areas', "aren't", 'arena', 'arenas', 'arenberg', "arenberg's", 'arent', 'areserversup', 'areserverup', 'arf', 'arfur', 'arg', 'argentina', 'argg', 'arggest', 'arggg', 'argggg', 'arggggg', 'arggggge', 'argggggg', 'argggggggggggg', 'argggggggh', 'argggghhh', 'argggh', 'arggghhh', 'arggh', 'argghh', 'argghhh', 'argghhhh', 'argh', 'arghgh', 'arghghghggh', 'arghh', 'arghhh', 'arghhhh', 'arghhhhh', 'arghhhhhhhhhhhhhhhhhh', 'argon', 'argue', 'argued', 'arguer', "arguer's", 'arguers', 'argues', 'arguing', 'argument', "argument's", 'arguments', 'argust', 'aria', 'ariana', 'arianna', 'ariel', "ariel's", 'aries', 'aright', 'aril', 'arising', 'arista', 'aristocat', "aristocat's", 'aristocats', 'aristocratic', 'ark', 'arks', 'arm', "arm's", 'armada', 'armadas', 'armadillo', "armadillo's", 'armadillos', 'armchair', "armchair's", 'armchairs', 'armed', 'armer', 'armers', 'armies', 'arming', 'armlets', 'armoire', 'armor', 'armory', 'armpit', 'arms', 'armstrong', 'army', "army's", 'aroma', 'aromatic', 'around', 'arr', 'arrack', 'arraignment', 'arrange', 'arranged', 'arrangement', "arrangement's", 'arrangements', 'arranger', 'arrangers', 'arranges', 'arranging', 'arrant', 'array', 'arrest', 'arrested', 'arresting', 'arrests', 'arrgg', 'arrggg', 'arrgggg', 'arrggghhh', 'arrgghh', 'arrgghhh', 'arrgh', 'arrghh', 'arrghhh', 'arrghhhh', 'arrghhhhhhh', 'arrgonauts', 'arrival', 'arrivals', 'arrive', 'arrived', 'arrivederci', 'arriver', 'arrives', 'arriving', 'arrogant', 'arrow', 'arrowed', 'arrowing', 'arrows', 'arrr', 'arrrr', 'arrrrgh', 'arsis', 'art', "art's", 'art-talent', 'arte', 'artezza', 'arthritis', 'artichoke', 'article', "article's", 'articled', 'articles', 'articling', 'articulate', 'articuno', 'artie', 'artifact', 'artifacts', 'artificial', 'artificially', 'artillery', 'artillerymen', 'artist', "artist's", 'artiste', 'artistic', 'artists', 'arts', 'artwork', 'arty', 'aru', 'aruba', 'arwin', "arwin's", 'as', 'asap', 'asarion', 'ascended', 'ascending', 'ascent', 'ashame', 'ashamed', 'ashes', 'ashley', "ashley's", 'ashore', 'ashtray', 'ashy', 'asia', 'aside', 'asides', 'ask', 'askalice', 'asked', 'asker', 'askers', 'asking', 'asks', 'aslan', "aslan's", 'aslans', 'asleep', 'asp', 'asparagus', 'aspect', "aspect's", 'aspects', 'aspen', 'asphalt', 'aspiration', 'aspirations', 'aspire', 'aspirin', 'aspiring', 'asps', 'assemble', 'assembled', 'assembler', 'assemblers', 'assembles', 'assembling', 'assembly', 'assert', 'assertive', 'assessment', 'asset', "asset's", 'assets', 'assign', 'assigned', 'assigning', 'assignment', 'assignments', 'assigns', 'assist', 'assistance', 'assistant', 'assistants', 'assisted', 'assisting', 'assistive', 'assn', 'assoc', 'associate', 'associated', 'associates', 'associating', 'association', "association's", 'associations', 'associative', 'assorted', 'assortment', 'asst', 'assume', 'assumed', 'assumer', 'assumes', 'assuming', 'assumption', "assumption's", 'assumptions', 'assurance', 'assure', 'assured', 'assuredly', 'assures', 'aster', 'asterisks', 'asterius', 'astern', 'asteroid', "asteroid's", 'asteroids', 'asthma', 'astir', 'astonish', 'astonished', 'astonishes', 'astonishing', 'astounded', 'astounds', 'astray', 'astro', "astro's", 'astro-barrier', 'astron', 'astronaut', "astronaut's", 'astronauts', 'astrond', 'astronomy', 'astroturf', 'asuna', 'asylum', 'at', 'ate', 'atheist', 'athlete', 'athletes', 'athletic', 'athletics', 'atlantic', 'atlantis', 'atlantyans', 'atlas', 'atm', "atm's", 'atmosphere', "atmosphere's", 'atmosphered', 'atmospheres', 'atms', 'atom', "atom's", 'atomettes', 'atomic', 'atoms', 'atone', 'atonement', 'atop', 'atrocious', 'atrocities', 'atrocity', 'atta', 'attach', 'attached', 'attacher', 'attachers', 'attaches', 'attaching', 'attachment', 'attachments', 'attack', 'attackable', 'attacked', 'attacker', "attacker's", 'attackers', 'attacking', 'attacks', 'attainable', 'attained', 'attempt', 'attempted', 'attempter', 'attempters', 'attempting', 'attempts', 'attend', 'attendance', 'attendant', 'attended', 'attender', 'attenders', 'attending', 'attends', 'attention', "attention's", 'attentions', 'attentive', 'attentively', 'attest', 'attic', "attic's", 'attics', 'attina', 'attire', 'attitude', "attitude's", 'attitudes', 'attn', 'attorney', "attorney's", 'attorneys', 'attract', 'attractant', 'attracted', 'attracting', 'attraction', 'attractions', 'attractive', 'attractively', 'attracts', 'attribute', 'attributes', 'attribution', 'attrition', 'attune', 'attuned', 'attunement', 'attunements', 'attunes', 'attuning', 'atty', 'auburn', 'auction', 'audience', "audience's", 'audiences', 'audio', 'audit', 'audition', 'auditioned', 'audits', 'auf', 'aug', 'aught', 'augmenter', 'august', 'auguste', 'aula', 'aunt', 'auntie', "auntie's", 'aunties', 'aunts', 'aunty', 'aura', 'aurora', "aurora's", 'aurorium', 'aurors', 'aurours', 'auspicious', 'auspiciously', 'australia', "australia's", 'auth', 'authenticity', 'author', "author's", 'authored', 'authoring', 'authoritative', 'authorities', 'authority', "authority's", 'authorization', 'authorize', 'authorized', 'authors', 'auto', "auto's", 'auto-reel', 'autocratic', 'autograph', 'autographed', 'autographs', 'automated', 'automatic', 'automatically', 'automatics', 'automobile', "automobile's", 'automobiles', 'autopia', "autopia's", 'autopilot', 'autos', 'autumn', "autumn's", 'autumns', 'aux', 'av', 'avail', 'availability', 'available', 'avalanche', 'avarice', 'avaricia', 'avast', 'avatar', "avatar's", 'avatars', 'avater', 'avec', 'avenge', 'avenged', 'avenger', "avenger's", 'avengers', 'avenging', 'avenue', 'aver', 'average', 'averaged', 'averagely', 'averages', 'averaging', 'aversion', 'averted', 'aviation', 'aviator', 'aviators', 'avid', 'avis', 'avocados', 'avoid', 'avoidance', 'avoided', 'avoider', 'avoiders', 'avoiding', 'avoids', 'aw', 'await', 'awaiting', 'awaits', 'awake', 'awaked', 'awaken', 'awakening', 'awakes', 'awaking', 'award', 'award-winning', 'awarded', 'awarder', 'awarders', 'awarding', 'awards', 'aware', 'awareness', 'awash', 'away', 'awayme', 'awe', 'awed', 'aweigh', 'awesome', 'awesomely', 'awesomeness', 'awesomers', 'awesomus', 'awestruck', 'awful', 'awfully', 'awhile', 'awkward', 'awkwardly', 'awkwardness', 'awl', 'awn', 'awning', 'awnings', 'awoke', 'awry', 'aww', 'axed', 'axel', 'axis', 'axisd', 'axle', 'axles', 'ay', 'aye', 'ayes', 'ayy', 'ayyy', 'aza', 'azamaros', 'azamaru', 'azapi', 'azaria', 'azeko', 'azenor', 'azewana', 'aztec', "aztec's", 'aztecs', 'b)', 'b-day', 'b-sharp', 'b4', 'babble', 'babbles', 'babbling', 'babied', 'babies', 'baboon', "baby's", 'babyface', 'babyish', 'babysitter', 'babysitters', 'babysitting', 'baccaneer', 'bacchus', "bacchus's", 'bachelor', 'bachelors', 'back', 'back-to-school', 'back-up', 'backbiters', 'backbone', 'backbones', 'backcrash', 'backdrop', 'backed', 'backer', 'backers', 'backfall', 'backfire', 'backfired', 'backfires', 'backflip', 'backflips', 'backginty', 'background', "background's", 'backgrounds', 'backing', 'backpack', "backpack's", 'backpacking', 'backpacks', 'backpedaling', 'backpedals', 'backs', 'backslash', 'backspace', 'backspaces', 'backspacing', 'backstabbed', 'backstabber', 'backstabbers', 'backstabbing', 'backstreet', 'backstroke', 'backtrack', 'backup', 'backups', 'backward', 'backwardly', 'backwardness', 'backwards', 'backwash', 'backwater', 'backwaters', 'backwoods', 'backyard', "backyard's", 'backyards', 'bacon', "bacon's", 'bacons', 'bacteria', 'bad', 'baddest', 'baddie', 'baddies', 'baddy', 'bade', 'badge', 'badger', "badger's", 'badgered', 'badgering', 'badgers', 'badges', 'badlands', 'badly', 'badness', 'badr', 'baffle', 'baffled', 'bafflement', 'bag', "bag's", 'bagel', "bagel's", 'bagelbee', 'bagelberry', 'bagelblabber', 'bagelbocker', 'bagelboing', 'bagelboom', 'bagelbounce', 'bagelbouncer', 'bagelbrains', 'bagelbubble', 'bagelbumble', 'bagelbump', 'bagelbumper', 'bagelburger', 'bagelchomp', 'bagelcorn', 'bagelcrash', 'bagelcrumbs', 'bagelcrump', 'bagelcrunch', 'bageldoodle', 'bageldorf', 'bagelface', 'bagelfidget', 'bagelfink', 'bagelfish', 'bagelflap', 'bagelflapper', 'bagelflinger', 'bagelflip', 'bagelflipper', 'bagelfoot', 'bagelfuddy', 'bagelfussen', 'bagelgadget', 'bagelgargle', 'bagelgloop', 'bagelglop', 'bagelgoober', 'bagelgoose', 'bagelgrooven', 'bagelhoffer', 'bagelhopper', 'bageljinks', 'bagelklunk', 'bagelknees', 'bagelmarble', 'bagelmash', 'bagelmonkey', 'bagelmooch', 'bagelmouth', 'bagelmuddle', 'bagelmuffin', 'bagelmush', 'bagelnerd', 'bagelnoodle', 'bagelnose', 'bagelnugget', 'bagelphew', 'bagelphooey', 'bagelpocket', 'bagelpoof', 'bagelpop', 'bagelpounce', 'bagelpow', 'bagelpretzel', 'bagelquack', 'bagelroni', 'bagels', 'bagelscooter', 'bagelscreech', 'bagelsmirk', 'bagelsnooker', 'bagelsnoop', 'bagelsnout', 'bagelsocks', 'bagelspeed', 'bagelspinner', 'bagelsplat', 'bagelsprinkles', 'bagelsticks', 'bagelstink', 'bagelswirl', 'bagelteeth', 'bagelthud', 'bageltoes', 'bagelton', 'bageltoon', 'bageltooth', 'bageltwist', 'bagelwhatsit', 'bagelwhip', 'bagelwig', 'bagelwoof', 'bagelzaner', 'bagelzap', 'bagelzapper', 'bagelzilla', 'bagelzoom', 'bagg o. wattar', 'baggage', 'bagged', 'bagger', 'baggie', 'bagging', 'bagheera', "bagheera's", 'bagpipe', 'bags', "bags'", 'bah', 'baha', 'bahaha', 'bahama', 'bahamas', 'bahano', 'bahh', 'bahhh', 'bahia', 'bahira', 'bai', 'bail', 'bailed', 'bailey', "bailey's", 'baileys', 'bailing', 'bails', 'bain', 'bait', 'baiter', 'baiters', 'baits', 'bajillion', 'bake', 'baked', 'baker', "baker's", 'bakers', 'bakery', 'baking', 'bakuraiya', 'balance', 'balanced', 'balancer', 'balancers', 'balances', 'balancing', 'balas', 'balboa', 'balconies', 'balcony', 'bald', 'balding', 'baldness', 'baldy', 'bale', 'baled', 'bales', 'baling',
-1.8, "efficiencies": 1.6, "prosecuted": -1.6, "welling": 1.6, "louseworts": -0.6, "lowly": -1.0, "graciles": 0.6, "idealistic": 1.8, "bl": 2.3, "agreement": 2.2, "looming": -0.5, "vitals": 1.1, "d-:": 1.6, "bz": 0.4, "discontented": -1.8, "stinkpots": -0.7, "exaggerated": -0.4, "flirtations": -0.1, "stressless": 1.6, "brilliancies": 2.3, "helpfulness": 1.9, "forgave": 1.4, "shylocked": -0.7, "complainingly": -1.7, "exaggerates": -0.6, "gigglingly": 1.1, "terrorists": -3.1, "disturbingly": -2.3, "doubters": -1.3, "troubleshooting": 0.7, "doomsayings": -1.5, "enthusiasms": 2.0, "criticisms": -0.9, "sneaky": -0.9, "safelights": 0.8, "trusteeship": 0.5, "dumbcanes": -0.6, "insensitivity": -1.8, "graciously": 2.3, "relaxed": 2.2, "undeserving": -1.9, "safelight": 1.1, "screwballs": -0.3, "relaxer": 1.6, "gravers": -1.2, "inspirits": 0.8, "charmed": 2.0, "positivist": 2.0, "pmfji": 0.3, "pissant": -1.5, "revengefulness": -2.2, "mature": 1.8, "charmer": 1.9, "dumbheads": -1.9, "positivism": 1.6, "genial": 1.8, "annoyer": -2.2, "raging": -2.4, "haunt": -1.7, "hopefulness": 1.6, "troublemaker": -2.0, "paradox": -0.4, "homesicknesses": -1.8, "tard": -2.5, "preventing": -0.1, "scapegoat": -1.7, "energetic": 1.9, "prosecution": -2.2, "nerdish": -0.1, "doomsdays": -2.4, "defenselessness": -1.3, "fighter": 0.6, "valuables": 2.1, "rescued": 1.8, "feud": -1.4, "freer": 1.1, "fresh": 1.3, "menace": -2.2, "stammers": -0.8, "rescues": 1.3, "unbelieving": -0.8, "enjoyably": 1.8, "enjoyable": 1.9, "stops": -0.6, "gladly": 1.4, "gossip": -0.7, "screwed up": -1.5, "bitterroots": -0.2, "dislike": -1.6, "carelessly": -1.0, "toughened": 0.1, "crueler": -2.3, "traumatises": -2.2, "torture": -2.9, "glamorising": 1.2, "traumatised": -2.4, "manipulated": -1.6, "abduction": -2.8, "welcomely": 1.9, "keens": 0.1, "funneling": -0.1, "damning": -1.4, "anxious": -1.0, "trite": -0.8, "partyers": 1.1, "desperations": -2.2, "honorees": 2.3, "gravelling": -0.4, "terrifies": -2.6, "dynamics": 1.1, "odd": -1.3, "expressed": 3.1, "toughens": -0.2, "harassing": -2.5, "advantageously": 1.9, "scepticism": -0.8, "respectively": 1.4, "misgiving": -1.4, "poverty": -2.3, "impressionism": 0.8, "great": 3.1, "engage": 1.4, "uneasy": -1.6, "depressor": -1.8, "defeat": -2.0, "impressionist": 1.0, "cheerfullest": 3.2, "panicked": -2.0, "savageries": -1.9, "distrusted": -2.4, "lowlifes": -2.2, "dumbest": -2.3, "confidence": 2.3, "cheered": 2.3, "illegal": -2.6, "pressurising": -0.6, "assuring": 1.6, "doubt": -1.5, "cheerer": 1.7, "astound": 1.7, "brilliantine": 0.8, "humorless": -1.3, "stinkiest": -2.1, "flexibilities": 1.0, "isolatable": 0.2, "pettiest": -1.3, "lowliest": -1.8, "unequal": -1.4, "charity": 1.8, "challenge": 0.3, "benefitting": 1.9, "fulfill": 1.9, "intimidations": -1.4, "perfecting": 2.3, "warmers": 1.0, "disadvantageousness": -1.6, "ruinousness": -1.0, "tantrums": -1.5, "bastardization": -2.4, "engagingly": 1.5, "destroying": -2.6, "joyance": 2.3, "comedo": 0.3, "humerous": 1.4, "delay": -1.3, "comedy": 1.5, "intelligent": 2.0, "blocks": -0.9, "scornful": -1.8, "}:(": -2.0, "await": 0.4, "}:)": 0.4, "graveyards": -1.2, "traumatising": -1.9, "victimless": 0.6, "solidarity": 1.2, "efficiently": 1.7, "distressfully": -1.7, "awkwardness": -0.7, "acquitted": 1.0, "festively": 2.2, "allow": 0.9, "classy": 1.9, "intellectuals": 1.6, "doubtful": -1.4, "apathetically": -0.4, "warred": -2.4, "snobbishness": -1.1, "paranoiacs": -0.7, "perfect": 2.7, "easements": 0.4, "thieved": -1.4, "challengingly": -0.6, "decay": -1.7, "remorseless": -2.3, "idealities": 1.5, "stalled": -0.8, "perfectest": 3.1, "popularized": 1.9, "warmongers": -2.8, "deviltry": -2.8, "bothering": -1.6, "kiss": 1.8, "bashfulness": -0.8, "popularizer": 1.8, "popularizes": 1.4, "ecstacy": 3.3, "doomster": -2.2, "meritoriously": 1.3, "nicely": 1.9, "delightful": 2.8, "expels": -1.6, "embarrassable": -1.6, "truth": 1.3, "shortage": -1.0, "shittimwood": -0.3, "foetuses": 0.2, "intellectualness": 1.5, "joyed": 2.9, "decays": -1.7, "irritation": -2.3, "feudatories": -0.5, "creditworthy": 2.4, "perversions": -1.2, "mediated": 3.1, "favours": 1.8, "hilarious": 1.7, "greeds": -1.0, "shit": -2.6, "jackasses": -2.8, "inferiority": -1.1, "greedy": -1.3, "loverly": 2.8, "loomed": -1.1, "surely": 1.9, "dynamometry": 0.6, "embarrass": -1.2, "scary": -2.2, "snobbishly": -1.2, "sleeplessness": -1.6, "cunts": -2.9, "troublemakers": -2.2, "scare": -2.2, "humoral": 0.6, "straining": -1.3, "dynamists": 0.9, "opportune": 1.7, "intellectualizes": 1.8, "festival": 2.2, "fuckers": -2.9, "intellectualized": 1.2, "exhilarating": 1.7, "painful": -1.9, "adopts": 0.7, "interests": 1.0, "pressurizes": -0.2, "pressurizer": 0.1, "feudalities": -0.4, "depressing": -1.6, "pressurized": 0.1, "applauds": 1.4, "luckiness": 1.0, "warfare": -1.2, "harmonizing": 1.4, "bother": -1.4, "luckie": 1.6, "aggressor": -0.8, "tortured": -2.6, "jollity": 1.8, "tortures": -2.5, "torturer": -2.3, "adversative": -1.2, "misunderstand": -1.5, "accusing": -0.7, "foolfish": -0.8, "lamebrain": -1.6, "tensioned": -0.4, "trusting": 1.7, "poisons": -2.7, "gently": 2.0, "reassuring": 1.7, "gentle": 1.9, "devotions": 1.8, "blockbuster": 2.9, "clearly": 1.7, "tensioner": -1.6, "fatalisms": -1.7, "vested": 0.6, "brilliances": 2.9, "tranquility": 1.8, "pricking": -0.9, "disturbers": -2.1, ";-)": 1.0, "toughest": -0.3, "freestanding": 1.1, "disgustedly": -3.0, ";-]": 0.7, "forbiddances": -1.0, "*)": 0.6, "amoroso": 2.3, "vultures": -1.3, "medal": 2.1, "fervent": 1.1, "pettier": -0.3, "amortize": -0.1, "stronger": 1.6, "fiasco": -2.3, "optionless": -1.7, "=p": 1.3, "=|": -0.8, "assholes": -2.8, "=d": 2.3, "=l": -1.2, "trivial": -0.1, "disillusion": -1.0, "wiseass": -1.8, "championed": 1.2, "conciliate": 1.0, "=D": 2.3, "aversively": -0.8, "hope": 1.9, "romanticised": 1.7, "meditative": 1.4, "=3": 2.1, "disappointingly": -1.9, "intellectually": 1.4, "killifish": -0.1, "lucky": 1.8, "romanticises": 1.3, "=/": -1.4, "harmonizers": 1.6, "defenseless": -1.4, "antagonist": -1.9, "spammers": -1.6, "dishearten": -2.0, "contemptible": -1.6, "champers": 0.5, "contemptibly": -1.4, "j4f": 1.4, "favoring": 1.8, "foolishest": -1.4, "strengthened": 1.8, "creationist": 0.8, "catastrophic": -2.2, "btd": -2.1, "defenseman": 0.1, "rotflol": 3.0, "strengthener": 1.8, "fearfullest": -2.5, "dangered": -2.4, "creationism": 0.7, "insulting": -2.2, "secureness": 1.4, "distressingly": -2.2, "injustice": -2.7, "felony": -2.5, "champaigns": 0.5, "harsher": -2.2, "trustbuster": -0.5, "fed up": -1.8, "restricting": -1.6, "troubleshoots": 0.5, "virtueless": -1.4, "obsessiveness": -1.2, "lawsuit": -0.9, "absentee": -1.1, "worriments": -1.9, "tantrum": -1.8, "challengers": 0.4, "innocently": 1.4, "numbat": 0.2, "wealthiness": 2.4, "screwbean": 0.3, "wtg": 2.1, "profitableness": 2.4, "radiances": 1.1, "suretyship": -0.1, "thieves": -2.3, "unlovelier": -1.9, "waste": -1.8, ">-:": -2.0, "chastised": -2.2, "depressively": -2.1, "neatened": 2.0, "hateful": -2.2, "swindling": -2.0, "violators": -1.9, "freewheeling": 0.5, "freewill": 1.0, "toothless": -1.4, "x-d": 2.6, "grinning": 1.5, "remorselessly": -2.0, "hahaha": 2.6, "rigged": -1.5, "toughnesses": 0.3, "x-p": 1.7, "loathes": -1.9, "agonized": -2.2, "uncertainty": -1.4, "appalls": -1.9, "surprisingly": 1.2, "optimistic": 1.3, "agonizes": -2.3, "lunatic": -2.2, "</3": -3.0, "terrorist": -3.7, "superiorities": 0.8, "romance": 2.6, "terrorise": -3.1, "terrorism": -3.6, "joyously": 2.9, "cheeriness": 2.5, "conflicting": -1.7, "wows": 2.0, "wisest": 2.1, "thks": 1.4, "disheartenments": -2.2, "fantasticalness": 1.3, "supremacists": -1.0, "expand": 1.3, "pleasantly": 2.1, "wimpier": -1.0, "discounted": 0.2, "fascinate": 2.4, "confronted": -0.8, "enrage": -2.6, "stenchy": -2.3, "poisonously": -2.9, "devilry": -2.8, "^<_<": 1.4, "surest": 1.3, "prizewinner": 2.3, "dissatisfying": -2.4, "rewardable": 2.0, "glum": -2.1, "miserableness": -2.8, "freedwomen": 1.3, "gentlest": 1.8, "afflicted": -1.5, "generous": 2.3, "gloomful": -2.1, "sickened": -2.5, "arrest": -1.4, "optimising": 1.7, "exempt": 0.4, "contempts": -1.0, "sickener": -2.2, "(o:": 1.6, "vain": -1.8, "innocents": 1.1, "increased": 1.1, "btdt": -0.1, "isolators": -0.4, "humors": 1.6, "fools": -2.2, "inquisitive": 0.7, ">_>^": 2.1, "nerves": -0.4, "weepers": -1.1, "lamest": -1.5, "poor": -2.1, "2qt": 2.1, "cheerled": 1.5, "despisers": -1.6, "immortal": 1.0, "championship": 1.9, "wisecrack": -0.1, "forgiver": 1.7, "cruelest": -2.6, "anguishes": -2.1, "avoid": -1.2, "anguished": -1.8, "woohoo": 2.3, "passion": 2.0, "forgiven": 1.6, "smarties": 1.7, "blurry": -0.4, "annoyers": -1.5, "benefitted": 1.7, "hooligan": -1.5, "happing": 1.1, "pressure": -1.2, "destructivity": -2.2, "adversary": -0.8, "entertainingly": 1.9, "hiding": -1.2, "gained": 1.6, "triviality": -0.5, "merited": 1.4, "dynamistic": 1.5, "charitablenesses": 1.6, "unattractive": -1.9, "libertarians": 0.1, "commitment": 1.6, "screamed": -1.3, "indoctrinates": -0.6, "lowermost": -1.4, "stamina": 1.2, "restricts": -1.3, "encouragements": 2.1, "frustration": -2.1, "troubling": -2.5, "surprisal": 1.5, "indoctrinated": -0.4, "humorlessness": -1.4, "interest": 2.0, "gratz": 2.0, "funned": 2.3, "shyness": -1.3, "lowered": -0.5, "funner": 2.2, "lovely": 2.8, "triumphant": 2.4, "excitement": 2.2, "burdened": -1.7, "prickliness": -0.6, "problem": -1.7, "whoreson": -2.2, "dumpish": -1.8, "unsavory": -1.9, "determinacy": 1.0, "excellencies": 2.4, "gracilis": 0.4, "uglily": -2.1, "overwhelms": -0.8, "gallantly": 1.9, "=-3": 2.0, "rebelled": -1.0, "devilkin": -2.4, "profiteer": 0.8, "victimise": -1.1, "freeboot": -0.7, "=-D": 2.4, "treason": -1.9, "huggable": 1.6, "chance": 1.0, "badass": -0.6, "inspiration": 2.4, "ghost": -1.3, "frightfully": -1.7, "=-d": 2.4, "bastardizes": -1.8, "radiantly": 1.3, "despairers": -1.3, "villainous": -2.0, "bastardized": -2.0, "evildoings": -2.5, "abhor": -2.0, "moodier": -1.1, "\\o:": -1.2, "desirable": 1.3, "encouragingly": 2.0, "controversial": -0.8, "trickier": -0.7, "integrity": 1.6, "\\o/": 2.2, "adorning": 1.0, "stinks": -1.0, "stinky": -1.5, "daze": -0.7, "stinko": -1.5, "worth": 0.9, "profiteroles": 0.5, "amorous": 1.8, "misreporting": -1.5, "optimists": 1.6, "compassion": 2.0, "distort": -1.3, "splendorous": 2.2, "distractive": -1.6, "smog": -1.2, "darlingly": 1.6, "hesitaters": -1.4, "exaggerate": -0.6, "compassionately": 1.7, "neglectfully": -2.1, "quaking": -1.5, "triumph": 2.1, "adorners": 0.9, "impressionistic": 1.5, "violative": -2.4, "nerdiest": 0.6, "tensioning": -1.4, "rigorous": -1.1, "sweetie": 2.2, "walkout": -1.3, "wisewomen": 1.3, "stinkhorn": -0.2, "unmotivated": -1.4, "uncertainness": -1.3, "festive": 2.0, "admirers": 1.7, "richest": 2.4, "stresses": -2.0, "wimpiest": -0.9, "kudos": 2.3, "rigorously": -0.4, "gla": 2.5, "fearfuller": -2.2, "postpones": -1.1, "foolishness": -1.8, "adopt": 0.7, "miserere": -0.8, "respectfulnesses": 1.3, "stressed": -1.4, "lonesome": -1.5, "bastardizations": -2.1, "postponed": -0.8, "envious": -1.1, "secure": 1.4, "darlings": 2.2, "angrily": -1.8, "dominative": -0.7, "cheats": -1.8, "neuroticism": -0.9, "sparkling": 1.2, "achievable": 1.3, "romantically": 1.8, "wiseacre": -1.2, "safeness": 1.5, "devastation": -1.8, "neatens": 1.1, "uneasier": -1.4, "motivate": 1.6, "negative": -2.7, "insult": -2.3, "antagonism": -1.9, "agonizingly": -2.3, "inspiritingly": 2.1, "abusing": -2.0, "destructs": -2.4, "haha": 2.0, "award": 2.5, "championships": 2.2, "@>-->--": 2.1, "blocking": -1.6, "tnx": 1.1, "worn": -1.2, "resents":
<reponame>webertom/event-Python # -*- coding: utf-8 -*- """ This module contains classes, functions and an example (main) for handling AER vision data. """ import glob import cv2 import numpy as np from win32api import GetSystemMetrics import timer class Events(object): """ Temporal Difference events. data: a NumPy Record Array with the following named fields x: pixel x coordinate, unsigned 16bit int y: pixel y coordinate, unsigned 16bit int p: polarity value, boolean. False=off, True=on ts: timestamp in microseconds, unsigned 64bit int width: The width of the frame. Default = 304. height: The height of the frame. Default = 240. """ def __init__(self, num_events, width=304, height=240): """num_spikes: number of events this instance will initially contain""" self.data = np.rec.array(None, dtype=[('x', np.uint16), ('y', np.uint16), ('p', np.bool_), ('ts', np.uint64)], shape=(num_events)) self.width = width self.height = height def show_em(self): """Displays the EM events (grayscale ATIS events)""" frame_length = 24e3 t_max = self.data.ts[-1] frame_start = self.data[0].ts frame_end = self.data[0].ts + frame_length max_val = 1.16e5 min_val = 1.74e3 val_range = max_val - min_val thr = np.rec.array(None, dtype=[('valid', np.bool_), ('low', np.uint64), ('high', np.uint64)], shape=(self.height, self.width)) thr.valid.fill(False) thr.low.fill(frame_start) thr.high.fill(0) def show_em_frame(frame_data): """Prepare and show a single frame of em data to be shown""" for datum in np.nditer(frame_data): ts_val = datum['ts'].item(0) thr_data = thr[datum['y'].item(0), datum['x'].item(0)] if datum['p'].item(0) == 0: thr_data.valid = 1 thr_data.low = ts_val elif thr_data.valid == 1: thr_data.valid = 0 thr_data.high = ts_val - thr_data.low img = 255 * (1 - (thr.high - min_val) / (val_range)) #thr_h = cv2.adaptiveThreshold(thr_h, 255, #cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 3, 0) img = np.piecewise(img, [img <= 0, (img > 0) & (img < 255), img >= 255], [0, lambda x: x, 255]) img = img.astype('uint8') cv2.imshow('img', img) cv2.waitKey(1) while frame_start < t_max: #with timer.Timer() as em_playback_timer: frame_data = self.data[(self.data.ts >= frame_start) & (self.data.ts < frame_end)] show_em_frame(frame_data) frame_start = frame_end + 1 frame_end += frame_length + 1 #print 'showing em frame took %s seconds' %em_playback_timer.secs cv2.destroyAllWindows() return def show_td(self, wait_delay=1): """Displays the TD events (change detection ATIS or DVS events) waitDelay: milliseconds """ frame_length = 24e3 t_max = self.data.ts[-1] frame_start = self.data[0].ts frame_end = self.data[0].ts + frame_length td_img = np.ones((self.height, self.width), dtype=np.uint8) while frame_start < t_max: frame_data = self.data[(self.data.ts >= frame_start) & (self.data.ts < frame_end)] if frame_data.size > 0: td_img.fill(128) #with timer.Timer() as em_playback_timer: for datum in np.nditer(frame_data): td_img[datum['y'].item(0), datum['x'].item(0)] = datum['p'].item(0) #print 'prepare td frame by iterating events took %s seconds' #%em_playback_timer.secs td_img = np.piecewise(td_img, [td_img == 0, td_img == 1, td_img == 128], [0, 255, 128]) cv2.imshow('img', td_img) cv2.waitKey(wait_delay) frame_start = frame_end + 1 frame_end = frame_end + frame_length + 1 cv2.destroyAllWindows() return def filter_td(self, us_time): """Generate a filtered set of event data. Does not modify instance data Uses a background activity filter on the events, such that only events which are correlated with a neighbouring event within 'us_time' microseconds will be allowed through the filter. us_time: microseconds """ max_x = self.width - 1 max_y = self.height - 1 t0 = np.ones((self.width, self.height)) - us_time - 1 x_prev = 0 y_prev = 0 p_prev = 0 valid_indices = np.ones(len(self.data), np.bool_) i = 0 with timer.Timer() as ref_timer: for datum in np.nditer(self.data): datum_ts = datum['ts'].item(0) datum_x = datum['x'].item(0) datum_y = datum['y'].item(0) datum_p = datum['p'].item(0) if x_prev != datum_x | y_prev != datum_y | p_prev != datum_p: t0[datum_x, datum_y] = -us_time min_x_sub = max(0, datum_x - 1) max_x_sub = min(max_x, datum_x + 1) min_y_sub = max(0, datum_y - 1) max_y_sub = min(max_y, datum_y + 1) t0_temp = t0[min_x_sub:(max_x_sub + 1), min_y_sub:(max_y_sub + 1)] if min(datum_ts - t0_temp.reshape(-1, 1)) > us_time: valid_indices[i] = 0 t0[datum_x, datum_y] = datum_ts x_prev = datum_x y_prev = datum_y p_prev = datum_p i = i + 1 print 'filtering took %s seconds' % ref_timer.secs return self.data[valid_indices.astype('bool')] def sort_order(self): """Generate data sorted by ascending ts Does not modify instance data Will look through the struct events, and sort all events by the field 'ts'. In other words, it will ensure events_out.ts is monotonically increasing, which is useful when combining events from multiple recordings. """ #chose mergesort because it is a stable sort, at the expense of more #memory usage events_out = np.sort(self.data, order='ts', kind='mergesort') return events_out def extract_roi(self, top_left, size, is_normalize=False): """Extract Region of Interest Does not modify instance data Generates a set of td_events which fall into a rectangular region of interest with top left corner at 'top_left' and size 'size' top_left: [x: int, y: int] size: [width, height] is_normalize: bool. If True, x and y values will be normalized to the cropped region """ min_x = top_left[0] min_y = top_left[1] max_x = size[0] + min_x max_y = size[1] + min_y extracted_data = self.data[(self.data.x >= min_x) & (self.data.x < max_x) & (self.data.y >= min_y) & (self.data.y < max_y)] if is_normalize: self.width = size[0] self.height = size[1] extracted_data = np.copy(extracted_data) extracted_data = extracted_data.view(np.recarray) extracted_data.x -= min_x extracted_data.y -= min_y return extracted_data def apply_refraction(self, us_time): """Implements a refractory period for each pixel. Does not modify instance data In other words, if an event occurs within 'us_time' microseconds of a previous event at the same pixel, then the second event is removed us_time: time in microseconds """ t0 = np.ones((self.width, self.height)) - us_time - 1 valid_indices = np.ones(len(self.data), np.bool_) #with timer.Timer() as ref_timer: i = 0 for datum in np.nditer(self.data): datum_ts = datum['ts'].item(0) datum_x = datum['x'].item(0) datum_y = datum['y'].item(0) if datum_ts - t0[datum_x, datum_y] < us_time: valid_indices[i] = 0 else: t0[datum_x, datum_y] = datum_ts i += 1 #print 'Refraction took %s seconds' % ref_timer.secs return self.data[valid_indices.astype('bool')] def write_j_aer(self, filename): """ writes the td events in 'td_events' to a file specified by 'filename' which is compatible with the jAER framework. To view these events in jAER, make sure to select the DAVIS640 sensor. """ import time y = 479 - self.data.y #y = td_events.y y_shift = 22 + 32 x = 639 - self.data.x #x = td_events.x x_shift = 12 + 32 p = self.data.p + 1 p_shift = 11 + 32 ts_shift = 0 y_final = y.astype(dtype=np.uint64) << y_shift x_final = x.astype(dtype=np.uint64) << x_shift p_final = p.astype(dtype=np.uint64) << p_shift ts_final = self.data.ts.astype(dtype=np.uint64) << ts_shift vector_all = np.array(y_final + x_final + p_final + ts_final, dtype=np.uint64) aedat_file = open(filename, 'wb') version = '2.0' aedat_file.write('#!AER-DAT' + version + '\r\n') aedat_file.write('# This is a raw AE data file - do not edit\r\n') aedat_file.write \ ('# Data format is int32 address, int32 timestamp (8 bytes total), repeated for each event\r\n') aedat_file.write('# Timestamps tick is 1 us\r\n') aedat_file.write('# created ' + time.strftime("%d/%m/%Y") \ + ' ' + time.strftime("%H:%M:%S") \ + ' by the Python function "write2jAER"\r\n') aedat_file.write \ ('# This function fakes the format of DAVIS640 to allow for the full ATIS address space to be used (304x240)\r\n') ##aedat_file.write(vector_all.astype(dtype='>u8').tostring()) to_write = bytearray(vector_all[::-1]) to_write.reverse() aedat_file.write(to_write) #aedat_file.write(vector_all) #vector_all.tofile(aedat_file) aedat_file.close() def present_checkerboard(num_squares): """ Presents a checkerboard pattern of size num_squares*num_squares on the screen. The function will automatically detect the screen size in pixels and assume a resolution of 96 dpi to provide the square size in mm. """ screen_width_pixels = GetSystemMetrics(0) screen_height_pixels = GetSystemMetrics(1) #fixed parameters of the setup figure_border_size = 30 #leave space of 100 pixels on each side of the axes for the figure #controls etc #image_border_size = 10 #within the image, create a border of size 10 #pixels to ensure contrast with the outside #rectangles #How big is each rectangle in units of pixels? screen_size_pixels = np.array([screen_width_pixels, screen_height_pixels]) screen_size_mm = 0.00254 * screen_size_pixels / 96 square_size_pixels = int(min(screen_size_pixels - 2 * figure_border_size) / (num_squares + 2)) image_border_size = np.array([1, 2]) image_border_size[0] = (screen_size_pixels[0] - figure_border_size * 2 - square_size_pixels * (num_squares)) / 2 image_border_size[1] = (screen_size_pixels[1] - figure_border_size * 2 - square_size_pixels * (num_squares)) / 2 #How big is each rectangle in units of millimeters? square_size_mm = screen_size_mm * square_size_pixels / screen_size_pixels #How big is the checkered part of the image image_inner_dim = num_squares * square_size_pixels # the dimenstion of the inside of the image (not including the border) #Create a black image
'''Relative path to absolute''' if (type(relpath) is object or hasattr(relpath, 'read')): # relpath is either an object or file-like, try to get its name relpath = relpath.name return os.path.abspath(os.path.expanduser(relpath)) def recwalk(inputpath, sorting=True, folders=False, topdown=True, filetype=None): '''Recursively walk through a folder. This provides a mean to flatten out the files restitution (necessary to show a progress bar). This is a generator.''' noextflag = False if filetype and isinstance(filetype, list): filetype = list(filetype) # make a copy to avoid modifying the input variable (in case it gets reused externally) if '' in filetype: # special case: we accept when there is no extension, then we don't supply to endswith() because it would accept any filetype then, we check this case separately noextflag = True filetype.remove('') filetype = tuple(filetype) # str.endswith() only accepts a tuple, not a list # If it's only a single file, return this single file if os.path.isfile(inputpath): abs_path = fullpath(inputpath) yield os.path.dirname(abs_path), os.path.basename(abs_path) # Else if it's a folder, walk recursively and return every files else: for dirpath, dirs, files in walk(inputpath, topdown=topdown): if sorting: files.sort() dirs.sort() # sort directories in-place for ordered recursive walking # return each file for filename in files: if not filetype or filename.endswith(filetype) or (noextflag and not '.' in filename): yield (dirpath, filename) # return directory (full path) and filename # return each directory if folders: for folder in dirs: yield (dirpath, folder) def create_dir_if_not_exist(path): """Create a directory if it does not already exist, else nothing is done and no error is return""" if not os.path.exists(path): os.makedirs(path) def real_copy(srcfile, dstfile): """Copy a file or a folder and keep stats""" shutil.copyfile(srcfile, dstfile) shutil.copystat(srcfile, dstfile) def symbolic_copy(srcfile, dstfile): """Create a symlink (symbolic/soft link) instead of a real copy""" os.symlink(srcfile, dstfile) def sort_list_a_given_list_b(list_a, list_b): return sorted(list_a, key=lambda x: list_b.index(x)) def replace_buggy_accents(s, encoding=None): """Fix weird encodings that even ftfy cannot fix""" # todo enhance speed? or is it the new regex on name? dic_replace = { '\xc4\x82\xc2\xa8': 'e', 'ĂŠ': 'e', 'Ăť': 'u', '–': 'a', 'Ă´': 'o', '°': '°', '’': "'", 'ĂŞ': 'e', 'ÂŤ': '«', 'Âť': '»', 'Ă': 'a', 'AŠ': 'e', 'AŞ': 'e', 'A¨': 'e', 'A¨': 'e', 'É': 'E', '•': '*', 'č': 'e', '’': '\'', } # Convert the patterns to unicode if the input is a unicode string if isinstance(s, unicode): dic_replace = {k.decode('utf-8'): v.decode('utf-8') for k,v in dic_replace.items()} # Replace each pattern with its correct counterpart for pat, rep in dic_replace.items(): if encoding: pat = pat.decode(encoding) rep = rep.decode(encoding) s = s.replace(pat, rep) return s def cleanup_name(s, encoding=None, normalize=True, clean_nonletters=True): """Clean a name and remove accentuated characters""" if not isinstance(s, unicode): # Decode only if the input string is not already unicode (decoding is from str to unicode, encoding is from unicode to str) if encoding is None: encoding = chardet.detect(s)['encoding'] if encoding: s = s.decode(encoding) s = _unidecode(s.replace('^', ' ')) if normalize: s = s.lower().strip() if clean_nonletters: s = re.sub('\-+', '-', re.sub('\s+', ' ', re.sub('[^a-zA-Z0-9\-]', ' ', s))).strip().replace('\r', '').replace('\n', '').replace('\t', '').replace(',', ' ').replace(' ', ' ').strip() # clean up spaces, punctuation and double dashes in name return s # Compute best diagnosis for each patient def compute_best_diag(serie, diag_order=None, persubject=True): """Convert a serie to a categorical type and extract the best diagnosis for each subject (patient name must be set as index level 0) Note: case insensitive and strip spaces automatically Set persubject to None if you want to do the max or min yourself (this will return the Series configured with discrete datatype), in this case, do NOT use `max(compute_best_diag(etc..))`, which will output a random value, but rather `compute_best_diag(etc..).max()` (pandas max instead of python native max) which will give you the correct maximum given your specified diag_order.""" if isinstance(serie, basestring): return serie if diag_order is None: diag_order = ['coma', 'vs/uws', 'mcs', 'mcs-', 'mcs+', 'emcs', 'lis'] # from least to best # Convert to lowercase diag_order = [x.lower().strip() for x in diag_order] # Convert to a serie if given a simple list (which will give us access to CategoricalDtype) or if None (so that the rest of the function can work and return an expected Series) if isinstance(serie, list) or serie is None: serie = pd.Series(serie, dtype='str') # Check if our list of diagnosis covers all possible in the database, else raise an error possible_diags = serie.str.lower().str.strip().dropna().unique() # If unicode, we convert the diag_order to unicode if len(serie) > 0 and isinstance(possible_diags[0].lower().strip(), unicode): diag_order = list_to_unicode(diag_order) try: assert not set([x.lower().strip() for x in possible_diags]) - set([x.lower().strip() for x in diag_order]) except Exception as exc: raise ValueError('The provided list of diagnosis does not cover all possible diagnosis in database. Please fix the list. Here are the possible diagnosis from database: %s' % str(possible_diags)) #for subjname, d in cf_crsr_all.groupby(level=0): # print(d['CRSr::Computed Outcome']) # Implement the CategoricalDtype and return the resulting Series if persubject: # Return one result per patient return serie.str.lower().str.strip().astype(pd.api.types.CategoricalDtype(categories=diag_order, ordered=True)).max(level=0) elif persubject is False: # Respect the original keys and return one result for each key (can be multilevel, eg subject + date) return serie.str.lower().str.strip().astype(pd.api.types.CategoricalDtype(categories=diag_order, ordered=True)).groupby(level=range(serie.index.nlevels)).max() else: # If None, just return the Serie as-is, and the user can do .max() or .min() or whatever return serie.str.lower().str.strip().astype(pd.api.types.CategoricalDtype(categories=diag_order, ordered=True)) def ordereddict_change_key(d, old, new): """Rename the key of an ordered dict without changing the order""" # from https://stackoverflow.com/a/17747040 d2 = d.copy() for _ in range(len(d2)): k, v = d2.popitem(False) d2[new if old == k else k] = v return d2 def merge_two_df(df1, df2, col='Name', dist_threshold=0.2, dist_words_threshold=0.4, mode=0, skip_sanity=False, keep_nulls=True, returnmerged=False, keep_lastname_only=False, prependcols=None, fillna=False, fillna_exclude=None, join_on_shared_keys=True, squish=True, verbose=False, **kwargs): """Compute the remapping between two dataframes (or a single duplicated dataframe) based on one or multiple columns. Supports similarity matching (normalized character-wise AND words-wise levenshtein distance) for names, and date comparison using provided formatting. mode=0 is or test, 1 is and test. In other words, this is a join with fuzzy matching on one column (based on name/id) but supporting multiple columns with exact matching for the others. `keep_nulls=True` if you want to keep all records from both databases, False if you want only the ones that match both databases, 1 or 2 if you want specifically the ones that are in 1 or in 2 `col` can either be a string for a merge based on a single column (usually name), or an OrderedDict of multiple columns names and types, following this formatting: [OrderedDict([('column1_name', 'column1_type'), ('column2_name', 'column2_type')]), OrderedDict([...])] so that you have one ordered dict for each input dataframe, and with the same number of columns (even if the names are different) and in the same order (eg, name is first column, date of acquisition as second column, etc) If `fillna=True`, subjects with multiple rows/sessions will be squashed and rows with missing infos will be completed from rows where the info is available (in case there are multiple information, they will all be present as a list). This is only useful when merging (and hence argument `col`) is multi-columns. The key columns are never filled, even if `fillna=True`. If `fillna_exclude` is specified with a list of columns, this list of columns won't be filled (particularly useful for dates). if `join_on_shared_keys=True`, if merging on multi-columns and not the same number of key columns are supplied, the merge will be done on only the shared keys in both dataframes: this is very convenient to allow to groupby in one dataframe according to some keys but not in the other one (eg, one is grouped by name and date so both are kept, while the other one is only grouped by name). if `squish=True`, the dataframes are each squished on key columns to make them unique, so that other non-key columns will get concatenated values. True by default, but if you have to non overlapping databases, then you can set this to False to keep all rows. """ ### Preparing the input dataframes # If the key column is in fact a list of columns
# -*- coding: utf-8 -*- from __future__ import (unicode_literals, division, absolute_import, print_function) import six __license__ = 'GPL v3' __copyright__ = '2020, <NAME>, 2011, <NAME> <<EMAIL>>' __docformat__ = 'restructuredtext en' import logging logger = logging.getLogger(__name__) from time import sleep from datetime import time from io import StringIO from collections import defaultdict from calibre.utils.ipc.server import Empty, Server from calibre.utils.ipc.job import ParallelJob from calibre.constants import numeric_version as calibre_version from calibre.utils.date import local_tz # pulls in translation files for _() strings try: load_translations() except NameError: pass # load_translations() added in calibre 1.9 # ------------------------------------------------------------------------------ # # Functions to perform downloads using worker jobs # # ------------------------------------------------------------------------------ def do_download_worker(book_list, options, cpus, merge=False, notification=lambda x,y:x): ''' Coordinator job, to launch child jobs to do downloads. This is run as a worker job in the background to keep the UI more responsive and get around any memory leak issues as it will launch a child job for each book as a worker process ''' ## Now running one BG proc per site, which downloads for the same ## site in serial. logger.info("CPUs:%s"%cpus) server = Server(pool_size=cpus) logger.info(options['version']) sites_lists = defaultdict(list) [ sites_lists[x['site']].append(x) for x in book_list if x['good'] ] totals = {} # can't do direct assignment in list comprehension? I'm sure it # makes sense to some pythonista. # [ totals[x['url']]=0.0 for x in book_list if x['good'] ] [ totals.update({x['url']:0.0}) for x in book_list if x['good'] ] # logger.debug(sites_lists.keys()) # Queue all the jobs jobs_running = 0 for site in sites_lists.keys(): site_list = sites_lists[site] logger.info(_("Launch background process for site %s:")%site + "\n" + "\n".join([ x['url'] for x in site_list ])) # logger.debug([ x['url'] for x in site_list]) args = ['calibre_plugins.fanficfare_plugin.jobs', 'do_download_site', (site,site_list,options,merge)] job = ParallelJob('arbitrary_n', "site:(%s)"%site, done=None, args=args) job._site_list = site_list job._processed = False server.add_job(job) jobs_running += 1 # This server is an arbitrary_n job, so there is a notifier available. # Set the % complete to a small number to avoid the 'unavailable' indicator notification(0.01, _('Downloading FanFiction Stories')) # dequeue the job results as they arrive, saving the results count = 0 while True: job = server.changed_jobs_queue.get() # logger.debug("job get job._processed:%s"%job._processed) # A job can 'change' when it is not finished, for example if it # produces a notification. msg = None try: ## msg = book['url'] (percent,msg) = job.notifications.get_nowait() # logger.debug("%s<-%s"%(percent,msg)) if percent == 10.0: # Only when signaling d/l done. count += 1 totals[msg] = 1.0/len(totals) # logger.info("Finished: %s"%msg) else: totals[msg] = percent/len(totals) notification(max(0.01,sum(totals.values())), _('%(count)d of %(total)d stories finished downloading')%{'count':count,'total':len(totals)}) except Empty: pass # without update, is_finished will never be set. however, we # do want to get all the notifications for status so we don't # miss the 'done' ones. job.update(consume_notifications=False) # if not job._processed: # sleep(0.5) ## Can have a race condition where job.is_finished before ## notifications for all downloads have been processed. ## Or even after the job has been finished. # logger.debug("job.is_finished(%s) or job._processed(%s)"%(job.is_finished, job._processed)) if not job.is_finished: continue ## only process each job once. We can get more than one loop ## after job.is_finished. if not job._processed: # sleep(1) # A job really finished. Get the information. ## This is where bg proc details end up in GUI log. ## job.details is the whole debug log for each proc. logger.info("\n\n" + ("="*80) + " " + job.details.replace('\r','')) # logger.debug("Finished background process for site %s:\n%s"%(job._site_list[0]['site'],"\n".join([ x['url'] for x in job._site_list ]))) for b in job._site_list: book_list.remove(b) book_list.extend(job.result) job._processed = True jobs_running -= 1 ## Can't use individual count--I've seen stories all reported ## finished before results of all jobs processed. if jobs_running == 0: book_list = sorted(book_list,key=lambda x : x['listorder']) logger.info("\n"+_("Download Results:")+"\n%s\n"%("\n".join([ "%(status)s %(url)s %(comment)s" % book for book in book_list]))) good_lists = defaultdict(list) bad_lists = defaultdict(list) for book in book_list: if book['good']: good_lists[book['status']].append(book) else: bad_lists[book['status']].append(book) order = [_('Add'), _('Update'), _('Meta'), _('Different URL'), _('Rejected'), _('Skipped'), _('Bad'), _('Error'), ] j = 0 for d in [ good_lists, bad_lists ]: for status in order: if d[status]: l = d[status] logger.info("\n"+status+"\n%s\n"%("\n".join([book['url'] for book in l]))) for book in l: book['reportorder'] = j j += 1 del d[status] # just in case a status is added but doesn't appear in order. for status in d.keys(): logger.info("\n"+status+"\n%s\n"%("\n".join([book['url'] for book in d[status]]))) break server.close() # return the book list as the job result return book_list def do_download_site(site,book_list,options,merge,notification=lambda x,y:x): # logger.info(_("Started job for %s")%site) retval = [] for book in book_list: # logger.info("%s"%book['url']) retval.append(do_download_for_worker(book,options,merge,notification)) notification(10.0,book['url']) return retval def do_download_for_worker(book,options,merge,notification=lambda x,y:x): ''' Child job, to download story when run as a worker job ''' from calibre_plugins.fanficfare_plugin import FanFicFareBase fffbase = FanFicFareBase(options['plugin_path']) with fffbase: # so the sys.path was modified while loading the # plug impl. from calibre_plugins.fanficfare_plugin.dialogs import NotGoingToDownload from calibre_plugins.fanficfare_plugin.prefs import ( SAVE_YES, SAVE_YES_UNLESS_SITE, OVERWRITE, OVERWRITEALWAYS, UPDATE, UPDATEALWAYS, ADDNEW, SKIP, CALIBREONLY, CALIBREONLYSAVECOL) from calibre_plugins.fanficfare_plugin.wordcount import get_word_count from fanficfare import adapters, writers from fanficfare.epubutils import get_update_data from fanficfare.six import text_type as unicode from calibre_plugins.fanficfare_plugin.fff_util import get_fff_config try: logger.info("\n\n" + ("-"*80) + " " + book['url']) ## No need to download at all. Can happen now due to ## collision moving into book for CALIBREONLY changing to ## ADDNEW when story URL not in library. if book['collision'] in (CALIBREONLY, CALIBREONLYSAVECOL): logger.info("Skipping CALIBREONLY 'update' down inside worker") return book book['comment'] = _('Download started...') configuration = get_fff_config(book['url'], options['fileform'], options['personal.ini']) if not options['updateepubcover'] and 'epub_for_update' in book and book['collision'] in (UPDATE, UPDATEALWAYS): configuration.set("overrides","never_make_cover","true") # images only for epub, html, even if the user mistakenly # turned it on else where. if options['fileform'] not in ("epub","html"): configuration.set("overrides","include_images","false") adapter = adapters.getAdapter(configuration,book['url']) adapter.is_adult = book['is_adult'] adapter.username = book['username'] adapter.password = book['password'] adapter.setChaptersRange(book['begin'],book['end']) ## each site download job starts with a new copy of the ## cookiejar and basic_cache from the FG process. They ## are not shared between different sites' BG downloads if configuration.getConfig('use_browser_cache'): if 'browser_cache' in options: configuration.set_browser_cache(options['browser_cache']) else: options['browser_cache'] = configuration.get_browser_cache() if 'browser_cachefile' in options: options['browser_cache'].load_cache(options['browser_cachefile']) if 'basic_cache' in options: configuration.set_basic_cache(options['basic_cache']) else: options['basic_cache'] = configuration.get_basic_cache() options['basic_cache'].load_cache(options['basic_cachefile']) if 'cookiejar' in options: configuration.set_cookiejar(options['cookiejar']) else: options['cookiejar'] = configuration.get_cookiejar() options['cookiejar'].load_cookiejar(options['cookiejarfile']) story = adapter.getStoryMetadataOnly() if not story.getMetadata("series") and 'calibre_series' in book: adapter.setSeries(book['calibre_series'][0],book['calibre_series'][1]) # set PI version instead of default. if 'version' in options: story.setMetadata('version',options['version']) book['title'] = story.getMetadata("title", removeallentities=True) book['author_sort'] = book['author'] = story.getList("author", removeallentities=True) book['publisher'] = story.getMetadata("publisher") book['url'] = story.getMetadata("storyUrl", removeallentities=True) book['tags'] = story.getSubjectTags(removeallentities=True) book['comments'] = story.get_sanitized_description() book['series'] = story.getMetadata("series", removeallentities=True) if story.getMetadataRaw('datePublished'): book['pubdate'] = story.getMetadataRaw('datePublished').replace(tzinfo=local_tz) if story.getMetadataRaw('dateUpdated'): book['updatedate'] = story.getMetadataRaw('dateUpdated').replace(tzinfo=local_tz) if story.getMetadataRaw('dateCreated'): book['timestamp'] = story.getMetadataRaw('dateCreated').replace(tzinfo=local_tz) else: book['timestamp'] = datetime.now().replace(tzinfo=local_tz) # need *something* there for calibre. writer = writers.getWriter(options['fileform'],configuration,adapter) outfile = book['outfile'] ## checks were done earlier, it's new or not dup or newer--just write it. if book['collision'] in (ADDNEW, SKIP, OVERWRITE, OVERWRITEALWAYS) or \ ('epub_for_update' not in book and book['collision'] in (UPDATE, UPDATEALWAYS)): # preserve logfile even on overwrite. if 'epub_for_update' in book: adapter.logfile = get_update_data(book['epub_for_update'])[6] # change the existing entries id to notid so # write_epub writes a whole new set to indicate overwrite. if adapter.logfile: adapter.logfile = adapter.logfile.replace("span id","span notid") if book['collision'] == OVERWRITE and 'fileupdated' in book: lastupdated=story.getMetadataRaw('dateUpdated') fileupdated=book['fileupdated'] # updated doesn't have time (or is midnight), use dates only. # updated does have time, use full timestamps. if (lastupdated.time() == time.min and fileupdated.date() > lastupdated.date()) or \ (lastupdated.time() != time.min and fileupdated > lastupdated): raise NotGoingToDownload(_("Not Overwriting, web site is not newer."),'edit-undo.png',showerror=False) logger.info("write to %s"%outfile) inject_cal_cols(book,story,configuration) writer.writeStory(outfilename=outfile, forceOverwrite=True, notification=notification) if adapter.story.chapter_error_count > 0: book['comment'] = _('Download %(fileform)s completed, %(failed)s failed chapters, %(total)s total chapters.')%\ {'fileform':options['fileform'], 'failed':adapter.story.chapter_error_count, 'total':story.getMetadata("numChapters")} book['chapter_error_count'] = adapter.story.chapter_error_count else: book['comment'] = _('Download %(fileform)s completed, %(total)s chapters.')%\ {'fileform':options['fileform'], 'total':story.getMetadata("numChapters")} book['all_metadata'] = story.getAllMetadata(removeallentities=True) if options['savemetacol'] != '': book['savemetacol'] = story.dump_html_metadata() ## checks were done earlier, just update it. elif 'epub_for_update' in book and book['collision'] in (UPDATE, UPDATEALWAYS): # update now handled by pre-populating the old images and # chapters in the adapter rather than merging epubs. #urlchaptercount = int(story.getMetadata('numChapters').replace(',','')) # returns int adjusted for start-end range. urlchaptercount = story.getChapterCount() (url, chaptercount, adapter.oldchapters, adapter.oldimgs, adapter.oldcover, adapter.calibrebookmark, adapter.logfile, adapter.oldchaptersmap, adapter.oldchaptersdata) = get_update_data(book['epub_for_update'])[0:9] # dup handling from fff_plugin needed for anthology updates. if book['collision'] == UPDATE: if chaptercount == urlchaptercount: if merge:
import networkx as nx import statistics import matplotlib.pyplot as plt from queue import PriorityQueue import math class Grafo(object): def __init__(self, grafo_dict={}): self.grafo_dict = grafo_dict def vertices(self): return list(self.grafo_dict.keys()) def arestas(self): return self.gerar_arestas() def adicionar_vertice(self, vertice): if vertice not in self.grafo_dict: self.grafo_dict[vertice] = [] def adicionar_aresta(self, bidirecional=False, *aresta): (vertice1, vertice2, custo) = aresta self.adicionar_vertice(vertice1) self.adicionar_vertice(vertice2) self.add_aresta_sem_repeticao(vertice1, vertice2, custo) if bidirecional: self.add_aresta_sem_repeticao(vertice2, vertice1, custo) def add_aresta_sem_repeticao(self, vertice1, vertice2, custo): lista_vertice1 = self.grafo_dict[vertice1] for i, (vertice, _) in enumerate(lista_vertice1): if vertice == vertice2: lista_vertice1[i] = (vertice2, custo) break else: lista_vertice1.append((vertice2, custo)) def custo_direto(self, vertice1, vertice2): lista_vertice1 = self.grafo_dict[vertice1] for (vertice, custo) in lista_vertice1: if vertice == vertice2: return custo else: return math.inf def gerar_arestas(self): aresta = [] for vertice in self.grafo_dict: for (vizinho, custo) in self.grafo_dict[vertice]: if (vizinho, vertice) not in aresta: aresta.append(((vertice, vizinho, custo))) return aresta def __str__(self): return 'Vertices: {0}\nArestas: {1}'.format(sorted(self.vertices()), sorted(self.arestas())) def dijkstra(grafo, root): queue = PriorityQueue() # lista de prioridades caminho = {} # dicionario com o caminho e o custo total for vertice in grafo.vertices(): if vertice == root: caminho[vertice] = [[], 0] # custo 0 para o root else: caminho[vertice] = [[], math.inf] # custo infinito para os demais queue.put((caminho[vertice][1], vertice)) # adiciona todas na lista de prioridade (maior prioridade = menor custo vertices_remanescentes = list(grafo.vertices()) # lista de vertices nao visitados for i in range(len(grafo.vertices())): prioritario = queue.get()[1] # vertice prioritario da lista vertices_remanescentes.remove(prioritario) # remove da lista de nao visitados for vertice in vertices_remanescentes: # para cada vertice nao visitado menor_prioritario = caminho[prioritario][1] # menor custo ate o vertice prioritario custo = grafo.custo_direto(prioritario, vertice) # custo de prioritario ate vertice menor_custo_prioritario = caminho[vertice][1] # menor custo ate o vertice if menor_prioritario + custo < menor_custo_prioritario: # o caminho ate o vertice pelo prioritario e menos custoso que o melhor ate entao caminho[vertice][1] = menor_prioritario + custo # atualiza o custo caminho[vertice][0] = caminho[prioritario][0] + [prioritario] # atualiza o caminho queue.queue.remove((menor_custo_prioritario, vertice)) # atualiza a prioridade do vertice na lista de prioridade queue.put((caminho[vertice][1], vertice)) return caminho def converter_caminho_str(caminho): caminho_str = [] vertices = sorted(caminho.keys()) for vertice in vertices: custo = caminho[vertice][1] if custo == 0: continue string = ' --- '.join(caminho[vertice][0]) + ' --- ' + vertice caminho_str.append(string.upper() + ' = custo: ' + str(custo)) return '\n'.join(caminho_str) def prim(grafo, root): vertice = [root] # lista dos vertices a partir do qual buscamos as arestas vertice_selecionada = [] # lista com as arestas selecionadas peso = 0 # peso do minimum spanning tree vertices_remanescentes = list(grafo.vertices()) # lista com os vertices destunos da busca vertices_remanescentes.remove(root) # o root é o ponto de partida, então sai da lista for i in range(len(vertices_remanescentes)): custo_minimo = math.inf # inicializa o custo minimo como infinito vertice_a, vertice_b = None, None # vertices candidatos para a aresta selecionada for vertice_1 in vertice: # para cada vertice na lista de busca de origem for vertice_2 in vertices_remanescentes: # busca os vertices que anida nao estao no grafo final custo = grafo.custo_direto(vertice_1, vertice_2) # calcula o custo da aresta if custo < custo_minimo: # se for menor que o minimo ate entao, atualiza os dados vertice_a = vertice_1 vertice_b = vertice_2 custo_minimo = custo if custo_minimo < math.inf: # depois de todas as buscas, se o custo é finito: vertice_selecionada.append((vertice_a, vertice_b, custo_minimo)) # adcionamos a aresta de vertice_a a vertice_b na solucao vertice.append(vertice_b) # vertice_b agora sera nova origem de busca vertices_remanescentes.remove(vertice_b) # vertice_b nao mais sera o destino de busca, pois ja consta na solucao peso += custo_minimo # atualiza o peso return vertice_selecionada, peso # retorna a lista de arestas selecionadas com o peso total def imprimir_grafo(grafo, salvar_png=False): nx_grafo = nx.Graph() custos = [] for (vertice_a, vertice_b, custo) in grafo.arestas(): nx_grafo.add_edge(vertice_a, vertice_b, custo=custo) custos.append(custo) pos = nx.spring_layout(nx_grafo) # posicao para todos os nos custo_medio = statistics.mean(custos) elarge = [(u, v) for (u, v, d) in nx_grafo.edges(data=True) if d['custo'] > custo_medio] esmall = [(u, v) for (u, v, d) in nx_grafo.edges(data=True) if d['custo'] <= custo_medio] # nos nx.draw_networkx_nodes(nx_grafo, pos, node_size=700) # arestas nx.draw_networkx_edges(nx_grafo, pos, edgelist=elarge, width=4) nx.draw_networkx_edges(nx_grafo, pos, edgelist=esmall, width=4, alpha=0.5, edge_color='b', style='dashed') # labels nx.draw_networkx_labels(nx_grafo, pos, font_size=20, font_family='sans-serif') # nx.draw_networkx_edge_labels(nx_grafo, pos) plt.axis('off') if salvar_png: plt.savefig("grafo.png") # salva como png plt.show() # plota o grafo def carregar_grafo_letra(): grafo = [ ('a', 'b', 0.640826),('a', 'c', 0.949966),('a', 'd', 0.1369275),('a', 'e', 0.1863630),('a', 'f', 0.1646214),('a', 'g', 0.1837410),('a', 'h', 0.1584884),('a', 'i', 0.2359051),('a', 'j', 0.2382511),('a', 'k', 0.2055704),('a', 'l', 0.2939706), ('b', 'a', 0.640654),('b', 'c', 0.755502),('b', 'd', 0.816306),('b', 'e', 0.1310661),('b', 'f', 0.1093244),('b', 'g', 0.1284441),('b', 'h', 0.1308287),('b', 'i', 0.1806081),('b', 'j', 0.1829541),('b', 'k', 0.1502734),('b', 'l', 0.2386736), ('c', 'a', 0.944047),('c', 'b', 0.753159),('c', 'd', 0.1064706),('c', 'e', 0.1675028),('c', 'f', 0.1617897),('c', 'g', 0.1809094),('c', 'h', 0.858237),('c', 'i', 0.1861038),('c', 'j', 0.1884498),('c', 'k', 0.1557692),('c', 'l', 0.2441693), ('d', 'a', 0.1448976),('d', 'b', 0.830328),('d', 'c', 0.1067247),('d', 'e', 0.647491),('d', 'f', 0.696594),('d', 'g', 0.848246),('d', 'h', 0.1176037),('d', 'i', 0.1045810),('d', 'j', 0.1069270),('d', 'k', 0.742463),('d', 'l', 0.1626465), ('e', 'a', 0.1929128),('e', 'b', 0.1310480),('e', 'c', 0.1676631),('e', 'd', 0.647054),('e', 'f', 0.601648),('e', 'g', 0.526142),('e', 'h', 0.1758513),('e', 'i', 0.1051998),('e', 'j', 0.1075458),('e', 'k', 0.748652),('e', 'l', 0.1424885), ('f', 'a', 0.1711914),('f', 'b', 0.1093266),('f', 'c', 0.1619624),('f', 'd', 0.698887),('f', 'e', 0.609938),('f', 'g', 0.275292),('f', 'h', 0.1815937),('f', 'i', 0.1429575),('f', 'j', 0.1453035),('f', 'k', 0.1126228),('f', 'l', 0.1930347), ('g', 'a', 0.1906972),('g', 'b', 0.1288323),('g', 'c', 0.1814682),('g', 'd', 0.842088),('g', 'e', 0.518337),('g', 'f', 0.277465),('g', 'h', 0.2010994),('g', 'i', 0.1440625),('g', 'j', 0.1464085),('g', 'k', 0.1137278),('g', 'l', 0.1941397), ('h', 'a', 0.1581596),('h', 'b', 0.1309179),('h', 'c', 0.856920),('h', 'd', 0.1191969),('h', 'e', 0.1762419),('h', 'f', 0.1817398),('h', 'g', 0.2008595),('h', 'i', 0.1656214),('h', 'j', 0.1679674),('h', 'k', 0.1357317),('h', 'l', 0.2234308), ('i', 'a', 0.2426321),('i', 'b', 0.1807672),('i', 'c', 0.1863441),('i', 'd', 0.1047016),('i', 'e', 0.1053173),('i', 'f', 0.1422245),('i', 'g', 0.1441572),('i', 'h', 0.1655558),('i', 'j', 0.41700),('i', 'k', 0.338377),('i', 'l', 0.664622), ('j', 'a', 0.2449781),('j', 'b', 0.1831132),('j', 'c', 0.1886901),('j', 'd', 0.1070476),('j', 'e', 0.1076633),('j', 'f', 0.1445705),('j', 'g', 0.1465032),('j', 'h', 0.1679018),('j', 'i', 0.41700),('j', 'k', 0.361837),('j', 'l', 0.688082), ('k', 'a', 0.2122615),('k', 'b', 0.1503967),('k', 'c', 0.1559735),('k', 'd', 0.743311),('k', 'e', 0.749468),('k', 'f', 0.1118539),('k', 'g', 0.1137867),('k', 'h', 0.1362428),('k', 'i', 0.341998),('k', 'j', 0.365458),('k', 'l', 0.922653), ('l', 'a', 0.3007055),('l', 'b', 0.2388407),('l', 'c', 0.2444175),('l', 'd', 0.1627751),('l', 'e', 0.1426507),('l', 'f', 0.1922036),('l', 'g', 0.1941363),('l', 'h', 0.2233759),('l', 'i', 0.664609),('l', 'j', 0.688069),('l', 'k', 0.919112) ] menu_escolha = "a – Cachoeira do Caracol\nb – Cachoeira do Salto Grande\nc – Cataratas do Iguacu\n" \ "d – Cachoeira do Itambe\ne – Cachoeira do Tabuleiro\nf – Cachoeira Conde Deu\n" \ "g – Cachoeira da Fumaca\nh – Cachoeira Boca da Onca\ni – Cachoeira Veu da Noiva\n" \ "j – Cachoeira Santa Barbara\nk – Cachoeira do Tororo\nl – Cachoeira do Formiga" return grafo, menu_escolha def carregar_grafo_nome(): grafo = [ ('Cachoeira do Caracol', 'Cachoeira do Salto Grande', 0.640826),('Cachoeira do Caracol', 'Cataratas do Iguacu', 0.949966),('Cachoeira do Caracol', 'Cachoeira do Itambe', 0.1369275),('Cachoeira do Caracol', 'Cachoeira do Tabuleiro', 0.1863630),('Cachoeira do Caracol', 'Cachoeira Conde Deu', 0.1646214),('Cachoeira do Caracol', 'Cachoeira da Fumaca', 0.1837410),('Cachoeira do Caracol', 'Cachoeira Boca da Onca', 0.1584884),('Cachoeira do Caracol', 'Cachoeira Veu da Noiva', 0.2359051),('Cachoeira do Caracol', 'Cachoeira Santa Barbara', 0.2382511),('Cachoeira do Caracol', 'Cachoeira do Tororo', 0.2055704),('Cachoeira do Caracol', 'Cachoeira do Formiga', 0.2939706), ('Cachoeira do Salto Grande', 'Cachoeira do Caracol', 0.640654),('Cachoeira do Salto Grande', 'Cataratas do Iguacu', 0.755502),('Cachoeira do Salto Grande', 'Cachoeira do Itambe', 0.816306),('Cachoeira do Salto Grande', 'Cachoeira do Tabuleiro', 0.1310661),('Cachoeira do Salto Grande', 'Cachoeira Conde Deu', 0.1093244),('Cachoeira do Salto Grande', 'Cachoeira da Fumaca', 0.1284441),('Cachoeira do Salto Grande', 'Cachoeira Boca da Onca', 0.1308287),('Cachoeira do Salto Grande', 'Cachoeira Veu da Noiva', 0.1806081),('Cachoeira do Salto Grande', 'Cachoeira Santa Barbara', 0.1829541),('Cachoeira do Salto Grande', 'Cachoeira do Tororo', 0.1502734),('Cachoeira do Salto Grande', 'Cachoeira do Formiga', 0.2386736), ('Cataratas do Iguacu', 'Cachoeira do Caracol', 0.944047),('Cataratas do Iguacu', 'Cachoeira do Salto Grande', 0.753159),('Cataratas do Iguacu', 'Cachoeira do Itambe', 0.1064706),('Cataratas do Iguacu', 'Cachoeira do Tabuleiro', 0.1675028),('Cataratas do Iguacu', 'Cachoeira Conde Deu', 0.1617897),('Cataratas do Iguacu', 'Cachoeira da Fumaca', 0.1809094),('Cataratas do Iguacu', 'Cachoeira Boca da Onca', 0.858237),('Cataratas do Iguacu', 'Cachoeira Veu da Noiva', 0.1861038),('Cataratas do Iguacu', 'Cachoeira Santa Barbara', 0.1884498),('Cataratas do Iguacu', 'Cachoeira do Tororo', 0.1557692),('Cataratas do Iguacu', 'Cachoeira do Formiga', 0.2441693), ('Cachoeira do Itambe', 'Cachoeira do Caracol', 0.1448976),('Cachoeira do Itambe', 'Cachoeira do Salto Grande', 0.830328),('Cachoeira do Itambe', 'Cataratas do Iguacu', 0.1067247),('Cachoeira do Itambe', 'Cachoeira do Tabuleiro', 0.647491),('Cachoeira do Itambe', 'Cachoeira
= ( "ETR '{}' decapsulation <a href='/lisp/show/" + "database'>stats</a>" ) . format ( stats_name ) if 79 - 79: OOooOOo / I1Ii111 . OoOoOO00 - I1ii11iIi11i O0ooo0O0oo0 += "%" + stats_name elif ( rtr_name == "stats" ) : iIii11iI1II = "lisp-rtr" I1II1I1I = ( "RTR '{}' decapsulation <a href='/lisp/show/" + "rtr/map-cache'>stats</a>" ) . format ( stats_name ) if 47 - 47: OoooooooOO % O0 * iII111i . Ii1I O0ooo0O0oo0 += "%" + stats_name else : iIiIIIi = lisp . lisp_print_sans ( "Invalid command" ) return ( lispconfig . lisp_show_wrapper ( iIiIIIi ) ) if 38 - 38: O0 - IiII % I1Ii111 if 64 - 64: iIii1I11I1II1 if 15 - 15: I1ii11iIi11i + OOooOOo / I1ii11iIi11i / I1Ii111 if 31 - 31: ooOoO0o + O0 + ooOoO0o . iIii1I11I1II1 + Oo0Ooo / o0oOOo0O0Ooo if 6 - 6: Oo0Ooo % IiII * I11i / I1IiiI + Oo0Ooo O0ooo0O0oo0 = lisp . lisp_command_ipc ( O0ooo0O0oo0 , "lisp-core" ) lisp . lisp_ipc ( O0ooo0O0oo0 , Ooo , iIii11iI1II ) if 39 - 39: OoOoOO00 - Oo0Ooo / iII111i * OoooooooOO if 100 - 100: O0 . I11i . OoO0O00 + O0 * oO0o if 42 - 42: oO0o % OoooooooOO + o0oOOo0O0Ooo if 56 - 56: OoooooooOO + I1ii11iIi11i - iII111i III1I1 = getoutput ( "egrep 'lisp map-cache' ./lisp.config" ) if ( III1I1 != "" ) : os . system ( "touch ./lisp.config" ) if 12 - 12: iIii1I11I1II1 % ooOoO0o % ooOoO0o if 78 - 78: IiII . OoOoOO00 . I11i iIiIIIi = lisp . lisp_print_sans ( "{} cleared" . format ( I1II1I1I ) ) return ( lispconfig . lisp_show_wrapper ( iIiIIIi ) ) if 97 - 97: oO0o if 80 - 80: I1IiiI . Ii1I if 47 - 47: I11i + ooOoO0o + II111iiii % i11iIiiIii if 93 - 93: I1ii11iIi11i % OoOoOO00 . O0 / iII111i * oO0o if 29 - 29: o0oOOo0O0Ooo if 86 - 86: II111iiii . IiII if 2 - 2: OoooooooOO @ bottle . route ( '/lisp/show/map-server' ) def o0o0O00 ( ) : if ( lispconfig . lisp_validate_user ( ) == False ) : return ( OOoO0 ( ) ) if 35 - 35: iIii1I11I1II1 if 94 - 94: OoOoOO00 return ( lispconfig . lisp_process_show_command ( Ooo , "show map-server" ) ) if 100 - 100: OoO0O00 / i1IIi - I1IiiI % Ii1I - iIii1I11I1II1 if 17 - 17: I11i / o0oOOo0O0Ooo % Oo0Ooo if 71 - 71: IiII . I1Ii111 . OoO0O00 if 68 - 68: i11iIiiIii % oO0o * OoO0O00 * IiII * II111iiii + O0 if 66 - 66: I11i % I1ii11iIi11i % OoooooooOO if 34 - 34: o0oOOo0O0Ooo / iII111i % O0 . OoO0O00 . i1IIi if 29 - 29: O0 . I1Ii111 @ bottle . route ( '/lisp/show/database' ) def OO0o0oO0O000o ( ) : if ( lispconfig . lisp_validate_user ( ) == False ) : return ( OOoO0 ( ) ) if 47 - 47: I1Ii111 - OoO0O00 / Ii1I * OoooooooOO / Ii1I . Oo0Ooo return ( lispconfig . lisp_process_show_command ( Ooo , "show database-mapping" ) ) if 34 - 34: ooOoO0o if 27 - 27: I1Ii111 + OoooooooOO - OoOoOO00 if 15 - 15: oO0o / I11i * O0 . II111iiii - OoO0O00 if 90 - 90: oO0o if 94 - 94: I11i / I1ii11iIi11i * I1Ii111 - OoOoOO00 if 44 - 44: Ii1I % i11iIiiIii - iII111i * I1ii11iIi11i + Oo0Ooo * OOooOOo if 41 - 41: O0 * ooOoO0o - OoOoOO00 . Ii1I @ bottle . route ( '/lisp/show/itr/map-cache' ) def oO ( ) : if ( lispconfig . lisp_validate_user ( ) == False ) : return ( OOoO0 ( ) ) if 20 - 20: oO0o * O0 + I11i - OoooooooOO . I11i return ( lispconfig . lisp_process_show_command ( Ooo , "show itr-map-cache" ) ) if 60 - 60: o0oOOo0O0Ooo . o0oOOo0O0Ooo / iII111i if 45 - 45: O0 . i11iIiiIii % iII111i . OoOoOO00 % IiII % iIii1I11I1II1 if 58 - 58: iIii1I11I1II1 . OoOoOO00 - i11iIiiIii * iIii1I11I1II1 % i11iIiiIii / I1IiiI if 80 - 80: I1ii11iIi11i / iIii1I11I1II1 % OoOoOO00 if 80 - 80: OoO0O00 % iII111i if 99 - 99: ooOoO0o / iIii1I11I1II1 - Ii1I * I1ii11iIi11i % I1IiiI if 13 - 13: OoO0O00 @ bottle . route ( '/lisp/show/itr/rloc-probing' ) def O0oo0O0 ( ) : if ( lispconfig . lisp_validate_user ( ) == False ) : return ( OOoO0 ( ) ) if 2 - 2: OoooooooOO . OOooOOo . IiII return ( lispconfig . lisp_process_show_command ( Ooo , "show itr-rloc-probing" ) ) if 42 - 42: OOooOOo % oO0o / OoO0O00 - oO0o * i11iIiiIii if 19 - 19: oO0o * I1IiiI % i11iIiiIii if 24 - 24: o0oOOo0O0Ooo if 10 - 10: o0oOOo0O0Ooo % Ii1I / OOooOOo if 28 - 28: OOooOOo % ooOoO0o if 48 - 48: i11iIiiIii % oO0o if 29 - 29: iII111i + i11iIiiIii % I11i @ bottle . post ( '/lisp/show/itr/map-cache/lookup' ) def oOo00Ooo0o0 ( ) : if ( lispconfig . lisp_validate_user ( ) == False ) : return ( OOoO0 ( ) ) if 33 - 33: I11i if 87 - 87: OoOoOO00 / IiII + iIii1I11I1II1 oo0O0o = bottle . request . forms . get ( "eid" ) if ( lispconfig . lisp_validate_input_address_string ( oo0O0o ) == False ) : iIiIIIi = "Address '{}' has invalid format" . format ( oo0O0o ) iIiIIIi = lisp . lisp_print_sans ( iIiIIIi ) return ( lispconfig . lisp_show_wrapper ( iIiIIIi ) ) if 13 - 13: iIii1I11I1II1 . OoOoOO00 * I1IiiI / oO0o * Ii1I if 64 - 64: ooOoO0o / O0 * OoOoOO00 * ooOoO0o Oo0O0 = "show itr-map-cache" + "%" + oo0O0o return ( lispconfig . lisp_process_show_command ( Ooo , Oo0O0 ) ) if 60 - 60: I11i / i1IIi % I1ii11iIi11i / I1ii11iIi11i * I1ii11iIi11i . i11iIiiIii if 99 - 99: OoOoOO00 if 77 - 77: o0oOOo0O0Ooo if 48 - 48: OoOoOO00 % I1ii11iIi11i / I11i . iIii1I11I1II1 * II111iiii if 65 - 65: OoOoOO00 if 31 - 31: I11i * OoOoOO00 . IiII % Ii1I + Oo0Ooo if 47 - 47: O0 * I1IiiI * OoO0O00 . II111iiii @ bottle . route ( '/lisp/show/rtr/map-cache' ) @ bottle . route ( '/lisp/show/rtr/map-cache/<dns>' ) def O0o00o000oO ( dns = "" ) : if ( lispconfig . lisp_validate_user ( ) == False ) : return ( OOoO0 ( ) ) if 62 - 62: I1ii11iIi11i / I11i . i1IIi if 99 - 99: OoOoOO00 . I1Ii111 if ( dns == "dns" ) : return ( lispconfig . lisp_process_show_command ( Ooo , "show rtr-map-cache-dns" ) ) else : return ( lispconfig . lisp_process_show_command ( Ooo , "show rtr-map-cache" ) ) if 59 - 59: I11i / Oo0Ooo / OOooOOo / O0 / OoOoOO00 + o0oOOo0O0Ooo if 13 - 13: o0oOOo0O0Ooo % oO0o / I1Ii111 % I1Ii111 % O0 if 90 - 90: IiII . ooOoO0o / iIii1I11I1II1 if 28 - 28: IiII + oO0o - ooOoO0o / iIii1I11I1II1 - I1IiiI if 45 - 45: O0 / i1IIi * oO0o * OoO0O00 if 35 - 35: I1ii11iIi11i / iII111i % I1IiiI + iIii1I11I1II1 if 79 - 79: OoOoOO00 / ooOoO0o if 77 - 77: Oo0Ooo @ bottle . route ( '/lisp/show/rtr/rloc-probing' ) def i1i111Iiiiiii ( ) : if ( lispconfig . lisp_validate_user ( ) == False ) : return ( OOoO0 ( ) ) if 19 - 19: I1IiiI . Oo0Ooo + OoooooooOO - I1IiiI return ( lispconfig . lisp_process_show_command ( Ooo , "show rtr-rloc-probing" ) ) if 93 - 93: iIii1I11I1II1 + I1IiiI + i11iIiiIii if 74 - 74: I11i / II111iiii + ooOoO0o * iIii1I11I1II1 - I1Ii111 - OoO0O00 if 69 - 69: iIii1I11I1II1 * I1IiiI - iII111i + O0 + O0 if 65 - 65: I1Ii111 / i11iIiiIii / OoO0O00 - OOooOOo if 9 - 9: I1IiiI
sweep_iname, sweep_min_value, scan_min_value, stride, tracking_iname): domain = temp_kernel.get_inames_domain(frozenset((scan_iname, sweep_iname))) inames_added_for_scan.add(tracking_iname) new_domain = _create_domain_for_sweep_tracking(domain, tracking_iname, sweep_iname, sweep_min_value, scan_min_value, stride) _insert_subdomain_into_domain_tree(temp_kernel, domains, new_domain) return tracking_iname def replace_var_within_expr(expr, from_var, to_var): from pymbolic.mapper.substitutor import make_subst_func from loopy.symbolic import ( SubstitutionRuleMappingContext, RuleAwareSubstitutionMapper) rule_mapping_context = SubstitutionRuleMappingContext( temp_kernel.substitutions, var_name_gen) from pymbolic import var mapper = RuleAwareSubstitutionMapper( rule_mapping_context, make_subst_func({from_var: var(to_var)}), within=lambda *args: True) return mapper(expr, temp_kernel, None) def make_temporaries(name_based_on, nvars, shape, dtypes, address_space): var_names = [ var_name_gen(name_based_on.format(index=i)) for i in range(nvars)] from loopy.kernel.data import TemporaryVariable for name, dtype in zip(var_names, dtypes): new_temporary_variables[name] = TemporaryVariable( name=name, shape=shape, dtype=dtype, address_space=address_space) return var_names # }}} # {{{ sequential scan def map_scan_seq(expr, rec, callables_table, nresults, arg_dtypes, reduction_dtypes, sweep_iname, scan_iname, sweep_min_value, scan_min_value, stride, guarding_predicates): outer_insn_inames = insn.within_inames inames_to_remove.add(scan_iname) track_iname = var_name_gen( "{sweep_iname}__seq_scan" .format(sweep_iname=sweep_iname)) get_or_add_sweep_tracking_iname_and_domain( scan_iname, sweep_iname, sweep_min_value, scan_min_value, stride, track_iname) from loopy.kernel.data import AddressSpace acc_var_names = make_temporaries( name_based_on="acc_" + scan_iname, nvars=nresults, shape=(), dtypes=reduction_dtypes, address_space=AddressSpace.PRIVATE) from pymbolic import var acc_vars = tuple(var(n) for n in acc_var_names) init_id = insn_id_gen( "{}_{}_init".format(insn.id, "_".join(expr.inames))) init_insn_depends_on = frozenset() # FIXME: Explain why we care about global barriers here if kernel_has_global_barriers(kernel): global_barrier = lp.find_most_recent_global_barrier(temp_kernel, insn.id) if global_barrier is not None: init_insn_depends_on |= frozenset([global_barrier]) expression, callables_table = expr.operation.neutral_element( *arg_dtypes, callables_table=callables_table, target=kernel.target) init_insn = make_assignment( id=init_id, assignees=acc_vars, within_inames=outer_insn_inames - frozenset( (sweep_iname,) + expr.inames), within_inames_is_final=insn.within_inames_is_final, depends_on=init_insn_depends_on, expression=expression, # Do not inherit predicates: Those might read variables # that may not yet be set, and we don't have a great way # of figuring out what the dependencies of the accumulator # initializer should be. # This way, we may initialize a few too many accumulators, # but that's better than being incorrect. # https://github.com/inducer/loopy/issues/231 ) generated_insns.append(init_insn) update_insn_depends_on = {init_insn.id} | insn.depends_on updated_inner_exprs = ( preprocess_scan_arguments(insn, expr.expr, nresults, scan_iname, track_iname, update_insn_depends_on)) update_id = insn_id_gen( based_on="{}_{}_update".format(insn.id, "_".join(expr.inames))) update_insn_iname_deps = insn.within_inames | {track_iname} if insn.within_inames_is_final: update_insn_iname_deps = insn.within_inames | {track_iname} expression, callables_table = expr.operation( arg_dtypes, _strip_if_scalar(acc_vars, acc_vars), _strip_if_scalar(acc_vars, updated_inner_exprs), callables_table, kernel.target) scan_insn = make_assignment( id=update_id, assignees=acc_vars, expression=expression, depends_on=frozenset(update_insn_depends_on), within_inames=update_insn_iname_deps, no_sync_with=insn.no_sync_with, within_inames_is_final=insn.within_inames_is_final, predicates=guarding_predicates, ) generated_insns.append(scan_insn) new_insn_add_depends_on.add(scan_insn.id) if nresults == 1: assert len(acc_vars) == 1 return acc_vars[0], callables_table else: return acc_vars, callables_table # }}} # {{{ local-parallel scan def map_scan_local(expr, rec, callables_table, nresults, arg_dtypes, reduction_dtypes, sweep_iname, scan_iname, sweep_min_value, scan_min_value, stride, guarding_predicates): scan_size = _get_int_iname_size(sweep_iname) assert scan_size > 0 if scan_size == 1: return map_reduction_seq(expr, rec, callables_table, nresults, arg_dtypes, reduction_dtypes, guarding_predicates) outer_insn_inames = insn.within_inames from loopy.kernel.data import LocalInameTagBase outer_local_inames = tuple(oiname for oiname in outer_insn_inames if kernel.iname_tags_of_type(oiname, LocalInameTagBase) and oiname != sweep_iname) from pymbolic import var outer_local_iname_vars = tuple( var(oiname) for oiname in outer_local_inames) outer_local_iname_sizes = tuple( _get_int_iname_size(oiname) for oiname in outer_local_inames) track_iname = var_name_gen( "{sweep_iname}__pre_scan" .format(sweep_iname=sweep_iname)) get_or_add_sweep_tracking_iname_and_domain( scan_iname, sweep_iname, sweep_min_value, scan_min_value, stride, track_iname) # {{{ add separate iname to carry out the scan # Doing this sheds any odd conditionals that may be active # on our scan_iname. base_exec_iname = var_name_gen(sweep_iname + "__scan") domains.append(_make_slab_set(base_exec_iname, scan_size)) new_iname_tags[base_exec_iname] = kernel.iname_tags(sweep_iname) # }}} from loopy.kernel.data import AddressSpace read_var_names = make_temporaries( name_based_on="read_"+scan_iname+"_arg_{index}", nvars=nresults, shape=(), dtypes=reduction_dtypes, address_space=AddressSpace.PRIVATE) acc_var_names = make_temporaries( name_based_on="acc_"+scan_iname, nvars=nresults, shape=outer_local_iname_sizes + (scan_size,), dtypes=reduction_dtypes, address_space=AddressSpace.LOCAL) acc_vars = tuple(var(n) for n in acc_var_names) read_vars = tuple(var(n) for n in read_var_names) base_iname_deps = (outer_insn_inames - frozenset(expr.inames) - frozenset([sweep_iname])) neutral, callables_table = expr.operation.neutral_element( *arg_dtypes, callables_table=callables_table, target=kernel.target) init_insn_depends_on = insn.depends_on # FIXME: Explain why we care about global barriers here if kernel_has_global_barriers(kernel): global_barrier = lp.find_most_recent_global_barrier(temp_kernel, insn.id) if global_barrier is not None: init_insn_depends_on |= frozenset([global_barrier]) init_id = insn_id_gen(f"{insn.id}_{scan_iname}_init") init_insn = make_assignment( id=init_id, assignees=tuple( acc_var[outer_local_iname_vars + (var(base_exec_iname),)] for acc_var in acc_vars), expression=neutral, within_inames=base_iname_deps | frozenset([base_exec_iname]), within_inames_is_final=insn.within_inames_is_final, depends_on=init_insn_depends_on, # Do not inherit predicates: Those might read variables # that may not yet be set, and we don't have a great way # of figuring out what the dependencies of the accumulator # initializer should be. # This way, we may initialize a few too many accumulators, # but that's better than being incorrect. # https://github.com/inducer/loopy/issues/231 ) generated_insns.append(init_insn) transfer_insn_depends_on = {init_insn.id} | insn.depends_on updated_inner_exprs = ( preprocess_scan_arguments(insn, expr.expr, nresults, scan_iname, track_iname, transfer_insn_depends_on)) from loopy.symbolic import Reduction from loopy.symbolic import pw_aff_to_expr sweep_min_value_expr = pw_aff_to_expr(sweep_min_value) transfer_id = insn_id_gen(f"{insn.id}_{scan_iname}_transfer") transfer_insn = make_assignment( id=transfer_id, assignees=tuple( acc_var[outer_local_iname_vars + (var(sweep_iname) - sweep_min_value_expr,)] for acc_var in acc_vars), expression=Reduction( operation=expr.operation, inames=(track_iname,), expr=_strip_if_scalar(acc_vars, updated_inner_exprs), allow_simultaneous=False, ), within_inames=outer_insn_inames - frozenset(expr.inames), within_inames_is_final=insn.within_inames_is_final, depends_on=frozenset(transfer_insn_depends_on), no_sync_with=frozenset([(init_id, "any")]) | insn.no_sync_with, predicates=insn.predicates, ) generated_insns.append(transfer_insn) prev_id = transfer_id istage = 0 cur_size = 1 while cur_size < scan_size: stage_exec_iname = var_name_gen("%s__scan_s%d" % (sweep_iname, istage)) domains.append( _make_slab_set_from_range(stage_exec_iname, cur_size, scan_size)) new_iname_tags[stage_exec_iname] = kernel.iname_tags(sweep_iname) for read_var, acc_var in zip(read_vars, acc_vars): read_stage_id = insn_id_gen( "scan_%s_read_stage_%d" % (scan_iname, istage)) read_stage_insn = make_assignment( id=read_stage_id, assignees=(read_var,), expression=( acc_var[ outer_local_iname_vars + (var(stage_exec_iname) - cur_size,)]), within_inames=( base_iname_deps | frozenset([stage_exec_iname])), within_inames_is_final=insn.within_inames_is_final, depends_on=frozenset([prev_id]), predicates=insn.predicates, ) if cur_size == 1: # Performance hack: don't add a barrier here with transfer_insn. # NOTE: This won't work if the way that local inames # are lowered changes. read_stage_insn = read_stage_insn.copy( no_sync_with=( read_stage_insn.no_sync_with | frozenset([(transfer_id, "any")]))) generated_insns.append(read_stage_insn) prev_id = read_stage_id write_stage_id = insn_id_gen( "scan_%s_write_stage_%d" % (scan_iname, istage)) expression, callables_table = expr.operation( arg_dtypes, _strip_if_scalar(acc_vars, read_vars), _strip_if_scalar(acc_vars, tuple( acc_var[ outer_local_iname_vars + (var(stage_exec_iname),)] for acc_var in acc_vars)), callables_table, kernel.target) write_stage_insn = make_assignment( id=write_stage_id, assignees=tuple( acc_var[outer_local_iname_vars + (var(stage_exec_iname),)] for acc_var in acc_vars), expression=expression, within_inames=( base_iname_deps | frozenset([stage_exec_iname])), within_inames_is_final=insn.within_inames_is_final, depends_on=frozenset([prev_id]), predicates=insn.predicates, ) generated_insns.append(write_stage_insn) prev_id = write_stage_id cur_size *= 2 istage += 1 new_insn_add_depends_on.add(prev_id) new_insn_add_within_inames.add(sweep_iname) output_idx = var(sweep_iname) - sweep_min_value_expr if nresults == 1: assert len(acc_vars) == 1 return (acc_vars[0][outer_local_iname_vars + (output_idx,)], callables_table) else: return [acc_var[outer_local_iname_vars + (output_idx,)] for acc_var in acc_vars], callables_table # }}} # {{{ seq/par dispatch def map_reduction(expr, rec, callables_table, guarding_predicates, nresults=1): # Only expand one level of reduction at a time, going from outermost to # innermost. Otherwise we get the (iname + insn) dependencies wrong. from loopy.type_inference import ( infer_arg_and_reduction_dtypes_for_reduction_expression) arg_dtypes, reduction_dtypes = ( infer_arg_and_reduction_dtypes_for_reduction_expression( temp_kernel, expr, callables_table, unknown_types_ok)) outer_insn_inames = insn.within_inames bad_inames = frozenset(expr.inames) & outer_insn_inames if bad_inames: raise LoopyError("reduction used within loop(s) that it was " "supposed to reduce over: " + ", ".join(bad_inames)) iname_classes = _classify_reduction_inames(temp_kernel, expr.inames) n_sequential = len(iname_classes.sequential) n_local_par = len(iname_classes.local_parallel) n_nonlocal_par = len(iname_classes.nonlocal_parallel) really_force_scan = force_scan and ( len(expr.inames) != 1 or expr.inames[0] not in inames_added_for_scan) def _error_if_force_scan_on(cls, msg): if really_force_scan: raise cls(msg) may_be_implemented_as_scan = False if force_scan or automagic_scans_ok: from loopy.diagnostic import ReductionIsNotTriangularError try: # Try to determine scan candidate information (sweep iname, scan # iname, etc). scan_param = _try_infer_scan_candidate_from_expr( temp_kernel, expr, outer_insn_inames, sweep_iname=force_outer_iname_for_scan) except ValueError as v: error = str(v) else: # Ensures the reduction is triangular (somewhat expensive). may_be_implemented_as_scan, error = ( _check_reduction_is_triangular( temp_kernel, expr, scan_param)) if not may_be_implemented_as_scan: _error_if_force_scan_on(ReductionIsNotTriangularError, error) # {{{ sanity checks if n_local_par and n_sequential: raise LoopyError("Reduction over '%s' contains both parallel and " "sequential inames. It must be split " "(using split_reduction_{in,out}ward) " "before code generation." % ", ".join(expr.inames)) if n_local_par > 1: raise LoopyError("Reduction over '%s' contains more than" "one parallel iname. It must be split " "(using split_reduction_{in,out}ward) " "before code generation." % ", ".join(expr.inames)) if n_nonlocal_par: bad_inames = iname_classes.nonlocal_parallel raise LoopyError("the only form of parallelism supported " "by reductions is 'local'--found iname(s) '%s' " "respectively tagged '%s'" % (", ".join(bad_inames), ", ".join(str(kernel.iname_tags(iname)) for iname in bad_inames))) if n_local_par == 0 and n_sequential == 0: from loopy.diagnostic import warn_with_kernel warn_with_kernel(kernel, "empty_reduction", "Empty reduction found (no inames to reduce over). " "Eliminating.") # We're not supposed to reduce/sum at all. (Note how this is distinct # from an empty reduction--there is an element here, just no inames # to reduce over. It's rather similar to an array with () shape in # numpy.) return expr.expr, callables_table # }}} if may_be_implemented_as_scan: assert force_scan or automagic_scans_ok # We require the "scan" iname to be tagged sequential. if n_sequential: sweep_iname = scan_param.sweep_iname sweep_class = _classify_reduction_inames(kernel, (sweep_iname,)) sequential = sweep_iname in sweep_class.sequential parallel = sweep_iname in sweep_class.local_parallel bad_parallel = sweep_iname in sweep_class.nonlocal_parallel if sweep_iname not in outer_insn_inames: _error_if_force_scan_on(LoopyError, "Sweep iname '%s' was detected, but is not an iname " "for the instruction." % sweep_iname) elif bad_parallel: _error_if_force_scan_on(LoopyError, "Sweep iname '%s' has an unsupported parallel tag '%s' " "- the
<reponame>riclima/django-danceschool<gh_stars>1-10 from django.conf import settings from django.db.models import Sum, Count, Q from django.db.models.functions import TruncDate, TruncMonth from django.http import HttpResponse from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from datetime import datetime, timedelta from dateutil.relativedelta import relativedelta import unicodecsv as csv from calendar import month_name import pytz from danceschool.core.constants import getConstant from danceschool.core.models import ( Registration, Event, EventOccurrence, EventStaffMember, InvoiceItem, Room, StaffMember ) from danceschool.core.utils.timezone import ensure_timezone from .constants import EXPENSE_BASES from .models import ExpenseItem, RevenueItem, RepeatedExpenseRule, RoomRentalInfo, TransactionParty def getExpenseItemsCSV(queryset, scope='instructor'): response = HttpResponse(content_type='text/csv') if scope == 'instructor': response['Content-Disposition'] = 'attachment; filename="paymentHistory.csv"' else: response['Content-Disposition'] = 'attachment; filename="expenseHistory.csv"' writer = csv.writer(response, csv.excel) # BOM (optional...Excel needs it to open UTF-8 file properly) response.write(u'\ufeff'.encode('utf8')) header_list = [ _('Description'), _('Expense Category'), _('Hours'), _('Wage Rate'), _('Total Payment'), _('Is Reimbursement'), _('Submission Date'), _('Event'), _('Approved'), _('Paid'), _('Payment Date'), ] if scope != 'instructor': header_list += [_('Pay To')] writer.writerow(header_list) for x in queryset: this_row_data = [ x.description, x.category.name, x.hours, x.wageRate, x.total, x.reimbursement, x.submissionDate, x.event, x.approved, x.paid, x.paymentDate, ] if scope != 'instructor': this_row_data.append(x.payTo) writer.writerow(this_row_data) return response def getRevenueItemsCSV(queryset): response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="revenueHistory.csv"' writer = csv.writer(response, csv.excel) # BOM (optional...Excel needs it to open UTF-8 file properly) response.write(u'\ufeff'.encode('utf8')) header_list = [ _('Description'), _('Revenue Category'), _('Gross Total (Pre-Discounts & Vouchers)'), _('Net Total'), _('Received From'), _('Registration'), _('Event'), _('Received'), _('Received Date') ] writer.writerow(header_list) for x in queryset: this_row_data = [ x.description, x.category.name, x.grossTotal, x.total ] if x.registration: this_row_data.append(x.registration.fullName) else: this_row_data.append(x.receivedFrom.name) this_row_data += [ x.registration, x.event, x.received, x.receivedDate ] writer.writerow(this_row_data) return response def createExpenseItemsForVenueRental(request=None, datetimeTuple=None, rule=None, event=None): ''' For each Location or Room-related Repeated Expense Rule, look for Events in the designated time window that do not already have expenses associated with them. For hourly rental expenses, then generate new expenses that are associated with this rule. For non-hourly expenses, generate new expenses based on the non-overlapping intervals of days, weeks or months for which there is not already an ExpenseItem associated with the rule in question. ''' # These are used repeatedly, so they are put at the top submissionUser = getattr(request, 'user', None) rental_category = getConstant('financial__venueRentalExpenseCat') # Return the number of new expense items created generate_count = 0 # First, construct the set of rules that need to be checked for affiliated events rule_filters = Q(disabled=False) & Q(rentalRate__gt=0) & \ (Q(locationrentalinfo__isnull=False) | Q(roomrentalinfo__isnull=False)) if rule: rule_filters = rule_filters & Q(id=rule.id) rulesToCheck = RepeatedExpenseRule.objects.filter(rule_filters).distinct() # These are the filters place on Events that overlap the window in which # expenses are being generated. event_timefilters = Q() if datetimeTuple and len(datetimeTuple) == 2: timelist = list(datetimeTuple) timelist.sort() event_timefilters = event_timefilters & ( Q(startTime__gte=timelist[0]) & Q(startTime__lte=timelist[1]) ) if event: event_timefilters = event_timefilters & Q(id=event.id) # Now, we loop through the set of rules that need to be applied, then loop through the # Events in the window in question that occurred at the location indicated by the rule. for rule in rulesToCheck: venue = ( getattr(rule, 'location', None) if isinstance(rule, RoomRentalInfo) else getattr(rule, 'location', None) ) loc = getattr(venue, 'location') if isinstance(venue, Room) else venue event_locfilter = Q(room=venue) if isinstance(venue, Room) else Q(location=venue) # Find or create the TransactionParty associated with the location. loc_party = TransactionParty.objects.get_or_create( location=loc, defaults={'name': loc.name} )[0] if rule.advanceDays: if rule.advanceDaysReference == RepeatedExpenseRule.MilestoneChoices.end: event_timefilters = event_timefilters & \ Q(endTime__lte=timezone.now() + timedelta(days=rule.advanceDays)) elif rule.advanceDaysReference == RepeatedExpenseRule.MilestoneChoices.start: event_timefilters = event_timefilters & \ Q(startTime__lte=timezone.now() + timedelta(days=rule.advanceDays)) if rule.priorDays: if rule.priorDaysReference == RepeatedExpenseRule.MilestoneChoices.end: event_timefilters = event_timefilters & \ Q(endTime__gte=timezone.now() - timedelta(days=rule.priorDays)) elif rule.priorDaysReference == RepeatedExpenseRule.MilestoneChoices.start: event_timefilters = event_timefilters & \ Q(startTime__gte=timezone.now() - timedelta(days=rule.priorDays)) if rule.startDate: event_timefilters = event_timefilters & Q( event__startTime__gte=timezone.now().replace( year=rule.startDate.year, month=rule.startDate.month, day=rule.startDate.day, hour=0, minute=0, second=0, microsecond=0, ) ) if rule.endDate: event_timefilters = event_timefilters & Q( event__startTime__lte=timezone.now().replace( year=rule.endDate.year, month=rule.endDate.month, day=rule.endDate.day, hour=0, minute=0, second=0, microsecond=0, ) ) # For construction of expense descriptions replacements = { 'type': _('Event/Series venue rental'), 'of': _('of'), 'location': venue.name, 'for': _('for'), } # Loop through Events for which there are not already directly allocated # expenses under this rule, and create new ExpenseItems for them depending # on whether the rule requires hourly expenses or non-hourly ones to # be generated. events = Event.objects.filter(event_locfilter & event_timefilters).exclude( Q(expenseitem__expenseRule=rule)).distinct() if rule.applyRateRule == rule.RateRuleChoices.hourly: for this_event in events: # Hourly expenses are always generated without checking for # overlapping windows, because the periods over which hourly expenses # are defined are disjoint. However, hourly expenses are allocated # directly to events, so we just need to create expenses for any events # that do not already have an Expense Item generate under this rule. replacements['name'] = this_event.name replacements['dates'] = this_event.localStartTime.strftime('%Y-%m-%d') if ( event.localStartTime.strftime('%Y-%m-%d') != \ this_event.localEndTime.strftime('%Y-%m-%d') ): replacements['dates'] += ' %s %s' % ( _('to'), this_event.localEndTime.strftime('%Y-%m-%d') ) ExpenseItem.objects.create( event=this_event, category=rental_category, payTo=loc_party, expenseRule=rule, description='%(type)s %(of)s %(location)s %(for)s: %(name)s, %(dates)s' % \ replacements, submissionUser=submissionUser, total=this_event.duration * rule.rentalRate, accrualDate=this_event.startTime, ) generate_count += 1 else: # Non-hourly expenses are generated by constructing the time # intervals in which the occurrence occurs, and removing from that # interval any intervals in which an expense has already been # generated under this rule (so, for example, monthly rentals will # now show up multiple times). So, we just need to construct the set # of intervals for which to construct expenses intervals = [ (x.localStartTime, x.localEndTime) for x in \ EventOccurrence.objects.filter(event__in=events) ] remaining_intervals = rule.getWindowsAndTotals(intervals) for startTime, endTime, total, description in remaining_intervals: replacements['when'] = description ExpenseItem.objects.create( category=rental_category, payTo=loc_party, expenseRule=rule, periodStart=startTime, periodEnd=endTime, description='%(type)s %(of)s %(location)s %(for)s %(when)s' % replacements, submissionUser=submissionUser, total=total, accrualDate=startTime, ) generate_count += 1 rulesToCheck.update(lastRun=timezone.now()) return generate_count def createExpenseItemsForEvents(request=None, datetimeTuple=None, rule=None, event=None): ''' For each StaffMember-related Repeated Expense Rule, look for EventStaffMember instances in the designated time window that do not already have expenses associated with them. For hourly rental expenses, then generate new expenses that are associated with this rule. For non-hourly expenses, generate new expenses based on the non-overlapping intervals of days, weeks or months for which there is not already an ExpenseItem associated with the rule in question. ''' # This is used repeatedly, so it is put at the top submissionUser = getattr(request, 'user', None) # Return the number of new expense items created generate_count = 0 # First, construct the set of rules that need to be checked for affiliated events rule_filters = Q(disabled=False) & Q(rentalRate__gt=0) & \ Q(Q(staffmemberwageinfo__isnull=False) | Q(staffdefaultwage__isnull=False)) if rule: rule_filters = rule_filters & Q(id=rule.id) rulesToCheck = RepeatedExpenseRule.objects.filter( rule_filters).distinct().order_by( '-staffmemberwageinfo__category', '-staffdefaultwage__category' ) # These are the filters placed on Events that overlap the window in which # expenses are being generated. event_timefilters = Q() if datetimeTuple and len(datetimeTuple) == 2: timelist = list(datetimeTuple) timelist.sort() event_timefilters = event_timefilters & ( Q(event__startTime__gte=timelist[0]) & Q(event__startTime__lte=timelist[1]) ) if event: event_timefilters = event_timefilters & Q(event__id=event.id) # Now, we loop through the set of rules that need to be applied, then loop # through the Events in the window in question that involved the staff # member indicated by the rule. for rule in rulesToCheck: staffMember = getattr(rule, 'staffMember', None) staffCategory = getattr(rule, 'category', None) # No need to continue if expenses are not to be generated if ( (not staffMember and not staffCategory) or ( not staffMember and not getConstant('financial__autoGenerateFromStaffCategoryDefaults') ) ): continue # For construction of expense descriptions replacements = { 'type': _('Staff'), 'to': _('payment to'), 'for': _('for'), } # This is the generic category for all Event staff, but it may be overridden below expense_category = getConstant('financial__otherStaffExpenseCat') if staffCategory: if staffMember: # This staff member in this category eventstaff_filter = Q(staffMember=staffMember) & Q(category=staffCategory) elif getConstant('financial__autoGenerateFromStaffCategoryDefaults'): # Any staff member who does not already have a rule specified this category eventstaff_filter = ( Q(category=staffCategory) & ~Q(staffMember__expenserules__category=staffCategory) ) replacements['type'] = staffCategory.name # For standard categories of staff, map the EventStaffCategory to # an ExpenseCategory using the stored constants. Otherwise, the # ExpenseCategory is a generic one. if staffCategory == getConstant('general__eventStaffCategoryAssistant'): expense_category = getConstant('financial__assistantClassInstructionExpenseCat') elif staffCategory in [ getConstant('general__eventStaffCategoryInstructor'), getConstant('general__eventStaffCategorySubstitute') ]: expense_category = getConstant('financial__classInstructionExpenseCat') else: # We don't want to generate duplicate expenses when there
<reponame>karlicoss/my<filename>my/core/__main__.py import functools import importlib import inspect import os import sys import traceback from typing import Optional, Sequence, Iterable, List, Type, Any, Callable from pathlib import Path from subprocess import check_call, run, PIPE, CompletedProcess import click @functools.lru_cache() def mypy_cmd() -> Optional[Sequence[str]]: try: # preferably, use mypy from current python env import mypy return [sys.executable, '-m', 'mypy'] except ImportError: pass # ok, not ideal but try from PATH import shutil if shutil.which('mypy'): return ['mypy'] warning("mypy not found, so can't check config with it. See https://github.com/python/mypy#readme if you want to install it and retry") return None from types import ModuleType def run_mypy(pkg: ModuleType) -> Optional[CompletedProcess]: from .preinit import get_mycfg_dir mycfg_dir = get_mycfg_dir() # todo ugh. not sure how to extract it from pkg? # todo dunno maybe use the same mypy config in repository? # I'd need to install mypy.ini then?? env = {**os.environ} mpath = env.get('MYPYPATH') mpath = str(mycfg_dir) + ('' if mpath is None else f':{mpath}') env['MYPYPATH'] = mpath cmd = mypy_cmd() if cmd is None: return None mres = run([ *cmd, '--namespace-packages', '--color-output', # not sure if works?? '--pretty', '--show-error-codes', '--show-error-context', '--check-untyped-defs', '-p', pkg.__name__, ], stderr=PIPE, stdout=PIPE, env=env) return mres # use click.echo over print since it handles handles possible Unicode errors, # strips colors if the output is a file # https://click.palletsprojects.com/en/7.x/quickstart/#echoing def eprint(x: str) -> None: # err=True prints to stderr click.echo(x, err=True) def indent(x: str) -> str: return ''.join(' ' + l for l in x.splitlines(keepends=True)) OK = '✅' OFF = '🔲' def info(x: str) -> None: eprint(OK + ' ' + x) def error(x: str) -> None: eprint('❌ ' + x) def warning(x: str) -> None: eprint('❗ ' + x) # todo yellow? def tb(e: Exception) -> None: tb = ''.join(traceback.format_exception(Exception, e, e.__traceback__)) sys.stderr.write(indent(tb)) def config_create() -> None: from .preinit import get_mycfg_dir mycfg_dir = get_mycfg_dir() created = False if not mycfg_dir.exists(): # todo not sure about the layout... should I use my/config.py instead? my_config = mycfg_dir / 'my' / 'config' / '__init__.py' my_config.parent.mkdir(parents=True) my_config.write_text(''' ### HPI personal config ## see # https://github.com/karlicoss/HPI/blob/master/doc/SETUP.org#setting-up-modules # https://github.com/karlicoss/HPI/blob/master/doc/MODULES.org ## for some help on writing your own config # to quickly check your config, run: # hpi config check # to quickly check a specific module setup, run hpi doctor <module>, e.g.: # hpi doctor my.reddit.rexport ### useful default imports from my.core import Paths, PathIsh, get_files ### # most of your configs will look like this: class example: export_path: Paths = '/home/user/data/example_data_dir/' ### you can insert your own configuration below ### but feel free to delete the stuff above if you don't need ti '''.lstrip()) info(f'created empty config: {my_config}') created = True else: error(f"config directory '{mycfg_dir}' already exists, skipping creation") check_passed = config_ok() if not created or not check_passed: sys.exit(1) # TODO return the config as a result? def config_ok() -> bool: errors: List[Exception] = [] import my try: paths: List[str] = list(my.__path__) # type: ignore[attr-defined] except Exception as e: errors.append(e) error('failed to determine module import path') tb(e) else: info(f'import order: {paths}') try: import my.config as cfg except Exception as e: errors.append(e) error("failed to import the config") tb(e) # todo yield exception here? so it doesn't fail immediately.. # I guess it's fairly critical and worth exiting immediately sys.exit(1) cfg_path = cfg.__file__# todo might be better to use __path__? info(f"config file : {cfg_path}") import my.core as core try: core_pkg_path = str(Path(core.__path__[0]).parent) # type: ignore[attr-defined] if cfg_path.startswith(core_pkg_path): error(f''' Seems that the stub config is used ({cfg_path}). This is likely not going to work. See https://github.com/karlicoss/HPI/blob/master/doc/SETUP.org#setting-up-modules for more information '''.strip()) errors.append(RuntimeError('bad config path')) except Exception as e: errors.append(e) tb(e) # todo for some reason compileall.compile_file always returns true?? try: cmd = [sys.executable, '-m', 'compileall', str(cfg_path)] check_call(cmd) info('syntax check: ' + ' '.join(cmd)) except Exception as e: errors.append(e) mres = run_mypy(cfg) if mres is not None: # has mypy rc = mres.returncode if rc == 0: info('mypy check : success') else: error('mypy check: failed') errors.append(RuntimeError('mypy failed')) sys.stderr.write(indent(mres.stderr.decode('utf8'))) sys.stderr.write(indent(mres.stdout.decode('utf8'))) if len(errors) > 0: error(f'config check: {len(errors)} errors') return False else: # note: shouldn't exit here, might run something else info('config check: success!') return True from .util import HPIModule, modules def _modules(*, all: bool=False) -> Iterable[HPIModule]: skipped = [] for m in modules(): if not all and m.skip_reason is not None: skipped.append(m.name) else: yield m if len(skipped) > 0: warning(f'Skipped {len(skipped)} modules: {skipped}. Pass --all if you want to see them.') def modules_check(*, verbose: bool, list_all: bool, quick: bool, for_modules: List[str]) -> None: if len(for_modules) > 0: # if you're checking specific modules, show errors # hopefully makes sense? verbose = True vw = '' if verbose else '; pass --verbose to print more information' tabulate_warnings() import contextlib from .common import quick_stats from .util import get_stats, HPIModule from .stats import guess_stats from .error import warn_my_config_import_error mods: Iterable[HPIModule] if len(for_modules) == 0: mods = _modules(all=list_all) else: mods = [HPIModule(name=m, skip_reason=None) for m in for_modules] # todo add a --all argument to disregard is_active check? for mr in mods: skip = mr.skip_reason m = mr.name if skip is not None: eprint(f'{OFF} {click.style("SKIP", fg="yellow")}: {m:<50} {skip}') continue try: mod = importlib.import_module(m) except Exception as e: # todo more specific command? error(f'{click.style("FAIL", fg="red")}: {m:<50} loading failed{vw}') # check that this is an import error in particular, not because # of a ModuleNotFoundError because some dependency wasnt installed if isinstance(e, (ImportError, AttributeError)): warn_my_config_import_error(e) if verbose: tb(e) continue info(f'{click.style("OK", fg="green")} : {m:<50}') # first try explicitly defined stats function: stats = get_stats(m) if stats is None: # then try guessing.. not sure if should log somehow? stats = guess_stats(m, quick=quick) if stats is None: eprint(" - no 'stats' function, can't check the data") # todo point to a readme on the module structure or something? continue quick_context = quick_stats() if quick else contextlib.nullcontext() try: kwargs = {} if callable(stats) and 'quick' in inspect.signature(stats).parameters: kwargs['quick'] = quick with quick_context: res = stats(**kwargs) assert res is not None, 'stats() returned None' except Exception as ee: warning(f' - {click.style("stats:", fg="red")} computing failed{vw}') if verbose: tb(ee) else: info(f' - stats: {res}') def list_modules(*, list_all: bool) -> None: # todo add a --sort argument? tabulate_warnings() for mr in _modules(all=list_all): m = mr.name sr = mr.skip_reason if sr is None: pre = OK suf = '' else: pre = OFF suf = f' {click.style(f"[disabled: {sr}]", fg="yellow")}' click.echo(f'{pre} {m:50}{suf}') def tabulate_warnings() -> None: ''' Helper to avoid visual noise in hpi modules/doctor ''' import warnings orig = warnings.formatwarning def override(*args, **kwargs) -> str: res = orig(*args, **kwargs) return ''.join(' ' + x for x in res.splitlines(keepends=True)) warnings.formatwarning = override # TODO loggers as well? def _requires(module: str) -> Sequence[str]: from .discovery_pure import module_by_name mod = module_by_name(module) # todo handle when module is missing r = mod.requires if r is None: error(f"Module {module} has no REQUIRES specification") sys.exit(1) return r def module_requires(*, module: str) -> None: rs = [f"'{x}'" for x in _requires(module)] eprint(f'dependencies of {module}') for x in rs: click.echo(x) def module_install(*, user: bool, module: str) -> None: # TODO hmm. not sure how it's gonna work -- presumably people use different means of installing... # how do I install into the 'same' environment?? import shlex cmd = [ sys.executable, '-m', 'pip', 'install', *(['--user'] if user else []), # meh *_requires(module), ] eprint('Running: ' + ' '.join(map(shlex.quote, cmd))) check_call(cmd) def _ui_getchar_pick(choices: Sequence[str], prompt: str = 'Select from: ') -> int: ''' Basic menu allowing the user to select one of the choices returns the index the user chose ''' assert len(choices) > 0, 'Didnt receive any choices to prompt!' eprint(prompt + '\n') # prompts like 1,2,3,4,5,6,7,8,9,a,b,c,d,e,f... chr_offset = ord('a') - 10 # dict from key user can press -> resulting index result_map = {} for i, opt in enumerate(choices, 1): char: str = str(i) if i < 10 else chr(i + chr_offset) result_map[char] = i - 1 eprint(f'\t{char}. {opt}') eprint('') while True: ch = click.getchar() if ch not in result_map: eprint(f'{ch} not in {list(result_map.keys())}') continue return result_map[ch] def _locate_functions_or_prompt(qualified_names: List[str], prompt: bool = True) -> Iterable[Callable[..., Any]]: from .query import locate_qualified_function, QueryException from .stats import is_data_provider # if not connected to a terminal, cant prompt if not sys.stdout.isatty(): prompt = False for qualname in qualified_names: try:
""" Polarized millimeter-wave atmospheric emission model Copyright (c) 2019 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import numba import scipy.linalg from constants import * from wofz import wofz # Cython module needed to use SciPy function with Numba @numba.njit def delta_DeltaM(N, B, M, DeltaM): """ Calculates frequency shift of Zeeman components in GHz. Based on Larsson et al. (2019). Parameters ---------- N : int Total rotational angular momentum quantum number, with sign matching change in rotational quantum number B : float Magnetic field strength (nT) M : int Magnetic quantum number DeltaM : int Change in magnetic quantum number Returns ------- float Zeeman frequency shift (GHz) """ assert np.abs(N) % 2 == 1 assert np.abs(M) <= np.abs(N) assert np.abs(DeltaM) <= 1 g_1 = ZEEMAN_COEFF[np.abs(N) - 1, 2] g_2 = ZEEMAN_COEFF[np.abs(N) - 1, 2 + np.sign(N)] return -MU_B / H * B * (g_1 * M + g_2 * (M + DeltaM)) * 1e-9 * 1e-9 @numba.njit("complex128[:,:](int64, float64)") def rho_DeltaM(DeltaM, theta): """ Returns transition matricies for Zeeman transitions. Parameters ---------- DeltaM : int Change in magnetic quantum number theta : float Angle between line of sight and magnetic field direction (rad) Returns ------- np.array Transition matrix """ if DeltaM == -1: return np.array( [[1, 1j * np.cos(theta)], [-1j * np.cos(theta), np.cos(theta) ** 2]], dtype=np.complex128, ) elif DeltaM == 1: return np.array( [[1, -1j * np.cos(theta)], [1j * np.cos(theta), np.cos(theta) ** 2]], dtype=np.complex128, ) assert DeltaM == 0 return np.array([[0j, 0j], [0j, np.sin(theta) ** 2]], dtype=np.complex128) @numba.njit def P_trans(N, M, DeltaJ, DeltaM): """ Calculates transition probability. Parameters ---------- N : int Total rotational angular momentum quantum number M : int Magnetic quantum number DeltaJ : int Change in rotational quantum number DeltaM : int Change in magnetic quantum number Returns ------- float Transition probability """ # fmt: off if DeltaJ == 1: # Liebe 1981 if DeltaM == 1: return 3 * (N + M + 1) * (N + M + 2) / (4 * (N + 1) * (2*N + 1) * (2*N + 3)) elif DeltaM == 0: return 3 * ((N + 1)**2 - M**2) / ((N + 1) * (2 * N + 1) * (2 * N + 3)) elif DeltaM == -1: return 3 * (N - M + 1) * (N - M + 2) / (4 * (N + 1) * (2*N + 1) * (2*N + 3)) elif DeltaJ == -1: if DeltaM == 1: return 3 * (N + 1) * (N - M) * (N - M - 1) / (4 * N * (2 * N + 1) * (2 * N**2 + N - 1)) elif DeltaM == 0: return 3 * (N + 1) * (N**2 - M**2) / (N * (2 * N + 1) * (2 * N**2 + N - 1)) elif DeltaM == -1: return 3 * (N + 1) * (N + M) * (N + M - 1) / (4 * N * (2 * N + 1) * (2 * N**2 + N - 1)) # fmt: on @numba.njit def F(T, nu, nu_k, P, i, p_frac_h2o): """ Calculates line profile intensity. Parameters ---------- T : float Temperature of given atmosphere layer (K) nu : float Frequency to evaluate propagation at (GHz) nu_k : float Frequency of emission line (GHz) P : float Pressure (mbar) i : int Line number index. p_frac_h2o : float Pressure fraction of water vapor [0, 1] Returns ------- float Line profile intensity (GHz) """ p_frac_air = 1 - p_frac_h2o # Makarov et al. (2011) y_l = (O2_PARAMS[i, 1] + O2_PARAMS[i, 2] * (300 / T - 1)) * ( 300 / T ) ** 0.8 # bar^-1 g_l = (O2_PARAMS[i, 3] + O2_PARAMS[i, 4] * (300 / T - 1)) * ( 300 / T ) ** 1.6 # bar^-2 deltanu_l = (O2_PARAMS[i, 5] + O2_PARAMS[i, 6] * (300 / T - 1)) * ( 300 / T ) ** 1.6 # GHz bar^-2 N = int(np.abs(O2_PARAMS[i, 0])) # Line number (unitless) # M.A. Koshelev et al. (2016), Eq. (3) & Table 3 gamma_air = 1.132150 + 1.348131 / ( 1 + 0.18844 * N - 0.007720 * N ** 2 + 1.660877e-5 * N ** 4 ) # MHz / Torr # M.A. Koshelev et al. (2015), Eq. (1) & Table 2 gamma_h2o = 1.140129 + 1.528118 / ( 1 + 0.10118 * N - 4.78115e-3 * N ** 2 + 7.40233e-6 * N ** 4 ) # MHz / Torr # M.A. Koshelev et al. (2016), Eq. (1) & Table 1 dnc = gamma_air / 1000 * TORR2MBAR * (P * p_frac_air) * (296 / T) ** 0.75412 # GHz # Reuse previous temperature dependence due to lack of better value dnc += gamma_h2o / 1000 * TORR2MBAR * (P * p_frac_h2o) * (296 / T) ** 0.75412 # GHz # Varghese & Hanson (1984), https://doi.org/10.1364/AO.23.002376 # Herbert (1974), https://doi.org/10.1016/0022-4073(74)90021-1 mol_mass = O2_MOL_MASS / MOL / 1e3 # kg doppler_half_width = ( np.sqrt(2 * K_B * T / mol_mass) * nu_k / C ) # (1 / e) Doppler half width (GHz) # Combine Larsson (2014) method that adds line mixing with Melsheimer (2005) method that approximates VVW nu_prime = ( nu - nu_k - deltanu_l * (P / 1000) ** 2 ) / doppler_half_width # Unitless a = dnc / doppler_half_width # Unitless z1 = nu_prime + 1j * a # Unitless nu_prime = ( nu + nu_k + deltanu_l * (P / 1000) ** 2 ) / doppler_half_width # Unitless z2 = nu_prime + 1j * a # Unitless return ( (nu / nu_k) ** 2 / (doppler_half_width * np.sqrt(np.pi)) * ( (1 + g_l * (P / 1000) ** 2 - 1j * y_l * (P / 1000)) * wofz(z1) + (1 + g_l * (P / 1000) ** 2 + 1j * y_l * (P / 1000)) * wofz(z2) ) ) # GHz @numba.jitclass( [ ("B", numba.int32), ("atm_profile", numba.float64[:, ::1]), ("min_altitude", numba.float64), ("max_altitude", numba.float64), ("relative_humidity", numba.float64), ("layer_z", numba.float64), ] ) class AtmSim(object): def __init__( self, B, atm_profile, min_altitude, max_altitude=100000, relative_humidity=0.1, layer_z=0.2, ): """ Initializes atmospheric simulator. Parameters ---------- B : int32 Magnetic field strength (nT) atm_profile : float64[:, ::1] Atmosphere profile [Altitude (m), Temperature (K), Pressure (mbar), Temperature stddev (K), Pressure stddev (mbar)] min_altitude : float64 Minimum simulation altitude (m) max_altitude : float64 Maximum simulation altitude (m) relative_humidity : float64 Relative humidity fraction [0, 1] layer_z : float64 Height of atmosphere layers to simulate (km) """ self.B = B self.atm_profile = atm_profile self.min_altitude = min_altitude self.max_altitude = max_altitude self.relative_humidity = relative_humidity self.layer_z = layer_z def calc_propagation_matrix(self, nu, P, T, theta): """ Calculates propagation matrix. Parameters ---------- nu : float Frequency to evaluate propagation at (GHz) P : float Pressure (mbar) T : float Temperature of given atmosphere layer (K) theta : float Angle between line of sight and magnetic field direction (radian) Returns ------- np.array Propagation matrix (Np km^-1) """ # Pressure
<reponame>eonu/tempora<gh_stars>10-100 import numpy as np from ..internals import _Validator __all__ = ['Transform', 'Custom', 'TrimConstants', 'MinMaxScale', 'Center', 'Standardize', 'Downsample', 'Filter'] class Transform: """Base class representing a single transformation.""" def __init__(self): self._val = _Validator() self._name = self.__class__.__name__ def __call__(self, X, validate=True): """Applies the transformation to the observation sequence(s). Parameters ---------- X: numpy.ndarray (float) or list of numpy.ndarray (float) An individual observation sequence or a list of multiple observation sequences. validate: bool Whether or not to validate the input sequences. Returns ------- transformed: :class:`numpy:numpy.ndarray` (float) or list of :class:`numpy:numpy.ndarray` (float) The transformed input observation sequence(s). """ if self._val.is_boolean(validate, 'validate'): X = self._val.is_observation_sequences(X, allow_single=True) if self.is_fitted(): return self._apply(X) try: self.fit(X, validate=validate) return self._apply(X) except: raise finally: self.unfit() def transform(self, x): """Applies the transformation to a single observation sequence. Parameters ---------- X: numpy.ndarray (float) An individual observation sequence. Returns ------- transformed: :class:`numpy:numpy.ndarray` (float) The transformed input observation sequence. """ raise NotImplementedError def fit(self, X, validate=True): """Fit the transformation on the provided observation sequence(s) (without transforming them). Parameters ---------- X: numpy.ndarray (float) or list of numpy.ndarray (float) An individual observation sequence or a list of multiple observation sequences. validate: bool Whether or not to validate the input sequences. """ self._val.is_boolean(validate, 'validate') def fit_transform(self, X, validate=True): """Fit the transformation with the provided observation sequence(s) and transform them. Parameters ---------- X: numpy.ndarray (float) or list of numpy.ndarray (float) An individual observation sequence or a list of multiple observation sequences. validate: bool Whether or not to validate the input sequences. Returns ------- transformed: :class:`numpy:numpy.ndarray` (float) or list of :class:`numpy:numpy.ndarray` (float) The transformed input observation sequence(s). """ self.fit(X, validate=validate) return self.__call__(X, validate=validate) def is_fitted(self): """Check whether or not the transformation is fitted on some observation sequence(s). Returns ------- fitted: bool Whether or not the transformation is fitted. """ return False def unfit(self): """Unfit the transformation by resetting the parameters to their default settings.""" pass def _apply(self, X): """Applies the transformation to the observation sequence(s) (internal). Parameters ---------- X: numpy.ndarray (float) or list of numpy.ndarray (float) An individual observation sequence or a list of multiple observation sequences. Returns ------- transformed: :class:`numpy:numpy.ndarray` (float) or list of :class:`numpy:numpy.ndarray` (float) The transformed input observation sequence(s). """ return self.transform(X) if isinstance(X, np.ndarray) else [self.transform(x) for x in X] def __str__(self): """Description of the transformation. Returns ------- description: str The description of the transformation. """ raise NotImplementedError class Custom(Transform): """Apply a custom transformation to the input observation sequence(s). Parameters ---------- func: callable A lambda or function that specifies the transformation that should be applied to a **single** observation sequence. name: str Name of the transformation. desc: str Description of the transformation. Examples -------- >>> # Create some sample data >>> X = [np.random.random((10 * i, 3)) for i in range(1, 4)] >>> # Apply a custom transformation >>> X = Custom(lambda x: x**2, name='Square', desc='Square observations element-wise')(X) """ def __init__(self, func, name=None, desc=None): super().__init__() self.transform = self._val.is_func(func, 'transformation') self._name = 'Custom' + ('' if name is None else ' ({})'.format(self._val.is_string(name, 'name'))) self._desc = 'Apply a custom transformation' if desc is None else self._val.is_string(desc, 'description') def __str__(self): return self._desc class TrimConstants(Transform): """Trim constant observations from the input observation sequence(s). Parameters ---------- const: float The constant value. Examples -------- >>> # Create some sample data >>> z = np.zeros((4, 3)) >>> x = lambda i: np.vstack((z, np.random.random((10 * i, 3)), z)) >>> X = [x(i) for i in range(1, 4)] >>> # Trim the data >>> X = TrimConstants()(X) """ def __init__(self, constant=0): super().__init__() try: self.constant = float(constant) except ValueError: raise TypeError('Expected constant to be a float or convertible to a float') def transform(self, x): return x[~np.all(x == self.constant, axis=1)] def __str__(self): return 'Remove constant observations (={:.3})'.format(self.constant) class MinMaxScale(Transform): """Scales the observation sequence features to each be within a provided range. Parameters ---------- scale: tuple(int/float, int/float) The range of the transformed observation sequence features. independent: bool Whether to independently compute the minimum and maximum to scale each observation sequence. """ def __init__(self, scale=(0., 1.), independent=True): super().__init__() if not isinstance(scale, tuple): raise TypeError('Expected scaling range to be a tuple') if not all(isinstance(val, (int, float)) for val in scale): raise TypeError('Expected upper and lower bounds of scaling range to be floats') if not scale[0] < scale[1]: raise ValueError('Expected lower bound of scaling range to be less than the upper bound') self.scale = scale self.independent = self._val.is_boolean(independent, 'independent') self._type = (_MinMaxScaleIndependent if independent else _MinMaxScaleAll)(scale) def fit(self, X, validate=True): super().fit(X, validate=validate) self._type.fit(X, validate=validate) def transform(self, x): return self._type.transform(x) def is_fitted(self): return self._type.is_fitted() def unfit(self): self._type.unfit() def __str__(self): return str(self._type) class _MinMaxScaleAll(Transform): def __init__(self, scale): super().__init__() self.scale = scale self.unfit() def fit(self, X, validate): if validate: X = self._val.is_observation_sequences(X, allow_single=True) if isinstance(X, list): X = np.vstack(X) self.min, self.max = X.min(axis=0), X.max(axis=0) def transform(self, x): min_, max_ = self.scale scale = (max_ - min_) / (self.max - self.min) return scale * x + min_ - self.min * scale def is_fitted(self): return (self.min is not None) and (self.max is not None) def unfit(self): self.min, self.max = None, None def __str__(self): return 'Min-max scaling into range {} (all)'.format(self.scale) class _MinMaxScaleIndependent(Transform): def __init__(self, scale): super().__init__() self.scale = scale def transform(self, x): min_, max_ = self.scale scale = (max_ - min_) / (x.max(axis=0) - x.min(axis=0)) return scale * x + min_ - x.min(axis=0) * scale def __str__(self): return 'Min-max scaling into range {} (independent)'.format(self.scale) class Center(Transform): """Centers the observation sequence features around their means. Results in zero-mean features. Parameters ---------- independent: bool Whether to independently compute the mean to scale each observation sequence. Examples -------- >>> # Create some sample data >>> X = [np.random.random((10 * i, 3)) for i in range(1, 4)] >>> # Center the data >>> X = Center()(X) """ def __init__(self, independent=True): super().__init__() self.independent = self._val.is_boolean(independent, 'independent') self._type = (_CenterIndependent if independent else _CenterAll)() def fit(self, X, validate=True): super().fit(X, validate=validate) self._type.fit(X, validate=validate) def transform(self, x): return self._type.transform(x) def is_fitted(self): return self._type.is_fitted() def unfit(self): self._type.unfit() def __str__(self): return str(self._type) class _CenterAll(Transform): def __init__(self): super().__init__() self.unfit() def fit(self, X, validate): if validate: X = self._val.is_observation_sequences(X, allow_single=True) if isinstance(X, list): X = np.vstack(X) self.mean = X.mean(axis=0) def transform(self, x): return x - self.mean def is_fitted(self): return self.mean is not None def unfit(self): self.mean = None def __str__(self): return 'Centering around mean (zero mean) (all)' class _CenterIndependent(Transform): def transform(self, x): return x - x.mean(axis=0) def __str__(self): return 'Centering around mean (zero mean) (independent)' class Standardize(Transform): """Centers the observation sequence features around their means, then scales them by their deviations. Results in zero-mean, unit-variance features. Parameters ---------- independent: bool Whether to independently compute the mean and standard deviation to scale each observation sequence. Examples -------- >>> # Create some sample data >>> X = [np.random.random((10 * i, 3)) for i in range(1, 4)] >>> # Standardize the data >>> X = Standardize()(X) """ def __init__(self, independent=True): super().__init__() self.independent = self._val.is_boolean(independent, 'independent') self._type = (_StandardizeIndependent if independent else _StandardizeAll)() def fit(self, X, validate=True): super().fit(X, validate=validate) self._type.fit(X, validate=validate) def transform(self, x): return self._type.transform(x) def is_fitted(self): return self._type.is_fitted() def unfit(self): self._type.unfit() def __str__(self): return str(self._type) class _StandardizeAll(Transform): def __init__(self): super().__init__() self.unfit() def fit(self, X, validate): if validate: X = self._val.is_observation_sequences(X, allow_single=True) if isinstance(X, list): X = np.vstack(X) self.mean, self.std = X.mean(axis=0), X.std(axis=0) def transform(self, x): return (x - self.mean) / self.std def is_fitted(self): return (self.mean is not None) and (self.std is not None) def unfit(self): self.mean, self.std = None, None def __str__(self): return 'Standard scaling (zero mean, unit variance) (all)' class _StandardizeIndependent(Transform): def transform(self, x): return (x - x.mean(axis=0)) / x.std(axis=0) def __str__(self): return 'Standard scaling (zero mean, unit variance) (independent)' class Downsample(Transform): """Downsamples an observation sequence (or multiple sequences) by either: - Decimating the next :math:`n-1` observations - Averaging the current observation with the next :math:`n-1` observations Parameters ---------- factor: int > 0 Downsample factor. method: {'decimate', 'mean'} The downsampling method. Examples -------- >>> # Create some sample data >>> X = [np.random.random((10 * i, 3)) for i in range(1, 4)] >>> # Downsample the data
the piecewise cost linearization breakpoints. # the time index is redundant, but required. in the Piecewise construct, the breakpoints must be indexed the # same as the Piecewise construct itself. model.PowerGenerationPiecewisePoints = {} model.PowerGenerationPiecewiseValues = {} def power_generation_piecewise_points_rule(m, g, t): if len(m.CostPiecewisePoints[g]) > 0: m.PowerGenerationPiecewisePoints[g,t] = list(m.CostPiecewisePoints[g]) temp = list(m.CostPiecewiseValues[g]) m.PowerGenerationPiecewiseValues[g,t] = {} for i in xrange(len(m.CostPiecewisePoints[g])): m.PowerGenerationPiecewiseValues[g,t][m.PowerGenerationPiecewisePoints[g,t][i]] = temp[i] - m.MinimumProductionCost[g] # MinimumPowerOutput will be one of our piecewise points, so it is safe to add (0,0) if m.PowerGenerationPiecewisePoints[g,t][0] != 0: m.PowerGenerationPiecewisePoints[g,t].insert(0,0) m.PowerGenerationPiecewiseValues[g,t][0] = 0 elif value(m.ProductionCostA2[g]) == 0: # If cost is linear, we only need two points -- (0,CostA0-MinCost) and (MaxOutput, MaxCost) m.PowerGenerationPiecewisePoints[g, t] = [0, value(m.MaximumPowerOutput[g])] m.PowerGenerationPiecewiseValues[g,t] = {} m.PowerGenerationPiecewiseValues[g,t][0] = value(m.ProductionCostA0[g] - m.MinimumProductionCost[g]) m.PowerGenerationPiecewiseValues[g,t][m.PowerGenerationPiecewisePoints[g,t][1]] = \ value(m.ProductionCostA0[g]) + \ value(m.ProductionCostA1[g]) * m.PowerGenerationPiecewisePoints[g, t][1] \ - value(m.MinimumProductionCost[g]) else: min_power = value(m.MinimumPowerOutput[g]) max_power = value(m.MaximumPowerOutput[g]) n = value(m.NumGeneratorCostCurvePieces) width = (max_power - min_power) / float(n) if width == 0: m.PowerGenerationPiecewisePoints[g, t] = [min_power] else: m.PowerGenerationPiecewisePoints[g, t] = [min_power + i*width for i in xrange(0,n+1)] m.PowerGenerationPiecewiseValues[g,t] = {} for i in xrange(n+1): m.PowerGenerationPiecewiseValues[g,t][m.PowerGenerationPiecewisePoints[g,t][i]] = \ value(m.ProductionCostA0[g]) + \ value(m.ProductionCostA1[g]) * m.PowerGenerationPiecewisePoints[g, t][i] + \ value(m.ProductionCostA2[g]) * m.PowerGenerationPiecewisePoints[g, t][i]**2 \ - value(m.MinimumProductionCost[g]) if m.PowerGenerationPiecewisePoints[g, t][0] != 0: m.PowerGenerationPiecewisePoints[g, t].insert(0,0) m.PowerGenerationPiecewiseValues[g, t][0] = 0 model.CreatePowerGenerationPiecewisePoints = BuildAction(model.ThermalGenerators * model.TimePeriods, rule=power_generation_piecewise_points_rule) # a function for use in piecewise linearization of the cost function. def production_cost_function(m, g, t, x): return m.TimePeriodLength * m.PowerGenerationPiecewiseValues[g,t][x] * m.FuelCost[g] ############################################### # startup cost parameters for each generator. # ############################################### #CSH_j model.ColdStartHours = Param(model.ThermalGenerators, within=NonNegativeIntegers, default=0) # units are hours. #HSC_j model.HotStartCost = Param(model.ThermalGenerators, within=NonNegativeReals, default=0.0) # units are $. #CSC_j model.ColdStartCost = Param(model.ThermalGenerators, within=NonNegativeReals, default=0.0) # units are $. ################################################################################## # shutdown cost for each generator. in the literature, these are often set to 0. # ################################################################################## model.ShutdownCostCoefficient = Param(model.ThermalGenerators, within=NonNegativeReals, default=0.0) # units are $. # # STORAGE parameters # # \cal{S} model.Storage = Set() # \cal{S}(b} \subseteq \cal{S} model.StorageAtBus = Set(model.Buses, initialize=Set()) #################################################################################### # minimum and maximum power ratings, for each storage unit. units are MW. # # could easily be specified on a per-time period basis, but are not currently. # #################################################################################### # Storage power output >0 when discharging #\underbar{POS}_s model.MinimumPowerOutputStorage = Param(model.Storage, within=NonNegativeReals, default=0.0) def maximum_power_output_validator_storage(m, v, s): return v >= value(m.MinimumPowerOutputStorage[s]) #\overbar{POS}_s model.MaximumPowerOutputStorage = Param(model.Storage, within=NonNegativeReals, validate=maximum_power_output_validator_storage, default=0.0) #Storage power input >0 when charging #\underbar{PIS}_s model.MinimumPowerInputStorage = Param(model.Storage, within=NonNegativeReals, default=0.0) def maximum_power_input_validator_storage(m, v, s): return v >= value(m.MinimumPowerInputStorage[s]) #\overbar{PIS}_s model.MaximumPowerInputStorage = Param(model.Storage, within=NonNegativeReals, validate=maximum_power_input_validator_storage, default=0.0) ############################################### # storage ramp up/down rates. units are MW/h. # ############################################### # ramp rate limits when discharging #NRUOS_s model.NominalRampUpLimitStorageOutput = Param(model.Storage, within=NonNegativeReals) #NRDOS_s model.NominalRampDownLimitStorageOutput = Param(model.Storage, within=NonNegativeReals) # ramp rate limits when charging #NRUIS_s model.NominalRampUpLimitStorageInput = Param(model.Storage, within=NonNegativeReals) #NRDIS_s model.NominalRampDownLimitStorageInput = Param(model.Storage, within=NonNegativeReals) def scale_storage_ramp_up_out(m, s): return m.NominalRampUpLimitStorageOutput[s] * m.TimePeriodLength model.ScaledNominalRampUpLimitStorageOutput = Param(model.Storage, within=NonNegativeReals, initialize=scale_storage_ramp_up_out) def scale_storage_ramp_down_out(m, s): return m.NominalRampDownLimitStorageOutput[s] * m.TimePeriodLength model.ScaledNominalRampDownLimitStorageOutput = Param(model.Storage, within=NonNegativeReals, initialize=scale_storage_ramp_down_out) def scale_storage_ramp_up_in(m, s): return m.NominalRampUpLimitStorageInput[s] * m.TimePeriodLength model.ScaledNominalRampUpLimitStorageInput = Param(model.Storage, within=NonNegativeReals, initialize=scale_storage_ramp_up_in) def scale_storage_ramp_down_in(m, s): return m.NominalRampDownLimitStorageInput[s] * m.TimePeriodLength model.ScaledNominalRampDownLimitStorageInput = Param(model.Storage, within=NonNegativeReals, initialize=scale_storage_ramp_down_in) #################################################################################### # minimum state of charge (SOC) and maximum energy ratings, for each storage unit. # # units are MWh for energy rating and p.u. (i.e. [0,1]) for SOC # #################################################################################### # you enter storage energy ratings once for each storage unit #\overbar{ES}_s model.MaximumEnergyStorage = Param(model.Storage, within=NonNegativeReals, default=0.0) #\underbar{SOC}_s model.MinimumSocStorage = Param(model.Storage, within=PercentFraction, default=0.0) ################################################################################ # round trip efficiency for each storage unit given as a fraction (i.e. [0,1]) # ################################################################################ #\eta_s model.EfficiencyEnergyStorage = Param(model.Storage, within=PercentFraction, default=1.0) ######################################################################## # end-point SOC for each storage unit. units are in p.u. (i.e. [0,1]) # ######################################################################## # end-point values are the SOC targets at the final time period. With no end-point constraints # storage units will always be empty at the final time period. #EPSOC_s model.EndPointSocStorage = Param(model.Storage, within=PercentFraction, default=0.5) ############################################################ # storage initial conditions: SOC, power output and input # ############################################################ def t0_storage_power_input_validator(m, v, s): return (v >= value(m.MinimumPowerInputStorage[s])) and (v <= value(m.MaximumPowerInputStorage[s])) def t0_storage_power_output_validator(m, v, s): return (v >= value(m.MinimumPowerInputStorage[s])) and (v <= value(m.MaximumPowerInputStorage[s])) #\overbar{x}_s(0) model.StoragePowerOutputOnT0 = Param(model.Storage, within=NonNegativeIntegers, validate=t0_storage_power_output_validator, default=0) #\underbar{x}_s(0) model.StoragePowerInputOnT0 = Param(model.Storage, within=NonNegativeIntegers, validate=t0_storage_power_input_validator, default=0) #SOC_S(0) model.StorageSocOnT0 = Param(model.Storage, within=PercentFraction, default=0.5) ######################################### # penalty costs for constraint violation # ######################################### BigPenalty = 1e6 #\Lambda model.LoadMismatchPenalty = Param(within=NonNegativeReals, default=BigPenalty) # # Variables # # Total demand for reserve requirement model.TotalDemand = Var(model.TimePeriods, within=NonNegativeReals) def calculate_total_demand(m, t): return m.TotalDemand[t] == sum(m.Demand[b,t] for b in m.Buses) model.CalculateTotalDemand = Constraint(model.TimePeriods, rule=calculate_total_demand) ###################### # decision variables # ###################### # indicator variables for each generator, at each time period. model.UnitOn = Var(model.ThermalGenerators, model.TimePeriods, within=Binary, initialize=1) # amount of power produced by each generator, at each time period. def power_bounds_rule(m, g, t): return (0, m.MaximumPowerOutput[g]) model.PowerGenerated = Var(model.ThermalGenerators, model.TimePeriods, within=NonNegativeReals, bounds=power_bounds_rule) # amount of power flowing along each line, at each time period def line_power_bounds_rule(m, l, t): return (-m.ThermalLimit[l], m.ThermalLimit[l]) model.LinePower = Var(model.TransmissionLines, model.TimePeriods, bounds=line_power_bounds_rule) # assume wind can be curtailed, then wind power is a decision variable def nd_bounds_rule(m,n,t): return (m.MinNondispatchablePower[n,t], m.MaxNondispatchablePower[n,t]) model.NondispatchablePowerUsed = Var(model.NondispatchableGenerators, model.TimePeriods, within=NonNegativeReals, bounds=nd_bounds_rule) # maximum power output for each generator, at each time period. model.MaximumPowerAvailable = Var(model.ThermalGenerators, model.TimePeriods, within=NonNegativeReals) # voltage angles at the buses (S) (lock the first bus at 0) in radians model.Angle = Var(model.Buses, model.TimePeriods, within=Reals, bounds=(-3.14159265,3.14159265)) def fix_first_angle_rule(m,t): return m.Angle[m.Buses[1],t] == 0.0 model.FixFirstAngle = Constraint(model.TimePeriods, rule=fix_first_angle_rule) ############################## # Storage decision variables # ############################## # binary variables for storage (input/output are semicontinuous) model.OutputStorage = Var(model.Storage, model.TimePeriods, within=Binary) model.InputStorage = Var(model.Storage, model.TimePeriods, within=Binary) # amount of output power of each storage unit, at each time period def power_output_storage_bounds_rule(m, s, t): return (0, m.MaximumPowerOutputStorage[s]) model.PowerOutputStorage = Var(model.Storage, model.TimePeriods, within=NonNegativeReals, bounds=power_output_storage_bounds_rule) # amount of input power of each storage unit, at each time period def power_input_storage_bounds_rule(m, s, t): return (0, m.MaximumPowerInputStorage[s]) model.PowerInputStorage = Var(model.Storage, model.TimePeriods, within=NonNegativeReals, bounds=power_input_storage_bounds_rule) # state of charge of each storage unit, at each time period model.SocStorage = Var(model.Storage, model.TimePeriods, within=PercentFraction) ################### # cost components # ################### # production cost associated with each generator, for each time period. model.ProductionCost = Var(model.ThermalGenerators, model.TimePeriods, within=NonNegativeReals) # startup and shutdown costs for each generator, each time period. model.StartupCost = Var(model.ThermalGenerators, model.TimePeriods, within=NonNegativeReals) model.ShutdownCost = Var(model.ThermalGenerators, model.TimePeriods, within=NonNegativeReals) # (implicit) binary denoting whether starting up a generator will cost HotStartCost or ColdStartCost model.HotStart = Var(model.ThermalGenerators, model.TimePeriods, bounds=(0,1)) # cost over all generators, for all time periods. """model.TotalProductionCost = Var(within=NonNegativeReals)""" # all other overhead / fixed costs, e.g., associated with startup and shutdown. """model.TotalFixedCost = Var(within=NonNegativeReals)""" ############################################### KICK THAT OUT ? ##################################################### # load "shedding" can be both positive and negative # ##################################################### model.LoadGenerateMismatch = Var(model.Buses, model.TimePeriods, within = Reals, initialize=0) model.posLoadGenerateMismatch = Var(model.Buses, model.TimePeriods, within = NonNegativeReals, initialize=0) model.negLoadGenerateMismatch = Var(model.Buses, model.TimePeriods, within = NonNegativeReals, initialize=0) model.GlobalLoadGenerateMismatch = Var(model.TimePeriods, within = Reals, initialize=0) model.posGlobalLoadGenerateMismatch = Var(model.TimePeriods, within = NonNegativeReals, initialize=0) model.negGlobalLoadGenerateMismatch = Var(model.TimePeriods, within = NonNegativeReals, initialize=0) # the following constraints are necessarily, at least in the case of CPLEX 12.4, to prevent # the appearance of load generation mismatch component values in the range of *negative* e-5. # what these small negative values do is to cause the optimal objective to be a very large negative, # due to obviously large penalty values for under or over-generation. JPW would call this a heuristic # at this point, but it does seem to work broadly. we tried a single global constraint, across all # buses, but that failed to correct the problem, and caused the solve times to explode. def pos_load_generate_mismatch_tolerance_rule(m, b): return sum((m.posLoadGenerateMismatch[b,t] for t in m.TimePeriods)) >= 0.0 model.PosLoadGenerateMismatchTolerance = Constraint(model.Buses, rule=pos_load_generate_mismatch_tolerance_rule) def neg_load_generate_mismatch_tolerance_rule(m, b): return sum((m.negLoadGenerateMismatch[b,t] for t in m.TimePeriods)) >= 0.0 model.NegLoadGenerateMismatchTolerance = Constraint(model.Buses, rule=neg_load_generate_mismatch_tolerance_rule) ################################################# # per-stage cost variables - necessary for PySP # ################################################# """model.FirstStageCost = Var(within=NonNegativeReals) model.SecondStageCost = Var(within=NonNegativeReals)""" ######################################################### KICK THAT OUT ? # # Constraints # def line_power_rule(m, l, t): return m.LinePower[l,t] == m.B[l] * (m.Angle[m.BusFrom[l], t] - m.Angle[m.BusTo[l], t]) model.CalculateLinePower = Constraint(model.TransmissionLines, model.TimePeriods, rule=line_power_rule) # Power balance at each node (S) def power_balance(m, b, t): # bus b, time t (S) return sum(m.PowerGenerated[g, t] for g in m.ThermalGeneratorsAtBus[b]) \ + sum(m.PowerOutputStorage[s, t] for s in m.StorageAtBus[b])\ - sum(m.PowerInputStorage[s, t] for s in m.StorageAtBus[b])\ + sum(m.NondispatchablePowerUsed[g, t] for g in m.NondispatchableGeneratorsAtBus[b]) \ + sum(m.LinePower[l,t] for l in m.LinesTo[b]) \ - sum(m.LinePower[l,t] for l in m.LinesFrom[b]) \ + m.LoadGenerateMismatch[b,t] \ == m.Demand[b, t] model.PowerBalance = Constraint(model.Buses, model.TimePeriods, rule=power_balance) # give meaning to the positive and negative parts of the mismatch def posneg_rule(m, b, t): return m.posLoadGenerateMismatch[b, t] - m.negLoadGenerateMismatch[b, t] == m.LoadGenerateMismatch[b, t] model.Defineposneg_Mismatch = Constraint(model.Buses, model.TimePeriods, rule = posneg_rule) def global_posneg_rule(m, t): return m.posGlobalLoadGenerateMismatch[t] - m.negGlobalLoadGenerateMismatch[t] == m.GlobalLoadGenerateMismatch[t] model.Global_Defineposneg_Mismatch = Constraint(model.TimePeriods, rule = global_posneg_rule) # ensure there is sufficient maximal power output available to meet both the # demand and the spinning reserve requirements in each time period. # encodes Constraint 3 in Carrion and Arroyo. def enforce_reserve_requirements_rule(m, t): return sum(m.MaximumPowerAvailable[g, t] for g in m.ThermalGenerators) \ + sum(m.NondispatchablePowerUsed[n,t] for n in m.NondispatchableGenerators) \ + sum(m.PowerOutputStorage[s,t] for s in m.Storage) \ == \ m.TotalDemand[t] + m.ReserveRequirement[t] + m.GlobalLoadGenerateMismatch[t] model.EnforceReserveRequirements = Constraint(model.TimePeriods, rule=enforce_reserve_requirements_rule) ############################################ # generation limit and
length 1.""" return 1 def __str__(self): return "OP2 Dat: %s on (%s) with datatype %s" \ % (self._name, self._dataset, self.dtype.name) def __repr__(self): return "Dat(%r, None, %r, %r)" \ % (self._dataset, self.dtype, self._name) def _check_shape(self, other): if other.dataset.dim != self.dataset.dim: raise ValueError('Mismatched shapes in operands %s and %s', self.dataset.dim, other.dataset.dim) def _op(self, other, op): ops = {operator.add: ast.Sum, operator.sub: ast.Sub, operator.mul: ast.Prod, operator.truediv: ast.Div} ret = _make_object('Dat', self.dataset, None, self.dtype) name = "binop_%s" % op.__name__ if np.isscalar(other): other = _make_object('Global', 1, data=other) k = ast.FunDecl("void", name, [ast.Decl(self.ctype, ast.Symbol("self"), qualifiers=["const"], pointers=[""]), ast.Decl(other.ctype, ast.Symbol("other"), qualifiers=["const"], pointers=[""]), ast.Decl(self.ctype, ast.Symbol("ret"), pointers=[""])], ast.c_for("n", self.cdim, ast.Assign(ast.Symbol("ret", ("n", )), ops[op](ast.Symbol("self", ("n", )), ast.Symbol("other", ("0", )))), pragma=None)) k = _make_object('Kernel', k, name) else: self._check_shape(other) k = ast.FunDecl("void", name, [ast.Decl(self.ctype, ast.Symbol("self"), qualifiers=["const"], pointers=[""]), ast.Decl(other.ctype, ast.Symbol("other"), qualifiers=["const"], pointers=[""]), ast.Decl(self.ctype, ast.Symbol("ret"), pointers=[""])], ast.c_for("n", self.cdim, ast.Assign(ast.Symbol("ret", ("n", )), ops[op](ast.Symbol("self", ("n", )), ast.Symbol("other", ("n", )))), pragma=None)) k = _make_object('Kernel', k, name) par_loop(k, self.dataset.set, self(READ), other(READ), ret(WRITE)) return ret def _iop(self, other, op): ops = {operator.iadd: ast.Incr, operator.isub: ast.Decr, operator.imul: ast.IMul, operator.itruediv: ast.IDiv} name = "iop_%s" % op.__name__ if np.isscalar(other): other = _make_object('Global', 1, data=other) k = ast.FunDecl("void", name, [ast.Decl(self.ctype, ast.Symbol("self"), pointers=[""]), ast.Decl(other.ctype, ast.Symbol("other"), qualifiers=["const"], pointers=[""])], ast.c_for("n", self.cdim, ops[op](ast.Symbol("self", ("n", )), ast.Symbol("other", ("0", ))), pragma=None)) k = _make_object('Kernel', k, name) else: self._check_shape(other) quals = ["const"] if self is not other else [] k = ast.FunDecl("void", name, [ast.Decl(self.ctype, ast.Symbol("self"), pointers=[""]), ast.Decl(other.ctype, ast.Symbol("other"), qualifiers=quals, pointers=[""])], ast.c_for("n", self.cdim, ops[op](ast.Symbol("self", ("n", )), ast.Symbol("other", ("n", ))), pragma=None)) k = _make_object('Kernel', k, name) par_loop(k, self.dataset.set, self(INC), other(READ)) return self def _uop(self, op): ops = {operator.sub: ast.Neg} name = "uop_%s" % op.__name__ k = ast.FunDecl("void", name, [ast.Decl(self.ctype, ast.Symbol("self"), pointers=[""])], ast.c_for("n", self.cdim, ast.Assign(ast.Symbol("self", ("n", )), ops[op](ast.Symbol("self", ("n", )))), pragma=None)) k = _make_object('Kernel', k, name) par_loop(k, self.dataset.set, self(RW)) return self def inner(self, other): """Compute the l2 inner product of the flattened :class:`Dat` :arg other: the other :class:`Dat` to compute the inner product against. """ self._check_shape(other) ret = _make_object('Global', 1, data=0, dtype=self.dtype) k = ast.FunDecl("void", "inner", [ast.Decl(self.ctype, ast.Symbol("self"), qualifiers=["const"], pointers=[""]), ast.Decl(other.ctype, ast.Symbol("other"), qualifiers=["const"], pointers=[""]), ast.Decl(self.ctype, ast.Symbol("ret"), pointers=[""])], ast.c_for("n", self.cdim, ast.Incr(ast.Symbol("ret", (0, )), ast.Prod(ast.Symbol("self", ("n", )), ast.Symbol("other", ("n", )))), pragma=None)) k = _make_object('Kernel', k, "inner") par_loop(k, self.dataset.set, self(READ), other(READ), ret(INC)) return ret.data_ro[0] @property def norm(self): """Compute the l2 norm of this :class:`Dat` .. note:: This acts on the flattened data (see also :meth:`inner`).""" from math import sqrt return sqrt(self.inner(self)) def __pos__(self): pos = _make_object('Dat', self) return pos def __add__(self, other): """Pointwise addition of fields.""" return self._op(other, operator.add) def __radd__(self, other): """Pointwise addition of fields. self.__radd__(other) <==> other + self.""" return self + other def __neg__(self): neg = _make_object('Dat', self) return neg._uop(operator.sub) def __sub__(self, other): """Pointwise subtraction of fields.""" return self._op(other, operator.sub) def __rsub__(self, other): """Pointwise subtraction of fields. self.__rsub__(other) <==> other - self.""" ret = -self ret += other return ret def __mul__(self, other): """Pointwise multiplication or scaling of fields.""" return self._op(other, operator.mul) def __rmul__(self, other): """Pointwise multiplication or scaling of fields. self.__rmul__(other) <==> other * self.""" return self.__mul__(other) def __truediv__(self, other): """Pointwise division or scaling of fields.""" return self._op(other, operator.truediv) __div__ = __truediv__ # Python 2 compatibility def __iadd__(self, other): """Pointwise addition of fields.""" return self._iop(other, operator.iadd) def __isub__(self, other): """Pointwise subtraction of fields.""" return self._iop(other, operator.isub) def __imul__(self, other): """Pointwise multiplication or scaling of fields.""" return self._iop(other, operator.imul) def __itruediv__(self, other): """Pointwise division or scaling of fields.""" return self._iop(other, operator.itruediv) __idiv__ = __itruediv__ # Python 2 compatibility @collective def global_to_local_begin(self, access_mode): """Begin a halo exchange from global to ghosted representation. :kwarg access_mode: Mode with which the data will subsequently be accessed.""" halo = self.dataset.halo if halo is None: return if access_mode in [READ, RW] and not self.halo_valid: halo.global_to_local_begin(self, WRITE) elif access_mode is INC: self._data[self.dataset.size:] = 0 elif access_mode in [MIN, MAX]: min_, max_ = dtype_limits(self.dtype) self._data[self.dataset.size:] = {MAX: min_, MIN: max_}[access_mode] @collective def global_to_local_end(self, access_mode): """End a halo exchange from global to ghosted representation. :kwarg access_mode: Mode with which the data will subsequently be accessed.""" halo = self.dataset.halo if halo is None: return if access_mode in [READ, RW] and not self.halo_valid: halo.global_to_local_end(self, WRITE) self.halo_valid = True elif access_mode in [MIN, MAX, INC]: self.halo_valid = False @collective def local_to_global_begin(self, insert_mode): """Begin a halo exchange from ghosted to global representation. :kwarg insert_mode: insertion mode (an access descriptor)""" halo = self.dataset.halo if halo is None: return halo.local_to_global_begin(self, insert_mode) @collective def local_to_global_end(self, insert_mode): """End a halo exchange from ghosted to global representation. :kwarg insert_mode: insertion mode (an access descriptor)""" halo = self.dataset.halo if halo is None: return halo.local_to_global_end(self, insert_mode) self.halo_valid = False @classmethod def fromhdf5(cls, dataset, f, name): """Construct a :class:`Dat` from a Dat named ``name`` in HDF5 data ``f``""" slot = f[name] data = slot.value soa = slot.attrs['type'].find(':soa') > 0 ret = cls(dataset, data, name=name, soa=soa) return ret class DatView(Dat): """An indexed view into a :class:`Dat`. This object can be used like a :class:`Dat` but the kernel will only see the requested index, rather than the full data. :arg dat: The :class:`Dat` to create a view into. :arg index: The component to select a view of. """ def __init__(self, dat, index): cdim = dat.cdim if not (0 <= index < cdim): raise IndexTypeError("Can't create DatView with index %d for Dat with shape %s" % (index, dat.dim)) self.index = index # Point at underlying data super(DatView, self).__init__(dat.dataset, dat._data, dtype=dat.dtype, name="view[%s](%s)" % (index, dat.name)) # Remember parent for lazy computation forcing self._parent = dat @cached_property def cdim(self): return 1 @cached_property def dim(self): return (1, ) @cached_property def shape(self): return (self.dataset.total_size, ) @property def data(self): cdim = self._parent.cdim full = self._parent.data sub = full.reshape(-1, cdim)[:, self.index] return sub @property def data_ro(self): cdim = self._parent.cdim full = self._parent.data_ro sub = full.reshape(-1, cdim)[:, self.index] return sub @property def data_with_halos(self): cdim = self._parent.cdim full = self._parent.data_with_halos sub = full.reshape(-1, cdim)[:, self.index] return sub @property def data_ro_with_halos(self): cdim = self._parent.cdim full = self._parent.data_ro_with_halos sub = full.reshape(-1, cdim)[:, self.index] return sub class MixedDat(Dat): r"""A container for a bag of :class:`Dat`\s. Initialized either from a :class:`MixedDataSet`, a :class:`MixedSet`, or an iterable of :class:`DataSet`\s and/or :class:`Set`\s, where all the :class:`Set`\s are implcitly upcast to :class:`DataSet`\s :: mdat = op2.MixedDat(mdset) mdat = op2.MixedDat([dset1, ..., dsetN]) or from an iterable of :class:`Dat`\s :: mdat = op2.MixedDat([dat1, ..., datN]) """ def __init__(self, mdset_or_dats): def what(x): if isinstance(x, (Global, GlobalDataSet, GlobalSet)): return "Global" elif isinstance(x, (Dat, DataSet, Set)): return "Dat" else: raise DataSetTypeError("Huh?!") if isinstance(mdset_or_dats, MixedDat): self._dats = tuple(_make_object(what(d), d) for d in mdset_or_dats) else: self._dats = tuple(d if isinstance(d, (Dat, Global)) else _make_object(what(d), d) for d in mdset_or_dats) if not all(d.dtype == self._dats[0].dtype for d in self._dats): raise DataValueError('MixedDat with different dtypes is not supported') # TODO: Think about different communicators on dats (c.f. MixedSet) self.comm = self._dats[0].comm def __getitem__(self, idx): """Return :class:`Dat` with index ``idx`` or a given slice of Dats.""" return self._dats[idx] @cached_property def dtype(self): """The NumPy dtype of the data.""" return self._dats[0].dtype @cached_property def split(self): r"""The underlying tuple of :class:`Dat`\s.""" return self._dats @cached_property def dataset(self): r""":class:`MixedDataSet`\s this :class:`MixedDat` is defined on.""" return _make_object('MixedDataSet', tuple(s.dataset for s in self._dats)) @cached_property def soa(self): """Are the data in SoA format?""" return tuple(s.soa for s in self._dats) @cached_property def _data(self): """Return the user-provided data buffer, or a zeroed buffer of the correct size if none was provided.""" return tuple(d._data for d in self) @property @collective def data(self): """Numpy arrays containing the data excluding halos.""" return tuple(s.data for s in self._dats) @property @collective def data_with_halos(self): """Numpy arrays containing the data including halos.""" return tuple(s.data_with_halos for s in self._dats) @property @collective def data_ro(self): """Numpy arrays with read-only data excluding halos.""" return tuple(s.data_ro for s in self._dats) @property @collective def data_ro_with_halos(self): """Numpy arrays with read-only data including halos.""" return tuple(s.data_ro_with_halos for s in self._dats) @property def halo_valid(self): """Does this Dat have up to date halos?""" return all(s.halo_valid for s in self) @halo_valid.setter def halo_valid(self, val): """Indictate whether this Dat requires a halo update""" for d in
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """APIs for logging data in the event file.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import json import os import logging from .proto import event_pb2 from .proto import summary_pb2 from .event_file_writer import EventFileWriter from .summary import scalar_summary, histogram_summary, image_summary, audio_summary from .summary import text_summary, pr_curve_summary, _net2pb from .utils import _save_embedding_tsv, _make_sprite_image, _make_metadata_tsv from .utils import _add_embedding_config, _make_numpy_array, _get_embedding_dir from .utils import _is_2D_matrix class SummaryToEventTransformer(object): """This class is adapted with minor modifications from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/summary/writer/writer.py#L125 Users should not use this class directly for logging MXNet data. This class abstractly implements the SummaryWriter API: add_summary. The endpoint generates an event protobuf from the Summary object, and passes the event protobuf to _event_writer, which is of type EventFileWriter, for logging. """ # TODO(junwu): Need to check its compatibility with using ONNX for visualizing MXNet graphs. def __init__(self, event_writer): """Initializes the _event_writer with the passed-in value. Parameters ---------- event_writer: EventFileWriter An event file writer writing events to the files in the path `logdir`. """ self._event_writer = event_writer # This set contains tags of Summary Values that have been encountered # already. The motivation here is that the SummaryWriter only keeps the # metadata property (which is a SummaryMetadata proto) of the first Summary # Value encountered for each tag. The SummaryWriter strips away the # SummaryMetadata for all subsequent Summary Values with tags seen # previously. This saves space. self._seen_summary_tags = set() def add_summary(self, summary, global_step=None): """Adds a `Summary` protocol buffer to the event file. This method wraps the provided summary in an `Event` protocol buffer and adds it to the event file. Parameters ---------- summary : A `Summary` protocol buffer Optionally serialized as a string. global_step: Number Optional global step value to record with the summary. """ if isinstance(summary, bytes): summ = summary_pb2.Summary() summ.ParseFromString(summary) summary = summ # We strip metadata from values with tags that we have seen before in order # to save space - we just store the metadata on the first value with a # specific tag. for value in summary.value: if not value.metadata: continue if value.tag in self._seen_summary_tags: # This tag has been encountered before. Strip the metadata. value.ClearField("metadata") continue # We encounter a value with a tag we have not encountered previously. And # it has metadata. Remember to strip metadata from future values with this # tag string. self._seen_summary_tags.add(value.tag) event = event_pb2.Event(summary=summary) self._add_event(event, global_step) def add_graph(self, graph): """Adds a `Graph` protocol buffer to the event file.""" event = event_pb2.Event(graph_def=graph.SerializeToString()) self._add_event(event, None) def _add_event(self, event, step): event.wall_time = time.time() if step is not None: event.step = int(step) self._event_writer.add_event(event) class FileWriter(SummaryToEventTransformer): """This class is adapted from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/summary/writer/writer.py. Even though this class provides user-level APIs in TensorFlow, it is recommended to use the interfaces defined in the class `SummaryWriter` (see below) for logging in MXNet as they are directly compatible with the MXNet NDArray type. This class writes `Summary` protocol buffers to event files. The `FileWriter` class provides a mechanism to create an event file in a given directory and add summaries and events to it. The class updates the file contents asynchronously. """ def __init__(self, logdir, max_queue=10, flush_secs=120, filename_suffix=None, verbose=True): """Creates a `FileWriter` and an event file. On construction the summary writer creates a new event file in `logdir`. This event file will contain `Event` protocol buffers constructed when you call one of the following functions: `add_summary()`, or `add_event()`. Parameters ---------- logdir : str Directory where event file will be written. max_queue : int Size of the queue for pending events and summaries. flush_secs: Number How often, in seconds, to flush the pending events and summaries to disk. filename_suffix : str Every event file's name is suffixed with `filename_suffix` if provided. verbose : bool Determines whether to print logging messages. """ event_writer = EventFileWriter(logdir, max_queue, flush_secs, filename_suffix, verbose) super(FileWriter, self).__init__(event_writer) def __enter__(self): """Make usable with "with" statement.""" return self def __exit__(self, unused_type, unused_value, unused_traceback): """Make usable with "with" statement.""" self.close() def get_logdir(self): """Returns the directory where event file will be written.""" return self._event_writer.get_logdir() def add_event(self, event): """Adds an event to the event file. Parameters ---------- event : An `Event` protocol buffer. """ self._event_writer.add_event(event) def flush(self): """Flushes the event file to disk. Call this method to make sure that all pending events have been written to disk. """ self._event_writer.flush() def close(self): """Flushes the event file to disk and close the file. Call this method when you do not need the summary writer anymore. """ self._event_writer.close() def reopen(self): """Reopens the EventFileWriter. Can be called after `close()` to add more events in the same directory. The events will go into a new events file. Does nothing if the EventFileWriter was not closed. """ self._event_writer.reopen() class SummaryWriter(object): """This class is adapted with modifications in support of the MXNet NDArray types from https://github.com/lanpa/tensorboard-pytorch/blob/master/tensorboardX/writer.py. The `SummaryWriter` class provides a high-level api to create an event file in a given directory and add summaries and events to it. This class writes data to the event file asynchronously. This class is a wrapper of the FileWriter class. It's recommended that users use the APIs of this class to log MXNet data for visualization as they are directly compatible with the MXNet data types. Examples -------- >>> data = mx.nd.random.uniform(size=(10, 10)) >>> with SummaryWriter(logdir='logs') as sw: >>> sw.add_histogram(tag='my_hist', values=data, global_step=0, bins=100) """ def __init__(self, logdir, max_queue=10, flush_secs=120, filename_suffix=None, verbose=True): """ Creates a `SummaryWriter` and an event file. On construction the summary writer creates a new event file in `logdir`. This event file will contain `Event` protocol buffers constructed when you call one of the following functions: `add_audio()`, `add_embedding()`, `add_histogram()`, `add_image()`, `add_pr_curve()`, `add_scalar()`, and `add_text()`. Please make sure that the `logdir` used here for initiailizing `SummaryWriter` matches the `--logdir` parameter you passed to the `tensorboard` binary in the command line for launching TensorBoard. Parameters ---------- logdir : str Directory where event file will be written. max_queue : int Size of the queue for pending events and summaries. flush_secs: Number How often, in seconds, to flush the pending events and summaries to disk. filename_suffix : str Every event file's name is suffixed with `filename_suffix` if provided. verbose : bool Determines whether to print the logging messages. """ self._file_writer = FileWriter(logdir=logdir, max_queue=max_queue, flush_secs=flush_secs, filename_suffix=filename_suffix, verbose=verbose) self._max_queue = max_queue self._flush_secs = flush_secs self._filename_suffix = filename_suffix self._verbose = verbose # for writing scalars of different tags in the same plot self._all_writers = {self._file_writer.get_logdir(): self._file_writer} self._logger = None if verbose: self._logger = logging.getLogger(__name__) self._logger.setLevel(logging.INFO) self._default_bins = None self._text_tags = [] # scalar value dict. # key: file_writer's logdir, value: list of [timestamp, global_step, value] self._scalar_dict = {} def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def _get_default_bins(self): """Ported from the C++ function InitDefaultBucketsInner() in the following file. https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/lib/histogram/histogram.cc See the following tutorial for more details on how TensorFlow initialize bin distribution. https://www.tensorflow.org/programmers_guide/tensorboard_histograms""" if self._default_bins is None: v = 1E-12 buckets = [] neg_buckets = [] while v < 1E20: buckets.append(v) neg_buckets.append(-v) v *= 1.1 self._default_bins = neg_buckets[::-1] + [0] + buckets return self._default_bins def _append_to_scalar_dict(self, tag, scalar_value, global_step, timestamp): """Adds a list [timestamp, step, value] to the value of `self._scalar_dict[tag]`. This allows users to store scalars in memory and dump them to a json file later.""" if tag not in self._scalar_dict.keys():
there will be no conflict between # letters) # 2) If the lists mentioned above are both not empty, add any letters they have in common to fully_merged. # If one has a letter that the other doesn't, discard it for hashmap in hashmaps: merge_step: dict = {k: [] for k in ALPHABET} for l in ALPHABET: # Step 1 if (hashmap[l] == [] or fully_merged[l] == []): merge_step[l] = list(set(fully_merged[l] + hashmap[l])) continue # Step 2 for possible_letter in hashmap[l]: if possible_letter in fully_merged[l]: merge_step[l] = list(set(merge_step[l] + [possible_letter])) fully_merged = merge_step # Continuously add back to fully_merged so everything merges to the same place return fully_merged # end: def merge_possible_hashmaps # ==================================================================================================== # def get_possible_letters # # Get a mapping of the encrypted letters and their possible answers as english letters # # Arguments-- # # encrypted_text: the encrypted message to get the possible keys/english letter mapping for # # Returns-- # # A hashmap with keys representing the encrypted letters and values representing the possible letter(s) # for the given encrypted letter # def get_possible_letters(encrypted_text: str) -> dict: possible_letter_maps: list = [] # Get a single mapping # ---------- # Loop through each of the encrypted words in encrypted_text and get all of the english words # with matching word patterns. Create a mapping for all of the matching words for all of the encrypted # words given the letters of the encrypted/matching word (ex: enc word "hkz" with match "cat" -> # {h: [c], k: [a], z: [t]}). Once all of these mappings are made, merge them together using the # merge_possible_hashmaps function for encrypted_word in encrypted_text.split(): possible_letters: dict = {k: [] for k in ALPHABET} possible_words: list = get_matching_words(encrypted_word) for possible_word in possible_words: # Add all the letters in possible_word to their respective matchings in possible_letters to create # the mapping for l in range(len(encrypted_word)): encrypted_letter: str = encrypted_word[l] possible_letter: str = possible_word[l] possible_letters[encrypted_letter] = list(set(possible_letters[encrypted_letter] + [possible_letter])) possible_letter_maps.append(possible_letters) all_possible_letters: dict = merge_possible_hashmaps(possible_letter_maps) # Loop through all of the possibilities in all_possible_letters and remove any duplicates for the known letters. # Because this algorithm may remove such that only 1 letter remains in another position, it must be run multiple # times (ex: {a: [z], b: [z, c], c: [c, d, f]}. The first pass would result in {a: [z], b: [c], c: [c, d, f]}, # but now b=c is also known so it must be run again to finally get {a: [z], b: [c], c: [d, f]}) known_letters: list = [] known_letters_left: bool = True while (known_letters_left): known_letters_left = False # Find all of the known letters for encrypted_letter in ALPHABET: if (len(all_possible_letters[encrypted_letter]) == 1): known_letters.extend(all_possible_letters[encrypted_letter]) # Remove known letters from all other places for encrypted_letter in ALPHABET: for known_letter in known_letters: possible_letters: list = all_possible_letters[encrypted_letter] if (len(possible_letters) != 1 and known_letter in possible_letters): all_possible_letters[encrypted_letter].remove(known_letter) # Known letter cannot be in another spot if (len(all_possible_letters[encrypted_letter]) == 1): known_letters_left = True return all_possible_letters # end: def get_possible_letters # ==================================================================================================== # def solve # # Decrypt a given string of encrypted text # # Arguments-- # # encrypted_text: the text to decrypt # # Returns-- # # The decrypted text and the final key it was decrypted with # def solve(encrypted_text: str): possible_letters: dict = get_possible_letters(encrypted_text) key = UNKNOWN_CHAR * len(ALPHABET) # Given the list of possible mappings to a given cipher letter, create a final key. If there is # only one possible mapping, use that in the final key. Otherwise, ignore that mapping for encrypted_letter in ALPHABET: if (len(possible_letters[encrypted_letter]) == 1): key_index: int = ord(encrypted_letter) - 97 key_letter: str = possible_letters[encrypted_letter][0] key = key[:key_index] + key_letter + key[key_index + 1:] return decrypt_with_key(key, encrypted_text), key # end: def solve # ==================================================================================================== # def main # # The main function to handle the solving routine # # Arguments-- # # encrypted_text: the text to solve for # def main(encrypted_text: str): print("INFO -- Will clean up encrypted_text...") encrypted_text = clean_cipher_text(encrypted_text) print("\tDone.") print("INFO -- Will begin solving...") ans, key = solve(encrypted_text) print("\tDone.") return ans, key # end: def main # ==================================================================================================== # def run_test # # Run the cipher solve program with an expected answer to check accuracy # # Arguments-- # # test_name: the name of the test to print out for clarity # # encrypted_text: the encrypted version of expected; what the program should try to decrypt # # expected: the expected decrypted string # def run_test(test_name, encrypted_text, expected): print("--------------------------------------------------") print(f"INFO -- Test {test_name}") ans, key = main(encrypted_text) # Source: https://stackoverflow.com/questions/17388213/find-the-similarity-metric-between-two-strings w1 = ans + ' ' * (len(expected) - len(ans)) w2 = expected + ' ' * (len(ans) - len(expected)) accuracy: int = sum(1 if i == j else 0 for i, j in zip(w1, w2)) / float(len(w1)) * 100 print(f"ANS: {ans}\n\t" + f"KEY: {key}\n\t" + f"% CORRECT: {accuracy}\n") # end: def run_test # call to main if __name__ == "__main__": print("INFO -- Will init words_by_patterns...") init_word_patterns() print("\tDone.") # If the user just ran the python file, then demonstrate the capabilities of the program by running tests # on some common mono-alphabetic ciphers. Also inform the user that they can run their own text if (len(sys.argv) <= 1): print("INFO -- No text specified, will run with example text\n\t" + f"Use python3 mono_substitution_solver.py <text...> to load custom encrypted text\n\t" + f"Make sure to surround strings with quotes") expected = "if he had anything confidential to say he wrote it in cipher that is by so changing the order of the letters of the alphabet that not a word could be made out because sometimes we all have information that we might want to hide in an encoded form especially if we were to be part of a war or conflict where access to information could change the course of the fight for us it is important to hide the information from people who might want to uncover it" # Source for encoding: https://cryptii.com/pipes/caesar-cipher (shift = 7) run_test("1: CAESAR", "pm ol ohk hufaopun jvumpkluaphs av zhf ol dyval pa pu jpwoly aoha pz if zv johunpun aol vykly vm aol slaalyz vm aol hswohila aoha uva h dvyk jvbsk il thkl vba iljhbzl zvtlaptlz dl hss ohcl pumvythapvu aoha dl tpnoa dhua av opkl pu hu lujvklk mvyt lzwljphssf pm dl dlyl av il whya vm h dhy vy jvumspja dolyl hjjlzz av pumvythapvu jvbsk johunl aol jvbyzl vm aol mpnoa mvy bz pa pz ptwvyahua av opkl aol pumvythapvu myvt wlvwsl dov tpnoa dhua av bujvcly pa", expected) # Source for encoding: http://rumkin.com/tools/cipher/atbash.php run_test("2: ATBASH", "ru sv szw zmbgsrmt xlmurwvmgrzo gl hzb sv dilgv rg rm xrksvi gszg rh yb hl xszmtrmt gsv liwvi lu gsv ovggvih lu gsv zokszyvg gszg mlg z dliw xlfow yv nzwv lfg yvxzfhv hlnvgrnvh dv zoo szev rmulinzgrlm gszg dv nrtsg dzmg gl srwv rm zm vmxlwvw ulin vhkvxrzoob ru dv dviv gl yv kzig lu z dzi li xlmuorxg dsviv zxxvhh gl rmulinzgrlm xlfow xszmtv gsv xlfihv lu gsv urtsg uli fh rg rh rnkligzmg gl srwv gsv rmulinzgrlm uiln kvlkov dsl nrtsg dzmg gl fmxlevi rg", expected) # Source for encoding: https://cryptii.com/pipes/caesar-cipher run_test("3: ROT 13", "vs ur unq nalguvat pbasvqragvny gb fnl ur jebgr vg va pvcure gung vf ol fb punatvat gur beqre bs gur yrggref bs gur nycunorg gung abg n jbeq pbhyq or znqr bhg orpnhfr fbzrgvzrf jr nyy unir vasbezngvba gung jr zvtug jnag gb uvqr va na rapbqrq sbez rfcrpvnyyl vs jr jrer gb or cneg bs n jne be pbasyvpg jurer npprff gb vasbezngvba pbhyq punatr gur pbhefr bs gur svtug sbe hf vg vf vzcbegnag gb uvqr gur vasbezngvba sebz crbcyr jub zvtug jnag gb hapbire vg", expected) # Source for encoding: https://cryptii.com/pipes/caesar-cipher (slope = 5, int = 8) run_test("4: AFFINE", "wh rc rix ivyzrwvm savhwxcvzwil za uiy rc opazc wz wv swfrcp zriz wu ny ua srivmwvm zrc apxcp ah zrc lczzcpu ah zrc ilfrincz zriz vaz i oapx saelx nc qixc aez ncsieuc uaqczwqcu oc ill rijc wvhapqizwav zriz oc qwmrz oivz za rwxc wv iv cvsaxcx hapq cufcswilly wh oc ocpc za nc fipz ah i oip ap savhlwsz orcpc
import bz2 from collections import OrderedDict import gzip from operator import getitem import os import struct import sys from types import MappingProxyType from typing import Any, MutableMapping from zipfile import ZipFile from astropy.io import fits as pyfits import pds4_tools import numpy as np import pandas as pd import pvl # TODO: this module doesn't exist in Ross's pvl 1.x from pvl._collections import PVLObject import rasterio from rasterio.errors import RasterioIOError # import matplotlib.pyplot as plt # just for QA def get_from(collection: MutableMapping, keys, default=None) -> Any: """ toolz-style getter that will attempt both getattr and getitem (intended for named tuples nested inside of dicts, etc) (hierarchical list of keys, collection -> item of collection, possibly from a nested collection) """ level = collection for key in keys: try: level = getitem(level, key) except (KeyError, IndexError, TypeError): try: level = getattr(level, key) except AttributeError: return default return level def pvl_to_dict(labeldata): # Convert a PVL label object to a Python dict Deprecated because PVL # allows keywords to be repeated at the same depth, which is _not_ # allowed in a dict(), so this function ends up clobbering information. data = {} if ( (type(labeldata) == pvl._collections.PVLModule) or (type(labeldata) == pvl._collections.PVLGroup) or (type(labeldata) == pvl._collections.PVLObject) ): for k in labeldata.keys(): data[k] = pvl_to_dict(labeldata[k]) else: return labeldata return data def filetype(filename): """Attempt to deduce the filetype based on the filename.""" if ".IMG" in filename.upper(): return "IMG" elif ".FITS" in filename.upper(): return "FITS" elif ".DAT" in filename.upper(): if os.path.exists(filename.replace(".DAT", ".LBL")): # PDS3 .DAT with detached PVL label return "PDS3DAT" else: # presumed PDS4 .DAT with detached xml label return "PDS4DAT" else: print( "*** Unsupported file type: [...]{end}".format(end=filename[-10:]) ) return "UNK" def has_attached_label(filename): """Read the first line of a file to decide if it's a label.""" with open(filename, "rb") as f: return "PDS_VERSION_ID" in str(f.readline()) def parse_attached_label(filename): """Parse an attached label of a IMG file.""" # First grab the entries from the label that define how to read the label return pvl.load(filename, strict=False) # with open(filename, "rb") as f: # for line_ in f: # line = line_.decode("utf-8").strip() # hacks through a rare error # if "PDS_VERSION_ID" in line: # PDS_VERSION_ID = line.strip().split("=")[1] # if "RECORD_BYTES" in line: # RECORD_BYTES = int(line.strip().split("=")[1]) # if "LABEL_RECORDS" in line: # if "<BYTES>" in line: # # Convert pointer value to bytes like everything else # LABEL_RECORDS = line.strip().split("=")[1].split()[0] * 8 # else: # LABEL_RECORDS = int(line.strip().split("=")[1]) # break # # Read the label and then parse it with PVL # try: # with open(filename, "rb") as f: # return pvl.load(f.read(RECORD_BYTES * (LABEL_RECORDS))) # except UnboundLocalError: # print("*** RECORD_BYTES not set??? ***") # return None # except: # with open(filename, "rb") as f: # return pvl.load(f.read(RECORD_BYTES * (LABEL_RECORDS)), strict=False) def find_pointers(label, parent_level=None, path=""): """ function to look for file pointers in PDS3 labels. drills down one level into 'file area' / sublabels, i.e., nested PVLObjects. TODO: some of this interface appears to have changed in Ross's pvl 1.x and the class reference may need to be modified. TODO: these are never nested more than one level deep, right? """ pointers = [] for key, value in label.items(): if isinstance(value, PVLObject): # go down a level to look for pointers in 'file areas' &c pointers += find_pointers(value, key, path) elif key.startswith("^"): if isinstance(value, str): # break up nested pointers; "if string" ignores None # from default parent_level pointer_target = os.path.join(path, value) elif isinstance(value, pvl._collections.Units): # attempt to handle byte offsets in attached labels pointer_target = value.value elif isinstance(value, int) and ("FILE_RECORDS" in label.keys()): # attempt to handle file records offsets in attached labels pointer_target = value * label["FILE_RECORDS"] else: print("Warning: " + str( value) + "can't be interpreted as a valid target for a pointer.") continue pointers.append( { "object": [ string for string in [parent_level, key[1:]] if string ], "target": pointer_target, } ) return pointers def find_pvl_objects(label): """ list of PVLObjects at top level of PDS3 label. or anything, I guess. TODO: some of this interface appears to have changed in Ross's pvl 1.x and the class reference may need to be modified. """ objects = [] for key, value in label.items(): if isinstance(value, PVLObject): objects.append(key) return objects def get_file_area(label, pointer): if isinstance(pointer, str): # if we just passed a function "IMAGE" or what-have-you, # empirically, as it were, # rather than having discovered terms in the label file_area = label[pointer] object_name = pointer else: # for nested keys: we have a list in a dict. # reach down and grab the nested 'sublabel' # or 'file area' in PDS4 parlance file_area = get_from(label, pointer["object"]) # because first terms of pointer are at a higher level of nesting object_name = pointer["object"][-1] return file_area, object_name def parse_label(filename, full=False): """Wraps forking paths for attached and detached PDS3 labels.""" if filename.endswith(".fmt"): return pvl.load(filename, strict=False) if not has_attached_label(filename): if os.path.exists(filename[: filename.rfind(".")] + ".LBL"): label = pvl.load(filename[: filename.rfind(".")] + ".LBL") elif os.path.exists(filename[: filename.rfind(".")] + ".lbl"): label = pvl.load(filename[: filename.rfind(".")] + ".lbl") elif os.path.exists(filename[: filename.rfind(".")] + ".xml"): # TODO: Make label data format consistent between PDS3 & 4 label = pds4_tools.read( filename[: filename.rfind(".")] + ".xml", quiet=True ).label.to_dict() else: print("*** Unable to locate file label. ***") return None else: label = parse_attached_label(filename) # TODO: This ugly conditional exists entirely to deal with Cassini data # which all seem to be returning zero-value images, so maybe it's wrong! if (not full) and ("UNCOMPRESSED_FILE" in label.keys()): if "COMPRESSED_FILE" in label.keys(): if "ENCODING_TYPE" in label["COMPRESSED_FILE"].keys(): if ( label["COMPRESSED_FILE"]["ENCODING_TYPE"] == "MSLMMM-COMPRESSED" ): return label return label["UNCOMPRESSED_FILE"] return label def sample_types(SAMPLE_TYPE, SAMPLE_BYTES): """Defines a translation from PDS data types to Python data types. TODO: The commented-out types below are technically valid PDS3 types, but I haven't yet worked out the translation to Python. """ # NOTE: The byte depth of various data types is non-unique in PDS3 return { "MSB_INTEGER": ">h", "INTEGER": ">h", "MAC_INTEGER": ">h", "SUN_INTEGER": ">h", "MSB_UNSIGNED_INTEGER": ">h" if SAMPLE_BYTES == 2 else ">B", "UNSIGNED_INTEGER": ">B", "MAC_UNSIGNED_INTEGER": ">B", "SUN_UNSIGNED_INTEGER": ">B", "LSB_INTEGER": "<h" if SAMPLE_BYTES == 2 else "<B", "PC_INTEGER": "<h", "VAX_INTEGER": "<h", "ASCII_INTEGER": "<h", "LSB_UNSIGNED_INTEGER": "<h" if SAMPLE_BYTES == 2 else "<B", "PC_UNSIGNED_INTEGER": "<B", "VAX_UNSIGNED_INTEGER": "<B", "IEEE_REAL": ">f", "FLOAT": ">f", "REAL": ">f", "PC_REAL": "<d" if SAMPLE_BYTES == 8 else "<f", "MAC_REAL": ">f", "SUN_REAL": ">f", "MSB_BIT_STRING": ">B", }[SAMPLE_TYPE] # Possibly unused in PDS3: just park them here unless needed # 'IEEE_COMPLEX': '>c', # 'COMPLEX': '>c', # 'MAC_COMPLEX': '>c', # 'SUN_COMPLEX': '>c', # 'PC_COMPLEX': '<c', # 'MSB_BIT_STRING': '>S', # 'LSB_BIT_STRING': '<S', # 'VAX_BIT_STRING': '<S', def get_data_types(filename): """Placeholder function for the fact that PDS3 can contain multiple types of data (e.g. an image and a header) which are defined by 'pointers' in the label. This should be dealt with at some point. """ for k in parse_label(filename).keys(): if k.startswith("^"): print(k) def data_start_byte(label, pointer): """Determine the first byte of the data in an IMG file from its pointer.""" if type(pointer) is str: name_or_offset = label["^" + pointer] # for nested keys else: name_or_offset = get_from( label, [*pointer["object"][0:-1], "^" + pointer["object"][-1]] ) if type(name_or_offset) is int: return label["RECORD_BYTES"] * (name_or_offset - 1) elif type(name_or_offset) is pvl._collections.Units: return name_or_offset.value - 1 elif type(name_or_offset) is list: if type(name_or_offset[0]) is int: return name_or_offset[0] elif type(name_or_offset[-1]) is int: return label["RECORD_BYTES"] * (name_or_offset[-1] - 1) else: return 0 elif type(name_or_offset) is str: return 0 else: print("WTF?", name_or_offset) raise def read_document(filename, label, pointer): """ placeholder function. right now just: if open will decode it as Unicode, great, return the text; otherwise, return the bytes. """ try: with open(filename) as file: return file.read() except UnicodeDecodeError: with open(filename, "rb") as file: return file.read() except FileNotFoundError: return "referenced document not found" def image_props_list(): return [ "BYTES_PER_PIXEL", "start_byte", "DTYPE", "nrows", "ncols", "prefix_bytes", "prefix_cols", "BANDS", "pixels", "band_storage_type", ] def get_image_props(dictionary): """ convenience function grabs image properties from a dict -- perhaps locals() -- to be passed into a different scope """ return {prop: dictionary[prop] for prop in image_props_list()} def generic_image_props(label, pointer): try: sublabel = get_file_area(label, pointer) file_area = sublabel[0] except (KeyError, TypeError): # print("*** IMG w/ old format attached label not currently supported.") # print("\t{fn}".format(fn=filename)) print("No image data identified.") return None BYTES_PER_PIXEL = int(file_area["SAMPLE_BITS"] / 8) DTYPE = sample_types(file_area["SAMPLE_TYPE"], BYTES_PER_PIXEL) nrows = file_area["LINES"] ncols = file_area["LINE_SAMPLES"] if "LINE_PREFIX_BYTES" in file_area.keys(): # print("Accounting for a line
self.KS_CR, self.KS_CM0, self.KS_CM1, self.KS_M0, self.KS_M1, self.KS_M2) elif self.model == 'regression': self._scattered_V = _scattered_V_regression( self.airmass, 0.5 * (np.cos(np.pi * self.moon_phase) + 1.), 90 - self.moon_zenith.value, self.separation_angle.value) * u.mag / u.arcsec**2 else: raise NotImplementedError # Calculate the wavelength-dependent extinction of moonlight # scattered once into the observed field of view. scattering_airmass = ( 1 - 0.96 * np.sin(self.moon_zenith) ** 2) ** (-0.5) extinction = ( 10 ** (-self._extinction_coefficient * scattering_airmass / 2.5) * (1 - 10 ** (-self._extinction_coefficient * self.airmass / 2.5))) self._surface_brightness = self._moon_spectrum * extinction # Renormalized the extincted spectrum to the correct V-band magnitude. raw_V = self._vband.get_ab_magnitude( self._surface_brightness, self._wavelength) * u.mag area = 1 * u.arcsec ** 2 self._surface_brightness *= 10 ** ( -(self._scattered_V * area - raw_V) / (2.5 * u.mag)) / area @property def KS_CR(self): return self._KS_CR @KS_CR.setter def KS_CR(self, ks_cr): self._KS_CR = ks_cr self._update_required = True @property def KS_CM0(self): return self._KS_CM0 @KS_CM0.setter def KS_CM0(self, ks_cm0): self._KS_CM0 = ks_cm0 self._update_required = True @property def KS_CM1(self): return self._KS_CM1 @KS_CM1.setter def KS_CM1(self, ks_cm1): self._KS_CM1 = ks_cm1 self._update_required = True @property def KS_M0(self): return self._KS_M0 @KS_M0.setter def KS_M0(self, ks_m0): self._KS_M0 = ks_m0 self._update_required = True @property def KS_M1(self): return self._KS_M1 @KS_M1.setter def KS_M1(self, ks_m1): self._KS_M1 = ks_m1 self._update_required = True @property def KS_M2(self): return self._KS_M2 @KS_M2.setter def KS_M2(self, ks_m2): self._KS_M2 = ks_m2 self._update_required = True reg_model_coeffs = np.array([ 0.00000000e+00, -1.24246947e-01, -2.19592318e-01, -1.27371956e-02, 4.16108739e-02, -8.96992463e-02, -6.74266151e-01, 2.67170371e-02, -1.54258481e-02, -3.52318515e-01, -4.12007754e-03, 6.44355466e-02, 2.70616098e-04, -2.52914043e-04, -6.59789181e-04, -1.00704130e-01, -1.17732794e+00, 1.00074153e-02, 2.02381309e-02, -1.03468867e+00, 7.06332796e-02, 1.80523919e-02, -8.04924203e-04, -8.78033445e-04, -1.93926394e-04, -6.88153692e-01, -1.34713209e-01, 1.85076523e-03, 5.65520710e-05, -1.30331216e-05, -4.89722809e-04, 2.99858228e-06, 8.39852557e-06, 8.86494950e-06, 4.35592782e-06]) reg_model_intercept = 20.507688847655775 def _scattered_V_regression(airmass, moon_frac, moon_alt, moon_sep): ''' 4th degree polynomial regression fit to the V-band scattered moonlight from BOSS and DESI CMX data. ''' theta = np.atleast_2d(np.array([airmass, moon_frac, moon_alt, moon_sep]).T) combs = chain.from_iterable(combinations_with_replacement(range(4), i) for i in range(0, 4)) theta_transform = np.empty((theta.shape[0], len(reg_model_coeffs))) for i, comb in enumerate(combs): theta_transform[:, i] = theta[:, comb].prod(1) return np.dot(theta_transform, reg_model_coeffs.T) + reg_model_intercept def krisciunas_schaefer_free(obs_zenith, moon_zenith, separation_angle, moon_phase, vband_extinction, C_R, C_M0, C_M1, M0, M1, M2): """Calculate the scattered moonlight surface brightness in V band. Based on Krisciunas and Schaefer, "A model of the brightness of moonlight", PASP, vol. 103, Sept. 1991, p. 1033-1039 (http://dx.doi.org/10.1086/132921). Equation numbers in the code comments refer to this paper. The function :func:`plot_lunar_brightness` provides a convenient way to plot this model's predictions as a function of observation pointing. Units are required for the angular inputs and the result has units of surface brightness, for example: >>> sb = krisciunas_schaefer(20*u.deg, 70*u.deg, 50*u.deg, 0.25, 0.15) >>> print(np.round(sb, 3)) 19.855 mag / arcsec2 The output is automatically broadcast over input arrays following the usual numpy rules. This method has several caveats but the authors find agreement with data at the 8% - 23% level. See the paper for details. Parameters ---------- obs_zenith : astropy.units.Quantity Zenith angle of the observation in angular units. moon_zenith : astropy.units.Quantity Zenith angle of the moon in angular units. separation_angle : astropy.units.Quantity Opening angle between the observation and moon in angular units. moon_phase : float Phase of the moon from 0.0 (full) to 1.0 (new), which can be calculated as abs((d / D) - 1) where d is the time since the last new moon and D = 29.5 days is the period between new moons. The corresponding illumination fraction is ``0.5*(1 + cos(pi * moon_phase))``. vband_extinction : float V-band extinction coefficient to use. Returns ------- astropy.units.Quantity Observed V-band surface brightness of scattered moonlight. """ moon_phase = np.asarray(moon_phase) if np.any((moon_phase < 0) | (moon_phase > 1)): raise ValueError( 'Invalid moon phase {0}. Expected 0-1.'.format(moon_phase)) # Calculate the V-band magnitude of the moon (eqn. 9). abs_alpha = 180. * moon_phase #m = -12.73 + 0.026 * abs_alpha + 4e-9 * abs_alpha ** 4 (default value) m = M0 + M1 * abs_alpha + M2 * 1e-9 * abs_alpha ** 4 # Calculate the illuminance of the moon outside the atmosphere in # foot-candles (eqn. 8). Istar = 10 ** (-0.4 * (m + 16.57)) # Calculate the scattering function (eqn.21). rho = separation_angle.to(u.deg).value f_scatter = (C_R * (1.06 + np.cos(separation_angle) ** 2) + 10 ** (C_M0 - rho / C_M1)) # Calculate the scattering airmass along the lines of sight to the # observation and moon (eqn. 3). X_obs = (1 - 0.96 * np.sin(obs_zenith) ** 2) ** (-0.5) X_moon = (1 - 0.96 * np.sin(moon_zenith) ** 2) ** (-0.5) # Calculate the V-band moon surface brightness in nanoLamberts. B_moon = (f_scatter * Istar * 10 ** (-0.4 * vband_extinction * X_moon) * (1 - 10 ** (-0.4 * (vband_extinction * X_obs)))) # Convert from nanoLamberts to to mag / arcsec**2 using eqn.19 of # Garstang, "Model for Artificial Night-Sky Illumination", # PASP, vol. 98, Mar. 1986, p. 364 (http://dx.doi.org/10.1086/131768) return ((20.7233 - np.log(B_moon / 34.08)) / 0.92104 * u.mag / (u.arcsec ** 2)) def _cI_twi(alpha, delta, airmass): ''' twilight contribution :param alpha: :param delta: :param airmass: :retrun wave: :return twi: ''' ftwi = os.path.join(UT.dat_dir(), 'sky', 'twilight_coeffs.p') twi_coeffs = pickle.load(open(ftwi, 'rb')) twi = ( twi_coeffs['t0'] * np.abs(alpha) + # CT2 twi_coeffs['t1'] * np.abs(alpha)**2 + # CT1 twi_coeffs['t2'] * np.abs(delta)**2 + # CT3 twi_coeffs['t3'] * np.abs(delta) # CT4 ) * np.exp(-twi_coeffs['t4'] * airmass) + twi_coeffs['c0'] return twi_coeffs['wave'], np.array(twi) def _twilight_coeffs(): ''' save twilight coefficients from Parker ''' f = os.path.join(UT.code_dir(), 'dat', 'sky', 'MoonResults.csv') coeffs = pd.DataFrame.from_csv(f) coeffs.columns = [ 'wl', 'model', 'data_var', 'unexplained_var',' X2', 'rX2', 'c0', 'c_am', 'tau', 'tau2', 'c_zodi', 'c_isl', 'sol', 'I', 't0', 't1', 't2', 't3', 't4', 'm0', 'm1', 'm2', 'm3', 'm4', 'm5', 'm6', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec', 'c2', 'c3', 'c4', 'c5', 'c6'] # keep moon models twi_coeffs = coeffs[coeffs['model'] == 'twilight'] coeffs = coeffs[coeffs['model'] == 'moon'] # order based on wavelengths for convenience wave_sort = np.argsort(np.array(coeffs['wl'])) twi = {} twi['wave'] = np.array(coeffs['wl'])[wave_sort] for k in ['t0', 't1', 't2', 't3', 't4', 'c0']: twi[k] = np.array(twi_coeffs[k])[wave_sort] # save to file ftwi = os.path.join(UT.dat_dir(), 'sky', 'twilight_coeffs.p') pickle.dump(twi, open(ftwi, 'wb')) return None ########################################################################## # contributions to parker's sky surface brightness model ########################################################################## def _read_parkerCoeffs(): ''' read the coefficients of parker's model ''' f = ''.join([UT.code_dir(), 'dat/sky/MoonResults.csv']) _coeffs = pd.DataFrame.from_csv(f) _coeffs.columns = [ 'wl', 'model', 'data_var', 'unexplained_var',' X2', 'rX2', 'c0', 'c_am', 'tau', 'tau2', 'c_zodi', 'c_isl', 'sol', 'I', 't0', 't1', 't2', 't3', 't4', 'm0', 'm1', 'm2', 'm3', 'm4', 'm5', 'm6', 'feb', 'mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov', 'dec', 'c2', 'c3', 'c4', 'c5', 'c6' ] # keep moon models coeffs = _coeffs[coeffs['model'] == 'moon'] # order based on wavelengths for convenience wave_sort = np.argsort(np.array(coeffs['wl'])) for k in coeffs.keys(): coeffs[k] = np.array(coeffs[k])[wave_sort] return coeffs def _parker_Icontinuum(coeffs, X, beta, l, b, mjd, month_frac, hour_frac, alpha, delta, altm, illm, delm, g): ''' sky continuum (Fragelius thesis Eq. 4.23) ''' # airmass contrib. _Iairmass = coeffs['c_am'] * X # zodiacal contrib. (func. of ecliptic latitude) _Izodiacal = coeffs['c_zodi'] * _parker_Izodi(beta) _Iisl = coeffs['c_isl'] * _parker_Iisl(l, b) _Isolar_flux = coeffs['sol'] * _parker_Isf(mjd - coeffs['I']) _Iseasonal = _parker_cI_seas(month_frac, coeffs) _Ihourly = _parker_cI_hour(hour_frac, coeffs) _dT = _parker_deltaT(X, coeffs) # When the sun is above -20 altitude, some of its light will back-scatter # off the atmosphere into the field of view. (Fragelius thesis Eq. 4.27) _Itwilight = _parker_cI_twi_exp(alpha, delta, X, coeffs) # light from the moon that is scattered into our field of view (Fragelius thesis Eq. 4.28, 4.29) _Imoon = _parker_cI_moon_exp(altm, illm, delm, g, X, coeffs) _Iadd_continuum = coeffs['c0'] # I_continuum(lambda) Icont = (_Iairmass + _Izodiacal + _Iisl + _Isolar_flux + _Iseasonal + _Ihourly + _Iadd_continuum) * _dT + _Itwilight + _Imoon return 10*coeffs['wl'], np.array(Icont) def _parker_cI_moon_exp(altm, illm, deltam, g, airmass, coeffs): ''' light from the moon that is
x + D_params[ 5] * y * y shifted_t0 = t0 + t0_params[0] + t0_params[1] * x + t0_params[2] * y + \ t0_params[3] * x * y + t0_params[4] * x * x + t0_params[5] * y * y a = ep.minimum(a, 1) return a * self.truncexpon(-t, -shifted_t0, b) + (1 - a) * self.truncexpon(-t, -shifted_t0, c) def track_point(self, start, direction, z): """ This function returns the segment coordinates for a point along the `z` coordinate Args: start (tuple): start coordinates direction (tuple): direction coordinates z (float): `z` coordinate corresponding to the `x`, `y` coordinates Returns: tuple: the (x,y) pair of coordinates for the segment at `z` """ l = (z - start[:, 2][...,ep.newaxis]) / direction[:, 2][...,ep.newaxis] xl = start[:, 0][...,ep.newaxis] + l * direction[:, 0][...,ep.newaxis] yl = start[:, 1][...,ep.newaxis] + l * direction[:, 1][...,ep.newaxis] return xl, yl def get_pixel_coordinates(self, pixels): """ Returns the coordinates of the pixel center given the pixel IDs """ tpc_borders_ep = ep.from_numpy(pixels, self.tpc_borders).float32() plane_id = pixels[..., 0] // self.n_pixels[0] borders = ep.stack([tpc_borders_ep[x.astype(int)] for x in plane_id]) pix_x = (pixels[..., 0] - self.n_pixels[0] * plane_id) * self.pixel_pitch + borders[..., 0, 0] pix_y = pixels[..., 1] * self.pixel_pitch + borders[..., 1, 0] return pix_x[...,ep.newaxis], pix_y[...,ep.newaxis] def tracks_current(self, pixels, tracks, time_max, fields): """ This function calculates the charge induced on the pixels by the input tracks. Args: pixels (:obj:`numpy.ndarray`, `pyTorch/Tensorflow/JAX Tensor`): 3D array with dimensions S x P x 2, where S is the number of track segments, P is the number of pixels and the third dimension contains the two pixel ID numbers. tracks (:obj:`numpy.ndarray`, `pyTorch/Tensorflow/JAX Tensor`): 2D array containing the detector segments. time_max (int) : total number of time ticks (see time_intervals) fields (list): an ordered string list of field/column name of the tracks structured array Returns: signals (:obj:`numpy.ndarray`, `pyTorch/Tensorflow/JAX Tensor`): 3D array with dimensions S x P x T, where S is the number of track segments, P is the number of pixels, and T is the number of time ticks. """ pixels = ep.astensor(pixels) tracks_ep = ep.astensor(tracks) it = ep.arange(pixels, 0, time_max) # Pixel coordinates x_p, y_p = self.get_pixel_coordinates(pixels) x_p += self.pixel_pitch / 2 y_p += self.pixel_pitch / 2 start_coords = ep.stack([tracks_ep[:, fields.index("x_start")], tracks_ep[:, fields.index("y_start")], tracks_ep[:, fields.index("z_start")]], axis=1) end_coords = ep.stack([tracks_ep[:, fields.index("x_end")], tracks_ep[:, fields.index("y_end")], tracks_ep[:, fields.index("z_end")]], axis=1) cond = tracks_ep[:, fields.index("z_start")] < tracks_ep[:, fields.index("z_end")] start = ep.where(cond[...,ep.newaxis], start_coords, end_coords) end = ep.where(cond[...,ep.newaxis], end_coords, start_coords) segment = end - start length = ep.norms.l2(end, axis=1, keepdims=True) direction = segment / length sigmas = ep.stack([tracks_ep[:, fields.index("tran_diff")], tracks_ep[:, fields.index("tran_diff")], tracks_ep[:, fields.index("long_diff")]], axis=1) # The impact factor is the the size of the transverse diffusion or, if too small, # half the diagonal of the pixel pad impact_factor = ep.maximum(ep.sqrt((5 * sigmas[:, 0]) ** 2 + (5 * sigmas[:, 1]) ** 2), ep.full_like(sigmas[:, 0], sqrt(self.pixel_pitch ** 2 + self.pixel_pitch ** 2) / 2)) * 2 z_poca, z_start, z_end = self.z_interval(start, end, x_p, y_p, impact_factor) z_start_int = z_start - 4 * sigmas[:, 2][...,ep.newaxis] z_end_int = z_end + 4 * sigmas[:, 2][...,ep.newaxis] x_start, y_start = self.track_point(start, direction, z_start) x_end, y_end = self.track_point(start, direction, z_end) y_step = (ep.abs(y_end - y_start) + 8 * sigmas[:, 1][...,ep.newaxis]) / (self.sampled_points - 1) x_step = (ep.abs(x_end - x_start) + 8 * sigmas[:, 0][...,ep.newaxis]) / (self.sampled_points - 1) z_sampling = self.t_sampling / 2. z_steps = ep.maximum(self.sampled_points, ((ep.abs(z_end_int - z_start_int) / z_sampling)+1).astype(int)) z_step = (z_end_int - z_start_int) / (z_steps - 1) #This was a // divide, implement? t_start = ep.maximum(self.time_interval[0], (tracks_ep[:, fields.index("t_start")] - self.time_padding) / self.t_sampling * self.t_sampling) total_current = 0 total_charge = 0 time_tick = t_start[:, ep.newaxis] + it * self.t_sampling iz = ep.arange(z_steps, 0, z_steps.max().item()) z = z_start_int[...,ep.newaxis] + iz[ep.newaxis, ep.newaxis, :] * z_step[...,ep.newaxis] tpc_borders_ep = ep.from_numpy(pixels, self.tpc_borders).float32() borders = ep.stack([tpc_borders_ep[x.astype(int)] for x in tracks_ep[:, fields.index("pixel_plane")]]) t0 = (ep.abs(z - borders[..., 2, 0, ep.newaxis, ep.newaxis]) - 0.5) / self.vdrift # FIXME: this sampling is far from ideal, we should sample around the track # and not in a cube containing the track ix = ep.arange(iz, 0, self.sampled_points) x = x_start[...,ep.newaxis] + \ ep.sign(direction[..., 0, ep.newaxis, ep.newaxis]) *\ (ix[ep.newaxis, ep.newaxis, :] * x_step[...,ep.newaxis] - 4 * sigmas[..., 0, ep.newaxis, ep.newaxis]) x_dist = ep.abs(x_p - x) iy = ep.arange(iz, 0, self.sampled_points) y = y_start[...,ep.newaxis] + \ ep.sign(direction[..., 1, ep.newaxis, ep.newaxis]) *\ (iy[ep.newaxis, ep.newaxis, :] * y_step[...,ep.newaxis] - 4 * sigmas[..., 1, ep.newaxis, ep.newaxis]) y_dist = ep.abs(y_p - y) charge = self.rho((x[:,:, :, ep.newaxis, ep.newaxis], y[:,:, ep.newaxis, :, ep.newaxis], z[:,:, ep.newaxis, ep.newaxis, :]), tracks_ep[:, fields.index("n_electrons")], start, sigmas, segment)\ * ep.abs(x_step[..., ep.newaxis, ep.newaxis, ep.newaxis]) * ep.abs(y_step[..., ep.newaxis, ep.newaxis, ep.newaxis]) * ep.abs(z_step[..., ep.newaxis, ep.newaxis, ep.newaxis]) # Setup mask of pixel pitch and z_poca conditions cond_pix = ep.logical_and(x_dist[:, :, :, ep.newaxis] < self.pixel_pitch/2, y_dist[:, :, ep.newaxis, :] < self.pixel_pitch/2) cond_all = ep.logical_and(cond_pix, z_poca[:, :, ep.newaxis, ep.newaxis] != 0) # Indices passing conditions (better way to do this than np and raw?) trk_idx, pix_idx, xidx, yidx = np.where(cond_all.raw.cpu()) # Set up inputs (with multiplicities) in "passing condition" space tt_sel = time_tick[trk_idx, :, ep.newaxis] t0_sel = t0[trk_idx, pix_idx, ep.newaxis, :] xd_sel = x_dist[trk_idx, pix_idx, xidx, ep.newaxis, ep.newaxis] yd_sel = y_dist[trk_idx, pix_idx, yidx, ep.newaxis, ep.newaxis] # Current model current_out = self.current_model(tt_sel, t0_sel, xd_sel, yd_sel) # Multiply in appropriate charge and const. Sum over z sampling right away full_out = (charge[trk_idx, pix_idx, xidx, yidx][:, ep.newaxis, :]*current_out*self.e_charge).sum(axis=2) # Map back to pixels/tracks/time steps with zero padding reshaped = ep.zeros(full_out, shape=(x_dist.shape[0],x_dist.shape[1], time_max, self.sampled_points, self.sampled_points)) reshaped = ep.index_update(reshaped, ep.index[trk_idx, pix_idx, :, xidx, yidx], full_out) # Sum over x, y sampling cube signals = reshaped.sum(axis=(3,4)) return signals.raw def sum_pixel_signals(self, pixels_signals, signals, track_starts, index_map): """ This function sums the induced current signals on the same pixel. Args: pixels_signals (:obj:`numpy.ndarray`): 2D array that will contain the summed signal for each pixel. First dimension is the pixel ID, second dimension is the time tick signals (:obj:`numpy.ndarray`): 3D array with dimensions S x P x T, where S is the number of track segments, P is the number of pixels, and T is the number of time ticks. track_starts (:obj:`numpy.ndarray`): 1D array containing the starting time of each track index_map (:obj:`numpy.ndarray`): 2D array containing the correspondence between the track index and the pixel ID index. """ signals = ep.astensor(signals) track_starts = ep.astensor(track_starts) index_map = ep.astensor(index_map) # Set up index map to match with signal shape index = index_map[..., ep.newaxis] # Set up time map to match with signal shape. To implement: ep.round itime = ((track_starts / self.t_sampling + 0.5).astype(int)[:, ep.newaxis, ep.newaxis] + ep.arange(signals, 0, signals.shape[2])[ep.newaxis, ep.newaxis, :]) # Each signal index now has a corresponding pixel/time index exp_index = ep.tile(index, (1,1,signals.shape[2])) exp_itime = ep.tile(itime, (1, signals.shape[1], 1)) # Put pixel/time/signal together and flatten idxs = ep.stack((exp_index, exp_itime, signals), axis=-1) flat_idxs = idxs.reshape((-1, 3)) # Get unique indices (return_inverse doesn't exist for ep) unique_idxs, idx_inv = flat_idxs[:, :2].raw.unique(dim=0, return_inverse=True) unique_idxs = ep.astensor(unique_idxs) idx_inv = ep.astensor(idx_inv) # Sum over values for unique indices - scatter_add_ doesn't exist in ep. Can loop, but slow, e.g. #out = ep.zeros(signals, shape=(len(unique_idxs))) #for i in range(flat_idxs.shape[0]): # out = out.index_update(idx_inv[i], out[idx_inv[i]]+flat_idxs[i, 2]) res = ep.astensor(ep.zeros(signals, shape=(len(unique_idxs))).raw.scatter_add_(0, idx_inv.raw, flat_idxs[:, 2].raw)) output = ep.index_update(ep.astensor(pixels_signals), (unique_idxs[:,0].astype(int), unique_idxs[:,1].astype(int)), res) return output.raw # def backtrack_adcs(self, tracks, adc_list, adc_times_list, track_pixel_map, event_id_map, unique_evids, backtracked_id, # shift): # pedestal = floor((fee.V_PEDESTAL - fee.V_CM) * fee.ADC_COUNTS / (fee.V_REF - fee.V_CM)) # # ip = cuda.grid(1) # # if ip < adc_list.shape[0]: # for itrk in range(track_pixel_map.shape[1]): # track_index = track_pixel_map[ip][itrk] # if track_index >= 0: # track_start_t = tracks["t_start"][track_index] # track_end_t = tracks["t_end"][track_index] # evid = unique_evids[event_id_map[track_index]] # for iadc in range(adc_list[ip].shape[0]): # # if adc_list[ip][iadc] > pedestal: # adc_time = adc_times_list[ip][iadc] # evid_time = adc_time // (time_interval[1] * 3) # # if track_start_t - self.time_padding < adc_time - evid_time * time_interval[ # 1] * 3 < track_end_t + consts.time_padding + 0.5 / self.vdrift: # counter = 0 # # while
"/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_1b >= 151.5: #charging # self.eps_screen.ids.array_1b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_1b.color = 1, 1, 1, 1.0 #if float(c1b) > 0.0: #power channel offline! # self.eps_screen.ids.array_1b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if halfavg_2a < 151.5: #discharging # self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" # #self.eps_screen.ids.array_2a.color = 1, 1, 1, 0.8 #elif avg_2a > 160.0: #charged # self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_2a >= 151.5: #charging # self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_2a.color = 1, 1, 1, 1.0 #if float(c2a) > 0.0: #power channel offline! # self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if halfavg_2b < 151.5: #discharging # self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" # #self.eps_screen.ids.array_2b.color = 1, 1, 1, 0.8 #elif avg_2b > 160.0: #charged # self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_2b >= 151.5: #charging # self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_2b.color = 1, 1, 1, 1.0 #if float(c2b) > 0.0: #power channel offline! # self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if halfavg_3a < 151.5: #discharging # self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_3a.color = 1, 1, 1, 0.8 #elif avg_3a > 160.0: #charged # self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_3a >= 151.5: #charging # self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_3a.color = 1, 1, 1, 1.0 #if float(c3a) > 0.0: #power channel offline! # self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if halfavg_3b < 151.5: #discharging # self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_3b.color = 1, 1, 1, 0.8 #elif avg_3b > 160.0: #charged # self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_3b >= 151.5: #charging # self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_3b.color = 1, 1, 1, 1.0 #if float(c3b) > 0.0: #power channel offline! # self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if halfavg_4a < 151.5: #discharging # self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" # #self.eps_screen.ids.array_4a.color = 1, 1, 1, 0.8 #elif avg_4a > 160.0: #charged # self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_4a >= 151.5: #charging # self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_4a.color = 1, 1, 1, 1.0 #if float(c4a) > 0.0: #power channel offline! # self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if halfavg_4b < 151.5: #discharging # self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" # #self.eps_screen.ids.array_4b.color = 1, 1, 1, 0.8 #elif avg_4b > 160.0: #charged # self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" #elif halfavg_4b >= 151.5: #charging # self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" # self.eps_screen.ids.array_4b.color = 1, 1, 1, 1.0 #if float(c4b) > 0.0: #power channel offline! # self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #if avg_total_voltage > 151.5: #else: if float(v1a) >= 151.5 or float(v1b) >= 151.5 or float(v2a) >= 151.5 or float(v2b) >= 151.5 or float(v3a) >= 151.5 or float(v3b) >= 151.5 or float(v4a) >= 151.5 or float(v4b) >= 151.5: self.eps_screen.ids.eps_sun.color = 1, 1, 1, 1 else: self.eps_screen.ids.eps_sun.color = 1, 1, 1, 0.1 if float(v1a) < 151.5: #discharging self.eps_screen.ids.array_1a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_1a.color = 1, 1, 1, 0.8 elif float(v1a) > 160.0: #charged self.eps_screen.ids.array_1a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v1a) >= 151.5: #charging self.eps_screen.ids.array_1a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_1a.color = 1, 1, 1, 1.0 if float(c1a) > 0.0: #power channel offline! self.eps_screen.ids.array_1a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" if float(v1b) < 151.5: #discharging self.eps_screen.ids.array_1b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_1b.color = 1, 1, 1, 0.8 elif float(v1b) > 160.0: #charged self.eps_screen.ids.array_1b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v1b) >= 151.5: #charging self.eps_screen.ids.array_1b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_1b.color = 1, 1, 1, 1.0 if float(c1b) > 0.0: #power channel offline! self.eps_screen.ids.array_1b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" if float(v2a) < 151.5: #discharging self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_2a.color = 1, 1, 1, 0.8 elif float(v2a) > 160.0: #charged self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v2a) >= 151.5: #charging self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_2a.color = 1, 1, 1, 1.0 if float(c2a) > 0.0: #power channel offline! self.eps_screen.ids.array_2a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" if float(v2b) < 151.5: #discharging self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_2b.color = 1, 1, 1, 0.8 elif float(v2b) > 160.0: #charged self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v2b) >= 151.5: #charging self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_2b.color = 1, 1, 1, 1.0 if float(c2b) > 0.0: #power channel offline! self.eps_screen.ids.array_2b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" if float(v3a) < 151.5: #discharging self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_3a.color = 1, 1, 1, 0.8 elif float(v3a) > 160.0: #charged self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v3a) >= 151.5: #charging self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_3a.color = 1, 1, 1, 1.0 if float(c3a) > 0.0: #power channel offline! self.eps_screen.ids.array_3a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" if float(v3b) < 151.5: #discharging self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_3b.color = 1, 1, 1, 0.8 elif float(v3b) > 160.0: #charged self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v3b) >= 151.5: #charging self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_3b.color = 1, 1, 1, 1.0 if float(c3b) > 0.0: #power channel offline! self.eps_screen.ids.array_3b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" if float(v4a) < 151.5: #discharging self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_4a.color = 1, 1, 1, 0.8 elif float(v4a) > 160.0: #charged self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v4a) >= 151.5: #charging self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_4a.color = 1, 1, 1, 1.0 if float(c4a) > 0.0: #power channel offline! self.eps_screen.ids.array_4a.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" #4b has a lower setpoint voltage for now - reverted back as of US EVA 63 if float(v4b) < 141.5: #discharging self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-discharging.zip" #self.eps_screen.ids.array_4b.color = 1, 1, 1, 0.8 elif float(v4b) > 150.0: #charged self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charged.zip" elif float(v4b) >= 141.5: #charging self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-charging.zip" self.eps_screen.ids.array_4b.color = 1, 1, 1, 1.0 if float(c4b) > 0.0: #power channel offline! self.eps_screen.ids.array_4b.source = mimic_directory + "/Mimic/Pi/imgs/eps/array-offline.png" ##-------------------C&T Functionality-------------------## self.ct_sgant_screen.ids.sgant_dish.angle = float(sgant_elevation) self.ct_sgant_screen.ids.sgant_elevation.text = "{:.2f}".format(float(sgant_elevation)) #make sure radio animations turn off when no signal or no transmit if float(sgant_transmit) == 1.0 and float(aos) == 1.0: self.ct_sgant_screen.ids.radio_up.color = 1, 1, 1, 1 if "10" in tdrs: self.ct_sgant_screen.ids.tdrs_west10.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.zip" self.ct_sgant_screen.ids.tdrs_west11.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east12.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east6.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_z7.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" if "11" in tdrs: self.ct_sgant_screen.ids.tdrs_west11.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.zip" self.ct_sgant_screen.ids.tdrs_west10.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east12.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east6.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_z7.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" if "12" in tdrs: self.ct_sgant_screen.ids.tdrs_west11.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_west10.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east12.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.zip" self.ct_sgant_screen.ids.tdrs_east6.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_z7.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" if "6" in tdrs: self.ct_sgant_screen.ids.tdrs_west11.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_west10.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east6.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.zip" self.ct_sgant_screen.ids.tdrs_east12.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_z7.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" if "7" in tdrs: self.ct_sgant_screen.ids.tdrs_west11.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_west10.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east6.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east12.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_z7.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.zip" elif float(aos) == 0.0 and (float(sgant_transmit) == 0.0 or float(sgant_transmit) == 1.0): self.ct_sgant_screen.ids.radio_up.color = 0, 0, 0, 0 self.ct_sgant_screen.ids.tdrs_east12.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_east6.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_west11.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_west10.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" self.ct_sgant_screen.ids.tdrs_z7.source = mimic_directory + "/Mimic/Pi/imgs/ct/TDRS.png" #now check main CT screen radio signal if float(sgant_transmit) == 1.0 and float(aos) == 1.0: self.ct_screen.ids.sgant1_radio.color = 1, 1, 1, 1 self.ct_screen.ids.sgant2_radio.color = 1, 1, 1, 1 elif float(sgant_transmit) == 1.0 and float(aos) == 0.0: self.ct_screen.ids.sgant1_radio.color = 0, 0, 0, 0 self.ct_screen.ids.sgant2_radio.color = 0, 0, 0, 0 elif float(sgant_transmit) == 0.0: self.ct_screen.ids.sgant1_radio.color = 0, 0, 0, 0 self.ct_screen.ids.sgant2_radio.color = 0, 0, 0, 0 elif float(aos) == 0.0: self.ct_screen.ids.sgant1_radio.color = 0, 0, 0, 0 self.ct_screen.ids.sgant2_radio.color = 0, 0, 0, 0 if float(sasa1_active) == 1.0 and float(aos) == 1.0: self.ct_screen.ids.sasa1_radio.color = 1, 1, 1, 1 elif float(sasa1_active) == 1.0 and float(aos) == 0.0: self.ct_screen.ids.sasa1_radio.color = 0, 0, 0, 0 elif float(sasa1_active) == 0.0: self.ct_screen.ids.sasa1_radio.color = 0, 0, 0, 0 elif float(aos) == 0.0: self.ct_screen.ids.sasa1_radio.color = 0, 0, 0, 0 if float(sasa2_active) == 1.0 and float(aos) == 1.0: self.ct_screen.ids.sasa2_radio.color = 1, 1, 1, 1 elif float(sasa2_active) == 1.0 and float(aos) == 0.0: self.ct_screen.ids.sasa2_radio.color = 0, 0, 0, 0 elif float(sasa2_active) == 0.0: self.ct_screen.ids.sasa2_radio.color = 0, 0, 0, 0 elif float(aos) == 0.0: self.ct_screen.ids.sasa2_radio.color
assert 'Removing image v2-full_web' in result.stderr assert 'Removing image busybox' not in result.stderr assert 'Removing network v2-full_default' in result.stderr assert 'Removing network v2-full_front' in result.stderr def test_down_timeout(self): self.dispatch(['up', '-d'], None) service = self.project.get_service('simple') assert len(service.containers()) == 1 assert service.containers()[0].is_running "" self.dispatch(['down', '-t', '1'], None) assert len(service.containers(stopped=True)) == 0 def test_down_signal(self): self.base_dir = 'tests/fixtures/stop-signal-composefile' self.dispatch(['up', '-d'], None) service = self.project.get_service('simple') assert len(service.containers()) == 1 assert service.containers()[0].is_running self.dispatch(['down', '-t', '1'], None) assert len(service.containers(stopped=True)) == 0 def test_up_detached(self): self.dispatch(['up', '-d']) service = self.project.get_service('simple') another = self.project.get_service('another') assert len(service.containers()) == 1 assert len(another.containers()) == 1 # Ensure containers don't have stdin and stdout connected in -d mode container, = service.containers() assert not container.get('Config.AttachStderr') assert not container.get('Config.AttachStdout') assert not container.get('Config.AttachStdin') def test_up_detached_long_form(self): self.dispatch(['up', '--detach']) service = self.project.get_service('simple') another = self.project.get_service('another') assert len(service.containers()) == 1 assert len(another.containers()) == 1 # Ensure containers don't have stdin and stdout connected in -d mode container, = service.containers() assert not container.get('Config.AttachStderr') assert not container.get('Config.AttachStdout') assert not container.get('Config.AttachStdin') def test_up_attached(self): self.base_dir = 'tests/fixtures/echo-services' result = self.dispatch(['up', '--no-color']) simple_name = self.project.get_service('simple').containers(stopped=True)[0].name_without_project another_name = self.project.get_service('another').containers( stopped=True )[0].name_without_project assert '{} | simple'.format(simple_name) in result.stdout assert '{} | another'.format(another_name) in result.stdout assert '{} exited with code 0'.format(simple_name) in result.stdout assert '{} exited with code 0'.format(another_name) in result.stdout @v2_only() def test_up(self): self.base_dir = 'tests/fixtures/v2-simple' self.dispatch(['up', '-d'], None) services = self.project.get_services() network_name = self.project.networks.networks['default'].full_name networks = self.client.networks(names=[network_name]) assert len(networks) == 1 assert networks[0]['Driver'] == 'bridge' if not is_cluster(self.client) else 'overlay' assert 'com.docker.network.bridge.enable_icc' not in networks[0]['Options'] network = self.client.inspect_network(networks[0]['Id']) for service in services: containers = service.containers() assert len(containers) == 1 container = containers[0] assert container.id in network['Containers'] networks = container.get('NetworkSettings.Networks') assert list(networks) == [network['Name']] assert sorted(networks[network['Name']]['Aliases']) == sorted( [service.name, container.short_id] ) for service in services: assert self.lookup(container, service.name) @v2_only() def test_up_no_start(self): self.base_dir = 'tests/fixtures/v2-full' self.dispatch(['up', '--no-start'], None) services = self.project.get_services() default_network = self.project.networks.networks['default'].full_name front_network = self.project.networks.networks['front'].full_name networks = self.client.networks(names=[default_network, front_network]) assert len(networks) == 2 for service in services: containers = service.containers(stopped=True) assert len(containers) == 1 container = containers[0] assert not container.is_running assert container.get('State.Status') == 'created' volumes = self.project.volumes.volumes assert 'data' in volumes volume = volumes['data'] # The code below is a Swarm-compatible equivalent to volume.exists() remote_volumes = [ v for v in self.client.volumes().get('Volumes', []) if v['Name'].split('/')[-1] == volume.full_name ] assert len(remote_volumes) > 0 @v2_only() def test_up_no_ansi(self): self.base_dir = 'tests/fixtures/v2-simple' result = self.dispatch(['--no-ansi', 'up', '-d'], None) assert "%c[2K\r" % 27 not in result.stderr assert "%c[1A" % 27 not in result.stderr assert "%c[1B" % 27 not in result.stderr @v2_only() def test_up_with_default_network_config(self): filename = 'default-network-config.yml' self.base_dir = 'tests/fixtures/networks' self._project = get_project(self.base_dir, [filename]) self.dispatch(['-f', filename, 'up', '-d'], None) network_name = self.project.networks.networks['default'].full_name networks = self.client.networks(names=[network_name]) assert networks[0]['Options']['com.docker.network.bridge.enable_icc'] == 'false' @v2_only() def test_up_with_network_aliases(self): filename = 'network-aliases.yml' self.base_dir = 'tests/fixtures/networks' self.dispatch(['-f', filename, 'up', '-d'], None) back_name = '{}_back'.format(self.project.name) front_name = '{}_front'.format(self.project.name) networks = [ n for n in self.client.networks() if n['Name'].split('/')[-1].startswith('{}_'.format(self.project.name)) ] # Two networks were created: back and front assert sorted(n['Name'].split('/')[-1] for n in networks) == [back_name, front_name] web_container = self.project.get_service('web').containers()[0] back_aliases = web_container.get( 'NetworkSettings.Networks.{}.Aliases'.format(back_name) ) assert 'web' in back_aliases front_aliases = web_container.get( 'NetworkSettings.Networks.{}.Aliases'.format(front_name) ) assert 'web' in front_aliases assert 'forward_facing' in front_aliases assert 'ahead' in front_aliases @v2_only() def test_up_with_network_internal(self): self.require_api_version('1.23') filename = 'network-internal.yml' self.base_dir = 'tests/fixtures/networks' self.dispatch(['-f', filename, 'up', '-d'], None) internal_net = '{}_internal'.format(self.project.name) networks = [ n for n in self.client.networks() if n['Name'].split('/')[-1].startswith('{}_'.format(self.project.name)) ] # One network was created: internal assert sorted(n['Name'].split('/')[-1] for n in networks) == [internal_net] assert networks[0]['Internal'] is True @v2_only() def test_up_with_network_static_addresses(self): filename = 'network-static-addresses.yml' ipv4_address = '172.16.100.100' ipv6_address = 'fe80::1001:100' self.base_dir = 'tests/fixtures/networks' self.dispatch(['-f', filename, 'up', '-d'], None) static_net = '{}_static_test'.format(self.project.name) networks = [ n for n in self.client.networks() if n['Name'].split('/')[-1].startswith('{}_'.format(self.project.name)) ] # One networks was created: front assert sorted(n['Name'].split('/')[-1] for n in networks) == [static_net] web_container = self.project.get_service('web').containers()[0] ipam_config = web_container.get( 'NetworkSettings.Networks.{}.IPAMConfig'.format(static_net) ) assert ipv4_address in ipam_config.values() assert ipv6_address in ipam_config.values() @v2_only() def test_up_with_networks(self): self.base_dir = 'tests/fixtures/networks' self.dispatch(['up', '-d'], None) back_name = '{}_back'.format(self.project.name) front_name = '{}_front'.format(self.project.name) networks = [ n for n in self.client.networks() if n['Name'].split('/')[-1].startswith('{}_'.format(self.project.name)) ] # Two networks were created: back and front assert sorted(n['Name'].split('/')[-1] for n in networks) == [back_name, front_name] # lookup by ID instead of name in case of duplicates back_network = self.client.inspect_network( [n for n in networks if n['Name'] == back_name][0]['Id'] ) front_network = self.client.inspect_network( [n for n in networks if n['Name'] == front_name][0]['Id'] ) web_container = self.project.get_service('web').containers()[0] app_container = self.project.get_service('app').containers()[0] db_container = self.project.get_service('db').containers()[0] for net_name in [front_name, back_name]: links = app_container.get('NetworkSettings.Networks.{}.Links'.format(net_name)) assert '{}:database'.format(db_container.name) in links # db and app joined the back network assert sorted(back_network['Containers']) == sorted([db_container.id, app_container.id]) # web and app joined the front network assert sorted(front_network['Containers']) == sorted([web_container.id, app_container.id]) # web can see app but not db assert self.lookup(web_container, "app") assert not self.lookup(web_container, "db") # app can see db assert self.lookup(app_container, "db") # app has aliased db to "database" assert self.lookup(app_container, "database") @v2_only() def test_up_missing_network(self): self.base_dir = 'tests/fixtures/networks' result = self.dispatch( ['-f', 'missing-network.yml', 'up', '-d'], returncode=1) assert 'Service "web" uses an undefined network "foo"' in result.stderr @v2_only() @no_cluster('container networks not supported in Swarm') def test_up_with_network_mode(self): c = self.client.create_container( 'busybox', 'top', name='composetest_network_mode_container', host_config={} ) self.addCleanup(self.client.remove_container, c, force=True) self.client.start(c) container_mode_source = 'container:{}'.format(c['Id']) filename = 'network-mode.yml' self.base_dir = 'tests/fixtures/networks' self._project = get_project(self.base_dir, [filename]) self.dispatch(['-f', filename, 'up', '-d'], None) networks = [ n for n in self.client.networks() if n['Name'].split('/')[-1].startswith('{}_'.format(self.project.name)) ] assert not networks for name in ['bridge', 'host', 'none']: container = self.project.get_service(name).containers()[0] assert list(container.get('NetworkSettings.Networks')) == [name] assert container.get('HostConfig.NetworkMode') == name service_mode_source = 'container:{}'.format( self.project.get_service('bridge').containers()[0].id) service_mode_container = self.project.get_service('service').containers()[0] assert not service_mode_container.get('NetworkSettings.Networks') assert service_mode_container.get('HostConfig.NetworkMode') == service_mode_source container_mode_container = self.project.get_service('container').containers()[0] assert not container_mode_container.get('NetworkSettings.Networks') assert container_mode_container.get('HostConfig.NetworkMode') == container_mode_source @v2_only() def test_up_external_networks(self): filename = 'external-networks.yml' self.base_dir = 'tests/fixtures/networks' self._project = get_project(self.base_dir, [filename]) result = self.dispatch(['-f', filename, 'up', '-d'], returncode=1) assert 'declared as external, but could not be found' in result.stderr networks = [ n['Name'] for n in self.client.networks() if n['Name'].startswith('{}_'.format(self.project.name)) ] assert not networks network_names = ['{}_{}'.format(self.project.name, n) for n in ['foo', 'bar']] for name in network_names: self.client.create_network(name, attachable=True) self.dispatch(['-f', filename, 'up', '-d']) container = self.project.containers()[0] assert sorted(list(container.get('NetworkSettings.Networks'))) == sorted(network_names) @v2_only() def test_up_with_external_default_network(self): filename = 'external-default.yml' self.base_dir = 'tests/fixtures/networks' self._project = get_project(self.base_dir, [filename]) result = self.dispatch(['-f', filename, 'up', '-d'], returncode=1) assert 'declared as external, but could not be found' in result.stderr networks = [ n['Name'] for n in self.client.networks() if n['Name'].split('/')[-1].startswith('{}_'.format(self.project.name)) ] assert not networks network_name = 'composetest_external_network' self.client.create_network(network_name, attachable=True) self.dispatch(['-f', filename, 'up', '-d']) container = self.project.containers()[0] assert list(container.get('NetworkSettings.Networks')) == [network_name] @v2_1_only() def test_up_with_network_labels(self): filename = 'network-label.yml' self.base_dir = 'tests/fixtures/networks' self._project = get_project(self.base_dir, [filename]) self.dispatch(['-f', filename, 'up', '-d'], returncode=0) network_with_label = '{}_network_with_label'.format(self.project.name) networks = [ n for n in self.client.networks() if n['Name'].split('/')[-1].startswith('{}_'.format(self.project.name)) ] assert [n['Name'].split('/')[-1] for n in networks] == [network_with_label] assert 'label_key' in networks[0]['Labels'] assert networks[0]['Labels']['label_key'] == 'label_val' @v2_1_only() def test_up_with_volume_labels(self): filename = 'volume-label.yml' self.base_dir = 'tests/fixtures/volumes' self._project = get_project(self.base_dir, [filename]) self.dispatch(['-f', filename, 'up', '-d'], returncode=0) volume_with_label = '{}_volume_with_label'.format(self.project.name) volumes = [ v for v in self.client.volumes().get('Volumes', []) if v['Name'].split('/')[-1].startswith('{}_'.format(self.project.name)) ] assert set([v['Name'].split('/')[-1] for v in volumes]) == set([volume_with_label]) assert 'label_key' in volumes[0]['Labels'] assert volumes[0]['Labels']['label_key'] == 'label_val' @v2_only() def test_up_no_services(self): self.base_dir = 'tests/fixtures/no-services' self.dispatch(['up', '-d'], None) network_names = [ n['Name'] for n in self.client.networks() if n['Name'].split('/')[-1].startswith('{}_'.format(self.project.name)) ] assert network_names == [] def test_up_with_links_v1(self): self.base_dir = 'tests/fixtures/links-composefile' self.dispatch(['up', '-d', 'web'], None) # No network was created network_name = self.project.networks.networks['default'].full_name networks = self.client.networks(names=[network_name]) assert networks == [] web = self.project.get_service('web') db = self.project.get_service('db') console = self.project.get_service('console') # console was not started assert len(web.containers()) == 1 assert len(db.containers()) == 1 assert len(console.containers()) == 0 # web has links web_container = web.containers()[0] assert web_container.get('HostConfig.Links') def test_up_with_net_is_invalid(self): self.base_dir = 'tests/fixtures/net-container' result = self.dispatch( ['-f', 'v2-invalid.yml', 'up', '-d'], returncode=1) assert "Unsupported config option for services.bar: 'net'" in result.stderr @no_cluster("Legacy networking not supported on Swarm") def test_up_with_net_v1(self): self.base_dir = 'tests/fixtures/net-container' self.dispatch(['up', '-d'], None) bar = self.project.get_service('bar') bar_container = bar.containers()[0] foo = self.project.get_service('foo') foo_container = foo.containers()[0] assert foo_container.get('HostConfig.NetworkMode') == 'container:{}'.format( bar_container.id ) @v3_only() def test_up_with_healthcheck(self): def wait_on_health_status(container, status): def condition(): container.inspect() return container.get('State.Health.Status') == status return wait_on_condition(condition, delay=0.5) self.base_dir = 'tests/fixtures/healthcheck' self.dispatch(['up', '-d'], None)
self.__get_color(C_CYAN)|curses.A_REVERSE, 'yellow': self.__get_color(C_YELLOW)|curses.A_BOLD }, 'state_yellow': { 'default': self.__get_color(C_YELLOW), 'cursor': self.__get_color(C_CYAN)|curses.A_REVERSE, 'yellow': self.__get_color(C_YELLOW)|curses.A_BOLD }, 'state_green': { 'default': self.__get_color(C_GREEN), 'cursor': self.__get_color(C_CYAN)|curses.A_REVERSE, 'yellow': self.__get_color(C_YELLOW)|curses.A_BOLD }, 'state_red': { 'default': self.__get_color(C_RED), 'cursor': self.__get_color(C_CYAN)|curses.A_REVERSE, 'yellow': self.__get_color(C_YELLOW)|curses.A_BOLD }, 'query': { 'default': self.__get_color(0), 'cursor': self.__get_color(C_CYAN)|curses.A_REVERSE, 'yellow': self.__get_color(C_YELLOW)|curses.A_BOLD }, 'relation': { 'default': self.__get_color(C_CYAN), 'cursor': self.__get_color(C_CYAN)|curses.A_REVERSE, 'yellow': self.__get_color(C_YELLOW)|curses.A_BOLD }, 'type': { 'default': self.__get_color(0), 'cursor': self.__get_color(C_CYAN)|curses.A_REVERSE, 'yellow': self.__get_color(C_YELLOW)|curses.A_BOLD }, 'mode_yellow': { 'default': self.__get_color(C_YELLOW)|curses.A_BOLD, 'cursor': self.__get_color(C_CYAN)|curses.A_REVERSE, 'yellow': self.__get_color(C_YELLOW)|curses.A_BOLD }, 'mode_red': { 'default': self.__get_color(C_RED)|curses.A_BOLD, 'cursor': self.__get_color(C_CYAN)|curses.A_REVERSE, 'yellow': self.__get_color(C_YELLOW)|curses.A_BOLD } } def __init_curses(self,): """ Initialize curses environment. """ curses.setupterm() self.win = curses.initscr() self.win.keypad(1) curses.noecho() try: # deactivate cursor curses.curs_set(0) # use colors curses.start_color() curses.use_default_colors() except Exception: # Terminal doesn't support curs_set() and colors self.sys_color = False curses.cbreak() curses.endwin() self.win.scrollok(0) (self.maxy, self.maxx) = self.win.getmaxyx() def get_flag_from_options(self, options): """ Returns the flag depending on the options. """ flag = PGTOP_FLAG_DATABASE | PGTOP_FLAG_USER | PGTOP_FLAG_CLIENT flag = flag | PGTOP_FLAG_CPU | PGTOP_FLAG_MEM | PGTOP_FLAG_READ flag = flag | PGTOP_FLAG_WRITE | PGTOP_FLAG_TIME | PGTOP_FLAG_WAIT flag = flag | PGTOP_FLAG_RELATION | PGTOP_FLAG_TYPE | PGTOP_FLAG_MODE flag = flag | PGTOP_FLAG_IOWAIT | PGTOP_FLAG_APPNAME if options.nodb is True: flag -= PGTOP_FLAG_DATABASE if options.nouser is True: flag -= PGTOP_FLAG_USER if options.nocpu is True: flag -= PGTOP_FLAG_CPU if options.noclient is True: flag -= PGTOP_FLAG_CLIENT if options.nomem is True: flag -= PGTOP_FLAG_MEM if options.noread is True: flag -= PGTOP_FLAG_READ if options.nowrite is True: flag -= PGTOP_FLAG_WRITE if options.notime is True: flag -= PGTOP_FLAG_TIME if options.nowait is True: flag -= PGTOP_FLAG_WAIT if options.noappname is True: flag -= PGTOP_FLAG_APPNAME # Remove some if no running against local pg server. if not self.get_is_local() and (flag & PGTOP_FLAG_CPU): flag -= PGTOP_FLAG_CPU if not self.get_is_local() and (flag & PGTOP_FLAG_MEM): flag -= PGTOP_FLAG_MEM if not self.get_is_local() and (flag & PGTOP_FLAG_READ): flag -= PGTOP_FLAG_READ if not self.get_is_local() and (flag & PGTOP_FLAG_WRITE): flag -= PGTOP_FLAG_WRITE if not self.get_is_local() and (flag & PGTOP_FLAG_IOWAIT): flag -= PGTOP_FLAG_IOWAIT return flag def __get_color(self, color): """ Wrapper around curses.color_pair() """ if self.sys_color: return curses.color_pair(color) else: return 0 def set_max_db_length(self, new_length): """ Set new DATABASE column length """ global PGTOP_COLS if new_length > 16: new_length = 16 if new_length < 8: new_length = 8 self.max_db_length = new_length str_nl = str(new_length) PGTOP_COLS['activities']['database']['template_h'] = '%-'+str_nl+'s ' PGTOP_COLS['waiting']['database']['template_h'] = '%-'+str_nl+'s ' PGTOP_COLS['blocking']['database']['template_h'] = '%-'+str_nl+'s ' def at_exit_curses(self,): """ Called at exit time. Rollback to default values. """ try: self.win.keypad(0) self.win.move(0, 0) self.win.erase() except KeyboardInterrupt: pass except AttributeError: # Curses not initialized yet return curses.nocbreak() curses.echo() try: curses.curs_set(1) except Exception: pass curses.endwin() def signal_handler(self, signal, frame): """ Function called on a process kill. """ self.at_exit_curses() print("FATAL: Killed with signal %s ." % (str(signal),)) print("%s" % (str(frame),)) sys.exit(1) def set_nocolor(self,): """ Replace colors by white. """ if not self.sys_color: return self.color = False curses.init_pair(C_BLACK_GREEN, curses.COLOR_BLACK, curses.COLOR_WHITE) curses.init_pair(C_CYAN, curses.COLOR_WHITE, -1) curses.init_pair(C_RED, curses.COLOR_WHITE, -1) curses.init_pair(C_RED_BLACK, curses.COLOR_WHITE, curses.COLOR_BLACK) curses.init_pair(C_GREEN, curses.COLOR_WHITE, -1) curses.init_pair(C_YELLOW, curses.COLOR_WHITE, -1) curses.init_pair(C_MAGENTA, curses.COLOR_WHITE, -1) curses.init_pair(C_WHITE, curses.COLOR_WHITE, -1) curses.init_pair(C_BLACK_CYAN, curses.COLOR_WHITE, -1) curses.init_pair(C_GRAY, curses.COLOR_WHITE, -1) def set_color(self,): """ Set colors. """ if not self.sys_color: return self.color = True curses.init_pair(C_BLACK_GREEN, curses.COLOR_BLACK, curses.COLOR_GREEN) curses.init_pair(C_CYAN, curses.COLOR_CYAN, -1) curses.init_pair(C_RED, curses.COLOR_RED, -1) curses.init_pair(C_RED_BLACK, curses.COLOR_RED, curses.COLOR_BLACK) curses.init_pair(C_GREEN, curses.COLOR_GREEN, -1) curses.init_pair(C_YELLOW, curses.COLOR_YELLOW, -1) curses.init_pair(C_MAGENTA, curses.COLOR_MAGENTA, -1) curses.init_pair(C_WHITE, curses.COLOR_WHITE, -1) curses.init_pair(C_BLACK_CYAN, curses.COLOR_BLACK, curses.COLOR_CYAN) curses.init_pair(C_GRAY, 0, -1) def set_output(self, output): self.output = output def set_options(self, options): self.options = options if self.data: self.data.min_duration = options.minduration def clean_str(self, string): """ Strip and replace some special characters. """ msg = str(string) msg = msg.replace("\n", " ") msg = re.sub(r"\s+", r" ", msg) msg = msg.replace("FATAL:", "") msg = re.sub(r"^\s", r"", msg) msg = re.sub(r"\s$", r"", msg) return msg def ask_password(self, ): """ Ask for PostgreSQL user password """ password = getpass() return password def check_window_size(self,): """ Update window's size """ (self.maxy, self.maxx) = self.win.getmaxyx() return def __get_pause_msg(self,): """ Returns PAUSE message, depending of the line size """ msg = "PAUSE" line = "" line += " " * (int(self.maxx/2) - len(msg)) line += msg line += " " * (self.maxx - len(line) - 0) return line def __pause(self,): """ PAUSE mode """ self.__print_string( self.start_line, 0, self.__get_pause_msg(), self.__get_color(C_RED_BLACK)|curses.A_REVERSE|curses.A_BOLD) while 1: try: k = self.win.getch() except KeyboardInterrupt as err: raise err if k == ord('q'): curses.endwin() exit() if k == ord(' '): curses.flushinp() return 0 if k == curses.KEY_RESIZE: if self.uibuffer is not None and 'procs' in self.uibuffer: self.check_window_size() self.refresh_window( self.uibuffer['procs'], self.uibuffer['extras'], self.uibuffer['flag'], self.uibuffer['indent'], self.uibuffer['io'], self.uibuffer['tps'], self.uibuffer['active_connections'], self.uibuffer['size_ev'], self.uibuffer['total_size']) self.__print_string( self.start_line, 0, self.__get_pause_msg(), self.__get_color(C_RED_BLACK)|\ curses.A_REVERSE|curses.A_BOLD) curses.flushinp() def __current_position(self,): """ Display current mode """ if self.mode == 'activities': msg = "RUNNING QUERIES" if self.mode == 'waiting': msg = "WAITING QUERIES" if self.mode == 'blocking': msg = "BLOCKING QUERIES" color = self.__get_color(C_GREEN) line = "" line += " " * (int(self.maxx/2) - len(msg)) line += msg line += " " * (self.maxx - len(line) - 0) self.__print_string(self.start_line, 0, line, color|curses.A_BOLD) def __help_key_interactive(self,): """ Display interactive mode menu bar """ colno = self.__print_string( (self.maxy - 1), 0, "c", self.__get_color(0)) colno += self.__print_string( (self.maxy - 1), colno, "Cancel current query ", self.__get_color(C_CYAN)|curses.A_REVERSE) colno += self.__print_string( (self.maxy - 1), colno, "k", self.__get_color(0)) colno += self.__print_string( (self.maxy - 1), colno, "Terminate the backend ", self.__get_color(C_CYAN)|curses.A_REVERSE) colno += self.__print_string( (self.maxy - 1), colno, "Space", self.__get_color(0)) colno += self.__print_string( (self.maxy - 1), colno, "Tag/untag the process ", self.__get_color(C_CYAN)|curses.A_REVERSE) colno += self.__print_string( (self.maxy - 1), colno, "Other", self.__get_color(0)) colno += self.__print_string( (self.maxy - 1), colno, "Back to activity ", self.__get_color(C_CYAN)|curses.A_REVERSE) colno += self.__print_string( (self.maxy - 1), colno, "q", self.__get_color(0)) colno += self.__print_string( (self.maxy - 1), colno, "Quit ", self.__get_color(C_CYAN)|curses.A_REVERSE) colno += self.__print_string( (self.maxy - 1), colno, self.__add_blank(" "), self.__get_color(C_CYAN)|curses.A_REVERSE) def __change_mode_interactive(self,): """ Display change mode menu bar """ colno = self.__print_string( (self.maxy - 1), 0, "F1/1", self.__get_color(0)) colno += self.__print_string( (self.maxy - 1), colno, "Running queries ", self.__get_color(C_CYAN)|curses.A_REVERSE) colno += self.__print_string( (self.maxy - 1), colno, "F2/2", self.__get_color(0)) colno += self.__print_string( (self.maxy - 1), colno, "Waiting queries ", self.__get_color(C_CYAN)|curses.A_REVERSE) colno += self.__print_string( (self.maxy - 1), colno, "F3/3", self.__get_color(0)) colno += self.__print_string( (self.maxy - 1), colno, "Blocking queries ", self.__get_color(C_CYAN)|curses.A_REVERSE) colno += self.__print_string( (self.maxy - 1), colno, "Space", self.__get_color(0)) colno += self.__print_string( (self.maxy - 1), colno, "Pause ", self.__get_color(C_CYAN)|curses.A_REVERSE) colno += self.__print_string( (self.maxy - 1), colno, "q", self.__get_color(0)) colno += self.__print_string( (self.maxy - 1), colno, "Quit ", self.__get_color(C_CYAN)|curses.A_REVERSE) colno += self.__print_string( (self.maxy - 1), colno, "h", self.__get_color(0)) colno += self.__print_string( (self.maxy - 1), colno, "Help ", self.__get_color(C_CYAN)|curses.A_REVERSE) colno += self.__print_string( (self.maxy - 1), colno, self.__add_blank(" ", colno + 1), self.__get_color(C_CYAN)|curses.A_REVERSE) def __ask_terminate_or_cancel_backends(self, action, pids,): """ Ask for cancelling or terminating some backends """ if len(pids) == 1: colno = self.__print_string( (self.maxy - 1), 0, PGTOP_SIGNAL_MESSAGE[action]['s'] % (str(pids[0]),), self.__get_color(0)) else: pos = 0 disp = "" for pid in pids: if pos > 5: disp += "..." break if pos > 0: disp += ", " disp += "%s" % (pid,) pos += 1 colno = self.__print_string( (self.maxy - 1), 0, PGTOP_SIGNAL_MESSAGE[action]['p'] % (str(disp),), self.__get_color(0)) colno += self.__print_string( (self.maxy - 1), colno, self.__add_blank(" "), self.__get_color(C_CYAN)|curses.A_REVERSE) while 1: try: key = self.win.getch() except KeyboardInterrupt as err: raise err # quit if key == ord('q'): curses.endwin() exit() # yes if key == ord('y') or key == ord('Y'): for pid in pids: if action == PGTOP_SIGNAL_TERMINATE_BACKEND: self.data.pg_terminate_backend(str(pid),) else: self.data.pg_cancel_backend(str(pid),) self.__empty_pid_yank() return 1 # no if key == ord('n') or key == ord('N') or key == ord(' '): return 0 # resize => exit if key == curses.KEY_RESIZE: return 0 def __empty_pid_yank(self,): """ Empty pid list to be yanked """ self.pid_yank = [] def __check_pid_yank(self,): """ Check if PIDs in PGTOP_PID_YANK list are still attached to live processes """ if len(self.pid_yank) > 0: for pid in self.pid_yank: if self.pid.count(pid) == 0: self.pid_yank.remove(pid) def __interactive(self, process, flag, indent,): """ Interactive mode trigged on KEY_UP or KEY_DOWN key press If no key hit during 3 seconds, exit this mode """ # Force truncated display old_verbose_mode = self.verbose_mode self.verbose_mode = PGTOP_TRUNCATE # Refresh lines with this verbose mode self.__scroll_window(process, flag, indent, 0) self.__help_key_interactive() current_pos = 0 offset = 0
end_time: builtins.str, start_time: builtins.str) -> None: """ :param end_time: ``CfnAnomalyDetector.RangeProperty.EndTime``. :param start_time: ``CfnAnomalyDetector.RangeProperty.StartTime``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-range.html """ self._values: typing.Dict[str, typing.Any] = { "end_time": end_time, "start_time": start_time, } @builtins.property def end_time(self) -> builtins.str: """``CfnAnomalyDetector.RangeProperty.EndTime``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-range.html#cfn-cloudwatch-anomalydetector-range-endtime """ result = self._values.get("end_time") assert result is not None, "Required property 'end_time' is missing" return result @builtins.property def start_time(self) -> builtins.str: """``CfnAnomalyDetector.RangeProperty.StartTime``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-cloudwatch-anomalydetector-range.html#cfn-cloudwatch-anomalydetector-range-starttime """ result = self._values.get("start_time") assert result is not None, "Required property 'start_time' is missing" return result def __eq__(self, rhs: typing.Any) -> builtins.bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs: typing.Any) -> builtins.bool: return not (rhs == self) def __repr__(self) -> str: return "RangeProperty(%s)" % ", ".join( k + "=" + repr(v) for k, v in self._values.items() ) @jsii.data_type( jsii_type="@aws-cdk/aws-cloudwatch.CfnAnomalyDetectorProps", jsii_struct_bases=[], name_mapping={ "metric_name": "metricName", "namespace": "namespace", "stat": "stat", "configuration": "configuration", "dimensions": "dimensions", }, ) class CfnAnomalyDetectorProps: def __init__( self, *, metric_name: builtins.str, namespace: builtins.str, stat: builtins.str, configuration: typing.Optional[typing.Union[aws_cdk.core.IResolvable, CfnAnomalyDetector.ConfigurationProperty]] = None, dimensions: typing.Optional[typing.Union[aws_cdk.core.IResolvable, typing.List[typing.Union[aws_cdk.core.IResolvable, CfnAnomalyDetector.DimensionProperty]]]] = None, ) -> None: """Properties for defining a ``AWS::CloudWatch::AnomalyDetector``. :param metric_name: ``AWS::CloudWatch::AnomalyDetector.MetricName``. :param namespace: ``AWS::CloudWatch::AnomalyDetector.Namespace``. :param stat: ``AWS::CloudWatch::AnomalyDetector.Stat``. :param configuration: ``AWS::CloudWatch::AnomalyDetector.Configuration``. :param dimensions: ``AWS::CloudWatch::AnomalyDetector.Dimensions``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html """ self._values: typing.Dict[str, typing.Any] = { "metric_name": metric_name, "namespace": namespace, "stat": stat, } if configuration is not None: self._values["configuration"] = configuration if dimensions is not None: self._values["dimensions"] = dimensions @builtins.property def metric_name(self) -> builtins.str: """``AWS::CloudWatch::AnomalyDetector.MetricName``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-metricname """ result = self._values.get("metric_name") assert result is not None, "Required property 'metric_name' is missing" return result @builtins.property def namespace(self) -> builtins.str: """``AWS::CloudWatch::AnomalyDetector.Namespace``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-namespace """ result = self._values.get("namespace") assert result is not None, "Required property 'namespace' is missing" return result @builtins.property def stat(self) -> builtins.str: """``AWS::CloudWatch::AnomalyDetector.Stat``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-stat """ result = self._values.get("stat") assert result is not None, "Required property 'stat' is missing" return result @builtins.property def configuration( self, ) -> typing.Optional[typing.Union[aws_cdk.core.IResolvable, CfnAnomalyDetector.ConfigurationProperty]]: """``AWS::CloudWatch::AnomalyDetector.Configuration``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-configuration """ result = self._values.get("configuration") return result @builtins.property def dimensions( self, ) -> typing.Optional[typing.Union[aws_cdk.core.IResolvable, typing.List[typing.Union[aws_cdk.core.IResolvable, CfnAnomalyDetector.DimensionProperty]]]]: """``AWS::CloudWatch::AnomalyDetector.Dimensions``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-anomalydetector.html#cfn-cloudwatch-anomalydetector-dimensions """ result = self._values.get("dimensions") return result def __eq__(self, rhs: typing.Any) -> builtins.bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs: typing.Any) -> builtins.bool: return not (rhs == self) def __repr__(self) -> str: return "CfnAnomalyDetectorProps(%s)" % ", ".join( k + "=" + repr(v) for k, v in self._values.items() ) @jsii.implements(aws_cdk.core.IInspectable) class CfnCompositeAlarm( aws_cdk.core.CfnResource, metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.CfnCompositeAlarm", ): """A CloudFormation ``AWS::CloudWatch::CompositeAlarm``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html :cloudformationResource: AWS::CloudWatch::CompositeAlarm """ def __init__( self, scope: aws_cdk.core.Construct, id: builtins.str, *, alarm_name: builtins.str, alarm_rule: builtins.str, actions_enabled: typing.Optional[typing.Union[builtins.bool, aws_cdk.core.IResolvable]] = None, alarm_actions: typing.Optional[typing.List[builtins.str]] = None, alarm_description: typing.Optional[builtins.str] = None, insufficient_data_actions: typing.Optional[typing.List[builtins.str]] = None, ok_actions: typing.Optional[typing.List[builtins.str]] = None, ) -> None: """Create a new ``AWS::CloudWatch::CompositeAlarm``. :param scope: - scope in which this resource is defined. :param id: - scoped id of the resource. :param alarm_name: ``AWS::CloudWatch::CompositeAlarm.AlarmName``. :param alarm_rule: ``AWS::CloudWatch::CompositeAlarm.AlarmRule``. :param actions_enabled: ``AWS::CloudWatch::CompositeAlarm.ActionsEnabled``. :param alarm_actions: ``AWS::CloudWatch::CompositeAlarm.AlarmActions``. :param alarm_description: ``AWS::CloudWatch::CompositeAlarm.AlarmDescription``. :param insufficient_data_actions: ``AWS::CloudWatch::CompositeAlarm.InsufficientDataActions``. :param ok_actions: ``AWS::CloudWatch::CompositeAlarm.OKActions``. """ props = CfnCompositeAlarmProps( alarm_name=alarm_name, alarm_rule=alarm_rule, actions_enabled=actions_enabled, alarm_actions=alarm_actions, alarm_description=alarm_description, insufficient_data_actions=insufficient_data_actions, ok_actions=ok_actions, ) jsii.create(CfnCompositeAlarm, self, [scope, id, props]) @jsii.member(jsii_name="inspect") def inspect(self, inspector: aws_cdk.core.TreeInspector) -> None: """(experimental) Examines the CloudFormation resource and discloses attributes. :param inspector: - tree inspector to collect and process attributes. :stability: experimental """ return jsii.invoke(self, "inspect", [inspector]) @jsii.member(jsii_name="renderProperties") def _render_properties( self, props: typing.Mapping[builtins.str, typing.Any], ) -> typing.Mapping[builtins.str, typing.Any]: """ :param props: - """ return jsii.invoke(self, "renderProperties", [props]) @jsii.python.classproperty # type: ignore @jsii.member(jsii_name="CFN_RESOURCE_TYPE_NAME") def CFN_RESOURCE_TYPE_NAME(cls) -> builtins.str: """The CloudFormation resource type name for this resource class.""" return jsii.sget(cls, "CFN_RESOURCE_TYPE_NAME") @builtins.property # type: ignore @jsii.member(jsii_name="attrArn") def attr_arn(self) -> builtins.str: """ :cloudformationAttribute: Arn """ return jsii.get(self, "attrArn") @builtins.property # type: ignore @jsii.member(jsii_name="cfnProperties") def _cfn_properties(self) -> typing.Mapping[builtins.str, typing.Any]: return jsii.get(self, "cfnProperties") @builtins.property # type: ignore @jsii.member(jsii_name="alarmName") def alarm_name(self) -> builtins.str: """``AWS::CloudWatch::CompositeAlarm.AlarmName``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html#cfn-cloudwatch-compositealarm-alarmname """ return jsii.get(self, "alarmName") @alarm_name.setter # type: ignore def alarm_name(self, value: builtins.str) -> None: jsii.set(self, "alarmName", value) @builtins.property # type: ignore @jsii.member(jsii_name="alarmRule") def alarm_rule(self) -> builtins.str: """``AWS::CloudWatch::CompositeAlarm.AlarmRule``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html#cfn-cloudwatch-compositealarm-alarmrule """ return jsii.get(self, "alarmRule") @alarm_rule.setter # type: ignore def alarm_rule(self, value: builtins.str) -> None: jsii.set(self, "alarmRule", value) @builtins.property # type: ignore @jsii.member(jsii_name="actionsEnabled") def actions_enabled( self, ) -> typing.Optional[typing.Union[builtins.bool, aws_cdk.core.IResolvable]]: """``AWS::CloudWatch::CompositeAlarm.ActionsEnabled``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html#cfn-cloudwatch-compositealarm-actionsenabled """ return jsii.get(self, "actionsEnabled") @actions_enabled.setter # type: ignore def actions_enabled( self, value: typing.Optional[typing.Union[builtins.bool, aws_cdk.core.IResolvable]], ) -> None: jsii.set(self, "actionsEnabled", value) @builtins.property # type: ignore @jsii.member(jsii_name="alarmActions") def alarm_actions(self) -> typing.Optional[typing.List[builtins.str]]: """``AWS::CloudWatch::CompositeAlarm.AlarmActions``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html#cfn-cloudwatch-compositealarm-alarmactions """ return jsii.get(self, "alarmActions") @alarm_actions.setter # type: ignore def alarm_actions(self, value: typing.Optional[typing.List[builtins.str]]) -> None: jsii.set(self, "alarmActions", value) @builtins.property # type: ignore @jsii.member(jsii_name="alarmDescription") def alarm_description(self) -> typing.Optional[builtins.str]: """``AWS::CloudWatch::CompositeAlarm.AlarmDescription``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html#cfn-cloudwatch-compositealarm-alarmdescription """ return jsii.get(self, "alarmDescription") @alarm_description.setter # type: ignore def alarm_description(self, value: typing.Optional[builtins.str]) -> None: jsii.set(self, "alarmDescription", value) @builtins.property # type: ignore @jsii.member(jsii_name="insufficientDataActions") def insufficient_data_actions(self) -> typing.Optional[typing.List[builtins.str]]: """``AWS::CloudWatch::CompositeAlarm.InsufficientDataActions``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html#cfn-cloudwatch-compositealarm-insufficientdataactions """ return jsii.get(self, "insufficientDataActions") @insufficient_data_actions.setter # type: ignore def insufficient_data_actions( self, value: typing.Optional[typing.List[builtins.str]], ) -> None: jsii.set(self, "insufficientDataActions", value) @builtins.property # type: ignore @jsii.member(jsii_name="okActions") def ok_actions(self) -> typing.Optional[typing.List[builtins.str]]: """``AWS::CloudWatch::CompositeAlarm.OKActions``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html#cfn-cloudwatch-compositealarm-okactions """ return jsii.get(self, "okActions") @ok_actions.setter # type: ignore def ok_actions(self, value: typing.Optional[typing.List[builtins.str]]) -> None: jsii.set(self, "okActions", value) @jsii.data_type( jsii_type="@aws-cdk/aws-cloudwatch.CfnCompositeAlarmProps", jsii_struct_bases=[], name_mapping={ "alarm_name": "alarmName", "alarm_rule": "alarmRule", "actions_enabled": "actionsEnabled", "alarm_actions": "alarmActions", "alarm_description": "alarmDescription", "insufficient_data_actions": "insufficientDataActions", "ok_actions": "okActions", }, ) class CfnCompositeAlarmProps: def __init__( self, *, alarm_name: builtins.str, alarm_rule: builtins.str, actions_enabled: typing.Optional[typing.Union[builtins.bool, aws_cdk.core.IResolvable]] = None, alarm_actions: typing.Optional[typing.List[builtins.str]] = None, alarm_description: typing.Optional[builtins.str] = None, insufficient_data_actions: typing.Optional[typing.List[builtins.str]] = None, ok_actions: typing.Optional[typing.List[builtins.str]] = None, ) -> None: """Properties for defining a ``AWS::CloudWatch::CompositeAlarm``. :param alarm_name: ``AWS::CloudWatch::CompositeAlarm.AlarmName``. :param alarm_rule: ``AWS::CloudWatch::CompositeAlarm.AlarmRule``. :param actions_enabled: ``AWS::CloudWatch::CompositeAlarm.ActionsEnabled``. :param alarm_actions: ``AWS::CloudWatch::CompositeAlarm.AlarmActions``. :param alarm_description: ``AWS::CloudWatch::CompositeAlarm.AlarmDescription``. :param insufficient_data_actions: ``AWS::CloudWatch::CompositeAlarm.InsufficientDataActions``. :param ok_actions: ``AWS::CloudWatch::CompositeAlarm.OKActions``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html """ self._values: typing.Dict[str, typing.Any] = { "alarm_name": alarm_name, "alarm_rule": alarm_rule, } if actions_enabled is not None: self._values["actions_enabled"] = actions_enabled if alarm_actions is not None: self._values["alarm_actions"] = alarm_actions if alarm_description is not None: self._values["alarm_description"] = alarm_description if insufficient_data_actions is not None: self._values["insufficient_data_actions"] = insufficient_data_actions if ok_actions is not None: self._values["ok_actions"] = ok_actions @builtins.property def alarm_name(self) -> builtins.str: """``AWS::CloudWatch::CompositeAlarm.AlarmName``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html#cfn-cloudwatch-compositealarm-alarmname """ result = self._values.get("alarm_name") assert result is not None, "Required property 'alarm_name' is missing" return result @builtins.property def alarm_rule(self) -> builtins.str: """``AWS::CloudWatch::CompositeAlarm.AlarmRule``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html#cfn-cloudwatch-compositealarm-alarmrule """ result = self._values.get("alarm_rule") assert result is not None, "Required property 'alarm_rule' is missing" return result @builtins.property def actions_enabled( self, ) -> typing.Optional[typing.Union[builtins.bool, aws_cdk.core.IResolvable]]: """``AWS::CloudWatch::CompositeAlarm.ActionsEnabled``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html#cfn-cloudwatch-compositealarm-actionsenabled """ result = self._values.get("actions_enabled") return result @builtins.property def alarm_actions(self) -> typing.Optional[typing.List[builtins.str]]: """``AWS::CloudWatch::CompositeAlarm.AlarmActions``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html#cfn-cloudwatch-compositealarm-alarmactions """ result = self._values.get("alarm_actions") return result @builtins.property def alarm_description(self) -> typing.Optional[builtins.str]: """``AWS::CloudWatch::CompositeAlarm.AlarmDescription``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html#cfn-cloudwatch-compositealarm-alarmdescription """ result = self._values.get("alarm_description") return result @builtins.property def insufficient_data_actions(self) -> typing.Optional[typing.List[builtins.str]]: """``AWS::CloudWatch::CompositeAlarm.InsufficientDataActions``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html#cfn-cloudwatch-compositealarm-insufficientdataactions """ result = self._values.get("insufficient_data_actions") return result @builtins.property def ok_actions(self) -> typing.Optional[typing.List[builtins.str]]: """``AWS::CloudWatch::CompositeAlarm.OKActions``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-compositealarm.html#cfn-cloudwatch-compositealarm-okactions """ result = self._values.get("ok_actions") return result def __eq__(self, rhs: typing.Any) -> builtins.bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs: typing.Any) -> builtins.bool: return not (rhs == self) def __repr__(self) -> str: return "CfnCompositeAlarmProps(%s)" % ", ".join( k + "=" + repr(v) for k, v in self._values.items() ) @jsii.implements(aws_cdk.core.IInspectable) class CfnDashboard( aws_cdk.core.CfnResource, metaclass=jsii.JSIIMeta, jsii_type="@aws-cdk/aws-cloudwatch.CfnDashboard", ): """A CloudFormation ``AWS::CloudWatch::Dashboard``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-dashboard.html :cloudformationResource: AWS::CloudWatch::Dashboard """ def __init__( self, scope: aws_cdk.core.Construct, id: builtins.str, *, dashboard_body: builtins.str, dashboard_name: typing.Optional[builtins.str] = None, ) -> None: """Create a new ``AWS::CloudWatch::Dashboard``. :param scope: - scope in which this resource is defined. :param id: - scoped id of the resource. :param dashboard_body: ``AWS::CloudWatch::Dashboard.DashboardBody``. :param dashboard_name: ``AWS::CloudWatch::Dashboard.DashboardName``. """ props = CfnDashboardProps( dashboard_body=dashboard_body, dashboard_name=dashboard_name ) jsii.create(CfnDashboard, self, [scope, id, props]) @jsii.member(jsii_name="inspect") def inspect(self, inspector: aws_cdk.core.TreeInspector) -> None: """(experimental) Examines the CloudFormation resource and discloses attributes. :param inspector: - tree inspector to collect and process attributes. :stability: experimental """ return jsii.invoke(self, "inspect", [inspector]) @jsii.member(jsii_name="renderProperties") def _render_properties( self, props: typing.Mapping[builtins.str, typing.Any], ) -> typing.Mapping[builtins.str, typing.Any]: """ :param props: - """ return jsii.invoke(self, "renderProperties", [props]) @jsii.python.classproperty # type: ignore @jsii.member(jsii_name="CFN_RESOURCE_TYPE_NAME") def CFN_RESOURCE_TYPE_NAME(cls) -> builtins.str: """The CloudFormation resource type name for this resource class.""" return jsii.sget(cls, "CFN_RESOURCE_TYPE_NAME") @builtins.property # type: ignore @jsii.member(jsii_name="cfnProperties") def _cfn_properties(self) -> typing.Mapping[builtins.str, typing.Any]: return jsii.get(self, "cfnProperties") @builtins.property # type: ignore @jsii.member(jsii_name="dashboardBody") def dashboard_body(self) -> builtins.str: """``AWS::CloudWatch::Dashboard.DashboardBody``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-dashboard.html#cfn-cloudwatch-dashboard-dashboardbody """ return jsii.get(self, "dashboardBody") @dashboard_body.setter # type: ignore def dashboard_body(self, value: builtins.str) -> None: jsii.set(self, "dashboardBody", value) @builtins.property # type: ignore @jsii.member(jsii_name="dashboardName") def dashboard_name(self) -> typing.Optional[builtins.str]: """``AWS::CloudWatch::Dashboard.DashboardName``. :see: http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-cloudwatch-dashboard.html#cfn-cloudwatch-dashboard-dashboardname """ return jsii.get(self, "dashboardName") @dashboard_name.setter # type: ignore def
|- az apim notification recipient-user delete --resource-group "rg1" --service-name \\ "apimService1" --notification-name "RequestPublisherNotificationMessage" --user-id \\ "576823d0a40f7e74ec07d642" """ helps['apim notification recipient-user list'] = """ type: command short-summary: list notification recipient user. """ helps['apim notification recipient-email'] = """ type: group short-summary: Commands to manage notification recipient email. """ helps['apim notification recipient-email create'] = """ type: command short-summary: create notification recipient email. examples: - name: ApiManagementCreateNotificationRecipientEmail text: |- az apim notification recipient-email create --resource-group "rg1" --service-name \\ "apimService1" --notification-name "RequestPublisherNotificationMessage" --email \\ "<EMAIL>" """ helps['apim notification recipient-email update'] = """ type: command short-summary: update notification recipient email. """ helps['apim notification recipient-email delete'] = """ type: command short-summary: delete notification recipient email. examples: - name: ApiManagementDeleteNotificationRecipientEmail text: |- az apim notification recipient-email delete --resource-group "rg1" --service-name \\ "apimService1" --notification-name "RequestPublisherNotificationMessage" --email \\ "<EMAIL>" """ helps['apim notification recipient-email list'] = """ type: command short-summary: list notification recipient email. """ helps['apim openid-connect-provider'] = """ type: group short-summary: Commands to manage open id connect provider. """ helps['apim openid-connect-provider create'] = """ type: command short-summary: create open id connect provider. examples: - name: ApiManagementCreateOpenIdConnectProvider text: |- az apim openid-connect-provider create --resource-group "rg1" --service-name \\ "apimService1" --opid "templateOpenIdConnect3" --display-name "templateoidprovider3" \\ --metadata-endpoint "https://oidprovider-template3.net" --client-id \\ "oidprovidertemplate3" """ helps['apim openid-connect-provider update'] = """ type: command short-summary: update open id connect provider. examples: - name: ApiManagementUpdateOpenIdConnectProvider text: |- az apim openid-connect-provider update --resource-group "rg1" --service-name \\ "apimService1" --opid "templateOpenIdConnect2" --client-secret "updatedsecret" """ helps['apim openid-connect-provider delete'] = """ type: command short-summary: delete open id connect provider. examples: - name: ApiManagementDeleteOpenIdConnectProvider text: |- az apim openid-connect-provider delete --resource-group "rg1" --service-name \\ "apimService1" --opid "templateOpenIdConnect3" """ helps['apim openid-connect-provider list'] = """ type: command short-summary: list open id connect provider. """ helps['apim openid-connect-provider show'] = """ type: command short-summary: show open id connect provider. """ helps['apim policy'] = """ type: group short-summary: Commands to manage policy. """ helps['apim policy create'] = """ type: command short-summary: create policy. examples: - name: ApiManagementCreatePolicy text: |- az apim policy create --resource-group "rg1" --service-name "apimService1" --policy-id \\ "policy" --value "<policies>\\r\\n <inbound />\\r\\n <backend>\\r\\n <forward-request />\\r\\ n </backend>\\r\\n <outbound />\\r\\n</policies>" --format "xml" """ helps['apim policy update'] = """ type: command short-summary: update policy. """ helps['apim policy delete'] = """ type: command short-summary: delete policy. examples: - name: ApiManagementDeletePolicy text: |- az apim policy delete --resource-group "rg1" --service-name "apimService1" --policy-id \\ "policy" """ helps['apim policy list'] = """ type: command short-summary: list policy. """ helps['apim policy show'] = """ type: command short-summary: show policy. """ helps['apim portalsetting signin'] = """ type: group short-summary: Commands to manage sign in setting. """ helps['apim portalsetting signin create'] = """ type: command short-summary: create sign in setting. examples: - name: ApiManagementPortalSettingsUpdateSignIn text: |- az apim portalsetting signin create --resource-group "rg1" --name "apimService1" \\ --enabled true """ helps['apim portalsetting signin update'] = """ type: command short-summary: update sign in setting. examples: - name: ApiManagementPortalSettingsUpdateSignIn text: |- az apim portalsetting signin update --resource-group "rg1" --name "apimService1" \\ --enabled true """ helps['apim portalsetting signin show'] = """ type: command short-summary: show sign in setting. """ helps['apim portalsetting signup'] = """ type: group short-summary: Commands to manage sign up setting. """ helps['apim portalsetting signup create'] = """ type: command short-summary: create sign up setting. examples: - name: ApiManagementPortalSettingsUpdateSignUp text: |- az apim portalsetting signup create --resource-group "rg1" --name "apimService1" \\ --enabled true """ helps['apim portalsetting signup update'] = """ type: command short-summary: update sign up setting. examples: - name: ApiManagementPortalSettingsUpdateSignUp text: |- az apim portalsetting signup update --resource-group "rg1" --name "apimService1" \\ --enabled true """ helps['apim portalsetting signup show'] = """ type: command short-summary: show sign up setting. """ helps['apim portalsetting delegation'] = """ type: group short-summary: Commands to manage delegation setting. """ helps['apim portalsetting delegation create'] = """ type: command short-summary: create delegation setting. examples: - name: ApiManagementPortalSettingsUpdateDelegation text: |- az apim portalsetting delegation create --resource-group "rg1" --name "apimService1" \\ --url "http://contoso.com/delegation" --validation-key "<KEY> <KEY>aQdqPuzJH3ECG4TU2yZjQ7Q==" """ helps['apim portalsetting delegation update'] = """ type: command short-summary: update delegation setting. examples: - name: ApiManagementPortalSettingsUpdateDelegation text: |- az apim portalsetting delegation update --resource-group "rg1" --name "apimService1" \\ --url "http://contoso.com/delegation" --validation-key "<KEY> o66hvUmjCDkPKR3qxPu/otJcNciz2aQdqPuzJH3ECG4TU2yZjQ7Q==" """ helps['apim portalsetting delegation show'] = """ type: command short-summary: show delegation setting. """ helps['apim product'] = """ type: group short-summary: Commands to manage product. """ helps['apim product create'] = """ type: command short-summary: create product. examples: - name: ApiManagementCreateProduct text: |- az apim product create --resource-group "rg1" --service-name "apimService1" --product-id \\ "testproduct" --display-name "Test Template ProductName 4" """ helps['apim product update'] = """ type: command short-summary: update product. examples: - name: ApiManagementUpdateProduct text: |- az apim product update --resource-group "rg1" --service-name "apimService1" --product-id \\ "testproduct" --display-name "Test Template ProductName 4" """ helps['apim product delete'] = """ type: command short-summary: delete product. examples: - name: ApiManagementDeleteProduct text: |- az apim product delete --resource-group "rg1" --service-name "apimService1" --product-id \\ "testproduct" """ helps['apim product list'] = """ type: command short-summary: list product. """ helps['apim product show'] = """ type: command short-summary: show product. """ helps['apim product api'] = """ type: group short-summary: Commands to manage product api. """ helps['apim product api create'] = """ type: command short-summary: create product api. examples: - name: ApiManagementCreateProductApi text: |- az apim product api create --resource-group "rg1" --service-name "apimService1" \\ --product-id "testproduct" --api-id "echo-api" """ helps['apim product api update'] = """ type: command short-summary: update product api. """ helps['apim product api delete'] = """ type: command short-summary: delete product api. examples: - name: ApiManagementDeleteProductApi text: |- az apim product api delete --resource-group "rg1" --service-name "apimService1" \\ --product-id "testproduct" --api-id "echo-api" """ helps['apim product api list'] = """ type: command short-summary: list product api. """ helps['apim product group'] = """ type: group short-summary: Commands to manage product group. """ helps['apim product group create'] = """ type: command short-summary: create product group. examples: - name: ApiManagementCreateProductGroup text: |- az apim product group create --resource-group "rg1" --service-name "apimService1" \\ --product-id "testproduct" --group-id "templateGroup" """ helps['apim product group update'] = """ type: command short-summary: update product group. """ helps['apim product group delete'] = """ type: command short-summary: delete product group. examples: - name: ApiManagementDeleteProductGroup text: |- az apim product group delete --resource-group "rg1" --service-name "apimService1" \\ --product-id "testproduct" --group-id "templateGroup" """ helps['apim product group list'] = """ type: command short-summary: list product group. """ helps['apim product policy'] = """ type: group short-summary: Commands to manage product policy. """ helps['apim product policy create'] = """ type: command short-summary: create product policy. examples: - name: ApiManagementCreateProductPolicy text: |- az apim product policy create --resource-group "rg1" --service-name "apimService1" \\ --product-id "5702e97e5157a50f48dce801" --policy-id "policy" --value "<policies>\\r\\n <inb ound>\\r\\n <rate-limit calls=\\"{{call-count}}\\" renewal-period=\\"15\\"></rate-limit>\\r\\n <log-to-eventhub logger-id=\\"16\\">\\r\\n @( string.Join(\\",\\", DateT ime.UtcNow, context.Deployment.ServiceName, context.RequestId, context.Request.IpAddress, context.Operation.Name) ) \\r\\n </log-to-eventhub>\\r\\n <quota-by-key ca lls=\\"40\\" counter-key=\\"cc\\" renewal-period=\\"3600\\" increment-count=\\"@(context.Request. Method == &quot;POST&quot; ? 1:2)\\" />\\r\\n <base />\\r\\n </inbound>\\r\\n <backend>\\r\\n <base />\\r\\n </backend>\\r\\n <outbound>\\r\\n <base />\\r\\n </outbound>\\r\\n</policies >" --format "xml" """ helps['apim product policy update'] = """ type: command short-summary: update product policy. """ helps['apim product policy delete'] = """ type: command short-summary: delete product policy. examples: - name: ApiManagementDeleteProductPolicy text: |- az apim product policy delete --resource-group "rg1" --service-name "apimService1" \\ --product-id "testproduct" --policy-id "policy" """ helps['apim product policy list'] = """ type: command short-summary: list product policy. """ helps['apim product policy show'] = """ type: command short-summary: show product policy. """ helps['apim property'] = """ type: group short-summary: Commands to manage property. """ helps['apim property create'] = """ type: command short-summary: create property. examples: - name: ApiManagementCreateProperty text: |- az apim property create --resource-group "rg1" --service-name "apimService1" --prop-id \\ "testprop2" --secret true --display-name "prop3name" --value "propValue" """ helps['apim property update'] = """ type: command short-summary: update property. examples: - name: ApiManagementUpdateProperty text: |- az apim property update --resource-group "rg1" --service-name "apimService1" --prop-id \\ "testprop2" --secret true """ helps['apim property delete'] = """ type: command short-summary: delete property. examples: - name: ApiManagementDeleteProperty text: |- az apim property delete --resource-group "rg1" --service-name "apimService1" --prop-id \\ "testprop2" """ helps['apim property list'] = """ type: command short-summary: list property. """ helps['apim property show'] = """ type: command short-summary: show property. """ helps['apim subscription'] = """ type: group short-summary: Commands to manage subscription. """ helps['apim subscription create'] = """ type: command short-summary: create subscription. examples: - name: ApiManagementCreateSubscription text: |- az apim subscription create --resource-group "rg1" --service-name "apimService1" --sid \\ "testsub" --owner-id "/subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_grou p }}/providers/Microsoft.ApiManagement/service/{{ service_name }}/users/{{ user_name }}" \\ --scope "/subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/provider s/Microsoft.ApiManagement/service/{{ service_name }}/products/{{ product_name }}" \\ --display-name "testsub" """ helps['apim subscription update'] = """ type: command short-summary: update subscription. examples: - name: ApiManagementUpdateSubscription text: |- az
""" MIT License Copyright (c) 2020 Airbyte Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import json from datetime import datetime,timedelta from typing import Dict, Generator import xmltodict import requests from jsonschema import validate from datetime import datetime from urllib.parse import urlencode import traceback import timeunit from collections import OrderedDict from airbyte_protocol import ( AirbyteCatalog, AirbyteConnectionStatus, AirbyteMessage, AirbyteRecordMessage, AirbyteStream, ConfiguredAirbyteCatalog, Status, Type, SyncMode ) from base_python import AirbyteLogger, Source # STREAM NAMES StreamGetSiteMetaData = "GetSiteMetaData" StreamGetSensorMetaData = "GetSensorMetaData" StreamGetSensorData = "GetSensorData" # PARAM_NAMES ConfigPropDataApiUrl = "data_api_url" ConfigPropSystemKey = "system_key" # OTHER CONSTANTS HttpResponseTimeout = 30 # TIME TO WAIT FOR A RESPONSE FROM ONERAIN SERVER (IN SECONDS) OneRainDateTimeFormat = "%Y-%m-%d %H:%M:%S" # DATE FORMAT USED BY ONERAIN FOR DATETIMES class SourceOnerainApi(Source): def check(self, logger: AirbyteLogger, config: json) -> AirbyteConnectionStatus: """ Tests if the input configuration can be used to successfully connect to the integration e.g: if a provided Stripe API token can be used to connect to the Stripe API. :param logger: Logging object to display debug/info/error to the logs (logs will not be accessible via airbyte UI if they are not passed to this logger) :param config: Json object containing the configuration of this source, content of this json is as specified in the properties of the spec.json file :return: AirbyteConnectionStatus indicating a Success or Failure """ try: # VALIDATE CONFIG AGAINST JSON SCHEMA (spec.json) validate( instance=config, schema=self.spec(logger).connectionSpecification) # try to get time (ping) from configured URL url = config[ConfigPropDataApiUrl] def assertAliasedParamsNotBothPresent(config,stream,paramName1,paramName2): if paramName1 in config[stream] and paramName2 in config[stream]: raise AssertionError(f"{stream}: cannot specify both aliased parameters '{paramName1}' and '{paramName2}'. choose one.") def assertOneRainDateFormat(config,stream,paramName): try: if paramName in config[stream]: return datetime.strptime(config[stream][paramName],'%Y-%m-%d %H:%M:%S') except ValueError as e: raise ValueError(stream,paramName,str(e)) # ADDITIONAL GetSiteMetadata STREAM CONFIG CHECKS assertAliasedParamsNotBothPresent(config,StreamGetSiteMetaData,"or_site_id","site_id") # ADDITIONAL GetSensorMetaData STREAM CONFIG CHECKS assertAliasedParamsNotBothPresent(config,StreamGetSensorMetaData,"or_sensor_id","sensor_id") assertAliasedParamsNotBothPresent(config,StreamGetSensorMetaData,"or_site_id","site_id") # ADDITIONAL GetSensorData STREAM CONFIG CHECKS assertAliasedParamsNotBothPresent(config,StreamGetSensorData,"or_site_id","site_id") assertAliasedParamsNotBothPresent(config,StreamGetSensorData,"or_sensor_id","sensor_id") assertOneRainDateFormat(config,StreamGetSensorData,"data_start") assertOneRainDateFormat(config,StreamGetSensorData,"data_end") # PING CONFIGURED ONERAIN URL WITH GetTime REQUEST TO MAKE SURE IT'S A VALID ENDPOINT get_time_url = f'{url}?method=GetTime' # use GetTime method to validate well formed url and that it responds to this # basic time get request r = requests.get(get_time_url,timeout=HttpResponseTimeout) assert r.status_code == 200 return AirbyteConnectionStatus(status=Status.SUCCEEDED) except Exception as e: return AirbyteConnectionStatus(status=Status.FAILED, message=f"An exception occurred: {str(e)}") def discover(self, logger: AirbyteLogger, config: json) -> AirbyteCatalog: """ Returns an AirbyteCatalog representing the available streams and fields in this integration. For example, given valid credentials to a Postgres database, returns an Airbyte catalog where each postgres table is a stream, and each table column is a field. :param logger: Logging object to display debug/info/error to the logs (logs will not be accessible via airbyte UI if they are not passed to this logger) :param config: Json object containing the configuration of this source, content of this json is as specified in the properties of the spec.json file :return: AirbyteCatalog is an object describing a list of all available streams in this source. A stream is an AirbyteStream object that includes:q - its stream name (or table name in the case of Postgres) - json_schema providing the specifications of expected schema for this stream (a list of columns described by their names and types) """ streams = [] # GET SPEC TO GRAB DESCRIPTIONS OF FIELDS spec = self.spec(logger).connectionSpecification defs = spec['definitions'] def get_spec_def_obj(name): return defs[name] def get_spec_def_desc(name): return defs[name]['description'] def get_spec_def_type(name): return defs[name]['type'] def get_spec_def_prop(spec_def_name,def_prop_name): return defs[spec_def_name][def_prop_name] # ADD SCHEMA FOR StreamGetSiteMetaData stream_name = StreamGetSiteMetaData json_schema = { # Example "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "or_site_id": get_spec_def_obj('or_site_id'), "site_id": get_spec_def_obj('site_id'), "location":{"desription":"describes site location","type":"string"}, "owner":{"desription":"DEPRECATED","type":"string"}, "system_id":{"description":"identifies the input system for which the site belongs.", "type":"integer"}, "client_id":{"description":"identifies the client that owns the input system for which the site belongs.","type":"string"}, "latitude_dec":{"description":"latitude of site in decimal form","type":"number"}, "longitude_dec":{"description":"longitude of site in decimal form","type":"number"}, "elevation":{"description":"elevation of site","type":"number"}, }, } streams.append(AirbyteStream(name=stream_name, supported_sync_modes=["full_refresh"], # don't need incremental for site metadata. small dataset source_defined_cursor=False, # small dataset don't need json_schema=json_schema)) # ADD SCHEMA FOR StreamGetSensorMetaData stream_name = StreamGetSensorMetaData json_schema = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "site_id": get_spec_def_obj('site_id'), "sensor_id": get_spec_def_obj('sensor_id'), "or_site_id": get_spec_def_obj('or_site_id'), "or_sensor_id":get_spec_def_obj('or_sensor_id'), "location":{"description":"site name","type":"string"}, "description":{"description":"sensor name", "type":"string"}, "sensor_class":get_spec_def_obj('class'), "sensor_type":{"description":"source type of data","type":"string"}, "units":get_spec_def_obj('units'), "translate":{"description":"text translation enabled", "type":"boolean"}, "precision":{"description":"number of decimals displayed for Reading/Finished value in user interface", "type":"integer"}, "last_time":{"description":"last data time; see GetSensorData A5","type":"string"}, "last_value":{"description":"last Reading/Finished; see GetSensorData A8", "type":"number"}, "last_time_received":{"description":"last data time; see GetSensorData A5", "type":"string"}, "last_value_received":{"description":"last Reading/Finished value; see GetSensorData A8", "type":"number"}, "last_raw_value":{"description":"last raw value; see GetSensorData A6", "type":"number"}, "last_raw_value_received":{"description":"last raw value received; see GetSensorData A6","type":"number"}, "change_time":{"description":"time of last change to sensor metadata","type":"string"}, "normal":{"description":"is sensor in normal mode (not timed out)?", "type":"integer"}, # boolean? "active":{"description":"is sensor active (not in maintenance mode/out of service)?", "type":"integer"}, #boolean? "valid":{"description":"*may* indicate if last value is valid. unknown", "type":"integer"}, #boolean? "change_rate":{"description":"DEPRECATED/UNUSED", "type":"number"}, "time_min_consec_zeros":{"description":"DEPRECATED/UNUSED", "type":"integer"}, "validation":{"description":"validation protocol for finished value", "type":"string"}, "value_max":{"description":"validation parameter: maximum value", "type":"number"}, "value_min":{"description":"validation parameter: minimum value", "type":"number"}, "delta_pos":{"description":"validation parameter: positive delta", "type":"number"}, "delta_neg":{"description":"validation parameter: negative delta", "type":"number"}, "rate_pos":{"description":"DEPRECATED", "type":"integer"}, "rate_neg":{"description":"DEPRECATED", "type":"integer"}, "time_max":{"description":"validation parameter: maximum time", "type":"integer"}, "time_min":{"description":"validation parameter: minimum time", "type":"integer"}, "slope":{"description":"used in data conversion; multiplicative value", "type":"number"}, "offset":{"description":"used in data conversion; additive value", "type":"number"}, "reference":{"description":"used in data conversion; additive value", "type":"number"}, "utc_offset":{"description":"the numeric offset (in hours) from Universal Coordinated Time", "type":"integer"}, "using_dst":{"description":"DEPRECATED", "type":"boolean"}, "conversion":{"description":"conversion protocol for raw to finished value", "type":"string"}, "usage":{"description":"DEPRECATED/UNUSED", "type":"string"}, "protocol":{"description":"DEPRECATED/UNUSED", "type":"integer"} } } streams.append(AirbyteStream(name=stream_name, supported_sync_modes=["full_refresh"], # don't need incremental. small dataset source_defined_cursor=False, json_schema=json_schema)) # ADD STREAM FOR StreamGetSensorData stream_name = StreamGetSensorData json_schema = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": { "site_id":get_spec_def_obj('site_id'), "sensor_id":get_spec_def_obj('sensor_id'), "or_site_id":get_spec_def_obj('or_site_id'), "or_sensor_id":get_spec_def_obj('or_sensor_id'), "sensor_class":get_spec_def_obj('class'), "data_time": { "type": get_spec_def_type('onerain_datetime'), "description":"date/time data was captured", "pattern":get_spec_def_prop('onerain_datetime','pattern') }, "data_value": { "type":"number", "description":"finished data value with precision (conversion) applied", }, "data_quality": get_spec_def_obj('data_quality'), "raw_value": { "type":"number", "description":"this is the value supplied by the source system. It is the value before any conversion or validation is applied.", }, "units": get_spec_def_obj('units') } } streams.append(AirbyteStream(name=stream_name, supported_sync_modes=["full_refresh","incremental"], source_defined_cursor=True, json_schema=json_schema)) return AirbyteCatalog(streams=streams) def read( self, logger: AirbyteLogger, config: json, catalog: ConfiguredAirbyteCatalog, state: Dict[str, any] ) -> Generator[AirbyteMessage, None, None]: """ Returns a generator of the AirbyteMessages generated by reading the source with the given configuration, catalog, and state. :param logger: Logging object to display debug/info/error to the logs (logs will not be accessible via airbyte UI if they are not passed to this logger) :param config: Json object containing the configuration of this source, content of this json is as specified in the properties of the spec.json file :param catalog: The input catalog is a ConfiguredAirbyteCatalog which is almost the same as AirbyteCatalog returned by discover(), but in addition, it's been configured in the UI! For each particular stream and field, there may have been provided with extra modifications such as: filtering streams and/or columns out, renaming some entities, etc :param state: When a Airbyte reads data from a source, it might need to keep a checkpoint cursor to resume replication in the future from that saved checkpoint. This is the object that is provided with state from previous runs and avoid replicating the entire set of data everytime. :return: A generator that produces a stream of AirbyteRecordMessage contained in AirbyteMessage object. """ stream_name = StreamGetSiteMetaData # Example
<reponame>alexholcombe/twoWords<gh_stars>0 #<NAME> <EMAIL> #See the github repository for more information: https://github.com/alexholcombe/twoWords from __future__ import print_function, division from psychopy import monitors, visual, event, data, logging, core, sound, gui, microphone from matplotlib import pyplot import psychopy.info import scipy import numpy as np from math import atan, log, ceil import copy import time, sys, os , pylab try: from noiseStaircaseHelpers import printStaircase, toStaircase, outOfStaircase, createNoise, plotDataAndPsychometricCurve except ImportError: print('Could not import from noiseStaircaseHelpers.py (you need that file to be in the same directory)') try: import stringResponse except ImportError: print('Could not import stringResponse.py (you need that file to be in the same directory)') try: import recordVocalResponseKRedit except ImportError: print('Could not import recordVocalResponse.py (you need that file to be in the same directory)') # test speeds: 17,35,50,66,84,99,115,130 wordDur1 = 1000 #Fast 35 wordDur2 = 1000 #Slow 50 #Setting up vocal response parameters responseMode = 'voice' buffer = 128 # smaller = short play latency, but higher chance of choppy sound playback rate = 48000 # needs to be 40000 or higher. Changing this doesn't seem to work. sound.init(buffer=buffer, rate=rate) autoLogging=False logging.console.setLevel(logging.EXP) #DEBUG means set the console to receive nearly all messges, INFO is for everything else, INFO, EXP, DATA, WARNING and ERROR # initial set up: dataPath='dataRaw' if os.path.isdir('dataRaw'): if os.path.isdir(dataPath+os.sep+'recordings'): recordingPath = dataPath + os.sep + 'recordings' else: print ('No "recordings" dir exists, so saving data in dataRaw') recordingPath = dataPath else: print (dataPath,' directory does not exist, so saving data and recordings in present working directory') dataPath='.' recordingPath='.' # #switchOn doesn't do much, but takes up to several seconds. #Supposed to be able to set the sampling rate # Set up microphone, must be 16000 or 8000 Hz for speech recognition desiredSampleRate=16000 microphone.switchOn(sampleRate=desiredSampleRate) sampleRate = sound.pyoSndServer.getSamplingRate() if (round(sampleRate)==round(desiredSampleRate)): print ('Successfully set sample rate to ',sampleRate) else: print ('Attempted to set sampleRate to = ', desiredSampleRate, ' but is now reported as ', sampleRate, '. Alex hasnt found a way to fix this but it just means you cant use speech recognition') mic = microphone.AdvAudioCapture() #Initialise class to get ready for recording with automatic markerTone to assess timing markerToneDur = 0.05 markerToneVol = .4 # 0.03 works fine and is inaudible markerFreq = 19000 #19000 mic.setMarker(tone=markerFreq, secs=markerToneDur, volume= markerToneVol) (hz,duration,volume) = mic.getMarkerInfo() print ("According to mic, the marker hz=",hz," duration=",duration," volume=",volume) units='deg ' wordEccentricity= 0.3 #4 tasks=['T1']; task = tasks[0] #THINGS THAT COULD PREVENT SUCCESS ON A STRANGE MACHINE #same screen or external screen? Set scrn=0 if one screen. scrn=1 means display stimulus on second screen. #widthPix, heightPix quitFinder = False #if checkRefreshEtc, quitFinder becomes True autopilot=False demo=False #False exportImages= False #quits after one trial subject='PX' #user is prompted to enter true subject name if autopilot: subject='auto' timeAndDateStr = time.strftime("%d%b%Y_%H-%M", time.localtime()) showRefreshMisses=True #flicker fixation at refresh rate, to visualize if frames missed feedback=True autoLogging=False if demo: refreshRate = 60.; #100 numWordsInStream = 1 totalTrials=0 staircaseTrials = 25 prefaceStaircaseTrialsN = 0 #22 prefaceStaircaseNoise = np.array([5,20,20,20, 50,50,50,5,80,80,80,5,95,95,95]) #will be recycled / not all used, as needed threshCriterion = 0.58 bgColor = [-.7,-.7,-.7] # [-1,-1,-1] cueColor = [-.7,-.7,-.7] #originally [1.,1.,1.] letterColor = [1,1,1] #[1.,1.,1.] cueRadius = 6 #6 deg in Goodbourn & Holcombe widthPix= 1600 #1920 #monitor width in pixels of Agosta [1280] heightPix= 900 #1080 #800 #monitor height in pixels [800] monitorwidth = 52.5 #38.7 #monitor width in cm [was 38.7] scrn=1 #0 to use main screen, 1 to use external screen connected to computer #for some reason this works when it is the other way around. fullscr=False #True to use fullscreen, False to not. Timing probably won't be quite right if fullscreen = False allowGUI = False if demo: monitorwidth = 23#18.0 if exportImages: widthPix = 600; heightPix = 600 monitorwidth = 13.0 fullscr=False; scrn=1 framesSaved=0 if demo: scrn=1; fullscr=False widthPix = 800; heightPix = 600 monitorname='EIZO' allowGUI = True viewdist = 57 #50. #cm pixelperdegree = widthPix/ (atan(monitorwidth/viewdist) /np.pi*180) print('pixelperdegree=',pixelperdegree) ltrHeight = 0.7 #0.9 #0.4 #2.5 #Martini letters were 2.5deg high totalTrials=0 # create a dialog from dictionary infoFirst = { 'Do staircase (only)': False, 'Check refresh etc':True, 'Fullscreen (timing errors if not)': fullscr, 'Screen refresh rate': 60 } OK = gui.DlgFromDict(dictionary=infoFirst, title='AB experiment OR staircase to find thresh noise level for T1 performance criterion', order=['Do staircase (only)', 'Check refresh etc', 'Fullscreen (timing errors if not)'], tip={'Check refresh etc': 'To confirm refresh rate and that can keep up, at least when drawing a grating'}, #fixed=['Check refresh etc'])#this attribute can't be changed by the user ) if not OK.OK: print('User cancelled from dialog box'); core.quit() doStaircase = infoFirst['Do staircase (only)'] checkRefreshEtc = infoFirst['Check refresh etc'] fullscr = infoFirst['Fullscreen (timing errors if not)'] refreshRate = infoFirst['Screen refresh rate'] if checkRefreshEtc: quitFinder = True if quitFinder: import os applescript="\'tell application \"Finder\" to quit\'" shellCmd = 'osascript -e '+applescript os.system(shellCmd) monitorname = 'EIZO' waitBlank = False mon = monitors.Monitor(monitorname,width=monitorwidth, distance=viewdist)#relying on monitorwidth cm (39 for Mitsubishi to do deg calculations) and gamma info in calibratn mon.setSizePix( (widthPix,heightPix) ) units='deg' #'cm' def openMyStimWindow(): #make it a function because have to do it several times, want to be sure is identical each time #assumes widthPix, heightPix, allowGUI exists, bgColor, fullscr, scrn,waitBlank print("Trying to open window of size=",widthPix," , ",heightPix) myWin = visual.Window(monitor=mon,size=(widthPix,heightPix),allowGUI=allowGUI,units=units,color=bgColor,colorSpace='rgb',fullscr=fullscr,screen=scrn,waitBlanking=waitBlank) #Holcombe lab monitor print("Opened window,",myWin," of size ",myWin.size) return myWin myWin = openMyStimWindow() #identify the hardware microphone in use: circle = visual.Circle(myWin, 5, fillColor='grey', lineColor='grey', lineColorSpace='rgb', fillColorSpace='rgb', edges=64, autoLog=autoLogging) names, idx = sound.pyo.pa_get_input_devices() inp = sound.pyo.pa_get_default_input() msg = 'Ensure speaker vol > 0\n\nAny key to start...\n\nUsing input="%s"' % names[idx.index(inp)] startMessage = visual.TextStim(myWin, msg, color=letterColor, colorSpace='rgb', height=ltrHeight, autoLog=autoLogging) circle.draw() startMessage.draw() myWin.flip() if 'escape' in event.waitKeys(): print("User quit during sound setup, via ESCAPE") core.quit() refreshMsg2 = '' if not checkRefreshEtc: refreshMsg1 = 'REFRESH RATE WAS NOT CHECKED' refreshRateWrong = False else: #checkRefreshEtc runInfo = psychopy.info.RunTimeInfo( # if you specify author and version here, it overrides the automatic detection of __author__ and __version__ in your script #author='<your name goes here, plus whatever you like, e.g., your lab or contact info>', #version="<your experiment version info>", win=myWin, ## a psychopy.visual.Window() instance; None = default temp window used; False = no win, no win.flips() refreshTest='grating', ## None, True, or 'grating' (eye-candy to avoid a blank screen) verbose=True, ## True means report on everything userProcsDetailed=True ## if verbose and userProcsDetailed, return (command, process-ID) of the user's processes ) #print(runInfo) logging.info(runInfo) print('Finished runInfo- which assesses the refresh and processes of this computer') #check screen refresh is what assuming it is ############################################## Hzs=list() myWin.flip(); myWin.flip();myWin.flip();myWin.flip(); myWin.setRecordFrameIntervals(True) #otherwise myWin.fps won't work print('About to measure frame flips') for i in range(50): myWin.flip() Hzs.append( myWin.fps() ) #varies wildly on successive runs! myWin.setRecordFrameIntervals(False) # end testing of screen refresh######################################################## Hzs = np.array( Hzs ); Hz= np.median(Hzs) msPerFrame= 1000./Hz refreshMsg1= 'Frames per second ~='+ str( np.round(Hz,1) ) refreshRateTolerancePct = 3 pctOff = abs( (np.median(Hzs)-refreshRate) / refreshRate) refreshRateWrong = pctOff > (refreshRateTolerancePct/100.) if refreshRateWrong: refreshMsg1 += ' BUT' refreshMsg1 += ' program assumes ' + str(refreshRate) refreshMsg2 = 'which is off by more than' + str(round(refreshRateTolerancePct,0)) + '%!!' else: refreshMsg1 += ', which is close enough to desired val of ' + str( round(refreshRate,1) ) myWin.allowGUI =True ### myWin.close() #have to close window to show dialog box group = '1' #to use if no staircase, can be set by user trialsPerCondition = 1 #default value dlgLabelsOrdered = list() if doStaircase: myDlg = gui.Dlg(title="Staircase to find appropriate noisePercent", pos=(200,400)) else: myDlg = gui.Dlg(title="RSVP experiment", pos=(200,400)) if not autopilot: myDlg.addField('Subject name (default="PX"):', 'PX', tip='or subject code') dlgLabelsOrdered.append('subject') if doStaircase: #prefaceStaircaseTrialsN = 5 easyTrialsCondText = 'Num preassigned noise trials to preface staircase with (default=' + str(prefaceStaircaseTrialsN) + '):' myDlg.addField(easyTrialsCondText, tip=str(prefaceStaircaseTrialsN)) dlgLabelsOrdered.append('easyTrials') myDlg.addField('Staircase trials (default=' + str(staircaseTrials) + '):', tip="Staircase will run until this number is reached or it thinks it has precise estimate of threshold") dlgLabelsOrdered.append('staircaseTrials') pctCompletedBreak = 101 else: myDlg.addField('\tParticipant Group', group, tip=str(group)) dlgLabelsOrdered.append('group') myDlg.addField('Trials per condition (default=' + str(trialsPerCondition) + '):', trialsPerCondition, tip=str(trialsPerCondition)) dlgLabelsOrdered.append('trialsPerCondition') pctCompletedBreak = 55 myDlg.addText(refreshMsg1, color='Black') if refreshRateWrong: myDlg.addText(refreshMsg2, color='Red') if refreshRateWrong: logging.error(refreshMsg1+refreshMsg2) else: logging.info(refreshMsg1+refreshMsg2) if checkRefreshEtc and (not demo) and (myWin.size != [widthPix,heightPix]).any(): msgWrongResolution = 'Screen apparently NOT the desired resolution of '+ str(widthPix)+'x'+str(heightPix)+ ' pixels!!' myDlg.addText(msgWrongResolution, color='Red') logging.error(msgWrongResolution) print(msgWrongResolution) myDlg.addText('Note: to abort press ESC at a trials response screen', color=[-1.,1.,-1.]) # color='DimGrey') color names stopped working along the way, for unknown reason myDlg.show() if myDlg.OK: #unpack information from dialogue box thisInfo = myDlg.data #this will be a list of data returned from each field added in order if not autopilot: name=thisInfo[dlgLabelsOrdered.index('subject')] if len(name) > 0: #if entered something subject = name #change subject default name to
<reponame>megatron0000/ces22-xadrez from math import sqrt from multiprocessing import Process, Pipe from aiprocess import aiprocess, move2str from chessengine import * from guiengine import * WIDTH = 800 HEIGHT = 600 SCALE = 1 / 15 GAME = None CHOOSINGPROMOTION = False PIPE = None AI_PROC = None WAITING = False PVP = False def set_globals(): global WIDTH, HEIGHT, SCALE, GAME, CHOOSINGPROMOTION, PIPE, AI_PROC, WAITING, PVP WIDTH = 800 HEIGHT = 600 SCALE = 1 / 15 GAME = None CHOOSINGPROMOTION = False PIPE = None AI_PROC = None WAITING = False PVP = False initialize(WIDTH, HEIGHT) SBD = Image('resources/Cburnett V2 improved/PNGs/square brown dark_png.png').scale(SCALE) SBL = Image('resources/Cburnett V2 improved/PNGs/square brown light_png.png').scale(SCALE) SGD = Image('resources/Cburnett V2 improved/PNGs/square gray dark _png.png').scale(SCALE) SGL = Image('resources/Cburnett V2 improved/PNGs/square gray light _png.png').scale(SCALE) INACTIVE_SQUARE = [SBD, SGD] ACTIVE_SQUARE = [SBL, SGL] PIECES = { Bishop(Side.BLACK): Image( 'resources/Cburnett V2 improved/PNGs/With Shadow/b_bishop_png_withShadow.png').scale(SCALE), King(Side.BLACK): Image( 'resources/Cburnett V2 improved/PNGs/With Shadow/b_king_png_withShadow.png').scale(SCALE), Knight(Side.BLACK): Image( 'resources/Cburnett V2 improved/PNGs/With Shadow/b_knight_png_withShadow.png').scale(SCALE), Pawn(Side.BLACK): Image( 'resources/Cburnett V2 improved/PNGs/With Shadow/b_pawn_png_withShadow.png').scale(SCALE), Queen(Side.BLACK): Image( 'resources/Cburnett V2 improved/PNGs/With Shadow/b_queen_png_withShadow.png').scale(SCALE), Rook(Side.BLACK): Image( 'resources/Cburnett V2 improved/PNGs/With Shadow/b_rook_png_withShadow.png').scale(SCALE), Bishop(Side.WHITE): Image( 'resources/Cburnett V2 improved/PNGs/With Shadow/w_bishop_png_withShadow.png').scale(SCALE), King(Side.WHITE): Image( 'resources/Cburnett V2 improved/PNGs/With Shadow/w_king_png_withShadow.png').scale(SCALE), Knight(Side.WHITE): Image( 'resources/Cburnett V2 improved/PNGs/With Shadow/w_knight_png_withShadow.png').scale(SCALE), Pawn(Side.WHITE): Image( 'resources/Cburnett V2 improved/PNGs/With Shadow/w_pawn_png_withShadow.png').scale(SCALE), Queen(Side.WHITE): Image( 'resources/Cburnett V2 improved/PNGs/With Shadow/w_queen_png_withShadow.png').scale(SCALE), Rook(Side.WHITE): Image( 'resources/Cburnett V2 improved/PNGs/With Shadow/w_rook_png_withShadow.png').scale(SCALE) } PIECES_INIT = { "a1": Rook(Side.WHITE), "b1": Knight(Side.WHITE), "c1": Bishop(Side.WHITE), "d1": Queen(Side.WHITE), "e1": King(Side.WHITE), "f1": Bishop(Side.WHITE), "g1": Knight(Side.WHITE), "h1": Rook(Side.WHITE), "a2": Pawn(Side.WHITE), "b2": Pawn(Side.WHITE), "c2": Pawn(Side.WHITE), "d2": Pawn(Side.WHITE), "e2": Pawn(Side.WHITE), "f2": Pawn(Side.WHITE), "g2": Pawn(Side.WHITE), "h2": Pawn(Side.WHITE), "a8": Rook(Side.BLACK), "b8": Knight(Side.BLACK), "c8": Bishop(Side.BLACK), "d8": Queen(Side.BLACK), "e8": King(Side.BLACK), "f8": Bishop(Side.BLACK), "g8": Knight(Side.BLACK), "h8": Rook(Side.BLACK), "a7": Pawn(Side.BLACK), "b7": Pawn(Side.BLACK), "c7": Pawn(Side.BLACK), "d7": Pawn(Side.BLACK), "e7": Pawn(Side.BLACK), "f7": Pawn(Side.BLACK), "g7": Pawn(Side.BLACK), "h7": Pawn(Side.BLACK), } class BoardSquare(FigureNode): def __init__(self, square, xy): self.square = Square(square) super().__init__(xy, INACTIVE_SQUARE[self.square.index % 2]) self.BoardMouse(self).watch(self._bus, lambda: self.bounds) self._bus.on('moves markup', self.markup) self._bus.on('request square change', self.respond_squarechange) def markup(self, moves): if self.square in [move.tosq for move in moves]: self.set_image(ACTIVE_SQUARE[self.square.index % 2]) else: self.set_image(INACTIVE_SQUARE[self.square.index % 2]) def respond_squarechange(self, pos_self_fromsq): if not self.bounds.collidepoint(pos_self_fromsq[0]): return move = next((x for x in GAME.moves(pos_self_fromsq[2]) if x.fromsq == pos_self_fromsq[2] and x.tosq == self.square), None) if move is not None: self._bus.emit( 'respond square change', (self.bounds.topleft, pos_self_fromsq[1], move)) class BoardMouse(MouseAware): def __init__(self, outer): """ :type outer ChessPiece """ super().__init__() self.outer = outer def onclick(self): self.outer._bus.emit('moves markup', []) class ChessPiece(FigureNode): def __init__(self, piece, xy, square): super().__init__(xy, PIECES[piece]) self.image = PIECES[piece] self.calcpos(xy) self.piece = piece self.square = square self.PieceAware(self).watch(self._bus, lambda: self.bounds) self.ismoving = False self.movedirection = (0, 0) self.movetarget = (0, 0) self.timetaken = 0 def calcpos(self, xy, reset=True): x = xy[0] + (SBD.width - self.image.width) / 2 y = xy[1] + (SBD.height - self.image.height) / 2 if reset: self.xy((x, y)) return x, y def update_logic(self, dt): super().update_logic(dt) if self.timetaken > 0: self.xy(tuple(l1 + 800 * dt * l2 for l1, l2 in zip(self.xy(), self.movedirection))) self.timetaken -= dt self._bus.emit(Event.REQ_ANIM_FRAME) if self.timetaken <= 0: self.calcpos(self.movetarget) self.ismoving = False class PieceAware(MouseAware): def __init__(self, outer): """ :type outer ChessPiece """ super().__init__() self.outer = outer self.outer._bus.on('respond square change', self.on_response_squarechange) self.outer._bus.on('order piece move', self.on_order_piece_move) self.draglastpos = None self.originalpos = None def on_response_squarechange(self, pos_self_move): if self is not pos_self_move[1]: return self.outer.calcpos(pos_self_move[0]) self.outer.square = pos_self_move[2].tosq if pos_self_move[2].promotion is not None: self.outer._bus.emit('request promotion options', (self.outer, pos_self_move[2])) captured = GAME.get(pos_self_move[2].tosq) if captured.kind is not NoPiece: self.outer._bus.emit('piece captured', (captured, pos_self_move[2].tosq)) global CHOOSINGPROMOTION CHOOSINGPROMOTION = True return captured = GAME.make(pos_self_move[2]) if captured[0].kind is not NoPiece: self.outer._bus.emit('piece captured', captured) if pos_self_move[2].kind is MoveKind.CASTLE_QUEEN: self.outer._bus.emit('request piece move', (self.outer.square - 2, self.outer.square + 1)) elif pos_self_move[2].kind is MoveKind.CASTLE_KING: self.outer._bus.emit('request piece move', (self.outer.square + 1, self.outer.square - 1)) self.outer._bus.emit('move made', pos_self_move[2]) def on_order_piece_move(self, self_tosq_coord): if self.outer is not self_tosq_coord[0]: return self.outer.square = self_tosq_coord[1] self.outer.ismoving = True self.outer.movedirection = self.outer.calcpos(tuple( l2 - l1 for l1, l2 in zip(self.outer.xy(), self_tosq_coord[2])), reset=False) length = sqrt(self.outer.movedirection[0] * self.outer.movedirection[0] + self.outer.movedirection[1] * self.outer.movedirection[1]) self.outer.movedirection = tuple(l / length for l in self.outer.movedirection) self.outer.movetarget = self_tosq_coord[2] self.outer.timetaken = length / 800 def ondragstart(self, pos): if self.outer.ismoving: return self.outer._bus.emit('moves markup', GAME.moves(self.outer.square)) self.draglastpos = pos self.originalpos = self.outer.xy() def ondrag(self, pos): if self.outer.ismoving: return newxy = tuple( orig + x1 - x0 for orig, x1, x0 in zip(self.outer.xy(), pos, self.draglastpos)) self.outer.xy(newxy) self.draglastpos = pos def ondragend(self, pos): if self.outer.ismoving: return self.outer._bus.emit('moves markup', []) self.outer.xy(self.originalpos) if not CHOOSINGPROMOTION and not WAITING: self.outer._bus.emit('request square change', (pos, self, self.outer.square)) class PromotionOption(FigureNode): class PromotionOptionMouseAware(MouseAware): def __init__(self, outer): super().__init__() self.outer = outer def onmouseenter(self): self.outer.set_image( PIECES[self.outer.chesspiece].clone(apply_changes=False).scale(SCALE * 1.2)) def onmouseleave(self): self.outer.set_image(PIECES[self.outer.chesspiece].clone()) def onclick(self): self.outer._bus.emit('promotion choosen', self.outer.chesspiece) def __init__(self, xy, chesspiece): self.chesspiece = chesspiece super().__init__(xy, PIECES[self.chesspiece].clone()) self.PromotionOptionMouseAware(self).watch(self._bus, lambda: self.bounds) class MainMenuScreen(Scene): """ Classe que monta o menu principal. """ def _parts(self): play_text = Text("Versus CPU", 36, None, (255, 255, 255), (139, 69, 19)) play_button = ButtonNode(((WIDTH - play_text.width()) // 2, 200), play_text) pvp_text = Text("PVP", 36, None, (255, 255, 255), (139, 69, 19)) pvp_button = ButtonNode(((WIDTH - pvp_text.width()) // 2, 400), pvp_text) self._background((184, 134, 11)) self._add_child(play_button) self._add_child(pvp_button) play_button.onclick(self.clickplay) pvp_button.onclick(self.clickpvp) # self._bgm(Sound('Music/Music.ogg')) def clickplay(self): self._bus.emit(Event.SCENE_CHANGE, PlayScreen) global PVP PVP = False def clickpvp(self): self._bus.emit(Event.SCENE_CHANGE, PlayScreen) global PVP PVP = True class PlayScreen(Scene): """ Classe que monta a tela de jogo. """ children = [] promoting_uipiece = None promoting_move = None special_condition_message = None special_condition_button = None def on_piececaptured(self, piece_square): child = next(chesspiece for chesspiece in self.children if isinstance(chesspiece, ChessPiece) and chesspiece.piece == piece_square[0] and chesspiece.square == piece_square[1]) self._remove_child(child) self.children.remove(child) def on_request_piece_move(self, fromsq_tosq): child = next(piece for piece in self.children if piece.square == fromsq_tosq[0] and isinstance(piece, ChessPiece)) square = next(sq for sq in self.children if sq.square == fromsq_tosq[1] and isinstance(sq, BoardSquare)) self._bus.emit('order piece move', (child, fromsq_tosq[1], square.xy())) def on_request_promotion_options(self, uipiece_move): self.promoting_uipiece = uipiece_move[0] self.promoting_move = uipiece_move[1] side = uipiece_move[0].piece.side choose_text = Text('Escolha uma promoção', 40, None, (255, 255, 255), (0, 0, 0)) marginx = (WIDTH - 8 * SBD.width) / 2 marginy = (HEIGHT - 8 * SBD.height) / 2 posx = (WIDTH - choose_text.width()) / 2 posy = ((HEIGHT - 8 * SBD.height) / 2 - choose_text.height()) / 2 choose_button = TextNode((posx, posy), choose_text) self.children.append(choose_button) self._add_child(choose_button) deltay = 0 for piece in [Rook(side), Queen(side), Bishop(side), Knight(side)]: image = PIECES[piece] option = PromotionOption( (marginx + 8 * SBD.width + (marginx - image.width) / 2, deltay + marginy), piece) self._add_child(option) self.children.append(option) deltay += 2 * image.height def on_promotion_choosen(self, chesspiece): xy = next(square.xy() for square in self.children if isinstance(square, BoardSquare) and square.square == self.promoting_uipiece.square) square = self.promoting_uipiece.square promotedpiece = ChessPiece(chesspiece, xy, square) for element in self.children[-5:]: self._remove_child(element) self.children.remove(element) self.children.remove(self.promoting_uipiece) self._remove_child(self.promoting_uipiece) self._add_child(promotedpiece) self.children.append(promotedpiece) global CHOOSINGPROMOTION CHOOSINGPROMOTION = False promotionmove = self.promoting_move._replace(promotion=chesspiece) if promotionmove in GAME.moves(): GAME.make(promotionmove) self._bus.emit('move made', promotionmove) def on_move_made(self, move): global WAITING def change_message(text, color): marginy = (HEIGHT - 8 * SBD.height) / 2 self.special_condition_message.content(text) self.special_condition_message.color(color) self.special_condition_button.xy(( (WIDTH - self.special_condition_message.width()) / 2, marginy + 8 * SBD.height + (marginy - self.special_condition_message.height()) / 2 )) if GAME.stalemate(): change_message( 'EMPATE ! Não há movimentos possíveis. Retorne ao menu principal', (123, 70, 203)) elif GAME.checkmate(): change_message('XEQUE-MATE ! Retorne ao menu principal', (242, 68, 43)) elif GAME.check(): change_message('XEQUE !', (255, 165, 0)) else: change_message('', (0, 0, 0)) if GAME.turn() == Side.BLACK and not GAME.checkmate() and not PVP: # self.on_ai_request_move(AI.ai_move(1, True)) # self.on_ai_request_move(Pool(1).apply_async(AI.ai_move, (2, True)).get()) PIPE.send(move2str(move)) WAITING = True def on_ai_request_move(self, move): uifromsq = next(sq for sq in self.children if isinstance(sq, BoardSquare) and sq.square == move.fromsq) uitosq = next(sq for sq in self.children if isinstance(sq, BoardSquare) and sq.square == move.tosq) uipiece = next(pc for pc in self.children if isinstance(pc, ChessPiece) and pc.square == move.fromsq) # uipiece.square = move.tosq Não ! O 'request piece move' faz a peça lidar com isso por conta própria captured = GAME.make(move) if captured[0].kind is not NoPiece: self._bus.emit('piece captured', captured) self._bus.emit('request piece move', (move.fromsq, move.tosq)) if move.kind is MoveKind.CASTLE_QUEEN: self._bus.emit('request piece move', (move.tosq - 2, move.tosq + 1)) elif move.kind is MoveKind.CASTLE_KING: self._bus.emit('request piece move', (move.tosq + 1, move.tosq - 1)) elif move.promotion is not None: self._bus.emit('request promotion options', (uipiece, move)) self._bus.emit('promotion choosen', move.promotion) self._bus.emit('move made', move) def _parts(self): self.children = [] self.promoting_uipiece = None self.promoting_move = None listagame = [] margemx = (WIDTH - 8 * SBD.width) / 2 margemy = (HEIGHT - 8 * SBD.height) / 2 self.special_condition_message =
from click.testing import CliRunner from unittest.mock import MagicMock import yaml from mai.cli import cli, login_with_profile import mai import os import aws_saml_login.saml import time import pytest TEST_CONFIG = {'example-Administrator': {'saml_identity_provider_url': 'https://auth.example.com', 'saml_role': ['arn:aws:iam::911:saml-provider/Shibboleth', 'arn:aws:iam::911:role/Shibboleth-Administrator', 'example'], 'saml_user': '<EMAIL>'}, 'example-User': {'saml_identity_provider_url': 'https://auth.example.com', 'saml_role': ['arn:aws:iam::911:saml-provider/Shibboleth', 'arn:aws:iam::911:role/Shibboleth-User', 'example'], 'saml_user': '<EMAIL>'}} SAML_RESPONSE_0_ROLES = ('''<xml xmlns="urn:oasis:names:tc:SAML:2.0:assertion"><Assertion>¬ </Assertion></xml>''', []) SAML_RESPONSE_1_ROLE = ('''<xml xmlns="urn:oasis:names:tc:SAML:2.0:assertion"><Assertion>¬ <Attribute FriendlyName="Role" Name="https://aws.amazon.com/SAML/Attributes/Role">¬ <AttributeValue>arn:aws:iam::911:saml-provider/Shibboleth,arn:aws:iam::911:role/Shibboleth-User</AttributeValue>¬ </Attribute>¬ </Assertion></xml>''', [('arn:aws:iam::911:saml-provider/Shibboleth', 'arn:aws:iam::911:role/Shibboleth-User', None)]) SAML_RESPONSE_2_ROLES = ('''<xml xmlns="urn:oasis:names:tc:SAML:2.0:assertion"><Assertion>¬ <Attribute FriendlyName="Role" Name="https://aws.amazon.com/SAML/Attributes/Role">¬ <AttributeValue>arn:aws:iam::911:saml-provider/Shibboleth,arn:aws:iam::911:role/Shibboleth-User</AttributeValue>¬ </Attribute>¬ <Attribute FriendlyName="Role" Name="https://aws.amazon.com/SAML/Attributes/Role">¬ <AttributeValue>arn:aws:iam::911:saml-provider/Shibboleth,arn:aws:iam::911:role/Shibboleth-Administrator</AttributeValue>¬ </Attribute>¬ </Assertion></xml>''', [('arn:aws:iam::911:saml-provider/Shibboleth', 'arn:aws:iam::911:role/Shibboleth-User', 'example'), ('arn:aws:iam::911:saml-provider/Shibboleth', 'arn:aws:iam::911:role/Shibboleth-Administrator', 'example')]) def test_version(): runner = CliRunner() with runner.isolated_filesystem(): result = runner.invoke(cli, ['--version'], catch_exceptions=False) assert 'Mai {}'.format(mai.__version__) in result.output def test_no_command(): runner = CliRunner() with runner.isolated_filesystem(): result = runner.invoke(cli, ['--config-file', 'mai.yaml'], catch_exceptions=False) assert 'No profile configured' in result.output def test_cli(): runner = CliRunner() data = {'myprofile': {}} with runner.isolated_filesystem(): with open('mai.yaml', 'w') as fd: yaml.safe_dump(data, fd) result = runner.invoke(cli, ['--config-file', 'mai.yaml'], catch_exceptions=False) assert 'Usage: cli' in result.output assert 'Missing identity provider URL' in result.output def test_cli_002(): runner = CliRunner() data = {'myprofile': {'saml_identity_provider_url': 'https://auth.example.com'}} with runner.isolated_filesystem(): with open('mai.yaml', 'w') as fd: yaml.safe_dump(data, fd) result = runner.invoke(cli, ['--config-file', 'mai.yaml'], catch_exceptions=False) assert 'Usage: cli' in result.output assert 'Missing SAML username' in result.output def test_cli_global(): runner = CliRunner() data = {'global': {'default_profile': 'myprofile'}, 'myprofile': {}} with runner.isolated_filesystem(): with open('mai.yaml', 'w') as fd: yaml.safe_dump(data, fd) result = runner.invoke(cli, ['--config-file', 'mai.yaml'], catch_exceptions=False) assert 'Usage: cli' in result.output assert 'Missing identity provider URL' in result.output def test_cli_list(): runner = CliRunner() data = {'myprofile': {}} with runner.isolated_filesystem(): with open('mai.yaml', 'w') as fd: yaml.safe_dump(data, fd) result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'list'], catch_exceptions=False) assert 'Name' in result.output def test_create_001_missing_argument(): runner = CliRunner() with runner.isolated_filesystem(): result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'create'], catch_exceptions=False) assert 'Usage: cli' in result.output assert 'Missing argument "profile-name"' in result.output def test_create_002_one_role(monkeypatch): monkeypatch.setattr('keyring.get_password', MagicMock(return_value='')) monkeypatch.setattr('keyring.set_password', MagicMock(return_value='')) monkeypatch.setattr('mai.cli.authenticate', MagicMock(return_value=SAML_RESPONSE_1_ROLE)) runner = CliRunner() with runner.isolated_filesystem(): result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'create', 'foobar'], catch_exceptions=False, input='auth.example.com\n<EMAIL>\n1234567\n') workingdir = os.getcwd() assert os.path.exists('mai.yaml') with open('mai.yaml') as fd: generated_config = yaml.safe_load(fd) assert generated_config['foobar']['saml_identity_provider_url'] == 'https://auth.example.com' assert generated_config['foobar']['saml_role'][1] == 'arn:aws:iam::911:role/Shibboleth-User' assert generated_config['foobar']['saml_user'] == '<EMAIL>' assert 'Identity provider URL: auth.example.com' in result.output assert 'SAML username: <EMAIL>' in result.output assert 'Authenticating against https://auth.example.com..\n OK' in result.output assert 'Storing new profile in {}.. OK'.format(os.path.join(workingdir, 'mai.yaml')) in result.output def test_create_003_no_roles(monkeypatch): monkeypatch.setattr('keyring.get_password', MagicMock(return_value='')) monkeypatch.setattr('keyring.set_password', MagicMock(return_value='')) monkeypatch.setattr('mai.cli.authenticate', MagicMock(return_value=SAML_RESPONSE_0_ROLES)) runner = CliRunner() with runner.isolated_filesystem(): result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'create', 'foobar'], catch_exceptions=False, input='auth.example.com\n<EMAIL>\n1234567\n') assert 'No roles found' in result.output assert result.exit_code == 1 def test_create_004_two_roles(monkeypatch): monkeypatch.setattr('keyring.get_password', MagicMock(return_value='')) monkeypatch.setattr('keyring.set_password', MagicMock(return_value='')) monkeypatch.setattr('mai.cli.authenticate', MagicMock(return_value=SAML_RESPONSE_2_ROLES)) runner = CliRunner() with runner.isolated_filesystem(): result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'create', 'foobar'], catch_exceptions=False, input='auth.example.com\n<EMAIL>@<EMAIL>.<EMAIL>\n1234567\n1\n') workingdir = os.getcwd() assert os.path.exists('mai.yaml') with open('mai.yaml') as fd: generated_config = yaml.safe_load(fd) assert generated_config['foobar']['saml_identity_provider_url'] == 'https://auth.example.com' assert generated_config['foobar']['saml_role'][1] == 'arn:aws:iam::911:role/Shibboleth-Administrator' assert generated_config['foobar']['saml_user'] == '<EMAIL>' assert 'Identity provider URL: auth.example.com' in result.output assert 'SAML username: <EMAIL>' in result.output assert 'Authenticating against https://auth.example.com..\n OK' in result.output assert 'Storing new profile in {}.. OK'.format(os.path.join(workingdir, 'mai.yaml')) in result.output def test_create_005_two_roles_options(monkeypatch): monkeypatch.setattr('keyring.get_password', MagicMock(return_value='')) monkeypatch.setattr('keyring.set_password', MagicMock(return_value='')) monkeypatch.setattr('mai.cli.authenticate', MagicMock(return_value=SAML_RESPONSE_2_ROLES)) runner = CliRunner() with runner.isolated_filesystem(): result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'create', 'foobar', '--url', 'auth.example.com', '--user', '<EMAIL>'], catch_exceptions=False, input='1234567\n1\n') workingdir = os.getcwd() assert os.path.exists('mai.yaml') with open('mai.yaml') as fd: generated_config = yaml.safe_load(fd) assert generated_config['foobar']['saml_identity_provider_url'] == 'https://auth.example.com' assert generated_config['foobar']['saml_role'][1] == 'arn:aws:iam::911:role/Shibboleth-Administrator' assert generated_config['foobar']['saml_user'] == '<EMAIL>' assert 'Authenticating against https://auth.example.com..\n OK' in result.output assert 'Storing new profile in {}.. OK'.format(os.path.join(workingdir, 'mai.yaml')) in result.output def test_create_006_authentication_failed(monkeypatch): monkeypatch.setattr('keyring.get_password', MagicMock(return_value='')) monkeypatch.setattr('keyring.set_password', MagicMock(return_value='')) def my_authenticate_mock(url, user, saml_password): if saml_password == '<PASSWORD>': raise aws_saml_login.saml.AuthenticationFailed() else: return SAML_RESPONSE_2_ROLES monkeypatch.setattr('mai.cli.authenticate', my_authenticate_mock) runner = CliRunner() with runner.isolated_filesystem(): result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'create', 'foobar'], catch_exceptions=False, input='auth.example.com\[email protected]\nwrong\n1234567\n2\n') workingdir = os.getcwd() assert os.path.exists('mai.yaml') with open('mai.yaml') as fd: generated_config = yaml.safe_load(fd) assert generated_config['foobar']['saml_identity_provider_url'] == 'https://auth.example.com' assert generated_config['foobar']['saml_role'][1] == 'arn:aws:iam::911:role/Shibboleth-User' assert generated_config['foobar']['saml_user'] == '<EMAIL>' assert 'Identity provider URL: auth.example.com' in result.output assert 'SAML username: <EMAIL>' in result.output assert 'Authenticating against https://auth.example.com..\n Authentication Failed' in result.output assert 'Please check your username/password and try again.' in result.output assert 'Authenticating against https://auth.example.com..\n OK' in result.output assert 'Storing new profile in {}.. OK'.format(os.path.join(workingdir, 'mai.yaml')) in result.output def test_create_all_001(monkeypatch): monkeypatch.setattr('keyring.get_password', MagicMock(return_value='')) monkeypatch.setattr('keyring.set_password', MagicMock(return_value='')) monkeypatch.setattr('mai.cli.authenticate', MagicMock(return_value=SAML_RESPONSE_2_ROLES)) runner = CliRunner() with runner.isolated_filesystem(): result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'create-all'], catch_exceptions=False, input='auth.example.com\[email protected]\n123456\n') workingdir = os.getcwd() assert os.path.exists('mai.yaml') with open('mai.yaml') as fd: generated_config = yaml.safe_load(fd) assert generated_config['example-Administrator']['saml_identity_provider_url'] == 'https://auth.example.com' assert generated_config['example-Administrator']['saml_role'][1] == 'arn:aws:iam::911:role/Shibboleth-Administrator' assert generated_config['example-Administrator']['saml_user'] == '<EMAIL>' assert generated_config['example-User']['saml_identity_provider_url'] == 'https://auth.example.com' assert generated_config['example-User']['saml_role'][1] == 'arn:aws:iam::911:role/Shibboleth-User' assert generated_config['example-User']['saml_user'] == '<EMAIL>' assert 'Identity provider URL: auth.example.com' in result.output assert 'SAML username: <EMAIL>' in result.output assert 'Authenticating against https://auth.example.com..\n OK' in result.output assert 'Storing new profile in {}.. OK'.format(os.path.join(workingdir, 'mai.yaml')) in result.output def test_create_all_002_no_roles(monkeypatch): monkeypatch.setattr('keyring.get_password', MagicMock(return_value='')) monkeypatch.setattr('keyring.set_password', MagicMock(return_value='')) monkeypatch.setattr('mai.cli.authenticate', MagicMock(return_value=SAML_RESPONSE_0_ROLES)) runner = CliRunner() with runner.isolated_filesystem(): result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'create-all'], catch_exceptions=False, input='auth.example.com\n<EMAIL>\n1234567\n') assert 'No roles found' in result.output assert result.exit_code == 1 def test_create_all_003_one_role(monkeypatch): monkeypatch.setattr('keyring.get_password', MagicMock(return_value='')) monkeypatch.setattr('keyring.set_password', MagicMock(return_value='')) monkeypatch.setattr('mai.cli.authenticate', MagicMock(return_value=SAML_RESPONSE_1_ROLE)) runner = CliRunner() with runner.isolated_filesystem(): result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'create-all'], catch_exceptions=False, input='auth.example.com\[email protected]\n123456\n') workingdir = os.getcwd() assert os.path.exists('mai.yaml') with open('mai.yaml') as fd: generated_config = yaml.safe_load(fd) assert generated_config['default-User']['saml_identity_provider_url'] == 'https://auth.example.com' assert generated_config['default-User']['saml_role'][1] == 'arn:aws:iam::911:role/Shibboleth-User' assert generated_config['default-User']['saml_user'] == '<EMAIL>' assert 'Identity provider URL: auth.example.com' in result.output assert 'SAML username: <EMAIL>' in result.output assert 'Authenticating against https://auth.example.com..\n OK' in result.output assert 'Storing new profile in {}.. OK'.format(os.path.join(workingdir, 'mai.yaml')) in result.output def test_set_default_001(monkeypatch): data = TEST_CONFIG runner = CliRunner() with runner.isolated_filesystem(): with open('mai.yaml', 'w') as fd: yaml.dump(data, fd) result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'set-default', 'example-User']) workingdir = os.getcwd() assert os.path.exists('mai.yaml') with open('mai.yaml') as fd: generated_config = yaml.safe_load(fd) assert generated_config['global']['default_profile'] == 'example-User' assert 'Storing configuration in {}.. OK'.format(os.path.join(workingdir, 'mai.yaml')) in result.output def test_set_default_002_unknown_profile(monkeypatch): data = TEST_CONFIG runner = CliRunner() with runner.isolated_filesystem(): with open('mai.yaml', 'w') as fd: yaml.dump(data, fd) result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'set-default', 'foobar-User']) assert 'Profile "foobar-User" does not exist' in result.output assert result.exit_code == 2 def test_delete_profile_001(monkeypatch): data = TEST_CONFIG runner = CliRunner() with runner.isolated_filesystem(): with open('mai.yaml', 'w') as fd: yaml.dump(data, fd) result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'delete', 'example-User']) workingdir = os.getcwd() assert os.path.exists('mai.yaml') with open('mai.yaml') as fd: generated_config = yaml.safe_load(fd) assert 'example-User' not in generated_config assert 'Deleting profile from {}.. OK'.format(os.path.join(workingdir, 'mai.yaml')) in result.output def test_delete_profile_002_unknown_profile(monkeypatch): data = TEST_CONFIG runner = CliRunner() with runner.isolated_filesystem(): with open('mai.yaml', 'w') as fd: yaml.dump(data, fd) result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'delete', 'foobar-User']) assert 'Profile "foobar-User" does not exist' in result.output assert result.exit_code == 2 def test_login_001(monkeypatch): monkeypatch.setattr('keyring.get_password', MagicMock(return_value='<PASSWORD>')) monkeypatch.setattr('keyring.set_password', MagicMock(return_value='')) monkeypatch.setattr('mai.cli.authenticate', MagicMock(return_value=SAML_RESPONSE_2_ROLES)) monkeypatch.setattr('mai.cli.assume_role', MagicMock(return_value=('KEYID', 'SECRET', 'SESSION_TOKEN'))) monkeypatch.setattr('mai.cli.write_aws_credentials', MagicMock) class sleep_counter: count = 1 sleep_backup = time.sleep def my_sleep(sec): if sec == 120: if sleep_counter.count > 3: raise KeyboardInterrupt sleep_counter.count += 1 sleep_backup(0.1) else: sleep_backup(sec) monkeypatch.setattr('time.sleep', my_sleep) data = TEST_CONFIG runner = CliRunner() with runner.isolated_filesystem(): with open('mai.yaml', 'w') as fd: yaml.dump(data, fd) result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'login', 'example-User'], catch_exceptions=False) assert 'Authenticating against https://auth.example.com..\n OK' in result.output assert 'Assuming role AWS Account 911 (example): Shibboleth-User.. OK' in result.output assert 'Writing temporary AWS credentials.. OK' in result.output result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'login', 'example-User'], catch_exceptions=False) assert 'Authenticating against https://auth.example.com..\n OK' in result.output assert 'Assuming role AWS Account 911 (example): Shibboleth-User.. OK' in result.output assert 'Writing temporary AWS credentials.. OK' in result.output result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'login'], catch_exceptions=False) assert 'Authenticating against https://auth.example.com..\n OK' in result.output assert 'Assuming role AWS Account 911 (example): Shibboleth-User.. OK' in result.output assert 'Writing temporary AWS credentials.. OK' in result.output result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'login', '--refresh'], catch_exceptions=False) assert 'Authenticating against https://auth.example.com..\n OK' in result.output assert 'Assuming role AWS Account 911 (example): Shibboleth-User.. OK' in result.output assert 'Writing temporary AWS credentials.. OK' in result.output assert 'Waiting 54 minutes before refreshing credentials.. . . . OK' in result.output sleep_counter.count = 1 result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'login', 'example-Administrator'], catch_exceptions=False) assert 'Authenticating against https://auth.example.com..\n OK' in result.output assert 'Assuming role AWS Account 911 (example): Shibboleth-Administrator.. OK' in result.output assert 'Writing temporary AWS credentials.. OK' in result.output result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'login'], catch_exceptions=False) assert 'Authenticating against https://auth.example.com..\n OK' in result.output assert 'Assuming role AWS Account 911 (example): Shibboleth-Administrator.. OK' in result.output assert 'Writing temporary AWS credentials.. OK' in result.output result = runner.invoke(cli, ['--config-file', 'mai.yaml', 'login', '--refresh'], catch_exceptions=False) assert 'Authenticating against https://auth.example.com..\n OK' in result.output assert 'Assuming role AWS Account 911 (example): Shibboleth-Administrator.. OK' in result.output assert 'Writing temporary
= t_jit(x, y) jit_o.backward(grad) x.grad.zero_() y.grad.zero_() jit_o = t_jit(x, y) jit_o.backward(grad) self.assertEqual(o.dtype, jit_o.dtype) self.assertEqual(ref_x.grad, x.grad) self.assertEqual(ref_y.grad, y.grad) self.assertTrue(self._compare("comparing output failed", o, jit_o, 1e-3)) self.assertGraphContainsExactly(t_jit.graph_for(x, y), FUSION_GUARD, 1, consider_subgraphs=True) bwd_graph = list( list(t_jit.get_debug_state().execution_plans.values())[ 0].code.grad_executor_states()[0].execution_plans.values() )[0].graph FileCheck().check(FUSION_GUARD).run(bwd_graph) @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") @unittest.skipIf(not RUN_CUDA, "requires CUDA") @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective") def test__softmax_function(self): def t(x: torch.Tensor, y: torch.Tensor): o = torch.mul(x, y) o = torch._softmax(o, dim=-1, half_to_float=False) return o x = torch.randn([4, 4], dtype=torch.float16, device="cuda") y = torch.randn_like(x) o = t(x, y) t_jit = torch.jit.script(t) jit_o = t_jit(x, y) jit_o = t_jit(x, y) jit_o = t_jit(x, y) self.assertEqual(o.dtype, jit_o.dtype) self.assertTrue(self._compare("comparing output failed", o, jit_o, 1e-3)) self.assertGraphContainsExactly(t_jit.graph_for(x, y), FUSION_GUARD, 1, consider_subgraphs=True) @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") @unittest.skipIf(not RUN_CUDA, "requires CUDA") @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective") def test__softmax_function_half_to_float(self): def t(x: torch.Tensor, y: torch.Tensor): o = torch.mul(x, y) o = torch._softmax(o, dim=-1, half_to_float=True) return o x = torch.randn([4, 4], dtype=torch.float16, device="cuda") y = torch.randn_like(x) o = t(x, y) t_jit = torch.jit.script(t) jit_o = t_jit(x, y) jit_o = t_jit(x, y) jit_o = t_jit(x, y) self.assertEqual(o.dtype, jit_o.dtype) self.assertTrue(self._compare("comparing output failed", o, jit_o, 1e-3)) self.assertGraphContainsExactly(t_jit.graph_for(x, y), FUSION_GUARD, 1, consider_subgraphs=True) @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") @unittest.skipIf(not RUN_CUDA, "requires CUDA") @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective") def test_softmax(self): output_size = 10000 dims = 4 output_size = int(pow(output_size, 1. / dims)) reduction_sizes = [67, 256, 1024, 4096] # gradient check for reduction_dim in range(dims): for is_log_softmax in [False, True]: shape = [output_size for idx in range(dims)] self._softmax_helper(shape, reduction_dim, is_log_softmax, torch.float64, "cuda", 1e-4) for reduction_dim in range(dims): for reduction_size in reduction_sizes: x = [output_size for idx in range(dims)] x[reduction_dim] = reduction_size for is_log_softmax in [False, True]: self._softmax_helper(x, reduction_dim, is_log_softmax, torch.float32, "cuda", 1e-4) @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") @unittest.skipIf(not RUN_CUDA, "requires CUDA") @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective") def test_softmax_half(self): output_size = 10000 dims = 4 output_size = int(pow(output_size, 1. / dims)) reduction_sizes = [67, 256, 1024, 4096] for reduction_dim in range(dims): for reduction_size in reduction_sizes: x = [output_size for idx in range(dims)] x[reduction_dim] = reduction_size for is_log_softmax in [False, True]: self._softmax_helper(x, reduction_dim, is_log_softmax, torch.float16, "cuda", 5e-3) @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") @unittest.skipIf(not RUN_CUDA, "requires CUDA") @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective") @unittest.skipIf(not TEST_BF16, "device does not support BFloat16") def test_softmax_bfloat(self): output_size = 10000 dims = 4 output_size = int(pow(output_size, 1. / dims)) reduction_sizes = [67, 256, 1024, 4096] for reduction_dim in range(dims): for reduction_size in reduction_sizes: x = [output_size for idx in range(dims)] x[reduction_dim] = reduction_size for is_log_softmax in [False, True]: self._softmax_helper(x, reduction_dim, is_log_softmax, torch.bfloat16, "cuda", 1e-1) @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") @unittest.skipIf(not RUN_CUDA, "requires CUDA") @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective") def test_reduction_permutation(self): x = [7, 8, 12] # note that num_dim is exclusive from len(x), so we are not reducing # to single element (codegen limitation at this moment) for num_reduce_dim in range(1, len(x)): for axes in itertools.combinations(range(len(x)), num_reduce_dim): for perm0 in itertools.permutations(range(len(x))): for perm1 in itertools.permutations(range(len(x))): self._reduction_helper(x, axes, torch.float32, "cuda", perm0, perm1) @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") @unittest.skipIf(not RUN_CUDA, "requires CUDA") @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective") def test_reduction_multiple_output(self): old_guard = torch._C._jit_set_nvfuser_guard_mode(True) torch._C._jit_set_bailout_depth(20) def t(x: torch.Tensor, y: torch.Tensor, scale: float, z: torch.Tensor): o = torch.mul(x, y) o = torch.mul(o, scale) out1 = torch.mul(o, z) out2 = torch.sum(out1, dim=[2]) return out1, out2 t_jit = torch.jit.script(t) x = torch.randn(8, 4, 10, 16, dtype=torch.float, device="cuda") y = torch.randn(8, 4, 10, 16, dtype=torch.float, device="cuda") z = torch.randn(8, 4, 10, 16, dtype=torch.float, device="cuda") scale = 0.5 jit_o = t_jit(x, y, scale, z) jit_o = t_jit(x, y, scale, z) o = t(x, y, scale, z) for oo, jit_oo in zip(o, jit_o): self.assertEqual(oo.dtype, jit_oo.dtype) self.assertEqual(oo, jit_oo) self.assertGraphContains(t_jit.graph_for(x, y, scale, z), FUSION_GUARD) x = x.to(memory_format=torch.channels_last) y = y.to(memory_format=torch.channels_last) z = z.to(memory_format=torch.channels_last) jit_o = t_jit(x, y, scale, z) jit_o = t_jit(x, y, scale, z) o = t(x, y, scale, z) for oo, jit_oo in zip(o, jit_o): self.assertEqual(oo.dtype, jit_oo.dtype) self.assertEqual(oo, jit_oo) self.assertGraphContains(t_jit.graph_for(x, y, scale, z), FUSION_GUARD) torch._C._jit_set_nvfuser_guard_mode(old_guard) @unittest.skipIf(not RUN_CUDA, "requires CUDA") @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective") def test_channels_last_with_broadcast(self): # setting this true forces a new graph to be generated with a new # input a different broadcast shape torch._C._jit_set_nvfuser_guard_mode(True) def t(x: torch.Tensor, y: torch.Tensor): o = torch.mul(x, y) o = o + 2.0 return o t_jit = torch.jit.script(t) # Single Channel broadcasts # Test 1 x = torch.randn(8, 4, 10, 16, dtype=torch.float, device="cuda") x = x.to(memory_format=torch.channels_last) y = torch.randn(8, 4, 10, 1, dtype=torch.float, device="cuda") y = y.to(memory_format=torch.channels_last) jit_o = t_jit(x, y) jit_o = t_jit(x, y) o = t(x, y) self.assertEqual(o.dtype, jit_o.dtype) self.assertEqual(o.is_contiguous(memory_format=torch.channels_last), jit_o.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(o, jit_o) # Test 2 y = torch.randn(8, 4, 1, 16, dtype=torch.float, device="cuda") y = y.to(memory_format=torch.channels_last) jit_o = t_jit(x, y) jit_o = t_jit(x, y) o = t(x, y) self.assertEqual(o.dtype, jit_o.dtype) self.assertEqual(o.is_contiguous(memory_format=torch.channels_last), jit_o.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(o, jit_o) # Test 3 y = torch.randn(8, 1, 10, 16, dtype=torch.float, device="cuda") y = y.to(memory_format=torch.channels_last) jit_o = t_jit(x, y) jit_o = t_jit(x, y) o = t(x, y) self.assertEqual(o.dtype, jit_o.dtype) self.assertEqual(o.is_contiguous(memory_format=torch.channels_last), jit_o.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(o, jit_o) # Test 3 y = torch.randn(1, 4, 10, 16, dtype=torch.float, device="cuda") y = y.to(memory_format=torch.channels_last) jit_o = t_jit(x, y) jit_o = t_jit(x, y) o = t(x, y) self.assertEqual(o.dtype, jit_o.dtype) self.assertEqual(o.is_contiguous(memory_format=torch.channels_last), jit_o.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(o, jit_o) ''' Currently, the JIT doesn't have tensor merge logic to handle adding a broadcast tensor with more than one broadcast into a non-broadcast tensor. Therefore, either of these tests can fail depending on the sort implementation. The second test is known to fail. # Two Channel broadcasts # Test 1 y = torch.randn(8, 4, 1, 1, dtype=torch.float, device="cuda") y = y.to(memory_format=torch.channels_last) jit_o = t_jit(x, y) jit_o = t_jit(x, y) o = t(x, y) self.assertEqual(o.dtype, jit_o.dtype) self.assertEqual(o.is_contiguous(memory_format=torch.channels_last), jit_o.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(o, jit_o) # Test 2 y = torch.randn(8, 4, 1, 1, dtype=torch.float, device="cuda") y = y.to(memory_format=torch.channels_last).transpose(2,3) x = x.transpose(2,3) jit_o = t_jit(x, y) jit_o = t_jit(x, y) o = t(x, y) self.assertEqual(o.dtype, jit_o.dtype) self.assertEqual(o.is_contiguous(memory_format=torch.channels_last), jit_o.is_contiguous(memory_format=torch.channels_last)) self.assertEqual(o, jit_o) ''' @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") @unittest.skipIf(not RUN_CUDA, "requires CUDA") @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective") def test_pw_single_reduction_partition(self): sizes = [2, 2, 2] dtype = torch.float device = "cuda" x = torch.randn(sizes, dtype=dtype, device=device) y = torch.randn(sizes, dtype=dtype, device=device) z = torch.randn(sizes, dtype=dtype, device=device) def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor): o = torch.add(x, y) o = torch.sum(o, dim=[0]) o = torch.add(o, z) return o t_jit = torch.jit.script(t) jit_o = t_jit(x, y, z) jit_o = t_jit(x, y, z) o = t(x, y, z) self.assertEqual(o.dtype, jit_o.dtype) self.assertEqual(o, jit_o) self.assertGraphContains(t_jit.graph_for(x, y, z), FUSION_GUARD) @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") @unittest.skipIf(not RUN_CUDA, "requires CUDA") @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective") def test_permutation_preservation(self): sizes = [2, 3, 4, 5] dtype = torch.float device = "cuda" x = torch.randn(sizes, dtype=dtype, device=device).to(memory_format=torch.channels_last) def t(x: torch.Tensor): o = torch.relu(x) o = torch.sum(o, dim=[0]) return o t_jit = torch.jit.script(t) jit_o = t_jit(x) jit_o = t_jit(x) o = t(x) self.assertEqual(o.dtype, jit_o.dtype) self.assertEqual(o, jit_o) self.assertGraphContains(t_jit.graph_for(x), FUSION_GUARD) # TODO: we could preserve permutation to inputs self.assertEqual(o.stride(), jit_o.stride()) def t(x: torch.Tensor): o = torch.relu(x) o = torch.add(o, 1.0) return o t_jit = torch.jit.script(t) jit_o = t_jit(x) jit_o = t_jit(x) o = t(x) self.assertEqual(o.dtype, jit_o.dtype) self.assertEqual(o, jit_o) self.assertGraphContains(t_jit.graph_for(x), FUSION_GUARD) self.assertTrue(jit_o.is_contiguous(memory_format=torch.channels_last)) @unittest.skipIf(is_pre_volta(), "reduction not supported in pre volta device") @unittest.skipIf(not RUN_CUDA, "requires CUDA") @unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.PROFILING, "Requires fusion optimization pass to be effective") def test_normalization_partition(self): sizes = [3, 8, 5] dtype = torch.float device = "cuda" x = torch.randn(sizes, dtype=dtype, device=device) y = torch.randn(sizes, dtype=dtype, device=device) z = torch.randn(sizes, dtype=dtype, device=device) r_m = torch.randn(8, dtype=dtype, device=device) r_v = torch.randn(8, dtype=dtype, device=device) def t(x: torch.Tensor, y: torch.Tensor, z: torch.Tensor, r_mean: torch.Tensor, r_var: torch.Tensor): o = torch.add(x, y) o = torch.nn.functional.softmax(o,
<gh_stars>0 import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import interp1d from scipy.optimize import brentq from scipy.linalg import solve_banded, block_diag from multiprocessing import Pool from itertools import product from functools import partial class qclSolver: fundamentals = { "e-charge": -1.6021766208 * (10 ** (-19)), "planck": 1.054571800 * (10 ** (-34)), "planck_e": 6.582119569 * (10 ** (-16)), "m0": 9.10938356 * (10 ** (-31)), "k-bol": 1.38064852 * (10 ** (-23)), "c": 3 * 10 ** 8, "eps0": 8.85418781762 * (10 ** (-12)), } def __init__(self, struct, interval=2, step=0.05, istep=0.2, side=5., TE=400., TL=293.): if not (isinstance(struct, list)): struct = [struct] for i in range(0, len(struct)): struct[i].length = np.array([struct[i].layers[ind].width for ind in range(0, len(struct[i].layers))]).sum() self.istep = istep self.step = step self.struct = struct self.side = side self.TL = TL self.TE = TE self.index = [] self.grid = [] self.meff = [] self.Valloy = [] self.Perm = [] self.lattconst = [] self.comp = [] self.Ep = [] self.Population = [] self.U = 0 self.potential = [] self.shifts = side * np.ones(len(struct)) self.ends = np.zeros_like(self.shifts) self.N_carr = 0 self.struct_end = [] self.eigs = [] self.psi = [] self.dop = [] # chunk division for i in range(0, len(struct)): # index interpolation self.shifts[i] = self.shifts[i] - struct[i].layers[0].width if i == 0: index, last, end = qclSolver.layerExtrap(struct[i], side) self.grid.append(np.arange(0, last, step)) else: index, last, end = qclSolver.layerExtrap(struct[i], side, z_start=end) self.grid.append(np.arange(self.grid[i - 1][-1] - 2 * side // step * step, last, step)) self.struct_end.append(end) self.index.append(index) # parameter grid filling self.meff.append(np.array([(struct[i].layers[int(self.index[i](z))].material.params['meff']) for z in self.grid[i]])) self.Valloy.append(np.array([(struct[i].layers[int(self.index[i](z))].material.params['meff']) for z in self.grid[i]])) self.Perm.append(np.array([(self.struct[i].layers[int(self.index[i](z))].material.params['eps0']) for z in self.grid[i]]) * qclSolver.fundamentals["eps0"]) self.lattconst.append(np.array([(self.struct[i].layers[int(self.index[i](z))].material.params['lattconst']) for z in self.grid[i]])) self.comp.append(np.array([self.struct[i].layers[int(self.index[i](z))].material.x for z in self.grid[i]])) self.comp[i][self.comp[i] == None] = 0 self.Ep.append(np.array([(self.struct[i].layers[int(self.index[i](z))].material.params['Ep']) for z in self.grid[i]])) # doping processing self.N_carr += struct[i].getSheetDop() * (10 ** 4) dop = 0. if i == 0: shift = self.shifts[0] for j in range(0, len(struct[i].dopings)): dop += np.piecewise( self.grid[i], [self.grid[i]-shift < struct[i].dopings[j][0], self.grid[i]-shift >= struct[i].dopings[j][0], self.grid[i]-shift >= struct[i].dopings[j][1]], [0, struct[i].dopings[j][2], 0] ) else: shift = self.struct_end[i-1] for j in range(0, len(struct[i].dopings)): dop += np.piecewise( self.grid[i], [self.grid[i]-shift < struct[i].dopings[j][0], self.grid[i]-shift >= struct[i].dopings[j][0], self.grid[i]-shift >= struct[i].dopings[j][1]], [0, struct[i].dopings[j][2], 0] ) self.dop.append(dop) # various parameters self.tau_pure = 0.5 * 10 ** (-13) # pure dephasing time self.periods = 30 self.dim_l = 0.3 # cm self.dim_h = 4 / 10 ** 4 # cm self.dim_w = 0.15 # cm if interval == 2: self.refr = 3.4 self.alpha_m = 7.5 self.alpha_w = 7.5 self.Gamma_overlap = 1 else: self.refr = 3.4 self.alpha_m = 3. self.alpha_w = 3. self.Gamma_overlap = 1 self.evaluate_W = True self.TPop = True self.P = -1 # ============================================ # ================== EIGS ==================== # ============================================ def eigTM(self, resolution=10 ** (-3)): step = self.step / 10 ** 9 for i in range(0, len(self.struct)): m = self.meff[i] * qclSolver.fundamentals["m0"] Ep = self.Ep[i] Energy = np.arange(np.amin(self.potential[i]), np.amax(self.potential[i]), resolution) boundary = lambda E: np.dot(qclSolver.buildTM(E, self.potential[i], Ep, m, step)[:, :, -1], [1, -1]).sum() val = [] eig = [] psi = [] old_settings = np.seterr(all='ignore') for E in Energy: val.append(boundary(E).real) for j in range(0, np.size(Energy) - 1): if val[j] * val[j + 1] < 0: eig.append(brentq(lambda E: boundary(E).real, Energy[j], Energy[j + 1], xtol=1e-20)) for E in eig: matArray = qclSolver.buildTM(E, self.potential[i], Ep, m, step) psi_tmp = np.sum(np.matmul(np.transpose(matArray, (2, 0, 1)), [1, -1]), axis=1).real nrm = ((psi_tmp ** 2).sum() * step) psi_tmp = psi_tmp / np.sqrt(nrm) psi.append(np.append(0., psi_tmp)) np.seterr(**old_settings) self.eigs.append(np.array(eig)[::-1]) self.psi.append((np.array(psi)[::-1][:]).transpose()) self.selectPsi() def buildTM(E, Ev, Ep, m, step): dE = (E - Ev) * 1.60218e-19 planck = qclSolver.fundamentals["planck"] m0 = qclSolver.fundamentals["m0"] m_np = m * (1 + (E - Ev) / (m / m0 * Ep)) k = np.sqrt(2 * m_np * dE + 0j) / planck kt = k / m_np kp = (k[:-1] + k[1:]) / 2 km = (k[:-1] - k[1:]) / 2 a = (kt[1:] + kt[:-1]) / 2 / kt[1:] * np.exp(1j * kp * step) b = (kt[1:] - kt[:-1]) / 2 / kt[1:] * np.exp(-1j * km * step) c = (kt[1:] - kt[:-1]) / 2 / kt[1:] * np.exp(1j * km * step) d = (kt[1:] + kt[:-1]) / 2 / kt[1:] * np.exp(-1j * kp * step) matArray = np.array([[a, b], [c, d]]) for i in range(1, len(Ev) - 1): matArray[:, :, i] = np.matmul(matArray[:, :, i], matArray[:, :, i - 1]) return matArray def eigDiag(self, ): # not implemented self.eigs = 1 self.psi = 1 return 0 # ============================================ # =================== MISC =================== # ============================================ def layerExtrap(struct, side=5., z_start=0.): shift = side - struct.layers[0].width length = struct.length + shift z = np.array([struct.layerPos(i) + shift for i in range(0, struct.Nl)] + [length] + [length + side]) n = np.arange(0, struct.Nl + 2, 1) z[0] = -0.01-struct.layers[0].width n[-2:] = 0 if z_start != 0.: z = z + z_start - shift return interp1d(z, n, kind='previous'), z[-1], z[-2] def setPotential(self, U, hart=0.): self.U = U self.potential = [] for i in range(0, len(self.struct)): self.potential.append(np.array( [(self.struct[i].layers[int(self.index[i](z))].material.params['Ec']) for z in self.grid[i]]) - U * self.grid[i] / 10 ** 7) if not np.all(hart == 0.): front = np.argwhere(self.unified_grid <= self.grid[i][0])[-1][-1] back = np.argwhere(self.unified_grid <= self.grid[i][-1])[-1][-1] self.potential[-1] += hart[front:back+1] def setBGDoping(self, BGDoping): for chunk in range(0, len(self.struct)): self.dop[chunk][self.dop == 0] += BGDoping self.alpha_w *= self.step / 10 ** 9 * self.dop[chunk].sum() * (10 ** 6) / self.N_carr self.N_carr = self.step / 10 ** 9 * self.dop[chunk].sum() * (10 ** 6) def selectPsi(self, deloc_ext=1): self.mass_sub = [] step = self.step / 10 ** 9 U = self.U / 10 ** 7 eigs_list = self.eigs psi_list = self.psi psi_out = [] eigs_out = [] for j in range(0, len(self.struct)): eigs = eigs_list[j] psi = psi_list[j] potential = self.potential[j] ind = np.zeros(0, dtype=int) Ep = self.Ep[j] for i in range(0, len(eigs)): if eigs[i] > potential[-1]: left = (psi[np.nonzero(potential[0] - U * self.grid[j] - eigs[i] > 0), i] ** 2).sum() right = (psi[np.nonzero(eigs[i] - potential[0] + U * self.grid[j] > 0), i] ** 2).sum() if left < deloc_ext * right: ind = np.append(ind, i) eigs = np.delete(eigs, ind) psi = np.delete(psi, ind, 1) mass_sub = np.zeros_like(eigs) for i in range(0, len(eigs)): mass_sub[i] = step * ( self.meff[j] * (1 + (eigs[i] - potential) / self.meff[j] / Ep) * (psi[:, i] ** 2)).sum() eigs_out.append(eigs) psi_out.append(psi) self.mass_sub.append(mass_sub * qclSolver.fundamentals["m0"]) self.eigs = eigs_out self.psi = psi_out def unite_chunks(self): if len(self.struct) == 1: self.unified_grid = self.grid[0] self.unified_potential = self.potential[0] self.unified_dop = self.dop[0] self.unified_perm = self.Perm[0] self.unified_psi = self.psi[0] self.unified_eigs = self.eigs[0] self.unified_mass_sub = self.mass_sub[0] return None front, back = [], [] front.append(0) back.append(np.argwhere(self.grid[0] <= self.struct_end[0])[-1][-1]) for i in range(1, len(self.struct)-1): back.append(np.argwhere(self.grid[i] <= self.struct_end[i])[-1][-1]) front.append(np.argwhere(self.grid[i] <= self.struct_end[i - 1])[-1][-1]) back.append(len(self.grid[-1])) front.append(np.argwhere(self.grid[-1] <= self.struct_end[-2])[-1][-1]) unified_potential = np.zeros(0) unified_dop = np.zeros(0) unified_grid = np.zeros(0) unified_perm = np.zeros(0) unified_eigs = np.zeros(0) unified_mass_sub = np.zeros(0) unified_psi = np.array(self.psi) for i in range(0, len(self.struct)): for k in range(0, len(self.struct)): if k < i: unified_psi[i] = np.append( np.zeros([len(self.grid[k][front[k]:back[k]]), len(self.eigs[i])]), unified_psi[i], axis=0) elif k > i: unified_psi[i] = np.append( unified_psi[i], np.zeros([len(self.grid[k][front[k]:back[k]]), len(self.eigs[i])]), axis=0) for i in range(0, len(self.struct)): unified_potential = np.append(unified_potential, self.potential[i][front[i]:back[i]]) unified_dop = np.append(unified_dop, self.dop[i][front[i]:back[i]]) unified_grid = np.append(unified_grid, self.grid[i][front[i]:back[i]]) unified_perm = np.append(unified_perm, self.Perm[i][front[i]:back[i]]) unified_eigs = np.append(unified_eigs, self.eigs[i]) unified_mass_sub = np.append(unified_mass_sub, self.mass_sub[i]) unified_psi[i] = unified_psi[i][front[i]:back[i]-len(self.grid[i])-1, :] self.unified_grid = unified_grid[:-1] self.unified_potential = unified_potential[:-1] self.unified_dop = unified_dop[:-1] self.unified_perm = unified_perm[:-1] self.unified_psi = np.hstack(unified_psi) self. unified_eigs = unified_eigs self.unified_mass_sub = unified_mass_sub # ============================================ # ============ GENERAL SOLVERS =============== # ============================================ def solvePoisson(self): h = self.step / 10 ** 9 side = self.side / 10 ** 9 z = self.unified_grid / 10 ** 9 el = qclSolver.fundamentals["e-charge"] N = len(z) mass_sub = self.unified_mass_sub Perm = self.unified_perm eigs = self.unified_eigs psi = self.unified_psi N_car_tot = self.N_carr front = np.argwhere(z <= side)[-1][-1] - 1 back = np.argwhere(z <= (self.struct_end[-1] + self.struct[0].layers[0].width) / 10 ** 9)[-1][-1] if self.TPop: mu = brentq(lambda mu_t: (N_car_tot - qclSolver.TDistr(mass_sub, eigs, mu_t, self.TE, self.TL).sum()), -1, 1, xtol=1e-30) Population = qclSolver.TDistr(mass_sub, eigs, mu, self.TE, self.TL) self.Population = [] end = 0 for i in range(0, len(self.struct)): self.Population.append(Population[end:end+len(self.eigs[i])])
<filename>tools/SDKTool/libs/AgentAPI/AgentMsgMgr.py # -*- coding: utf-8 -*- """ This source code file is licensed under the GNU General Public License Version 3. For full details, please refer to the file "LICENSE.txt" which is provided as part of this source code package. Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. """ import os import sys import logging import numpy as np import traceback if sys.version_info < (3, 0): import ConfigParser as ConfigParser else: import configparser as ConfigParser __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__ + "/protocol") import tbus from .protocol import common_pb2 from .protocol import gameregProtoc_pb2 MSG_SEND_ID_START = 40000 MSG_SEND_GROUP_ID = MSG_SEND_ID_START + 1 MSG_SEND_TASK_FLAG = MSG_SEND_ID_START + 2 MSG_SEND_ADD_TASK = MSG_SEND_ID_START + 3 MSG_SEND_DEL_TASK = MSG_SEND_ID_START + 4 MSG_SEND_CHG_TASK = MSG_SEND_ID_START + 5 MSG_SEND_TASK_CONF = MSG_SEND_ID_START + 6 MSG_REGER_BUTTON_TYPE = 'button' MSG_REGER_STUCK_TYPE = 'stuck' MSG_REGER_FIXOBJ_TYPE = 'fix object' MSG_REGER_PIX_TYPE = 'pixel' MSG_REGER_DEFORM_TYPE = 'deform object' MSG_REGER_NUMBER_TYPE = 'number' MSG_REGER_FIXBLOOD_TYPE = 'fix blood' MSG_REGER_KING_GLORY_BOOD_TYPE = 'king glory blood' MSG_REGER_MAPREG_TYPE = 'map' MSG_REGER_MAPDIRECTIONREG_TYPE = 'mapDirection' MSG_REGER_MULTCOLORVAR_TYPE = 'multcolorvar' MSG_REGER_SHOOTGAMEBLOOD_TYPE = 'shoot game blood' MSG_REGER_SHOOTGAMEHURT_TYPE = 'shoot game hurt' LOG = logging.getLogger('agent') class MsgMgr(object): """ message manager implement """ def __init__(self, cfgPath='../cfg/bus.ini', initParamFile='../cfg/param.file', index=1): self.__selfAddr = None self.__gameRegAddr = None self.__cfgPath = cfgPath self.__initParamFile = initParamFile self.__index = index self.__serialMsgHandle = dict() self.__serialRegerHandle = dict() self.__unSeiralRegerHandle = dict() def Initialize(self, selfAddr=None): """ Initialize message manager, parse tbus configure file and initialize tbus return: True or Flase """ if os.path.exists(self.__cfgPath): self._Register() config = ConfigParser.ConfigParser(strict=False) config.read(self.__cfgPath) gameRegAddr = "GameReg" + str(self.__index) + "Addr" strgameRegAddr = config.get('BusConf', gameRegAddr) UIRecognizeAddr = "UI" + str(self.__index) + "Addr" strUIAddr = config.get('BusConf', UIRecognizeAddr) if selfAddr is None: AgentAddr = "Agent" + str(self.__index) + "Addr" strselfAddr = config.get('BusConf', AgentAddr) else: strselfAddr = config.get('BusConf', selfAddr) self.__gameRegAddr = tbus.GetAddress(strgameRegAddr) self.__UIRecognizeAddr = tbus.GetAddress(strUIAddr) self.__selfAddr = tbus.GetAddress(strselfAddr) LOG.info("gamereg addr is {0}, self addr is {1}" \ .format(self.__gameRegAddr, self.__selfAddr)) ret = tbus.Init(self.__selfAddr, self.__cfgPath) if ret != 0: LOG.error('tbus init failed with return code[{0}]'.format(ret)) return False return True else: LOG.error('tbus config file not exist in {0}'.format(self.__cfgPath)) return False def ProcMsg(self, msgID, msgValue): """ Process message: create message and send to GameReg :param msgID: message ID which should be in [MSG_SEND_GROUP_ID, MSG_SEND_TASK_FLAG, MSG_SEND_ADD_TASK,MSG_SEND_DEL_TASK, MSG_SEND_CHG_TASK, MSG_SEND_TASK_CONF] :param msgValue: value of message :return: True or False """ outBuff = self._CreateMsg(msgID, msgValue) if outBuff is None: LOG.error('create msg failed') return False return self._Send(outBuff) def ProcSrcImgMsg(self, srcImgDict): """ ProcSrcImgMsg: create message and send to GameReg :param srcImgDict: image information saved with dictinary format, keywords is 'frameSeq', 'width', 'height''image','deviceIndex' :return: True or False """ msg = common_pb2.tagMessage() msg.eMsgID = common_pb2.MSG_SRC_IMAGE_INFO stSrcImageInfo = msg.stSrcImageInfo stSrcImageInfo.uFrameSeq = srcImgDict['frameSeq'] stSrcImageInfo.nWidth = srcImgDict['width'] stSrcImageInfo.nHeight = srcImgDict['height'] stSrcImageInfo.byImageData = srcImgDict['image'].tobytes() stSrcImageInfo.uDeviceIndex = srcImgDict['deviceIndex'] msgBuff = msg.SerializeToString() if msgBuff is None: LOG.error('create msg failed') return False return self._Send(msgBuff) def ProcUISrcImgMsg(self, srcImgDict): msgPB = common_pb2.tagMessage() msgPB.eMsgID = common_pb2.MSG_UI_STATE_IMG msgPB.stUIAPIState.eUIState = common_pb2.PB_UI_STATE_NORMAL msgPB.stUIAPIState.stUIImage.uFrameSeq = srcImgDict['frameSeq'] msgPB.stUIAPIState.stUIImage.nWidth = srcImgDict['width'] msgPB.stUIAPIState.stUIImage.nHeight = srcImgDict['height'] msgPB.stUIAPIState.stUIImage.byImageData = srcImgDict['image'].tobytes() msgPB.stUIAPIState.stUIImage.uDeviceIndex = srcImgDict['deviceIndex'] msgPB.stUIAPIState.eGameState = common_pb2.PB_STATE_NONE msg = msgPB.SerializeToString() if msg is None: LOG.error('create msg failed') return False return self._SendUI(msg) def Recv(self): """ Recv: receieve message from GameReg, the value is the result of imageReg and the processed image :return: True or False """ msgBuffRet = None msgBuff = tbus.RecvFrom(self.__gameRegAddr) while msgBuff is not None: msgBuffRet = msgBuff msgBuff = tbus.RecvFrom(self.__gameRegAddr) if msgBuffRet is not None: # msg = msgpack.unpackb(msgBuffRet, object_hook=mn.decode, encoding='utf-8') msg = self._UnSerialResultMsg(msgBuffRet) if msg is not None: frameSeq = msg['value'].get('frameSeq') LOG.debug('recv frame data, frameIndex={0}'.format(frameSeq)) return msg else: LOG.error("unserial result message failed") return None else: return None def RecvUI(self): msgBuffRet = None msgBuff = tbus.RecvFrom(self.__UIRecognizeAddr) while msgBuff is not None: msgBuffRet = msgBuff msgBuff = tbus.RecvFrom(self.__UIRecognizeAddr) if msgBuffRet is not None: # msg = msgpack.unpackb(msgBuffRet, object_hook=mn.decode, encoding='utf-8') return self._UnSerialUIResultMsg(msgBuffRet) else: return None def Release(self): """ tbus exit :return: None """ LOG.info('tbus exit...') tbus.Exit(self.__selfAddr) def _UnSerialUIResultMsg(self, msg): msgPB = common_pb2.tagMessage() msgPB.ParseFromString(msg) msgID = msgPB.eMsgID if msgID != common_pb2.MSG_UI_ACTION: LOG.error('wrong msg id: {}'.format(msgID)) return None UIResultDict = dict() UIResultDict['actions'] = [] for UIUnitAction in msgPB.stUIAction.stUIUnitAction: eUIAction = UIUnitAction.eUIAction action = dict() action['type'] = eUIAction action['points'] = [] if action['type'] == common_pb2.PB_UI_ACTION_CLICK: point = {} point["x"] = UIUnitAction.stClickPoint.nX point["y"] = UIUnitAction.stClickPoint.nY action['points'].append(point) elif action['type'] == common_pb2.PB_UI_ACTION_DRAG: for dragPoint in UIUnitAction.stDragPoints: point = {} point["x"] = dragPoint.nX point["y"] = dragPoint.nY action['points'].append(point) UIResultDict['actions'].append(action) data = np.fromstring(msgPB.stUIAction.stSrcImageInfo.byImageData, np.uint8) UIResultDict['image'] = np.reshape(data, ( msgPB.stUIAction.stSrcImageInfo.nHeight, msgPB.stUIAction.stSrcImageInfo.nWidth, 3)) return UIResultDict def _CreateMsg(self, msgID, msgValue): msgDic = dict() msgDic['msgID'] = msgID msgDic['value'] = msgValue # outBuff = msgpack.packb(msgDic, use_bin_type=True) outBuff = self._SerialSendMsg(msgDic) return outBuff def _Send(self, outBuff): ret = tbus.SendTo(self.__gameRegAddr, outBuff) if ret != 0: LOG.error('TBus Send To GameReg Addr return code[{0}]'.format(ret)) return False return True def _SendUI(self, outBuff): ret = tbus.SendTo(self.__UIRecognizeAddr, outBuff) if ret != 0: LOG.error('TBus Send To UI Anuto Addr return code[{0}]'.format(ret)) return False return True def _Register(self): """ registe message hander serial message: MSG_SEND_GROUP_ID, MSG_SEND_ADD_TASK, MSG_SEND_CHG_TASK, MSG_SEND_TASK_FLAG, MSG_SEND_DEL_TASK, MSG_SEND_TASK_CONF, MSG_REGER_STUCK_TYPE, MSG_REGER_FIXOBJ_TYPE, MSG_REGER_PIX_TYPE, MSG_REGER_DEFORM_TYPE, MSG_REGER_NUMBER_TYPE, MSG_REGER_FIXBLOOD_TYPE, MSG_REGER_KING_GLORY_BOOD_TYPE, MSG_REGER_MAPREG_TYPE, MSG_REGER_MAPDIRECTIONREG_TYPE, MSG_REGER_MULTCOLORVAR_TYPE, MSG_REGER_SHOOTGAMEBLOOD_TYPE, MSG_REGER_SHOOTGAMEHURT_TYPE unserial message:gameregProtoc_pb2.TYPE_STUCKREG, gameregProtoc_pb2.TYPE_FIXOBJREG, gameregProtoc_pb2.TYPE_PIXREG, gameregProtoc_pb2.TYPE_DEFORMOBJ, gameregProtoc_pb2.TYPE_NUMBER, gameregProtoc_pb2.TYPE_FIXBLOOD, gameregProtoc_pb2.TYPE_KINGGLORYBLOOD, gameregProtoc_pb2.TYPE_MAPREG, gameregProtoc_pb2.TYPE_MAPDIRECTIONREG,gameregProtoc_pb2.TYPE_MULTCOLORVAR, gameregProtoc_pb2.TYPE_SHOOTBLOOD, gameregProtoc_pb2.TYPE_SHOOTHURT :return: None """ self.__serialMsgHandle[MSG_SEND_GROUP_ID] = self._SerialTask self.__serialMsgHandle[MSG_SEND_ADD_TASK] = self._SerialAddTask self.__serialMsgHandle[MSG_SEND_CHG_TASK] = self._SerialChgTask self.__serialMsgHandle[MSG_SEND_TASK_FLAG] = self._SerialFlagTask self.__serialMsgHandle[MSG_SEND_DEL_TASK] = self._SerialDelTask self.__serialMsgHandle[MSG_SEND_TASK_CONF] = self._SerialConfTask self.__serialRegerHandle[MSG_REGER_STUCK_TYPE] = self._SerialStuckReg self.__serialRegerHandle[MSG_REGER_FIXOBJ_TYPE] = self._SerialFixObjReg self.__serialRegerHandle[MSG_REGER_PIX_TYPE] = self._SerialPixReg self.__serialRegerHandle[MSG_REGER_DEFORM_TYPE] = self._SerialDeformReg self.__serialRegerHandle[MSG_REGER_NUMBER_TYPE] = self._SerialNumberReg self.__serialRegerHandle[MSG_REGER_FIXBLOOD_TYPE] = self._SerialFixBloodReg self.__serialRegerHandle[MSG_REGER_KING_GLORY_BOOD_TYPE] = self._SerialKingGloryBlood self.__serialRegerHandle[MSG_REGER_MAPREG_TYPE] = self._SerialMapReg self.__serialRegerHandle[MSG_REGER_MAPDIRECTIONREG_TYPE] = self._SerialMapDirectionReg self.__serialRegerHandle[MSG_REGER_MULTCOLORVAR_TYPE] = self._SerialMultColorVar self.__serialRegerHandle[MSG_REGER_SHOOTGAMEBLOOD_TYPE] = self._SerialShootGameBlood self.__serialRegerHandle[MSG_REGER_SHOOTGAMEHURT_TYPE] = self._SerialShootGameHurt self.__unSeiralRegerHandle[gameregProtoc_pb2.TYPE_STUCKREG] = self._UnSerialStuckRegResult self.__unSeiralRegerHandle[gameregProtoc_pb2.TYPE_FIXOBJREG] = self._UnSerialFixObjRegResult self.__unSeiralRegerHandle[gameregProtoc_pb2.TYPE_PIXREG] = self._UnSerialPixRegResult self.__unSeiralRegerHandle[gameregProtoc_pb2.TYPE_DEFORMOBJ] = self._UnSerialDeformRegResult self.__unSeiralRegerHandle[gameregProtoc_pb2.TYPE_NUMBER] = self._UnSerialNumberRegResult self.__unSeiralRegerHandle[gameregProtoc_pb2.TYPE_FIXBLOOD] = self._UnSerialFixBloodRegResult self.__unSeiralRegerHandle[gameregProtoc_pb2.TYPE_KINGGLORYBLOOD] = self._UnSerialKingGloryBloodResult self.__unSeiralRegerHandle[gameregProtoc_pb2.TYPE_MAPREG] = self._UnSerialMapRegResult self.__unSeiralRegerHandle[gameregProtoc_pb2.TYPE_MAPDIRECTIONREG] = self._UnSerialMapDirectionRegResult self.__unSeiralRegerHandle[gameregProtoc_pb2.TYPE_MULTCOLORVAR] = self._UnSerialMultColorVar self.__unSeiralRegerHandle[gameregProtoc_pb2.TYPE_SHOOTBLOOD] = self._UnSerialShootGameBloodRegResult self.__unSeiralRegerHandle[gameregProtoc_pb2.TYPE_SHOOTHURT] = self._UnSerialShootGameHurtRegResult def _SerialSendMsg(self, msgDic): msg = common_pb2.tagMessage() msg.eMsgID = common_pb2.MSG_GAMEREG_INFO msgAgent = msg.stPBAgentMsg msgAgent.eAgentMsgID = self._GetValueFromDict(msgDic, 'msgID') self.__serialMsgHandle[msgAgent.eAgentMsgID]( msgAgent, self._GetValueFromDict(msgDic, 'value') ) msgBuff = msg.SerializeToString() return msgBuff def _SerialTask(self, msg, msgValue): value = msg.stPBAgentTaskValue value.uGroupID = self._GetValueFromDict(msgValue, 'groupID') for taskVal in self._GetValueFromDict(msgValue, 'task'): taskPB = value.stPBAgentTaskTsks.add() self.__serialRegerHandle[self._GetValueFromDict(taskVal, 'type')](taskPB, taskVal) def _SerialChgTask(self, msg, msgValue): value = msg.stPBAgentTaskValue value.uGroupID = 1 for taskVal in msgValue: taskPB = value.stPBAgentTaskTsks.add() self.__serialRegerHandle[self._GetValueFromDict(taskVal, 'type')](taskPB, taskVal) def _SerialAddTask(self, msg, msgValue): value = msg.stPBAgentTaskValue value.uGroupID = 1 for taskVal in msgValue: taskPB = value.stPBAgentTaskTsks.add() self.__serialRegerHandle[self._GetValueFromDict(taskVal, 'type')](taskPB, taskVal) def _SerialFlagTask(self, msg, msgValue): for taskID in msgValue: value = msg.stPBTaskFlagMaps.add() value.nTaskID = int(taskID) value.bFlag = msgValue[taskID] def _SerialDelTask(self, msg, msgValue): for key in msgValue: msg.nDelTaskIDs.append(key) def _SerialConfTask(self, msg, msgValue): for filename in msgValue: if filename is not None: msg.strConfFileName.append(filename) def _SerialMapReg(self, taskPB, taskVal): taskPB.nTaskID = self._GetValueFromDict(taskVal, 'taskID') taskPB.eType = gameregProtoc_pb2.TYPE_MAPREG # taskPB.nSkipFrame = self._GetValueFromDict(taskVal, 'skipFrame') for element in self._GetValueFromDict(taskVal, 'elements'): elementPB = taskPB.stPBAgentTaskElements.add() rect = elementPB.stPBRect rect.nX = self._GetValueFromDict(self._GetValueFromDict(element, 'ROI'), 'x') rect.nY = self._GetValueFromDict(self._GetValueFromDict(element, 'ROI'), 'y') rect.nW = self._GetValueFromDict(self._GetValueFromDict(element, 'ROI'), 'w') rect.nH = self._GetValueFromDict(self._GetValueFromDict(element, 'ROI'), 'h') elementPB.strMyLocCondition = self._GetValueFromDict(element, 'myLocCondition') elementPB.strFriendsCondition = self._GetValueFromDict(element, 'friendsLocCondition') elementPB.strViewLocCondition = self._GetValueFromDict(element, 'viewLocCondition') elementPB.strMapPath = self._GetValueFromDict(element, 'mapTempPath') elementPB.strMaskPath = element.get('mapMaskPath') or str() elementPB.nMaxPointNum = self._GetValueFromDict(element, 'maxPointNum') elementPB.nFilterSize = self._GetValueFromDict(element, 'filterSize') def _SerialMapDirectionReg(self, taskPB, taskVal): taskPB.nTaskID = self._GetValueFromDict(taskVal, 'taskID') taskPB.eType = gameregProtoc_pb2.TYPE_MAPDIRECTIONREG # taskPB.nSkipFrame = self._GetValueFromDict(taskVal, 'skipFrame') for element in self._GetValueFromDict(taskVal, 'elements'): elementPB = taskPB.stPBAgentTaskElements.add() rect = elementPB.stPBRect rect.nX = self._GetValueFromDict(self._GetValueFromDict(element, 'ROI'), 'x') rect.nY = self._GetValueFromDict(self._GetValueFromDict(element, 'ROI'), 'y') rect.nW = self._GetValueFromDict(self._GetValueFromDict(element, 'ROI'), 'w') rect.nH = self._GetValueFromDict(self._GetValueFromDict(element, 'ROI'), 'h') elementPB.strMyLocCondition = self._GetValueFromDict(element, 'myLocCondition') elementPB.strViewLocCondition = self._GetValueFromDict(element, 'viewLocCondition') elementPB.strMaskPath = element.get('mapMaskPath') or str() elementPB.nMaxPointNum = self._GetValueFromDict(element, 'maxPointNum') elementPB.nFilterSize = self._GetValueFromDict(element, 'filterSize') elementPB.nDilateSize = self._GetValueFromDict(element, 'dilateSize') elementPB.nErodeSize = self._GetValueFromDict(element, 'erodeSize') elementPB.nRegionSize = self._GetValueFromDict(element, 'regionSize') def _SerialMultColorVar(self, taskPB, taskVal): taskPB.nTaskID = self._GetValueFromDict(taskVal, 'taskID') taskPB.eType = gameregProtoc_pb2.TYPE_MULTCOLORVAR # taskPB.nSkipFrame = self._GetValueFromDict(taskVal, 'skipFrame') for element in self._GetValueFromDict(taskVal, 'elements'): elementPB = taskPB.stPBAgentTaskElements.add() elementPB.strImgFilePath = self._GetValueFromDict(element, 'imageFilePath') def _SerialShootGameBlood(self, taskPB, taskVal): """ ShootGameBlood, this recongnizer method only used by ShootGame """ taskPB.nTaskID = self._GetValueFromDict(taskVal, 'taskID') taskPB.eType = gameregProtoc_pb2.TYPE_SHOOTBLOOD # taskPB.nSkipFrame = self._GetValueFromDict(taskVal, 'skipFrame') for element in self._GetValueFromDict(taskVal, 'elements'): elementPB = taskPB.stPBAgentTaskElements.add() rect = elementPB.stPBRect self._SerialRect(rect, self._GetValueFromDict(element, 'ROI')) elementPB.nFilterSize = self._GetValueFromDict(element, 'filterSize') elementPB.nBloodLength = self._GetValueFromDict(element, 'bloodLength') elementPB.nMaxPointNum = self._GetValueFromDict(element, 'maxPointNum') elementPB.fMinScale = self._GetValueFromDict(element, 'minScale') elementPB.fMaxScale = self._GetValueFromDict(element, 'maxScale') elementPB.nScaleLevel = self._GetValueFromDict(element, 'scaleLevel') templates = elementPB.stPBTemplates for templ in self._GetValueFromDict(element, 'templates'): template = templates.stPBTemplates.add() self._SerialTemplate(template, templ) def _SerialShootGameHurt(self, taskPB, taskVal): """ ShootGameHurt, this recongnizer method only used by ShootGame """ taskPB.nTaskID = self._GetValueFromDict(taskVal, 'taskID') taskPB.eType = gameregProtoc_pb2.TYPE_SHOOTHURT # taskPB.nSkipFrame = self._GetValueFromDict(taskVal, 'skipFrame')
def __init__(self, *args): this = _ghmmwrapper.new_ghmm_dpseq(*args) try: self.this.append(this) except: self.this = this __swig_destroy__ = _ghmmwrapper.delete_ghmm_dpseq __del__ = lambda self : None; def set_discrete(self, *args): return _ghmmwrapper.ghmm_dpseq_set_discrete(self, *args) def set_continuous(self, *args): return _ghmmwrapper.ghmm_dpseq_set_continuous(self, *args) def get_discrete(self, *args): return _ghmmwrapper.ghmm_dpseq_get_discrete(self, *args) def get_continuous(self, *args): return _ghmmwrapper.ghmm_dpseq_get_continuous(self, *args) def slice(self, *args): return _ghmmwrapper.ghmm_dpseq_slice(self, *args) def get_char(self, *args): return _ghmmwrapper.ghmm_dpseq_get_char(self, *args) def get_double(self, *args): return _ghmmwrapper.ghmm_dpseq_get_double(self, *args) ghmm_dpseq_swigregister = _ghmmwrapper.ghmm_dpseq_swigregister ghmm_dpseq_swigregister(ghmm_dpseq) def ghmm_dpseq_free(*args): return _ghmmwrapper.ghmm_dpseq_free(*args) ghmm_dpseq_free = _ghmmwrapper.ghmm_dpseq_free normal = _ghmmwrapper.normal normal_right = _ghmmwrapper.normal_right normal_approx = _ghmmwrapper.normal_approx normal_left = _ghmmwrapper.normal_left uniform = _ghmmwrapper.uniform binormal = _ghmmwrapper.binormal multinormal = _ghmmwrapper.multinormal density_number = _ghmmwrapper.density_number def density_array_alloc(*args): return _ghmmwrapper.density_array_alloc(*args) density_array_alloc = _ghmmwrapper.density_array_alloc def density_array_getitem(*args): return _ghmmwrapper.density_array_getitem(*args) density_array_getitem = _ghmmwrapper.density_array_getitem def density_array_setitem(*args): return _ghmmwrapper.density_array_setitem(*args) density_array_setitem = _ghmmwrapper.density_array_setitem class ghmm_c_emission(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, ghmm_c_emission, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, ghmm_c_emission, name) __repr__ = _swig_repr __swig_setmethods__["type"] = _ghmmwrapper.ghmm_c_emission_type_set __swig_getmethods__["type"] = _ghmmwrapper.ghmm_c_emission_type_get if _newclass:type = _swig_property(_ghmmwrapper.ghmm_c_emission_type_get, _ghmmwrapper.ghmm_c_emission_type_set) __swig_setmethods__["dimension"] = _ghmmwrapper.ghmm_c_emission_dimension_set __swig_getmethods__["dimension"] = _ghmmwrapper.ghmm_c_emission_dimension_get if _newclass:dimension = _swig_property(_ghmmwrapper.ghmm_c_emission_dimension_get, _ghmmwrapper.ghmm_c_emission_dimension_set) __swig_getmethods__["mean"] = _ghmmwrapper.ghmm_c_emission_mean_get if _newclass:mean = _swig_property(_ghmmwrapper.ghmm_c_emission_mean_get) __swig_getmethods__["variance"] = _ghmmwrapper.ghmm_c_emission_variance_get if _newclass:variance = _swig_property(_ghmmwrapper.ghmm_c_emission_variance_get) __swig_setmethods__["sigmainv"] = _ghmmwrapper.ghmm_c_emission_sigmainv_set __swig_getmethods__["sigmainv"] = _ghmmwrapper.ghmm_c_emission_sigmainv_get if _newclass:sigmainv = _swig_property(_ghmmwrapper.ghmm_c_emission_sigmainv_get, _ghmmwrapper.ghmm_c_emission_sigmainv_set) __swig_setmethods__["det"] = _ghmmwrapper.ghmm_c_emission_det_set __swig_getmethods__["det"] = _ghmmwrapper.ghmm_c_emission_det_get if _newclass:det = _swig_property(_ghmmwrapper.ghmm_c_emission_det_get, _ghmmwrapper.ghmm_c_emission_det_set) __swig_setmethods__["sigmacd"] = _ghmmwrapper.ghmm_c_emission_sigmacd_set __swig_getmethods__["sigmacd"] = _ghmmwrapper.ghmm_c_emission_sigmacd_get if _newclass:sigmacd = _swig_property(_ghmmwrapper.ghmm_c_emission_sigmacd_get, _ghmmwrapper.ghmm_c_emission_sigmacd_set) __swig_setmethods__["min"] = _ghmmwrapper.ghmm_c_emission_min_set __swig_getmethods__["min"] = _ghmmwrapper.ghmm_c_emission_min_get if _newclass:min = _swig_property(_ghmmwrapper.ghmm_c_emission_min_get, _ghmmwrapper.ghmm_c_emission_min_set) __swig_setmethods__["max"] = _ghmmwrapper.ghmm_c_emission_max_set __swig_getmethods__["max"] = _ghmmwrapper.ghmm_c_emission_max_get if _newclass:max = _swig_property(_ghmmwrapper.ghmm_c_emission_max_get, _ghmmwrapper.ghmm_c_emission_max_set) __swig_setmethods__["fixed"] = _ghmmwrapper.ghmm_c_emission_fixed_set __swig_getmethods__["fixed"] = _ghmmwrapper.ghmm_c_emission_fixed_get if _newclass:fixed = _swig_property(_ghmmwrapper.ghmm_c_emission_fixed_get, _ghmmwrapper.ghmm_c_emission_fixed_set) def setDensity(self, *args): return _ghmmwrapper.ghmm_c_emission_setDensity(self, *args) def getDensity(self): return _ghmmwrapper.ghmm_c_emission_getDensity(self) def getMeanVec(self): return _ghmmwrapper.ghmm_c_emission_getMeanVec(self) def __init__(self): this = _ghmmwrapper.new_ghmm_c_emission() try: self.this.append(this) except: self.this = this __swig_destroy__ = _ghmmwrapper.delete_ghmm_c_emission __del__ = lambda self : None; ghmm_c_emission_swigregister = _ghmmwrapper.ghmm_c_emission_swigregister ghmm_c_emission_swigregister(ghmm_c_emission) class ghmm_c_emission_variance(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, ghmm_c_emission_variance, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, ghmm_c_emission_variance, name) __repr__ = _swig_repr __swig_setmethods__["val"] = _ghmmwrapper.ghmm_c_emission_variance_val_set __swig_getmethods__["val"] = _ghmmwrapper.ghmm_c_emission_variance_val_get if _newclass:val = _swig_property(_ghmmwrapper.ghmm_c_emission_variance_val_get, _ghmmwrapper.ghmm_c_emission_variance_val_set) __swig_setmethods__["mat"] = _ghmmwrapper.ghmm_c_emission_variance_mat_set __swig_getmethods__["mat"] = _ghmmwrapper.ghmm_c_emission_variance_mat_get if _newclass:mat = _swig_property(_ghmmwrapper.ghmm_c_emission_variance_mat_get, _ghmmwrapper.ghmm_c_emission_variance_mat_set) def __init__(self): this = _ghmmwrapper.new_ghmm_c_emission_variance() try: self.this.append(this) except: self.this = this __swig_destroy__ = _ghmmwrapper.delete_ghmm_c_emission_variance __del__ = lambda self : None; ghmm_c_emission_variance_swigregister = _ghmmwrapper.ghmm_c_emission_variance_swigregister ghmm_c_emission_variance_swigregister(ghmm_c_emission_variance) class ghmm_c_emission_mean(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, ghmm_c_emission_mean, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, ghmm_c_emission_mean, name) __repr__ = _swig_repr __swig_setmethods__["val"] = _ghmmwrapper.ghmm_c_emission_mean_val_set __swig_getmethods__["val"] = _ghmmwrapper.ghmm_c_emission_mean_val_get if _newclass:val = _swig_property(_ghmmwrapper.ghmm_c_emission_mean_val_get, _ghmmwrapper.ghmm_c_emission_mean_val_set) __swig_setmethods__["vec"] = _ghmmwrapper.ghmm_c_emission_mean_vec_set __swig_getmethods__["vec"] = _ghmmwrapper.ghmm_c_emission_mean_vec_get if _newclass:vec = _swig_property(_ghmmwrapper.ghmm_c_emission_mean_vec_get, _ghmmwrapper.ghmm_c_emission_mean_vec_set) def __init__(self): this = _ghmmwrapper.new_ghmm_c_emission_mean() try: self.this.append(this) except: self.this = this __swig_destroy__ = _ghmmwrapper.delete_ghmm_c_emission_mean __del__ = lambda self : None; ghmm_c_emission_mean_swigregister = _ghmmwrapper.ghmm_c_emission_mean_swigregister ghmm_c_emission_mean_swigregister(ghmm_c_emission_mean) def c_emission_array_alloc(*args): return _ghmmwrapper.c_emission_array_alloc(*args) c_emission_array_alloc = _ghmmwrapper.c_emission_array_alloc def c_emission_array_getRef(*args): return _ghmmwrapper.c_emission_array_getRef(*args) c_emission_array_getRef = _ghmmwrapper.c_emission_array_getRef def c_emission_ptr_array_alloc(*args): return _ghmmwrapper.c_emission_ptr_array_alloc(*args) c_emission_ptr_array_alloc = _ghmmwrapper.c_emission_ptr_array_alloc def c_emission_ptr_array_getitem(*args): return _ghmmwrapper.c_emission_ptr_array_getitem(*args) c_emission_ptr_array_getitem = _ghmmwrapper.c_emission_ptr_array_getitem def c_emission_ptr_array_setitem(*args): return _ghmmwrapper.c_emission_ptr_array_setitem(*args) c_emission_ptr_array_setitem = _ghmmwrapper.c_emission_ptr_array_setitem def ighmm_invert_det(*args): return _ghmmwrapper.ighmm_invert_det(*args) ighmm_invert_det = _ghmmwrapper.ighmm_invert_det class ghmm_cstate(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, ghmm_cstate, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, ghmm_cstate, name) __repr__ = _swig_repr __swig_setmethods__["M"] = _ghmmwrapper.ghmm_cstate_M_set __swig_getmethods__["M"] = _ghmmwrapper.ghmm_cstate_M_get if _newclass:M = _swig_property(_ghmmwrapper.ghmm_cstate_M_get, _ghmmwrapper.ghmm_cstate_M_set) __swig_setmethods__["pi"] = _ghmmwrapper.ghmm_cstate_pi_set __swig_getmethods__["pi"] = _ghmmwrapper.ghmm_cstate_pi_get if _newclass:pi = _swig_property(_ghmmwrapper.ghmm_cstate_pi_get, _ghmmwrapper.ghmm_cstate_pi_set) __swig_setmethods__["out_id"] = _ghmmwrapper.ghmm_cstate_out_id_set __swig_getmethods__["out_id"] = _ghmmwrapper.ghmm_cstate_out_id_get if _newclass:out_id = _swig_property(_ghmmwrapper.ghmm_cstate_out_id_get, _ghmmwrapper.ghmm_cstate_out_id_set) __swig_setmethods__["in_id"] = _ghmmwrapper.ghmm_cstate_in_id_set __swig_getmethods__["in_id"] = _ghmmwrapper.ghmm_cstate_in_id_get if _newclass:in_id = _swig_property(_ghmmwrapper.ghmm_cstate_in_id_get, _ghmmwrapper.ghmm_cstate_in_id_set) __swig_setmethods__["out_a"] = _ghmmwrapper.ghmm_cstate_out_a_set __swig_getmethods__["out_a"] = _ghmmwrapper.ghmm_cstate_out_a_get if _newclass:out_a = _swig_property(_ghmmwrapper.ghmm_cstate_out_a_get, _ghmmwrapper.ghmm_cstate_out_a_set) __swig_setmethods__["in_a"] = _ghmmwrapper.ghmm_cstate_in_a_set __swig_getmethods__["in_a"] = _ghmmwrapper.ghmm_cstate_in_a_get if _newclass:in_a = _swig_property(_ghmmwrapper.ghmm_cstate_in_a_get, _ghmmwrapper.ghmm_cstate_in_a_set) __swig_setmethods__["out_states"] = _ghmmwrapper.ghmm_cstate_out_states_set __swig_getmethods__["out_states"] = _ghmmwrapper.ghmm_cstate_out_states_get if _newclass:out_states = _swig_property(_ghmmwrapper.ghmm_cstate_out_states_get, _ghmmwrapper.ghmm_cstate_out_states_set) __swig_setmethods__["in_states"] = _ghmmwrapper.ghmm_cstate_in_states_set __swig_getmethods__["in_states"] = _ghmmwrapper.ghmm_cstate_in_states_get if _newclass:in_states = _swig_property(_ghmmwrapper.ghmm_cstate_in_states_get, _ghmmwrapper.ghmm_cstate_in_states_set) __swig_setmethods__["c"] = _ghmmwrapper.ghmm_cstate_c_set __swig_getmethods__["c"] = _ghmmwrapper.ghmm_cstate_c_get if _newclass:c = _swig_property(_ghmmwrapper.ghmm_cstate_c_get, _ghmmwrapper.ghmm_cstate_c_set) __swig_setmethods__["fix"] = _ghmmwrapper.ghmm_cstate_fix_set __swig_getmethods__["fix"] = _ghmmwrapper.ghmm_cstate_fix_get if _newclass:fix = _swig_property(_ghmmwrapper.ghmm_cstate_fix_get, _ghmmwrapper.ghmm_cstate_fix_set) __swig_setmethods__["e"] = _ghmmwrapper.ghmm_cstate_e_set __swig_getmethods__["e"] = _ghmmwrapper.ghmm_cstate_e_get if _newclass:e = _swig_property(_ghmmwrapper.ghmm_cstate_e_get, _ghmmwrapper.ghmm_cstate_e_set) __swig_setmethods__["desc"] = _ghmmwrapper.ghmm_cstate_desc_set __swig_getmethods__["desc"] = _ghmmwrapper.ghmm_cstate_desc_get if _newclass:desc = _swig_property(_ghmmwrapper.ghmm_cstate_desc_get, _ghmmwrapper.ghmm_cstate_desc_set) __swig_setmethods__["xPosition"] = _ghmmwrapper.ghmm_cstate_xPosition_set __swig_getmethods__["xPosition"] = _ghmmwrapper.ghmm_cstate_xPosition_get if _newclass:xPosition = _swig_property(_ghmmwrapper.ghmm_cstate_xPosition_get, _ghmmwrapper.ghmm_cstate_xPosition_set) __swig_setmethods__["yPosition"] = _ghmmwrapper.ghmm_cstate_yPosition_set __swig_getmethods__["yPosition"] = _ghmmwrapper.ghmm_cstate_yPosition_get if _newclass:yPosition = _swig_property(_ghmmwrapper.ghmm_cstate_yPosition_get, _ghmmwrapper.ghmm_cstate_yPosition_set) def alloc(self, *args): return _ghmmwrapper.ghmm_cstate_alloc(self, *args) def setDensity(self, *args): return _ghmmwrapper.ghmm_cstate_setDensity(self, *args) def setWeight(self, *args): return _ghmmwrapper.ghmm_cstate_setWeight(self, *args) def setMean(self, *args): return _ghmmwrapper.ghmm_cstate_setMean(self, *args) def setStdDev(self, *args): return _ghmmwrapper.ghmm_cstate_setStdDev(self, *args) def getDensity(self, *args): return _ghmmwrapper.ghmm_cstate_getDensity(self, *args) def getWeight(self, *args): return _ghmmwrapper.ghmm_cstate_getWeight(self, *args) def getMean(self, *args): return _ghmmwrapper.ghmm_cstate_getMean(self, *args) def getStdDev(self, *args): return _ghmmwrapper.ghmm_cstate_getStdDev(self, *args) def setMin(self, *args): return _ghmmwrapper.ghmm_cstate_setMin(self, *args) def setMax(self, *args): return _ghmmwrapper.ghmm_cstate_setMax(self, *args) def getInState(self, *args): return _ghmmwrapper.ghmm_cstate_getInState(self, *args) def getOutState(self, *args): return _ghmmwrapper.ghmm_cstate_getOutState(self, *args) def getInProb(self, *args): return _ghmmwrapper.ghmm_cstate_getInProb(self, *args) def getOutProb(self, *args): return _ghmmwrapper.ghmm_cstate_getOutProb(self, *args) def setInProb(self, *args): return _ghmmwrapper.ghmm_cstate_setInProb(self, *args) def setOutProb(self, *args): return _ghmmwrapper.ghmm_cstate_setOutProb(self, *args) def getEmission(self, *args): return _ghmmwrapper.ghmm_cstate_getEmission(self, *args) def calc_cmbm(self, *args): return _ghmmwrapper.ghmm_cstate_calc_cmbm(self, *args) def calc_b(self, *args): return _ghmmwrapper.ghmm_cstate_calc_b(self, *args) def calc_cmBm(self, *args): return _ghmmwrapper.ghmm_cstate_calc_cmBm(self, *args) def calc_B(self, *args): return _ghmmwrapper.ghmm_cstate_calc_B(self, *args) def getDesc(self): return _ghmmwrapper.ghmm_cstate_getDesc(self) def setDesc(self, *args): return _ghmmwrapper.ghmm_cstate_setDesc(self, *args) def __init__(self): this = _ghmmwrapper.new_ghmm_cstate() try: self.this.append(this) except: self.this = this __swig_destroy__ = _ghmmwrapper.delete_ghmm_cstate __del__ = lambda self : None; ghmm_cstate_swigregister = _ghmmwrapper.ghmm_cstate_swigregister ghmm_cstate_swigregister(ghmm_cstate) def cstate_array_alloc(*args): return _ghmmwrapper.cstate_array_alloc(*args) cstate_array_alloc = _ghmmwrapper.cstate_array_alloc def cstate_array_getRef(*args): return _ghmmwrapper.cstate_array_getRef(*args) cstate_array_getRef = _ghmmwrapper.cstate_array_getRef def cstate_ptr_array_alloc(*args): return _ghmmwrapper.cstate_ptr_array_alloc(*args) cstate_ptr_array_alloc = _ghmmwrapper.cstate_ptr_array_alloc def cstate_ptr_array_getitem(*args): return _ghmmwrapper.cstate_ptr_array_getitem(*args) cstate_ptr_array_getitem = _ghmmwrapper.cstate_ptr_array_getitem def cstate_ptr_array_setitem(*args): return _ghmmwrapper.cstate_ptr_array_setitem(*args) cstate_ptr_array_setitem = _ghmmwrapper.cstate_ptr_array_setitem class ghmm_cmodel_class_change_context(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, ghmm_cmodel_class_change_context, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, ghmm_cmodel_class_change_context, name) __repr__ = _swig_repr __swig_setmethods__["python_module"] = _ghmmwrapper.ghmm_cmodel_class_change_context_python_module_set __swig_getmethods__["python_module"] = _ghmmwrapper.ghmm_cmodel_class_change_context_python_module_get if _newclass:python_module = _swig_property(_ghmmwrapper.ghmm_cmodel_class_change_context_python_module_get, _ghmmwrapper.ghmm_cmodel_class_change_context_python_module_set) __swig_setmethods__["python_function"] = _ghmmwrapper.ghmm_cmodel_class_change_context_python_function_set __swig_getmethods__["python_function"] = _ghmmwrapper.ghmm_cmodel_class_change_context_python_function_get if _newclass:python_function = _swig_property(_ghmmwrapper.ghmm_cmodel_class_change_context_python_function_get, _ghmmwrapper.ghmm_cmodel_class_change_context_python_function_set) __swig_setmethods__["k"] = _ghmmwrapper.ghmm_cmodel_class_change_context_k_set __swig_getmethods__["k"] = _ghmmwrapper.ghmm_cmodel_class_change_context_k_get if _newclass:k = _swig_property(_ghmmwrapper.ghmm_cmodel_class_change_context_k_get, _ghmmwrapper.ghmm_cmodel_class_change_context_k_set) __swig_setmethods__["get_class"] = _ghmmwrapper.ghmm_cmodel_class_change_context_get_class_set __swig_getmethods__["get_class"] = _ghmmwrapper.ghmm_cmodel_class_change_context_get_class_get if _newclass:get_class = _swig_property(_ghmmwrapper.ghmm_cmodel_class_change_context_get_class_get, _ghmmwrapper.ghmm_cmodel_class_change_context_get_class_set) __swig_setmethods__["user_data"] = _ghmmwrapper.ghmm_cmodel_class_change_context_user_data_set __swig_getmethods__["user_data"] = _ghmmwrapper.ghmm_cmodel_class_change_context_user_data_get if _newclass:user_data = _swig_property(_ghmmwrapper.ghmm_cmodel_class_change_context_user_data_get, _ghmmwrapper.ghmm_cmodel_class_change_context_user_data_set) def __init__(self): this = _ghmmwrapper.new_ghmm_cmodel_class_change_context() try: self.this.append(this) except: self.this = this __swig_destroy__ = _ghmmwrapper.delete_ghmm_cmodel_class_change_context __del__ = lambda self : None; ghmm_cmodel_class_change_context_swigregister = _ghmmwrapper.ghmm_cmodel_class_change_context_swigregister ghmm_cmodel_class_change_context_swigregister(ghmm_cmodel_class_change_context) class ghmm_cmodel_baum_welch_context(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, ghmm_cmodel_baum_welch_context, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, ghmm_cmodel_baum_welch_context, name) __repr__ = _swig_repr __swig_setmethods__["smo"] = _ghmmwrapper.ghmm_cmodel_baum_welch_context_smo_set __swig_getmethods__["smo"] = _ghmmwrapper.ghmm_cmodel_baum_welch_context_smo_get if _newclass:smo = _swig_property(_ghmmwrapper.ghmm_cmodel_baum_welch_context_smo_get, _ghmmwrapper.ghmm_cmodel_baum_welch_context_smo_set) __swig_setmethods__["sqd"] = _ghmmwrapper.ghmm_cmodel_baum_welch_context_sqd_set __swig_getmethods__["sqd"] = _ghmmwrapper.ghmm_cmodel_baum_welch_context_sqd_get if _newclass:sqd = _swig_property(_ghmmwrapper.ghmm_cmodel_baum_welch_context_sqd_get, _ghmmwrapper.ghmm_cmodel_baum_welch_context_sqd_set) __swig_setmethods__["logp"] = _ghmmwrapper.ghmm_cmodel_baum_welch_context_logp_set __swig_getmethods__["logp"] = _ghmmwrapper.ghmm_cmodel_baum_welch_context_logp_get if _newclass:logp = _swig_property(_ghmmwrapper.ghmm_cmodel_baum_welch_context_logp_get, _ghmmwrapper.ghmm_cmodel_baum_welch_context_logp_set) __swig_setmethods__["eps"] = _ghmmwrapper.ghmm_cmodel_baum_welch_context_eps_set __swig_getmethods__["eps"] = _ghmmwrapper.ghmm_cmodel_baum_welch_context_eps_get if _newclass:eps = _swig_property(_ghmmwrapper.ghmm_cmodel_baum_welch_context_eps_get, _ghmmwrapper.ghmm_cmodel_baum_welch_context_eps_set) __swig_setmethods__["max_iter"] = _ghmmwrapper.ghmm_cmodel_baum_welch_context_max_iter_set __swig_getmethods__["max_iter"] = _ghmmwrapper.ghmm_cmodel_baum_welch_context_max_iter_get if _newclass:max_iter = _swig_property(_ghmmwrapper.ghmm_cmodel_baum_welch_context_max_iter_get, _ghmmwrapper.ghmm_cmodel_baum_welch_context_max_iter_set) def __init__(self, *args): this = _ghmmwrapper.new_ghmm_cmodel_baum_welch_context(*args) try: self.this.append(this) except: self.this = this __swig_destroy__ = _ghmmwrapper.delete_ghmm_cmodel_baum_welch_context __del__ = lambda self : None; ghmm_cmodel_baum_welch_context_swigregister = _ghmmwrapper.ghmm_cmodel_baum_welch_context_swigregister ghmm_cmodel_baum_welch_context_swigregister(ghmm_cmodel_baum_welch_context) class ghmm_cmodel(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, ghmm_cmodel, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, ghmm_cmodel, name) __repr__ = _swig_repr __swig_setmethods__["N"] = _ghmmwrapper.ghmm_cmodel_N_set __swig_getmethods__["N"] = _ghmmwrapper.ghmm_cmodel_N_get if _newclass:N = _swig_property(_ghmmwrapper.ghmm_cmodel_N_get, _ghmmwrapper.ghmm_cmodel_N_set) __swig_setmethods__["M"] = _ghmmwrapper.ghmm_cmodel_M_set __swig_getmethods__["M"] = _ghmmwrapper.ghmm_cmodel_M_get if _newclass:M = _swig_property(_ghmmwrapper.ghmm_cmodel_M_get, _ghmmwrapper.ghmm_cmodel_M_set) __swig_setmethods__["dim"] = _ghmmwrapper.ghmm_cmodel_dim_set __swig_getmethods__["dim"] = _ghmmwrapper.ghmm_cmodel_dim_get if _newclass:dim = _swig_property(_ghmmwrapper.ghmm_cmodel_dim_get, _ghmmwrapper.ghmm_cmodel_dim_set) __swig_setmethods__["cos"] = _ghmmwrapper.ghmm_cmodel_cos_set __swig_getmethods__["cos"] = _ghmmwrapper.ghmm_cmodel_cos_get if _newclass:cos = _swig_property(_ghmmwrapper.ghmm_cmodel_cos_get, _ghmmwrapper.ghmm_cmodel_cos_set) __swig_setmethods__["prior"] = _ghmmwrapper.ghmm_cmodel_prior_set __swig_getmethods__["prior"] = _ghmmwrapper.ghmm_cmodel_prior_get if _newclass:prior = _swig_property(_ghmmwrapper.ghmm_cmodel_prior_get, _ghmmwrapper.ghmm_cmodel_prior_set) __swig_setmethods__["name"] = _ghmmwrapper.ghmm_cmodel_name_set __swig_getmethods__["name"] = _ghmmwrapper.ghmm_cmodel_name_get if _newclass:name = _swig_property(_ghmmwrapper.ghmm_cmodel_name_get, _ghmmwrapper.ghmm_cmodel_name_set) __swig_setmethods__["model_type"] = _ghmmwrapper.ghmm_cmodel_model_type_set __swig_getmethods__["model_type"] = _ghmmwrapper.ghmm_cmodel_model_type_get if _newclass:model_type = _swig_property(_ghmmwrapper.ghmm_cmodel_model_type_get, _ghmmwrapper.ghmm_cmodel_model_type_set) __swig_setmethods__["s"] = _ghmmwrapper.ghmm_cmodel_s_set __swig_getmethods__["s"] = _ghmmwrapper.ghmm_cmodel_s_get if _newclass:s = _swig_property(_ghmmwrapper.ghmm_cmodel_s_get, _ghmmwrapper.ghmm_cmodel_s_set) __swig_setmethods__["class_change"] = _ghmmwrapper.ghmm_cmodel_class_change_set __swig_getmethods__["class_change"] = _ghmmwrapper.ghmm_cmodel_class_change_get if _newclass:class_change = _swig_property(_ghmmwrapper.ghmm_cmodel_class_change_get, _ghmmwrapper.ghmm_cmodel_class_change_set) def __init__(self, *args): this = _ghmmwrapper.new_ghmm_cmodel(*args) try: self.this.append(this) except: self.this = this __swig_destroy__ = _ghmmwrapper.delete_ghmm_cmodel __del__ = lambda self : None; def write_xml(self, *args): return _ghmmwrapper.ghmm_cmodel_write_xml(self, *args) def forward(self, *args): return _ghmmwrapper.ghmm_cmodel_forward(self, *args) def backward(self, *args): return _ghmmwrapper.ghmm_cmodel_backward(self, *args) def logp(self, *args): return _ghmmwrapper.ghmm_cmodel_logp(self, *args) def logp_joint(self, *args): return _ghmmwrapper.ghmm_cmodel_logp_joint(self, *args) def class_change_alloc(self, *args): return _ghmmwrapper.ghmm_cmodel_class_change_alloc(self, *args) def get_random_var(self, *args): return _ghmmwrapper.ghmm_cmodel_get_random_var(self, *args) def generate_sequences(self, *args): return _ghmmwrapper.ghmm_cmodel_generate_sequences(self, *args) def likelihood(self, *args): return _ghmmwrapper.ghmm_cmodel_likelihood(self, *args) def individual_likelihoods(self, *args): return _ghmmwrapper.ghmm_cmodel_individual_likelihoods(self, *args) def prob_distance(self, *args): return _ghmmwrapper.ghmm_cmodel_prob_distance(self, *args) def get_interval_B(self, *args): return _ghmmwrapper.ghmm_cmodel_get_interval_B(self, *args) def normalize(self): return _ghmmwrapper.ghmm_cmodel_normalize(self) def get_transition(self, *args): return _ghmmwrapper.ghmm_cmodel_get_transition(self, *args) def check_transition(self, *args): return _ghmmwrapper.ghmm_cmodel_check_transition(self, *args) def set_transition(self, *args): return _ghmmwrapper.ghmm_cmodel_set_transition(self, *args) def viterbi(self, *args): return _ghmmwrapper.ghmm_cmodel_viterbi(self, *args) def
% (656 - 334)) + muddyShoeRect.x mudSplatRect2.y = ((height * prn2) % (590 - 317)) + muddyShoeRect.y mudArray.append(mudSplatRect2) elif scoreMultiplier > 2: prn1 = randomNumber() mudSplatRect1 = mudSplat.get_rect() mudSplatRect1.x = ((width * prn1) % (656 - 334)) + muddyShoeRect.x mudSplatRect1.y = ((height * prn1) % (590 - 317)) + muddyShoeRect.y mudArray.append(mudSplatRect1) myGen.setSeed(prn1) prn2 = (myGen.next_prn() % 100) + 1 mudSplatRect2 = mudSplat.get_rect() mudSplatRect2.x = ((width * prn2) % (656 - 334)) + muddyShoeRect.x mudSplatRect2.y = ((height * prn2) % (590 - 317)) + muddyShoeRect.y mudArray.append(mudSplatRect2) myGen.setSeed(prn2) prn3 = (myGen.next_prn() % 100) + 1 mudSplatRect3 = mudSplat.get_rect() mudSplatRect3.x = ((width * prn3) % (656 - 334)) + muddyShoeRect.x mudSplatRect3.y = ((height * prn3) % (590 - 317)) + muddyShoeRect.y mudArray.append(mudSplatRect3) start = time.time() while 1: # if exit button is pressed, close program for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() #check for pause if event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: state = PAUSED pauseScreen() # if mudSplat is clicked, remove from array if event.type == pygame.MOUSEBUTTONDOWN and napkinButtonPressed == True: x, y = event.pos for item in mudArray: if item.collidepoint(x, y): click = pygame.mouse.get_pressed() mudArray.remove(item) hpoints += 1 #happyMeter() # if score is less than or equal to 0, game over! if score < 0: print("You Lose!") gameOver() # load multiplyer button if score >= upgradeCost: multiplier = pygame.image.load("x2Multiplier1.png") else : multiplier = pygame.image.load("x2Multiplier1Disabled.png") # create multiplyer rectangle multRect = multiplier.get_rect() # set x,y position of multiplier image on screen multRect.x = width * 0.83 multRect.y = height * 0.01 # draw images onto screen screen.blit(background, backgroundRect) screen.blit(muddyShoe, muddyShoeRect) screen.blit(multiplier, multRect) screen.blit(napkinButton, napkinButtonRect) screen.blit(deodorButton, deodorButtonRect) screen.blit(mood, moodRect) #new # draw all mudSplats on screen for item in mudArray: screen.blit(mudSplat, item) # render text on screen scoretext = myfont.render("Score {0}".format(score),1,(0,0,0)) upgradetext = myfont.render("Upgrade Cost: {0}".format(upgradeCost),1,(0,0,0)) multipliertext = myfont.render("Multiplier: x{0}".format(scoreMultiplier),1,(0,0,0)) # draw text onto screen screen.blit(scoretext, (5,10)) screen.blit(upgradetext, (5,30)) screen.blit(multipliertext, (5,50)) # object for getting mouse position and click value mouse = pygame.mouse.get_pos() click = pygame.mouse.get_pressed() # this is so we know to render the cursor as the napkin image if pressed if napkinButtonPressed == True: # making the cursor invisible pygame.mouse.set_visible( False ) # place the napkin image over the cursor napkinCursorRect.center = pygame.mouse.get_pos() # display the napkin image over the cursor screen.blit(napkinCursor, napkinCursorRect) # activate multiplier if button is pressed if (multRect.x + 130 > mouse[0] > multRect.x and multRect.y + 130 > mouse[1] > multRect.y) and score >= upgradeCost: if click[0] == 1: score -= upgradeCost scoreMultiplier *= 2 upgradeCost *= scoreMultiplier clickValue *= scoreMultiplier # reset left click[0] to 0 click = pygame.mouse.get_pressed() # activate napkin if button is pressed if (napkinButtonRect.x + 130 > mouse[0] > napkinButtonRect.x and napkinButtonRect.y + 130 > mouse[1] > napkinButtonRect.y): if click[0] == 1: napkinButtonPressed = True # reset left click[0] to 0 click = pygame.mouse.get_pressed() # if mudArray is empty, return to gameLoop() if len(mudArray) == 0: pygame.mouse.set_visible(True) end = time.time() lapse = end - start print("end - start: ", end - start) if lapse >= 1 and lapse < 1.5: hpoints += 1 happyMeter() if lapse >= 1.5 and lapse < 2: hpoints -= 1 happyMeter() if lapse >= 2: hpoints -= 2 happyMeter() return # decrement score (medium decrease) score -= int(((20 * scoreMultiplier) / 5)) # update the screen pygame.display.update() clock.tick(10) # ===================== stinky() ============================= # stinky randomly generates fumes onto the shoe # in this event, points decrease at an extremely fast rate # and the amount of decrease scales with the x2 multiplier # it is called during the gameLoop() and calls the PRNG # for numbers # ============================================================== def stinky(): # reference global vars global score global scoreMultiplier global upgradeCost global clickValue global hpoints # list for storing stinky rects stinkArray = [] # load background image background = pygame.image.load("stinkyBG.jpg") # create background rectangle backgroundRect = background.get_rect() # load deodorant Cursor Image deodorCursor = pygame.image.load("spraycan.png") # deodorant Cursor Rectangle deodorCursorRect = deodorCursor.get_rect() # set napkin cursor variable to not clicked yet deodorButtonPressed = False # load up stinky fumes # stinkSplatRects will be instantiated later stinkSplat = pygame.image.load("fume1.png") stinkSplat2 = pygame.image.load("fume2.png") # load stinky shoe image stinkyShoe = pygame.image.load("sneaker.png") # stinkyShoe rectangle stinkyShoeRect = stinkyShoe.get_rect() # load mood image global mood #create mood rectangle moodRect = mood.get_rect() #new # load napkin button napkinButton = pygame.image.load("napkinButtonDisabled.png") # create napkin rectangle napkinButtonRect = napkinButton.get_rect() # load deodorant button deodorButton = pygame.image.load("spraycanButton.png") # create napkin rectangle deodorButtonRect = deodorButton.get_rect() myfont = pygame.font.SysFont("monospace", 16) # set x,y position of shoe image on screen stinkyShoeRect.x = width * 0.07 stinkyShoeRect.y = height * 0.15 # set x,y position of napkin image on screen napkinButtonRect.x = width * 0.83 napkinButtonRect.y = height * 0.25 # set x,y position of deodorant image on screen deodorButtonRect.x = width * 0.83 deodorButtonRect.y = height * 0.49 # set x,y position of mood image on screen moodRect.x = width * .33 #new moodRect.y = height * .01 #new # place a number of fumes on shoe based on multiplier if scoreMultiplier == 1: stinkSplatRect = stinkSplat.get_rect() randNum = randomNumber() stinkSplatRect.x = ((width * randNum) % (656 - 334)) + stinkyShoeRect.x stinkSplatRect.y = ((height * randNum) % (590 - 317)) + stinkyShoeRect.y stinkArray.append(stinkSplatRect) elif scoreMultiplier == 2: prn1 = randomNumber() stinkSplatRect1 = stinkSplat2.get_rect() stinkSplatRect1.x = ((width * prn1) % (656 - 334)) + stinkyShoeRect.x stinkSplatRect1.y = ((height * prn1) % (590 - 317)) + stinkyShoeRect.y stinkArray.append(stinkSplatRect1) myGen.setSeed(prn1) prn2 = (myGen.next_prn() % 100) + 1 stinkSplatRect2 = stinkSplat.get_rect() stinkSplatRect2.x = ((width * prn2) % (656 - 334)) + stinkyShoeRect.x stinkSplatRect2.y = ((height * prn2) % (590 - 317)) + stinkyShoeRect.y stinkArray.append(stinkSplatRect2) elif scoreMultiplier > 2: prn1 = randomNumber() stinkSplatRect1 = stinkSplat2.get_rect() stinkSplatRect1.x = ((width * prn1) % (656 - 334)) + stinkyShoeRect.x stinkSplatRect1.y = ((height * prn1) % (590 - 317)) + stinkyShoeRect.y stinkArray.append(stinkSplatRect1) myGen.setSeed(prn1) prn2 = (myGen.next_prn() % 100) + 1 stinkSplatRect2 = stinkSplat2.get_rect() stinkSplatRect2.x = ((width * prn2) % (656 - 334)) + stinkyShoeRect.x stinkSplatRect2.y = ((height * prn2) % (590 - 317)) + stinkyShoeRect.y stinkArray.append(stinkSplatRect2) myGen.setSeed(prn2) prn3 = (myGen.next_prn() % 100) + 1 stinkSplatRect3 = stinkSplat.get_rect() stinkSplatRect3.x = ((width * prn3) % (656 - 334)) + stinkyShoeRect.x stinkSplatRect3.y = ((height * prn3) % (590 - 317)) + stinkyShoeRect.y stinkArray.append(stinkSplatRect3) start = time.time() while 1: # if exit button is pressed, close program for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() #check for pause if event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: state = PAUSED pauseScreen() # if stinkySplat is clicked, remove from array if event.type == pygame.MOUSEBUTTONDOWN and deodorButtonPressed == True: x, y = event.pos for item in stinkArray: if item.collidepoint(x, y): click = pygame.mouse.get_pressed() stinkArray.remove(item) hpoints += 1 #happyMeter() # if score is less than or equal to 0, game over! if score < 0: print("You Lose!") gameOver() # load multiplyer button if score >= upgradeCost: multiplier = pygame.image.load("x2Multiplier1.png") else : multiplier = pygame.image.load("x2Multiplier1Disabled.png") # create multiplyer rectangle multRect = multiplier.get_rect() # set x,y position of multiplier image on screen multRect.x = width * 0.83 multRect.y = height * 0.01 # draw images onto screen screen.blit(background, backgroundRect) screen.blit(stinkyShoe, stinkyShoeRect) screen.blit(multiplier, multRect) screen.blit(napkinButton, napkinButtonRect) screen.blit(deodorButton, deodorButtonRect) screen.blit(mood, moodRect) #new # draw all stinkSplats on screen for item in stinkArray: screen.blit(stinkSplat, item) # render text on screen scoretext = myfont.render("Score {0}".format(score),1,(0,0,0)) upgradetext = myfont.render("Upgrade Cost: {0}".format(upgradeCost),1,(0,0,0)) multipliertext = myfont.render("Multiplier: x{0}".format(scoreMultiplier),1,(0,0,0)) # draw text onto screen screen.blit(scoretext, (5,10)) screen.blit(upgradetext, (5,30)) screen.blit(multipliertext, (5,50)) # object for getting mouse position and click value mouse = pygame.mouse.get_pos() click = pygame.mouse.get_pressed() # rendor deodorant mouse cursor if deodorButtonPressed == True: # making the cursor invisible pygame.mouse.set_visible( False ) # place the napkin image over the cursor deodorCursorRect.center = pygame.mouse.get_pos() # display the napkin image over the cursor screen.blit(deodorCursor, deodorCursorRect) # activate multiplier if button is pressed if (multRect.x + 130 > mouse[0] > multRect.x and multRect.y + 130 > mouse[1] > multRect.y) and score >= upgradeCost: if click[0] == 1: score -= upgradeCost scoreMultiplier *= 2 upgradeCost *= scoreMultiplier clickValue *= scoreMultiplier # reset left click[0] to 0 click = pygame.mouse.get_pressed() # activate napkin if button is pressed if (deodorButtonRect.x + 130 > mouse[0] > deodorButtonRect.x and deodorButtonRect.y + 130 > mouse[1] > deodorButtonRect.y): if click[0] == 1: deodorButtonPressed = True # reset left click[0] to 0 click = pygame.mouse.get_pressed() # if stinkyArray is empty, return to gameLoop() if len(stinkArray) == 0: pygame.mouse.set_visible(True) end = time.time() lapse = end - start print("end - start: ", end - start) if lapse >= 1 and lapse < 1.5: hpoints += 1 happyMeter() if lapse >= 1.5 and lapse < 2: hpoints -= 1 happyMeter() if lapse >= 2: hpoints -= 2 happyMeter() return # decrement score (extreme decrease) score -= int(((50 * scoreMultiplier) / 5)) # update the screen pygame.display.update() clock.tick(10) # ===================== randomNumber() ============================= # returns a random number. This is called by the events and the # game loop. # ================================================================== def randomNumber(): # use current time as seed seed = int(time.time() % 60) + 1 # seed the PRNG instance myGen.setSeed(seed) # generate the pseduo random number in range 1 to 100 prn = (myGen.next_prn() % 100) + 1 return prn # ======================== getChance() ========================= # getChance triggers the events based on a random number. # This number is multiplied by chance, based on the happy meter. # =============================================================== def getChance(): # if score is a multiple of 50 (50 was picked arbitrarily), # trigger random number generation if score % 50 == 0: randNum = randomNumber() print("Random number: ", randNum) # if random number is <= 50, trigger mudslide event if(randNum*chance <= 50): mudslide() #if random number is >= 70, trigger stinky event if(randNum*chance >= 70): stinky() # ======================== happyMeter() ========================= # happyMeter changes the image of the the faces based on the # points. Chance is updated. Is called
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for healthcare.deploy.templates.data_project. These tests check that the template is free from syntax errors and generates the expected resources. To run tests, run `python -m unittest tests.data_project_test` from the templates directory. """ import unittest from templates import data_project class TestDataProject(unittest.TestCase): def test_expansion_local_logging(self): class FakeContext(object): env = { 'deployment': 'my-deployment', 'project': 'my-project', } properties = { 'has_organization': True, 'remove_owner_user': '<EMAIL>', 'owners_group': '<EMAIL>', 'auditors_group': '<EMAIL>', 'data_readwrite_groups': [ '<EMAIL>', '<EMAIL>', ], 'data_readonly_groups': [ '<EMAIL>', '<EMAIL>', ], 'local_audit_logs': { 'logs_gcs_bucket': { 'location': 'US', 'storage_class': 'MULTI_REGIONAL', 'ttl_days': 365, }, 'logs_bigquery_dataset': { 'location': 'US', }, }, 'bigquery_datasets': [ { 'name': 'us_data', 'location': 'US', }, { 'name': 'euro_data', 'location': 'EU', }, ], 'data_buckets': [ { 'name_suffix': '-nlp-bucket', 'location': 'US-CENTRAL1', 'storage_class': 'REGIONAL', 'expected_users': [ '<EMAIL>', '<EMAIL>', ], }, { 'name_suffix': '-other-bucket', 'location': 'US-EAST1', 'storage_class': 'REGIONAL', }, { 'name_suffix': '-euro-bucket', 'location': 'EUROPE-WEST1', 'storage_class': 'REGIONAL', 'expected_users': ['<EMAIL>'], }, ], 'pubsub': { 'topic': 'test-topic', 'subscription': 'test-subscription', 'publisher_account': ( '<EMAIL>'), 'ack_deadline_sec': 100 }, 'enabled_apis': [ 'cloudbuild.googleapis.com', 'cloudresourcemanager.googleapis.com', # Ignored by script. 'containerregistry.googleapis.com', 'deploymentmanager.googleapis.com', # Ignored by script. ] } generated = data_project.generate_config(FakeContext()) expected = { 'resources': [{ 'name': 'set-project-bindings-get-iam-policy', 'action': ('gcp-types/cloudresourcemanager-v1:' 'cloudresourcemanager.projects.getIamPolicy'), 'properties': {'resource': 'my-project'}, 'metadata': {'runtimePolicy': ['UPDATE_ALWAYS']}, }, { 'name': 'set-project-bindings-patch-iam-policy', 'action': ('gcp-types/cloudresourcemanager-v1:' 'cloudresourcemanager.projects.setIamPolicy'), 'properties': { 'resource': 'my-project', 'policy': '$(ref.set-project-bindings-get-iam-policy)', 'gcpIamPolicyPatch': { 'add': [ { 'role': 'roles/iam.securityReviewer', 'members': [ 'group:<EMAIL>' ], }, { 'role': 'roles/owner', 'members': [ 'group:<EMAIL>' ], } ], 'remove': [{ 'role': 'roles/owner', 'members': ['user:<EMAIL>'], }], }, }, }, { 'name': 'my-project-logs', 'type': 'storage.v1.bucket', 'accessControl': { 'gcpIamPolicy': { 'bindings': [{ 'role': 'roles/storage.admin', 'members': [ 'group:<EMAIL>' ] }, { 'role': 'roles/storage.objectCreator', 'members': ['group:<EMAIL>'] }] } }, 'properties': { 'location': 'US', 'storageClass': 'MULTI_REGIONAL', 'lifecycle': { 'rule': [{ 'action': {'type': 'Delete'}, 'condition': { 'isLive': True, 'age': 365 } }] } } }, { 'name': 'audit-logs-to-bigquery', 'type': 'logging.v2.sink', 'properties': { 'sink': 'audit-logs-to-bigquery', 'uniqueWriterIdentity': True, 'destination': ('bigquery.googleapis.com/projects/my-project/' 'datasets/audit_logs'), 'filter': 'logName:"logs/cloudaudit.googleapis.com"', } }, { 'name': 'create-big-query-dataset-us_data', 'type': 'bigquery.v2.dataset', 'properties': { 'datasetReference': {'datasetId': 'us_data'}, 'location': 'US', }, }, { 'name': 'update-big-query-dataset-us_data', 'action': 'gcp-types/bigquery-v2:bigquery.datasets.patch', 'properties': { 'projectId': 'my-project', 'datasetId': 'us_data', 'access': [{ 'role': 'OWNER', 'groupByEmail': '<EMAIL>', }, { 'role': 'READER', 'groupByEmail': '<EMAIL>', }, { 'role': 'READER', 'groupByEmail': '<EMAIL>', }, { 'role': 'WRITER', 'groupByEmail': '<EMAIL>', }, { 'role': 'WRITER', 'groupByEmail': '<EMAIL>', }], }, 'metadata': {'dependsOn': ['create-big-query-dataset-us_data']}, }, { 'name': 'create-big-query-dataset-euro_data', 'type': 'bigquery.v2.dataset', 'properties': { 'datasetReference': {'datasetId': 'euro_data'}, 'location': 'EU', }, }, { 'name': 'update-big-query-dataset-euro_data', 'action': 'gcp-types/bigquery-v2:bigquery.datasets.patch', 'properties': { 'projectId': 'my-project', 'datasetId': 'euro_data', 'access': [{ 'role': 'OWNER', 'groupByEmail': '<EMAIL>', }, { 'role': 'READER', 'groupByEmail': '<EMAIL>', }, { 'role': 'READER', 'groupByEmail': '<EMAIL>', }, { 'role': 'WRITER', 'groupByEmail': '<EMAIL>', }, { 'role': 'WRITER', 'groupByEmail': '<EMAIL>', }], }, 'metadata': {'dependsOn': ['create-big-query-dataset-euro_data']}, }, { 'name': 'my-project-nlp-bucket', 'type': 'storage.v1.bucket', 'metadata': {'dependsOn': ['my-project-logs']}, 'accessControl': { 'gcpIamPolicy': { 'bindings': [{ 'role': 'roles/storage.admin', 'members': ['group:<EMAIL>'] }, { 'role': 'roles/storage.objectAdmin', 'members': [ 'group:<EMAIL>', 'group:<EMAIL>', ] }, { 'role': 'roles/storage.objectViewer', 'members': [ 'group:<EMAIL>', 'group:<EMAIL>', ] }] } }, 'properties': { 'location': 'US-CENTRAL1', 'versioning': {'enabled': True}, 'storageClass': 'REGIONAL', 'logging': { 'logBucket': 'my-project-logs' } } }, { 'name': 'unexpected-access-my-project-nlp-bucket', 'type': 'logging.v2.metric', 'properties': { 'filter': ('resource.type=gcs_bucket AND ' 'logName=projects/my-project/logs/' 'cloudaudit.googleapis.com%2Fdata_access AND ' 'protoPayload.resourceName=projects/_/buckets/' 'my-project-nlp-bucket AND ' 'protoPayload.authenticationInfo.principalEmail!=(' '<EMAIL> AND ' 'auth_<EMAIL>)'), 'description': 'Count of unexpected data access to my-project-nlp-bucket.', 'labelExtractors': { 'user': ('EXTRACT(' 'protoPayload.authenticationInfo.principalEmail)'), }, 'metricDescriptor': { 'labels': [{ 'description': 'Unexpected user', 'key': 'user', 'valueType': 'STRING' }], 'unit': '1', 'metricKind': 'DELTA', 'valueType': 'INT64' }, 'metric': 'unexpected-access-my-project-nlp-bucket' } }, { 'name': 'my-project-other-bucket', 'type': 'storage.v1.bucket', 'metadata': {'dependsOn': ['my-project-logs']}, 'accessControl': { 'gcpIamPolicy': { 'bindings': [{ 'role': 'roles/storage.admin', 'members': ['group:<EMAIL>'] }, { 'role': 'roles/storage.objectAdmin', 'members': [ 'group:<EMAIL>', 'group:<EMAIL>', ] }, { 'role': 'roles/storage.objectViewer', 'members': [ 'group:<EMAIL>', 'group:<EMAIL>', ] }] } }, 'properties': { 'location': 'US-EAST1', 'versioning': {'enabled': True}, 'storageClass': 'REGIONAL', 'logging': { 'logBucket': 'my-project-logs' } } }, { 'name': 'my-project-euro-bucket', 'type': 'storage.v1.bucket', 'metadata': {'dependsOn': ['my-project-logs']}, 'accessControl': { 'gcpIamPolicy': { 'bindings': [{ 'role': 'roles/storage.admin', 'members': ['group:<EMAIL>'] }, { 'role': 'roles/storage.objectAdmin', 'members': [ 'group:<EMAIL>', 'group:<EMAIL>', ] }, { 'role': 'roles/storage.objectViewer', 'members': [ 'group:<EMAIL>', 'group:<EMAIL>', ] }] } }, 'properties': { 'location': 'EUROPE-WEST1', 'versioning': {'enabled': True}, 'storageClass': 'REGIONAL', 'logging': { 'logBucket': 'my-project-logs' } } }, { 'name': 'unexpected-access-my-project-euro-bucket', 'type': 'logging.v2.metric', 'properties': { 'filter': ('resource.type=gcs_bucket AND ' 'logName=projects/my-project/logs/' 'cloudaudit.googleapis.com%2Fdata_access AND ' 'protoPayload.resourceName=projects/_/buckets/' 'my-project-euro-bucket AND ' 'protoPayload.authenticationInfo.principalEmail!=(' '<EMAIL>)'), 'description': ('Count of unexpected data access to ' 'my-project-euro-bucket.'), 'labelExtractors': { 'user': ('EXTRACT(' 'protoPayload.authenticationInfo.principalEmail)'), }, 'metricDescriptor': { 'labels': [{ 'description': 'Unexpected user', 'key': 'user', 'valueType': 'STRING' }], 'unit': '1', 'metricKind': 'DELTA', 'valueType': 'INT64' }, 'metric': 'unexpected-access-my-project-euro-bucket' } }, { 'name': 'test-topic', 'type': 'pubsub.v1.topic', 'properties': { 'topic': 'test-topic', }, 'accessControl': { 'gcpIamPolicy': { 'bindings': [ { 'role': 'roles/pubsub.publisher', 'members': [ ('serviceAccount:cloud-healthcare-eng' '@system.gserviceaccount.com') ], }, ], }, }, }, { 'name': 'test-subscription', 'type': 'pubsub.v1.subscription', 'properties': { 'subscription': 'test-subscription', 'topic': 'projects/my-project/topics/test-topic', 'ackDeadlineSeconds': 100, }, 'accessControl': { 'gcpIamPolicy': { 'bindings': [{ 'role': 'roles/pubsub.editor', 'members': [ 'group:<EMAIL>', ('group:another-readwrite-<EMAIL>@googlegroups.' 'com'), ], },], }, }, 'metadata': { 'dependsOn': ['test-topic'], }, }, { 'name': 'iam-policy-change-count', 'type': 'logging.v2.metric', 'properties': { 'filter': ('\n' ' resource.type=project AND\n' ' protoPayload.serviceName=' 'cloudresourcemanager.googleapis.com AND\n' ' protoPayload.methodName=SetIamPolicy'), 'description': 'Count of IAM policy changes.', 'labelExtractors': { 'user': ('EXTRACT(' 'protoPayload.authenticationInfo.principalEmail)'), }, 'metricDescriptor': { 'labels': [{ 'description': 'Unexpected user', 'key': 'user', 'valueType': 'STRING' }], 'unit': '1', 'metricKind': 'DELTA', 'valueType': 'INT64' }, 'metric': 'iam-policy-change-count' } }, { 'name': 'bucket-permission-change-count', 'type': 'logging.v2.metric', 'properties': { 'filter': ( '\n' ' resource.type=gcs_bucket AND\n' ' protoPayload.serviceName=storage.googleapis.com ' 'AND\n' ' (protoPayload.methodName=storage.setIamPermissions ' 'OR\n' ' protoPayload.methodName=storage.objects.update)'), 'description': 'Count of GCS permissions changes.', 'labelExtractors': { 'user': ('EXTRACT(' 'protoPayload.authenticationInfo.principalEmail)'), }, 'metricDescriptor': { 'labels': [{ 'description': 'Unexpected user', 'key': 'user', 'valueType': 'STRING' }], 'unit': '1', 'metricKind': 'DELTA', 'valueType': 'INT64' }, 'metric': 'bucket-permission-change-count' } }, { 'name': 'audit-configs-get-iam-etag', 'action': ('gcp-types/cloudresourcemanager-v1:' 'cloudresourcemanager.projects.getIamPolicy'), 'properties': { 'resource': 'my-project', }, 'metadata': { 'runtimePolicy': ['UPDATE_ALWAYS'], 'dependsOn': ['set-project-bindings-patch-iam-policy'], }, }, { 'name': 'audit-configs-patch-iam-policy', 'action': ('gcp-types/cloudresourcemanager-v1:' 'cloudresourcemanager.projects.setIamPolicy'), 'properties': { 'updateMask': 'auditConfigs,etag', 'resource': 'my-project', 'policy': { 'auditConfigs': [{ 'auditLogConfigs': [ {'logType': 'ADMIN_READ'}, {'logType': 'DATA_WRITE'}, {'logType': 'DATA_READ'}, ], 'service': 'allServices', }], 'etag': '$(ref.audit-configs-get-iam-etag.etag)', }, }, 'metadata': { 'dependsOn': ['audit-configs-get-iam-etag'], }, }, { 'name': 'enable-cloudbuild', 'action': ('gcp-types/servicemanagement-v1:' 'servicemanagement.services.enable'), 'properties': { 'consumerId': 'project:my-project', 'serviceName': 'cloudbuild.googleapis.com' }, 'metadata': { 'dependsOn': ['audit-configs-patch-iam-policy'], }, }, { 'name': 'enable-containerregistry', 'action': ('gcp-types/servicemanagement-v1:' 'servicemanagement.services.enable'), 'properties': { 'consumerId': 'project:my-project', 'serviceName': 'containerregistry.googleapis.com' }, 'metadata': { 'dependsOn': ['audit-configs-patch-iam-policy'], }, }] } self.assertEqual(generated, expected) def testExpansionRemoteLoggingNoOrg(self): class FakeContext(object): env = { 'deployment': 'my-deployment', 'project': 'my-project', } properties = { 'has_organization': False, 'owners_group': '<EMAIL>', 'editors_group': '<EMAIL>', 'auditors_group': '<EMAIL>', 'additional_project_permissions': [ { 'roles': ['roles/editor',], 'members': ['serviceAccount:<EMAIL>', 'serviceAccount:<EMAIL>'] }, { 'roles': ['roles/bigquery.dataViewer', 'roles/storage.objectViewer'], 'members': ['group:<EMAIL>', 'user:<EMAIL>'] }, ], 'data_readwrite_groups': ['<EMAIL>'], 'data_readonly_groups': ['<EMAIL>'], 'remote_audit_logs': { 'audit_logs_project_id': 'my-audit-logs', 'logs_gcs_bucket_name': 'some_remote_bucket', 'logs_bigquery_dataset_id': 'some_remote_dataset', }, 'bigquery_datasets': [ { 'name': 'us_data', 'location': 'US', }, ], 'data_buckets': [ { 'name_suffix': '-data', 'location': 'US', 'storage_class': 'MULTI_REGIONAL', }, ], } generated = data_project.generate_config(FakeContext()) expected = { 'resources': [{ 'name': 'set-project-bindings-get-iam-policy', 'action': ('gcp-types/cloudresourcemanager-v1:' 'cloudresourcemanager.projects.getIamPolicy'), 'properties': {'resource': 'my-project'}, 'metadata': {'runtimePolicy': ['UPDATE_ALWAYS']}, }, { 'name': 'set-project-bindings-patch-iam-policy', 'action': ('gcp-types/cloudresourcemanager-v1:' 'cloudresourcemanager.projects.setIamPolicy'), 'properties': { 'resource': 'my-project', 'policy': '$(ref.set-project-bindings-get-iam-policy)', 'gcpIamPolicyPatch': { 'add': [ { 'role': 'roles/bigquery.dataViewer', 'members': [ 'group:<EMAIL>', 'user:<EMAIL>', ], }, { 'role': 'roles/editor', 'members': [ 'group:<EMAIL>', 'serviceAccount:<EMAIL>', 'serviceAccount:<EMAIL>', ], }, { 'role': 'roles/iam.securityReviewer', 'members': [ 'group:<EMAIL>', ], }, { 'role': 'roles/resourcemanager.projectIamAdmin', 'members': [ 'group:<EMAIL>', ], }, { 'role': 'roles/storage.objectViewer', 'members': [ 'group:<EMAIL>', 'user:<EMAIL>', ], }, ], }, }, }, { 'name': 'audit-logs-to-bigquery', 'type': 'logging.v2.sink', 'properties': { 'sink': 'audit-logs-to-bigquery', 'uniqueWriterIdentity': True, 'destination': ('bigquery.googleapis.com/projects/' 'my-audit-logs/datasets/some_remote_dataset'), 'filter': 'logName:"logs/cloudaudit.googleapis.com"', } }, { 'name': 'create-big-query-dataset-us_data', 'type': 'bigquery.v2.dataset', 'properties': { 'datasetReference': {'datasetId': 'us_data'}, 'location': 'US', }, }, { 'name': 'update-big-query-dataset-us_data', 'action': 'gcp-types/bigquery-v2:bigquery.datasets.patch', 'properties': { 'projectId': 'my-project', 'datasetId': 'us_data', 'access': [{ 'role': 'OWNER', 'groupByEmail': '<EMAIL>', }, { 'role': 'READER', 'groupByEmail': '<EMAIL>', }, { 'role': 'WRITER', 'groupByEmail': '<EMAIL>', }], }, 'metadata': {'dependsOn': ['create-big-query-dataset-us_data']}, },
import sys import os import time import errno import signal import select import traceback from multiprocessing.forking import Popen JOIN_RESTART_POLICY = 0 TERMINATE_RESTART_POLICY = 1 def get_current_process(): class CurrentProcess(Process): def __init__(self, *args, **kwargs): self._child = None self._parent = None self._parent_pid = None self.name = 'MainProcess {1}'.format(self.__class__.__name__, os.getpid()) self.daemonic = False @property def pid(self): return os.getpid() return CurrentProcess() class ProcessOpen(object): """ProcessOpen forks the current process and runs a Process object create() method in the child process. If the child process fork fails, the Process object cleanup routine method is called to make sure the object _child attribute is set to None. The ProcessOpen objects are not reusable and are only meant to be used as a one shot process execution tracker. :param process: Process whom create method should be called in the child process :type process: pkit.process.Process """ READY_FLAG = "READY" def __init__(self, process, wait=False, wait_timeout=1): sys.stdout.flush() sys.stderr.flush() self.process = process self.returncode = None self.ready = None read_pipe, write_pipe = os.pipe() self.pid = os.fork() if self.pid == 0: signal.signal(signal.SIGTERM, self.on_sigterm) # Once the child process has it's signal handler # binded we warn the parent process through a pipe if wait is True: self._send_ready_flag(write_pipe, read_pipe) returncode = self.process.create() sys.stdout.flush() sys.stderr.flush() os._exit(returncode) else: if wait is True: self.ready = self._poll_ready_flag(read_pipe, write_pipe, wait_timeout) def _send_ready_flag(self, write_pipe, read_pipe=None): """Ran in the forked child process""" if read_pipe is not None: os.close(read_pipe) write_pipe = os.fdopen(write_pipe, 'w', 128) write_pipe.write(self.READY_FLAG) write_pipe.close() def _poll_ready_flag(self, read_pipe, write_pipe=None, timeout=0): """Polls the child process read-only pipe for incoming data""" if write_pipe is not None: os.close(write_pipe) try: read, _, _ = select.select([read_pipe], [], [], timeout) except select.error as e: if hasattr(e, 'errno') and e.errno == errno.EINTR: return False # If select is interrupted, we don't care about ready flag if len(read) > 0: return True return False def poll(self, flag=os.WNOHANG): if self.returncode is None: while True: try: pid, sts = os.waitpid(self.pid, flag) except os.error as e: if e.errno == errno.EINTR: continue # Child process not yet created. See #1731717 # e.errno == errno.ECHILD == 10 return None else: break if pid == self.pid: if os.WIFSIGNALED(sts): self.returncode = -os.WTERMSIG(sts) else: assert os.WIFEXITED(sts) self.returncode = os.WEXITSTATUS(sts) return self.returncode def wait(self, timeout=None): """Polls the forked process for it's status. It uses os.waitpid under the hood, and checks for the forked process exit code status. Poll method source code: http://hg.python.org/cpython/file/ab05e7dd2788/Lib/multiprocessing/forking.py :param timeout: time interval to poll the forked process status :type timeout: float :returns: the forked process exit code status :rtype: int """ if timeout is None: return self.poll(0) deadline = time.time() + timeout delay = 0.0005 while 1: returncode = self.poll() if returncode is not None: break remaining = deadline - time.time() if remaining <= 0: break delay = min(delay * 2, remaining, 0.05) time.sleep(delay) self.process.clean() return returncode # def wait(self, timeout=None): # """Polls the forked process for it's status. # It uses os.waitpid under the hood, and checks for the # forked process exit code status. # Poll method source code: http://hg.python.org/cpython/file/ab05e7dd2788/Lib/multiprocessing/forking.py # :param timeout: time interval to poll the forked process status # :type timeout: float # :returns: the forked process exit code status # :rtype: int # """ # returncode = super(ProcessOpen, self).wait(timeout) # self.process.clean() # return returncode def terminate(self): """Kills the running forked process using the SIGTERM signal The method checks if the process is actually running, and will therefore send it a SIGTERM signal, and wait for it to exit before it returns. The process object cleanup routine method is then called to make sur the object _child attribute is set to None """ if self.returncode is None: try: os.kill(self.pid, signal.SIGTERM) except OSError as e: if self.wait(timeout=0.1) is None: raise self.returncode = 1 return self.returncode def on_sigterm(self, signum, sigframe): """Subprocess sigterm signal handler""" self.returncode = 1 os._exit(1) class Process(object): """Process objects represent activity that is run in a child process :param target: callable object to be invoked in the run method :type target: callable :param name: sets the process name :type name: str :param on_exit: callback to be invoked on process exit, will be provided with current process as first argument. Should be of the form: lambda process: ... :type on_exit: callable :param args: arguments to provide to the target :type args: tuple :param kwargs: keyword arguments to provide to the target :type kwargs: dict """ def __init__(self, target=None, name=None, parent=False, on_exit=None, args=(), kwargs={}): self._current = get_current_process() self._parent_pid = self._current.pid self._child = None self._parent = None self._exitcode = None self._on_exit = on_exit self.name = name or self.__class__.__name__ self.daemonic = False self.target = target self.target_args = tuple(args) self.target_kwargs = dict(kwargs) # Bind signals handlers signal.signal(signal.SIGCHLD, self.on_sigchld) signal.siginterrupt(signal.SIGCHLD, False) def __str__(self): return '<{0} {1}>'.format(self.name, self.pid) def __repr__(self): return self.__str__() def on_sigchld(self, signum, sigframe): if self._child is not None and self._child.pid: pid, status = os.waitpid(self._child.pid, os.WNOHANG) if pid == self._child.pid: self._exitcode = os.WEXITSTATUS(status) if self._on_exit: self._on_exit(self) self.clean() def create(self): """Method to be called when the process child is forked""" # Global try/except designed to catch # SystemExit and any uncaught exceptions # while run() method execution. try: try: sys.stdin.close() sys.stdin = open(os.devnull) except (OSError, ValueError): pass # Run the process target and cleanup # the instance afterwards. self._current = self self.run() returncode = 0 except SystemError as err: if not err.args: returncode = 1 elif isinstance(err.args[0], int): returncode = err.args[0] else: sys.stderr.write(str(err.args[0]) + '\n') sys.stderr.flush() returncode = 0 if isinstance(err.args[0], str) else 1 except: returncode = 1 sys.stderr.write('Process {} with pid {}:\n'.format(self.name, self.pid)) sys.stderr.flush() traceback.print_exc() return returncode def clean(self): """Cleans up the object child process status""" self._current = get_current_process() if self._child is not None: self._child = None def run(self): """Runs the target with provided args and kwargs in a fork""" if self.target: self.target(*self.target_args, **self.target_kwargs) def start(self, wait=False, wait_timeout=0): """Starts the Process""" if os.getpid() != self._parent_pid: raise RuntimeError( "Can only start a process object created by current process" ) if self._child is not None: raise RuntimeError("Cannot start a process twice") self._child = ProcessOpen(self, wait=wait, wait_timeout=wait_timeout) child_pid = self._child.pid self._current = self return child_pid def join(self, timeout=None): """Awaits on Process exit :param timeout: Time to wait for the process exit :type timeout: float """ if self._child is None: raise RuntimeError("Can only join a started process") try: self._exitcode = self._child.wait(timeout) except OSError: pass def terminate(self, wait=False): """Forces the process to stop The method checks if the process is actually running, and will therefore send it a SIGTERM signal, and wait for it to exit before it returns. """ if self._child is None: raise RuntimeError("Can only terminate a started process") self._child.terminate() if wait: self.wait(until=lambda p, *args: p._child is None) def restart(self, policy=JOIN_RESTART_POLICY): if not policy in [JOIN_RESTART_POLICY, TERMINATE_RESTART_POLICY]: raise ValueError("Invalid restart policy supplied") if policy == JOIN_RESTART_POLICY: self.join() elif policy == TERMINTE_RESTART_POLICY: pid_dump = self.pid self.terminate() os.waitpid(pid_dump, 0) self.start() def wait(self, until=None, args=(), timeout=None): """Wait until the provided predicate about the Process object becomes true. Default behavior (if until is not provided) is to call wait on Process subprocess using the provided timeout. The method can be useful in some specific case where you would want to wait for specific process states before taking any other actions. Typically, it could be useful when you'd like to wait for a sigterm to be taken in account by the process before taking any other actions. example: p = Process(target=lambda: time.sleep(100)) p.start() os.kill(p.pid, signal.SIGTERM) p.wait() :param until: Callable predicate to be evaluated against the process. Takes a process obj and an args tuple as input. :type until: callable :param args: Args to be supplied to the until predicate callable, default value is an empty tuple. :type args: tuple :param timeout: timeout in seconds :type timeout: float """ def default_until(self, *args): if self._child is not None: try: self._child.wait(timeout) except OSError: pass return True if until is not None and not hasattr(until, '__call__'): raise ValueError("Until parameter must be a callable") timeout = timeout or 0.1 until = until or default_until while until(self, *args) is False: time.sleep(0.1)
import re from df_engine.core import Actor, Context from langcodes import normalize_characters from torch import norm, normal from scenario.qcfg import g from nltk import grammar, parse import re from lxml import etree import urllib.request, gzip, io import scenario.config as config # Create the CFG grammar from a string saved in qcfg.py gram = grammar.FeatureGrammar.fromstring(g) # Get the expoplanet data and parse it into an XML tree url = "https://github.com/OpenExoplanetCatalogue/oec_gzip/raw/master/systems.xml.gz" oec = etree.parse(gzip.GzipFile(fileobj=io.BytesIO(urllib.request.urlopen(url).read()))) # Predefined response templates in German and English: speech_acts = {'another_search':{'de':'Möchtest du eine neue Suche starten?','en':'Would you like to try another search?'}, 'no_understand':{'de':'Ich habe die diese Anfrage nicht verstanden:','en':'I did not understand the query'}, 'spelling':{'de':'Entschuldige, bitte achte auf korrekte Rechtschreibung. Drücke eine Taste, um es erneut zu versuchen.','en':'Sorry, please spell correctly. Press any key to try again.'}, 'more_info':{'de':'Möchtest du mehr über einen dieser Planeten erfahren?','en':'Would you like more info on one of these planets?'}, 'initiate':{'de':'Bitte gib deine Anfrage ein.','en':'Please enter your search query!'}, 'follow_up':{'de':'OK, über welchen Planeten?','en':'Alright, for which planet?'}, 'fail':{'de':'Oh, hier ist etwas schief gelaufen. Drücke eine Taste, um von Vorne zu beginnen.','en':'Oh, something went wrong. Press any key to start from the beginning.'}, 'not_found':{'de':'Ich habe keine Planeten gefunden für die Anfrage ','en':'I did not find any planet for the query '}} def find_planets(query,gram): ''' Process the query and parse it with the CFG grammar. If the query cannot be parsed the parser returns a ValueError or is empty and the function will return an error. If the query can be parsed all created parse trees are iterated over and their 'SEM' feature holding the created Xpath query is extracted. It is then verified that this Xpath query is well-formed (e.g., '../planet[radius=1]'), and if it is, then the XML expoplanet database is queried. INPUT: - query: string; the original input query, e.g., 'planets with a radius of 1' - gram: NLTK FeatureGrammar object created from grammar defined in qcfg.py OUTPUT: tuple: - planet_names: list of lists; if the length of the outer list is 1, the query had 1 part, e.g. 'planet with a radius of 1'; if the length of the outer list is > 1, the query had multiple parts, e.g. '2 planets with a radius of 1 and 1 planet with a mass of 1' - language; either 'de' or 'en'; this is the CFG tree feature 'L' - normalized_query; query processed with normalize() and serialize() - xml_queries: the queries in Xpath format ''' # remove numbers from query and substitute by '#NUM#' query,number_dict = serialize(query) query = normalize(query) normalized_query = (f'Normalized NL Query: {query}') # parse query parser = parse.FeatureEarleyChartParser(gram) try: trees = list(parser.parse(query.split())) except ValueError: return('QueryError',0,0,0) if not trees: return('QueryError',0,0,0) planet_names = [] for i,t in enumerate(trees): answer = trees[i].label()['SEM'] language = trees[i].label()['L'] # join the parts of the featue 'SEM' into one continous string: answer = ''.join([s for s in answer if s]) # substitute back in the numbers: for tag in number_dict.keys(): answer = re.sub(tag,number_dict[tag],answer) subqueries = answer.split(';') if are_wellformed(subqueries): planet_names = [] found = False try: for q in subqueries: planets = oec.xpath(q) if planets: found = True planet_names.append(get_names(planets)) xml_queries=f'XML Queries:{subqueries}' if found: return (planet_names,language,normalized_query,xml_queries) else: continue except: continue return (0,language,normalized_query,xml_queries) def serialize(query): ''' Replace the numbers in the query with numbered tags, e.g., 'planets with a radius of 1' -> 'planets with a radius of #NUM0'. Create a dictionary in order to later reassign the numbers to the tags. INPUT: query; the original query OUTPUT: - query with replaced numbers, e.g., 'planets with a radius of #NUM0' - number_dict: dictionary with number tags as keys (e.g., #NUM0) and numbers as values (e.g., 1) ''' number_dict = dict() numbers = re.findall(r'(\d+\.*\d*)',query) number_tags = ['#NUM'+str(i) for i in range(len(numbers))] for i,tag in enumerate(number_tags): number_dict[tag] = numbers[0] query = re.sub(f'(?<!NUM)({numbers[0]})',tag,query,count=1) numbers = re.findall(r'(?<!NUM)(\d+\.*\d*)',query) return (query,number_dict) def normalize(query): ''' Normalize the input query and remove redundant material that is not relevant for the parsing of the query. ''' query = query.lower() query = re.sub(r'[^\w\s#]','',query) query = re.sub( r'zeig mir|show me|are there any|are there|gibt es|can you show me|look for|search|suche?|finde?', '',query) return query def are_wellformed(qs): ''' Check if the given queries are in a well-formed Xpath format. RETURN: true if all queries are well-formed, false otherwise ''' wf = re.compile('\.//.+?\[.+?\]|\(\.//.+?\[.+?\]\)\[.+?\]') for q in qs: if not wf.match(q): return 0 return 1 def get_names(elements): names = [] for e in elements: names.append(e.xpath("name")[0].text) return names def give_response(planet_names,query,language): ''' Provide search result response in case the search yielded planets. The language has been extracted from the parsed and processed query and determines the language of the response. INPUT: - planet_names: list of lists; if the length of the outer list is 1, the query had 1 part, e.g. 'planet with a radius of 1'; if the length of the outer list is > 1, the query had multiple parts, e.g. '2 planets with a radius of 1 and 1 planet with a mass of 1' - query: string; the original input query - language: string OUTPUT: string built from the planet names embedded in language-specific response templates. ''' if language == 'de': response = give_de_response(planet_names,query) else: response = give_en_response(planet_names,query) return response def give_en_response(planet_names,query): ''' See calling function give_response() ''' if len(planet_names) == 1: if len(planet_names[0]) == 1: return f"I found the following {len(planet_names[0])} planet for the query '{query}':\n\n{', '.join(planet_names[0])}\n" elif len(planet_names[0]) > 1: return f"I found the following {len(planet_names[0])} planets for the query '{query}':\n\n{', '.join(planet_names[0])}\n" elif len(planet_names) > 1: response = "" for sqi,names in enumerate(planet_names): if len(names) == 1: response += f"Here is 1 planet I found for part {sqi + 1} of the query '{query}':\n\n{names[0]}\n\n" elif len(names) > 1: response += f"Here are {len(names)} planets I found for part {sqi + 1} of the query '{query}':\n\n{', '.join(names)}\n\n" else: response += f"I did not find any planet for part {sqi + 1} of the query '{query}'.\n\n" return response def give_de_response(planet_names,query): ''' See calling function give_response() ''' if len(planet_names) == 1: if len(planet_names[0]) == 1: config.PLANET_FOUND = True return f"Ich habe den folgenden Planeten gefunden für die Anfrage '{query}':\n\n{', '.join(planet_names[0])}\n" elif len(planet_names[0]) > 1: config.PLANET_FOUND = True return f"Ich habe die folgenden {len(planet_names[0])} Planeten gefunden für die Anfrage '{query}:'\n\n{', '.join(planet_names[0])}\n" elif len(planet_names) > 1: response = "" for sqi,names in enumerate(planet_names): if len(names) == 1: config.PLANET_FOUND = True response += f"Hier ist 1 Planet, den ich für Teil {sqi + 1} der Anfrage '{query}' gefunden habe:\n\n{names[0]}\n\n" elif len(names) > 1: config.PLANET_FOUND = True response += f"Hier sind {len(names)} Planeten, die ich für Teil {sqi + 1} der Anfrage '{query}' gefunden habe:\n\n{', '.join(names)}\n\n" else: response += f"Ich habe keine Planeten für Teil {sqi + 1} der Anfrage '{query}' gefunden.\n\n" return response def process_query(ctx: Context, actor: Actor, *args, **kwargs): ''' Initiate the processing of the input query and return a presentation of the search result. The processing and parsing of the input query is done within find_planets(). The language is extracted from the parsed query and used to set the language of the response. OUTPUT: String containing: - normalized_query: numbers replaced by placeholders that are recognized by the CFG grammar, lower-cased, punctuation removed - xml_queries: the converted query in Xpath format. - response: the presentation of the search result including - question: follow-up question for the user ''' config.PLANET_FOUND = False query = ctx.last_request planet_names,language,normalized_query,xml_queries = find_planets(query,gram) if language: config.LANGUAGE = language if planet_names == 'QueryError': response = speech_acts['no_understand'][config.LANGUAGE] question = question = speech_acts['another_search'][config.LANGUAGE] return f"\n\n{normalized_query}\n{xml_queries}\n\n{response} '{query}'. {question}\n" else: if planet_names: config.PLANET_FOUND = True response = give_response(planet_names,query,language) question = speech_acts['more_info'][config.LANGUAGE] return f'\n\n{normalized_query}\n{xml_queries}\n\n{response}\n{question}\n' else: config.PLANET_FOUND = False response = speech_acts['not_found'][config.LANGUAGE] question = speech_acts['another_search'][config.LANGUAGE] return f"\n\n{normalized_query}\n{xml_queries}\n\n{response}'{query}'\n\n{question}\n" def planet_description(ctx: Context, actor: Actor, *args, **kwargs): ''' Retrieve a description from the data base via Xpath for the planet provided by the user. OUTPUT: String with description or prompt to provide the correctly spelled name of a planet. ''' planet = ctx.last_request try: description =
""" This script loads in a trained policy neural network and uses it for inference. Typically this script will be executed on the Nvidia Jetson TX2 board during an experiment in the Spacecraft Robotics and Control Laboratory at Carleton University. Script created: June 12, 2019 @author: Kirk (<EMAIL>) """ import tensorflow as tf import numpy as np import socket import time import threading from collections import deque # import code # for debugging #code.interact(local=dict(globals(), **locals())) # Ctrl+D or Ctrl+Z to continue execution try: from settings import Settings except: print("You must load the 'manipulator' environment in settings\n\nQuitting.") raise SystemExit from build_neural_networks import BuildActorNetwork assert Settings.ENVIRONMENT == 'manipulator' # Load an environment to use methods from environment_file = __import__('environment_' + Settings.ENVIRONMENT) # importing the environment """ *# Relative pose expressed in the chaser's body frame; everything else in Inertial frame #* Deep guidance output in x and y are in the chaser body frame """ # Are we testing? testing = False CHECK_VELOCITY_LIMITS_IN_PYTHON = True HARD_CODE_TARGET_SPIN = False TARGET_SPIN_VALUE = -7*np.pi/180 # [rad/s] SUCCESSFUL_DOCKING_RADIUS = 0.04 # [m] [default: 0.04] overwrite the successful docking radius defined in the environment ############################### ### User-defined parameters ### ############################### offset_x = 0 # Position offset of the target in its body frame offset_y = 0 # Position offset of the target in its body frame offset_angle = 0 # Angle offset of the target in its body frame # Do you want to debug with constant accelerations? DEBUG_CONTROLLER_WITH_CONSTANT_ACCELERATIONS = False constant_Ax = 0 # [m/s^2] in inertial frame constant_Ay = 0 # [m/s^2] in inertial frame constant_alpha = 0 # [rad/s^2] in inertial frame constant_alpha_shoulder = 0 # [rad/s^2] constant_alpha_elbow = 0# [rad/s^2] constant_alpha_wrist = 0# [rad/s^2] def make_C_bI(angle): C_bI = np.array([[ np.cos(angle), np.sin(angle)], [-np.sin(angle), np.cos(angle)]]) # [2, 2] return C_bI class MessageParser: def __init__(self, testing, client_socket, messages_to_deep_guidance, stop_run_flag): print("Initializing Message Parser!") self.client_socket = client_socket self.messages_to_deep_guidance = messages_to_deep_guidance self.stop_run_flag = stop_run_flag self.testing = testing # Items from the Pi self.Pi_time = 0 self.Pi_red_x = 0 self.Pi_red_y = 0 self.Pi_red_theta = 0 self.Pi_red_Vx = 0 self.Pi_red_Vy = 0 self.Pi_red_omega = 0 self.Pi_black_x = 0 self.Pi_black_y = 0 self.Pi_black_theta = 0 self.Pi_black_Vx = 0 self.Pi_black_Vy = 0 self.Pi_black_omega = 0 self.shoulder_theta = 0 self.elbow_theta = 0 self.wrist_theta = 0 self.shoulder_omega = 0 self.elbow_omega = 0 self.wrist_omega = 0 print("Done initializing parser!") def run(self): print("Running Message Parser!") # Run until we want to stop while not self.stop_run_flag.is_set(): if self.testing: # Assign test values # Items from the Pi self.Pi_time = 15 self.Pi_red_x = 3 self.Pi_red_y = 1 self.Pi_red_theta = 0.5 self.Pi_red_Vx = 0 self.Pi_red_Vy = 0 self.Pi_red_omega = 0 self.Pi_black_x = 1 self.Pi_black_y = 1 self.Pi_black_theta = 3.1 self.Pi_black_Vx = 0 self.Pi_black_Vy = 0 self.Pi_black_omega = 0 self.shoulder_theta = 1 self.elbow_theta = 1.2 self.wrist_theta = 0.5 self.shoulder_omega = 0 self.elbow_omega = 0 self.wrist_omega = 0 else: # It's real try: data = self.client_socket.recv(4096) # Read the next value except socket.timeout: print("Socket timeout") continue data_packet = np.array(data.decode("utf-8").splitlines()) #print('Got message: ' + str(data.decode("utf-8"))) # We received a packet from the Pi # input_data_array is: [time, red_x, red_y, red_angle, red_vx, red_vy, red_dangle, black_x, black_y, black_angle, black_vx, black_vy, black_dangle, shoulder_angle, elbow_angle, wrist_angle, shoulder_omega, elbow_omega, wrist_omega] try: self.Pi_time, self.Pi_red_x, self.Pi_red_y, self.Pi_red_theta, self.Pi_red_Vx, self.Pi_red_Vy, self.Pi_red_omega, self.Pi_black_x, self.Pi_black_y, self.Pi_black_theta, self.Pi_black_Vx, self.Pi_black_Vy, self.Pi_black_omega, self.shoulder_theta, self.elbow_theta, self.wrist_theta, self.shoulder_omega, self.elbow_omega, self.wrist_omega = data_packet.astype(np.float32) except: print("Failed data read from jetsonRepeater.py, continuing...") continue if HARD_CODE_TARGET_SPIN: self.Pi_black_omega = TARGET_SPIN_VALUE # Apply the offsets to the target offsets_target_body = np.array([offset_x, offset_y]) offsets_target_inertial = np.matmul(make_C_bI(self.Pi_black_theta).T, offsets_target_body) self.Pi_black_x = self.Pi_black_x - offsets_target_inertial[0] self.Pi_black_y = self.Pi_black_y - offsets_target_inertial[1] self.Pi_black_theta = self.Pi_black_theta - offset_angle # Write the data to the queue for DeepGuidanceModelRunner to use! """ This queue is thread-safe. If I append multiple times without popping, the data in the queue is overwritten. Perfect! """ #(self.Pi_time, self.Pi_red_x, self.Pi_red_y, self.Pi_red_theta, self.Pi_red_Vx, self.Pi_red_Vy, self.Pi_red_omega, self.Pi_black_x, self.Pi_black_y, self.Pi_black_theta, self.Pi_black_Vx, self.Pi_black_Vy, self.Pi_black_omega, self.shoulder_theta, self.elbow_theta, self.wrist_theta, self.shoulder_omega, self.elbow_omega, self.wrist_omega) self.messages_to_deep_guidance.append((self.Pi_time, self.Pi_red_x, self.Pi_red_y, self.Pi_red_theta, self.Pi_red_Vx, self.Pi_red_Vy, self.Pi_red_omega, self.Pi_black_x, self.Pi_black_y, self.Pi_black_theta, self.Pi_black_Vx, self.Pi_black_Vy, self.Pi_black_omega, self.shoulder_theta, self.elbow_theta, self.wrist_theta, self.shoulder_omega, self.elbow_omega, self.wrist_omega)) print("Message handler gently stopped") class DeepGuidanceModelRunner: def __init__(self, testing, client_socket, messages_to_deep_guidance, stop_run_flag): print("Initializing deep guidance model runner") self.client_socket = client_socket self.messages_to_deep_guidance = messages_to_deep_guidance self.stop_run_flag = stop_run_flag self.testing = testing # Initializing a variable to check if we've docked self.have_we_docked = 0. # Holding the previous position so we know when SPOTNet gives a new update self.previousSPOTNet_relative_x = 0.0 # Initialize an environment so we can use its methods self.environment = environment_file.Environment() self.environment.reset(False) # Overwrite the successful docking radius self.environment.SUCCESSFUL_DOCKING_RADIUS = SUCCESSFUL_DOCKING_RADIUS # Uncomment this on TF2.0 #tf.compat.v1.disable_eager_execution() # Clear any old graph tf.reset_default_graph() # Initialize Tensorflow, and load in policy self.sess = tf.Session() # Building the policy network self.state_placeholder = tf.placeholder(dtype = tf.float32, shape = [None, Settings.OBSERVATION_SIZE], name = "state_placeholder") self.actor = BuildActorNetwork(self.state_placeholder, scope='learner_actor_main') # Loading in trained network weights print("Attempting to load in previously-trained model\n") saver = tf.train.Saver() # initialize the tensorflow Saver() # Try to load in policy network parameters try: ckpt = tf.train.get_checkpoint_state('../') saver.restore(self.sess, ckpt.model_checkpoint_path) print("\nModel successfully loaded!\n") except (ValueError, AttributeError): print("Model: ", ckpt.model_checkpoint_path, " not found... :(") raise SystemExit print("Done initializing model!") def run(self): print("Running Deep Guidance!") counter = 1 # Parameters for normalizing the input relevant_state_mean = np.delete(Settings.STATE_MEAN, Settings.IRRELEVANT_STATES) relevant_half_range = np.delete(Settings.STATE_HALF_RANGE, Settings.IRRELEVANT_STATES) # To log data data_log = [] # Run zeros through the policy to ensure all libraries are properly loaded in deep_guidance = self.sess.run(self.actor.action_scaled, feed_dict={self.state_placeholder:np.zeros([1, Settings.OBSERVATION_SIZE])})[0] # Run until we want to stop while not stop_run_flag.is_set(): # Total state is [relative_x, relative_y, relative_vx, relative_vy, relative_angle, relative_angular_velocity, chaser_x, chaser_y, chaser_theta, target_x, target_y, target_theta, chaser_vx, chaser_vy, chaser_omega, target_vx, target_vy, target_omega] *# Relative pose expressed in the chaser's body frame; everything else in Inertial frame #* # Network input: [relative_x, relative_y, relative_angle, chaser_theta, chaser_vx, chaser_vy, chaser_omega, target_omega] ** Normalize it first ** # Get data from Message Parser try: Pi_time, Pi_red_x, Pi_red_y, Pi_red_theta, \ Pi_red_Vx, Pi_red_Vy, Pi_red_omega, \ Pi_black_x, Pi_black_y, Pi_black_theta, \ Pi_black_Vx, Pi_black_Vy, Pi_black_omega, \ shoulder_theta, elbow_theta, wrist_theta, \ shoulder_omega, elbow_omega, wrist_omega = self.messages_to_deep_guidance.pop() except IndexError: # Queue was empty, try agian continue ############################# ### Check if we've docked ### ############################# # Check the reward function based off this state self.environment.chaser_position = np.array([Pi_red_x, Pi_red_y, Pi_red_theta]) self.environment.chaser_velocity = np.array([Pi_red_Vx, Pi_red_Vy, Pi_red_omega]) self.environment.target_position = np.array([Pi_black_x, Pi_black_y, Pi_black_theta]) self.environment.target_velocity = np.array([Pi_black_Vx, Pi_black_Vy, Pi_black_omega]) self.environment.arm_angles = np.array([shoulder_theta, elbow_theta, wrist_theta]) self.environment.arm_angular_rates = np.array([shoulder_omega, elbow_omega, wrist_omega]) # Get environment to check for collisions self.environment.update_end_effector_and_docking_locations() self.environment.update_end_effector_location_body_frame() self.environment.update_relative_pose_body_frame() self.environment.check_collisions() # Ask the environment whether docking occurred self.have_we_docked = np.max([self.have_we_docked, float(self.environment.docked)]) # Extracting end-effector position and docking port position in the Inertial frame end_effector_position = self.environment.end_effector_position docking_port_position = self.environment.docking_port_position # Calculating relative position between the docking port and the end-effector in the Target's body frame docking_error_inertial = end_effector_position - docking_port_position docking_error_target_body = np.matmul(make_C_bI(Pi_black_theta), docking_error_inertial) print("Distance from cone to end-effector in target body frame: ", docking_error_target_body, " Environment thinks we've docked: ", self.have_we_docked) ################################# ### Building the Policy Input ### ################################# total_state = self.environment.make_total_state() policy_input = np.delete(total_state, Settings.IRRELEVANT_STATES) # Normalizing if Settings.NORMALIZE_STATE: normalized_policy_input = (policy_input - relevant_state_mean)/relevant_half_range else: normalized_policy_input = policy_input # Reshaping the input normalized_policy_input = normalized_policy_input.reshape([-1, Settings.OBSERVATION_SIZE]) # Run processed state through the policy deep_guidance = self.sess.run(self.actor.action_scaled, feed_dict={self.state_placeholder:normalized_policy_input})[0] # [accel_x, accel_y, alpha] # Rotating the command into the inertial frame if not Settings.ACTIONS_IN_INERTIAL: deep_guidance[0:2] = np.matmul(make_C_bI(Pi_red_theta).T,deep_guidance[0:2]) # Commanding constant values in the inertial frame for testing purposes if DEBUG_CONTROLLER_WITH_CONSTANT_ACCELERATIONS: deep_guidance[0] = constant_Ax # [m/s^2] deep_guidance[1] = constant_Ay # [m/s^2] deep_guidance[2] = constant_alpha # [rad/s^2] deep_guidance[3] = constant_alpha_shoulder # [rad/s^2] deep_guidance[4] = constant_alpha_elbow # [rad/s^2]] deep_guidance[5] = constant_alpha_wrist # [rad/s^2] ################################################################# ### Cap output if we are exceeding the max allowable velocity ### ################################################################# # Stopping the command of additional velocity when we are already at our maximum """ The check for arm velocity exceeding has been transferred to Simulink - June 1, 2021 """ if
column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=1, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=2, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=2, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=2, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) def Menu_Catawba(self): self.mw.destroy() self.mw = tk.Tk() #Specify the attributes for all widgets simply like this. self.mw.option_add("*Button.Background", "Teal") self.mw.option_add("*Button.Foreground", "White") self.mw.title('OP25 Repeater Selector GUI') #You can set the geometry attribute to change the root windows size self.mw.geometry("800x420") #You want the size of the app to be 750 X 562.5 Pixels (Slightky Smaller than the RPI 7" Touch Screens) self.mw.resizable(0, 0) #Don't allow resizing in the x or y direction back = tk.Frame(master=self.mw,bg='Grey') back.pack_propagate(0) #Don't allow the widgets inside to determine the frame's width / height back.pack(fill=tk.BOTH, expand=1) #Expand the frame to fill the root window #Buttons Stop_OP25 = tk.Button(master=back, text='Stop OP25 Instances', command=stopall, width=14, height=3) Stop_OP25.grid(row=0, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) GoToFavorites_OP25 = tk.Button(master=back, text='Go To Favorites', command=self.Favorites, width=14, height=3) GoToFavorites_OP25.grid(row=0, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) GoToNCCounties_OP25 = tk.Button(master=back, text='Go To NC Counties', command=self.NC_Counties_Home, width=14, height=3) GoToNCCounties_OP25.grid(row=0, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_Anderson_Mountain = tk.Button(master=back, text='Anderson_Mountain', command=CMD_Anderson_Mountain, width=14, height=3) Button_Anderson_Mountain.grid(row=1, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_Baker_Mtn = tk.Button(master=back, text='Baker_Mtn', command=CMD_Baker_Mtn, width=14, height=3) Button_Baker_Mtn.grid(row=1, column=2, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_River_Bend_Rd = tk.Button(master=back, text='River_Bend_Rd', command=CMD_River_Bend_Rd, width=14, height=3) Button_River_Bend_Rd.grid(row=1, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=1, column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=1, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=2, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=2, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=2, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) def Menu_Chatham(self): self.mw.destroy() self.mw = tk.Tk() #Specify the attributes for all widgets simply like this. self.mw.option_add("*Button.Background", "Teal") self.mw.option_add("*Button.Foreground", "White") self.mw.title('OP25 Repeater Selector GUI') #You can set the geometry attribute to change the root windows size self.mw.geometry("800x420") #You want the size of the app to be 750 X 562.5 Pixels (Slightky Smaller than the RPI 7" Touch Screens) self.mw.resizable(0, 0) #Don't allow resizing in the x or y direction back = tk.Frame(master=self.mw,bg='Grey') back.pack_propagate(0) #Don't allow the widgets inside to determine the frame's width / height back.pack(fill=tk.BOTH, expand=1) #Expand the frame to fill the root window #Buttons Stop_OP25 = tk.Button(master=back, text='Stop OP25 Instances', command=stopall, width=14, height=3) Stop_OP25.grid(row=0, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) GoToFavorites_OP25 = tk.Button(master=back, text='Go To Favorites', command=self.Favorites, width=14, height=3) GoToFavorites_OP25.grid(row=0, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) GoToNCCounties_OP25 = tk.Button(master=back, text='Go To NC Counties', command=self.NC_Counties_Home, width=14, height=3) GoToNCCounties_OP25.grid(row=0, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_Chatham_Mountain = tk.Button(master=back, text='Chatham_Mountain', command=CMD_Chatham_Mountain, width=14, height=3) Button_Chatham_Mountain.grid(row=1, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_Siler_City = tk.Button(master=back, text='Siler_City', command=CMD_Siler_City, width=14, height=3) Button_Siler_City.grid(row=1, column=2, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=1, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=1, column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=1, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=2, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=2, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=2, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=4, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) def Menu_Cherokee(self): self.mw.destroy() self.mw = tk.Tk() #Specify the attributes for all widgets simply like this. self.mw.option_add("*Button.Background", "Teal") self.mw.option_add("*Button.Foreground", "White") self.mw.title('OP25 Repeater Selector GUI') #You can set the geometry attribute to change the root windows size self.mw.geometry("800x420") #You want the size of the app to be 750 X 562.5 Pixels (Slightky Smaller than the RPI 7" Touch Screens) self.mw.resizable(0, 0) #Don't allow resizing in the x or y direction back = tk.Frame(master=self.mw,bg='Grey') back.pack_propagate(0) #Don't allow the widgets inside to determine the frame's width / height back.pack(fill=tk.BOTH, expand=1) #Expand the frame to fill the root window #Buttons Stop_OP25 = tk.Button(master=back, text='Stop OP25 Instances', command=stopall, width=14, height=3) Stop_OP25.grid(row=0, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) GoToFavorites_OP25 = tk.Button(master=back, text='Go To Favorites', command=self.Favorites, width=14, height=3) GoToFavorites_OP25.grid(row=0, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) GoToNCCounties_OP25 = tk.Button(master=back, text='Go To NC Counties', command=self.NC_Counties_Home, width=14, height=3) GoToNCCounties_OP25.grid(row=0, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_Joanna_Bald = tk.Button(master=back, text='Joanna_Bald', command=CMD_Joanna_Bald, width=14, height=3) Button_Joanna_Bald.grid(row=1, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_Murphy = tk.Button(master=back, text='Murphy', command=CMD_Murphy, width=14, height=3) Button_Murphy.grid(row=1, column=2, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=1, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=1, column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=1, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=2, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=2, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=1, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=2, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=3, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=4, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3) Button_.grid(row=3, column=5, sticky=tk.W+tk.E+tk.N+tk.S, padx=9, pady=5) Button_ = tk.Button(master=back, text='', command='', width=14, height=3)
<filename>src/mbed_cloud/_backends/iam/apis/aggregator_account_admin_api.py # coding: utf-8 """ Account Management API API for managing accounts, users, creating API keys, uploading trusted certificates OpenAPI spec version: v3 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from ..api_client import ApiClient class AggregatorAccountAdminApi(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def add_account_api_key_to_groups(self, account_id, api_key, body, **kwargs): # noqa: E501 """Add API key to a list of groups. # noqa: E501 An endpoint for adding API key to groups. **Example usage:** `curl -X POST https://api.us-east-1.mbedcloud.com/v3/accounts/{accountID}/api-keys/{apikey}/groups -d '[0162056a9a1586f30242590700000000,0117056a9a1586f30242590700000000]' -H 'content-type: application/json' -H 'Authorization: Bearer API_KEY'` # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass asynchronous=True >>> thread = api.add_account_api_key_to_groups(account_id, api_key, body, asynchronous=True) >>> result = thread.get() :param asynchronous bool :param str account_id: Account ID. (required) :param str api_key: The ID of the API key to be added to the group. (required) :param list[str] body: A list of IDs of the groups to be updated. (required) :return: UpdatedResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('asynchronous'): return self.add_account_api_key_to_groups_with_http_info(account_id, api_key, body, **kwargs) # noqa: E501 else: (data) = self.add_account_api_key_to_groups_with_http_info(account_id, api_key, body, **kwargs) # noqa: E501 return data def add_account_api_key_to_groups_with_http_info(self, account_id, api_key, body, **kwargs): # noqa: E501 """Add API key to a list of groups. # noqa: E501 An endpoint for adding API key to groups. **Example usage:** `curl -X POST https://api.us-east-1.mbedcloud.com/v3/accounts/{accountID}/api-keys/{apikey}/groups -d '[0162056a9a1586f30242590700000000,0117056a9a1586f30242590700000000]' -H 'content-type: application/json' -H 'Authorization: Bearer API_KEY'` # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass asynchronous=True >>> thread = api.add_account_api_key_to_groups_with_http_info(account_id, api_key, body, asynchronous=True) >>> result = thread.get() :param asynchronous bool :param str account_id: Account ID. (required) :param str api_key: The ID of the API key to be added to the group. (required) :param list[str] body: A list of IDs of the groups to be updated. (required) :return: UpdatedResponse If the method is called asynchronously, returns the request thread. """ all_params = ['account_id', 'api_key', 'body'] # noqa: E501 all_params.append('asynchronous') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method add_account_api_key_to_groups" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'account_id' is set if ('account_id' not in params or params['account_id'] is None): raise ValueError("Missing the required parameter `account_id` when calling `add_account_api_key_to_groups`") # noqa: E501 # verify the required parameter 'api_key' is set if ('api_key' not in params or params['api_key'] is None): raise ValueError("Missing the required parameter `api_key` when calling `add_account_api_key_to_groups`") # noqa: E501 # verify the required parameter 'body' is set if ('body' not in params or params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `add_account_api_key_to_groups`") # noqa: E501 collection_formats = {} path_params = {} if 'account_id' in params: path_params['accountID'] = params['account_id'] # noqa: E501 if 'api_key' in params: path_params['apiKey'] = params['api_key'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['Bearer'] # noqa: E501 return self.api_client.call_api( '/v3/accounts/{accountID}/api-keys/{apiKey}/groups', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='UpdatedResponse', # noqa: E501 auth_settings=auth_settings, asynchronous=params.get('asynchronous'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def add_account_certificate(self, account_id, body, **kwargs): # noqa: E501 """Upload new trusted certificate. # noqa: E501 An endpoint for uploading new trusted certificates. **Example usage:** `curl -X POST https://api.us-east-1.mbedcloud.com/v3/accounts/{accountID}/trusted-certificates -d {\"name\": \"myCert1\", \"description\": \"very important cert\", \"certificate\": \"certificate_data\", \"service\": \"lwm2m\"} -H 'content-type: application/json' -H 'Authorization: Bearer API_KEY'` # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass asynchronous=True >>> thread = api.add_account_certificate(account_id, body, asynchronous=True) >>> result = thread.get() :param asynchronous bool :param str account_id: Account ID. (required) :param TrustedCertificateRootReq body: A trusted certificate object with attributes, signature is optional. (required) :return: TrustedCertificateResp If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('asynchronous'): return self.add_account_certificate_with_http_info(account_id, body, **kwargs) # noqa: E501 else: (data) = self.add_account_certificate_with_http_info(account_id, body, **kwargs) # noqa: E501 return data def add_account_certificate_with_http_info(self, account_id, body, **kwargs): # noqa: E501 """Upload new trusted certificate. # noqa: E501 An endpoint for uploading new trusted certificates. **Example usage:** `curl -X POST https://api.us-east-1.mbedcloud.com/v3/accounts/{accountID}/trusted-certificates -d {\"name\": \"myCert1\", \"description\": \"very important cert\", \"certificate\": \"certificate_data\", \"service\": \"lwm2m\"} -H 'content-type: application/json' -H 'Authorization: Bearer API_KEY'` # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass asynchronous=True >>> thread = api.add_account_certificate_with_http_info(account_id, body, asynchronous=True) >>> result = thread.get() :param asynchronous bool :param str account_id: Account ID. (required) :param TrustedCertificateRootReq body: A trusted certificate object with attributes, signature is optional. (required) :return: TrustedCertificateResp If the method is called asynchronously, returns the request thread. """ all_params = ['account_id', 'body'] # noqa: E501 all_params.append('asynchronous') all_params.append('_return_http_data_only') all_params.append('_preload_content') all_params.append('_request_timeout') params = locals() for key, val in six.iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method add_account_certificate" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'account_id' is set if ('account_id' not in params or params['account_id'] is None): raise ValueError("Missing the required parameter `account_id` when calling `add_account_certificate`") # noqa: E501 # verify the required parameter 'body' is set if ('body' not in params or params['body'] is None): raise ValueError("Missing the required parameter `body` when calling `add_account_certificate`") # noqa: E501 collection_formats = {} path_params = {} if 'account_id' in params: path_params['accountID'] = params['account_id'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'body' in params: body_params = params['body'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['Bearer'] # noqa: E501 return self.api_client.call_api( '/v3/accounts/{accountID}/trusted-certificates', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='TrustedCertificateResp', # noqa: E501 auth_settings=auth_settings, asynchronous=params.get('asynchronous'), _return_http_data_only=params.get('_return_http_data_only'), _preload_content=params.get('_preload_content', True), _request_timeout=params.get('_request_timeout'), collection_formats=collection_formats) def add_account_user_to_groups(self, account_id, user_id, body, **kwargs): # noqa: E501 """Add user to a list of groups. # noqa: E501 An endpoint for adding user to groups. **Example usage:** `curl -X POST https://api.us-east-1.mbedcloud.com/v3/accounts/{accountID}/users/{user-id}/groups -d '[0162056a9a1586f30242590700000000,0117056a9a1586f30242590700000000]' -H 'content-type: application/json' -H 'Authorization: Bearer API_KEY'` # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass asynchronous=True >>> thread = api.add_account_user_to_groups(account_id, user_id, body, asynchronous=True) >>> result = thread.get() :param asynchronous bool :param str account_id: Account ID. (required) :param str user_id: The ID of the user to be added to the group. (required) :param list[str] body: A list of IDs of the groups to be updated. (required) :return: UpdatedResponse If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('asynchronous'): return self.add_account_user_to_groups_with_http_info(account_id, user_id, body, **kwargs) # noqa: E501 else: (data) = self.add_account_user_to_groups_with_http_info(account_id, user_id, body, **kwargs) # noqa: E501 return data def add_account_user_to_groups_with_http_info(self, account_id, user_id, body, **kwargs): # noqa: E501 """Add user to a list of groups. # noqa: E501 An endpoint for adding user to groups. **Example usage:** `curl -X POST https://api.us-east-1.mbedcloud.com/v3/accounts/{accountID}/users/{user-id}/groups -d '[0162056a9a1586f30242590700000000,0117056a9a1586f30242590700000000]' -H 'content-type: application/json' -H 'Authorization: Bearer API_KEY'` # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass asynchronous=True >>> thread = api.add_account_user_to_groups_with_http_info(account_id, user_id, body, asynchronous=True) >>> result = thread.get() :param asynchronous bool :param str account_id: Account ID. (required) :param str user_id: The ID of the user to be added to the group. (required)
should fail if the FITS files in the directory # are actually read. bad_dir = tmpdir.mkdtemp() not_really_fits = bad_dir.join('not_fits.fit') not_really_fits.dump('I am not really a FITS file') # Make sure an error will be generated if the FITS file is read with pytest.raises(IOError): fits.getheader(not_really_fits.strpath) log = tmpdir.join('tmp.log') self._setup_logger(log.strpath) _ = ImageFileCollection(location=bad_dir.strpath, keywords=[]) with open(log.strpath) as f: warnings = f.read() # ImageFileCollection will suppress the IOError but log a warning # so check that the log has no warnings in it. assert (len(warnings) == 0) def test_fits_summary_when_keywords_are_not_subset(self, triage_setup): """ Catch case when there is overlap between keyword list passed to the ImageFileCollection and to files_filtered but the latter is not a subset of the former. """ ic = ImageFileCollection(triage_setup.test_dir, keywords=['imagetyp', 'exposure']) n_files = len(ic.files) files_missing_this_key = ic.files_filtered(imagetyp='*', monkeys=None) assert(n_files > 0) assert(n_files == len(files_missing_this_key)) def test_duplicate_keywords_in_setting(self, triage_setup): keywords_in = ['imagetyp', 'a', 'a'] ic = ImageFileCollection(triage_setup.test_dir, keywords=keywords_in) for key in set(keywords_in): assert (key in ic.keywords) # One keyword gets added: file assert len(ic.keywords) < len(keywords_in) + 1 def test_keyword_includes_file(self, triage_setup): keywords_in = ['file', 'imagetyp'] ic = ImageFileCollection(triage_setup.test_dir, keywords=keywords_in) assert 'file' in ic.keywords file_keywords = [key for key in ic.keywords if key == 'file'] assert len(file_keywords) == 1 def test_setting_keywords_to_none(self, triage_setup): ic = ImageFileCollection(triage_setup.test_dir, keywords=['imagetyp']) ic.keywords = None assert ic.summary == [] def test_getting_value_for_keyword(self, triage_setup): ic = ImageFileCollection(triage_setup.test_dir, keywords=['imagetyp']) # Does it fail if the keyword is not in the summary? with pytest.raises(ValueError): ic.values('filter') # If I ask for unique values do I get them? values = ic.values('imagetyp', unique=True) assert values == list(set(ic.summary['imagetyp'])) assert len(values) < len(ic.summary['imagetyp']) # Does the list of non-unique values match the raw column? values = ic.values('imagetyp', unique=False) assert values == list(ic.summary['imagetyp']) # Does unique actually default to false? values2 = ic.values('imagetyp') assert values == values2 def test_collection_when_one_file_not_fits(self, triage_setup): not_fits = 'foo.fit' path_bad = os.path.join(triage_setup.test_dir, not_fits) # Create an empty file... with open(path_bad, 'w'): pass ic = ImageFileCollection(triage_setup.test_dir, keywords=['imagetyp']) assert not_fits not in ic.summary['file'] os.remove(path_bad) def test_data_type_mismatch_in_fits_keyword_values(self, triage_setup): # If one keyword has an unexpected type, do we notice? img = np.uint16(np.arange(100)) bad_filter = fits.PrimaryHDU(img) bad_filter.header['imagetyp'] = 'LIGHT' bad_filter.header['filter'] = 15.0 path_bad = os.path.join(triage_setup.test_dir, 'bad_filter.fit') bad_filter.writeto(path_bad) ic = ImageFileCollection(triage_setup.test_dir, keywords=['filter']) # dtype is object when there is a mix of types assert ic.summary['filter'].dtype == np.dtype('O') os.remove(path_bad) def test_filter_by_numerical_value(self, triage_setup): ic = ImageFileCollection(triage_setup.test_dir, keywords=['naxis']) should_be_zero = ic.files_filtered(naxis=2) assert len(should_be_zero) == 0 should_not_be_zero = ic.files_filtered(naxis=1) assert len(should_not_be_zero) == triage_setup.n_test['files'] def test_files_filtered_with_full_path(self, triage_setup): ic = ImageFileCollection(triage_setup.test_dir, keywords=['naxis']) files = ic.files_filtered(naxis=1, include_path=True) for f in files: assert f.startswith(triage_setup.test_dir) def test_unknown_generator_type_raises_error(self, triage_setup): ic = ImageFileCollection(triage_setup.test_dir, keywords=['naxis']) with pytest.raises(ValueError): for foo in ic._generator('not a real generator'): pass def test_setting_write_location_to_bad_dest_raises_error(self, tmpdir, triage_setup): new_tmp = tmpdir.mkdtemp() bad_directory = new_tmp.join('foo') ic = ImageFileCollection(triage_setup.test_dir, keywords=['naxis']) with pytest.raises(IOError): for hdr in ic.headers(save_location=bad_directory.strpath): pass def test_initialization_with_no_keywords(self, triage_setup): # This test is primarily historical -- the old default for # keywords was an empty list (it is now the wildcard '*'). ic = ImageFileCollection(location=triage_setup.test_dir, keywords=[]) # Iteration below failed before bugfix... execs = 0 for h in ic.headers(): execs += 1 assert not execs def check_all_keywords_in_collection(self, image_collection): lower_case_columns = [c.lower() for c in image_collection.summary.colnames] for h in image_collection.headers(): for k in h: assert k.lower() in lower_case_columns def test_tabulate_all_keywords(self, triage_setup): ic = ImageFileCollection(location=triage_setup.test_dir, keywords='*') self.check_all_keywords_in_collection(ic) def test_summary_table_is_always_masked(self, triage_setup): # First, try grabbing all of the keywords ic = ImageFileCollection(location=triage_setup.test_dir, keywords='*') assert ic.summary.masked # Now, try keywords that every file will have ic.keywords = ['bitpix'] assert ic.summary.masked # What about keywords that include some that will surely be missing? ic.keywords = ['bitpix', 'dsafui'] assert ic.summary.masked def test_case_of_keywords_respected(self, triage_setup): keywords_in = ['BitPix', 'instrume', 'NAXIS'] ic = ImageFileCollection(location=triage_setup.test_dir, keywords=keywords_in) for key in keywords_in: assert key in ic.summary.colnames def test_grabbing_all_keywords_and_specific_keywords(self, triage_setup): keyword_not_in_headers = 'OIdn89!@' ic = ImageFileCollection(triage_setup.test_dir, keywords=['*', keyword_not_in_headers]) assert keyword_not_in_headers in ic.summary.colnames self.check_all_keywords_in_collection(ic) def test_grabbing_all_keywords_excludes_empty_key(self, triage_setup): # This test needs a file with a blank keyword in it to ensure # that case is handled correctly. blank_keyword = fits.PrimaryHDU() blank_keyword.data = np.zeros((100, 100)) blank_keyword.header[''] = 'blank' blank_keyword.writeto(os.path.join(triage_setup.test_dir, 'blank.fits')) ic = ImageFileCollection(triage_setup.test_dir, keywords='*') assert 'col0' not in ic.summary.colnames @pytest.mark.skipif("os.environ.get('APPVEYOR') or os.sys.platform == 'win32'", reason="fails on Windows because of file permissions.") def test_header_with_long_history_roundtrips_to_disk(self, triage_setup): # I tried combing several history comments into one table entry with # '\n'.join(history), which resulted in a table that couldn't # round trip to disk because on read the newline character was # interpreted as...a new line! This test is a check against future # foolishness. from astropy.table import Table img = np.uint16(np.arange(100)) long_history = fits.PrimaryHDU(img) long_history.header['imagetyp'] = 'BIAS' long_history.header['history'] = 'Something happened' long_history.header['history'] = 'Then something else happened' long_history.header['history'] = 'And then something odd happened' path_history = os.path.join(triage_setup.test_dir, 'long_history.fit') long_history.writeto(path_history) ic = ImageFileCollection(triage_setup.test_dir, keywords='*') with NamedTemporaryFile() as test_table: ic.summary.write(test_table.name, format='ascii.csv', overwrite=True) table_disk = Table.read(test_table.name, format='ascii.csv') assert len(table_disk) == len(ic.summary) @pytest.mark.skipif("os.environ.get('APPVEYOR') or os.sys.platform == 'win32'", reason="fails on Windows because file " "overwriting fails") def test_refresh_method_sees_added_keywords(self, triage_setup): ic = ImageFileCollection(triage_setup.test_dir, keywords='*') # Add a keyword I know isn't already in the header to each file. not_in_header = 'BARKARK' for h in ic.headers(overwrite=True): h[not_in_header] = True assert not_in_header not in ic.summary.colnames ic.refresh() # After refreshing the odd keyword should be present. assert not_in_header.lower() in ic.summary.colnames def test_refresh_method_sees_added_files(self, triage_setup): ic = ImageFileCollection(triage_setup.test_dir, keywords='*') # Compressed files don't get copied. Not sure why... original_len = len(ic.summary) - triage_setup.n_test['compressed'] # Generate additional files in this directory for h in ic.headers(save_with_name="_foo"): pass ic.refresh() new_len = len(ic.summary) - triage_setup.n_test['compressed'] assert new_len == 2 * original_len def test_keyword_order_is_preserved(self, triage_setup): keywords = ['imagetyp', 'exposure', 'filter'] ic = ImageFileCollection(triage_setup.test_dir, keywords=keywords) assert ic.keywords == ['file'] + keywords def test_sorting(self, triage_setup): collection = ImageFileCollection( location=triage_setup.test_dir, keywords=['imagetyp', 'filter', 'object']) all_elements = [] for hdu, fname in collection.hdus(return_fname=True): all_elements.append((str(hdu.header), fname)) # Now sort collection.sort(keys=['imagetyp', 'object']) # and check it's all still right for hdu, fname in collection.hdus(return_fname=True): assert((str(hdu.header), fname) in all_elements) for i in range(len(collection.summary)): assert(collection.summary['file'][i] == collection.files[i]) def test_sorting_without_key_fails(self, triage_setup): ic = ImageFileCollection(location=triage_setup.test_dir) with pytest.raises(ValueError): ic.sort(keys=None) def test_duplicate_keywords(self, triage_setup): # Make sure duplicated keywords don't make the imagefilecollection # fail. hdu = fits.PrimaryHDU() hdu.data = np.zeros((5, 5)) hdu.header['stupid'] = 'fun' hdu.header.append(('stupid', 'nofun')) hdu.writeto(os.path.join(triage_setup.test_dir, 'duplicated.fits')) with pytest.warns(UserWarning) as w: ic = ImageFileCollection(triage_setup.test_dir, keywords='*') assert len(w) == 1 assert 'stupid' in str(w[0].message) assert 'stupid' in ic.summary.colnames assert 'fun' in ic.summary['stupid'] assert 'nofun' not in ic.summary['stupid'] def test_ccds_generator_in_different_directory(self, triage_setup, tmpdir): """ Regression test for https://github.com/astropy/ccdproc/issues/421 in which the ccds generator fails if the current working directory is not the location of the ImageFileCollection. """ coll = ImageFileCollection(triage_setup.test_dir) # The temporary directory below should be different that the collection # location. os.chdir(tmpdir.strpath) # Let's make sure it is. assert not os.path.samefile(os.getcwd(), coll.location) # This generated an IOError before the issue was fixed. for _ in coll.ccds(ccd_kwargs={'unit': 'adu'}): pass def test_ccds_generator_does_not_support_overwrite(self, triage_setup): """ CCDData objects have several attributes that make it hard to reliably support overwriting. For example in what extension should mask, uncertainty be written? Also CCDData doesn't explicitly support in-place operations so it's to easy to create a new CCDData object inadvertantly and all modifications might be lost. """ ic = ImageFileCollection(triage_setup.test_dir) with pytest.raises(NotImplementedError): ic.ccds(overwrite=True) with pytest.raises(NotImplementedError): ic.ccds(clobber=True) def test_glob_matching(self, triage_setup): # We'll create two files with strange names to test glob # includes / excludes one = fits.PrimaryHDU() one.data = np.zeros((5, 5)) one.header[''] = 'whatever' one.writeto(os.path.join(triage_setup.test_dir, 'SPAM_stuff.fits')) one.writeto(os.path.join(triage_setup.test_dir, 'SPAM_other_stuff.fits')) coll = ImageFileCollection(triage_setup.test_dir, glob_include='SPAM*') assert len(coll.files) == 2 coll = ImageFileCollection(triage_setup.test_dir, glob_include='SPAM*', glob_exclude='*other*') assert len(coll.files) == 1 # The glob attributes are readonly, so setting them raises an Exception. with pytest.raises(AttributeError): coll.glob_exclude = '*stuff*' with pytest.raises(AttributeError): coll.glob_include = '*stuff*' def test_that_test_files_have_expected_properties(self, triage_setup): expected_name = \ get_pkg_data_filename('data/expected_ifc_file_properties.csv') expected = Table.read(expected_name) # Make the comparison more reliable by sorting expected.sort('file') ic = ImageFileCollection(triage_setup.test_dir) actual = ic.summary # Write the actual IFC summary out to disk to turn bool into strings of # "True" and "False", and any other non-essential differences between # the tables. tmp_file = 'actual.csv' actual.write(tmp_file) actual = Table.read(tmp_file) # Make the comparison more reliable by sorting actual.sort('file') assert len(ic.summary)
= self.state_dict() self._payout_pots() if self.RETURN_PRE_TRANSITION_STATE_IN_INFO: return state_before_transition return elif self.current_round == Poker.FLOP: self._deal_flop() elif self.current_round == Poker.TURN: self._deal_turn() elif self.current_round == Poker.RIVER: self._deal_river() else: raise ValueError(self.current_round) def _deal_next_round(self): """ Call this AFTER round+=1 """ if self.current_round == Poker.PREFLOP: self._deal_hole_cards() elif self.current_round == Poker.FLOP: self._deal_flop() elif self.current_round == Poker.TURN: self._deal_turn() elif self.current_round == Poker.RIVER: self._deal_river() else: raise ValueError(self.current_round) def _next_round(self): if self.IS_FIXED_LIMIT_GAME: self.n_raises_this_round = 0 # refer to #ID_2 in docstring of this class for this. self.capped_raise.reset() # sort out mainpot, sidepots and p.currentbets self._put_current_bets_into_main_pot_and_side_pots() # This must be called BEFORE round += 1 self.current_player = self._get_first_to_act_post_flop() # set has_acted_this_round = False and maybe others for p in self.seats: p.has_acted_this_round = False self.current_round += 1 # highly dependant on PokerEnv.""ROUND_NAME"" being sequential ints! self._deal_next_round() def _step(self, processed_action): """ the action passed is considered to be for self.current_player and come from its respective agent (if applicable to your algorithm). actions are always of the form [action_idx, _raise_size] However _raise_size is only considered when the action is Poker.BET_RAISE raise_size is measured in total chips as current_bet. Not as an addition to current_bet Args: processed_action (tuple or list): (action_idx, raise_size) Returns: obs, rew_for_all_players, done?, info """ # After this call, this fn assumes that executing the action is legal. processed_action = self._get_fixed_action(action=processed_action) if processed_action[0] == Poker.CHECK_CALL: self.current_player.check_call(total_to_call=processed_action[1]) elif processed_action[0] == Poker.FOLD: self.current_player.fold() elif processed_action[0] == Poker.BET_RAISE: # This happens when someone has fewer chips than minraise and goes all in. # The last raiser, if there is one, can't reopen in this case until someone else reraises! if processed_action[1] < self._get_current_total_min_raise(): self.capped_raise.happened_this_round = True self.capped_raise.player_that_raised = self.current_player self.capped_raise.player_that_cant_reopen = self.last_raiser # might be None. Then everyone can raise. elif self.capped_raise.happened_this_round is True: # if someone shoved under minraise over someone else's raise the original raiser can't reraise again! # But if a 3rd plyr raises over that under-min shove, everyone can raise again. this is handled here. if self.capped_raise.player_that_cant_reopen is not self.current_player: self.capped_raise.reset() self.last_raiser = self.current_player # leave this line at the end of this function!! self.current_player.bet_raise(total_bet_amount=processed_action[1]) self.n_actions_this_episode += 1 # If this is a limit poker game, increment the raise counter if self.IS_FIXED_LIMIT_GAME: self.n_raises_this_round += 1 else: raise RuntimeError(processed_action[0], " is not legal") self.last_action = [processed_action[0], processed_action[1], self.current_player.seat_id] # ______________________________________________________________________________________________________________ # check if should deal next round, rundown or continue to next step in the episode of the poker game all_non_all_in_and_non_fold_p = [p for p in self.seats if not p.folded_this_episode and not p.is_allin] all_nonfold_p = [p for p in self.seats if not p.folded_this_episode] # just let next player run in this round info = None if self._should_continue_in_this_round(all_non_all_in_and_non_fold_p=all_non_all_in_and_non_fold_p, all_nonfold_p=all_nonfold_p): self.current_player = self._get_player_that_has_to_act_next() is_terminal = False if self.RETURN_PRE_TRANSITION_STATE_IN_INFO: info = {"chance_acts": False, "state_dict_before_money_move": None} # next round elif len(all_non_all_in_and_non_fold_p) > 1: # payout if final round if self.current_round == len(self.ALL_ROUNDS_LIST) - 1: is_terminal = True self._put_current_bets_into_main_pot_and_side_pots() if self.RETURN_PRE_TRANSITION_STATE_IN_INFO: info = {"chance_acts": False, "state_dict_before_money_move": self.state_dict()} self._payout_pots() # deal next round else: is_terminal = False if self.RETURN_PRE_TRANSITION_STATE_IN_INFO: info = {"chance_acts": True, "state_dict_before_money_move": self.state_dict()} self._next_round() # rundown elif len(all_nonfold_p) > 1: # rundown only makes sense if >0 are allin and 1 is not or >2 are allin. is_terminal = True state_before_payouts = self._rundown() if self.RETURN_PRE_TRANSITION_STATE_IN_INFO: info = {"chance_acts": False, "state_dict_before_money_move": state_before_payouts} # only one not folded, so pay all pots to him. elif len(all_nonfold_p) == 1: is_terminal = True if self.RETURN_PRE_TRANSITION_STATE_IN_INFO: self._put_current_bets_into_main_pot_and_side_pots() info = {"chance_acts": False, "state_dict_before_money_move": self.state_dict()} self._payout_pots() else: # more efficient, but doesnt give info needed. self._pay_all_to_one_player(all_nonfold_p[0]) else: raise RuntimeError("There seems to be an edge-case not built into this") return self._get_current_step_returns(is_terminal=is_terminal, info=info) # _____________________________________________________ UTIL ______________________________________________________ def _get_winner_list(self, players_to_consider): """ Returns: list: list of PokerPlayer instances that are winners """ best_rank = max([p.hand_rank for p in players_to_consider]) winners = [p for p in players_to_consider if p.hand_rank == best_rank] return winners def _get_current_total_min_raise(self): """ Taking the highest and 2nd highest and subtracting them gives us the minraise amount. If all bets are equal, we return with a delta of 1 big blind. """ if self.N_SEATS == 2: _sorted_ascending = sorted([p.current_bet for p in self.seats]) # 0 is small, 1 is big delta = max(_sorted_ascending[1] - _sorted_ascending[0], self.BIG_BLIND) return _sorted_ascending[1] + delta else: current_bets_sorted_descending = sorted([p.current_bet for p in self.seats], reverse=True) current_to_call_total = max(current_bets_sorted_descending) _largest_bet = current_bets_sorted_descending[0] for i in range(1, self.N_SEATS): if current_bets_sorted_descending[i] == _largest_bet: continue delta_between_last_and_before_last = _largest_bet - current_bets_sorted_descending[i] delta = max(delta_between_last_and_before_last, self.BIG_BLIND) return current_to_call_total + delta # in cases where all bets are equal, the minraise delta is 1 big blind return current_to_call_total + self.BIG_BLIND def _get_new_board(self): return np.full((self.N_TOTAL_BOARD_CARDS, 2), Poker.CARD_NOT_DEALT_TOKEN_1D, dtype=np.int8) def _get_first_to_act_pre_flop(self): if self.N_SEATS >= 4: # left of BB return self.seats[3] else: # for n_players==3 and 2 btn starts return self.seats[0] def _get_first_to_act_post_flop(self): """ Btn has index 0. He is always the last with the exception of some HU rules where ""BTN_IS_FIRST_POSTFLOP"" can be set to True. In multi-agent games, we search for the smalles seat id in the list, while 0 (i.e. btn) is treated as inf. """ if self.N_SEATS == 2: if self.BTN_IS_FIRST_POSTFLOP: return self.seats[0] else: return self.seats[1] else: players_to_consider = [p for p in self.seats if not p.folded_this_episode and not p.is_allin] # since there will always be at least 2 ppl in the pot, the btn can NEVER be the first! first_p = players_to_consider[0] for p in players_to_consider: if p.seat_id < first_p.seat_id or first_p.seat_id == 0: first_p = p return first_p def _get_biggest_bet_out_there_aka_total_to_call(self): """ chip count of max([p.current_bet for p in self.seats]) """ return max([p.current_bet for p in self.seats]) def _get_player_that_has_to_act_next(self): idx = self.seats.index(self.current_player) + 1 for i in range(self.N_SEATS): mod_idx = idx % self.N_SEATS p = self.seats[mod_idx] if not p.is_allin and not p.folded_this_episode: return self.seats[mod_idx] idx += 1 raise RuntimeError("There is no next player. Seems like some more debugging is needed...") def _get_fixed_action(self, action): """ This method is responsible for asserting that an action is valid at the current state and returns the capped/changed action if not. Args: action (iterable): iterable of 2 ints - [PokerEnv.ACTIONTYPE, _raise_amount_in_chips] Returns: [Poker.FOLD, -1] or [Poker.CHECK_CALL, total_bet_to_be_placed_in_front_by_player] or [Poker.BET_RAISE, total_bet_to_be_placed_in_front_by_player] """ #print("action", action) _action_idx = 0 if type(action) is int: _action_idx = action else: _action_idx = action[0] total_to_call = self._get_biggest_bet_out_there_aka_total_to_call() if _action_idx == Poker.FOLD: if total_to_call <= self.current_player.current_bet: return self._process_check_call(total_to_call=total_to_call) else: return [Poker.FOLD, -1] elif _action_idx == Poker.CHECK_CALL: if (self.FIRST_ACTION_NO_CALL and (self.n_actions_this_episode == 0) and self.current_round == Poker.PREFLOP): return [Poker.FOLD, -1] return self._process_check_call(total_to_call=total_to_call) elif _action_idx == Poker.BET_RAISE: # Limit Poker specific rule if self.IS_FIXED_LIMIT_GAME: if self.n_raises_this_round >= self.MAX_N_RAISES_PER_ROUND[self.current_round]: return self._process_check_call(total_to_call=total_to_call) if ((self.current_player.stack + self.current_player.current_bet <= total_to_call) or (self.capped_raise.player_that_cant_reopen is self.current_player)): return self._process_check_call(total_to_call=total_to_call) else: return self._process_raise(raise_total_amount_in_chips=action[1]) else: raise RuntimeError('invalid action ({}) must be fold (0), call (1), or raise (2) '.format(_action_idx)) def _process_check_call(self, total_to_call): delta_to_call = min(total_to_call - self.current_player.current_bet, self.current_player.stack) total_bet_to_be_placed = int(delta_to_call + self.current_player.current_bet) return [Poker.CHECK_CALL, total_bet_to_be_placed] def _process_raise(self, raise_total_amount_in_chips): raise_to = self._adjust_raise(raise_total_amount_in_chips=raise_total_amount_in_chips) # lastly, if that amount is too much, raise all in if self.current_player.current_bet + self.current_player.stack < raise_to: raise_to = self.current_player.stack + self.current_player.current_bet return [Poker.BET_RAISE, int(raise_to)] def _should_continue_in_this_round(self, all_non_all_in_and_non_fold_p, all_nonfold_p): """ util function used in ._step() """ # only 1 player did not fold yet if len(all_nonfold_p) < 2: return False largest_bet = max([p.current_bet for p in self.seats]) if len([p for p in all_nonfold_p if p.is_allin or p.current_bet == largest_bet]) == len(all_nonfold_p) \ and len([p for p in all_non_all_in_and_non_fold_p if not p.has_acted_this_round]) == 0: return False return True # _____________________________________________________ OUTPUT _____________________________________________________ def _get_current_step_returns(self, is_terminal, info): obs = self.get_current_obs(is_terminal) reward = self._get_step_reward(is_terminal) return obs, reward, is_terminal, info def _get_player_states_all_players(self, normalization_sum): """ Public Information About Each Player """ if (self.N_SEATS == 2) and self._USE_SIMPLE_HU_OBS: player_states = [] for player in self.seats: player_states += [ player.stack / normalization_sum, player.current_bet / normalization_sum, player.is_allin ] else: player_states = [] for player in self.seats: player_states += [ player.stack / normalization_sum, player.current_bet / normalization_sum, player.folded_this_episode, player.is_allin ] x = [0] * self.N_SEATS if player.side_pot_rank > 0: x[int(player.side_pot_rank)] = 1 player_states += x return player_states
baselines, t, subkeys): """ Computes batch of estimators for score :math:`\\nabla_Z \\log p(\\Theta, D | Z)` Selects corresponding estimator used for the term :math:`\\nabla_Z E_{p(G|Z)}[ p(\\Theta, D | G) ]` and executes it in batch. Args: zs (ndarray): batch of latent tensors :math:`Z` ``[n_particles, d, k, 2]`` thetas (Any): batch of parameters PyTree with ``n_particles`` as leading dim baselines (ndarray): array of score function baseline values of shape ``[n_particles, ]`` Returns: tuple batch of (gradient estimates, baselines) of shapes ``[n_particles, d, k, 2], [n_particles, ]`` """ # select the chosen gradient estimator if self.grad_estimator_z == 'score': grad_z_likelihood = self.grad_z_likelihood_score_function elif self.grad_estimator_z == 'reparam': grad_z_likelihood = self.grad_z_likelihood_gumbel else: raise ValueError(f'Unknown gradient estimator `{self.grad_estimator_z}`') # vmap return vmap(grad_z_likelihood, (0, 0, 0, None, 0), (0, 0))(zs, thetas, baselines, t, subkeys) def grad_z_likelihood_score_function(self, single_z, single_theta, single_sf_baseline, t, subk): """ Score function estimator (aka REINFORCE) for the score :math:`\\nabla_Z \\log p(\\Theta, D | Z)` Uses the same :math:`G \\sim p(G | Z)` samples for expectations in numerator and denominator. This does not use :math:`\\nabla_G \\log p(\\Theta, D | G)` and is hence applicable when the gradient w.r.t. the adjacency matrix is not defined (as e.g. for the BGe score). Args: single_z (ndarray): single latent tensor ``[d, k, 2]`` single_theta (Any): single parameter PyTree single_sf_baseline (ndarray): ``[1, ]`` t (int): step subk (ndarray): rng key Returns: tuple of gradient, baseline ``[d, k, 2], [1, ]`` """ # [d, d] p = self.edge_probs(single_z, t) n_vars, n_dim = single_z.shape[0:2] # [n_grad_mc_samples, d, d] subk, subk_ = random.split(subk) g_samples = self.sample_g(p, subk_, self.n_grad_mc_samples) # same MC samples for numerator and denominator n_mc_numerator = self.n_grad_mc_samples n_mc_denominator = self.n_grad_mc_samples # [n_grad_mc_samples, ] subk, subk_ = random.split(subk) logprobs_numerator = self.eltwise_log_joint_prob(g_samples, single_theta, subk_) logprobs_denominator = logprobs_numerator # variance_reduction logprobs_numerator_adjusted = lax.cond( self.score_function_baseline <= 0.0, lambda _: logprobs_numerator, lambda _: logprobs_numerator - single_sf_baseline, operand=None) # [d * k * 2, n_grad_mc_samples] grad_z = self.eltwise_grad_latent_log_prob(g_samples, single_z, t)\ .reshape(self.n_grad_mc_samples, n_vars * n_dim * 2)\ .transpose((1, 0)) # stable computation of exp/log/divide # [d * k * 2, ] [d * k * 2, ] log_numerator, sign = logsumexp(a=logprobs_numerator_adjusted, b=grad_z, axis=1, return_sign=True) # [] log_denominator = logsumexp(logprobs_denominator, axis=0) # [d * k * 2, ] stable_sf_grad = sign * jnp.exp(log_numerator - jnp.log(n_mc_numerator) - log_denominator + jnp.log(n_mc_denominator)) # [d, k, 2] stable_sf_grad_shaped = stable_sf_grad.reshape(n_vars, n_dim, 2) # update baseline single_sf_baseline = (self.score_function_baseline * logprobs_numerator.mean(0) + (1 - self.score_function_baseline) * single_sf_baseline) return stable_sf_grad_shaped, single_sf_baseline def grad_z_likelihood_gumbel(self, single_z, single_theta, single_sf_baseline, t, subk): """ Reparameterization estimator for the score :math:`\\nabla_Z \\log p(\\Theta, D | Z)` sing the Gumbel-softmax / concrete distribution reparameterization trick. Uses the same :math:`G \\sim p(G | Z)` samples for expectations in numerator and denominator. This **does** require a well-defined gradient :math:`\\nabla_G \\log p(\\Theta, D | G)` and is hence not applicable when the gradient w.r.t. the adjacency matrix is not defined for Gumbel-relaxations of the discrete adjacency matrix. Any (marginal) likelihood expressible as a function of ``g[:, j]`` and ``theta`` , e.g. using the vector of (possibly soft) parent indicators as a mask, satisfies this. Examples are: ``dibs.models.LinearGaussian`` and ``dibs.models.DenseNonlinearGaussian`` See also e.g. http://proceedings.mlr.press/v108/zheng20a/zheng20a.pdf Args: single_z (ndarray): single latent tensor ``[d, k, 2]`` single_theta (Any): single parameter PyTree single_sf_baseline (ndarray): ``[1, ]`` t (int): step subk (ndarray): rng key Returns: tuple of gradient, baseline ``[d, k, 2], [1, ]`` """ n_vars = single_z.shape[0] # same MC samples for numerator and denominator n_mc_numerator = self.n_grad_mc_samples n_mc_denominator = self.n_grad_mc_samples # sample Logistic(0,1) as randomness in reparameterization subk, subk_ = random.split(subk) eps = random.logistic(subk_, shape=(self.n_grad_mc_samples, n_vars, n_vars)) # [n_grad_mc_samples, ] # since we don't backprop per se, it leaves us with the option of having # `soft` and `hard` versions for evaluating the non-grad p(.)) subk, subk_ = random.split(subk) # [d, k, 2], [d, d], [n_grad_mc_samples, d, d], [1,], [1,] -> [n_grad_mc_samples] logprobs_numerator = vmap(self.log_joint_prob_soft, (None, None, 0, None, None), 0)(single_z, single_theta, eps, t, subk_) logprobs_denominator = logprobs_numerator # [n_grad_mc_samples, d, k, 2] # d/dx log p(theta, D | G(x, eps)) for a batch of `eps` samples # use the same minibatch of data as for other log prob evaluation (if using minibatching) # [d, k, 2], [d, d], [n_grad_mc_samples, d, d], [1,], [1,] -> [n_grad_mc_samples, d, k, 2] grad_z = vmap(grad(self.log_joint_prob_soft, 0), (None, None, 0, None, None), 0)(single_z, single_theta, eps, t, subk_) # stable computation of exp/log/divide # [d, k, 2], [d, k, 2] log_numerator, sign = logsumexp(a=logprobs_numerator[:, None, None, None], b=grad_z, axis=0, return_sign=True) # [] log_denominator = logsumexp(logprobs_denominator, axis=0) # [d, k, 2] stable_grad = sign * jnp.exp(log_numerator - jnp.log(n_mc_numerator) - log_denominator + jnp.log(n_mc_denominator)) return stable_grad, single_sf_baseline # # Estimators for score d/dtheta log p(theta, D | Z) # (i.e. w.r.t the conditional distribution parameters) # def eltwise_grad_theta_likelihood(self, zs, thetas, t, subkeys): """ Computes batch of estimators for the score :math:`\\nabla_{\\Theta} \\log p(\\Theta, D | Z)`, i.e. w.r.t the conditional distribution parameters. Uses the same :math:`G \\sim p(G | Z)` samples for expectations in numerator and denominator. This does not use :math:`\\nabla_G \\log p(\\Theta, D | G)` and is hence applicable when the gradient w.r.t. the adjacency matrix is not defined (as e.g. for the BGe score). Analogous to ``eltwise_grad_z_likelihood`` but gradient w.r.t :math:`\\Theta` instead of :math:`Z` Args: zs (ndarray): batch of latent tensors Z of shape ``[n_particles, d, k, 2]`` thetas (Any): batch of parameter PyTree with ``n_mc_samples`` as leading dim Returns: batch of gradients in form of ``thetas`` PyTree with ``n_particles`` as leading dim """ return vmap(self.grad_theta_likelihood, (0, 0, None, 0), 0)(zs, thetas, t, subkeys) def grad_theta_likelihood(self, single_z, single_theta, t, subk): """ Computes Monte Carlo estimator for the score :math:`\\nabla_{\\Theta} \\log p(\\Theta, D | Z)` Uses hard samples of :math:`G`, but a soft reparameterization like for :math:`\\nabla_Z` is also possible. Uses the same :math:`G \\sim p(G | Z)` samples for expectations in numerator and denominator. Args: single_z (ndarray): single latent tensor ``[d, k, 2]`` single_theta (Any): single parameter PyTree t (int): step subk (ndarray): rng key Returns: parameter gradient PyTree """ # [d, d] p = self.edge_probs(single_z, t) # [n_grad_mc_samples, d, d] g_samples = self.sample_g(p, subk, self.n_grad_mc_samples) # same MC samples for numerator and denominator n_mc_numerator = self.n_grad_mc_samples n_mc_denominator = self.n_grad_mc_samples # [n_mc_numerator, ] subk, subk_ = random.split(subk) logprobs_numerator = self.eltwise_log_joint_prob(g_samples, single_theta, subk_) logprobs_denominator = logprobs_numerator # PyTree shape of `single_theta` with additional leading dimension [n_mc_numerator, ...] # d/dtheta log p(theta, D | G) for a batch of G samples # use the same minibatch of data as for other log prob evaluation (if using minibatching) grad_theta_log_joint_prob = grad(self.log_joint_prob, 1) grad_theta = vmap(grad_theta_log_joint_prob, (0, None, None, None), 0)(g_samples, single_theta, self.x, subk_) # stable computation of exp/log/divide and PyTree compatible # sums over MC graph samples dimension to get MC gradient estimate of theta # original PyTree shape of `single_theta` log_numerator = tree_map( lambda leaf_theta: logsumexp(a=expand_by(logprobs_numerator, leaf_theta.ndim - 1), b=leaf_theta, axis=0, return_sign=True)[0], grad_theta) # original PyTree shape of `single_theta` sign = tree_map( lambda leaf_theta: logsumexp(a=expand_by(logprobs_numerator, leaf_theta.ndim - 1), b=leaf_theta, axis=0, return_sign=True)[1], grad_theta) # [] log_denominator = logsumexp(logprobs_denominator, axis=0) # original PyTree shape of `single_theta` stable_grad = tree_multimap( lambda sign_leaf_theta, log_leaf_theta: (sign_leaf_theta * jnp.exp(log_leaf_theta - jnp.log(n_mc_numerator) - log_denominator + jnp.log(n_mc_denominator))), sign, log_numerator) return stable_grad """ Estimators for score d/dZ log p(Z) """ def constraint_gumbel(self, single_z, single_eps, t): """ Evaluates continuous acyclicity constraint using Gumbel-softmax instead of Bernoulli samples Args: single_z (ndarray): single latent tensor ``[d, k, 2]`` single_eps (ndarray): i.i.d. Logistic noise of shape ``[d, d``] for Gumbel-softmax t (int): step Returns: constraint value of shape ``[1,]`` """ n_vars = single_z.shape[0] G = self.particle_to_soft_graph(single_z, single_eps, t) h = acyclic_constr_nograd(G, n_vars) return h def grad_constraint_gumbel(self, single_z, key, t): """ Reparameterization estimator for the gradient :math:`\\nabla_Z E_{p(G|Z)} [ h(G) ]` where :math:`h` is the acyclicity constraint penalty function. Since :math:`h` is
# -*- coding: utf-8 -*- """ p2p-streams (c) 2014 enen92 fightnight This file contains the livestream addon engine. It is mostly based on divingmule work on livestreams addon! Functions: xml_lists_menu() -> main menu for the xml list category addlista() -> add a new list. It'll ask for local or remote and processes the given input remove_list(name) -> Remove a list get_groups(url) -> First regex function to parse a given list. Sopcast type list get_channels(name,url) -> Second regex function to parse a given list. Used to general livestreams xml type lists getData(url,fanart) -> Get the item data such as iconimage, fanart, etc getChannelItems(name,url,fanart) -> Function to grab the channel items getItems(items,fanart) -> Function to grab the items from the xml removeNonAscii(s) -> Function to remove non-ascii characters from the list getSoup(url) -> uses beautifulsoup to parse a remote xml addon_log(string) -> Simple log/print function getRegexParsed(regexs, url) -> parse the regex expression list_type(url) -> Checks if the list is xml or m3u parse_m3u(url) -> Parses a m3u type list """ import urllib,urllib2,re,xbmcplugin,xbmcgui,xbmc,xbmcaddon,HTMLParser,time,datetime,os,xbmcvfs,sys from BeautifulSoup import BeautifulStoneSoup, BeautifulSoup, BeautifulSOAP from peertopeerutils.pluginxbmc import * from peertopeerutils.webutils import * from peertopeerutils.directoryhandle import * from peertopeerutils.iofile import * """ Main Menu """ def xml_lists_menu(): if settings.getSetting('sopcast-oficial') == "true": addDir(translate(40116),"http://sopcast.org/chlist.xml",101,addonpath + art + 'xml_list_sopcast.png',2,True) try: if os.path.exists(os.path.join(pastaperfil,"Lists")): dirs, files = xbmcvfs.listdir(os.path.join(pastaperfil,"Lists")) for file in files: f = open(os.path.join(pastaperfil,"Lists",file), "r") string = f.read() if xbmcvfs.exists(os.path.join(pastaperfil,"Lists-fanart",file.replace('.txt','.jpg'))):addDir("[B][COLOR orange]" + file.replace(".txt","") + "[/B][/COLOR]",string,101,addonpath + art + 'xml_lists.png',2,True,fan_art=os.path.join(pastaperfil,"Lists-fanart",file.replace('.txt','.jpg'))) else: addDir("[B][COLOR orange]" + file.replace(".txt","") + "[/B][/COLOR]",string,101,addonpath + art + 'xml_lists.png',2,True) except: pass addDir(translate(40121),MainURL,107,addonpath + art + 'plus-menu.png',2,False) #xbmc.executebuiltin("Container.SetViewMode(51)") """ Add a new list function """ def addlista(): opcao= xbmcgui.Dialog().yesno(translate(40000), translate(40123),"","",translate(40124),translate(40125)) if opcao: dialog = xbmcgui.Dialog() lista_xml = dialog.browse(int(1), translate(40186), 'myprograms','.xml|.m3u') keybdois = xbmc.Keyboard("", translate(40130)) keybdois.doModal() if (keybdois.isConfirmed()): searchname = keybdois.getText() if searchname=='': sys.exit(0) encode=urllib.quote(searchname) if xbmcvfs.exists(os.path.join(pastaperfil,"Lists")): pass else: xbmcvfs.mkdir(os.path.join(pastaperfil,"Lists")) txt_name = searchname + ".txt" save(os.path.join(pastaperfil,"Lists",txt_name),lista_xml) mensagemok(translate(40000),translate(40129)) xbmc.executebuiltin("XBMC.Container.Refresh") else: keyb = xbmc.Keyboard("", translate(40127)) keyb.doModal() if (keyb.isConfirmed()): search = keyb.getText() if search=='': sys.exit(0) if "dropbox" in search and not "?dl=1" in search: search = search + '?dl=1' if "xml" not in search.split(".")[-1] and "m3u" not in search.split(".")[-1]: mensagemok(translate(40000),translate(40128)); sys.exit(0) else: try: code = get_page_source(search) except: mensagemok(translate(40000),translate(40128)) sys.exit(0) keybdois = xbmc.Keyboard("", translate(40130)) keybdois.doModal() if (keybdois.isConfirmed()): searchname = keybdois.getText() if searchname=='': sys.exit(0) encode=urllib.quote(searchname) if os.path.exists(os.path.join(pastaperfil,"Lists")): pass else: xbmcvfs.mkdir(os.path.join(pastaperfil,"Lists")) txt_name = searchname + ".txt" save(os.path.join(pastaperfil,"Lists",txt_name),search) mensagemok(translate(40000),translate(40129)) xbmc.executebuiltin("XBMC.Container.Refresh") """ Remove a List """ def remove_list(name): xbmcvfs.delete(name) xbmc.executebuiltin("Notification(%s,%s,%i,%s)" % (translate(40000), translate(40150), 1,addonpath+"/icon.png")) xbmc.executebuiltin("Container.Refresh") """ Parsing functions """ def list_type(url): ltype = url.split('.')[-1] if 'xml' in ltype: get_groups(url) elif 'm3u' in ltype: parse_m3u(url) else: pass def parse_m3u(url): if "http" in url: content = get_page_source(url) else: content = readfile(url) match = re.compile('#EXTINF:.+?,(.*?)\n(.*?)(?:\r|\n)').findall(content) for channel_name,stream_url in match: if 'plugin://' in stream_url: stream_url = 'XBMC.RunPlugin('+stream_url+')' addDir(channel_name,stream_url,106,'',1,False) elif 'sop://' in stream_url: addDir(channel_name,stream_url,2,'',1,False) elif ('acestream://' in stream_url) or ('.acelive' in stream_url) or ('.torrent' in stream_url): addDir(channel_name,stream_url,1,'',1,False) else: addLink(channel_name,stream_url,'') def get_groups(url): from xml.etree import ElementTree try: print("Sopcast xml-type list detected") if "http" in url: source = get_page_source(url) save(os.path.join(pastaperfil,"working.xml"),source) workingxml = os.path.join(pastaperfil,"working.xml") else: workingxml = url groups = ElementTree.parse(workingxml).findall('.//group') unname_group_index = 1 LANGUAGE = "en" for group in groups: if group.attrib[LANGUAGE] == "": group.attrib[LANGUAGE] = str(unname_group_index) unname_group_index = unname_group_index + 1 if re.sub('c','e',LANGUAGE) == LANGUAGE: OTHER_LANG = re.sub('e','c',LANGUAGE) else: OTHER_LANG = re.sub('c','e',LANGUAGE) if LANGUAGE == "cn": try: if len(group.attrib[OTHER_LANG]) > 0: group.attrib[LANGUAGE] = group.attrib[OTHER_LANG] unname_group_index = unname_group_index - 1 except: pass if (group.find('.//channel')==None): continue group_name=group.attrib[LANGUAGE] try: addDir_livestreams_common(group_name,url,102,addonpath + art + 'xml_list_sopcast.png',True) except: pass #xbmc.executebuiltin("Container.SetViewMode(51)") except: print("Other type of xml list") getData(url,"") def get_channels(name,url): from xml.etree import ElementTree if url.startswith('http://'): source = get_page_source(url) else: source = readfile(url) save(os.path.join(pastaperfil,"working.xml"),source) chlist_tree = ElementTree.parse(os.path.join(pastaperfil,"working.xml")) LANGUAGE = "en" groups = ElementTree.parse(os.path.join(pastaperfil,"working.xml")).findall('.//group') for group in groups: if group.attrib[LANGUAGE].encode('utf-8') == name: channels = group.findall('.//channel') for channel in channels: try: try: title = channel.find('.//name').attrib['en'].encode('utf-8') except: title = '' if not title: try: title = channel.find('.//name').attrib['cn'].encode('utf-8') except: title = '' if not title: try: title = channel.find('.//name').text except: title = '' tipo = channel.find('.//stream_type').text sop_address = channel.find('.//item').text if not tipo: tipo = "N/A" if not title: title = "N/A" thumbnail = "" try: thumbnail = channel.find('.//thumbnail').text except: pass if sop_address: if thumbnail == "": thumbnail = addonpath + art + 'sopcast_link.png' try: addDir_livestreams_common('[B][COLOR orange]' + title + ' [/B][/COLOR](' + tipo +')',sop_address,2,thumbnail,False) except:pass else: pass except: pass else: pass def getData(url,fanart): soup = getSoup(url) if len(soup('channels')) > 0: channels = soup('channel') for channel in channels: name = channel('name')[0].string thumbnail = channel('thumbnail')[0].string if thumbnail == None: thumbnail = '' try: if not channel('fanart'): if addon.getSetting('use_thumb') == "true": fanArt = thumbnail else: fanArt = fanart else: fanArt = channel('fanart')[0].string if fanArt == None: raise except: fanArt = fanart try: desc = channel('info')[0].string if desc == None: raise except: desc = '' try: genre = channel('genre')[0].string if genre == None: raise except: genre = '' try: date = channel('date')[0].string if date == None: raise except: date = '' try: credits = channel('credits')[0].string if credits == None: raise except: credits = '' try: addDir_livestreams(name.encode('utf-8', 'ignore'),url.encode('utf-8'),103,thumbnail,fanArt,desc,genre,date,credits,True) except: addon_log('There was a problem adding directory from getData(): '+name.encode('utf-8', 'ignore')) else: addon_log('No Channels: getItems') getItems(soup('item'),fanart) def getChannelItems(name,url,fanart): soup = getSoup(url) channel_list = soup.find('channel', attrs={'name' : name.decode('utf-8')}) items = channel_list('item') try: fanArt = channel_list('fanart')[0].string if fanArt == None: raise except: fanArt = fanart for channel in channel_list('subchannel'): name = channel('name')[0].string try: thumbnail = channel('thumbnail')[0].string if thumbnail == None: raise except: thumbnail = '' try: if not channel('fanart'): if addon.getSetting('use_thumb') == "true": fanArt = thumbnail else: fanArt = channel('fanart')[0].string if fanArt == None: raise except: pass try: desc = channel('info')[0].string if desc == None: raise except: desc = '' try: genre = channel('genre')[0].string if genre == None: raise except: genre = '' try: date = channel('date')[0].string if date == None: raise except: date = '' try: credits = channel('credits')[0].string if credits == None: raise except: credits = '' try: addDir_livestreams(name.encode('utf-8', 'ignore'),url.encode('utf-8'),3,thumbnail,fanArt,desc,genre,credits,date) except: addon_log('There was a problem adding directory - '+name.encode('utf-8', 'ignore')) getItems(items,fanArt) def getItems(items,fanart): total = len(items) addon_log('Total Items: %s' %total) for item in items: try: name = item('title')[0].string if name is None: name = 'unknown?' except: addon_log('Name Error') name = '' try: if item('epg'): if item.epg_url: addon_log('Get EPG Regex') epg_url = item.epg_url.string epg_regex = item.epg_regex.string epg_name = get_epg(epg_url, epg_regex) if epg_name: name += ' - ' + epg_name elif item('epg')[0].string > 1: name += getepg(item('epg')[0].string) else: pass except: addon_log('EPG Error') try: url = [] for i in item('link'): if not i.string == None: url.append(i.string) if len(url) < 1: raise except: addon_log('Error <link> element, Passing:'+name.encode('utf-8', 'ignore')) continue try: thumbnail = item('thumbnail')[0].string if thumbnail == None: raise except: thumbnail = '' try: if not item('fanart'): if addon.getSetting('use_thumb') == "true": fanArt = thumbnail else: fanArt = fanart else: fanArt = item('fanart')[0].string if fanArt == None: raise except: fanArt = fanart try: desc = item('info')[0].string if desc == None: raise except: desc = '' try: genre = item('genre')[0].string if genre == None: raise except: genre = '' try: date = item('date')[0].string if date == None: raise except: date = '' regexs = None if item('regex'): try: regexs = {} for i in item('regex'): regexs[i('name')[0].string] = {} regexs[i('name')[0].string]['expre'] = i('expres')[0].string regexs[i('name')[0].string]['page'] = i('page')[0].string try: regexs[i('name')[0].string]['refer'] = i('referer')[0].string except: addon_log("Regex: -- No Referer --") try: regexs[i('name')[0].string]['agent'] = i('agent')[0].string except: addon_log("Regex: -- No User Agent --") regexs = urllib.quote(repr(regexs)) except: regexs = None addon_log('regex Error: '+name.encode('utf-8', 'ignore')) try: if "RunPlugin" in url[0]: try: addDir_livestreams(name.encode('utf-8', 'ignore'),url[0],106,thumbnail,fanArt,desc,genre,"credits",date) except: match = re.compile("&name=(.+?)\)").findall(url[0].replace(";","")) if match: try: addDir_livestreams(name.encode('utf-8', 'ignore'),removeNonAscii(url[0]),106,thumbnail,fanArt,desc,genre,credits,date) except: try: addDir_livestreams(removeNonAscii(name.encode('utf-8', 'ignore')),removeNonAscii(url[0].replace(";","")),106,thumbnail,fanArt,desc,genre,credits,date) except: addon_log('There was a problem adding item - '+name.encode('utf-8', 'ignore')) else: addon_log('There was a problem adding item - '+name.encode('utf-8', 'ignore')) else: if ('acestream://' in url[0]) or ('.acelive' in url[0]) or ('.torrent' in url[0]): if 'plugin://' not in url[0]: addDir_livestreams(name.encode('utf-8', 'ignore'),url[0],1,thumbnail,fanArt,desc,genre,"credits",date) else: addLink_livestreams(url[0].replace(';',''),name.encode('utf-8', 'ignore'),thumbnail,fanArt,desc,genre,date,True,None,regexs,total) elif 'sop://' in url[0]: if 'plugin://' not in url[0]: addDir_livestreams(name.encode('utf-8', 'ignore'),url[0],2,thumbnail,fanArt,desc,genre,"credits",date) else: addLink_livestreams(url[0].replace(';',''),name.encode('utf-8', 'ignore'),thumbnail,fanArt,desc,genre,date,True,None,regexs,total) else: addLink_livestreams(url[0].replace(';',''),name.encode('utf-8', 'ignore'),thumbnail,fanArt,desc,genre,date,True,None,regexs,total) except: addon_log('There was a problem adding item - '+name.encode('utf-8', 'ignore')) def removeNonAscii(s): return "".join(filter(lambda x: ord(x)<128, s)) def getSoup(url): if url.startswith('http://'): data = makeRequest(url) else: if xbmcvfs.exists(url): if url.startswith("smb://") or url.startswith("nfs://"): copy = xbmcvfs.copy(url, os.path.join(profile, 'temp', 'sorce_temp.txt')) if copy: data = open(os.path.join(profile, 'temp', 'sorce_temp.txt'), "r").read() xbmcvfs.delete(os.path.join(profile,
this is # what top_k does. # --------------------------------------------------------------------- input_vector = tf.reshape(input_tensor, [batch_h_w_size, input_area]) _, top_indices = tf.nn.top_k(input_vector, k=k) # top_k per input_area # Now the problem is that sparse_to_dense requires a 1d vector, or a # vector of n-d indices. So we will need to give it a 1d vector, but # offset the indices. # Since we have k "winners" per batch item. All k need to be offset by # b * cells. # --------------------------------------------------------------------- indices_offsets = np.empty([batch_h_w_size * k], dtype=int) for b in range(batch_size): # foreach( batch of k winners ) for y in range(h): for x in range(w): for n in range(k): # foreach( winner in the batch ) #index = b * k + n # each b is a vector of k indices #offset = b * input_area # when we offset index = b * k * w * h \ + y * k * w \ + x * k \ + n offset = b * input_area * w * h \ + y * input_area * w \ + x * input_area indices_offsets[index] = offset indices_offsets = tf.convert_to_tensor(indices_offsets, dtype=tf.int32) # convert the vector to a TF vector # Now that we have the batch x indices vector, make it a 1d vector. # Then add the offsets # --------------------------------------------------------------------- indices_vector = tf.reshape(top_indices, [batch_h_w_size * k]) indices_vector = tf.add(indices_vector, indices_offsets) # Finally, construct the mask. We need a default vector the the output # which is 1s for each filled element. # --------------------------------------------------------------------- values_vector = tf.ones(batch_h_w_size * k, dtype=tf.float32) mask_vector_dense = tf.sparse_to_dense(indices_vector, [batch_h_w_size * input_area], values_vector, default_value=0, validate_indices=False) batch_mask_vector_op = tf.reshape(mask_vector_dense, [batch_size, h, w, input_area]) #, name="rank-mask") return batch_mask_vector_op def tf_build_varying_top_k_mask_4d_op(input_tensor, k_max, batch_size, h, w, input_area, ranking_mask): """Build varying top K mask.""" batch_h_w_size = batch_size * h * w logging.debug('encoding shape = (%s, %s, %s, %s)', batch_size, h, w, input_area) # Find the "winners". The top k elements in each batch sample. this is # what top_k does. # --------------------------------------------------------------------- input_vector = tf.reshape(input_tensor, [batch_h_w_size, input_area]) _, top_indices = tf.nn.top_k(input_vector, k=k_max) # top_k per input_area # Now the problem is that sparse_to_dense requires a 1d vector, or a # vector of n-d indices. So we will need to give it a 1d vector, but # offset the indices. # Since we have k "winners" per batch item. All k need to be offset by # b * cells. # --------------------------------------------------------------------- indices_offsets = np.empty([batch_h_w_size * k_max], dtype=int) for b in range(batch_size): # foreach( batch of k winners ) for y in range(h): for x in range(w): for n in range(k_max): # foreach( winner in the batch ) #index = b * k + n # each b is a vector of k indices #offset = b * input_area # when we offset index = b * k_max * w * h \ + y * k_max * w \ + x * k_max \ + n offset = b * input_area * w * h \ + y * input_area * w \ + x * input_area indices_offsets[index] = offset indices_offsets = tf.convert_to_tensor(indices_offsets, dtype=tf.int32) # convert the vector to a TF vector # Now that we have the batch x indices vector, make it a 1d vector. # Then add the offsets # --------------------------------------------------------------------- indices_vector = tf.reshape(top_indices, [batch_h_w_size * k_max]) indices_vector = tf.add(indices_vector, indices_offsets) # Finally, construct the mask. We need a default vector the the output # which is 1s for each filled element. # --------------------------------------------------------------------- #values_vector = tf.ones(batch_h_w_size * k_max, dtype=tf.float32) ranking_mask_tiled = tf.tile(ranking_mask, [batch_h_w_size, 1]) values_vector = tf.reshape(ranking_mask_tiled, [batch_h_w_size * k_max]) # The values vector is fiddled to adapt to varying k #values_vector = self._dual.get_pl('top_k_mask') # shape: [1, k_max] where 1 or 0 mask_vector_dense = tf.sparse_to_dense(indices_vector, [batch_h_w_size * input_area], values_vector, default_value=0, validate_indices=False) batch_mask_vector_op = tf.reshape(mask_vector_dense, [batch_size, h, w, input_area]) #, name="rank-mask") return batch_mask_vector_op def tf_reduce_var(x, axis=None, keepdims=False): """Variance of a tensor, alongside the specified axis. Stolen from: https://stackoverflow.com/a/43409235 # Arguments x: A tensor or variable. axis: An integer, the axis to compute the variance. keepdims: A boolean, whether to keep the dimensions or not. If `keepdims` is `False`, the rank of the tensor is reduced by 1. If `keepdims` is `True`, the reduced dimension is retained with length 1. # Returns A tensor with the variance of elements of `x`. """ m = tf.reduce_mean(x, axis=axis, keepdims=True) devs_squared = tf.square(x - m) return tf.reduce_mean(devs_squared, axis=axis, keepdims=keepdims) def tf_build_stats_summaries(tensor, name_scope): """Build statistical summaries for a specific variable/tensor.""" with tf.name_scope(name_scope): m_mean = tf.reduce_mean(tensor) m_var = tf_reduce_var(tensor) m_min = tf.reduce_min(tensor) m_max = tf.reduce_max(tensor) m_sum = tf.reduce_sum(tensor) mean_op = tf.summary.scalar('mean', m_mean) sd_op = tf.summary.scalar('sd', tf.sqrt(m_var)) min_op = tf.summary.scalar('min', m_min) max_op = tf.summary.scalar('max', m_max) sum_op = tf.summary.scalar('sum', m_sum) stats_summaries = [] stats_summaries.append(mean_op) stats_summaries.append(sd_op) stats_summaries.append(min_op) stats_summaries.append(max_op) stats_summaries.append(sum_op) return stats_summaries def tf_build_stats_summaries_short(tensor, name_scope): """ Build a shorter version of statistical summaries for a specific variable/tensor. Mean, StdDev, Min and Max """ with tf.name_scope(name_scope): m_mean = tf.reduce_mean(tensor) m_var = tf_reduce_var(tensor) m_min = tf.reduce_min(tensor) m_max = tf.reduce_max(tensor) mean_op = tf.summary.scalar('mean', m_mean) sd_op = tf.summary.scalar('sd', tf.sqrt(m_var)) min_op = tf.summary.scalar('min', m_min) max_op = tf.summary.scalar('max', m_max) stats_summaries = [] stats_summaries.append(mean_op) stats_summaries.append(sd_op) stats_summaries.append(min_op) stats_summaries.append(max_op) return stats_summaries def tf_summary_scalar(name="name", tensor=None, mute=True): """Convenience method for creating scalar summary with mute option.""" if not mute: tf.summary.scalar(name=name, tensor=tensor) else: pass def tf_print(var, message="", summarize=10, mute=True): """Convenience function for printing tensors in graph at runtime, also better formatting, can be muted.""" if not mute: message = "\n" + message + "\n\t" return tf.Print(var, [var], message=message, summarize=summarize) return var def degrade_by_mask_per_bit(input_tensor, degrade_mask=None, degrade_factor=0.5, degrade_value=0.0, label=None): """ Randomly degrade 'degrade_factor' proportion of bits of the `degrade_mask`, resetting them to 'reset_value'. *** Currently - It does the exact same degradation pattern for every input in the batch.*** First dimension of input must be batch. """ input_shape = input_tensor.shape.as_list() input_size = np.prod(input_shape[1:]) input_tensor = tf.reshape(input_tensor, [-1, input_size]) # generate random values between 0 and 1, for all positions in the mask, then use it to select approp. proportion random_values = tf.random_uniform(shape=[input_size]) if degrade_mask is not None: random_values = random_values * degrade_mask preserve_mask = tf.greater(random_values, degrade_factor) preserve_mask = tf.to_float(preserve_mask) degrade_vec = degrade_value * preserve_mask degrade_vec = degrade_value - degrade_vec # preserved bits = 0, else degraded_value (flipped) degraded = tf.multiply(input_tensor, preserve_mask) # use broadcast to element-wise multiply batch with 'preserved' degraded = degraded + degrade_vec # set non-preserved values to the 'degrade_value' degraded = tf.reshape(degraded, input_shape) if label is None: return degraded return degraded, label def degrade_by_mask(input_tensor, num_active, degrade_mask=None, degrade_factor=0.5, degrade_value=0.0, label=None): """ WARNING - this version works with mask, but only works if the min value is 0 (such as -1) No point updating it now. Randomly degrade degrade_factor bits, resetting them to 'reset_value'. *** Currently - It does the exact same degradation pattern for every input in the batch.*** First dimension of input must be batch. """ dbug = False if dbug: num_active = int(num_active) print("num_active = " + str(num_active)) input_shape = input_tensor.shape.as_list() input_size = np.prod(input_shape[1:]) input_tensor = tf.reshape(input_tensor, [-1, input_size]) input_tensor = tf_print(input_tensor, "input_tensor", mute=not dbug) # make a compact version of the active bits, and randomly knockout half the bits preserved_compact = np.ones(num_active) preserved_compact[:int(degrade_factor * num_active)] = 0 preserved_compact = tf.convert_to_tensor(preserved_compact, dtype=tf.float32) preserved_compact = tf.random_shuffle(preserved_compact) preserved_compact = tf_print(preserved_compact, "preserved_compact", mute=not dbug) # map back to the actual positions, use to clear all not preserved (i.e. to degrade) _, indices_of_active = tf.nn.top_k(input=degrade_mask, k=num_active, sorted=False) indices_of_active = tf_print(indices_of_active, "indices_of_active", mute=not dbug) preserve_mask = tf.sparse_to_dense(sparse_indices=indices_of_active, output_shape=[input_size], sparse_values=preserved_compact, default_value=0, validate_indices=False) preserve_mask = tf_print(preserve_mask, "preserve_mask", mute=not dbug) degrade_value_vec = np.ones(input_size) degrade_value_vec[:] = degrade_value degrade_value_vec = tf.convert_to_tensor(degrade_value_vec, dtype=tf.float32) degrade_value_vec = degrade_value_vec * preserve_mask # preserved bits = degrade_value degrade_value_vec = degrade_value - degrade_value_vec # preserved bits = 0, else degraded_value (flipped) degrade_value_vec = tf_print(degrade_value_vec, "degrade_value_vec", mute=not dbug) degraded = tf.multiply(input_tensor, preserve_mask) # use broadcast to element-wise multiply batch with 'preserved' degraded = degraded + degrade_value_vec # set non-preserved values to the 'degrade_value' degraded
['CD', 'CD2'], ['OE1', 'HD11'], ['OE2', 'HD12'], ['HE2', 'HD13']], ['HD21', 'HD22', 'HD23'], {'LEU-GLH': ['disappear', 1, 0], 'GLH-LEU': ['appear', 0, 1]}, ], 'GLH-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['HE2', 'HE2'], ['OE1', 'HD2'], ['OE2', 'HD3']], ['CE', 'HE3', 'NZ', 'HZ1', 'HZ2'], {'GLH-LYN': ['appear', 0, 1], 'LYN-GLH': ['disappear', 1, 0]}, ], 'GLH-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['HE2', 'HE2'], ['OE1', 'HD2'], ['OE2', 'HD3']], ['CE', 'HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'LYS-GLH': ['disappear', 1, 0], 'GLH-LYS': ['appear', 0, 1]}, ], 'GLH-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'HG2'], ['HG3', 'HG3'], ['HE2', 'HE2'], ['CD', 'SD'], ['OE1', 'CE'], ['OE2', 'HE1']], ['HE3'], {'GLH-MET': ['appear', 0, 1], 'MET-GLH': ['disappear', 1, 0]}, ], 'GLH-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HE2', 'HE2'], ['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['OE2', 'HD2']], ['CE2', 'HE1', 'CZ', 'HZ'], {'PHE-GLH': ['disappear', 1, 0], 'GLH-PHE': ['appear', 0, 1]}, ], 'GLH-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['HG2', 'HG2'], ['HG3', 'HG3'], ['CD', 'CD'], ['OE1', 'HD2'], ['OE2', 'HD3']], ['H', 'HE2'], {'GLH-PRO': ['disappear', 0, 1], 'PRO-GLH': ['appear', 1, 0]}, ], 'GLH-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['HG2', 'HG']], ['HG3', 'CD', 'OE1', 'OE2', 'HE2'], {'SER-GLH': ['appear', 1, 0], 'GLH-SER': ['disappear', 0, 1]}, ], 'GLH-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['HG2', 'HG1'], ['HG3', 'HG21'], ['CD', 'HG22'], ['OE1', 'HG23']], ['OE2', 'HE2'], {'THR-GLH': ['appear', 1, 0], 'GLH-THR': ['disappear', 0, 1]}, ], 'GLH-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'NE1'], ['OE2', 'CE3'], ['HE2', 'CE2']], ['HE1', 'HE3', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'GLH-TRP': ['appear', 0, 1], 'TRP-GLH': ['disappear', 1, 0]}, ], 'GLH-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HE2', 'HE2'], ['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['OE2', 'HD2']], ['CE2', 'HE1', 'CZ', 'OH', 'HH'], {'TYR-GLH': ['disappear', 1, 0], 'GLH-TYR': ['appear', 0, 1]}, ], 'GLH-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG2', 'HG11'], ['HG3', 'HG12'], ['CD', 'HG13'], ['OE1', 'HG21'], ['OE2', 'HG22'], ['HE2', 'HG23']], [], {'VAL-GLH': ['', 1, 0], 'GLH-VAL': ['', 0, 1]}, ], 'GLN-GLU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['OE1', 'OE1'], ['NE2', 'OE2']], ['HE21', 'HE22'], {'GLU-GLN': ['appear', 1, 0], 'GLN-GLU': ['disappear', 0, 1]}, ], 'GLN-GLY': [ ['N', 'H', 'CA', 'C', 'O'], [['HA', 'HA2'], ['CB', 'HA3']], ['HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD', 'OE1', 'NE2', 'HE21', 'HE22'], {'GLY-GLN': ['appear', 1, 0], 'GLN-GLY': ['disappear', 0, 1]}, ], 'GLN-HID': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['NE2', 'NE2'], ['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['HE21', 'HD2'], ['HE22', 'HE1']], [], {'GLN-HID': ['', 0, 1], 'HID-GLN': ['', 1, 0]}, ], 'GLN-HIE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['NE2', 'NE2'], ['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'CE1'], ['OE1', 'HD2'], ['HE21', 'HE1'], ['HE22', 'HE2']], [], {'GLN-HIE': ['', 0, 1], 'HIE-GLN': ['', 1, 0]}, ], 'GLN-HIP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['NE2', 'NE2'], ['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['HE21', 'HD2'], ['HE22', 'HE1']], ['HE2'], {'HIP-GLN': ['disappear', 1, 0], 'GLN-HIP': ['appear', 0, 1]}, ], 'GLN-ILE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG2', 'HG12'], ['HG3', 'HG13'], ['CD', 'CD1'], ['OE1', 'HG21'], ['NE2', 'HG22'], ['HE21', 'HG23'], ['HE22', 'HD11']], ['HD12', 'HD13'], {'GLN-ILE': ['appear', 0, 1], 'ILE-GLN': ['disappear', 1, 0]}, ], 'GLN-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'HG'], ['HG3', 'CD1'], ['CD', 'CD2'], ['OE1', 'HD11'], ['NE2', 'HD12'], ['HE21', 'HD13'], ['HE22', 'HD21']], ['HD22', 'HD23'], {'GLN-LEU': ['appear', 0, 1], 'LEU-GLN': ['disappear', 1, 0]}, ], 'GLN-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['OE1', 'HD2'], ['NE2', 'HD3'], ['HE21', 'CE'], ['HE22', 'HE2']], ['HE3', 'NZ', 'HZ1', 'HZ2'], {'LYN-GLN': ['disappear', 1, 0], 'GLN-LYN': ['appear', 0, 1]}, ], 'GLN-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['OE1', 'HD2'], ['NE2', 'HD3'], ['HE21', 'CE'], ['HE22', 'HE2']], ['HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'GLN-LYS': ['appear', 0, 1], 'LYS-GLN': ['disappear', 1, 0]}, ], 'GLN-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'HG2'], ['HG3', 'HG3'], ['CD', 'SD'], ['OE1', 'CE'], ['NE2', 'HE1'], ['HE21', 'HE2'], ['HE22', 'HE3']], [], {'MET-GLN': ['', 1, 0], 'GLN-MET': ['', 0, 1]}, ], 'GLN-PHE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['NE2', 'HD2'], ['HE21', 'CE2'], ['HE22', 'HE1']], ['CZ', 'HE2', 'HZ'], {'PHE-GLN': ['disappear', 1, 0], 'GLN-PHE': ['appear', 0, 1]}, ], 'GLN-PRO': [ ['N', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB2'], ['HB3', 'HB3'], ['CG', 'CG'], ['HG2', 'HG2'], ['HG3', 'HG3'], ['CD', 'CD'], ['OE1', 'HD2'], ['NE2', 'HD3']], ['H', 'HE21', 'HE22'], {'GLN-PRO': ['disappear', 0, 1], 'PRO-GLN': ['appear', 1, 0]}, ], 'GLN-SER': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB3', 'HB3'], ['HB2', 'HB2'], ['CG', 'OG'], ['HG2', 'HG']], ['HG3', 'CD', 'OE1', 'NE2', 'HE21', 'HE22'], {'GLN-SER': ['disappear', 0, 1], 'SER-GLN': ['appear', 1, 0]}, ], 'GLN-THR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'OG1'], ['CG', 'CG2'], ['HG2', 'HG1'], ['HG3', 'HG21'], ['CD', 'HG22'], ['OE1', 'HG23']], ['NE2', 'HE21', 'HE22'], {'THR-GLN': ['appear', 1, 0], 'GLN-THR': ['disappear', 0, 1]}, ], 'GLN-TRP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'NE1'], ['NE2', 'CE3'], ['HE21', 'CE2'], ['HE22', 'HE1']], ['HE3', 'CZ3', 'CZ2', 'HZ3', 'HZ2', 'CH2', 'HH2'], {'TRP-GLN': ['disappear', 1, 0], 'GLN-TRP': ['appear', 0, 1]}, ], 'GLN-TYR': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'CD1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['NE2', 'HD2'], ['HE21', 'CE2'], ['HE22', 'HE1']], ['CZ', 'HE2', 'OH', 'HH'], {'GLN-TYR': ['appear', 0, 1], 'TYR-GLN': ['disappear', 1, 0]}, ], 'GLN-VAL': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG2', 'HG11'], ['HG3', 'HG12'], ['CD', 'HG13'], ['OE1', 'HG21'], ['NE2', 'HG22'], ['HE21', 'HG23']], ['HE22'], {'GLN-VAL': ['disappear', 0, 1], 'VAL-GLN': ['appear', 1, 0]}, ], 'GLU-GLY': [ ['N', 'H', 'CA', 'O', 'C'], [['HA', 'HA2'], ['CB', 'HA3']], ('HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD', 'OE1', 'OE2'), {'GLU-GLY': ['disappear', 0, 1], 'GLY-GLU': ['appear', 1, 0]}, ], 'GLU-HID': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['OE2', 'HD2']], ['NE2', 'HE1'], {'GLU-HID': ['appear', 0, 1], 'HID-GLU': ['disappear', 1, 0]}, ], 'GLU-HIE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'CE1'], ['OE1', 'HD2'], ['OE2', 'NE2']], ['HE1', 'HE2'], {'GLU-HIE': ['appear', 0, 1], 'HIE-GLU': ['disappear', 1, 0]}, ], 'GLU-HIP': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'ND1'], ['HG3', 'CD2'], ['CD', 'HD1'], ['OE1', 'CE1'], ['OE2', 'HD2']], ['NE2', 'HE1', 'HE2'], {'GLU-HIP': ['appear', 0, 1], 'HIP-GLU': ['disappear', 1, 0]}, ], 'GLU-ILE': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB'], [['HB2', 'HB'], ['HB3', 'CG1'], ['CG', 'CG2'], ['HG2', 'HG12'], ['HG3', 'HG13'], ['CD', 'CD1'], ['OE1', 'HG21'], ['OE2', 'HG22']], ['HG23', 'HD11', 'HD12', 'HD13'], {'GLU-ILE': ['appear', 0, 1], 'ILE-GLU': ['disappear', 1, 0]}, ], 'GLU-LEU': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'HG'], ['HG3', 'CD1'], ['CD', 'CD2'], ['OE1', 'HD11'], ['OE2', 'HD12']], ['HD13', 'HD21', 'HD22', 'HD23'], {'GLU-LEU': ['appear', 0, 1], 'LEU-GLU': ['disappear', 1, 0]}, ], 'GLU-LYN': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['OE1', 'HD2'], ['OE2', 'HD3']], ['CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2'], {'LYN-GLU': ['disappear', 1, 0], 'GLU-LYN': ['appear', 0, 1]}, ], 'GLU-LYS': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG', 'HG2', 'HG3', 'CD'], [['OE1', 'HD2'], ['OE2', 'HD3']], ['CE', 'HE2', 'HE3', 'NZ', 'HZ1', 'HZ2', 'HZ3'], {'GLU-LYS': ['appear', 0, 1], 'LYS-GLU': ['disappear', 1, 0]}, ], 'GLU-MET': [ ['N', 'H', 'CA', 'HA', 'C', 'O', 'CB', 'HB2', 'HB3', 'CG'], [['HG2', 'HG2'], ['HG3', 'HG3'], ['CD', 'SD'], ['OE1',
#!/usr/bin/env python # title :devops_manager.py # description :Creating a DevOps like on Solaris # author :<NAME> # release date :20181018 # update date :20191127 # version :0.9.0 # usage :python devops_manager.py # notes : # python_version :2.7.14 # ============================================================================== # RAD modules import rad.bindings.com.oracle.solaris.rad.zonemgr as zonemgr import rad.bindings.com.oracle.solaris.rad.smf_1 as smf import rad.bindings.com.oracle.solaris.rad.kstat_1 as kbind import rad.client as radc import rad.connect as radcon import rad.auth as rada # import rad.bindings.com.oracle.solaris.rad.zonesbridge as zbind # General modules import os import re import sys import pwd import time import datetime import json import ldap import socket import getpass import logging import configparser import argparse import pickledb from subprocess import PIPE, Popen from multiprocessing import Process import requests requests.packages.urllib3.disable_warnings() # Argument Parser Options parser = argparse.ArgumentParser( description='Create VM(zone) with associated /apps1 clone' ) parser.add_argument('-e', '--env', nargs='?', default='dev', type=str, choices=['test', 'dev', 'stage'], help='select environment dev, test, stage(default is dev)') parser.add_argument('-u', '--user', default=False, type=str, required=True, help='create zone with give login credentials.') parser.add_argument('-p', '--password', nargs='?', default=None, type=str, help='password for give login credentials.') parser.add_argument('-t', '--appType', nargs='?', default=False, type=str, const='db', choices=['app', 'db'], help='select zone/VM type. app or db(default is app)') parser.add_argument('-v', '--dbVersion', nargs='?', default=False, type=int, help='create / rotate zone using given db version(default is db_version in versions.ini, managed by -n flag).') parser.add_argument('-vl', '--dbLastVersion', nargs='?', default=False, type=int, help='create / rotate zone using given db version(default is latest_db_version in versions.ini, managed by -nl flag).') group1 = parser.add_mutually_exclusive_group() group1.add_argument('-s', '--imgStat', action='store_true', default=False, help='returns VM(zone) live information, e.g. Global Zone, IP, Port, File System, details.') group1.add_argument('-d', '--delete', action='store_true', default=False, help='delete VM(zone) with associated snap(s)') group1.add_argument('-r', '--rotateImg', default=False, type=str, choices=['app', 'db'], help='rotate / sync update /apps1. for informix DB: refresh to latest DB copy(/ifxsrv).') group1.add_argument('-fr', '--fullRotate', default=False, type=str, const='fullRotate', nargs='?', help='rotate update /apps1, informix DB, refresh all to the default copy (unless otherwise noted with -v).') group2 = parser.add_mutually_exclusive_group() group2.add_argument('-U', '--userID', default=None, type=str, help='returns zones created by given user ID.') group2.add_argument('-a', '--all', nargs='?', default=None, type=str, const='allUsers', help='returns zones created by all users.') group = parser.add_mutually_exclusive_group() group.add_argument('-i', '--jiraid', nargs='?', metavar='', required=False, type=str, help='associated Jira ID') group.add_argument('-l', '--listZones', nargs='?', const='listZones', choices=['sum', 'det', 'listZones'], default=None, required=False, type=str, help='list all active zones, options are summary or details(sum, det)') group.add_argument('-n', '--setDBVers', nargs='?', metavar='', required=False, type=int, const='0', default=None, help='Updated App or DB version default version') args = parser.parse_args() os.chdir("/export/home/confmgr") # Get date and time dt = datetime.datetime.now() # Set working environment(defaults to dev). work_env = args.env def set_logging(logName): """Configure / set all logging related settings""" global logger, handler, formatter, log_output log_dir = '/sc_profile_src/logs/' logger = logging.getLogger(logName) logger.setLevel(logging.DEBUG) # create a file handler log_output = "zone_vm.log" handler = logging.FileHandler(log_output) handler.setLevel(logging.DEBUG) # create formatter extra = {'user_name': args.user} formatter = logging.Formatter( '%(asctime)s:%(name)s:%(user_name)s:%(levelname)s: %(message)s' ) handler.setFormatter(formatter) # add handler to logger logger.addHandler(handler) logger = logging.LoggerAdapter(logger, extra) def get_config(section, item=None, zone_name=None, item_type=None, dc=None): config = configparser.ConfigParser() config.sections() config.read('devops_config.ini') config_details = dict(config.items(section)) val_list = [] val_dict = {} rec = 0 if section == "ZFS_DST_SNAP": return str(config_details[item]) + zone_name elif item == "DICT_LIST": for key, val in config.items(section): if key.split(".")[2] == "1": rec = str(key.split(".")[1]) file_name = str(val) elif key.split(".")[2] == "2": dst_file = str(val) else: if item_type == "link": dst_data = str(val) else: dst_data = str(get_file_data(dst_file), dc) d = {"file": file_name, "src_file": str(dst_file), "dst_val": dst_data} val_dict[rec] = d return val_dict elif section == "HOST_LIST": for key, val in config.items('HOST_LIST'): if key.split(".")[0] == "ha": rec += 1 hahost = str(key.split(".")[0]) haval = str(val) d = {'id': rec, hahost: haval} else: drhost = str(key.split(".")[0]) drval = str(val) d[drhost] = str(drval) val_list.append(d) return val_list elif item == "ITEM_LIST": for key, val in config.items(section): if zone_name: val_list.append(str(val) + str(zone_name)) else: val_list.append(str(val)) return val_list else: return str(config_details[item]) def write_file_data(src, data): try: f = open(src, "w") except IOError, e: print e f.write(data) f.close() def get_file_data(src, dc=None): try: f = open(src, "r") except IOError, e: print dc.upper(), e logger.error("%s", e) logger.error("%s", sys.exc_type) sys.exit(1) data = f.read() f.close() return data # Lowest / first app / db versions. db_min_version = int(get_config('CONFIG', 'db_min_version')) app_min_version = int(get_config('CONFIG', 'app_min_version')) def get_app_versions(app_type=None, default_version=None, latest_version=None): """Get versions db/app default or latest accepts: app type (app, db), default_version, latest_version. returns: version number """ db = pickledb.load('versions.db', False) if default_version: try: version = db.dget('versions', app_type + '_version')['version'] except KeyError as error: print "No version found for %s type" % (app_type.upper()) sys.exit(0) print version sys.exit(0) if latest_version: try: version = db.dget('versions', 'latest_' + app_type + '_version')['version'] except KeyError as error: print "No version found for %s type" % (app_type.upper()) sys.exit(0) print version sys.exit(0) def app_versions(app_type=None, new_version=None, start_version=None, latest_version=None): """Updates DB version number accepts: app type (app, db), min_version, start version. returns: single port number. """ db = pickledb.load('versions.db', False) lock_file = '/var/tmp/versions_pickle_db.lock' lock_timeout = 1 if latest_version: app_type = 'latest_' + app_type if os.path.exists(lock_file): print("Lock file found will retry in 1 Second(for a max of 10 tries).") logger.error("Lock file found will retry in 1 Second(for a max of 10 tries).") while lock_timeout < 10: if os.path.exists(lock_file): time.sleep(1) lock_timeout += 1 else: break write_file_data(lock_file, "pickle_db lock file") try: db.dgetall('versions') except KeyError as error: db.dcreate('versions') db.dump() if db.dexists('versions', app_type + '_version'): try: db.dget('versions', app_type + '_version') except KeyError as error: db.dadd('versions', (app_type + '_version', {'version': ''})) else: db.dadd('versions', (app_type + '_version', {'version': ''})) db.dump() version = db.dget('versions', app_type + '_version')['version'] if version: next_version = version else: next_version = start_version db.dadd('versions', (app_type + '_version', {'version': next_version})) db.dump() if new_version is None: if os.path.exists(lock_file): os.remove(lock_file) return next_version else: if version == new_version: print "ERROR: New %s version is the same as current.. exiting." % (app_type.upper()) if os.path.exists(lock_file): os.remove(lock_file) else: if latest_version: if new_version > next_version: next_version = new_version print "Successfully updated %s version from %s: %s to: %s." % (app_type.upper(), app_type + '_version', version, next_version) else: print "ERROR: Not updating %s since new version: %s is less then the latest version: %s" % (app_type.upper(), new_version, next_version) next_version = next_version else: next_version = new_version db.dadd('versions', (app_type + '_version', {'version': next_version})) if os.path.exists(lock_file): os.remove(lock_file) db.dump() if latest_version is None: if version != new_version: print "Successfully updated %s version from %s: %s to: %s." % (app_type.upper(), app_type + '_version', version, next_version) if latest_version: sys.exit(0) if args.dbVersion: db_version = args.dbVersion app_version = args.dbVersion else: try: # db_version = int(get_file_data('db_version.ini')) db_version = app_versions('db', None, db_min_version) app_version = app_versions('app', None, app_min_version) except Exception as error: print("ERROR: No DB config file was found, generating one with db version of 5. \nPlease make sure version is set correctly.") # write_file_data('db_version.ini', str('5')) # db_version = int(get_file_data('db_version.ini')) db_version = app_versions('db', None, db_min_version) app_version = app_versions('app', None, app_min_version) if (args.listZones is not None or args.setDBVers is not None): if args.delete or args.imgStat or args.rotateImg or args.fullRotate: d = {'app_name': sys.argv[0]} print """usage: devops_manager.py [-h] [-e [{{test,dev,stage}}]] -u USER [-p [PASSWORD]] [-t [{{app,db}}]] [-s | -d | -r {{app,db}}] [-U USERID | -a [ALL]] (-i | -l [{{sum,det,listZones}}]) {app_name}: error: argument -i/--jiraid is required""".format(**d) sys.exit(0) else: # Set filesystem, zone-name dst_zone = "z-" + dt.strftime("%s") + "-" + "status" pass else: if args.jiraid is None: while True: try: jira_id = raw_input("Please enter a Jira ID: ") except Exception as error: print('ERROR', error) if jira_id: break else: jira_id = args.jiraid if (args.appType == "db"): # Set db zone name # dst_zone = "z-db-" + "v" + str(db_version + 1) + "-" + dt.strftime("%s") + "-" + args.jiraid dst_zone = "z-db-" + "v" + str(int(db_version) + 1) + "-" + dt.strftime("%s") + "-" + jira_id elif (args.appType == "app"): dst_zone = "z-app-" + "v" + str(int(app_version) + 1) + "-" + dt.strftime("%s") + "-" + jira_id else: # Set app zone name # dst_zone = "z-" + dt.strftime("%s") + "-" + args.jiraid dst_zone = "z-" + dt.strftime("%s") + "-" + jira_id # ====================== ZFS related ====================== # Set system proxy if get_config('PROXY', 'http_proxy') != "None": os.environ['http_proxy'] = get_config('PROXY', 'http_proxy') if get_config('PROXY', 'https_proxy') != "None": os.environ['https_proxy'] = get_config('PROXY', 'https_proxy') # ZFSSA API URL url = get_config('ZFSSA', 'url') # ZFSSA API login zfsuser = get_config('ZFSSA', 'zfsuser') zfspass = get_config('ZFSSA', 'zfspass') zfsauth = (zfsuser, zfspass) # ZFS pool zfspool = get_config('ZFSSA', 'zfspool') # ZFS project zfsproject = get_config('ZFSSA', 'zfsproject') zfsprojecttmp = zfsproject + '_' + dt.strftime("%s") # ZFS source filesystem # zfssrcfslist = get_config('ZFS_SRC_FS', 'ITEM_LIST') zfssrcfslist = [] # ZFS snap filesystem zfsdstsnap = get_config('ZFS_DST_SNAP', 'zfsdstsnap', dst_zone) # ZFS clone filesystem(s) # zfsdstclonelist = get_config('ZFS_DST_FS', 'ITEM_LIST', dst_zone) zfsdstclonelist = [] # ZFS replication target replication_target = get_config('ZFSSA', 'replication_target') # Headers jsonheader = {'Content-Type': 'application/json'} # ====================== Global and Zone related ================= # Global zone - will the one with the lowest CPU load. # Define dr state, can be
from typing import Dict from typing import List from botocore.paginate import Paginator class GetClassifiers(Paginator): def paginate(self, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Glue.Client.get_classifiers`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/glue-2017-03-31/GetClassifiers>`_ **Request Syntax** :: response_iterator = paginator.paginate( PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'Classifiers': [ { 'GrokClassifier': { 'Name': 'string', 'Classification': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'GrokPattern': 'string', 'CustomPatterns': 'string' }, 'XMLClassifier': { 'Name': 'string', 'Classification': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'RowTag': 'string' }, 'JsonClassifier': { 'Name': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'JsonPath': 'string' }, 'CsvClassifier': { 'Name': 'string', 'CreationTime': datetime(2015, 1, 1), 'LastUpdated': datetime(2015, 1, 1), 'Version': 123, 'Delimiter': 'string', 'QuoteSymbol': 'string', 'ContainsHeader': 'UNKNOWN'|'PRESENT'|'ABSENT', 'Header': [ 'string', ], 'DisableValueTrimming': True|False, 'AllowSingleColumn': True|False } }, ], } **Response Structure** - *(dict) --* - **Classifiers** *(list) --* The requested list of classifier objects. - *(dict) --* Classifiers are triggered during a crawl task. A classifier checks whether a given file is in a format it can handle, and if it is, the classifier creates a schema in the form of a ``StructType`` object that matches that data format. You can use the standard classifiers that AWS Glue supplies, or you can write your own classifiers to best categorize your data sources and specify the appropriate schemas to use for them. A classifier can be a ``grok`` classifier, an ``XML`` classifier, a ``JSON`` classifier, or a custom ``CSV`` classifier as specified in one of the fields in the ``Classifier`` object. - **GrokClassifier** *(dict) --* A ``GrokClassifier`` object. - **Name** *(string) --* The name of the classifier. - **Classification** *(string) --* An identifier of the data format that the classifier matches, such as Twitter, JSON, Omniture logs, and so on. - **CreationTime** *(datetime) --* The time this classifier was registered. - **LastUpdated** *(datetime) --* The time this classifier was last updated. - **Version** *(integer) --* The version of this classifier. - **GrokPattern** *(string) --* The grok pattern applied to a data store by this classifier. For more information, see built-in patterns in `Writing Custom Classifers <http://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html>`__ . - **CustomPatterns** *(string) --* Optional custom grok patterns defined by this classifier. For more information, see custom patterns in `Writing Custom Classifers <http://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html>`__ . - **XMLClassifier** *(dict) --* An ``XMLClassifier`` object. - **Name** *(string) --* The name of the classifier. - **Classification** *(string) --* An identifier of the data format that the classifier matches. - **CreationTime** *(datetime) --* The time this classifier was registered. - **LastUpdated** *(datetime) --* The time this classifier was last updated. - **Version** *(integer) --* The version of this classifier. - **RowTag** *(string) --* The XML tag designating the element that contains each record in an XML document being parsed. Note that this cannot identify a self-closing element (closed by ``/>`` ). An empty row element that contains only attributes can be parsed as long as it ends with a closing tag (for example, ``<row item_a="A" item_b="B"></row>`` is okay, but ``<row item_a="A" item_b="B" />`` is not). - **JsonClassifier** *(dict) --* A ``JsonClassifier`` object. - **Name** *(string) --* The name of the classifier. - **CreationTime** *(datetime) --* The time this classifier was registered. - **LastUpdated** *(datetime) --* The time this classifier was last updated. - **Version** *(integer) --* The version of this classifier. - **JsonPath** *(string) --* A ``JsonPath`` string defining the JSON data for the classifier to classify. AWS Glue supports a subset of JsonPath, as described in `Writing JsonPath Custom Classifiers <https://docs.aws.amazon.com/glue/latest/dg/custom-classifier.html#custom-classifier-json>`__ . - **CsvClassifier** *(dict) --* A ``CSVClassifier`` object. - **Name** *(string) --* The name of the classifier. - **CreationTime** *(datetime) --* The time this classifier was registered. - **LastUpdated** *(datetime) --* The time this classifier was last updated. - **Version** *(integer) --* The version of this classifier. - **Delimiter** *(string) --* A custom symbol to denote what separates each column entry in the row. - **QuoteSymbol** *(string) --* A custom symbol to denote what combines content into a single column value. Must be different from the column delimiter. - **ContainsHeader** *(string) --* Indicates whether the CSV file contains a header. - **Header** *(list) --* A list of strings representing column names. - *(string) --* - **DisableValueTrimming** *(boolean) --* Specifies not to trim values before identifying the type of column values. The default value is true. - **AllowSingleColumn** *(boolean) --* Enables the processing of files that contain only one column. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class GetConnections(Paginator): def paginate(self, CatalogId: str = None, Filter: Dict = None, HidePassword: bool = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`Glue.Client.get_connections`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/glue-2017-03-31/GetConnections>`_ **Request Syntax** :: response_iterator = paginator.paginate( CatalogId='string', Filter={ 'MatchCriteria': [ 'string', ], 'ConnectionType': 'JDBC'|'SFTP' }, HidePassword=True|False, PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'ConnectionList': [ { 'Name': 'string', 'Description': 'string', 'ConnectionType': 'JDBC'|'SFTP', 'MatchCriteria': [ 'string', ], 'ConnectionProperties': { 'string': 'string' }, 'PhysicalConnectionRequirements': { 'SubnetId': 'string', 'SecurityGroupIdList': [ 'string', ], 'AvailabilityZone': 'string' }, 'CreationTime': datetime(2015, 1, 1), 'LastUpdatedTime': datetime(2015, 1, 1), 'LastUpdatedBy': 'string' }, ], } **Response Structure** - *(dict) --* - **ConnectionList** *(list) --* A list of requested connection definitions. - *(dict) --* Defines a connection to a data source. - **Name** *(string) --* The name of the connection definition. - **Description** *(string) --* The description of the connection. - **ConnectionType** *(string) --* The type of the connection. Currently, only JDBC is supported; SFTP is not supported. - **MatchCriteria** *(list) --* A list of criteria that can be used in selecting this connection. - *(string) --* - **ConnectionProperties** *(dict) --* These key-value pairs define parameters for the connection: * ``HOST`` - The host URI: either the fully qualified domain name (FQDN) or the IPv4 address of the database host. * ``PORT`` - The port number, between 1024 and 65535, of the port on which the database host is listening for database connections. * ``USER_NAME`` - The name under which to log in to the database. The value string for ``USER_NAME`` is "``USERNAME`` ". * ``PASSWORD`` - A password, if one is used, for the user name. * ``ENCRYPTED_PASSWORD`` - When you enable connection password protection by setting ``ConnectionPasswordEncryption`` in the Data Catalog encryption settings, this field stores the encrypted password. * ``JDBC_DRIVER_JAR_URI`` - The Amazon S3 path of the JAR file that contains the JDBC driver to use. * ``JDBC_DRIVER_CLASS_NAME`` - The class name of the JDBC driver to use. * ``JDBC_ENGINE`` - The name of the JDBC engine to use. * ``JDBC_ENGINE_VERSION`` - The version of the JDBC engine to use. * ``CONFIG_FILES`` - (Reserved for future use). * ``INSTANCE_ID`` - The instance ID to use. * ``JDBC_CONNECTION_URL`` - The URL for the JDBC connection. * ``JDBC_ENFORCE_SSL`` - A Boolean string (true, false)
<filename>main.py<gh_stars>0 from __future__ import print_function from __future__ import division from PACK import * from torch.optim.lr_scheduler import StepLR from model import Graph, adjust_learning_rate from aggregator import MeanPoolAggregator, MaxPoolAggregator, naiveMeanAggr from utils import buildTestData, configRefineDataset, evalRefineDataset, averageQueryExpansion from collect_graph import collectGraphTrain, collectGraphTest from sample_neighbors import SampleNeigh, collectNeighborFeatures import numpy as np import math import time from tqdm import tqdm import os import visdom import argparse import ast eval_func = 'evaluation/compute_ap' retrieval_result = 'retrieval' test_dataset = { 'oxford5k': { 'node_num': 5063, 'img_testpath': '/path/to/images', 'feature_path': '/path/to/oxford5k', 'gt_path': '/path/to/oxford5k_groundTruth', }, 'paris6k': { 'node_num': 6392, 'img_testpath': '/path/to/images', 'feature_path': '/path/to/paris6k', 'gt_path': '/path/to/paris6k_groundTruth', }, 'roxford5k':{ 'node_num': 4993, 'dataset_path': '/path/to/datasets', 'feature_path': '/path/to/roxford5k', }, 'rparis6k':{ 'node_num': 6322, 'dataset_path': '/path/to/datasets', 'feature_path': '/path/to/rparis6k', }, 'oxford105k': { 'node_num': 105134, 'img_testpath': '/path/to/images', 'feature_path': '/path/to/oxford105k', 'gt_path': '/path/to/oxford5k_groundTruth', }, 'paris106k': { 'node_num': 106463, 'img_testpath': 'test_par/images', 'feature_path': 'test_feature_map/paris106k', 'gt_path': '/path/to/paris6k_groundTruth', }, 'roxford105k':{ 'node_num': 105064, 'dataset_path': '/path/to/datasets', 'feature_path': '/path/to/roxford105k', }, 'rparis106k':{ 'node_num': 106393, 'dataset_path': '/path/to/datasets', 'feature_path': '/path/to/rparis106k', } } building_oxf = buildTestData(img_path=test_dataset['oxford5k']['img_testpath'], gt_path=test_dataset['oxford5k']['gt_path'], eval_func=eval_func) building_par = buildTestData(img_path=test_dataset['paris6k']['img_testpath'], gt_path=test_dataset['paris6k']['gt_path'], eval_func=eval_func) building_roxf = configRefineDataset(dataset='roxford5k', dir_main=test_dataset['roxford5k']['dataset_path']) building_rpar = configRefineDataset(dataset='rparis6k', dir_main=test_dataset['rparis6k']['dataset_path']) building_oxf_flk = buildTestData(img_path=test_dataset['oxford105k']['img_testpath'], gt_path=test_dataset['oxford105k']['gt_path'], eval_func=eval_func) building_par_flk = buildTestData(img_path=test_dataset['paris106k']['img_testpath'], gt_path=test_dataset['paris106k']['gt_path'], eval_func=eval_func) building_roxf_flk = configRefineDataset(dataset='roxford5k', dir_main=test_dataset['roxford105k']['dataset_path']) building_rpar_flk = configRefineDataset(dataset='rparis6k', dir_main=test_dataset['rparis106k']['dataset_path']) building = { 'oxford5k': building_oxf, 'paris6k': building_par, 'roxford5k': building_roxf, 'rparis6k': building_rpar, 'oxford105k': building_oxf_flk, 'paris106k': building_par_flk, 'roxford105k': building_roxf_flk, 'rparis106k': building_rpar_flk, } aggregators = { 'max': MaxPoolAggregator, 'mean': MeanPoolAggregator, } def train(args): if args.suffix.startswith('_rmac') or args.suffix.startswith('_gem'): node_num, class_num = 36460, 578 else: raise ValueError("Wrong feature type.") assert args.aggre_layer_num + 1 == len(args.embed_dims), "layer_num does not match embed_dims." label, feature_map, adj_sets = collectGraphTrain(node_num, class_num, args.embed_dims[0], args.knn, args.suffix) sampler = SampleNeigh(adj_sets, knn=args.knn, hop_num=args.aggre_layer_num) model = Graph(args.aggre_layer_num, args.embed_dims, class_num, aggregators[args.aggre_type], args.combine, args.concate, args.activate, args.residue, args.weighted, args.margin) optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay) scheduler = StepLR(optimizer, step_size=args.step_size, gamma=args.learning_rate_decay) if args.use_cuda: model.cuda() label = label.cuda() feature_map = feature_map.cuda() assert args.train_num < node_num, 'train_num > node_num.' np.random.seed(2) rand_indices = np.random.permutation(node_num) train_nodes = rand_indices[:args.train_num] val_nodes = rand_indices[args.train_num:] val_num = val_nodes.shape[0] ## sample positive and negative for rank loss positive_nodes, negative_nodes = [], [] if args.mode == 'classRank': for anchor in train_nodes: for ri in rand_indices: if ri != anchor and label[ri] == label[anchor]: positive_nodes.append(ri) break while True: rand_node = np.random.choice(rand_indices) if label[rand_node] != label[anchor]: negative_nodes.append(rand_node) break positive_nodes = np.array(positive_nodes) negative_nodes = np.array(negative_nodes) elif args.mode == 'classBatch': for anchor in train_nodes: for ri in rand_indices: if ri != anchor and label[ri] == label[anchor]: positive_nodes.append(ri) break positive_nodes = np.array(positive_nodes) batch_size = args.batch_size iter_num = int(math.ceil(args.train_num/batch_size)) check_loss = [] val_accuracy = [] check_step = args.check_step train_loss = 0.0 iter_cnt = 0 for e in range(args.epoch_num): ## train model.train() np.random.shuffle(train_nodes) for batch in range(iter_num): if args.mode == 'class': batch_nodes = train_nodes[batch*batch_size: (batch+1)*batch_size] batch_labels = label[batch_nodes] batch_features = collectNeighborFeatures(sampler, batch_nodes, feature_map) optimizer.zero_grad() loss = model.classLoss(batch_features, batch_labels) loss.backward() optimizer.step() elif args.mode == 'classRank': batch_idx = range(batch*batch_size, min((batch+1)*batch_size, args.train_num)) batch_anchors = train_nodes[batch_idx] positive_labels = label[batch_anchors] batch_positives = positive_nodes[batch_idx] batch_negatives = negative_nodes[batch_idx] negative_labels = label[batch_negatives] batch_anchor_features = collectNeighborFeatures(sampler, batch_anchors, feature_map) batch_positive_features = collectNeighborFeatures(sampler, batch_positives, feature_map) batch_negative_features = collectNeighborFeatures(sampler, batch_negatives, feature_map) optimizer.zero_grad() loss = model.classRankLoss(batch_anchor_features, batch_positive_features, batch_negative_features, positive_labels, negative_labels, args.omega) loss.backward() optimizer.step() elif args.mode == 'classBatch': batch_idx = range(batch*batch_size, min((batch+1)*batch_size, args.train_num)) batch_anchors = train_nodes[batch_idx] batch_labels = label[batch_anchors] batch_positives = positive_nodes[batch_idx] batch_anchor_features = collectNeighborFeatures(sampler, batch_anchors, feature_map) batch_positive_features = collectNeighborFeatures(sampler, batch_positives, feature_map) optimizer.zero_grad() loss = model.classBatchLoss(batch_anchor_features, batch_positive_features, batch_labels, args.omega) loss.backward() optimizer.step() iter_cnt += 1 train_loss += loss.cpu().item() if iter_cnt % check_step == 0: check_loss.append(train_loss / check_step) print(time.strftime('%Y-%m-%d %H:%M:%S'), "epoch: {}/{}, iter:{}, loss: {:.4f}".format(e, args.epoch_num-1, iter_cnt, train_loss/check_step)) train_loss = 0.0 ## validation model.eval() group = int(math.ceil(val_num / batch_size)) accur_cnt = 0 for batch in range(group): batch_nodes = val_nodes[batch*batch_size: (batch+1)*batch_size] batch_label = label[batch_nodes].squeeze().cpu().detach().numpy() batch_neighs = sampler(batch_nodes) batch_features = [] batch_features.append(feature_map[batch_nodes]) for neigh in batch_neighs: batch_features.append(feature_map[neigh]) _, scores = model(batch_features) batch_predict = np.argmax(scores.cpu().data.numpy(), axis=1) accur_cnt += np.sum(batch_predict == batch_label) val_accuracy.append(accur_cnt / val_num) print(time.strftime('%Y-%m-%d %H:%M:%S'), "Epoch: {}/{}, Validation Accuracy: {:.4f}".format(e, args.epoch_num-1, accur_cnt/val_num)) print("******" * 10) ## learning rate schedule # scheduler.step() adjust_learning_rate(optimizer, e) ## save model checkpoint_path = 'checkpoint_{}.pth'.format(time.strftime('%Y%m%d%H%M%S')) torch.save({ 'train_num': args.train_num, 'epoch_num': args.epoch_num, 'learning_rate': args.learning_rate, 'knn': args.knn, 'embed_dims': args.embed_dims, 'optimizer_type': 'Adam', 'optimizer_state_dict': optimizer.state_dict(), 'graph_state_dict': model.state_dict(), }, checkpoint_path ) vis = visdom.Visdom(env='Graph', port='8099') vis.line( X = np.arange(1, len(check_loss)+1, 1) * check_step, Y = np.array(check_loss), opts = dict( title=time.strftime('%Y-%m-%d %H:%M:%S'), xlabel='itr.', ylabel='loss' ) ) vis.line( X = np.arange(1, len(val_accuracy)+1, 1), Y = np.array(val_accuracy), opts = dict( title=time.strftime('%Y-%m-%d %H:%M:%S'), xlabel='epoch', ylabel='accuracy' ) ) np.save('check_loss_{}_{}_{}_{}_{}.npy'.format(str(args.aggre_layer_num), str(args.knn), str(args.combine), args.mode, time.strftime('%Y%m%d%H%M')), np.array(check_loss)) np.save('val_accuracy_{}_{}_{}_{}_{}.npy'.format(str(args.aggre_layer_num), str(args.knn), str(args.combine), args.mode, time.strftime('%Y%m%d%H%M')), np.array(val_accuracy)) return checkpoint_path, class_num def test(checkpoint_path, class_num, args): model = Graph(args.aggre_layer_num, args.embed_dims, class_num, aggregators[args.aggre_type], args.combine, args.concate, args.activate, args.residue, args.weighted, args.margin) checkpoint = torch.load(checkpoint_path) model.load_state_dict(checkpoint['graph_state_dict']) model.eval() if args.use_cuda: model.cuda() for key in building.keys(): node_num = test_dataset[key]['node_num'] old_feature_map, adj_sets, old_query = collectGraphTest(test_dataset[key]['feature_path'], node_num, args.embed_dims[0], args.knn, args.suffix) sampler = SampleNeigh(adj_sets, knn=args.knn, hop_num=args.aggre_layer_num) if args.use_cuda: old_feature_map = old_feature_map.cuda() query = old_query.cuda() ## process query new_query = model.queryForward(query) new_query = new_query.cpu().detach().numpy() old_query = old_query.detach().numpy() batch_num = int(math.ceil(node_num/args.batch_size)) test_nodes = np.arange(node_num) new_feature_map = torch.FloatTensor() for batch in tqdm(range(batch_num)): batch_nodes = test_nodes[batch*args.batch_size: (batch+1)*args.batch_size] batch_neighs = sampler(batch_nodes) batch_features = [] batch_features.append(old_feature_map[batch_nodes]) for neigh in batch_neighs: batch_features.append(old_feature_map[neigh]) new_feature, _ = model(batch_features) new_feature_map = torch.cat((new_feature_map, new_feature.cpu().data), dim=0) new_feature_map = new_feature_map.numpy() old_feature_map = old_feature_map.cpu().numpy() np.save('new_feature_map_{}.npy'.format(key), new_feature_map) print(time.strftime('%Y-%m-%d %H:%M:%S'), 'eval {}'.format(key)) if not key.startswith('r'): mAP_old = building[key].evalQuery(old_feature_map, old_query, retrieval_result) mAP_new = building[key].evalQuery(new_feature_map, new_query, retrieval_result) print('base feature: {}, new feature: {}'.format(old_feature_map.shape, new_feature_map.shape)) print('base mAP: {:.4f}, new mAP: {:.4f}, improve: {:.4f}'.format(mAP_old, mAP_new, mAP_new - mAP_old)) else: print('base feature: {}, new feature: {}'.format(old_feature_map.shape, new_feature_map.shape)) print(' --base--') mapE, mapM, mapH, mprE, mprM, mprH = evalRefineDataset(building[key]['gnd'], old_feature_map, old_query) print('mAP E: {:.4f}, M: {:.4f}, H: {:.4f}'.format(mapE, mapM, mapH)) print('mP@k [1 5 10]\n E: {}\n M: {}\n H: {}'.format(np.around(mprE, decimals=4), np.around(mprM, decimals=4), np.around(mprH, decimals=4))) print(' --graph--') mapE, mapM, mapH, mprE, mprM, mprH = evalRefineDataset(building[key]['gnd'], new_feature_map, new_query) print('mAP E: {:.4f}, M: {:.4f}, H: {:.4f}'.format(mapE, mapM, mapH)) print('mP@k [1 5 10]\n E: {}\n M: {}\n H: {}'.format(np.around(mprE, decimals=4), np.around(mprM, decimals=4), np.around(mprH, decimals=4))) ## naive mean aggregation sampler = SampleNeigh(adj_sets, knn=args.knn, hop_num=1) mean_feature_map = np.zeros((node_num, args.embed_dims[0])) for batch in range(batch_num): batch_nodes = test_nodes[batch*args.batch_size: (batch+1)*args.batch_size] batch_neighs = sampler(batch_nodes) batch_features = [old_feature_map[batch_nodes], old_feature_map[batch_neighs[0]]] new_feature = naiveMeanAggr(*batch_features, weighted=args.weighted) mean_feature_map[batch_nodes] = new_feature if not key.startswith('r'): mAP_new = building[key].evalQuery(mean_feature_map, old_query, retrieval_result) print('mean mAP: {:.4f}, improve: {:.4f}'.format(mAP_new, mAP_new - mAP_old)) else: print(' --mean--') mapE, mapM, mapH, mprE, mprM, mprH = evalRefineDataset(building[key]['gnd'], mean_feature_map, old_query) print('mAP E: {:.4f}, M: {:.4f}, H: {:.4f}'.format(mapE, mapM, mapH)) print('mP@k [1 5 10]\n E: {}\n M: {}\n H: {}'.format(np.around(mprE, decimals=4), np.around(mprM, decimals=4), np.around(mprH, decimals=4))) ## average query expansion base_aqe = [] graph_aqe = [] mean_aqe = [] for m in [1,3,5,7,9]: old_aug_query = averageQueryExpansion(old_feature_map, old_query, m) new_aug_query = averageQueryExpansion(new_feature_map, new_query, m) mean_aug_query = averageQueryExpansion(mean_feature_map, old_query, m) if not key.startswith('r'): mAP_old = building[key].evalQuery(old_feature_map, old_aug_query, retrieval_result) base_aqe.append((m, np.around(mAP_old, decimals=4))) mAP_new = building[key].evalQuery(new_feature_map, new_aug_query, retrieval_result) graph_aqe.append((m, np.around(mAP_new, decimals=4))) mAP_mean = building[key].evalQuery(mean_feature_map, mean_aug_query, retrieval_result) mean_aqe.append((m, np.around(mAP_mean, decimals=4))) else: mapE, mapM, mapH, mprE, mprM, mprH = evalRefineDataset(building[key]['gnd'], old_feature_map, old_aug_query) base_aqe.append((m, np.around(mapE, decimals=4), np.around(mapM, decimals=4), np.around(mapH, decimals=4), np.around(mprE, decimals=4), np.around(mprM, decimals=4), np.around(mprH, decimals=4))) mapE, mapM, mapH, mprE, mprM, mprH = evalRefineDataset(building[key]['gnd'], new_feature_map, new_aug_query) graph_aqe.append((m, np.around(mapE, decimals=4), np.around(mapM, decimals=4), np.around(mapH, decimals=4), np.around(mprE, decimals=4), np.around(mprM, decimals=4), np.around(mprH, decimals=4))) mapE, mapM, mapH, mprE, mprM, mprH = evalRefineDataset(building[key]['gnd'], mean_feature_map, mean_aug_query) mean_aqe.append((m, np.around(mapE, decimals=4), np.around(mapM, decimals=4), np.around(mapH, decimals=4), np.around(mprE, decimals=4), np.around(mprM, decimals=4), np.around(mprH, decimals=4))) print(' --base+aqe--') print(base_aqe) print(' --graph+aqe--') print(graph_aqe) print(' --mean+aqe--') print(mean_aqe) if __name__ == "__main__": parser = argparse.ArgumentParser(description = 'Graph Attention Network, train on Landmark_clean, test on Oxford5k and Paris6k.') parser.add_argument('--epoch_num', type=int, default=70, required=False, help='training epoch number.') parser.add_argument('--step_size', type=int, default=30, required=False, help='learning rate decay step_size.') parser.add_argument('--learning_rate_decay', type=float, default=0.5, required=False, help='learning rate decay factor.') parser.add_argument('--batch_size', type=int, default=64, required=False, help='training batch size.') parser.add_argument('--check_step', type=int, default=100, required=False, help='loss check step.') parser.add_argument('--use_cuda', type=ast.literal_eval, default=True, required=False, help='whether to use gpu (True) or not (False).') parser.add_argument('--learning_rate', type=float, default=0.001, required=False, help='training learning rate.') parser.add_argument('--weight_decay', type=float, default=5e-6, required=False, help='weight decay (L2 regularization).') parser.add_argument('--knn', type=int, default=10, required=False, help='number of neighbors to aggregate.') parser.add_argument('--suffix', type=str, default='_gem.npy', required=False, help='feature type, \'f\' for vggnet (512-d), \'fr\' for resnet (2048-d), \'frmac\' for vgg16_rmac (512-d).') parser.add_argument('--train_num', type=int, default=33000, required=False, help='number of training nodes (less than 36460). Left for validation.') parser.add_argument('--aggre_layer_num', type=int, default=1, required=False, help='number of aggregator layers.') parser.add_argument('--aggre_type', type=str, default='max', required=False, help='aggregator function.') parser.add_argument('--embed_dims', nargs='+', type=int, required=False, help='input dim and hidden layer dims.') parser.add_argument('--combine', type=ast.literal_eval, default=False, required=False, help='combine(True) features of
<reponame>OSLL/apagescan<filename>src/main_view.py import time from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import pyqtSlot, Qt from PyQt5.QtGui import QBrush from PyQt5.QtGui import QGuiApplication from PyQt5.QtWidgets import QMainWindow, QVBoxLayout, QMessageBox, QAbstractItemView, QProgressBar, QTableWidgetItem, \ QColorDialog, QTableWidget from src.custom_signals import CustomSignals from src.device.interaction import * from src.qt_dialogs.dynamics_dialog import DynamicsDialog from src.graphics.barplot_graphics import barplot_pids_pagemap from src.device.handler import DeviceHandler from src.device.listener import Listener from src.graphics.pages_graphics import plot_pids_pagemap from src.picture_viewer import PictureViewer from src.qt_ui.mainwindow_ui import Ui_MainWindow from src.qt_dialogs.select_dialog import SelectDialog from src.qt_dialogs.table_dialog import TableDialog from src.qt_dialogs.tree_dialog_facade import TreeDialogFacade from src.qt_dialogs.tree_dialog import TreeDialog from src.utilities import * class MainView(QMainWindow, Listener): """Main application class :ivar devices_handler: DeviceHandler instance, handles connected devices :ivar device_interaction: DeviceInteraction instance, provides data collection from connected device :ivar signals: custom signals for interaction with dialogs :ivar pages_stats_graph: widget for displaying pages percentage stats graph :ivar pages_graph: widget for displaying memory state graph :ivar timer: app clock, used for updating once per certain period :ivar time: app time :ivar active_pids: list containing pids for memory inspection :ivar active_pids_len: length of active pids list :ivar active_state: number of current iteration of memory state's data collection :ivar iteration_time: time to wait between iterations of data collection :ivar total_time: limit of time that all data collection would take :ivar is_data_collected: flag indicating if data has been collected at the moment """ def __init__(self): super().__init__() self._ui = Ui_MainWindow() self._ui.setupUi(self) self.devices_handler = DeviceHandler() self.devices_handler.add_listener(self) self.device_interaction = DeviceInteraction() self.signals = CustomSignals() self._ui.tableWidget.verticalHeader().setVisible(False) self.set_buttons(pid=False, data=False, nxt=False, prev=False, play=False, cgr=False, refc=False, highlight=False) self.pages_stats_graph = PictureViewer(need_zoom=False, parent=self._ui.graphicsBar) layout = QVBoxLayout(self._ui.graphicsBar) layout.addWidget(self.pages_stats_graph) self._ui.graphicsBar.setStyleSheet("background-color: whitesmoke") self.pages_graph = PictureViewer(need_zoom=True, parent=self._ui.graphicsPresent) layout = QVBoxLayout(self._ui.graphicsPresent) layout.addWidget(self.pages_graph) self._ui.graphicsPresent.setStyleSheet("background-color: whitesmoke") self._ui.dataButton.clicked.connect(self.collect_data) self._ui.pidsButton.clicked.connect(self.select_processes) self._ui.actionShow_CGroup_tree.triggered.connect(self.select_processes_cgroup) self._ui.devicesButton.clicked.connect(self.select_devices) self._ui.playButton.clicked.connect(self.mem_dynamics) self._ui.prevButton.clicked.connect(self.mem_prev_state) self._ui.nextButton.clicked.connect(self.mem_next_state) self._ui.highlightButton.clicked.connect(self.highlight_pids) self._ui.refreshColorsButton.clicked.connect(self.refresh_colors) self._ui.tableWidget.customContextMenuRequested.connect(self.call_menu) self._ui.tableWidget.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.timer = QtCore.QTimer() self.time = QtCore.QTime(0, 0, 0) self.timer.timeout.connect(self.timer_event) self.timer.start(1000) self.devices_handler.update() self.active_pids = [] self.active_state = -1 self.active_pids_len = 0 self.iteration_time = 0 self.total_time = 0 self.is_data_collected = False def call_menu(self, point): """Calls context menu for a chosen pid in a table :return: None """ if self.active_state == -1: return menu = QtWidgets.QMenu() info_action = menu.addAction("Show full information") color_action = menu.addAction("Change color") info_action.triggered.connect(self.show_pid_info) color_action.triggered.connect(self.change_pid_color) menu.exec(self._ui.tableWidget.mapToGlobal(point)) def show(self): """Shows application widget :return: None """ super().show() self._ui.devicesButton.clicked.emit() def update_data(self): """Updates data such as pid list from a device with a small time interval :return: None """ self.device_interaction.clear() if not self.devices_handler.is_device_selected(): return try: self.device_interaction.collect_pid_list_all() self.device_interaction.collect_cgroups_list() except CalledProcessError: self.show_msg('Error', 'Check connection with device and tool presence') except EmptyDataError: self.show_msg('Error', 'Pid list unavailable') finally: clean_tmp_data_from_device(device=self.devices_handler.current_device, remove_page_data=False) clean_tmp_data(remove_page_data=False, remove_pictures_data=False) def generate_pid_colors(self, update_active_pids=True): """Generates colors for pid's representation on a plot :param update_active_pids: true if active pids colors has to be re-generated, false if not :return: None """ for i in range(self.active_pids_len): if self.active_pids[i]['corrupted']: self.active_pids[i]['color'] = QColor(Qt.transparent) elif update_active_pids: alpha, self.active_pids[i]['color'] = self.active_pids[i]['color'].alpha(), generate_color() self.active_pids[i]['color'].setAlpha(alpha) self.set_table_color(i) def display_page_data(self): """Plots all memory state graphics :return: None """ try: iterations = self.device_interaction.iterations if iterations is not None: for i in range(iterations): self.plot_page_data(i) except AttributeError: pass # no data collected yet finally: clean_tmp_data_from_device(device=self.devices_handler.current_device, remove_pids_data=False) clean_tmp_data(remove_pictures_data=False, remove_pids_data=False) def refresh_colors(self): """Generates new colors for pids on a plot :return: None """ self.generate_pid_colors() self.display_page_data() self.show_state(self.active_state) def view_checked_pids(self, checked_pids): """Handles checked pids for further actions :param checked_pids: list of pids """ self._ui.tableWidget.clear() row = len(checked_pids) col = 2 self._ui.tableWidget.setColumnCount(col) self._ui.tableWidget.setRowCount(row) self.active_pids = [] for i in range(row): self.active_pids.append({ 'pid': checked_pids[i][0], 'title': checked_pids[i][1], 'corrupted': False, 'highlighted': True, 'color': generate_color() }) for j in range(col): item = QTableWidgetItem() if j == 0: item.setCheckState(Qt.Unchecked) item.setText(str(checked_pids[i][j])) self._ui.tableWidget.setItem(i, j, item) self.active_pids_len = len(self.active_pids) self._ui.tableWidget.setSelectionBehavior(QAbstractItemView.SelectRows) self._ui.tableWidget.setSelectionMode(QAbstractItemView.SingleSelection) self._ui.tableWidget.horizontalHeader().setStretchLastSection(True) self._ui.tableWidget.horizontalHeader().hide() self._ui.tableWidget.setEditTriggers(QTableWidget.NoEditTriggers) self._ui.tableWidget.horizontalHeader().setSectionResizeMode(0, QtWidgets.QHeaderView.ResizeToContents) self.is_data_collected = False def timer_event(self): """Calls update method with small time interval :return: None """ self.time = self.time.addSecs(1) self.timer.start(1000) self.devices_handler.update() if self.time.second() % 30 == 0: self.react() def show_msg(self, msg_type, msg): """Shows custom message :param msg_type: type of message to be shown :param msg: text of message :return: None """ QGuiApplication.restoreOverrideCursor() QMessageBox.about(self, msg_type, msg) def closeEvent(self, event): """Responds to window close request :param event: close request :return: None """ clean_tmp_data_from_device(device=self.devices_handler.current_device) clean_tmp_data() event.accept() def react(self): """Updates internal data - pid lists, cgroup list, connected devices and changes GUI state according to updated data :return: None """ super().react() if not self.devices_handler.is_device_selected(): self.view_checked_pids([]) self.set_buttons(pid=False, data=False, cgr=False, refc=False, highlight=False) self.set_buttons() self.update_data() self.signals.pids_changed.emit(self.device_interaction.pid_list_all) self.signals.devices_changed.emit(self.devices_handler.devices_list) self.signals.cgroup_changed.emit(self.device_interaction.cgroups_list) def show_state(self, state_index): """Displays current memory state visualization on pages_graph :param state_index: index of memory state to be shown :return: None """ self.pages_graph.set_item(QtGui.QPixmap(f'resources/data/pictures/offsets/p{state_index}.png')) self.pages_stats_graph.set_item(QtGui.QPixmap(f'resources/data/pictures/barplot/b{state_index}.png')) self.set_buttons(prev=(self.active_state > 0), nxt=(self.active_state < self.device_interaction.iterations - 1)) @pyqtSlot() def collect_data(self): """Runs scripts on a device, pulls data to application, plots and shows graphs :return: None """ if not self.devices_handler.is_device_selected(): self.show_msg('Error', 'No attached devices') return self.pages_graph.set_content(False) self.set_buttons(data=False, refc=False, highlight=False) progress = QProgressBar(self) progress.move(self._ui.centralWidget.geometry().center()) dynamics_dialog = DynamicsDialog() dynamics_dialog.signals.send_data.connect(self.set_collection_time) dynamics_dialog.exec_() if self.iteration_time < 0 or self.total_time <= 0: self.show_msg('Error', 'Please enter the other number of iterations') self.set_buttons(data=True, refc=True) return iterations = 0 self.device_interaction.set_iterations(iterations) QGuiApplication.setOverrideCursor(Qt.WaitCursor) progress.show() start_time = time.time() cur_time = start_time error_pids = [] while cur_time - start_time <= self.total_time: try: pid_list = [pid['pid'] for pid in self.active_pids] error_pids = self.device_interaction.collect_page_data(cur_iteration=iterations, pid_list=pid_list) except Exception: self.show_msg('Error', 'Either the process is a system process (no access) or it has already completed,' 'also check tool presence') progress.hide() self.set_buttons(data=False) return iterations += 1 self.device_interaction.set_iterations(iterations) sleep(self.iteration_time) cur_time = time.time() progress.setValue((cur_time - start_time) * 100 // self.total_time) for index, pid in enumerate(self.active_pids): if pid['pid'] in error_pids: pid['corrupted'] = True self._ui.tableWidget.item(index, 0).setCheckState(Qt.Unchecked) # drawing all data after collecting to detect corrupted pids # and draw at the same time self.generate_pid_colors(update_active_pids=True if not self.is_data_collected else False) self.display_page_data() progress.setValue(100) QGuiApplication.restoreOverrideCursor() progress.hide() # display first state after collecting data self.active_state = 0 self.show_state(self.active_state) self.set_buttons(data=True, refc=True, highlight=True) self.set_buttons(prev=(self.active_state > 0), nxt=(self.active_state < self.device_interaction.iterations - 1), play=True) self.is_data_collected = True def plot_page_data(self, iteration): """Plots graphics of memory state for given iteration using collected data :param iteration: iteration of memory state to be shown :return: None """ color_list = [] highlighted_pid_list = [] for pid in list(filter(lambda el: el['corrupted'] is False, self.active_pids)): if pid['highlighted'] is True: highlighted_pid_list.append(pid['pid']) color_list.append(pid['color']) page_data = (self.device_interaction.get_page_data(iteration, present=True), self.device_interaction.get_page_data(iteration, swapped=True)) plot_pids_pagemap(page_data, color_list, iteration) barplot_pids_pagemap(self.device_interaction.get_page_data(iteration), highlighted_pid_list, str(iteration)) @pyqtSlot() def mem_dynamics(self): """Shows graphics of all memory state iterations with a small interval :return: None """ self.active_state = 0 for i in range(self.device_interaction.iterations): # simple implementation using sleep self._ui.nextButton.clicked.emit() self.set_buttons(prev=False, nxt=False) sleep(0.5) self.set_buttons(prev=(self.active_state > 0), nxt=(self.active_state < self.device_interaction.iterations - 1), play=True) @pyqtSlot() def mem_prev_state(self): """Shows previous iteration of memory state :return: None """ if self.active_state > 0: self.active_state -= 1 self.show_state(self.active_state) @pyqtSlot() def mem_next_state(self): """Shows next iteration of memory state :return: None """ if self.active_state < self.device_interaction.iterations - 1: self.active_state += 1 self.show_state(self.active_state) @pyqtSlot(object) def set_active_pids(self, data): """Sets active pid list from given data and updates GUI state :param data: :return: None """ self.view_checked_pids(data) self.set_buttons(data=True if self.active_pids_len > 0 else False, refc=False, highlight=False) @pyqtSlot(object) def set_collection_time(self, data): """Sets iteration_time and total_time with a given data :param data: tuple(iteration_time, total_time) :return: None """ self.iteration_time = data[0] if data is not None else -1 self.total_time = data[1] if data is not None else -1 @pyqtSlot(object) def set_device_data(self, data): """Sets connected device's serial number :param data: [[device_number]] :return: None """ if len(data) > 0: self.devices_handler.switch(str(data[0][0])) self.device_interaction.set_device(self.devices_handler.current_device) self.set_buttons(pid=True, cgr=True) self._ui.statusBar.showMessage(f'{data[0][0] if len(data) > 0 else "No"} device was connected') self.react() @pyqtSlot() def select_processes(self): """Opens menu for pids' selection for memory inspection :return: None """ pids_dialog = SelectDialog(data_list=self.device_interaction.pid_list_all, label='Select pids', has_select_all=True, parent=self) self.signals.pids_changed.connect(pids_dialog.update) pids_dialog.signals.send_data.connect(self.set_active_pids) pids_dialog.exec_() @pyqtSlot() def select_devices(self): """Opens menu for selection of device to collect data from :return: None """ devices_dialog = SelectDialog(data_list=self.devices_handler.devices_list, label='Select devices', close_on_detach=False, parent=self) self.signals.devices_changed.connect(devices_dialog.update) devices_dialog.signals.send_data.connect(self.set_device_data) devices_dialog.exec_() @pyqtSlot() def show_pid_info(self): """Shows pid's page by page memory information :return: None """ pid_index = self._ui.tableWidget.selectedIndexes()[0].row() pid = self.active_pids[pid_index]['pid'] if self.active_pids[pid_index]['corrupted']: self.show_msg('Message', 'No access to the process data') return try: data_frame = self.device_interaction.get_page_data(self.active_state).get(pid) table_dialog = TableDialog(pid, data_frame.values) table_dialog.exec_() except Exception: self.show_msg('Message', 'Data hasn\'t been collected yet') @pyqtSlot() def select_processes_cgroup(self): """Shows tree of processes from chosen cgroup :return: None """ tree_dialog = TreeDialog(self.device_interaction.cgroups_list) transfer_data_facade = TreeDialogFacade(self.device_interaction, tree_dialog) self.signals.cgroup_changed.connect(tree_dialog.update) tree_dialog.signals.send_data.connect(self.set_active_pids) tree_dialog.signals.cgroup_data_request.connect(transfer_data_facade.transfer_data) tree_dialog.exec_() def set_buttons(self, pid=None, data=None, nxt=None, prev=None, play=None, cgr=None, refc=None, highlight=None): """Sets GUI buttons' state - enabled of disabled, according to given flags :return: None """ self._ui.pidsButton.setEnabled(pid if pid is not None else self._ui.pidsButton.isEnabled()) self._ui.dataButton.setEnabled(data
all pages into to a file. Must be path to file, example ${OUTPUT_DIR}/har.file. If not specified, the HAR is not recorded. Make sure to await context to close for the to be saved. `omitContent`: Optional setting to control whether to omit request content from the HAR. Default is False `path`: Path on the filesystem to write the HAR file to. The ${OUTPUTDIR}/browser/ is removed at the first suite startup. ``tracing`` is file name where the [https://playwright.dev/docs/api/class-tracing/|tracing] file is saved. Example trace.zip will be saved to ${OUTPUT_DIR}/traces.zip. Temporary trace files will be saved to ${OUTPUT_DIR}/Browser/traces. If file name is defined, tracing will be enabled for all pages in the context. Tracing is automatically closed when context is closed. Temporary trace files will be automatically deleted at start of each test execution. Trace file can be opened after the test execution by running command from shell: `rfbrowser show-trace -F /path/to/trace.zip`. ``screen`` Emulates consistent window screen size available inside web page via window.screen. Is only used when the viewport is set. - Example {'width': 414, 'height': 896} ``storageState`` restores the storage stated created by the `Save Storage State` keyword. Must mbe full path to the file. Example: | Test an iPhone | ${device}= `Get Device` iPhone X | `New Context` &{device} # unpacking here with & | `New Page` http://example.com A BrowserContext is the Playwright object that controls a single browser profile. Within a context caches and cookies are shared. See [https://playwright.dev/docs/api/class-browser#browsernewcontextoptions|Playwright browser.newContext] for a list of supported options. If there's no open Browser this keyword will open one. Does not create pages. """ params = locals_to_params(locals()) params = self._set_video_path(params) params = self._set_video_size_to_int(params) if storageState and not Path(storageState).is_file(): raise ValueError( f"storageState argument value '{storageState}' is not file, but it should be." ) if "httpCredentials" in params and params["httpCredentials"] is not None: secret = self.resolve_secret( httpCredentials, params.get("httpCredentials"), "httpCredentials" ) params["httpCredentials"] = secret params = convert_typed_dict(self.new_context.__annotations__, params) if not videosPath: params.pop("videoSize", None) trace_file = params.pop("tracing", None) masked_params = self._mask_credentials(params.copy()) options = json.dumps(params, default=str) logger.info(json.dumps(masked_params, default=str)) trace_file = Path(self.outputdir, trace_file) if tracing else "" response = self._new_context(options, hideRfBrowser, trace_file) context_options = self._mask_credentials(json.loads(response.contextOptions)) logger.info(response.log) logger.info(context_options) if response.newBrowser: logger.info( "No browser was open. New browser was automatically opened " "when this context is created." ) self.context_cache.add(response.id, self._get_video_size(params)) return response.id # Only to ease unit test mocking. def _new_context(self, options: str, hide_rf_browser: bool, trace_file: str): with self.playwright.grpc_channel() as stub: response = stub.NewContext( Request().Context( rawOptions=options, hideRfBrowser=hide_rf_browser, defaultTimeout=int(self.timeout), traceFile=str(trace_file), ) ) return response def _mask_credentials(self, data: dict): if "httpCredentials" in data: data["httpCredentials"] = "XXX" return data def _set_video_path(self, params: dict) -> dict: video_path = params.get("videosPath") record_video = params.get("recordVideo", {}) if not video_path: video_path = record_video.get("dir") if not video_path: return params if Path(video_path).is_dir(): return params if record_video: params["recordVideo"]["dir"] = self.video_output / video_path else: params["videosPath"] = self.video_output / video_path return params def _get_record_video_size(self, params) -> Tuple[Optional[int], Optional[int]]: width = params.get("recordVideo", {}).get("size", {}).get("width") height = params.get("recordVideo", {}).get("size", {}).get("height") return int(width) if width else None, int(height) if height else None def _set_video_size_to_int(self, params: dict) -> dict: width, height = self._get_record_video_size(params) if width and height: params["recordVideo"]["size"]["width"] = width params["recordVideo"]["size"]["height"] = height return params def _get_video_size(self, params: dict) -> dict: width, height = self._get_record_video_size(params) if width and height: return {"width": width, "height": height} if "videoSize" in params: return params["videoSize"] if "viewport" in params: return params["viewport"] return {"width": 1280, "height": 720} @keyword(tags=("Setter", "BrowserControl")) def new_page(self, url: Optional[str] = None) -> str: """Open a new Page. A Page is the Playwright equivalent to a tab. See `Browser, Context and Page` for more information about Page concept. Returns a stable identifier for the created page. When a `New Page` is called without an open browser, `New Browser` and `New Context` are executed with default values first. ``url`` If specified it will open the new page to the specified URL. """ with self.playwright.grpc_channel() as stub: response = stub.NewPage( # '' will be treated as falsy on .ts side. # TODO: Use optional url field instead once it stabilizes at upstream # https://stackoverflow.com/a/62566052 Request().Url(url=(url or ""), defaultTimeout=int(self.timeout)) ) logger.info(response.log) if response.newBrowser: logger.info( "No browser and context was open. New browser and context was " "automatically opened when page is created." ) if response.newContext and not response.newBrowser: logger.info( "No context was open. New context was automatically opened when " "this page is created." ) self._embed_video(json.loads(response.video)) return response.body def _embed_video(self, video: dict): if not video.get("video_path"): logger.debug("Video is not enabled.") return relative_path = get_link_path(video.get("video_path"), self.outputdir) video_size = self.context_cache.get(video["contextUuid"]) video_width = video_size["width"] video_height = video_size["height"] video_type = relative_path.split(".")[1] logger.info( '</td></tr><tr><td colspan="3">' f'<video width="{video_width}" height="{video_height}" controls>' f'<source src="{relative_path}" type="video/{video_type}"></video>', html=True, ) @keyword(tags=("Getter", "BrowserControl")) @with_assertion_polling def get_browser_catalog( self, assertion_operator: Optional[AssertionOperator] = None, assertion_expected: Any = None, message: Optional[str] = None, ) -> Dict: """Returns all browsers, open contexts in them and open pages in these contexts. See `Browser, Context and Page` for more information about these concepts. ``message`` overrides the default error message. The data is parsed into a python list containing data representing the open Objects. On the root level the data contains a list of open browsers. Data can be manipulated also with ``assertion_operator`` for example to find a specific id based on index or page title with ``then`` operator. Return value can also be asserted against expected value. Sample: | [ | { | "type": "chromium", | "id": "browser=96207191-8147-44e7-b9ac-5e04f2709c1d", | "contexts": [ | { | "type": "context", | "id": "context=525d8e5b-3c4e-4baa-bfd4-dfdbc6e86089", | "activePage": "page=f90c97b8-eaaf-47f2-98b2-ccefd3450f12", | "pages": [ | { | "type": "page", | "title": "Robocorp", | "url": "https://robocorp.com/", | "id": "page=7ac15782-22d2-48b4-8591-ff17663fa737", | "timestamp": 1598607713.858 | }, | { | "type": "page", | "title": "Home - Reaktor", | "url": "https://www.reaktor.com/", | "id": "page=f90c97b8-eaaf-47f2-98b2-ccefd3450f12", | "timestamp": 1598607714.702 | } | ] | } | ], | "activeContext": "context=525d8e5b-3c4e-4baa-bfd4-dfdbc6e86089", | "activeBrowser": false | }, | { | "type": "firefox", | "id": "browser=ad99abac-17a9-472b-ac7f-d6352630834e", | "contexts": [ | { | "type": "context", | "id": "context=bc64f1ba-5e76-46dd-9735-4bd344afb9c0", | "activePage": "page=8baf2991-5eaf-444d-a318-8045f914e96a", | "pages": [ | { | "type": "page", | "title": "Software-Qualit\u00e4tssicherung und Softwaretest", | "url": "https://www.imbus.de/", | "id": "page=8baf2991-5eaf-444d-a318-8045f914e96a", | "timestamp": 1598607716.828 | } | ] | } | ], | "activeContext": "context=bc64f1ba-5e76-46dd-9735-4bd344afb9c0", | "activeBrowser": true | } | ] """ with self.playwright.grpc_channel() as stub: response = stub.GetBrowserCatalog(Request().Empty()) parsed = json.loads(response.json) logger.info(json.dumps(parsed)) return verify_assertion( parsed, assertion_operator, assertion_expected, "Browser Catalog", message, ) @keyword(tags=("Setter", "BrowserControl")) def switch_browser(self, id: str) -> str: """Switches the currently active Browser to another open Browser. Returns a stable identifier for the previous browser. See `Browser, Context and Page` for more information about Browser and related concepts. ``id`` Id of the browser to be changed to. Starting at 0. """ with self.playwright.grpc_channel() as stub: response = stub.SwitchBrowser(Request().Index(index=id)) logger.info(response.log) return response.body @keyword(tags=("Setter", "BrowserControl")) def switch_context(self, id: str, browser: str = "CURRENT") -> str: """Switches the active BrowserContext to another open context. Returns a stable identifier for the previous context. See `Browser, Context and Page` for more information about Context and related concepts. ``id`` Id of the context to be changed to. Randomly generated UUID. ``browser`` < ``CURRENT`` | str> Switch context in specified browser. If value is not "CURRENT" it should be an the id of the browser where to switch context. Example: | ${first_context} = `New Context` | `New Page` ${URL1} | ${second_context} = `New Context` | `New Page` ${URL2} | `Switch Context` ${first_context} # Switches back to first context and page. """ with self.playwright.grpc_channel() as stub: self._correct_browser(browser) response = stub.SwitchContext(Request().Index(index=id)) logger.info(response.log) return response.body @keyword(tags=("Setter", "BrowserControl")) def switch_page( self, id: str, context: str = "CURRENT", browser: str = "CURRENT" ) -> str: """Switches the active browser page to another open page by ``id`` or ``NEW``. Returns a stable identifier ``id`` for the previous page. See `Browser, Context and Page` for more information about Page and related concepts. ``id`` < ``CURRENT`` | ``NEW `` | str> Id of the page to be changed to or ``NEW`` for a page opened after the
if beamline is not None and len(beamline) > 0: try: beam = importlib.import_module('beamlines.' + beamline + '.beam_tabs') except Exception as e: print (e) msg_window('cannot import beamlines.' + beamline + ' module' ) raise self.prep_tab = beam.PrepTab() self.format_tab = DataTab() self.rec_tab = RecTab() self.display_tab = beam.DispTab() self.tabs = [self.prep_tab, self.format_tab, self.rec_tab, self.display_tab] else: self.format_tab = DataTab() self.rec_tab = RecTab() self.tabs = [self.format_tab, self.rec_tab] for tab in self.tabs: self.addTab(tab, tab.name) tab.init(self, main_win) def notify(self, **args): try: self.display_tab.update_tab(**args) self.prep_tab.update_tab(**args) except: pass def clear_configs(self): for tab in self.tabs: tab.clear_conf() def run_all(self): for tab in self.tabs: tab.run_tab() def run_prep(self): import beamline_preprocess as prep # this line is passing all parameters from command line to prep script. # if there are other parameters, one can add some code here prep.handle_prep(self.main_win.experiment_dir, self.main_win.args) def run_viz(self): import beamline_visualization as dp dp.handle_visualization(self.main_win.experiment_dir) def load_conf(self, load_dir, need_convert): for tab in self.tabs: tab.load_tab(load_dir, need_convert) def save_conf(self): for tab in self.tabs: tab.save_conf() class DataTab(QWidget): def __init__(self, parent=None): """ Constructor, initializes the tabs. """ super(DataTab, self).__init__(parent) self.name = 'Data' def init(self, tabs, main_window): """ Creates and initializes the 'data' tab. Parameters ---------- none Returns ------- nothing """ self.tabs = tabs self.main_win = main_window layout = QFormLayout() self.alien_alg = QComboBox() self.alien_alg.addItem("none") self.alien_alg.addItem("block aliens") self.alien_alg.addItem("alien file") self.alien_alg.addItem("AutoAlien1") layout.addRow("alien algorithm", self.alien_alg) sub_layout = QFormLayout() self.set_alien_layout(sub_layout) layout.addRow(sub_layout) self.intensity_threshold = QLineEdit() layout.addRow("Intensity Threshold", self.intensity_threshold) self.center_shift = QLineEdit() layout.addRow("center_shift", self.center_shift) self.adjust_dimensions = QLineEdit() layout.addRow("pad, crop", self.adjust_dimensions) self.binning = QLineEdit() layout.addRow("binning", self.binning) cmd_layout = QHBoxLayout() self.set_data_conf_from_button = QPushButton("Load data conf from") self.set_data_conf_from_button.setStyleSheet("background-color:rgb(205,178,102)") self.config_data_button = QPushButton('format data', self) self.config_data_button.setStyleSheet("background-color:rgb(175,208,156)") cmd_layout.addWidget(self.set_data_conf_from_button) cmd_layout.addWidget(self.config_data_button) layout.addRow(cmd_layout) self.setLayout(layout) self.alien_alg.currentIndexChanged.connect(lambda: self.set_alien_layout(sub_layout)) # this will create config_data file and run data script # to generate data ready for reconstruction self.config_data_button.clicked.connect(self.run_tab) self.set_data_conf_from_button.clicked.connect(self.load_data_conf) def clear_conf(self): self.alien_alg.setCurrentIndex(0) self.intensity_threshold.setText('') self.binning.setText('') self.center_shift.setText('') self.adjust_dimensions.setText('') def load_tab(self, load_from, need_convert): """ It verifies given configuration file, reads the parameters, and fills out the window. Parameters ---------- conf : str configuration file (config_data) Returns ------- nothing """ if os.path.isfile(load_from): conf = load_from else: conf_dir = os.path.join(load_from, 'conf') conf = os.path.join(conf_dir, 'config_data') if not os.path.isfile(conf): msg_window('info: the load directory does not contain config_data file') return if need_convert: conf_map = conv.get_conf_dict(conf, 'config_data') else: conf_map = cohere.read_config(conf) if conf_map is None: msg_window('please check configuration file ' + conf) return if 'alien_alg' not in conf_map: conf_map['alien_alg'] = 'random' if conf_map['alien_alg'] == 'random': self.alien_alg.setCurrentIndex(0) elif conf_map['alien_alg'] == 'block_aliens': self.alien_alg.setCurrentIndex(1) if 'aliens' in conf_map: self.aliens.setText(str(conf_map['aliens']).replace(" ", "")) elif conf_map['alien_alg'] == 'alien_file': self.alien_alg.setCurrentIndex(2) if 'alien_file' in conf_map: self.alien_file.setText(str(conf_map['alien_file']).replace(" ", "")) elif conf_map['alien_alg'] == 'AutoAlien1': self.alien_alg.setCurrentIndex(3) if 'AA1_size_threshold' in conf_map: self.AA1_size_threshold.setText(str(conf_map['AA1_size_threshold']).replace(" ", "")) if 'AA1_asym_threshold' in conf_map: self.AA1_asym_threshold.setText(str(conf_map['AA1_asym_threshold']).replace(" ", "")) if 'AA1_min_pts' in conf_map: self.AA1_min_pts.setText(str(conf_map['AA1_min_pts']).replace(" ", "")) if 'AA1_eps' in conf_map: self.AA1_eps.setText(str(conf_map['AA1_eps']).replace(" ", "")) if 'AA1_amp_threshold' in conf_map: self.AA1_amp_threshold.setText(str(conf_map['AA1_amp_threshold']).replace(" ", "")) if 'AA1_save_arrs' in conf_map: self.AA1_save_arrs.setChecked(conf_map['AA1_save_arrs']) else: self.AA1_save_arrs.setChecked(False) if 'AA1_expandcleanedsigma' in conf_map: self.AA1_expandcleanedsigma.setText(str(conf_map['AA1_expandcleanedsigma']).replace(" ", "")) if 'intensity_threshold' in conf_map: self.intensity_threshold.setText(str(conf_map['intensity_threshold']).replace(" ", "")) if 'binning' in conf_map: self.binning.setText(str(conf_map['binning']).replace(" ", "")) if 'center_shift' in conf_map: self.center_shift.setText(str(conf_map['center_shift']).replace(" ", "")) if 'adjust_dimensions' in conf_map: self.adjust_dimensions.setText(str(conf_map['adjust_dimensions']).replace(" ", "")) def get_data_config(self): """ It reads parameters related to formatting data from the window and adds them to dictionary. Parameters ---------- none Returns ------- conf_map : dict contains parameters read from window """ conf_map = {} if self.alien_alg.currentIndex() == 1: conf_map['alien_alg'] = 'block_aliens' if len(self.aliens.text()) > 0: conf_map['aliens'] = str(self.aliens.text()).replace('\n', '') if self.alien_alg.currentIndex() == 2: conf_map['alien_alg'] = 'alien_file' if len(self.alien_file.text()) > 0: conf_map['alien_file'] = str(self.alien_file.text()) elif self.alien_alg.currentIndex() == 3: conf_map['alien_alg'] = 'AutoAlien1' if len(self.AA1_size_threshold.text()) > 0: conf_map['AA1_size_threshold'] = ast.literal_eval(str(self.AA1_size_threshold.text())) if len(self.AA1_asym_threshold.text()) > 0: conf_map['AA1_asym_threshold'] = ast.literal_eval(str(self.AA1_asym_threshold.text())) if len(self.AA1_min_pts.text()) > 0: conf_map['AA1_min_pts'] = ast.literal_eval(str(self.AA1_min_pts.text())) if len(self.AA1_eps.text()) > 0: conf_map['AA1_eps'] = ast.literal_eval(str(self.AA1_eps.text())) if len(self.AA1_amp_threshold.text()) > 0: conf_map['AA1_amp_threshold'] = ast.literal_eval(str(self.AA1_amp_threshold.text())) if self.AA1_save_arrs.isChecked(): conf_map['AA1_save_arrs'] = True if len(self.AA1_expandcleanedsigma.text()) > 0: conf_map['AA1_expandcleanedsigma'] = ast.literal_eval(str(self.AA1_expandcleanedsigma.text())) if len(self.intensity_threshold.text()) > 0: conf_map['intensity_threshold'] = ast.literal_eval(str(self.intensity_threshold.text())) if len(self.binning.text()) > 0: conf_map['binning'] = ast.literal_eval(str(self.binning.text()).replace('\n', '')) if len(self.center_shift.text()) > 0: conf_map['center_shift'] = ast.literal_eval(str(self.center_shift.text()).replace('\n', '')) if len(self.adjust_dimensions.text()) > 0: conf_map['adjust_dimensions'] = ast.literal_eval(str(self.adjust_dimensions.text()).replace('\n', '')) return conf_map def set_alien_layout(self, layout): for i in reversed(range(layout.count())): layout.itemAt(i).widget().setParent(None) if self.alien_alg.currentIndex() == 1: self.aliens = QLineEdit() layout.addRow("aliens", self.aliens) elif self.alien_alg.currentIndex() == 2: self.alien_file = QPushButton() layout.addRow("alien file", self.alien_file) self.alien_file.clicked.connect(self.set_alien_file) elif self.alien_alg.currentIndex() == 3: self.AA1_size_threshold = QLineEdit() layout.addRow("relative size threshold", self.AA1_size_threshold) self.AA1_asym_threshold = QLineEdit() layout.addRow("average asymmetry threshold", self.AA1_asym_threshold) self.AA1_min_pts = QLineEdit() layout.addRow("min pts in cluster", self.AA1_min_pts) self.AA1_eps = QLineEdit() layout.addRow("cluster alg eps", self.AA1_eps) self.AA1_amp_threshold = QLineEdit() layout.addRow("alien alg amp threshold", self.AA1_amp_threshold) self.AA1_save_arrs = QCheckBox() layout.addRow("save analysis arrs", self.AA1_save_arrs) self.AA1_save_arrs.setChecked(False) self.AA1_expandcleanedsigma = QLineEdit() layout.addRow("expand cleaned sigma", self.AA1_expandcleanedsigma) def set_alien_file(self): """ It display a select dialog for user to select an alien file. Parameters ---------- none Returns ------- nothing """ self.alien_filename = select_file(os.getcwd()) if self.alien_filename is not None: self.alien_file.setStyleSheet("Text-align:left") self.alien_file.setText(self.alien_filename) else: self.alien_file.setText('') def run_tab(self): """ Reads the parameters needed by format data script. Saves the config_data configuration file with parameters from the window and runs the format script. Parameters ---------- none Returns ------- nothing """ import standard_preprocess as run_dt if not self.main_win.is_exp_exists(): msg_window('the experiment has not been created yet') elif not self.main_win.is_exp_set(): msg_window('the experiment has changed, pres "set experiment" button') elif len(self.intensity_threshold.text()) == 0: msg_window('Please, enter Intensity Threshold parameter') else: found_file = False for p, d, f in os.walk(self.main_win.experiment_dir): if 'prep_data.tif' in f: found_file = True break if found_file: conf_map = self.get_data_config() # verify that data configuration is ok er_msg = cohere.verify('config_data', conf_map) if len(er_msg) > 0: msg_window(er_msg) return cohere.write_config(conf_map, os.path.join(self.main_win.experiment_dir, 'conf', 'config_data')) run_dt.format_data(self.main_win.experiment_dir) else: msg_window('Please, run data preparation in previous tab to activate this function') def save_conf(self): # save data config conf_map = self.get_data_config() if len(conf_map) > 0: er_msg = cohere.verify('config_data', conf_map) if len(er_msg) > 0: msg_window(er_msg) return cohere.write_config(conf_map, os.path.join(self.main_win.experiment_dir, 'conf', 'config_data')) def load_data_conf(self): """ It display a select dialog for user to select a configuration file. When selected, the parameters from that file will be loaded to the window. Parameters ---------- none Returns ------- nothing """ data_file = select_file(os.getcwd()) if data_file is not None: self.load_tab(data_file) else: msg_window('please select valid data config file') class RecTab(QWidget): def __init__(self, parent=None): """ Constructor, initializes the tabs. """ super(RecTab, self).__init__(parent) self.name = 'Reconstruction' def init(self, tabs, main_window): """ Creates and initializes the 'reconstruction' tab. Parameters ---------- none Returns ------- nothing """ self.tabs = tabs self.main_win = main_window self.old_conf_id = '' layout = QVBoxLayout() ulayout = QFormLayout() mlayout = QHBoxLayout() self.init_guess = QComboBox() self.init_guess.InsertAtBottom self.init_guess.addItem("random") self.init_guess.addItem("continue") self.init_guess.addItem("AI algorithm") ulayout.addRow("initial guess", self.init_guess) sub_layout = QFormLayout() self.set_init_guess_layout(sub_layout) ulayout.addRow(sub_layout) self.add_conf_button = QPushButton('add configuration', self) ulayout.addWidget(self.add_conf_button) self.rec_id = QComboBox() self.rec_id.InsertAtBottom self.rec_id.addItem("main") ulayout.addWidget(self.rec_id) self.rec_id.hide() self.proc = QComboBox() self.proc.addItem("auto") if sys.platform != 'darwin': self.proc.addItem("cp") self.proc.addItem("np") self.proc.addItem("af") if sys.platform != 'darwin': self.proc.addItem("cuda") self.proc.addItem("opencl") self.proc.addItem("cpu") ulayout.addRow("processor type", self.proc) self.device = QLineEdit() ulayout.addRow("device(s)", self.device) self.reconstructions = QLineEdit() ulayout.addRow("number of reconstructions", self.reconstructions) self.alg_seq = QLineEdit() ulayout.addRow("algorithm sequence", self.alg_seq) # TODO add logic to show this only if HIO is in sequence self.hio_beta = QLineEdit() ulayout.addRow("HIO beta", self.hio_beta) self.initial_support_area = QLineEdit() ulayout.addRow("initial support area", self.initial_support_area) self.rec_default_button = QPushButton('set to defaults', self) ulayout.addWidget(self.rec_default_button) self.features = Features(self, mlayout) llayout = QHBoxLayout() self.set_rec_conf_from_button = QPushButton("Load rec conf from") self.set_rec_conf_from_button.setStyleSheet("background-color:rgb(205,178,102)") self.config_rec_button = QPushButton('run reconstruction', self) self.config_rec_button.setStyleSheet("background-color:rgb(175,208,156)") llayout.addWidget(self.set_rec_conf_from_button) llayout.addWidget(self.config_rec_button) spacer = QSpacerItem(0, 3) llayout.addItem(spacer) layout.addLayout(ulayout) layout.addLayout(mlayout) layout.addLayout(llayout) self.setAutoFillBackground(True) self.setLayout(layout) self.config_rec_button.clicked.connect(self.run_tab) self.init_guess.currentIndexChanged.connect(lambda: self.set_init_guess_layout(sub_layout)) self.rec_default_button.clicked.connect(self.set_defaults) self.add_conf_button.clicked.connect(self.add_rec_conf) self.rec_id.currentIndexChanged.connect(self.toggle_conf) self.set_rec_conf_from_button.clicked.connect(self.load_rec_conf_dir) def load_tab(self, load_dir, need_convert): """ It verifies given configuration file, reads the parameters, and fills out the window. Parameters ---------- conf : str configuration file (config_rec) Returns ------- nothing """ conf_dir = os.path.join(load_dir, 'conf') conf = os.path.join(conf_dir, 'config_rec') if not os.path.isfile(conf): msg_window('info: the load directory does not contain config_rec file') return if need_convert: conf_dict = conv.get_conf_dict(conf, 'config_rec') # if experiment set, save the config_rec try: cohere.write_config(conf_dict, os.path.join(conf_dir, 'config_rec')) except: pass else: conf_map = cohere.read_config(conf) if conf_map is None: msg_window('please check configuration file ' + conf) return self.load_tab_common(conf_map) def load_tab_common(self, conf_map, update_rec_choice=True): if 'init_guess' not in conf_map: conf_map['init_guess'] = 'random' if conf_map['init_guess'] == 'random': self.init_guess.setCurrentIndex(0) elif conf_map['init_guess'] == 'continue': self.init_guess.setCurrentIndex(1) if 'continue_dir' in conf_map: self.cont_dir_button.setText(str(conf_map['continue_dir']).replace(" ", "")) elif conf_map['init_guess'] == 'AI_guess': self.init_guess.setCurrentIndex(2) if 'AI_trained_model' in conf_map: self.AI_trained_model.setText(str(conf_map['AI_trained_model']).replace(" ", "")) self.AI_trained_model.setStyleSheet("Text-align:left") # this will update the configuration choices by reading configuration files names
""" VirusTotal V3 - Premium API Difference: https://developers.virustotal.com/v3.0/reference#public-vs-premium-api """ import copy from typing import Tuple, Iterable import urllib3 from dateparser import parse from CommonServerPython import * # Disable insecure warnings urllib3.disable_warnings() # pylint: disable=no-member # region Globals INTEGRATION_NAME = "VirusTotal" COMMAND_PREFIX = "vt-private" INTEGRATION_ENTRY_CONTEXT = "VirusTotal" # endregion # region Helper functions def convert_epoch_to_readable( readable_inputs: dict, keys: Iterable[str] = ('start_date', 'creation_date', 'finish_date') ) -> dict: """Gets the readable input from a function and converts it times to readable outputs Args: readable_inputs: a readable output with epoch times in it keys: keys to convert Returns: epoch time in readable output """ for date_ in keys: if creation_date := readable_inputs.get(date_): if creation_date := parse(str(creation_date)): readable_inputs[date_] = creation_date.replace(microsecond=0).isoformat() return readable_inputs def decrease_data_size(data: Union[dict, list]) -> Union[dict, list]: """ Minifying data size. Args: data: the data object from raw response Returns: the same data without: data['attributes']['last_analysis_results'] data['attributes']['pe_info'] data['attributes']['crowdsourced_ids_results'] data['attributes']['autostart_locations'] data['attributes']['sandbox_verdicts'] data['attributes']['sigma_analysis_summary'] data['attributes']['popular_threat_classification'] data['attributes']['packers'] data['attributes']['malware_config'] """ attributes_to_remove = [ 'last_analysis_results', 'pe_info', 'crowdsourced_ids_results', 'autostart_locations', 'sandbox_verdicts', 'sigma_analysis_summary', 'popular_threat_classification', 'packers', 'malware_config' ] if isinstance(data, list): data = [decrease_data_size(item) for item in data] else: for attribute in attributes_to_remove: try: del data['attributes'][attribute] except KeyError: pass return data def arg_to_boolean_can_be_none(arg: Optional[Union[bool, str]]) -> Optional[bool]: """A wrapper of argToBool that can return None if arg is None or an empty string""" if arg in (None, ''): return None else: return argToBoolean(arg) def get_last_run_time(params: Optional[dict] = None, last_run: Optional[dict] = None) -> datetime: """getting the last run time. Args: params: Demisto params. Must contain the `first_fetch` key. last_run: if exists, should contain the `date` key. Returns: A datetime object of the fetch time """ if last_run is None: last_run = demisto.getLastRun() if params is None: params = demisto.params() if last_run: last_run_date = parse(last_run.get('date')) else: # first run first_fetch = params.get('first_fetch') try: last_run_date = parse(first_fetch) if not last_run_date: raise TypeError except TypeError: raise DemistoException(f'The first fetch time is invalid "{first_fetch=}"') return last_run_date def get_time_range_object(start_time: Optional[str] = None, end_time: Optional[str] = None) -> Dict[str, int]: """Gets start and/or end times and converts them to time_range object. Args: start_time: A string represents time or date range (2018-01-01-18:00Z or 3 days) end_time: A string represents time (2018-01-01-18:00Z). if not supplied, will use the current time. Returns: A dictionary with start and end time. Examples: >>> get_time_range_object('3 days') {'start': 1615199101, 'end': 1615458301} >>> get_time_range_object('2018-01-01') {'start': 1514757600, 'end': 1615465632} >>> get_time_range_object('2018-01-01', '2020-01-01T15:00Z') """ time_range = {} start_date: datetime end_date: datetime if start_time and end_time: start_date = parse(start_time) assert start_date, f'Could not parse start_date argument. {start_time=}' end_date = parse(end_time) assert end_date, f'Could not parse end_time argument. {end_time=}' time_range = { 'start': int(start_date.timestamp()), 'end': int(end_date.timestamp()) } elif start_time: start_date, end_date = parse(start_time), datetime.now() assert start_date, f'Could not parse start_date argument. {start_time=}' assert end_date, f'Could not parse end_time argument. {end_time=}' time_range = { 'start': int(start_date.timestamp()), 'end': int(end_date.timestamp()) } elif end_time: raise AssertionError('Found end_time argument without start_time.') return time_range def arg_to_number_must_int(arg: Any, arg_name: Optional[str] = None, required: bool = False): """Wrapper of arg_to_number that must return int For mypy fixes. """ arg_num = arg_to_number(arg, arg_name, required) assert isinstance(arg_num, int) return arg_num def raise_if_hash_not_valid( file_hash: str, valid_hashes: Union[tuple, str] = ('sha256', 'sha1', 'md5') ): """Raises an error if file_hash is not valid Args: file_hash: file hash valid_hashes: Valid hashes to not raise if file_hash is of its type Raises: ValueError: if hash is not sha256, sha1, md5 Examples: >>> raise_if_hash_not_valid('not a hash') Traceback (most recent call last): ... ValueError: Hash "not a hash" is not of type sha256, sha1, md5 >>> raise_if_hash_not_valid('not a hash', valid_hashes='sha1') Traceback (most recent call last): ... ValueError: Hash "not a hash" is not of type sha1 >>> raise_if_hash_not_valid('7e641f6b9706d860baf09fe418b6cc87') """ if isinstance(valid_hashes, str): valid_hashes = tuple([valid_hashes]) if get_hash_type(file_hash) not in valid_hashes: raise ValueError(f'Hash "{file_hash}" is not of type {", ".join(valid_hashes)}') def get_file_name(content_disposition: str, ) -> str: """Content-Disposition has the filename between the `"`. get it. Args: content_disposition: the content disposition from download header Returns: the file name """ if match := re.search(r'"(.*?)"', content_disposition): file_name = match.group(1) else: file_name = demisto.uniqueFile() return file_name # endregion class Client(BaseClient): def __init__(self, params: dict): self.api_key = params['credentials']['password'] super().__init__( 'https://www.virustotal.com/api/v3/', verify=not params.get('insecure'), proxy=params.get('proxy'), headers={'x-apikey': self.api_key} ) def download_file(self, file: str) -> requests.Response: """Download a file. See Also: https://developers.virustotal.com/v3.0/reference#files-download """ return self._http_request( 'GET', f'files/{file}/download', allow_redirects=True, resp_type='response' ) def create_zip(self, hashes: list, password: Optional[str] = None) -> dict: """Creates a password-protected ZIP file containing files from VirusTotal. See Also: https://developers.virustotal.com/v3.0/reference#zip_files """ body: dict = { 'hashes': hashes } if password: body['password'] = password return self._http_request( 'POST', 'intelligence/zip_files', json_data={'data': body} ) def get_zip(self, zip_id: str) -> dict: """Retrieve information about a ZIP file See Also: https://developers.virustotal.com/v3.0/reference#get-zip-file """ return self._http_request( 'GET', f'intelligence/zip_files/{zip_id}' ) def download_zip(self, zip_id: str) -> requests.Response: """Download a ZIP file. See Also: https://developers.virustotal.com/v3.0/reference#zip-files-download """ return self._http_request( 'GET', f'intelligence/zip_files/{zip_id}/download', allow_redirects=True, resp_type='request' ) def get_pcap_beaviour(self, report_id) -> dict: """Extracted PCAP from a sandbox analysis. See Also: https://developers.virustotal.com/v3.0/reference#file_behaviours_pcap """ return self._http_request( 'GET', f'file_behaviours/{report_id}/pcap', resp_type='content' ) def search_intelligence( self, query: str, order: Optional[str] = None, limit: Optional[int] = None, cursor: Optional[str] = None, descriptors_only: Optional[bool] = None ): """Search for files. See Also: https://developers.virustotal.com/v3.0/reference#intelligence-search """ return self._http_request( 'GET', 'intelligence/search', params=assign_params( query=query, cursor=cursor, order=order, limit=limit, descriptors_only=descriptors_only ) ) def get_livehunt_rule_by_id(self, id_: str): """Retrieve a VT Hunting Livehunt ruleset. See Also: https://developers.virustotal.com/v3.0/reference#get-hunting-ruleset. """ return self._http_request( 'GET', f'intelligence/hunting_rulesets/{id_}' ) def list_livehunt_rules( self, /, limit: int, order: Optional[str] = None, name: Optional[str] = None, enabled: Optional[bool] = None, rule_content: Optional[str] = None, ) -> dict: """Retrieve a VT Hunting Livehunt rulesets. See Also: https://developers.virustotal.com/v3.0/reference#list-hunting-rulesets """ filter_ = '' if name: filter_ += f'{name} ' if rule_content: filter_ += f'rules:{rule_content} ' if enabled is not None: filter_ += f'enabled:{enabled} ' return self._http_request( 'GET', 'intelligence/hunting_rulesets', params=assign_params( filter=filter_, limit=limit, order=order ) ) def create_livehunt_rule( self, name: str, yara_rule: str, enabled: Optional[bool], limit: Optional[int], notification_emails: Optional[List[str]] ) -> dict: """Create a new VT Hunting Livehunt ruleset. See Also: https://developers.virustotal.com/v3.0/reference#create-hunting-ruleset """ return self._http_request( 'POST', 'intelligence/hunting_rulesets', json_data={ 'data': { 'type': 'hunting_ruleset', 'attributes': assign_params( name=name, enabled=enabled, rules=yara_rule, limit=limit, notification_emails=notification_emails ) } } ) def update_livehunt_rule( self, id_: str, yara_rule: Optional[str], enabled: Optional[bool], limit: Optional[int], notification_emails: Optional[List[str]] ) -> dict: """Update a VT Hunting Livehunt ruleset. See Also: https://developers.virustotal.com/v3.0/reference#create-hunting-ruleset """ params = assign_params( enabled=enabled, rules=yara_rule, limit=limit, notification_emails=notification_emails ) assert params, 'Found nothing to update' return self._http_request( 'PATCH', f'intelligence/hunting_rulesets/{id_}', json_data={ 'data': { 'type': 'hunting_ruleset', 'id': id_, 'attributes': params } } ) def delete_livehunt_rule(self, id_: str): """Delete a VT Hunting Livehunt ruleset. See Also: https://developers.virustotal.com/v3.0/reference#delete-hunting-ruleset """ self._http_request( 'DELETE', f'intelligence/hunting_rulesets/{id_}', resp_type='text' ) def list_notifications( self, from_time: Optional[datetime] = None, to_time: Optional[datetime] = None, tag: Optional[str] = None, cursor: Optional[str] = None, limit: Optional[int] = None ) -> dict: """Retrieve VT Hunting Livehunt notifications. See Also: https://developers.virustotal.com/v3.0/reference#list-hunting-notifications """ time_format = "%Y-%m-%dT%H:%M:%S" filter_ = '' if tag: filter_ += f'{tag} ' if from_time: filter_ += f'date:{from_time.strftime(time_format)}+ ' if to_time: filter_ += f'date:{to_time.strftime(time_format)}- ' return self._http_request( 'GET', 'intelligence/hunting_notifications', params=assign_params( filter=filter_, limit=limit, cursor=cursor ) ) def list_notifications_files(self, filter_: Optional[str], cursor: Optional[str] = None, limit: Optional[int] = None): """Retrieve file objects for VT Hunting Livehunt notifications. See Also: https://developers.virustotal.com/v3.0/reference#hunting_notification_files """ return self._http_request( 'GET', 'intelligence/hunting_notification_files', params=assign_params( filter=filter_, limit=limit, cursor=cursor ) ) def list_files_by_rule(self, id_: str, cursor: Optional[str] = None, limit: Optional[int] = None) -> dict: """Get a VT Hunting Livehunt ruleset by hunting notification files relationship. See Also: https://developers.virustotal.com/v3.0/reference#get-hunting-ruleset-relationship """ return self._http_request( 'GET', f'intelligence/hunting_rulesets/{id_}/relationships/hunting_notification_files', params=assign_params( cursor=cursor, limit=limit ) ) def list_retrohunt_jobs( self, filter_: Optional[str] = None, cursor: Optional[str] = None, limit: Optional[int] = None ) -> dict: """Retrieve retrohunt jobs. See Also: https://developers.virustotal.com/v3.0/reference#get-retrohunt-jobs """ return self._http_request( 'GET', 'intelligence/retrohunt_jobs', params=assign_params( filter=filter_, limit=limit, cursor=cursor ) ) def create_retrohunt_job( self, rules: str, notification_email: Optional[List[str]] = None, corpus: Optional[str] = None, time_range: Optional[Dict[str, int]] = None ) -> dict: """Create a new retrohunt job. See Also: https://developers.virustotal.com/v3.0/reference#create-retrohunt-job """ return self._http_request( 'POST', 'intelligence/retrohunt_jobs', json_data={ "data": { "type": "retrohunt_job", "attributes": assign_params( rules=rules, notification_email=notification_email, corpus=corpus, time_range=time_range ) } } ) def get_retrohunt_job_by_id(self, id_: str) -> dict: """Retrieve a retrohunt job. See Also: https://developers.virustotal.com/v3.0/reference#get-retrohunt-job """ return self._http_request( 'GET', f'intelligence/retrohunt_jobs/{id_}' ) def get_retrohunt_job_matching_files(self, id_: str) -> dict: """Retrieve matches for a retrohunt job matching file relationship.. See Also:
value of the `users` property. """ return self._users @users.setter def users(self, value): """ Sets the value of the `users` property. """ self._users = value @property def network_configuration(self): """ Returns the value of the `network_configuration` property. """ return self._network_configuration @network_configuration.setter def network_configuration(self, value): """ Sets the value of the `network_configuration` property. """ Struct._check_type('network_configuration', value, NetworkConfiguration) self._network_configuration = value @property def regenerate_ssh_keys(self): """ Returns the value of the `regenerate_ssh_keys` property. """ return self._regenerate_ssh_keys @regenerate_ssh_keys.setter def regenerate_ssh_keys(self, value): """ Sets the value of the `regenerate_ssh_keys` property. """ self._regenerate_ssh_keys = value @property def host(self): """ Returns the value of the `host` property. """ return self._host @host.setter def host(self, value): """ Sets the value of the `host` property. """ Struct._check_type('host', value, Host) self._host = value @property def timezone(self): """ Returns the value of the `timezone` property. """ return self._timezone @timezone.setter def timezone(self, value): """ Sets the value of the `timezone` property. """ self._timezone = value @property def files(self): """ Returns the value of the `files` property. """ return self._files @files.setter def files(self, value): """ Sets the value of the `files` property. """ self._files = value @property def authorized_keys(self): """ Returns the value of the `authorized_keys` property. """ return self._authorized_keys @authorized_keys.setter def authorized_keys(self, value): """ Sets the value of the `authorized_keys` property. """ self._authorized_keys = value class Configuration(Struct): def __init__( self, data=None, type=None, ): super(Configuration, self).__init__( ) self.data = data self.type = type @property def data(self): """ Returns the value of the `data` property. """ return self._data @data.setter def data(self, value): """ Sets the value of the `data` property. """ self._data = value @property def type(self): """ Returns the value of the `type` property. """ return self._type @type.setter def type(self, value): """ Sets the value of the `type` property. """ Struct._check_type('type', value, ConfigurationType) self._type = value class Console(Struct): def __init__( self, enabled=None, ): super(Console, self).__init__( ) self.enabled = enabled @property def enabled(self): """ Returns the value of the `enabled` property. """ return self._enabled @enabled.setter def enabled(self, value): """ Sets the value of the `enabled` property. """ self._enabled = value class Core(Struct): def __init__( self, index=None, socket=None, ): super(Core, self).__init__( ) self.index = index self.socket = socket @property def index(self): """ Returns the value of the `index` property. """ return self._index @index.setter def index(self, value): """ Sets the value of the `index` property. """ self._index = value @property def socket(self): """ Returns the value of the `socket` property. """ return self._socket @socket.setter def socket(self, value): """ Sets the value of the `socket` property. """ self._socket = value class Cpu(Struct): def __init__( self, architecture=None, cores=None, cpu_tune=None, level=None, mode=None, name=None, speed=None, topology=None, type=None, ): super(Cpu, self).__init__( ) self.architecture = architecture self.cores = cores self.cpu_tune = cpu_tune self.level = level self.mode = mode self.name = name self.speed = speed self.topology = topology self.type = type @property def mode(self): """ Returns the value of the `mode` property. """ return self._mode @mode.setter def mode(self, value): """ Sets the value of the `mode` property. """ Struct._check_type('mode', value, CpuMode) self._mode = value @property def level(self): """ Returns the value of the `level` property. """ return self._level @level.setter def level(self, value): """ Sets the value of the `level` property. """ self._level = value @property def cpu_tune(self): """ Returns the value of the `cpu_tune` property. """ return self._cpu_tune @cpu_tune.setter def cpu_tune(self, value): """ Sets the value of the `cpu_tune` property. """ Struct._check_type('cpu_tune', value, CpuTune) self._cpu_tune = value @property def cores(self): """ Returns the value of the `cores` property. """ return self._cores @cores.setter def cores(self, value): """ Sets the value of the `cores` property. """ self._cores = value @property def topology(self): """ Returns the value of the `topology` property. """ return self._topology @topology.setter def topology(self, value): """ Sets the value of the `topology` property. """ Struct._check_type('topology', value, CpuTopology) self._topology = value @property def name(self): """ Returns the value of the `name` property. """ return self._name @name.setter def name(self, value): """ Sets the value of the `name` property. """ self._name = value @property def architecture(self): """ Returns the value of the `architecture` property. """ return self._architecture @architecture.setter def architecture(self, value): """ Sets the value of the `architecture` property. """ Struct._check_type('architecture', value, Architecture) self._architecture = value @property def type(self): """ Returns the value of the `type` property. """ return self._type @type.setter def type(self, value): """ Sets the value of the `type` property. """ self._type = value @property def speed(self): """ Returns the value of the `speed` property. """ return self._speed @speed.setter def speed(self, value): """ Sets the value of the `speed` property. """ self._speed = value class CpuTopology(Struct): def __init__( self, cores=None, sockets=None, threads=None, ): super(CpuTopology, self).__init__( ) self.cores = cores self.sockets = sockets self.threads = threads @property def sockets(self): """ Returns the value of the `sockets` property. """ return self._sockets @sockets.setter def sockets(self, value): """ Sets the value of the `sockets` property. """ self._sockets = value @property def cores(self): """ Returns the value of the `cores` property. """ return self._cores @cores.setter def cores(self, value): """ Sets the value of the `cores` property. """ self._cores = value @property def threads(self): """ Returns the value of the `threads` property. """ return self._threads @threads.setter def threads(self, value): """ Sets the value of the `threads` property. """ self._threads = value class CpuTune(Struct): def __init__( self, vcpu_pins=None, ): super(CpuTune, self).__init__( ) self.vcpu_pins = vcpu_pins @property def vcpu_pins(self): """ Returns the value of the `vcpu_pins` property. """ return self._vcpu_pins @vcpu_pins.setter def vcpu_pins(self, value): """ Sets the value of the `vcpu_pins` property. """ self._vcpu_pins = value class CpuType(Struct): def __init__( self, architecture=None, level=None, name=None, ): super(CpuType, self).__init__( ) self.architecture = architecture self.level = level self.name = name @property def level(self): """ Returns the value of the `level` property. """ return self._level @level.setter def level(self, value): """ Sets the value of the `level` property. """ self._level = value @property def name(self): """ Returns the value of the `name` property. """ return self._name @name.setter def name(self, value): """ Sets the value of the `name` property. """ self._name = value @property def architecture(self): """ Returns the value of the `architecture` property. """ return self._architecture @architecture.setter def architecture(self, value): """ Sets the value of the `architecture` property. """ Struct._check_type('architecture', value, Architecture) self._architecture = value class CustomProperty(Struct): def __init__( self, name=None, regexp=None, value=None, ): super(CustomProperty, self).__init__( ) self.name = name self.regexp = regexp self.value = value @property def regexp(self): """ Returns the value of the `regexp` property. """ return self._regexp @regexp.setter def regexp(self, value): """ Sets the value of the `regexp` property. """ self._regexp = value @property def name(self): """ Returns the value of the `name` property. """ return self._name @name.setter def name(self, value): """ Sets the value of the `name` property. """ self._name = value @property def value(self): """ Returns the value of the `value` property. """ return self._value @value.setter def value(self, value): """ Sets the value of the `value` property. """ self._value = value class Display(Struct): def __init__( self, address=None, allow_override=None, certificate=None, copy_paste_enabled=None, disconnect_action=None, disconnect_action_delay=None, file_transfer_enabled=None, keyboard_layout=None, monitors=None, port=None, proxy=None, secure_port=None, single_qxl_pci=None, smartcard_enabled=None, type=None, ): super(Display, self).__init__( ) self.address = address self.allow_override = allow_override self.certificate = certificate self.copy_paste_enabled = copy_paste_enabled self.disconnect_action = disconnect_action self.disconnect_action_delay = disconnect_action_delay self.file_transfer_enabled = file_transfer_enabled self.keyboard_layout = keyboard_layout self.monitors = monitors self.port = port self.proxy = proxy self.secure_port = secure_port self.single_qxl_pci = single_qxl_pci self.smartcard_enabled = smartcard_enabled self.type = type @property def address(self): """ Returns the value of the `address` property. """ return self._address @address.setter def address(self, value): """ Sets the value of the `address` property. """ self._address = value @property def allow_override(self): """ Returns the value of the `allow_override` property. """ return self._allow_override @allow_override.setter def allow_override(self, value): """ Sets the value of the `allow_override` property. """ self._allow_override = value @property def disconnect_action(self): """ Returns the value of the `disconnect_action` property. """ return self._disconnect_action @disconnect_action.setter def disconnect_action(self, value): """ Sets the value of the `disconnect_action` property. """ self._disconnect_action = value @property def single_qxl_pci(self): """ Returns the value of the `single_qxl_pci` property. """ return self._single_qxl_pci
<reponame>YousefMansy/Finding-Lane-Lines<filename>P1.py # coding: utf-8 # [//]: # (Image References) # # [preview]: ./test_images_output/solidWhiteCurveExtended.png "Preview" # # # **Finding Lane Lines on the Road** # # ![preview] # # ## The goals of this project is to setup a pipeline that finds lane lines on the road. # # ## Import Packages # In[4]: import os import sys import cv2 import math import numpy as np import matplotlib.pyplot as plt from IPython.display import HTML import matplotlib.image as mpimg from moviepy.editor import VideoFileClip get_ipython().magic('matplotlib inline') # ## Original helper functions # In[5]: def grayscale(img): """Applies the Grayscale transform This will return an image with only one color channel but NOTE: to see the returned image as grayscale (assuming your grayscaled image is called 'gray') you should call plt.imshow(gray, cmap='gray')""" return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Or use BGR2GRAY if you read an image with cv2.imread() # return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) def canny(img, low_threshold, high_threshold): """Applies the Canny transform""" return cv2.Canny(img, low_threshold, high_threshold) def gaussian_blur(img, kernel_size): """Applies a Gaussian Noise kernel""" return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0) def region_of_interest(img, vertices): """ Applies an image mask. Only keeps the region of the image defined by the polygon formed from `vertices`. The rest of the image is set to black. `vertices` should be a numpy array of integer points. """ #defining a blank mask to start with mask = np.zeros_like(img) #defining a 3 channel or 1 channel color to fill the mask with depending on the input image if len(img.shape) > 2: channel_count = img.shape[2] # i.e. 3 or 4 depending on your image ignore_mask_color = (255,) * channel_count else: ignore_mask_color = 255 #filling pixels inside the polygon defined by "vertices" with the fill color cv2.fillPoly(mask, vertices, ignore_mask_color) #returning the image only where mask pixels are nonzero masked_image = cv2.bitwise_and(img, mask) return masked_image def draw_lines(img, lines, color=[255, 0, 0], thickness=2): """ NOTE: this is the function you might want to use as a starting point once you want to average/extrapolate the line segments you detect to map out the full extent of the lane (going from the result shown in raw-lines-example.mp4 to that shown in P1_example.mp4). Think about things like separating line segments by their slope ((y2-y1)/(x2-x1)) to decide which segments are part of the left line vs. the right line. Then, you can average the position of each of the lines and extrapolate to the top and bottom of the lane. This function draws `lines` with `color` and `thickness`. Lines are drawn on the image inplace (mutates the image). If you want to make the lines semi-transparent, think about combining this function with the weighted_img() function below """ for line in lines: for x1,y1,x2,y2 in line: cv2.line(img, (x1, y1), (x2, y2), color, thickness) def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap): """ `img` should be the output of a Canny transform. Returns an image with hough lines drawn. """ lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap) line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) draw_lines(line_img, lines) return line_img # Python 3 has support for cool math symbols. def weighted_img(img, initial_img, α=0.8, β=1., γ=0.): """ `img` is the output of the hough_lines(), An image with lines drawn on it. Should be a blank image (all black) with lines drawn on it. `initial_img` should be the image before any processing. The result image is computed as follows: initial_img * α + img * β + γ NOTE: initial_img and img must be the same shape! """ return cv2.addWeighted(initial_img, α, img, β, γ) # ## Function for calculating region of interest on an image # In[6]: def calculate_region_of_interest(image): bottom_left = (0,image.shape[0]) top = (image.shape[1]/2,(image.shape[0]/2)+50) bottom_right = (image.shape[1],image.shape[0]) return bottom_left, bottom_right, top # ## Lane detection pipeline # [stage1]: ./pipeline_stages/1_grayscale.png "Grayscale" # [stage2]: ./pipeline_stages/2_smoothed.png "Smoothed" # [stage3]: ./pipeline_stages/3_canny.png "Canny" # [stage4]: ./pipeline_stages/4_masked.png "Masked" # [stage5]: ./pipeline_stages/5_hough.png "Hough" # [stage6]: ./pipeline_stages/6_weighted.png "Weighted" # # ##### My initial pipeline consisted of the following stages: # # First, the image is converted to grayscale. This makes it easier to use the same parameters to find yellow and white lanes alike. # # ![Gray][stage1] # # Second, the image is smoothed out using an 11x11 Gaussian mask. This helps get rid of noise and small details and makes it easier to identify edges. # # ![Smoothed][stage2] # # Then Canny algorithm is used for edge detection with a low threshold of 30, and a high threshold of 60. It is recommended to have a low to high threshold ratio of 1:2 or 1:3. # # ![Canny][stage3] # # Then a mask is applied to define the region of interest. This allows for more accurate results and faster processing since it restricts the search to only the region where we know the lane lines should exist. I used a mask with a triangular shape, with its top vertex just above the vertical center of the photo where the lane lines meet by a safe margin. # # ![Masked][stage4] # # Finally, hough line transform is used for line detection. # # ![Hough][stage5] # # Then the lines are added on top of the original picture for comparison. # # ![Weighted][stage6] # In[7]: def draw_lane_lines(image): path = './pipeline_stages/' #transform image to grayscale image_gray = grayscale(image) # plt.imsave(path+'1_grayscale.png', image_gray, cmap='gray') #smooth image out using gaussian blur with mask size of 11x11 image_smoothed = gaussian_blur(image_gray,11) # plt.imsave(path+'2_smoothed.png', image_smoothed, cmap='gray') #define parameters for canny edge detection low_threshold = 30 high_threshold = 60 #perform canny edge detection image_canny = canny(image_smoothed, low_threshold, high_threshold) # plt.imsave(path+'3_canny.png', image_canny, cmap='gray') #define vertices for region of interest triangle mask bottom_left, bottom_right, top = calculate_region_of_interest(image) mask_vertices = np.int32([[bottom_left, top, bottom_right]]) #apply region of interest mask image_masked = region_of_interest(image_canny, mask_vertices) # plt.imsave(path+'4_masked.png', image_masked, cmap='gray') #define parameters for hough lines algorithm rho = 1 theta = np.pi/180 threshold = 10 min_line_len = 12 max_line_gap = 5 #perform hough lines transformation image_hough = hough_lines(image_masked, rho, theta, threshold, min_line_len, max_line_gap) # plt.imsave(path+'5_hough.png', image_hough, cmap='gray') #draw lines on the original image image_weighted = weighted_img(image_hough, image) # plt.imsave(path+'6_weighted.png', image_weighted, cmap='gray') # plt.imsave(path+'7_extended.png', image_weighted, cmap='gray') return image_weighted def draw_lane_lines_and_save(image, path): #call pipeline function image_out = draw_lane_lines(image) #save image plt.imsave(path, image_out) return image_out # ## Run lane detection pipeline on test images # In[8]: fig = plt.figure(figsize=(12,12)) for i,test_image in enumerate(os.listdir("test_images/")): im = plt.imread('./test_images/'+test_image) im_w_lines = draw_lane_lines_and_save(im, './test_images_output/'+test_image[:-4]+'.png') fig.add_subplot(3,2,i+1) plt.imshow(im_w_lines) # ## Run lane detection pipeline on test videos # In[9]: white_output = 'test_videos_output/solidWhiteRight.mp4' yellow_output = 'test_videos_output/solidYellowLeft.mp4' white_clip = VideoFileClip("test_videos/solidWhiteRight.mp4").fl_image(draw_lane_lines) yellow_clip = VideoFileClip("test_videos/solidYellowLeft.mp4").fl_image(draw_lane_lines) get_ipython().magic('time white_clip.write_videofile(white_output, audio=False)') get_ipython().magic('time yellow_clip.write_videofile(yellow_output, audio=False)') # ## Play lane detection output videos inline # In[10]: HTML(""" <video width="960" height="540" controls> <source src="{0}"> </video> """.format(white_output)) # In[11]: HTML(""" <video width="960" height="540" controls> <source src="{0}"> </video> """.format(yellow_output)) # ## Rewrite the draw_lines() function to draw a single solid line over each lane # [stage7]: ./pipeline_stages/7_extended.png "Extended" # # In order to draw a single line on the left and right lanes, I modified the draw_lines() function by having it calculate the slopes and y-intercepts for all lines generated by the Hough transform within the region of interest, then separating the lines by slope; lines with slope > 0 belonging to the left lane, and lines with slope < 0 belonging to the right lane. # # Then I find the median slope and range for each lane, and use those values to draw a single straight line that extends from the bottom of the image to the top of the mask area (region of interest). # # ![Extended][stage7] # In[12]: class Lane: """ Lane class defines a lane by its slope (m) and y-intercept (c) Points (x1,y1) and (x2,y2) are calculated based on the region of interest passed to the constructor """ def __init__(self, m, c, bottom, top): self.m = m self.c = c self.x1 = int((bottom-c)/m) self.y1 = int(bottom) self.x2 = int((top-c)/m) self.y2 = int(top) def draw(self, img, color, thickness): cv2.line(img, (self.x1, self.y1), (self.x2, self.y2), color, thickness) def draw_lines(img, lines, color=[255, 0, 0], thickness=10): right_lane_slopes = [] left_lane_slopes = [] right_lane_intercepts = [] left_lane_intercepts = [] for line in lines: for x1,y1,x2,y2 in line: m
#!/usr/bin/env python3 from argparse import ArgumentParser from dataclasses import dataclass, field from itertools import islice from typing import Dict, List, TypeVar import ijson import os import re import subprocess import sys import tempfile TSC_MAX = (1 << 64) - 1 @dataclass class DTraceArgument: """Describes a DTrace probe (usdt) argument""" name: str pos: int type: type @dataclass class DTraceProbe: """Describes a DTrace probe (usdt) point""" name: str args: Dict[str, DTraceArgument] def __init__(self, name, args): self.name = name self.args = {a.name: a for a in args} @dataclass class DTraceEntry: """Describes a single DTrace probe invocation""" name: str args: Dict[str, TypeVar('ArgumentType', str, int)] def __init__(self, probe, args): valmap = {int: lambda x: int(x, 16), str: lambda x: x.strip().strip("'")} self.name = probe.name self.args = {} for name, value in args.items(): arg = probe.args.get(name) if arg is None: raise ValueError(f'Unexpected argument: {name}') self.args[name] = valmap[arg.type](value) class DTrace: """Generates bpftrace script based on the supplied probe points, parses its output and stores is as a list of DTraceEntry sorted by their tsc. """ def __init__(self, probes, file=None): self._avail_probes = self._list_probes() self._probes = {p.name: p for p in probes} self.entries = self._parse(file) if file is not None else [] # Sanitize the probe definitions for probe in probes: if probe.name not in self._avail_probes: raise ValueError(f'Couldn\'t find probe: "{probe.name}"') for arg in probe.args.values(): if arg.pos >= self._avail_probes[probe.name]: raise ValueError('Invalid probe argument position') if arg.type not in (int, str): raise ValueError('Invalid argument type') def _parse(self, file): regex = re.compile(r'(\w+): (.*)') entries = [] for line in file.readlines(): match = regex.match(line) if match is None: continue name, args = match.groups() probe = self._probes.get(name) # Skip the line if we don't recognize the probe name if probe is None: continue entries.append(DTraceEntry(probe, args=dict(a.strip().split('=') for a in args.split(',')))) entries.sort(key=lambda e: e.args['tsc']) return entries def _list_probes(self): files = subprocess.check_output(['git', 'ls-files', '*.[ch]', ':!:include/spdk_internal/usdt.h']) files = filter(lambda f: len(f) > 0, str(files, 'ascii').split('\n')) regex = re.compile(r'SPDK_DTRACE_PROBE([0-9]*)\((\w+)') probes = {} for fname in files: with open(fname, 'r') as file: for match in regex.finditer(file.read()): nargs, name = match.group(1), match.group(2) nargs = int(nargs) if len(nargs) > 0 else 0 # Add one to accommodate for the tsc being the first arg probes[name] = nargs + 1 return probes def _gen_usdt(self, probe): usdt = (f'usdt:__EXE__:{probe.name} {{' + f'printf("{probe.name}: ') args = probe.args if len(args) > 0: argtype = {int: '0x%lx', str: '\'%s\''} argcast = {int: lambda x: x, str: lambda x: f'str({x})'} argstr = [f'{a.name}={argtype[a.type]}' for a in args.values()] argval = [f'{argcast[a.type](f"arg{a.pos}")}' for a in args.values()] usdt += ', '.join(argstr) + '\\n", ' + ', '.join(argval) else: usdt += '\\n"' usdt += ');}' return usdt def generate(self): return '\n'.join([self._gen_usdt(p) for p in self._probes.values()]) def record(self, pid): with tempfile.NamedTemporaryFile(mode='w+') as script: script.write(self.generate()) script.flush() try: subprocess.run([f'{os.path.dirname(__file__)}/../bpftrace.sh', f'{pid}', f'{script.name}']) except KeyboardInterrupt: pass @dataclass class TracepointArgument: """Describes an SPDK tracepoint argument""" TYPE_INT = 0 TYPE_PTR = 1 TYPE_STR = 2 name: str argtype: int @dataclass class Tracepoint: """Describes an SPDK tracepoint, equivalent to struct spdk_trace_tpoint""" name: str id: int new_object: bool object_type: int owner_type: int args: List[TracepointArgument] @dataclass class TraceEntry: """Describes an SPDK tracepoint entry, equivalent to struct spdk_trace_entry""" lcore: int tpoint: Tracepoint tsc: int poller: str size: int object_id: str object_ptr: int time: int args: Dict[str, TypeVar('ArgumentType', str, int)] class TraceProvider: """Defines interface for objects providing traces and tracepoint definitions""" def tpoints(self): """Returns tracepoint definitions as a dict of (tracepoint_name, tracepoint)""" raise NotImplementedError() def entries(self): """Generator returning subsequent trace entries""" raise NotImplementedError() def tsc_rate(self): """Returns the TSC rate that was in place when traces were collected""" raise NotImplementedError() class JsonProvider(TraceProvider): """Trace provider based on JSON-formatted output produced by spdk_trace app""" def __init__(self, file): self._parser = ijson.parse(file) self._tpoints = {} self._parse_defs() def _parse_tpoints(self, tpoints): for tpoint in tpoints: tpoint_id = tpoint['id'] self._tpoints[tpoint_id] = Tracepoint( name=tpoint['name'], id=tpoint_id, new_object=tpoint['new_object'], object_type=OBJECT_NONE, owner_type=OWNER_NONE, args=[TracepointArgument(name=a['name'], argtype=a['type']) for a in tpoint.get('args', [])]) def _parse_defs(self): builder = None for prefix, event, value in self._parser: # If we reach entries array, there are no more tracepoint definitions if prefix == 'entries': break elif prefix == 'tsc_rate': self._tsc_rate = value continue if (prefix, event) == ('tpoints', 'start_array'): builder = ijson.ObjectBuilder() if builder is not None: builder.event(event, value) if (prefix, event) == ('tpoints', 'end_array'): self._parse_tpoints(builder.value) builder = None def _parse_entry(self, entry): tpoint = self._tpoints[entry['tpoint']] obj = entry.get('object', {}) return TraceEntry(tpoint=tpoint, lcore=entry['lcore'], tsc=entry['tsc'], size=entry.get('size'), object_id=obj.get('id'), object_ptr=obj.get('value'), time=obj.get('time'), poller=entry.get('poller'), args={n.name: v for n, v in zip(tpoint.args, entry.get('args', []))}) def tsc_rate(self): return self._tsc_rate def tpoints(self): return self._tpoints def entries(self): builder = None for prefix, event, value in self._parser: if (prefix, event) == ('entries.item', 'start_map'): builder = ijson.ObjectBuilder() if builder is not None: builder.event(event, value) if (prefix, event) == ('entries.item', 'end_map'): yield self._parse_entry(builder.value) builder = None class Trace: """Stores, parses, and prints out SPDK traces""" def __init__(self, file): self._provider = JsonProvider(file) self._objects = [] self._argfmt = {TracepointArgument.TYPE_PTR: lambda a: f'0x{a:x}'} self.tpoints = self._provider.tpoints() def _annotate_args(self, entry): annotations = {} for obj in self._objects: current = obj.annotate(entry) if current is None: continue annotations.update(current) return annotations def _format_args(self, entry): annotations = self._annotate_args(entry) args = [] for arg, (name, value) in zip(entry.tpoint.args, entry.args.items()): annot = annotations.get(name) if annot is not None: args.append('{}({})'.format(name, ', '.join(f'{n}={v}' for n, v in annot.items()))) else: args.append('{}: {}'.format(name, self._argfmt.get(arg.argtype, lambda a: a)(value))) return args def register_object(self, obj): self._objects.append(obj) def print(self): def get_us(tsc, off): return ((tsc - off) * 10 ** 6) / self._provider.tsc_rate() offset = None for e in self._provider.entries(): offset = e.tsc if offset is None else offset timestamp = get_us(e.tsc, offset) diff = get_us(e.time, 0) if e.time is not None else None args = ', '.join(self._format_args(e)) fields = [ f'{e.lcore:3}', f'{timestamp:16.3f}', f'{e.poller:3}' if e.poller is not None else ' ' * 3, f'{e.tpoint.name:24}', f'size: {e.size:6}' if e.size is not None else ' ' * (len('size: ') + 6), f'id: {e.object_id:8}' if e.object_id is not None else None, f'time: {diff:<8.3f}' if diff is not None else None, args ] print(' '.join([*filter(lambda f: f is not None, fields)]).rstrip()) class SPDKObject: """Describes a specific type of an SPDK objects (e.g. qpair, thread, etc.)""" @dataclass class Lifetime: """Describes a lifetime and properites of a particular SPDK object.""" begin: int end: int ptr: int properties: dict = field(default_factory=dict) def __init__(self, trace: Trace, tpoints: List[str]): self.tpoints = {} for name in tpoints: tpoint = next((t for t in trace.tpoints.values() if t.name == name), None) if tpoint is None: # Some tpoints might be undefined if configured without specific subystems continue self.tpoints[tpoint.id] = tpoint def _annotate(self, entry: TraceEntry): """Abstract annotation method to be implemented by subclasses.""" raise NotImplementedError() def annotate(self, entry: TraceEntry): """Annotates a tpoint entry and returns a dict indexed by argname with values representing various object properites. For instance, {"qpair": {"qid": 1, "subnqn": "nqn"}} could be returned to annotate an argument called "qpair" with two items: "qid" and "subnqn". """ if entry.tpoint.id not in self.tpoints: return None return self._annotate(entry) class QPair(SPDKObject): def __init__(self, trace: Trace, dtrace: DTrace): super().__init__(trace, tpoints=[ 'RDMA_REQ_NEW', 'RDMA_REQ_NEED_BUFFER', 'RDMA_REQ_TX_PENDING_C2H', 'RDMA_REQ_TX_PENDING_H2C', 'RDMA_REQ_TX_H2C', 'RDMA_REQ_RDY_TO_EXECUTE', 'RDMA_REQ_EXECUTING', 'RDMA_REQ_EXECUTED', 'RDMA_REQ_RDY_TO_COMPL', 'RDMA_REQ_COMPLETING_C2H', 'RDMA_REQ_COMPLETING', 'RDMA_REQ_COMPLETED']) self._objects = [] self._find_objects(dtrace.entries) def _find_objects(self, dprobes): def probe_match(probe, other): return probe.args['qpair'] == other.args['qpair'] for i, dprobe in enumerate(dprobes): if dprobe.name != 'nvmf_poll_group_add_qpair': continue # We've found a new qpair, now find the probe indicating its destruction last_idx, last = next((((i + j + 1), d) for j, d in enumerate(islice(dprobes, i, None)) if d.name == 'nvmf_poll_group_remove_qpair' and probe_match(d, dprobe)), (None, None)) obj = SPDKObject.Lifetime(begin=dprobe.args['tsc'], end=last.args['tsc'] if last is not None else TSC_MAX, ptr=dprobe.args['qpair'], properties={'ptr': hex(dprobe.args['qpair']), 'thread': dprobe.args['thread']}) for other in filter(lambda p: probe_match(p, dprobe), dprobes[i:last_idx]): if other.name == 'nvmf_ctrlr_add_qpair': for prop in ['qid', 'subnqn', 'hostnqn']: obj.properties[prop] = other.args[prop] self._objects.append(obj) def _annotate(self, entry): qpair = entry.args.get('qpair') if qpair is None: return None for obj in self._objects: if obj.ptr == qpair and obj.begin <= entry.tsc <= obj.end: return {'qpair': obj.properties} return None def build_dtrace(file=None): return DTrace([ DTraceProbe( name='nvmf_poll_group_add_qpair', args=[DTraceArgument(name='tsc', pos=0, type=int), DTraceArgument(name='qpair', pos=1, type=int), DTraceArgument(name='thread', pos=2, type=int)]), DTraceProbe( name='nvmf_poll_group_remove_qpair', args=[DTraceArgument(name='tsc', pos=0, type=int), DTraceArgument(name='qpair', pos=1, type=int), DTraceArgument(name='thread', pos=2, type=int)]), DTraceProbe( name='nvmf_ctrlr_add_qpair', args=[DTraceArgument(name='tsc', pos=0, type=int), DTraceArgument(name='qpair', pos=1, type=int), DTraceArgument(name='qid', pos=2, type=int), DTraceArgument(name='subnqn', pos=3, type=str), DTraceArgument(name='hostnqn', pos=4, type=str)])], file) def print_trace(trace_file, dtrace_file): dtrace =
<gh_stars>1-10 # -*- coding: UTF-8 -*- # Interstitial Error Detector # Version 0.2, 2013-08-28 # Copyright (c) 2013 AudioVisual Preservation Solutions # All rights reserved. # Released under the Apache license, v. 2.0 # Created on May 14, 2014 # @author: <NAME> <<EMAIL>> import numpy as np from scikits.audiolab import Sndfile from math import fabs, floor from re import compile from os import walk, path, stat from time import strftime, time, sleep import datetime from Core import SharedApp from Core import DAWDirsCore, ReferenceDirsCore class DirsHandlerCore(object): """ Application Directories Handler Core Class """ def __init__(self): """ Constructor """ self.Interstitial = SharedApp.SharedApp.App self.number_of_daw_core = 1 self.number_of_ref_core = 1 self.daw_dirs_core = {} self.reference_dirs_core = {} for index_daw in xrange(0, self.number_of_daw_core): self.daw_dirs_core[index_daw] = DAWDirsCore.DAWDirsCore() for index_ref in xrange(0, self.number_of_ref_core): self.reference_dirs_core[index_ref] = ReferenceDirsCore.ReferenceDirsCore() pass def setNumberOfDawCore(self, number_of_dirs_daw): """ Set Number Of Reference Dirs @return daw_dirs_core:String """ self.number_of_daw_core = number_of_dirs_daw def setNumberOfRefCore(self, number_of_dirs_ref): """ Set Number Of Daw Dirs @return number_of_ref_core:String """ self.number_of_ref_core = number_of_dirs_ref def getDawDirsCore(self, index): """ Set Daw Dirs Core @return None """ return self.daw_dirs_core[index] def setDawDirsCore(self, text, index): """ Set Daw Dirs Core @return None """ new_daw = DAWDirsCore.DAWDirsCore() new_daw.setCoreDawText(text) new_daw.setCoreDawId(index) self.daw_dirs_core[index] = new_daw def setRefDirsCore(self, text, index): """ Set Ref Dirs Core @return None """ new_ref = ReferenceDirsCore.ReferenceDirsCore() new_ref.setCoreRefText(text) new_ref.setCoreRefId(index) self.reference_dirs_core[index] = new_ref def getRefDirsCore(self, index): """ Set Ref Dirs Core @return None """ return self.reference_dirs_core[index] def mono(self, numpy_matrix): """ mono(numpy matrix ar) reduces an n-dimensional matrix to a 1-dimensional list if n > 1 if n = 1, returns it @param numpy_matrix: Numpy Matrix @return: numpy_matrix """ if numpy_matrix.ndim > 1: return numpy_matrix[:,0] else: return numpy_matrix def offs(self, track1, track2): """ offs(audiofile track1, audiofile track2) calculates the head offset between two (supposedly) otherwise identitical audio files this is achieved via finding the peak-to-peak difference of the waveform heads """ # opens files for reading try: track_one_file_obj = Sndfile(track1.encode('utf-8'), 'r') except: print('Corrupted File 1 : '+ track1) return pass try: track_two_file_obj = Sndfile(track2, 'r') except: print('Corrupted File 2 : '+ track2) return pass # calculates the head of each file (first twentieth of the waveform) # if this is less than 5 seconds of audio (that is, the waveform is under 100 seconds long) # then the head is the first five seconds of the waveform track_one_file_obj_head = floor(.05 * track_one_file_obj.nframes) if track_one_file_obj_head < (track_one_file_obj.samplerate * 5): track_one_file_obj_head = track_one_file_obj.nframes track_two_file_obj_head = floor(.05 * track_two_file_obj.nframes) if track_two_file_obj_head < (track_two_file_obj.samplerate * 5): track_two_file_obj_head = track_two_file_obj.nframes # reads the head of each file (as absolute values, accounting for reversed waveforms) # into a 1-dimensional numpy matrix (via mono function) numpy_matrix_of_track1 = self.mono(np.absolute(track_one_file_obj.read_frames(track_one_file_obj_head))) numpy_matrix_of_track2 = self.mono(np.absolute(track_two_file_obj.read_frames(track_two_file_obj_head))) # returns the difference between the peak of each list return np.argmax(numpy_matrix_of_track1) - np.argmax(numpy_matrix_of_track2) def populate(self, dir): """ Populate (File Path Dir) walks the file tree under dir recursively and returns all .wav files in it """ populated_list = [] wav = compile('.[Ww][Aa][Vv]$') for root, subFolders, files in walk(dir): for singleFile in files: if wav.search(singleFile): populated_list.append(path.join(root, singleFile)) return populated_list def specialCharacterHandler(self, string_to_be_handled): """ Method to handle all special characters @param string_to_be_handled: String To Be Handled @return: String - Fixed characters String """ try:self.Fixity = SharedApp.SharedApp.App except:pass try: string_to_be_handled = string_to_be_handled.decode('cp1252') except: pass try: string_to_be_handled = string_to_be_handled.encode('utf8') except: pass return string_to_be_handled def run_executor(self, manifest_path, q_action=None, is_unit_test=False): ''' Run Executor For all Directories @param manifest_path: Manifest File Path @param q_action: QCoreApplication Object @param is_unit_test: Is call generated from Unit test @return manifest_file_path/{manifest_info, manifest_file_path}: Sting/List ''' testers = 0 file_count = 0 values = '' filename = self.Interstitial.Configuration.getManifestFileName() columns = self.Interstitial.Configuration.getColumnsOfManifest() timer = time() initiated = self.Interstitial.Configuration.getCurrentTime() current_date = strftime("%Y-%m-%d") self.all_ref_files = [] self.all_daw_files = [] self.scanned_daw_files = [] self.scanned_ref_files = [] for index_daw in xrange(0, self.number_of_daw_core): for index_ref in xrange(0, self.number_of_ref_core): # Launch The Scanner to Test Audio Files report_result = self.execute(index_daw, index_ref, q_action) try: testers += len(report_result['manifest_info']['testers']) except: pass try: file_count += int(report_result['manifest_info']['file_count']) except: pass try: values += report_result['manifest_info']['values'] except: pass sleep(2) if self.unmatched_flag: values += path.abspath(self.daw_directories[index_daw]) + ", NONE " + "," values += "," + "," + "," + '' values += "\n" print('') print "COULD NOT MATCH FILES: " +self.daw_directories[index_daw] print('') self.scanned_daw_files.append(self.daw_directories[index_daw]) for single_daw_file in self.all_daw_files: if single_daw_file not in self.scanned_daw_files: values += path.abspath(single_daw_file) + ", NONE " values += "," + "," + "," + "," + '' values += "\n" print('') print "COULD NOT MATCH FILES: " + single_daw_file print('') self.scanned_daw_files.append(single_daw_file) for single_ref_file in self.all_ref_files: if single_ref_file not in self.scanned_ref_files: values += "NONE ," + path.abspath(single_ref_file) values += "," + "," + "," + "," + '' values += "\n" print('') print "COULD NOT MATCH FILES: " + single_ref_file print('') self.scanned_ref_files.append(single_ref_file) seconds_content = str(floor(time() - timer)) manifest_info = {'current_date': current_date, 'initiated': initiated, 'seconds_content': seconds_content, 'testers': testers, 'file_count': file_count, 'columns': columns, 'values': values} # Open template file and get manifest template content to manifest file creation template_of_manifest_file = open(self.Interstitial.Configuration.getManifestTemplatePath(), "r") template_of_manifest_file_lines = template_of_manifest_file.readlines() template_of_manifest_file.close() manifest_content = self.generateManifestContent(template_of_manifest_file_lines, manifest_info) # Do We Have Metadata? If So, Write A Manifest # Write Manifest File if len((values + columns)) > 110: manifest_file_path = manifest_path + "/" + filename self.writeManifestFile(manifest_file_path, manifest_content) if is_unit_test: return {'manifest_info': manifest_info, 'manifest_file_path':manifest_file_path} else: return manifest_file_path def execute(self, index_daw, index_ref, q_action=None): """ Execute (wavefile first_wave_file, wavefile second_wave_file, directory d, QAction qa) The heart of interstitial - performs a null test on two wav files and returns the first difference """ # initialize useful variables values = '' file_count = 0 test_done_for_files = [] targeted_done = [] # Ensures That We Have Legitimate Directories To Walk Down # And Populates The List Of Files To Test if not path.isdir(path.abspath(self.getDawDirsCore(index_daw).getCoreDawText())) or not path.isdir(path.abspath(self.getRefDirsCore(index_ref).getCoreRefText())): print self.Interstitial.messages['illegalPaths'] return self.daw_directories = [] self.ref_directories = [] self.daw_directories = self.populate(self.getDawDirsCore(index_daw).getCoreDawText()) print str(len(self.daw_directories)) + self.Interstitial.messages['WAV_found'] + path.abspath(self.getDawDirsCore(index_daw).getCoreDawText()) self.ref_directories = self.populate(self.getRefDirsCore(index_ref).getCoreRefText()) print str(len(self.ref_directories)) + self.Interstitial.messages['WAV_found'] + path.abspath(self.getRefDirsCore(index_ref).getCoreRefText()) try: q_action.processEvents() except: pass self.unmatched_flag = False for index in xrange(len(self.daw_directories)): self.all_daw_files.append(self.daw_directories[index]) for index in xrange(len(self.ref_directories)): self.all_ref_files.append(self.ref_directories[index]) # Process Each File In The Tester Array for index in xrange(len(self.daw_directories)): found = False if self.daw_directories[index] in self.scanned_daw_files: continue for e in xrange(len(self.ref_directories)): if self.ref_directories[e] in self.scanned_ref_files: continue try: q_action.processEvents() except: pass # If We Haven't Already Processed This File, Process It if self.ref_directories[e] not in targeted_done: # find the offset and align the waveforms toff = self.offs(self.daw_directories[index], self.ref_directories[e]) try: tester_file_obj = Sndfile(self.daw_directories[index], 'r') except: print('Corrupted File : '+ self.daw_directories[index]) return pass try: target_file_obj = Sndfile(self.ref_directories[e], 'r') except: print('Corrupted File : ' +self. ref_directories[e]) return pass if toff > 0: tester_file_obj.seek(toff) else: target_file_obj.seek(fabs(toff)) # Read The First 1000 Samples Of Each File # If Each Sample Is Within 6dB Of The Other, We Have A Match And Can Begin Processing numpy_matrix_of_track1 = self.mono(tester_file_obj.read_frames(1000)) numpy_matrix_of_track2 = self.mono(target_file_obj.read_frames(1000)) if np.array_equal(numpy_matrix_of_track1, numpy_matrix_of_track2): print('') print "MATCH: " + self.daw_directories[index] + " matches " + self.ref_directories[e] try: q_action.processEvents() except: pass # mark files as done test_done_for_files.append(self.daw_directories[index]) targeted_done.append(self.ref_directories[e]) # we can't read the entire file into RAM at once # so instead we're breaking it into one-second parts l = min((tester_file_obj.nframes - toff), (target_file_obj.nframes - toff)) / tester_file_obj.samplerate for n in xrange(0, l, 1): errs = 0 try: # drop all but the first channel track_one_response = self.mono(tester_file_obj.read_frames(tester_file_obj.samplerate)) track_two_response = self.mono(target_file_obj.read_frames(target_file_obj.samplerate)) # are these arrays equivalent? if not, there's an error if not np.array_equal(track_one_response, track_two_response): file_count += 1 # where's the error? # we find it by comparing sample by sample across this second of audio for m in xrange(len(track_one_response)): if not np.array_equal(track_one_response[m], track_two_response[m]): # We found it! print a message and we're done with these files errs = (n * tester_file_obj.samplerate) + m + 1000 print self.Interstitial.messages['errorFoundBw'] +self.daw_directories[index] + " and " + self.ref_directories[e] + " at sample " + str(errs) try: q_action.processEvents() except: pass break if errs != 0: break except RuntimeError: break # Append Metadata For Output values += path.abspath(self.daw_directories[index]) + "," + path.abspath(self.ref_directories[e]) + "," values += datetime.datetime.fromtimestamp(stat(self.daw_directories[index]).st_ctime).strftime("%Y-%m-%d %H:%M:%S") + "," values += str(stat(self.daw_directories[index]).st_size) + "," + str(tester_file_obj.channels) + "," + str(tester_file_obj.samplerate) + "," values += str(datetime.timedelta(seconds=int(tester_file_obj.nframes / tester_file_obj.samplerate)))
""" Managers for handling different ServiceChannels. If a manager for a specific :class:`ServiceChannel` is attached, incoming messages get forwarded there, otherways they are discarded. Managers can be attached by calling `add_manager()` on the :class:`Console` object (see example) Methods of manager are available through console-context. Example: How to add a manager:: discovered = await Console.discover(timeout=1) if len(discovered): console = discovered[0] # Add manager, optionally passing initialization parameter some_arg_for_manager_init = 'example' console.add_manager( MediaManager, additional_arg=some_arg_for_manager_init ) await console.connect() if console.connection_state != ConnectionState.Connected: print("Connection failed") sys.exit(1) console.wait(1) # Call manager method console.media_command(0x54321, MediaControlCommand.PlayPauseToggle, 0) else: print("No consoles discovered") sys.exit(1) """ import asyncio import time import logging from typing import Optional from construct import Container from xbox.sg import factory from xbox.sg.enum import MessageType, ServiceChannel, AckStatus, TextResult, \ SoundLevel, MediaControlCommand, MediaPlaybackStatus, TextInputScope, \ MediaType, GamePadButton from xbox.sg.utils.events import Event from xbox.sg.utils.struct import XStruct log = logging.getLogger(__name__) class Manager(object): __namespace__ = '' def __init__(self, console, channel: ServiceChannel): """ Don't use directly! INTERNALLY called by the parent :class:`Console`! Args: console: Console object, internally passed by `Console.add_manager channel: Service channel """ self.console = console self.console.on_message += self._pre_on_message self.console.on_json += self._pre_on_json self._channel = channel def _pre_on_message(self, msg, channel): if channel == self._channel: self._on_message(msg, channel) def _pre_on_json(self, data, channel): if channel == self._channel: self._on_json(data, channel) def _on_message(self, msg, channel): """ Managers must implement this """ pass def _on_json(self, data, channel): """ Managers must implement this """ pass async def _send_message(self, msg: XStruct): """ Internal method to send messages to initialized Service Channel Args: msg (:class:`XStructObj`): Message """ return await self.console.send_message(msg, channel=self._channel) async def _send_json(self, data: str) -> None: """ Internal method to send JSON messages to initialized Service Channel Args: data: JSON message """ return await self.console.json(data, channel=self._channel) class InputManagerError(Exception): """ Exception thrown by InputManager """ pass class InputManager(Manager): __namespace__ = 'input' def __init__(self, console): """ Input Manager (ServiceChannel.SystemInput) Args: console: Console object, internally passed by `Console.add_manager """ super(InputManager, self).__init__(console, ServiceChannel.SystemInput) def _on_message(self, msg: XStruct, channel: ServiceChannel) -> None: """ Internal handler method to receive messages from SystemInput Channel Args: msg: Message channel: Service channel """ raise InputManagerError("Unexpected message received on InputManager") async def gamepad_input( self, buttons: GamePadButton, l_trigger: int = 0, r_trigger: int = 0, l_thumb_x: int = 0, l_thumb_y: int = 0, r_thumb_x: int = 0, r_thumb_y: int = 0 ) -> None: """ Send gamepad input Args: buttons: Gamepad buttons bits l_trigger: Left trigger value r_trigger: Right trigger value l_thumb_x: Left thumbstick X-axis value l_thumb_y: Left thumbstick Y-axis value r_thumb_x: Right thumbstick X-axis value r_thumb_y: Right thumbstick Y-axis value Returns: None """ ts = int(time.time()) msg = factory.gamepad( ts, buttons, l_trigger, r_trigger, l_thumb_x, l_thumb_y, r_thumb_x, r_thumb_y ) return await self._send_message(msg) class MediaManagerError(Exception): """ Exception thrown by MediaManager """ pass class MediaManager(Manager): __namespace__ = 'media' def __init__(self, console): """ Media Manager (ServiceChannel.SystemMedia) Args: Console object, internally passed by `Console.add_manager """ super(MediaManager, self).__init__(console, ServiceChannel.SystemMedia) self._media_state = None self.on_media_state = Event() self.on_media_command_result = Event() self.on_media_controller_removed = Event() def _on_message(self, msg: XStruct, channel: ServiceChannel) -> None: """ Internal handler method to receive messages from SystemMedia Channel Args: msg: Message channel: Service channel """ msg_type = msg.header.flags.msg_type payload = msg.protected_payload if msg_type == MessageType.MediaState: log.debug('Received MediaState message') self._media_state = payload self.on_media_state(self.media_state) elif msg_type == MessageType.MediaCommandResult: log.debug('Received MediaCommandResult message') self.on_media_command_result(payload) elif msg_type == MessageType.MediaControllerRemoved: title_id = payload.title_id log.debug('Received MediaControllerRemoved message, title id: 0x%x', title_id) if self.title_id == title_id: log.debug('Clearing MediaState') self._media_state = None self.on_media_controller_removed(payload) else: raise MediaManagerError( "Unexpected message received on MediaManager" ) @property def media_state(self) -> Optional[Container]: """ Media state payload Returns: Media state payload """ return self._media_state @property def active_media(self) -> Optional[bool]: """ Check whether console has active media Returns: `True` if media is active, `False` if not """ return self.media_state is not None @property def title_id(self) -> Optional[int]: """ Title Id of active media Returns: Title Id """ if self.media_state: return self.media_state.title_id @property def aum_id(self) -> Optional[str]: """ Application user model Id of active media Returns: Aum Id """ if self.media_state: return self.media_state.aum_id @property def asset_id(self) -> Optional[str]: """ Asset Id of active media Returns: Asset Id """ if self.media_state: return self.media_state.asset_id @property def media_type(self) -> Optional[MediaType]: """ Media type of active media Returns: Media type """ if self.media_state: return self.media_state.media_type @property def sound_level(self) -> Optional[SoundLevel]: """ Sound level of active media Returns: Sound level """ if self.media_state: return self.media_state.sound_level @property def enabled_commands(self) -> Optional[MediaControlCommand]: """ Enabled MediaCommands bitmask Returns: Bitmask of enabled commands """ if self.media_state: return self.media_state.enabled_commands @property def playback_status(self) -> Optional[MediaPlaybackStatus]: """ Playback status of active media Returns: Playback status """ if self.media_state: return self.media_state.playback_status @property def rate(self) -> Optional[float]: """ Playback rate of active media Returns: Playback rate """ if self.media_state: return self.media_state.rate @property def position(self) -> Optional[int]: """ Playback position of active media Returns: Playback position in microseconds """ if self.media_state: return self.media_state.position @property def media_start(self) -> Optional[int]: """ Media start position of active media Returns: Media start position in microseconds """ if self.media_state: return self.media_state.media_start @property def media_end(self) -> Optional[int]: """ Media end position of active media Returns: Media end position in microseconds """ if self.media_state: return self.media_state.media_end @property def min_seek(self) -> Optional[int]: """ Minimum seek position of active media Returns: Minimum position in microseconds """ if self.media_state: return self.media_state.min_seek @property def max_seek(self) -> Optional[int]: """ Maximum seek position of active media Returns: Maximum position in microseconds """ if self.media_state: return self.media_state.max_seek @property def metadata(self) -> Container: """ Media metadata of active media Returns: Media metadata """ if self.media_state: return self.media_state.metadata async def media_command( self, title_id: int, command: MediaControlCommand, request_id: int = 0, seek_position: Optional[int] = None ) -> None: """ Send media command Args: title_id: Title Id command: Media Command request_id: Incrementing Request Id seek_position: Seek position Returns: None """ msg = factory.media_command( request_id, title_id, command, seek_position ) return await self._send_message(msg) class TextManagerError(Exception): """ Exception thrown by TextManager """ pass class TextManager(Manager): __namespace__ = 'text' def __init__(self, console): """ Text Manager (ServiceChannel.SystemText) Args: console: Console object, internally passed by `Console.add_manager """ super(TextManager, self).__init__(console, ServiceChannel.SystemText) self.session_config = None self.current_session_input = None self.last_session_ack = None self._current_text_version = 0 self.on_systemtext_configuration = Event() self.on_systemtext_input = Event() self.on_systemtext_done = Event() def _on_message(self, msg: XStruct, channel: ServiceChannel): """ Internal handler method to receive messages from SystemText Channel Args: msg (:class:`XStructObj`): Message channel (:class:`ServiceChannel`): Service channel """ msg_type = msg.header.flags.msg_type payload = msg.protected_payload session_id = payload.text_session_id if msg_type == MessageType.SystemTextConfiguration: self.reset_session() self.session_config = payload self.on_systemtext_configuration(payload) elif msg_type == MessageType.SystemTextInput: # Assign console input msg self.current_session_input = payload self.current_text_version = payload.submitted_version asyncio.create_task( self.send_systemtext_ack( self.text_session_id, self.current_text_version ) ) self.on_systemtext_input(payload) elif msg_type == MessageType.SystemTextAck: self.current_text_version = payload.text_version_ack elif msg_type == MessageType.SystemTextDone: if session_id == self.text_session_id: self.reset_session() elif session_id == 0: # SystemTextDone for session 0 is sent by console # No clue what it means, if anything pass else: pass # log.debug('Received DONE msg for inactive session %i' % session_id) self.on_systemtext_done(payload) elif msg_type in [MessageType.TitleTextConfiguration, MessageType.TitleTextInput, MessageType.TitleTextSelection]: raise TextManagerError('Received TitleTextConfiguration, unhandled') else: raise TextManagerError( "Unexpected message received on TextManager" ) @property def got_active_session(self): """ Check whether a text session is active Returns: bool: Returns `True` if any text session is active, `False` otherwise """ return self.session_config is not None @property def current_text_version(self): """ Current Text version Returns: int: Current Text Version """ return self._current_text_version @current_text_version.setter def current_text_version(self, value): if value > self.current_text_version: self._current_text_version = value @property def text_session_id(self): """ Current Text session id Returns: int: Text session id if existing, `None` otherwise """ if self.session_config: return self.session_config.text_session_id @property def text_options(self): """ Current Text options Returns: :class:`TextOption`: Text options if existing, `None` otherwise """ if self.session_config: return self.session_config.text_options @property def text_input_scope(self) -> Optional[TextInputScope]: """ Current Text input scope Returns: Text input scope if existing, `None` otherwise """ if self.session_config: return self.session_config.input_scope @property def max_text_length(self) -> Optional[int]: """ Maximum Text length Returns: Max text length if existing, `None` otherwise """ if self.session_config: return self.session_config.max_text_length @property def text_locale(self) -> Optional[str]: """ Test Returns: Text locale if existing, `None` otherwise """ if self.session_config: return self.session_config.locale @property def text_prompt(self) -> Optional[str]: """ Test Returns: Text prompt if existing, `None` otherwise """ if self.session_config: return
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. from __future__ import print_function import os from os import path import sys import shutil import tempfile import boto3 import json import time import imp import argparse from botocore.exceptions import ClientError from datetime import datetime import base64 import ast import textwrap import fileinput import subprocess from subprocess import call import fnmatch import unittest try: from unittest.mock import MagicMock, patch, ANY except ImportError: import mock from mock import MagicMock, patch, ANY rdk_dir = '.rdk' rules_dir = '' tests_dir = '' util_filename = 'rule_util' rule_handler = 'rule_code' rule_template = 'rdk-rule.template' config_bucket_prefix = 'config-bucket-' config_role_name = 'config-role' assume_role_policy_file = 'configRuleAssumeRolePolicyDoc.json' delivery_permission_policy_file = 'deliveryPermissionsPolicy.json' code_bucket_prefix = 'config-rule-code-bucket-' parameter_file_name = 'parameters.json' example_ci_dir = 'example_ci' test_ci_filename = 'test_ci.json' event_template_filename = 'test_event_template.json' class rdk(): def __init__(self, args): self.args = args def process_command(self): method_to_call = getattr(self, self.args.command.replace('-','_')) exit_code = method_to_call() return(exit_code) def init(self): parser = argparse.ArgumentParser( prog='rdk '+self.args.command, description = 'Sets up AWS Config and turn current directory into a rdk working directory. This will enable configuration recording in AWS.') self.args = parser.parse_args(self.args.command_args, self.args) print ("Running init!") #if the .rdk directory exists, delete it. #if os.path.exists(rdk_dir): # shutil.rmtree(rdk_dir) #copy contents of template directory into .rdk directory #src = os.path.join(path.dirname(__file__), 'template') #dst = rdk_dir #shutil.copytree(src, dst) #create custom session based on whatever credentials are available to us my_session = self.__get_boto_session() #Create our ConfigService client my_config = my_session.client('config') #get accountID my_sts = my_session.client('sts') response = my_sts.get_caller_identity() account_id = response['Account'] config_recorder_exists = False config_recorder_name = "default" config_role_arn = "" delivery_channel_exists = False config_bucket_exists = False #Check to see if the ConfigRecorder has been created. recorders = my_config.describe_configuration_recorders() if len(recorders['ConfigurationRecorders']) > 0: config_recorder_exists = True config_recorder_name = recorders['ConfigurationRecorders'][0]['name'] config_role_arn = recorders['ConfigurationRecorders'][0]['roleARN'] print("Found Config Recorder: " + config_recorder_name) print("Found Config Role: " + config_role_arn) delivery_channels = my_config.describe_delivery_channels() if len(delivery_channels['DeliveryChannels']) > 0: delivery_channel_exists = True config_bucket_name = delivery_channels['DeliveryChannels'][0]['s3BucketName'] print("Found Bucket: " + config_bucket_name) config_bucket_exists = True my_s3 = my_session.client('s3') if not config_bucket_exists: #create config bucket config_bucket_name = config_bucket_prefix + account_id response = my_s3.list_buckets() bucket_exists = False for bucket in response['Buckets']: if bucket['Name'] == config_bucket_name: bucket_exists = True if not bucket_exists: print('Creating Config bucket '+config_bucket_name ) if my_session.region_name == 'us-east-1': my_s3.create_bucket( Bucket=config_bucket_name ) else: my_s3.create_bucket( Bucket=config_bucket_name, CreateBucketConfiguration={ 'LocationConstraint': my_session.region_name } ) if not config_role_arn: #create config role my_iam = my_session.client('iam') response = my_iam.list_roles() role_exists = False for role in response['Roles']: if role['RoleName'] == config_role_name: role_exists = True if not role_exists: print('Creating IAM role config-role') assume_role_policy = open(os.path.join(path.dirname(__file__), 'template', assume_role_policy_file), 'r').read() my_iam.create_role(RoleName=config_role_name, AssumeRolePolicyDocument=assume_role_policy, Path="/rdk/") #attach role policy my_iam.attach_role_policy(RoleName=config_role_name, PolicyArn='arn:aws:iam::aws:policy/service-role/AWSConfigRole') policy_template = open(os.path.join(path.dirname(__file__), 'template', delivery_permission_policy_file), 'r').read() delivery_permissions_policy = policy_template.replace('ACCOUNTID', account_id) my_iam.put_role_policy(RoleName=config_role_name, PolicyName='ConfigDeliveryPermissions', PolicyDocument=delivery_permissions_policy) #wait for changes to propagate. print('Waiting for IAM role to propagate') time.sleep(16) #create or update config recorder if not config_role_arn: config_role_arn = "arn:aws:iam::"+account_id+":role/rdk/config-role" my_config.put_configuration_recorder(ConfigurationRecorder={'name':config_recorder_name, 'roleARN':config_role_arn, 'recordingGroup':{'allSupported':True, 'includeGlobalResourceTypes': True}}) if not delivery_channel_exists: #create delivery channel my_config.put_delivery_channel(DeliveryChannel={'name':'default', 's3BucketName':config_bucket_name, 'configSnapshotDeliveryProperties':{'deliveryFrequency':'Six_Hours'}}) #start config recorder my_config.start_configuration_recorder(ConfigurationRecorderName=config_recorder_name) print('Config Service is ON') print('Config setup complete.') #create code bucket code_bucket_name = code_bucket_prefix + account_id + "-" + my_session.region_name response = my_s3.list_buckets() bucket_exists = False for bucket in response['Buckets']: if bucket['Name'] == code_bucket_name: bucket_exists = True print ("Found code bucket: " + code_bucket_name) if not bucket_exists: print('Creating Code bucket '+code_bucket_name ) bucket_configuration = {} #Consideration for us-east-1 S3 API if my_session.region_name == 'us-east-1': my_s3.create_bucket( Bucket=code_bucket_name ) else: my_s3.create_bucket( Bucket=code_bucket_name, CreateBucketConfiguration={ 'LocationConstraint': my_session.region_name } ) return 0 def create(self): #Parse the command-line arguments relevant for creating a Config Rule. self.__parse_rule_args(True) print ("Running create!") if not self.args.runtime: print("Runtime is required for 'create' command.") return 1 extension_mapping = {'java8':'.java', 'python2.7':'.py', 'python3.6':'.py','nodejs4.3':'.js', 'dotnetcore1.0':'cs', 'dotnetcore2.0':'cs', 'python3.6-managed':'.py'} if self.args.runtime not in extension_mapping: print ("rdk does nto support that runtime yet.") #if not self.args.maximum_frequency: # self.args.maximum_frequency = "TwentyFour_Hours" # print("Defaulting to TwentyFour_Hours Maximum Frequency.") #create rule directory. rule_path = os.path.join(os.getcwd(), rules_dir, self.args.rulename) if os.path.exists(rule_path): print("Local Rule directory already exists.") return 1 try: os.makedirs(os.path.join(os.getcwd(), rules_dir, self.args.rulename)) #copy rule template into rule directory if self.args.runtime == 'java8': self.__create_java_rule() elif self.args.runtime in ['dotnetcore1.0', 'dotnetcore2.0']: self.__create_dotnet_rule() else: src = os.path.join(path.dirname(__file__), 'template', 'runtime', self.args.runtime, rule_handler + extension_mapping[self.args.runtime]) dst = os.path.join(os.getcwd(), rules_dir, self.args.rulename, self.args.rulename + extension_mapping[self.args.runtime]) shutil.copyfile(src, dst) src = os.path.join(path.dirname(__file__), 'template', 'runtime', self.args.runtime, 'rule_test' + extension_mapping[self.args.runtime]) if os.path.exists(src): dst = os.path.join(os.getcwd(), rules_dir, self.args.rulename, self.args.rulename+"_test"+extension_mapping[self.args.runtime]) shutil.copyfile(src, dst) #with fileinput.FileInput(dst, inplace=True) as file: f = fileinput.input(files=dst, inplace=True) for line in f: print(line.replace('<%RuleName%>', self.args.rulename), end='') f.close() src = os.path.join(path.dirname(__file__), 'template', 'runtime', self.args.runtime, util_filename + extension_mapping[self.args.runtime]) if os.path.exists(src): dst = os.path.join(os.getcwd(), rules_dir, self.args.rulename, util_filename + extension_mapping[self.args.runtime]) shutil.copyfile(src, dst) #Write the parameters to a file in the rule directory. self.__populate_params() print ("Local Rule files created.") except Exception as e: print("Error during create: " + str(e)) print("Rolling back...") shutil.rmtree(rule_path) raise e return 0 def modify(self): #Parse the command-line arguments necessary for modifying a Config Rule. self.__parse_rule_args(False) print("Running modify!") self.args.rulename = self.__clean_rule_name(self.args.rulename) #Get existing parameters old_params = self.__read_params_file(self.args.rulename) if 'SourceEvents' in old_params['Parameters']: if self.args.maximum_frequency and old_params['Parameters']['SourceEvents']: print("Removing Source Events and changing to Periodic Rule.") self.args.resource_types = "" old_params['Parameters']['SourceEvents'] = "" if not self.args.resource_types and old_params['Parameters']['SourceEvents']: self.args.resource_types = old_params['Parameters']['SourceEvents'] if 'SourcePeriodic' in old_params['Parameters']: if self.args.resource_types and old_params['Parameters']['SourcePeriodic']: print("Removing Max Frequency and changing to Event-based Rule.") self.args.maximum_frequency = "" old_params['Parameters']['SourcePeriodic'] = "" if not self.args.maximum_frequency and old_params['Parameters']['SourcePeriodic']: self.args.maximum_frequency = old_params['Parameters']['SourcePeriodic'] if not self.args.runtime and old_params['Parameters']['SourceRuntime']: self.args.runtime = old_params['Parameters']['SourceRuntime'] if not self.args.input_parameters and old_params['Parameters']['InputParameters']: self.args.input_parameters = old_params['Parameters']['InputParameters'] if 'RuleSets' in old_params['Parameters']: if not self.args.rulesets: self.args.rulesets = old_params['Parameters']['RuleSets'] #Write the parameters to a file in the rule directory. self.__populate_params() print ("Modified Rule '"+self.args.rulename+"'. Use the `deploy` command to push your changes to AWS.") def deploy(self): parser = argparse.ArgumentParser(prog='rdk deploy') parser.add_argument('rulename', metavar='<rulename>', nargs='*', help='Rule name(s) to deploy. Rule(s) will be pushed to AWS.') parser.add_argument('--all','-a', action='store_true', help="All rules in the working directory will be deployed.") parser.add_argument('-s','--rulesets', required=False, help='comma-delimited RuleSet names') self.args = parser.parse_args(self.args.command_args, self.args) if self.args.rulesets: self.args.rulesets = self.args.rulesets.split(',') #run the deploy code print ("Running deploy!") rule_names = self.__get_rule_list_for_command() #create custom session based on whatever credentials are available to us my_session = self.__get_boto_session() #get accountID my_sts = my_session.client('sts') response = my_sts.get_caller_identity() account_id = response['Account'] for rule_name in rule_names: my_rule_params = self.__get_rule_parameters(rule_name) s3_src = "" if my_rule_params['SourceRuntime'] == "java8": #Do java build and package. print ("Running Gradle Build for "+rule_name) working_dir = os.path.join(os.getcwd(), rules_dir, rule_name) command = ["gradle","build"] subprocess.call( command, cwd=working_dir) #set source as distribution zip s3_src = os.path.join(os.getcwd(), rules_dir, rule_name, 'build', 'distributions', rule_name+".zip") elif my_rule_params['SourceRuntime'] in ["dotnetcore1.0","dotnetcore2.0"]: print ("Packaging "+rule_name) working_dir = os.path.join(os.getcwd(), rules_dir, rule_name) commands = [["dotnet","restore"]] app_runtime = "netcoreapp1.0" if my_rule_params['SourceRuntime'] == "dotnetcore2.0": app_runtime = "netcoreapp2.0" commands.append(["dotnet","lambda","package","-c","Release","-f", app_runtime]) for command in commands: subprocess.call( command, cwd=working_dir) # Remove old zip file if it already exists package_file_dst = os.path.join(rule_name, rule_name+".zip") self.__delete_package_file(package_file_dst) # Create new package in temp directory, copy to rule directory # This copy avoids the archiver trying to include the output zip in itself s3_src_dir = os.path.join(os.getcwd(),rules_dir, rule_name,'bin','Release', app_runtime, 'publish') tmp_src = shutil.make_archive(os.path.join(tempfile.gettempdir(), rule_name), 'zip', s3_src_dir) shutil.copy(tmp_src, package_file_dst) s3_src = os.path.abspath(package_file_dst) self.__delete_package_file(tmp_src) else: print ("Zipping " + rule_name) #zip rule code files and upload to s3 bucket # Remove old zip file if it already exists package_file_dst = os.path.join(rule_name, rule_name+".zip") self.__delete_package_file(package_file_dst) s3_src_dir = os.path.join(os.getcwd(), rules_dir, rule_name) tmp_src = shutil.make_archive(os.path.join(tempfile.gettempdir(), rule_name), 'zip', s3_src_dir) shutil.copy(tmp_src, package_file_dst) s3_src = os.path.abspath(package_file_dst) self.__delete_package_file(tmp_src) s3_dst = "/".join((rule_name, rule_name+".zip")) code_bucket_name = code_bucket_prefix + account_id + "-" + my_session.region_name my_s3 = my_session.resource('s3') print ("Uploading " + rule_name) my_s3.meta.client.upload_file(s3_src, code_bucket_name, s3_dst) #create CFN Parameters source_events = "NONE" if 'SourceEvents' in my_rule_params: source_events = my_rule_params['SourceEvents'] source_periodic = "NONE" if 'SourcePeriodic' in my_rule_params: source_periodic = my_rule_params['SourcePeriodic'] my_params = [ { 'ParameterKey': 'SourceBucket', 'ParameterValue': code_bucket_name, }, { 'ParameterKey': 'SourcePath', 'ParameterValue': s3_dst, }, { 'ParameterKey': 'SourceRuntime', 'ParameterValue': my_rule_params['SourceRuntime'], }, { 'ParameterKey': 'SourceEvents', 'ParameterValue': source_events, }, { 'ParameterKey': 'SourcePeriodic', 'ParameterValue': source_periodic, }, { 'ParameterKey': 'SourceInputParameters', 'ParameterValue': my_rule_params['InputParameters'], }, { 'ParameterKey': 'SourceHandler', 'ParameterValue': self.__get_handler(rule_name, my_rule_params) }] #deploy config
""" This module contains the core classes of the package that implement the three hyperparameter optimization methods presented in Forward and Reverse Gradient-Based Hyperparameter Optimization (https://arxiv.org/abs/1703.01785). """ # TODO put tf.Session optional parameter in all the methods that require `run` # import numpy as np import tensorflow as tf from rfho.optimizers import Optimizer, AdamOptimizer from rfho.utils import dot, MergedVariable, VlMode, as_list, simple_name, GlobalStep, ZMergedMatrix, flatten_list from rfho.utils import call_method_optional_param as cmo class ReverseHG: """ Class to compute hyper-gradients in reverse mode """ # noinspection SpellCheckingInspection def __init__(self, optimizer, hyper_dict, state_history=None, global_step=None): """ Creates a new object that computes the hyper-gradient of validation errors in reverse mode. See section 3.1 of Forward and Reverse Gradient-Based Hyperparameter Optimization (https://arxiv.org/abs/1703.01785) Note that this class only computes the hyper-gradient and does not perform hyperparameter optimization. :param optimizer: insance of Optimizer class, which contains the dynamics with which the model parameters are updated :param hyper_dict: A dictionary of `{validation_error: hyperparameter or list_of_hyperparameters}` where `validation_error` is a scalar tensor and `list_of_hyperparameters` is a list of tensorflow variables that represents the hyperparameters :param state_history: (default: empty list) state history manager: should implement methods `clear`, `append`, `__getitem__` :param global_step: optional instance of GlobalStep class """ assert isinstance(optimizer, Optimizer) self.w = optimizer.raw_w # might be variable or MergedVariable # TODO check if it works also with w as simple Variable self.w_t = self.w # MergedVariable.get_tensor(self.w) # this is always a tensor self.tr_dynamics = optimizer.dynamics assert isinstance(hyper_dict, dict), '%s not allowed type. Should be a dict of ' \ '(tf.Tensor, hyperparameters)' % hyper_dict self.val_error_dict = hyper_dict self.hyper_list = [] for k, v in hyper_dict.items(): self.hyper_list += as_list(v) self.val_error_dict[k] = as_list(v) # be sure that are all lists self.w_hist = state_history or [] with self.w_t.graph.as_default(): # global step self.global_step = global_step or GlobalStep() self._fw_ops = optimizer.assign_ops # add here when hyper-parameters are sequence # backward assign ops with tf.name_scope('backward'): # equation (9) p_T = {ve: tf.gradients(ve, self.w_t)[0] for ve, hyp_list in self.val_error_dict.items()} # deltaE(s_t) self.p_dict = {ve: tf.Variable(pt, name='p') for ve, pt in p_T.items()} # for nullity check self._abs_sum_p = tf.reduce_sum(tf.stack([tf.reduce_sum(tf.abs(p), name='l1_p') for p in self.p_dict.values()])) # build Lagrangian function with tf.name_scope('lagrangian'): self.lagrangians_dict = {ve: dot(p, self.tr_dynamics) for ve, p in self.p_dict.items()} # TODO read below ''' In the following {if else} block there are two ways of computing the the dynamics of the update of the Lagrangian multipliers. The procedures SHOULD produce the same result, however, for some strange reason, if w is indeed a state varibale that contains auxiliary components (e.g. velocity in Momentum algorithm, ...) there is a difference in the two methods and the right one is the first one. This is possibly due to the order in wich the derivatives are taken by tensorflow, but furhter investigation is necessary. ''' # detects if some auxiliary variables are used. if isinstance(self.w, MergedVariable) and \ any([isinstance(v, MergedVariable) for v in self.w.var_list(VlMode.RAW)]): state_components = self.w.var_list(VlMode.TENSOR) # equation (8) self.p_dynamics = {ve: tf.concat(tf.gradients(lagrangian, state_components), 0) for ve, lagrangian in self.lagrangians_dict.items()} else: # equation (8) self.p_dynamics = {ve: tf.gradients(lagrangian, self.w_t)[0] for ve, lagrangian in self.lagrangians_dict.items()} # equation (7) self._bk_ops = [self.p_dict[ve].assign(self.p_dynamics[ve]) for ve in self.val_error_dict] # add here when hp are sequ. with tf.name_scope('w_history_ops'): self._w_placeholder = tf.placeholder(self.w_t.dtype) self._back_hist_op = self.w.assign(self._w_placeholder) with tf.name_scope('hyper_derivatives'): # equation (10) without summation. self.hyper_derivatives = [ (self.val_error_dict[ve], tf.gradients(lagrangian, self.val_error_dict[ve])) for ve, lagrangian in self.lagrangians_dict.items() ] # list of couples (hyper_list, list of tensors hyper_gradients) (lists are unhashable!) # check that all hyper-gradients are defined assert all(e is not None for e in flatten_list( [e[1] for e in self.hyper_derivatives])), 'Some gradient of the validation error is None!' with tf.name_scope('hyper_gradients'): # ADDED 28/3/17 keeps track of hyper-gradients as tf.Variable self._grad_wrt_hypers_placeholder = tf.placeholder(tf.float32, name='placeholder') # TODO this placeholder is not really necessary... just added to minimize the changes needed # (merge with RICCARDO) self.hyper_gradient_vars = [tf.Variable(tf.zeros_like(hyp), name=simple_name(hyp)) for hyp in self.hyper_list] self.hyper_gradients_dict = {hyp: hgv for hyp, hgv # redundant.. just for comfort .. in zip(self.hyper_list, self.hyper_gradient_vars)} self._hyper_assign_ops = {h: v.assign(self._grad_wrt_hypers_placeholder) for h, v in self.hyper_gradients_dict.items()} def initialize(self, session=None): """ Helper for initializing all the variables. Builds and runs model variables and global step initializers. Note that dual variables are initialized only when calling `backward`. :param session: optional tensorflow session (if None default session is used) :return: None """ ss = session or tf.get_default_session() assert ss, 'No default tensorflow session!' if isinstance(self.w, MergedVariable): self.w.initialize(session=session) else: ss.run(tf.variables_initializer([self.w])) ss.run(tf.variables_initializer(self.hyper_gradient_vars + [self.global_step.var])) def forward(self, T, train_feed_dict_supplier=None, summary_utils=None): """ Performs (forward) optimization of the parameters. :param T: Total number of iterations :param train_feed_dict_supplier: (optional) A callable with signature `t -> feed_dict` or `() -> feed_dict` to pass to `tf.Session.run` feed_dict argument :param summary_utils: (optional) object that implements a method method `run(tf.Session, step)` that is executed at every iteration (see for instance utils.PrintUtils :return: None """ if not train_feed_dict_supplier: train_feed_dict_supplier = lambda: None # var_init = self.w.var_list(VlMode.BASE) if isinstance(self.w, MergedVariable) else [self.w] # tf.variables_initializer(var_init + [self.global_step.var]).run() ss = tf.get_default_session() self.w_hist.clear() for t in range(T): self.w_hist.append(self.w_t.eval()) ss.run([self._fw_ops], feed_dict=cmo(train_feed_dict_supplier, self.global_step.eval())) self.global_step.increase.eval() if summary_utils: summary_utils.run(ss, t) def backward(self, T, val_feed_dict_suppliers=None, train_feed_dict_supplier=None, hyper_batch_step=None, summary_utils=None, check_if_zero=False): """ Performs backward computation of hyper-gradients :param hyper_batch_step: supports for stochastic sampling of validation set :param T: Total number of iterations :param val_feed_dict_suppliers: either a callable that returns a feed_dict or a dictionary {validation_error tensor: callable (signature `t -> feed_dict` or `() -> feed_dict`) that is used to initialize the dual variables `p` (generally supplier of validation example set). :param train_feed_dict_supplier: (optional) A callable with signature `t -> feed_dict` or `() -> feed_dict` to pass to `tf.Session.run` feed_dict argument :param summary_utils: (optional) object that implements a method method `run(tf.Session, step)` that is executed at every iteration (see for instance utils.PrintUtils :param check_if_zero: (optional) debug flag :return: A dictionary of lists of step-wise hyper-gradients. In usual application the "true" hyper-gradients can be obtained with method std_collect_hyper_gradients """ if not train_feed_dict_supplier: # noinspection PyUnusedLocal train_feed_dict_supplier = lambda: None if not val_feed_dict_suppliers: # FIXME probably won't work with the current settings. val_feed_dict_suppliers = lambda: None else: if not isinstance(val_feed_dict_suppliers, dict) and len(self.val_error_dict.keys()) == 1: # cast validation supplier into a dict val_feed_dict_suppliers = {list(self.val_error_dict.keys())[0]: val_feed_dict_suppliers} # compute alpha_T using the validation set [tf.variables_initializer([self.p_dict[ve]]).run(feed_dict=cmo(data_supplier, hyper_batch_step)) for ve, data_supplier in val_feed_dict_suppliers.items()] # set hyper-derivatives to 0 hyper_derivatives = self._initialize_hyper_derivatives_res() # TODO deal better with the hyper-derivatives ss = tf.get_default_session() if summary_utils: summary_utils.run(ss, T) for t in range(T - 1, -1, -1): self.global_step.decrease.eval() # revert w_t to w_(t-1) ss.run(self._back_hist_op, feed_dict={self._w_placeholder: self.w_hist[t]}) # noinspection PyNoneFunctionAssignment fds = cmo(train_feed_dict_supplier, self.global_step.eval()) # TODO read below (maybe use tf.control_dependencies ... would it speed this up?) """ Unfortunately it looks like that the following two lines cannot be run together (will this degrade the performances???""" if check_if_zero: # debug if self._abs_sum_p.eval() < 1.e-20: # ss.run([self.bk_ops, self.global_step.decrease], feed_dict=fds) print('exiting backward pass at iteration %d.' % t) return {k: list(reversed(v)) for k, v in hyper_derivatives.items()} # compute partial results for hyper_derivatives: alpha_t*B_t and concatenates them mid_res = ss.run([e[1] for e in self.hyper_derivatives], feed_dict=fds) for k in range(len(mid_res)): hyper_list = self.hyper_derivatives[k][0] mr = mid_res[k] for j in range(len(hyper_list)): hyper_derivatives[hyper_list[j]].append(mr[j]) # computes alpha_t = alpha_(t+1)*A_(t+1) ss.run([self._bk_ops], feed_dict=fds) # check this global_step here.. (for Adam) if summary_utils: summary_utils.run(ss, t) hyper_derivatives = {k: list(reversed(v)) for k, v in hyper_derivatives.items()} # updates also variables that keep track of hyper-gradients [self._hyper_assign_ops[h].eval(feed_dict={self._grad_wrt_hypers_placeholder: ghv}) for h, ghv in ReverseHG.std_collect_hyper_gradients(hyper_derivatives).items()] return hyper_derivatives def _initialize_hyper_derivatives_res(self): return {hyper: [] for hyper in self.hyper_list} def run_all(self, T, train_feed_dict_supplier=None, val_feed_dict_suppliers=None, hyper_batch_step=None, forward_su=None, backward_su=None, after_forward_su=None, check_if_zero=False): """ Performs both forward and backward step. See functions `forward` and `backward` for details. :param hyper_batch_step: support for stochastic sampling of validation set :param T: Total number of iterations :param train_feed_dict_supplier: (feed_dict) supplier for training stage :param val_feed_dict_suppliers: (feed_dict) supplier for validation stage :param forward_su: (optional) utils object with function `run` passed to `forward` :param backward_su: (optional) utils object with function `run` passed to `backward` :param after_forward_su: (optional) utils object with function
# Use the binary cross entropy function self.criterion = nn.CrossEntropyLoss() def forward(self, x, hidden_state=None, seq_lengths=None, total_length=None, get_hidden_state=False, prob_output=True, already_embedded=False): if self.embed_features is not None and already_embedded is False: # Run each embedding layer on each respective feature, adding the # resulting embedding values to the tensor and removing the original, # categorical encoded columns x = du.embedding.embedding_bag_pipeline(x, self.embed_layers, self.embed_features, model_forward=True, inplace=True) # Make sure that the input data is of type float x = x.float() # Get the batch size (might not be always the same) batch_size = x.shape[0] if hidden_state is None: # Reset the LSTM hidden state. Must be done before you run a new # batch. Otherwise the LSTM will treat a new batch as a continuation # of a sequence. self.hidden = self.init_hidden(batch_size) else: # Use the specified hidden state self.hidden = hidden_state if seq_lengths is not None: # pack_padded_sequence so that padded items in the sequence won't be # shown to the LSTM x = pack_padded_sequence(x, seq_lengths, batch_first=True, enforce_sorted=False) # Get the outputs and hidden states from the LSTM layer(s) lstm_output, self.hidden = self.lstm(x, self.hidden) if seq_lengths is not None: # Undo the packing operation lstm_output, _ = pad_packed_sequence(lstm_output, batch_first=True, total_length=self.total_length) # Apply dropout to the last LSTM layer lstm_output = self.dropout(lstm_output) # Flatten LSTM output to fit into the fully connected layer flat_lstm_output = lstm_output.contiguous().view(-1, self.n_hidden * (1 + self.bidir)) # Apply the final fully connected layer output = self.fc(flat_lstm_output) if prob_output is True: # Get the outputs in the form of probabilities if self.n_outputs == 1: output = self.activation(output) else: # Normalize outputs on their last dimension output = self.activation(output, dim=len(output.shape)-1) if get_hidden_state is True: return output, self.hidden else: return output def loss(self, y_pred, y_labels): # Flatten the data y_pred = y_pred.reshape(-1) y_labels = y_labels.reshape(-1) # Find the indices that don't correspond to padding samples non_pad_idx = y_labels != self.padding_value # Remove the padding samples y_labels = y_labels[non_pad_idx] y_pred = y_pred[non_pad_idx] # Compute cross entropy loss which ignores all padding values ce_loss = self.criterion(y_pred, y_labels) return ce_loss def init_hidden(self, batch_size): # Create two new tensors with sizes n_layers x batch_size x n_hidden, # initialized to zero, for hidden state and cell state of LSTM weight = next(self.parameters()).data # Check if GPU is available train_on_gpu = torch.cuda.is_available() if train_on_gpu is True: hidden = (weight.new(self.n_lstm_layers * (1 + self.bidir), batch_size, self.n_hidden).zero_().cuda(), weight.new(self.n_lstm_layers * (1 + self.bidir), batch_size, self.n_hidden).zero_().cuda()) else: hidden = (weight.new(self.n_lstm_layers * (1 + self.bidir), batch_size, self.n_hidden).zero_(), weight.new(self.n_lstm_layers * (1 + self.bidir), batch_size, self.n_hidden).zero_()) return hidden class CustomLSTM(BaseRNN): def __init__(self, n_inputs, n_hidden, n_outputs, n_lstm_layers=1, p_dropout=0, embed_features=None, n_embeddings=None, embedding_dim=None, bidir=False, padding_value=999999): if bidir is True: rnn_module = lambda *cell_args: BidirLSTMLayer(LSTMCell, *cell_args) else: rnn_module = lambda *cell_args: LSTMLayer(LSTMCell, *cell_args) super(CustomLSTM, self).__init__(rnn_module=rnn_module, n_inputs=n_inputs, n_hidden=n_hidden, n_outputs=n_outputs, n_lstm_layers=n_lstm_layers, p_dropout=p_dropout, embed_features=embed_features, n_embeddings=n_embeddings, embedding_dim=embedding_dim, bidir=bidir, is_lstm=True, padding_value=padding_value) class TLSTM(BaseRNN): def __init__(self, n_inputs, n_hidden, n_outputs, n_rnn_layers=1, p_dropout=0, embed_features=None, n_embeddings=None, embedding_dim=None, bidir=False, padding_value=999999, delta_ts_col=None, elapsed_time='small', no_small_delta=True): if delta_ts_col is None: if embed_features is None: self.delta_ts_col = n_inputs else: # Have into account the new embedding columns that will be added, # as well as the removal of the originating categorical columns # NOTE: This only works assuming that the delta_ts column is the # last one on the dataframe, standing to the left of all the # embedding features if all([isinstance(feature, int) for feature in embed_features]): self.delta_ts_col = n_inputs - len(embed_features) elif (all([isinstance(feat_list, list) for feat_list in embed_features]) and all([isinstance(feature, int) for feat_list in embed_features for feature in feat_list])): self.delta_ts_col = n_inputs for i in range(len(embed_features)): self.delta_ts_col = self.delta_ts_col - len(embed_features[i]) else: self.delta_ts_col = delta_ts_col self.elapsed_time = elapsed_time self.no_small_delta = no_small_delta TLSTMCell_prtl = partial(TLSTMCell, delta_ts_col=self.delta_ts_col, elapsed_time=self.elapsed_time, no_small_delta=self.no_small_delta) if bidir is True: rnn_module = lambda *cell_args: BidirTLSTMLayer(TLSTMCell_prtl, *cell_args) else: rnn_module = lambda *cell_args: TLSTMLayer(TLSTMCell_prtl, *cell_args) super(TLSTM, self).__init__(rnn_module=rnn_module, n_inputs=n_inputs, n_hidden=n_hidden, n_outputs=n_outputs, n_rnn_layers=n_rnn_layers, p_dropout=p_dropout, embed_features=embed_features, n_embeddings=n_embeddings, embedding_dim=embedding_dim, bidir=bidir, is_lstm=True, padding_value=padding_value) def forward(self, x, hidden_state=None, get_hidden_state=False, prob_output=True, already_embedded=False): if self.embed_features is not None and already_embedded is False: # Run each embedding layer on each respective feature, adding the # resulting embedding values to the tensor and removing the original, # categorical encoded columns x = du.embedding.embedding_bag_pipeline(x, self.embed_layers, self.embed_features, model_forward=True, inplace=True) # Make sure that the input data is of type float x = x.float() # Get the batch size (might not be always the same) batch_size = x.shape[0] # Isolate the delta_ts feature delta_ts = x[:, :, self.delta_ts_col].clone() left_to_delta = x[:, :, :self.delta_ts_col] right_to_delta = x[:, :, self.delta_ts_col+1:] x = torch.cat([left_to_delta, right_to_delta], 2) if hidden_state is None: # Reset the LSTM hidden state. Must be done before you run a new # batch. Otherwise the LSTM will treat a new batch as a continuation # of a sequence. self.hidden = self.init_hidden(batch_size) else: # Use the specified hidden state self.hidden = hidden_state # Make sure that the data is input in the format of (timestamp x sample x features) x = x.permute(1, 0, 2) # Get the outputs and hidden states from the RNN layer(s) if self.n_rnn_layers == 1: if self.bidir is False: # Since there's only one layer and the model is not bidirectional, # we only need one set of hidden state hidden_state = (self.hidden[0][0], self.hidden[1][0]) # Run the RNN layer on the data rnn_output, self.hidden = self.rnn_layer(x, hidden_state, delta_ts=delta_ts) else: # List[RNNState]: One state per layer output_states = (torch.zeros(self.hidden[0].shape), torch.zeros(self.hidden[1].shape)) i = 0 # The first RNN layer's input is the original input; # the following layers will use their respective previous layer's # output as input rnn_output = x for rnn_layer in self.rnn_layers: hidden_state = (self.hidden[0][i], self.hidden[1][i]) # Run the RNN layer on the data rnn_output, out_state = rnn_layer(rnn_output, hidden_state, delta_ts=delta_ts) # Apply the dropout layer except the last layer if i < self.n_rnn_layers - 1: rnn_output = self.dropout(rnn_output) output_states[0][i] = out_state[0] output_states[1][i] = out_state[1] i += 1 # Update the hidden states variable self.hidden = output_states # Reconvert the data to the format of (sample x timestamp x features) rnn_output = rnn_output.permute(1, 0, 2) # Flatten RNN output to fit into the fully connected layer flat_rnn_output = rnn_output.contiguous().view(-1, self.n_hidden * (1 + self.bidir)) # Apply the final fully connected layer output = self.fc(flat_rnn_output) if prob_output is True: # Get the outputs in the form of probabilities if self.n_outputs == 1: output = self.activation(output) else: # Normalize outputs on their last dimension output = self.activation(output, dim=len(output.shape)-1) if get_hidden_state is True: return output, self.hidden else: return output class MF1LSTM(BaseRNN): def __init__(self, n_inputs, n_hidden, n_outputs, n_rnn_layers=1, p_dropout=0, embed_features=None, n_embeddings=None, embedding_dim=None, bidir=False, padding_value=999999, delta_ts_col=None, elapsed_time='small', no_small_delta=True): if delta_ts_col is None: if embed_features is None: self.delta_ts_col = n_inputs else: # Have into account the new embedding columns that will be added, # as well as the removal of the originating categorical columns # NOTE: This only works assuming that the delta_ts column is the # last one on the dataframe, standing to the left of all the # embedding features if all([isinstance(feature, int) for feature in embed_features]): self.delta_ts_col = n_inputs - len(embed_features) elif (all([isinstance(feat_list, list) for feat_list in embed_features]) and all([isinstance(feature, int) for feat_list in embed_features for feature in feat_list])): self.delta_ts_col = n_inputs for i in range(len(embed_features)): self.delta_ts_col = self.delta_ts_col - len(embed_features[i]) else: self.delta_ts_col = delta_ts_col self.elapsed_time = elapsed_time self.no_small_delta = no_small_delta MF1LSTMCell_prtl = partial(MF1LSTMCell, delta_ts_col=self.delta_ts_col, elapsed_time=self.elapsed_time, no_small_delta=self.no_small_delta) if bidir is True: rnn_module = lambda *cell_args: BidirTLSTMLayer(MF1LSTMCell_prtl, *cell_args) else: rnn_module = lambda *cell_args: TLSTMLayer(MF1LSTMCell_prtl, *cell_args) super(MF1LSTM, self).__init__(rnn_module=rnn_module, n_inputs=n_inputs, n_hidden=n_hidden, n_outputs=n_outputs, n_rnn_layers=n_rnn_layers, p_dropout=p_dropout, embed_features=embed_features, n_embeddings=n_embeddings, embedding_dim=embedding_dim, bidir=bidir, is_lstm=True, padding_value=padding_value) def forward(self, x, hidden_state=None, get_hidden_state=False, prob_output=True, already_embedded=False): if self.embed_features is not None and already_embedded is False: # Run each embedding layer on each respective feature, adding the # resulting embedding values to the tensor and removing the original, # categorical encoded columns x = du.embedding.embedding_bag_pipeline(x, self.embed_layers, self.embed_features, model_forward=True, inplace=True) # Make sure that the input data is of type float x = x.float() # Get the batch size (might not be always
(with the outcomes ordered to be the same as the wires in the circuit). """ if isinstance(structure, str): assert(structure == '1Q'), "The only default `structure` option is the string '1Q'" structure = tuple([(q,) for q in pspec.qubit_labels]) n = pspec.number_of_qubits else: assert(isinstance(structure, list) or isinstance(structure, tuple) ), "If not a string, `structure` must be a list or tuple." qubits_used = [] for qubit_labels in structure: assert(isinstance(qubit_labels, list) or isinstance( qubit_labels, tuple)), "SubsetQs must be a list or a tuple!" qubits_used = qubits_used + list(qubit_labels) assert(len(set(qubits_used)) == len(qubits_used) ), "The qubits in the tuples/lists of `structure must all be unique!" assert(set(qubits_used).issubset(set(pspec.qubit_labels)) ), "The qubits to benchmark must all be in the ProcessorSpec `pspec`!" n = len(qubits_used) # Creates a empty circuit over no wires circuit = _cir.Circuit(num_lines=0, editable=True) s_rc_dict = {} p_rc_dict = {} circuit_dict = {} if isinstance(length, int): length_per_subset = [length for i in range(len(structure))] else: length_per_subset = length assert(len(length) == len(structure)), "If `length` is a list it must be the same length as `structure`" for ssQs_ind, qubit_labels in enumerate(structure): qubit_labels = tuple(qubit_labels) # Sample a random circuit of "native gates" over this set of qubits, with the # specified sampling. subset_circuit = random_circuit(pspec=pspec, length=length_per_subset[ssQs_ind], qubit_labels=qubit_labels, sampler=sampler, samplerargs=samplerargs, addlocal=addlocal, lsargs=lsargs) circuit_dict[qubit_labels] = subset_circuit # find the symplectic matrix / phase vector this circuit implements. s_rc_dict[qubit_labels], p_rc_dict[qubit_labels] = _symp.symplectic_rep_of_clifford_circuit( subset_circuit, pspec=pspec) # Tensors this circuit with the current circuit circuit.tensor_circuit(subset_circuit) circuit.done_editing() # Find the expected outcome of the circuit. s_out, p_out = _symp.symplectic_rep_of_clifford_circuit(circuit, pspec=pspec) s_inputstate, p_inputstate = _symp.prep_stabilizer_state(n, zvals=None) s_outstate, p_outstate = _symp.apply_clifford_to_stabilizer_state(s_out, p_out, s_inputstate, p_inputstate) idealout = [] for qubit_labels in structure: subset_idealout = [] for q in qubit_labels: qind = circuit.line_labels.index(q) measurement_out = _symp.pauli_z_measurement(s_outstate, p_outstate, qind) subset_idealout.append(measurement_out[1]) idealout.append(tuple(subset_idealout)) idealout = tuple(idealout) return circuit, idealout def _get_setting(l, circuitindex, substructure, depths, circuits_per_length, structure): lind = depths.index(l) settingDict = {} for s in structure: if s in substructure: settingDict[s] = len(depths) + lind * circuits_per_length + circuitindex else: settingDict[s] = lind return settingDict def simultaneous_random_circuits_experiment(pspec, depths, circuits_per_length, structure='1Q', sampler='Qelimination', samplerargs=[], addlocal=False, lsargs=[], set_isolated=True, setcomplement_isolated=False, descriptor='A set of simultaneous random circuits', verbosity=1): """ Generates a set of simultaneous random circuits of the specified depths. Parameters ---------- pspec : ProcessorSpec The ProcessorSpec for the device that the circuit is being sampled for, which defines the "native" gate-set and the connectivity of the device. The returned circuit will be over the gates in `pspec`, and will respect the connectivity encoded by `pspec`. Note that `pspec` is always handed to the sampler, as the first argument of the sampler function (this is only of importance when not using an in-built sampler). depths : int Todo : update (needs to include list option) The set of depths for the circuits. circuits_per_length : int The number of (possibly) different circuits sampled at each length. structure : str or tuple. Defines the "structure" of the simultaneous circuit. TODO : more details. sampler : str or function, optional If a string, this should be one of: {'pairingQs', 'Qelimination', 'co2Qgates', 'local'}. Except for 'local', this corresponds to sampling layers according to the sampling function in rb.sampler named circuit_layer_by* (with * replaced by 'sampler'). For 'local', this corresponds to sampling according to rb.sampler.circuit_layer_of_oneQgates. If `sampler` is a function, it should be a function that takes as the first argument a ProcessorSpec, and returns a random circuit layer as a list of gate Label objects. Note that the default 'Qelimination' is not necessarily the most useful in-built sampler, but it is the only sampler that requires no parameters beyond the ProcessorSpec *and* works for arbitrary connectivity devices. See the docstrings for each of these samplers for more information. samplerargs : list, optional A list of arguments that are handed to the sampler function, specified by `sampler`. The first argument handed to the sampler is `pspec`, the second argument is `qubit_labels`, and `samplerargs` lists the remaining arguments handed to the sampler. This is not optional for some choices of `sampler`. addlocal : bool, optional Whether to follow each layer in the "core" circuits, sampled according to `sampler` with a layer of 1-qubit gates. lsargs : list, optional Only used if addlocal is True. A list of optional arguments handed to the 1Q gate layer sampler circuit_layer_by_oneQgate(). Specifies how to sample 1Q-gate layers. set_isolated : bool, optional Todo setcomplement_isolated : bool, optional Todo descriptor : str, optional A description of the experiment being generated. Stored in the output dictionary. verbosity : int, optional If > 0 the number of circuits generated so far is shown. Returns ------- dict A dictionary containing the generated random circuits, the error-free outputs of the circuit, and the specification used to generate the circuits. The keys are: - 'circuits'. A dictionary of the sampled circuits. The circuit with key(l,k) is the kth circuit at length l. - 'probs'. A dictionary of the error-free *marginalized* probabilities for the "1" outcome of a computational basis measurement at the end of each circuit, with the standard input state. The ith element of this tuple corresponds to this probability for the qubit on the ith wire of the output circuit. - 'qubitordering'. The ordering of the qubits in the 'target' tuples. - 'spec'. A dictionary containing all of the parameters handed to this function, except `pspec`. This then specifies how the circuits where generated. """ experiment_dict = {} experiment_dict['spec'] = {} experiment_dict['spec']['depths'] = depths experiment_dict['spec']['circuits_per_length'] = circuits_per_length experiment_dict['spec']['sampler'] = sampler experiment_dict['spec']['samplerargs'] = samplerargs experiment_dict['spec']['addlocal'] = addlocal experiment_dict['spec']['lsargs'] = lsargs experiment_dict['spec']['descriptor'] = descriptor experiment_dict['spec']['createdby'] = 'extras.rb.sample.simultaneous_random_circuits_experiment' if isinstance(structure, str): assert(structure == '1Q'), "The only default `structure` option is the string '1Q'" structure = tuple([(q,) for q in pspec.qubit_labels]) else: assert(isinstance(structure, list) or isinstance(structure, tuple)), \ "If not a string, `structure` must be a list or tuple." qubits_used = [] for qubit_labels in structure: assert(isinstance(qubit_labels, list) or isinstance( qubit_labels, tuple)), "SubsetQs must be a list or a tuple!" qubits_used = qubits_used + list(qubit_labels) assert(len(set(qubits_used)) == len(qubits_used)), \ "The qubits in the tuples/lists of `structure must all be unique!" assert(set(qubits_used).issubset(set(pspec.qubit_labels))), \ "The qubits to benchmark must all be in the ProcessorSpec `pspec`!" experiment_dict['spec']['structure'] = structure experiment_dict['circuits'] = {} experiment_dict['probs'] = {} experiment_dict['settings'] = {} for lnum, l in enumerate(depths): if verbosity > 0: print('- Sampling {} circuits at length {} ({} of {} depths)'.format(circuits_per_length, l, lnum + 1, len(depths))) print(' - Number of circuits sampled = ', end='') for j in range(circuits_per_length): circuit, idealout = simultaneous_random_circuit(pspec, l, structure=structure, sampler=sampler, samplerargs=samplerargs, addlocal=addlocal, lsargs=lsargs) if (not set_isolated) and (not setcomplement_isolated): experiment_dict['circuits'][l, j] = circuit experiment_dict['probs'][l, j] = idealout experiment_dict['settings'][l, j] = { s: len(depths) + lnum * circuits_per_length + j for s in tuple(structure)} else: experiment_dict['circuits'][l, j] = {} experiment_dict['probs'][l, j] = {} experiment_dict['settings'][l, j] = {} experiment_dict['circuits'][l, j][tuple(structure)] = circuit experiment_dict['probs'][l, j][tuple(structure)] = idealout experiment_dict['settings'][l, j][tuple(structure)] = _get_setting(l, j, structure, depths, circuits_per_length, structure) if set_isolated: for subset_ind, subset in enumerate(structure): subset_circuit = circuit.copy(editable=True) #print(subset) for q in circuit.line_labels: if q not in subset: #print(subset_circuit, q) subset_circuit.replace_with_idling_line(q) subset_circuit.done_editing() experiment_dict['circuits'][l, j][(tuple(subset),)] = subset_circuit experiment_dict['probs'][l, j][(tuple(subset),)] = idealout[subset_ind] # setting = {} # for s in structure: # if s in subset: # setting[s] = len(depths) + lnum*circuits_per_length + j # else: # setting[s] = lnum experiment_dict['settings'][l, j][(tuple(subset),)] = _get_setting(l, j, (tuple(subset),), depths, circuits_per_length, structure) # print(subset) # print(_get_setting(l, j, subset, depths, circuits_per_length, structure)) if setcomplement_isolated: for subset_ind, subset in enumerate(structure): subsetcomplement_circuit = circuit.copy(editable=True) for q in circuit.line_labels: if q in subset: subsetcomplement_circuit.replace_with_idling_line(q) subsetcomplement_circuit.done_editing() subsetcomplement = list(_copy.copy(structure)) subsetcomplement_idealout = list(_copy.copy(idealout)) del subsetcomplement[subset_ind] del subsetcomplement_idealout[subset_ind] subsetcomplement = tuple(subsetcomplement) subsetcomplement_idealout = tuple(subsetcomplement_idealout) experiment_dict['circuits'][l, j][subsetcomplement] = subsetcomplement_circuit experiment_dict['probs'][l, j][subsetcomplement] = subsetcomplement_idealout # for s in structure: # if s in subsetcomplement: # setting[s] = len(depths) + lnum*circuits_per_length + j # else: # setting[s] = lnum experiment_dict['settings'][l, j][subsetcomplement] = _get_setting(l, j, subsetcomplement, depths, circuits_per_length, structure) if verbosity > 0: print(j + 1, end=',') if verbosity >
<filename>chapter/5/problems_5_14_x.py from resources.GF2 import one from resources.vecutil import list2vec from resources.vec import Vec from math import pi, sqrt from resources.vecutil import zero_vec def zero_vec_n(n): return zero_vec(set(list(range(n)))) def lin_comb_sum(scalars, vectors): return sum([s*v for s, v in zip(scalars, vectors)]) def problem_5_14_1(a, b, c): """ Multiply the vectors in V span by the scalars a, b, c :param a: scalar :param b: scalar :param c: scalar :return: sum of the span vectors multiplied by a, b and c >>> problem_5_14_1(1,1,0) == list2vec([2,1,4,1]) # a True >>> problem_5_14_1(1/2, 1, 1) == list2vec([1,1,1,0]) # b True >>> problem_5_14_1(0,1,-1) == list2vec([0,1,1,2]) # c True """ V = [list2vec([2,0,4,0]), list2vec([0,1,0,1]), list2vec([0,0,-1,-1])] #return a * V[0] + b * V[1] + c * V[2] return lin_comb_sum([a, b, c], V) def problem_5_14_2(a, b, c): """ Multiply the vectors in V span by the scalars a, b, c :param a: scalar :param b: scalar :param c: scalar :return: sum of the span vectors multiplied by a, b and c >>> problem_5_14_2(3,-1,1) == list2vec([2,1,4]) # a True >>> problem_5_14_2(1/2,-3/2,1) == list2vec([1,1,1]) # b True >>> problem_5_14_2(1/2,-11/2,4) == list2vec([5,4,3]) # c True >>> problem_5_14_2(1,-2,1) == list2vec([0,1,1]) # d True """ V = [list2vec([0,0,1]),list2vec([2,0,1]),list2vec([4,1,2])] # return a * V[0] + b * V[1] + c * V[2] return lin_comb_sum([a, b, c], V) def problem_5_14_3(a, b, c, d): """ Multiply the vectors in V span by the scalars a, b, c and d :param a: scalar :param b: scalar :param c: scalar :param d: scalar :return: sum of the span vectors multiplied by a, b, c and d >>> problem_5_14_3(one,0,one,0) == list2vec([one,one,0,0]) # a True >>> problem_5_14_3(one,0,0,one) == list2vec([one,0,one,0]) # b True >>> problem_5_14_3(one,one,0,one) == list2vec([one,0,0,0]) # c True """ V = [list2vec([0,one,0,one]), list2vec([0,0,one,0]), list2vec([one,0,0,one]), list2vec([one,one,one,one])] # return a * V[0] + b * V[1] + c * V[2] + d * V[3] return lin_comb_sum([a, b, c, d], V) D_5_14_4 = {'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'} V_5_14_4 = { 'v1': Vec(D_5_14_4, {'a':one, 'b':one}), 'v2': Vec(D_5_14_4, {'b':one, 'c':one}), 'v3': Vec(D_5_14_4, {'a':one, 'd':one}), 'v4': Vec(D_5_14_4, {'b':one, 'e':one}), 'v5': Vec(D_5_14_4, {'c':one, 'e':one}), 'v6': Vec(D_5_14_4, {'d':one, 'e':one}), 'v7': Vec(D_5_14_4, {'f':one, 'h':one}), 'v8': Vec(D_5_14_4, {'g':one, 'h':one}) } def problem_5_14_4(edges): """ :param scalars: set of edges to follow :return: linear combination of scalars * V >>> problem_5_14_4({'v5', 'v6'}) == Vec(D_5_14_4, {'c': one, 'd': one}) True >>> problem_5_14_4({'v7', 'v8'}) == Vec(D_5_14_4, {'f': one, 'g': one}) True >>> problem_5_14_4({'v3', 'v6'}) == Vec(D_5_14_4, {'a': one, 'e': one}) True >>> problem_5_14_4({'v1', 'v3'}) == Vec(D_5_14_4, {'b': one, 'd': one}) True """ V = V_5_14_4 return sum([one * V[edge] for edge in edges]) zero_vec_3 = zero_vec_n(3) def problem_5_14_5(scalars, vectors): """ Linear combination of scalars and vectors :param scalars: n list of scalars :param vectors: n list of vectors :return: linear combination of scalar[i] * vector[i] >>> a_vectors = [list2vec([1,2,0]), list2vec([2,4,1]), list2vec([0,0,-1])] >>> problem_5_14_5([-2,1,1], a_vectors) == zero_vec_3 True >>> b_vectors = [list2vec([2,4,0]), list2vec([8,16,4]), list2vec([0,0,7])] >>> problem_5_14_5([-4, 1, -4/7], b_vectors) == zero_vec_3 True >>> c_vectors = [list2vec([0,0,5]), list2vec([1,34,2]), list2vec([123,456,789]), list2vec([-3,-6,0]), list2vec([1,2,0.5])] >>> problem_5_14_5([-3/10,0,0,1,3], c_vectors) == zero_vec_3 True """ return lin_comb_sum(scalars, vectors) def problem_5_14_6(scalars, vectors): """ Linear combination of scalars and vectors :param scalars: n list of scalars :param vectors: n list of vectors :return: linear combination of scalar[i] * vector[i] >>> a_vectors = [list2vec([1,2,3]), list2vec([4,5,6]), list2vec([1,1,1])] >>> problem_5_14_6([-1,1,-3], a_vectors) == zero_vec_3 True >>> b_vectors = [list2vec([0,-1,0,-1]), list2vec([pi, pi, pi, pi]), list2vec([-sqrt(2), sqrt(2), -sqrt(2), sqrt(2)])] >>> problem_5_14_6([2*sqrt(2), sqrt(2)/pi, 1], b_vectors) == zero_vec_n(4) True >>> c_vectors = [list2vec([1,-1,0,0,0]), list2vec([0,1,-1,0,0]), list2vec([0,0,1,-1,0]), list2vec([0,0,0,1,-1]), list2vec([-1,0,0,0,1])] >>> problem_5_14_6([1,1,1,1,1], c_vectors) == zero_vec_n(5) True """ return lin_comb_sum(scalars, vectors) def problem_5_14_7(scalars, vectors): """ >>> u = list2vec([3, 9, 6, 5, 5]) >>> v = list2vec([4, 10, 6, 6, 8]) >>> w = list2vec([1, 1, 0, 1, 3]) >>> problem_5_14_6([-1, 1], [u, v]) == w True """ return lin_comb_sum(scalars, vectors) def problem_5_14_8(scalars, vectors): """ >>> u = list2vec([1,1,0,0]) >>> v = list2vec([0,1,1,0]) >>> w = list2vec([0,0,1,1]) >>> x = list2vec([1,0,0,1]) >>> problem_5_14_8([1, -1, 1], [u, v, w]) == x True >>> problem_5_14_8([-1, 1, 1], [u, v, x]) == w True >>> problem_5_14_8([1, 1, -1], [u, w, x]) == v True >>> problem_5_14_8([1, -1, 1], [v, w, x]) == u True """ return lin_comb_sum(scalars, vectors) def list_of_lists_to_vecs(list_of_lists): return [list2vec(l) for l in list_of_lists] def problem_5_14_9(scalars, vectors): """ Problem c cutoff in Kindle edition. Using value from Coursera course: https://github.com/jimcarson/Coursera/blob/master/CodingTheMatrix/hw12_basis_problems/The_Basis_problems.py#L118 >>> zero_vec_4 = zero_vec_n(4) >>> a_vectors = list_of_lists_to_vecs([[one, one, one, one], [one, 0, one, 0], [0, one, one, 0], [0, one, 0, one]]) >>> problem_5_14_9([one, one, 0, one], a_vectors) == zero_vec_4 True >>> b_vectors = list_of_lists_to_vecs([[0, 0, 0, one], [0, 0, one, 0], [one, one, 0, one], [one, one, one, one]]) >>> problem_5_14_9([0, one, one, one], b_vectors) == zero_vec_4 True >>> c_vectors = list_of_lists_to_vecs([[one,one,0,one,one], [0,0,one,0,0], [0,0,one,one,one], [one,0,one,one,one], [one,one,one,one,one]]) >>> problem_5_14_9([one, one, 0, 0, one], c_vectors) == list2vec([0, 0, 0, 0, 0]) True """ return lin_comb_sum(scalars, vectors) # a b c d e f g h # v1 one one # v2 one one # v3 one one # v4 one one # v5 one one # v6 one one # v7 one one # v8 one one def problem_5_4_10(scalars, vectors): """ >>> zero_vec_D_5_14_4 = zero_vec(D_5_14_4) >>> a_vectors = [V_5_14_4[key] for key in ['v1', 'v2', 'v3', 'v4', 'v5']] >>> problem_5_4_10([0, one, 0, one, one], a_vectors) == zero_vec_D_5_14_4 True >>> b_vectors = [V_5_14_4[key] for key in ['v1', 'v2', 'v3', 'v4', 'v5', 'v7', 'v8']] >>> problem_5_4_10([0, one, 0, one, one, 0, 0], b_vectors) == zero_vec_D_5_14_4 True >>> c_vectors = [V_5_14_4[key] for key in ['v1', 'v2', 'v3', 'v4', 'v6']] >>> problem_5_4_10([one, 0, one, one, one], c_vectors) == zero_vec_D_5_14_4 True >>> d_vectors = [V_5_14_4[key] for key in ['v1', 'v2', 'v3', 'v5', 'v6', 'v7', 'v8']] >>> problem_5_4_10([one, one, one, one, one, 0, 0], d_vectors) == zero_vec_D_5_14_4 True """ return lin_comb_sum(scalars, vectors) S_5_14_11 = {ix:list2vec(l) for ix, l in enumerate([ # w [1, 0, 0, 0, 0], # 0 [0, 1, 0, 0, 0], # 1 [0, 0, 1, 0, 0], # 2 [0, 0, 0, 1, 0], # 3 [0, 0, 0, 0, 1] # 4 ])} def problem_5_14_11(scalars, w, z): """ The Exchange Lemma is defined in 5.11 :param scalars: list of ints :param w: vector key in S, but not in A, to replace with z :param z: vector to replace vector in position w :return: linear combination of scalars over the union of S and {z} minus {w} >>> >>> >>> a_z = list2vec([1, 1, 1, 1, 1]) >>> a_w = 4 >>> problem_5_14_11([-1, -1, -1, -1, 1], a_w, a_z) == S_5_14_11[a_w] # [0, 0, 0, 0, 1] True >>> b_z = list2vec([0, 1, 0, 1, 0]) >>> b_w = 3 >>> problem_5_14_11([0, -1, 0, 1, 0], b_w, b_z) == S_5_14_11[b_w] # [0, 0, 0, 1, 0] True >>> c_z = list2vec([1, 0, 1, 0, 1]) >>> c_w = 2 >>> problem_5_14_11([-1, 0, 1, 0, -1], c_w, c_z) == S_5_14_11[c_w] # [0, 0, 1, 0, 0] True """ S = S_5_14_11.copy() A = {0, 1} assert w in S assert w not in A S[w] = z return lin_comb_sum(scalars, [S[key] for key in sorted(S.keys())]) # a b c d e f g h # v1 one one # v2 one one # v3 one one # v4 one one # v5 one one # v6 one one # v7 one one # v8 one one def problem_5_14_12(scalars, w, z, A, S=None): """ :param scalars: S len list of scalars to multiple S by :param w: key in S to replace with z :param z: vector to replace key w in S with :param A: set of keys in S to retain :param S: dictionary of vectors :return: linear combination of scalars * S in dictionary key order >>> a_A = {'v1', 'v4'} >>> a_w = 'v6' >>> a_z = Vec(D_5_14_4, {'d': one, 'e': one}) >>> problem_5_14_12([0, 0, 0, 0, 0, one, 0, 0], a_w, a_z, a_A) == V_5_14_4[a_w] # {'d': one, 'e': one} True >>> b_A = {'v2', 'v3'} >>> b_w = 'v5' >>> b_z = Vec(D_5_14_4, {'c': one, 'd': one}) >>> problem_5_14_12([0, one, 0, one, 0, 0, 0, 0], b_w, b_z, b_A) ==
# TODO # Add state callbacks - Try to attach to post fork loop #import gc import signal import asyncio import traceback import socket import os, sys, random, mrpacker import multiprocessing import faulthandler import functools from wsgiref.handlers import format_date_time import inspect, copy #from inspect import signature #getmodulename, isawaitable, signature, stack #from prof import profiler_start,profiler_stop import uuid, http.cookies import mrhttp from mrhttp import Protocol from mrhttp.request import Request from mrhttp import Response from mrhttp import router from mrhttp import MemcachedClient from mrhttp import MrqClient from mrhttp import MrcacheClient try: import mrjson as json except ImportError: try: import ujson as json except: pass #import mrmemcache #import uvloop #asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) signames = { int(v): v.name for k, v in signal.__dict__.items() if isinstance(v, signal.Signals)} class Application(mrhttp.CApp): _instance = None def __new__(cls, *args, **kwargs): if not cls._instance: cls._instance = super(Application, cls).__new__(cls, *args, **kwargs) return cls._instance def __init__(self): self._loop = None self._connections = set() self._error_handlers = [] self._request_extensions = {} self._log_request = None self._protocol_factory = Protocol self._debug = False self.request = Request() self.requests = None self.response = Response() self.router = router.Router() self.tasks = [] self.config = {} self.listeners = { "at_start":[], "at_end":[], "after_start":[]} self._mc = None self._mrq = None self._mrc = None self.session_backend = "memcached" self.uses_session = False self.uses_mrq = False self.err404 = "<html><head><title>404 Not Found</title></head><body><h1>Not Found</h1><p>The requested page was not found</p></body></html>" def setup(self, log_request=None, protocol_factory=None, debug=False): self._log_request = log_request self._protocol_factory = protocol_factory or Protocol self._debug = debug @property def loop(self): if not self._loop: self._loop = asyncio.get_event_loop() return self._loop def expand_requests(self): for x in range(len(self.requests)): self.requests.append(Request()) def prehandler(self): pass # Decorator def on(self, event): """Call the decorated function on one of the following events: ["at_start","at_end", "after_start"] """ def decorator(func): self.listeners[event].append(func) return func return decorator def trigger_event(self, event): for func in self.listeners[event]: result = func() if inspect.isawaitable(result): self.loop.run_until_complete(result) # Decorator def route(self, uri, methods=["GET"], options=[], _type="html"): if "session" in options: self.uses_session = True if "mrq" in options: self.uses_mrq = True if not uri.startswith('/'): uri = '/' + uri #params = {} #params["methods"] = methods #params["options"] = options #params["type"] = _type #params["mrq"] = None #for o in options: #if o.startswith("mrq"): # #self.uses_mrq = True #if self._mrq == None: #srvs = self.config.get("mrq", None) #print(srvs) #if type(srvs) != list or type(srvs[0]) != tuple or len(srvs) == 0: #print("When using MrQ app.config['mrq'] must be set to a list of (host,port) tuple pairs. Exiting") #exit(1) #self._mrq = [] #if type(srvs) == list and type(srvs[0]) == list: #for s in srvs: #self._mrq.append( MrqClient( s, self.loop) ) #else: #self._mrq.append( MrqClient( srvs, self.loop) ) #if o == "mrq": #o = "mrq0" #l = [] #try: #for n in o[3:]: #l.append( self._mrq[int(n)] ) #params["mrq"] = l #except: #print("Error mrq route specifies a cluster that doesn't exist") #print("uri:", uri, "mrq", o) #exit(1) def response(func): self.router.add_route( func, uri, methods, options, _type ) #self.router.add_route( func, uri, params ) return func return response def add_routes(self, rs): for r in rs: params = {} params["methods"] = r[2] params["options"] = r[3] params["type"] = r[4] self.router.add_route( r[0], r[1], params ) def _get_idle_and_busy_connections(self): return \ [c for c in self._connections if c.pipeline_empty], \ [c for c in self._connections if not c.pipeline_empty] async def drain(self): #await asyncio.sleep(0.1) idle, busy = self._get_idle_and_busy_connections() for c in idle: c.transport.close() if idle or busy: print('Draining connections...') else: return if idle: print('{} idle connections closed immediately'.format(len(idle))) if busy: print('{} connections busy, read-end closed'.format(len(busy))) for x in range(5, 0, -1): await asyncio.sleep(1) idle, busy = self._get_idle_and_busy_connections() for c in idle: c.transport.close() if not busy: break else: print( "{} seconds remaining, {} connections still busy" .format(x, len(busy))) _, busy = self._get_idle_and_busy_connections() if busy: print('Forcefully killing {} connections'.format(len(busy))) for c in busy: c.pipeline_cancel() #await asyncio.sleep(2.3) def extend_request(self, handler, *, name=None, property=False): if not name: name = handler.__name__ self._request_extensions[name] = (handler, property) def serve(self, *, sock, host, port, loop, run_async=False): faulthandler.enable() #pr = cProfile.Profile() #pr.enable() #cProfile.runctx('test(num)', globals(), locals(), 'prof%d.prof' %num) #sock.setsockopt(socket.SOL_SOCKET, socket.SO_OOBINLINE, 0) #TODO uvloop .9.1 sets this #profiler_start(b"mrhttp.log") if not loop: loop = self.loop asyncio.set_event_loop(loop) else: self._loop = loop self.session_backend_type = 1 if self.session_backend == "mrworkserver": self.session_backend_type = 2 elif self.session_backend == "mrcache": self.session_backend_type = 3 self.requests = [Request() for x in range(128)] self.cinit() self.router.finalize_routes() self.router.setupRoutes() self._appStart() if self.uses_mrq: mrqconf = self.config.get("mrq", None) if not mrqconf: print("When using MrQ app.config['mrq'] must be set. Exiting") exit(1) srvs = self.config.get("mrq", None) if type(srvs) != list or len(srvs) == 0 or type(srvs[0]) != tuple: print("When using MrQ app.config['mrq'] must be set to a list of (host,port) tuple pairs. Exiting") exit(1) self._mrq = MrqClient( srvs, self.loop) if self.uses_session: self.setupSessionClient() self.trigger_event("at_start") server_coro = loop.create_server( lambda: self._protocol_factory(self), sock=sock) if run_async: return server_coro # Try except here? server = loop.run_until_complete(server_coro) print('Accepting connections on http://{}:{}'.format(host, port)) self.trigger_event("after_start") loop.add_signal_handler(signal.SIGTERM, loop.stop) #loop.add_signal_handler(signal.SIGINT, loop.stop) try: loop.run_forever() except KeyboardInterrupt: pass finally: loop.run_until_complete(loop.shutdown_asyncgens()) loop.run_until_complete(self.drain()) self._connections.clear() server.close() loop = asyncio.get_event_loop() loop.run_until_complete(server.wait_closed()) self.trigger_event("at_end") loop.close() for r in self.requests: r.cleanup() self.requests = None #for ref in gc.get_referrers(self.requests[0]): #if type(ref) == list: #print("list") #else: #print(ref) #print("DELME refcnt ", sys.getrefcount(self.requests[0])) #r = self.requests[0] #print("id requests ", id(self.requests)) #rs = self.requests #self.requests = None #gc.collect() #print (gc.get_referrers(rs)) #print("DELME refcnt ", sys.getrefcount(r)) #for ref in gc.get_referrers(r): #if type(ref) == list: #print("list") #print("id ref ", id(ref)) #else: #print(ref) # Update the response date string every few seconds def updateDateString(self): self.updateDate( format_date_time(None) ) self.loop.call_later(10, self.updateDateString) def _appStart(self): self.loop.call_soon(self.updateDateString) def _run(self, *, host, port, num_workers=None, debug=None): self._debug = debug or self._debug if self._debug and not self._log_request: self._log_request = self._debug sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind((host, port)) os.set_inheritable(sock.fileno(), True) workers = set() terminating = False def stop(sig, frame): nonlocal terminating #if reloader_pid and sig == signal.SIGHUP: #print('Reload request received') if not terminating: terminating = True print('Termination request received') for worker in workers: worker.terminate() def appstop(): nonlocal terminating terminating = True for worker in workers: worker.terminate() self.stop = appstop signal.signal(signal.SIGTERM, stop) #signal.signal(signal.SIGHUP, stop) for _ in range(num_workers or 1): worker = multiprocessing.Process( target=self.serve, kwargs=dict(sock=sock, host=host, port=port, loop=None)) worker.daemon = True worker.start() workers.add(worker) sock.close() # Only the kids access the socket for worker in workers: try: worker.join() print("worker stopped") if worker.exitcode > 0: print('Worker exited with code {}'.format(worker.exitcode)) elif worker.exitcode < 0: try: signame = signames[-worker.exitcode] except KeyError: print( 'Worker crashed with unknown code {}!' .format(worker.exitcode)) else: print('Worker crashed on signal {}!'.format(signame)) except KeyboardInterrupt: pass def run(self, host='0.0.0.0', port=8080, *, cores=None, debug=False): # TODO reloader? self._run( host=host, port=port, num_workers=cores, debug=debug) def start_server(self, *, host='0.0.0.0', port=8080, loop=None): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind((host, port)) os.set_inheritable(sock.fileno(), True) if not loop: loop = self.loop return self.serve(sock=sock, host=host, port=port, loop=loop, run_async=True) def logoutUser(self, request): c = http.cookies.SimpleCookie() c['mrsession'] = "" c['mrsession']['max-age'] = 0 request.response.cookies = c # TODO LOL def setUserSessionAndCookies(self, request, user_id, user, cookies=http.cookies.SimpleCookie(), expiration=12*30*24*60*60, json=False ): if self.session_backend_type == 1 and self._mc == None: raise ValueError("setUserSession called without memcached being setup") if self.session_backend_type == 2 and self._mrq== None: raise ValueError("setUserSession called without mrworkserver being setup") if self.session_backend_type == 3 and self._mrc== None: raise ValueError("setUserSession called without mrcache being setup") a = random.getrandbits(64) b = random.getrandbits(64) c = random.getrandbits(64) k = mrhttp.to64(a) + mrhttp.to64(b) + mrhttp.to64(c) k = k[:32] while len(k) < 32: k += mrhttp.to64( random.getrandbits(6) ) userk = "" numbits = user_id.bit_length() if numbits == 0: numbits += 1 while numbits > 0: userk = mrhttp.to64( user_id & 0x1F ) + userk user_id >>= 5 numbits -= 5 userk = userk + mrhttp.to64( 0x20 | random.getrandbits(5) ) skey = userk + k[len(userk):] # TODO We could have user id be optional and do this if not given #skey = uuid.uuid4().hex # Send the session cookie back to the user c = cookies c['mrsession'] = skey c['mrsession']['path'] = '/' c['mrsession']['expires'] = expiration request.response.cookies = c if self.session_backend_type == 1: # Memcached if json: self._mc.set( skey, json.dumpb(user) ) else: self._mc.set( skey, mrpacker.pack(user) ) elif self.session_backend_type == 2: # MrWorkServer self._mrq.set( user_id, mrpacker.pack( [skey, user]) ) elif self.session_backend_type == 3: # MrCache self._mrc.set( skey, mrpacker.pack( user ) ) return skey def setupSessionClient(self): if self.session_backend == "memcached": srvs = self.config.get("memcache", None) if type(srvs) != list
<reponame>dhoebbel/USIO-Automation<gh_stars>0 #import dependencies import pandas as pd import numpy as np import datetime import math #read in CSVs full_lens = "Dave Files (raw)//2018 H1 Raw Full Lens.csv" buyer_lens = "Dave Files (raw)//2018 H1 Final Buyer Lens.csv" region_map = "region_map.csv" josh_volumes = "2018Q2_Josh_Volume.csv" ncreif = "ncreif_v1.csv" full_df = pd.read_csv(full_lens, encoding = "ISO-8859-1") buyer_df = pd.read_csv(buyer_lens, encoding = "ISO-8859-1") region_map_df = pd.read_csv(region_map, encoding = "ISO-8859-1") josh_volumes_df = pd.read_csv(josh_volumes, encoding = "ISO-8859-1") cap_rates = pd.read_csv(ncreif, encoding = "ISO-8859-1") ## Data Transformation # NON Portfolio Datafile #convert data to numeric for parsing full_df.apply(pd.to_numeric,errors = 'ignore') buyer_df.apply(pd.to_numeric,errors = 'ignore') #create quarter column full_df['Quarter'] = full_df['Quarter of transaction'].str[5:] full_df #Full lens Dataframe excluding portfolio headers rows full_df_no_port = full_df[~full_df['Portfolio sale?'].isin(['Port.'])] full_df_no_port['Portfolio sale?'].value_counts() #Add in column that concatenates Quarter and Market Name for better table parsing full_df_no_port["QQ_Market"] = full_df_no_port["Quarter"].map(str) + "_" + full_df_no_port["JLL Market"] #Add in column that concatenates Quarter and Product Type for better table parsing full_df_no_port["QQ_Product"] = full_df_no_port["Quarter"].map(str) + "_" + full_df_no_port["JLL Product Type"] #Office office_full_df = full_df_no_port[~full_df_no_port['JLL Sector'].isin(['Industrial', 'Flex-R&D', 'Multifamily', 'Seniors Housing', 'Retail'])] #Industrial & Flex-R&D industrial_full_df = full_df_no_port[~full_df_no_port['JLL Sector'].isin(['Office', 'Multifamily', 'Seniors Housing', 'Retail'])] #Multifamily multifamily_full_df = full_df_no_port[~full_df_no_port['JLL Sector'].isin(['Industrial', 'Flex-R&D', 'Office', 'Seniors Housing', 'Retail'])] #Retail retail_full_df = full_df_no_port[~full_df_no_port['JLL Sector'].isin(['Industrial', 'Flex-R&D', 'Multifamily', 'Seniors Housing', 'Office'])] ######### Port. ONLY Data file ################## #full DF filtered only for Port. full_df_port = full_df[~full_df['Portfolio sale?'].isin(['Yes', 'No'])] #Office office_full_df_port = full_df_port[~full_df_port['JLL Sector'].isin(['Industrial', 'Flex-R&D', 'Multifamily', 'Seniors Housing', 'Retail'])] #Industrial & Flex-R&D industrial_full_df_port = full_df_port[~full_df_port['JLL Sector'].isin(['Office', 'Multifamily', 'Seniors Housing', 'Retail'])] #Multifamily multifamily_full_df_port = full_df_port[~full_df_port['JLL Sector'].isin(['Industrial', 'Flex-R&D', 'Office', 'Seniors Housing', 'Retail'])] #Retail retail_full_df_port = full_df_port[~full_df_port['JLL Sector'].isin(['Industrial', 'Flex-R&D', 'Multifamily', 'Seniors Housing', 'Office'])] ############# Buyer Lens Transformation with No PORTFOLIO ####################### #create quarter column buyer_df['Quarter'] = buyer_df['Quarter of transaction'].str[5:] # buyer_df.head() #buyer lens Dataframe excluding portfolio headers rows buyer_df_no_port = buyer_df[~buyer_df['Portfolio sale?'].isin(['Port.'])] #Office office_buyer_df = buyer_df_no_port[~buyer_df_no_port['JLL Sector'].isin(['Industrial', 'Flex-R&D', 'Multifamily', 'Seniors Housing', 'Retail'])] #Industrial & Flex-R&D industrial_buyer_df = buyer_df_no_port[~buyer_df_no_port['JLL Sector'].isin(['Office', 'Multifamily', 'Seniors Housing', 'Retail'])] #Multifamily multifamily_buyer_df = buyer_df_no_port[~buyer_df_no_port['JLL Sector'].isin(['Industrial', 'Flex-R&D', 'Office', 'Seniors Housing', 'Retail'])] #Retail retail_buyer_df = buyer_df_no_port[~buyer_df_no_port['JLL Sector'].isin(['Industrial', 'Flex-R&D', 'Multifamily', 'Seniors Housing', 'Office'])] ############################ REMOVES NULL FROM COUNTRY ############################## buyer_df_no_port_no_null = buyer_df_no_port[buyer_df_no_port['Country'].notnull()] #Office office_buyer_df_no_null = buyer_df_no_port_no_null[~buyer_df_no_port_no_null['JLL Sector'].isin(['Industrial', 'Flex-R&D', 'Multifamily', 'Seniors Housing', 'Retail'])] #Industrial & Flex-R&D industrial_buyer_df_no_null = buyer_df_no_port_no_null[~buyer_df_no_port_no_null['JLL Sector'].isin(['Office', 'Multifamily', 'Seniors Housing', 'Retail'])] #Multifamily multifamily_buyer_df_no_null = buyer_df_no_port_no_null[~buyer_df_no_port_no_null['JLL Sector'].isin(['Industrial', 'Flex-R&D', 'Office', 'Seniors Housing', 'Retail'])] #Retail retail_buyer_df_no_null = buyer_df_no_port_no_null[~buyer_df_no_port_no_null['JLL Sector'].isin(['Industrial', 'Flex-R&D', 'Multifamily', 'Seniors Housing', 'Office'])] ############################# NCREIF Cap Rate Visuals ################################### #convert cap rate df to useable format cap_cols = cap_rates.columns.drop(cap_rates[['Market', 'Sector', 'Market Type']]) cap_rates[cap_cols] = cap_rates[cap_cols].apply(pd.to_numeric, errors='coerce') cap_rates.fillna(0) #consolidate to just overall metrics cap_rates_overall = cap_rates[cap_rates['Market'].isin(['Primary', 'Secondary', 'Overall', 'Ten-Year Treasury'])] #office overall cap rates office_cap_rates_overall = cap_rates_overall[cap_rates_overall['Sector'].isin(['Office', 'Ten-Year Treasury'])] #industrial overall cap rates industrial_cap_rates_overall = cap_rates_overall[cap_rates_overall['Sector'].isin(['Industrial', 'Ten-Year Treasury'])] #multifamily overall cap rates multifamily_cap_rates_overall = cap_rates_overall[cap_rates_overall['Sector'].isin(['Multifamily', 'Ten-Year Treasury'])] #retail overall cap rates retail_cap_rates_overall = cap_rates_overall[cap_rates_overall['Sector'].isin(['Retail', 'Ten-Year Treasury'])] #calculating retail investment volumes retail_volumes = retail_full_df.pivot_table(index=["Year of transaction"],values=["Price ($)"], columns=["Quarter"],aggfunc=[np.sum],fill_value=0) retail_volumes_billions = retail_volumes / 1000000000 ####Shift pivot to normal dataframe retail_volumes_billions.columns = retail_volumes_billions.columns.droplevel(0) retail_volumes_billions.columns = retail_volumes_billions.columns.droplevel(0) retail_volumes_billions.columns.name = None #remove categories retail_volumes_final = retail_volumes_billions.reset_index() ##Final DFs #retail_volumes_final #calculating retail investment volumes by transaction type (i.e. Single Asset, Portfolio and Recapitilization) #Annual single asset volume retail_single_asset_volume = retail_full_df[retail_full_df['Portfolio sale?'] == 'No'].pivot_table(index=["Year of transaction"], values=["Price ($)"], columns=["Portfolio sale?"], aggfunc=[np.sum],fill_value=0) #Annual Recap Volume retail_recap_volume = retail_full_df[retail_full_df['Sales Type'] == 'Recapitalization'].pivot_table(index=["Year of transaction"], values=["Price ($)"], columns=["Sales Type"], aggfunc=[np.sum],fill_value=0) #Shift single asset volumes to normal DF retail_single_asset_volume.columns = retail_single_asset_volume.columns.droplevel(0) retail_single_asset_volume.columns = retail_single_asset_volume.columns.droplevel(0) retail_single_asset_volume.columns.name = None #remove categories retail_single_asset_volumes_final = retail_single_asset_volume.reset_index() #Shift Recap volumes to normal DF retail_recap_volume.columns = retail_recap_volume.columns.droplevel(0) retail_recap_volume.columns = retail_recap_volume.columns.droplevel(0) retail_recap_volume.columns.name = None #remove categories retail_recap_volumes_final = retail_recap_volume.reset_index() ##Final DFs #retail_single_asset_volumes_final #retail_recap_volumes_final #retail_port_volume_final #calculate portfolio volumes #Annual Portfolio Volume - Portfolio Sale? = "Port" retail_port_volume = retail_full_df_port[retail_full_df_port['Portfolio sale?'] == 'Port.'].pivot_table(index=["Year of transaction"], values=["Price ($)"], columns=["Portfolio sale?"], aggfunc=[np.sum],fill_value=0) #Shift Annual Portfolio Volume to normal DF retail_port_volume.columns = retail_port_volume.columns.droplevel(0) retail_port_volume.columns = retail_port_volume.columns.droplevel(0) retail_port_volume.columns.name = None #remove categories retail_port_volume_final = retail_port_volume.reset_index() ##final DF #retail_port_volume_final # Market by Market Quarterly Summary retail_market_volumes_qtrly = retail_full_df.pivot_table(index=["JLL Market", "Quarter", "QQ_Market", "MarketType"],values=["Price ($)"], columns=["Year of transaction"],aggfunc=[np.sum],fill_value=0) # Market by Market Annual Summary retail_market_volumes_annual = retail_full_df.pivot_table(index=["JLL Market", "MarketType"],values=["Price ($)"], columns=["Year of transaction"],aggfunc=[np.sum],fill_value=0) # Product by Product Quarterly Summary retail_product_volumes_qtrly = retail_full_df.pivot_table(index=["JLL Product Type", "Quarter", "QQ_Product"],values=["Price ($)"], columns=["Year of transaction"],aggfunc=[np.sum],fill_value=0) # Product by Product Annual Summary retail_product_volumes_annual = retail_full_df.pivot_table(index=["JLL Product Type"],values=["Price ($)"], columns=["Year of transaction"],aggfunc=[np.sum],fill_value=0) #Convert market by market quarterly summary to normal DF retail_market_volumes_qtrly.columns = retail_market_volumes_qtrly.columns.droplevel(0) retail_market_volumes_qtrly.columns = retail_market_volumes_qtrly.columns.droplevel(0) retail_market_volumes_qtrly.columns.name = None #remove categories retail_market_volumes_qtrly_final = retail_market_volumes_qtrly.reset_index() #Convert market by market annual summary to normal DF retail_market_volumes_annual.columns = retail_market_volumes_annual.columns.droplevel(0) retail_market_volumes_annual.columns = retail_market_volumes_annual.columns.droplevel(0) retail_market_volumes_annual.columns.name = None #remove categories retail_market_volumes_annual_final = retail_market_volumes_annual.reset_index() #Convert product by product annual summary retail_product_volumes_annual.columns = retail_product_volumes_annual.columns.droplevel(0) retail_product_volumes_annual.columns = retail_product_volumes_annual.columns.droplevel(0) retail_product_volumes_annual.columns.name = None #remove categories retail_product_volumes_annual_final = retail_product_volumes_annual.reset_index() ##Final DFs # retail_market_volumes_qtrly_final # retail_market_volumes_annual_final # retail_product_volumes_annual_final #Domestic Investment by Buyer Type buyer_type_domestic_volume = retail_buyer_df_no_null[(retail_buyer_df_no_null['Country'] == 'United States') & (retail_buyer_df_no_null['Country'] != '<unknown>') & (retail_buyer_df_no_null['Country'] != 'NULL')].pivot_table(index=["Type"], values=["JV_Price"], columns=["Year of transaction"], aggfunc=[np.sum],fill_value=0) #Foreign Investment by Buyer Type buyer_type_foreign_volume = retail_buyer_df_no_null[(retail_buyer_df_no_null['Country'] != 'United States') & (retail_buyer_df_no_null['Country'] != '<unknown>') & (retail_buyer_df_no_null['Country'] != 'NULL')].pivot_table(index=["Type"], values=["JV_Price"], columns=["Year of transaction"], aggfunc=[np.sum],fill_value=0) #append a total column to foreign buyer type data frame total = buyer_type_foreign_volume.apply(np.sum) total['Year of transaction'] = 'Total' buyer_type_foreign_volume_transform = buyer_type_foreign_volume.append(pd.DataFrame(total.values, index=total.keys()).T, ignore_index=False) #Editing TOTAL row in DF to read 'total' instead of '0' buyer_type_list = buyer_type_foreign_volume_transform.index.tolist() total = buyer_type_list.index(0) buyer_type_list[total] = 'foreign total' buyer_type_foreign_volume_transform.index = buyer_type_list #Convert buyer_type_foreign_volume_transform to normal DF buyer_type_foreign_volume_transform.columns = buyer_type_foreign_volume_transform.columns.droplevel(0) buyer_type_foreign_volume_transform.columns = buyer_type_foreign_volume_transform.columns.droplevel(0) buyer_type_foreign_volume_transform.columns.name = None #remove categories buyer_type_foreign_volume_update = buyer_type_foreign_volume_transform.reset_index() #remove blank column from DF buyer_type_foreign_volume_final = buyer_type_foreign_volume_update.drop([''], axis=1) buyer_type_foreign_volume_final #Convert buyer_type_domestic_volume to normal DF buyer_type_domestic_volume.columns = buyer_type_domestic_volume.columns.droplevel(0) buyer_type_domestic_volume.columns = buyer_type_domestic_volume.columns.droplevel(0) buyer_type_domestic_volume.columns.name = None #remove categories buyer_type_domestic_volume_final = buyer_type_domestic_volume.reset_index() #filter out CMBS, unknown, sovereign wealth fund, and null values buyer_type_domestic_volume_final_v2 = buyer_type_domestic_volume_final[(buyer_type_domestic_volume_final['Type'] != 'CMBS') & (buyer_type_domestic_volume_final['Type'] != 'Unknown') & (buyer_type_domestic_volume_final['Type'] != 'Sovereign Wealth Fund') & (buyer_type_domestic_volume_final['Type'] != '(null)')] #filter out unknown, null and CMBS from foreign figures buyer_type_foreign_volume_final_v2 = buyer_type_foreign_volume_final[(buyer_type_foreign_volume_final['index'] != 'CMBS') & (buyer_type_foreign_volume_final['index'] != 'Unknown') & (buyer_type_foreign_volume_final['index'] != '(null)')] #append foreign total to combined/summarized DF buyer_volumes_final_orig = buyer_type_domestic_volume_final_v2.append(buyer_type_foreign_volume_final_v2[buyer_type_foreign_volume_final_v2['index'] == 'foreign total']) # replace NaN with 'foreign total' buyer_volumes_final = buyer_volumes_final_orig.replace(np.nan, 'foreign total', regex=True) # buyer_volumes_final, replaces NaN with Total total_v3 = buyer_volumes_final.apply(np.sum) total_v3['Type'] = 'Total' buyer_volumes_final_v2 = buyer_volumes_final.append(pd.DataFrame(total_v3.values, index=total_v3.keys()).T, ignore_index=False) #set Type as INDEX buyer_volumes_final_v2.set_index('Type', inplace=True) #drop 'index' column - not sure why this was created buyer_volumes_final_v3 = buyer_volumes_final_v2.drop('index', 1) #do division to calc percentages buyer_volumes_final_v3.loc['DevOp_percent'] = buyer_volumes_final_v3.loc['Developer-Operator'] / buyer_volumes_final_v3.loc['Total'] buyer_volumes_final_v3.loc['HNW_percent'] = buyer_volumes_final_v3.loc['High Net Worth'] / buyer_volumes_final_v3.loc['Total'] buyer_volumes_final_v3.loc['Instit_percent'] = buyer_volumes_final_v3.loc['Institution-Advisor'] / buyer_volumes_final_v3.loc['Total'] buyer_volumes_final_v3.loc['REIT_percent'] = buyer_volumes_final_v3.loc['REIT-REOC'] / buyer_volumes_final_v3.loc['Total'] buyer_volumes_final_v3.loc['User_percent'] = buyer_volumes_final_v3.loc['User-Other'] / buyer_volumes_final_v3.loc['Total'] buyer_volumes_final_v3.loc['Foreign_percent'] = buyer_volumes_final_v3.loc['foreign total'] / buyer_volumes_final_v3.loc['Total'] buyer_volumes_final_v3.loc['Total_percent'] = buyer_volumes_final_v3.loc['Total'] / buyer_volumes_final_v3.loc['Total'] # #final DF # buyer_volumes_final_v3 ################### Mapping major regions by country ####################### region_map_df region_df = retail_buyer_df.merge(region_map_df, on='Country', how='left') #################### Concatenate Quarter/Country for Granular Breakout ##################### #Add in column that concatenates Quarter and Market Name for better table parsing region_df["QQ_Country"] = region_df["Quarter"].map(str) + "_" + region_df["Country"] #Add in column that concatenates Quarter and Product Type for better table parsing region_df["QQ_Region"] = region_df["Quarter"].map(str) + "_" + region_df["Region"] #################### Quarterly & Annual Breakouts by Region/Country PIVOT ##################### # Regional/Country Volume Breakout - ANNUAL regional_country_volumes = region_df.pivot_table(index=["Region", "Country"],values=["JV_Price"], columns=["Year of transaction"],aggfunc=[np.sum],fill_value=0) # Regional/Country Volume Breakout - QUARTERLY regional_country_volumes_QQ = region_df.pivot_table(index=["Region", "QQ_Country"],values=["JV_Price"], columns=["Year of transaction"],aggfunc=[np.sum],fill_value=0) # Regional Volume - Annual regional_volumes = region_df.pivot_table(index=["Region"],values=["JV_Price"], columns=["Year of transaction"],aggfunc=[np.sum],fill_value=0) # Regional Volume Breakout - QUARTERLY regional_volumes_QQ = region_df.pivot_table(index=["Region", "QQ_Region"],values=["JV_Price"], columns=["Year of transaction"],aggfunc=[np.sum],fill_value=0) #################### Quarterly & Annual Breakouts by Region/Country & Market PIVOT ##################### # Regional/Country Volume Breakout - ANNUAL regional_country_volumes_market = region_df.pivot_table(index=["Region", "Country", "JLL Market"],values=["JV_Price"], columns=["Year of transaction"],aggfunc=[np.sum],fill_value=0) # Regional/Country Volume Breakout - QUARTERLY regional_country_volumes_QQ_market = region_df.pivot_table(index=["Region", "QQ_Country", "JLL Market"],values=["JV_Price"], columns=["Year of transaction"],aggfunc=[np.sum],fill_value=0) # Regional Volume - Annual regional_volumes_market = region_df.pivot_table(index=["Region", "JLL Market"],values=["JV_Price"], columns=["Year of transaction"],aggfunc=[np.sum],fill_value=0) # Regional Volume Breakout - QUARTERLY regional_volumes_QQ_market = region_df.pivot_table(index=["Region", "QQ_Region", "JLL Market"],values=["JV_Price"], columns=["Year of transaction"],aggfunc=[np.sum],fill_value=0) #################### Quarterly & Annual Breakouts by Region/Country & Market 'conversion to normal DF' ########################### #Convert regional/country volume annual summary to normal DF - ANNUAL regional_country_volumes_market.columns = regional_country_volumes_market.columns.droplevel(0) regional_country_volumes_market.columns = regional_country_volumes_market.columns.droplevel(0) regional_country_volumes_market.columns.name = None #remove categories regional_country_volumes_market_final = regional_country_volumes_market.reset_index() #Convert regional/country volume annual summary to normal DF QUARTERLY regional_country_volumes_QQ_market.columns = regional_country_volumes_QQ_market.columns.droplevel(0) regional_country_volumes_QQ_market.columns = regional_country_volumes_QQ_market.columns.droplevel(0) regional_country_volumes_QQ_market.columns.name = None #remove categories regional_country_volumes_QQ_market_final = regional_country_volumes_QQ_market.reset_index() #Convert regional volume annual summary to normal DF - ANNUAL regional_volumes_market.columns = regional_volumes_market.columns.droplevel(0) regional_volumes_market.columns = regional_volumes_market.columns.droplevel(0) regional_volumes_market.columns.name = None #remove categories regional_volumes_market_final = regional_volumes_market.reset_index() #Convert regional volume annual summary to normal DF - QUARTERLY regional_volumes_QQ_market.columns = regional_volumes_QQ_market.columns.droplevel(0) regional_volumes_QQ_market.columns = regional_volumes_QQ_market.columns.droplevel(0) regional_volumes_QQ_market.columns.name = None #remove categories regional_volumes_QQ_market_final = regional_volumes_QQ_market.reset_index() #################### Quarterly & Annual Breakouts by Region/Country 'conversion to normal DF'########################### #Convert regional/country volume annual summary to normal DF - ANNUAL regional_country_volumes.columns = regional_country_volumes.columns.droplevel(0) regional_country_volumes.columns = regional_country_volumes.columns.droplevel(0) regional_country_volumes.columns.name = None #remove categories regional_country_volumes_final = regional_country_volumes.reset_index() #Convert regional/country volume annual summary to normal DF QUARTERLY regional_country_volumes_QQ.columns = regional_country_volumes_QQ.columns.droplevel(0) regional_country_volumes_QQ.columns = regional_country_volumes_QQ.columns.droplevel(0) regional_country_volumes_QQ.columns.name = None #remove categories regional_country_volumes_QQ_final = regional_country_volumes_QQ.reset_index() #Convert regional volume annual summary to normal DF - ANNUAL regional_volumes.columns = regional_volumes.columns.droplevel(0) regional_volumes.columns = regional_volumes.columns.droplevel(0) regional_volumes.columns.name = None #remove categories regional_volumes_final = regional_volumes.reset_index() #Convert regional volume annual summary to normal DF - QUARTERLY regional_volumes_QQ.columns = regional_volumes_QQ.columns.droplevel(0) regional_volumes_QQ.columns = regional_volumes_QQ.columns.droplevel(0) regional_volumes_QQ.columns.name = None #remove categories regional_volumes_QQ_final = regional_volumes_QQ.reset_index() ########################## Annual Percetage of overall investment by REGION ################################### #create offshore dataframe that removes domestic domestic = regional_volumes.index.isin(['Domestic']) offshore_regional_total = regional_volumes[~domestic] #calculate total row and append to regional volumes data frame regional_total = offshore_regional_total.apply(np.sum) regional_volumes_final_transform = offshore_regional_total.append(pd.DataFrame(regional_total.values, index=regional_total.keys()).T, ignore_index=False) #Editing TOTAL row in DF to read 'total' instead of '0' regional_volumes_list = regional_volumes_final_transform.index.tolist() r_total = regional_volumes_list.index(0) regional_volumes_list[r_total] = 'Off-shore total' regional_volumes_final_transform.index = regional_volumes_list # #do division to calc percentages regional_volumes_final_transform.loc['Africa_percent'] = regional_volumes_final_transform.loc['Africa'] / regional_volumes_final_transform.loc['Off-shore total'] regional_volumes_final_transform.loc['Americas_percent'] = regional_volumes_final_transform.loc['Americas'] / regional_volumes_final_transform.loc['Off-shore total'] regional_volumes_final_transform.loc['Asia_percent'] = regional_volumes_final_transform.loc['Asia'] / regional_volumes_final_transform.loc['Off-shore
keys 'id' and 'shape' are not set. 'size' [scalar] Diameter of the telescope dish (in meters) if the key 'shape' is set to 'dish' or length of the dipole if key 'shape' is set to 'dipole'. Will be ignored if key 'shape' is set to 'delta'. Will be ignored if key 'id' is set and a preset value used for the diameter or dipole. 'orientation' [list or numpy array] If key 'shape' is set to dipole, it refers to the orientation of the dipole element unit vector whose magnitude is specified by length. If key 'shape' is set to 'dish', it refers to the position on the sky to which the dish is pointed. For a dipole, this unit vector must be provided in the local ENU coordinate system aligned with the direction cosines coordinate system or in the Alt-Az coordinate system. This will be used only when key 'shape' is set to 'dipole'. This could be a 2-element vector (transverse direction cosines) where the third (line-of-sight) component is determined, or a 3-element vector specifying all three direction cosines or a two-element coordinate in Alt-Az system. If not provided it defaults to an eastward pointing dipole. If key 'shape' is set to 'dish', the orientation refers to the pointing center of the dish on the sky. It can be provided in Alt-Az system as a two-element vector or in the direction cosine coordinate system as a two- or three-element vector. If not set in the case of a dish element, it defaults to zenith. This is not to be confused with the key 'pointing_center' in dictionary 'pointing_info' which refers to the beamformed pointing center of the array. The coordinate system is specified by the key 'ocoords' 'ocoords' [scalar string] specifies the coordinate system for key 'orientation'. Accepted values are 'altaz' and 'dircos'. 'element_locs' [2- or 3-column array] Element locations that constitute the tile. Each row specifies location of one element in the tile. The locations must be specified in local ENU coordinate system. First column specifies along local east, second along local north and the third along local up. If only two columns are specified, the third column is assumed to be zeros. If 'elements_locs' is not provided, it assumed to be a one-element system and not a phased array as far as determination of primary beam is concerned. 'groundplane' [scalar] height of telescope element above the ground plane (in meteres). Default = None will denote no ground plane effects. 'ground_modify' [dictionary] contains specifications to modify the analytically computed ground plane pattern. If absent, the ground plane computed will not be modified. If set, it may contain the following keys: 'scale' [scalar] positive value to scale the modifying factor with. If not set, the scale factor to the modification is unity. 'max' [scalar] positive value to clip the modified and scaled values to. If not set, there is no upper limit 'latitude' [scalar] specifies latitude of the telescope site (in degrees). Default = None, otherwise should equal the value specified during initialization of the instance 'longitude' [scalar] specifies longitude of the telescope site (in degrees). Default = None, otherwise should equal the value specified during initialization of the instance 'altitude' [scalar] specifies altitude of the telescope site (in m). Default = None, otherwise should equal the value specified during initialization of the instance 'pol' [string] specifies polarization when using MWA_Tools for primary beam computation. Value of key 'id' in attribute dictionary telescope must be set to 'mwa_tools'. 'X' or 'x' denotes X-polarization. Y-polarization is specified by 'Y' or 'y'. If polarization is not specified when 'id' of telescope is set to 'mwa_tools', it defaults to X-polarization. ------------------------------------------------------------------------ """ try: skymodel, freq, pinfo except NameError: raise NameError('skymodel, freq, and pinfo must be specified.') if self.freq is None: if freq is None: raise ValueError('freq must be specified using a numpy array') elif not isinstance(freq, NP.ndarray): raise TypeError('freq must be specified using a numpy array') self.freq = freq.ravel() if (freq_scale is None) or (freq_scale == 'Hz') or (freq_scale == 'hz'): self.freq = NP.asarray(freq) elif freq_scale == 'GHz' or freq_scale == 'ghz': self.freq = NP.asarray(freq) * 1.0e9 elif freq_scale == 'MHz' or freq_scale == 'mhz': self.freq = NP.asarray(freq) * 1.0e6 elif freq_scale == 'kHz' or freq_scale == 'khz': self.freq = NP.asarray(freq) * 1.0e3 else: raise ValueError('Frequency units must be "GHz", "MHz", "kHz" or "Hz". If not set, it defaults to "Hz"') self.freq_scale = 'Hz' if self.telescope is None: if isinstance(telescope, dict): self.telescope = telescope else: raise TypeError('Input telescope must be a dictionary.') if skymodel is None: self.info['pbeam'] += [NP.asarray([])] self.info['ind'] += [NP.asarray([])] self.pinfo += [None] elif not isinstance(skymodel, SM.SkyModel): raise TypeError('skymodel should be an instance of class SkyModel.') else: self.skymodel = skymodel if self.freq is None: if freq is None: raise ValueError('freq must be specified using a numpy array') elif not isinstance(freq, NP.ndarray): raise TypeError('freq must be specified using a numpy array') self.freq = freq.ravel() if (freq_scale is None) or (freq_scale == 'Hz') or (freq_scale == 'hz'): self.freq = NP.asarray(freq) elif freq_scale == 'GHz' or freq_scale == 'ghz': self.freq = NP.asarray(freq) * 1.0e9 elif freq_scale == 'MHz' or freq_scale == 'mhz': self.freq = NP.asarray(freq) * 1.0e6 elif freq_scale == 'kHz' or freq_scale == 'khz': self.freq = NP.asarray(freq) * 1.0e3 else: raise ValueError('Frequency units must be "GHz", "MHz", "kHz" or "Hz". If not set, it defaults to "Hz"') self.freq_scale = 'Hz' if roi_info is None: raise ValueError('roi_info dictionary must be set.') pbeam_input = False if 'ind' in roi_info: if roi_info['ind'] is not None: self.info['ind'] += [roi_info['ind']] if roi_info['ind'].size > 0: if 'pbeam' in roi_info: if roi_info['pbeam'] is not None: try: pb = roi_info['pbeam'].reshape(-1,self.freq.size) except ValueError: raise ValueError('Number of columns of primary beam in key "pbeam" of dictionary roi_info must be equal to number of frequency channels.') if NP.asarray(roi_info['ind']).size == pb.shape[0]: self.info['pbeam'] += [roi_info['pbeam'].astype(NP.float32)] else: raise ValueError('Number of elements in values in key "ind" and number of rows of values in key "pbeam" must be identical.') pbeam_input = True if not pbeam_input: # Will require sky positions in Alt-Az coordinates if skymodel.coords == 'radec': skycoords = SkyCoord(ra=skymodel.location[:,0]*units.deg, dec=skymodel.location[:,1]*units.deg, frame='fk5', equinox=Time(skymodel.epoch, format='jyear_str', scale='utc')) if self.telescope['latitude'] is None: raise ValueError('Latitude of the observatory must be provided.') if lst is None: raise ValueError('LST must be provided.') if time_jd is None: raise ValueError('Time in JD must be provided') skycoords_altaz = skycoords.transform_to(AltAz(obstime=Time(time_jd, format='jd', scale='utc'), location=EarthLocation(lon=self.telescope['longitude']*units.deg, lat=self.telescope['latitude']*units.deg, height=self.telescope['altitude']*units.m))) skypos_altaz = NP.hstack((skycoords_altaz.alt.deg.reshape(-1,1), skycoords_altaz.az.deg.reshape(-1,1))) # skypos_altaz = GEOM.hadec2altaz(NP.hstack((NP.asarray(lst-skymodel.location[:,0]).reshape(-1,1), skymodel.location[:,1].reshape(-1,1))), self.telescope['latitude'], units='degrees') # Need to accurately take ephemeris into account elif skymodel.coords == 'hadec': if self.telescope['latitude'] is None: raise ValueError('Latitude of the observatory must be provided.') skypos_altaz = GEOM.hadec2altaz(skymodel.location, self.telescope['latitude'], units='degrees') elif skymodel.coords == 'dircos': skypos_altaz = GEOM.dircos2altaz(skymodel.location, units='degrees') elif skymodel.coords == 'altaz': skypos_altaz = skymodel.location else: raise KeyError('skycoords invalid or unspecified in skymodel') if 'radius' in roi_info: self.info['radius'] += [roi_info['radius']] if 'center' in roi_info: self.info['center'] += [roi_info['center']] else: if roi_info['radius'] is None: roi_info['radius'] = 90.0 else: roi_info['radius'] = max(0.0, min(roi_info['radius'], 90.0)) self.info['radius'] += [roi_info['radius']] if roi_info['center'] is None: self.info['center'] += [NP.asarray([90.0, 270.0]).reshape(1,-1)] else: roi_info['center'] = NP.asarray(roi_info['center']).reshape(1,-1) if roi_info['center_coords'] == 'dircos': self.info['center'] += [GEOM.dircos2altaz(roi_info['center'], units='degrees')] elif roi_info['center_coords'] == 'altaz': self.info['center'] += [roi_info['center']] elif roi_info['center_coords'] == 'hadec': self.info['center'] += [GEOM.hadec2altaz(roi_info['center'], self.telescope['latitude'], units='degrees')] elif roi_info['center_coords'] == 'radec': if lst is None: raise KeyError('LST not provided for coordinate conversion') hadec = NP.asarray([lst-roi_info['center'][0,0], roi_info['center'][0,1]]).reshape(1,-1) self.info['center'] += [GEOM.hadec2altaz(hadec, self.telescope['latitude'], units='degrees')] elif roi_info['center_coords'] == 'dircos': self.info['center'] += [GEOM.dircos2altaz(roi_info['center'], units='degrees')] else: raise ValueError('Invalid coordinate system specified for center') if skymodel.coords == 'radec': if self.telescope['latitude'] is None: raise ValueError('Latitude of the observatory must be provided.') if lst is None: raise ValueError('LST must be provided.') if time_jd is None: raise ValueError('Time in JD must be provided') skycoords = SkyCoord(ra=skymodel.location[:,0]*units.deg, dec=skymodel.location[:,1]*units.deg, frame='fk5', equinox=Time(skymodel.epoch, format='jyear_str', scale='utc')) skycoords_altaz = skycoords.transform_to(AltAz(obstime=Time(time_jd, format='jd', scale='utc'), location=EarthLocation(lon=self.telescope['longitude']*units.deg, lat=self.telescope['latitude']*units.deg, height=self.telescope['altitude']*units.m))) skypos_altaz =
import pygame import os from math import * from memory_pic import * from base64 import * def get_pic(pic_code, pic_name): image = open(pic_name, 'wb') image.write(b64decode(pic_code)) image.close() os.mkdir('_') get_pic(earthfromnorthpole_png, '_\\earthfromnorthpole.png') get_pic(fire_png, '_\\fire.png') get_pic(ship_png, '_\\ship.png') get_pic(icon_ico, '_\\icon.ico') get_pic(moon_png, '_\\moon.png') def main(): def trans_x2u(x): return int((x - x0) * Kshow + u0) def trans_y2v(y): return int(-(y - y0) * Kshow + v0) def trans_xy2uv(x, y): return int((x - x0) * Kshow + u0), int(-(y - y0) * Kshow + v0) def is_in_rect(pos, rect): # 是否在矩形区域内 x, y = pos rx, ry, rw, rh = rect if (rx <= x <= rx + rw) and (ry <= y <= ry + rh): return True return False def calc_Kshow_x0_y0(zoom_type): #global Kshow #global x0 #global y0 if zoom_type == 0: # Earth & spaceship Kshow = height / 2.0 / max(Re, Dse) / Cshow x0 = 0 y0 = 0 elif zoom_type == 1: # Earth & spaceship & MOON Kshow = height / 2.0 / max(Re, max(Dse, Dem)) / Cshow x0 = 0 y0 = 0 elif zoom_type == 2: # moon & spaceship Kshow = height / 2.0 / max(Rm, Dsm) / Cshow x0 = Xm y0 = Ym return (Kshow,x0,y0) #################################### var.py #################################### dt = base_dt = 3 # 地球 Re = 6371.4e3 Me = 5.972e24 Xe = 0 Ye = 0 # 月球 Rm = 1731.1e3 Mm = 7.36e22 Vm_0 = 1.023e3 # m/s Vmx = 0 Vmy = Vm_0 Sta_m = 0 Dem = 384400e3 * 0.99 # Re + 29000e3 Xm = Dem Ym = 0 # 飞船 Rs = 300e3 Ms = 1000 Vsx = 0 Vsy = 0 # 7.6e3 # 7.6 Xs = Re#+300e3#200e3 ##Vsy=8e3 ##Xs=Re+300e3 Ys = 0 ##Vsy = 3.0746311898429766e3 #地球同步轨道参数 ##Xs = 42163.772928313745e3 # ## Xs = Xm + Rm * 1.5 ## Ys = 0 Dse = 0 Dsm = 0 # 万有引力常数 G = 6.67430e-11 Fsex = 0 Fsmx = 0 Fsey = 0 Fsmy = 0 Fsx = 0 Fsy = 0 ############################################################################### pygame.init() width = 1000 # 800 height = 1000 # 800 size = [width, height] Cshow = 1.2 Kshow = height / 2.0 / Re / Cshow Zoom_Type = 0 Kfire = 10000 u0 = width / 2 v0 = height / 2 x0 = 0 y0 = 0 Erotate = 0 SecondPerDegree = 240 # 8 Edrotate = dt / SecondPerDegree Sscale = 0.2 Srotate = -90 Fscale = 0.1 Sdrotate = 1 # d_r Fhigh = 0 Fdhigh = 0.05 FhighMax = 1 total_time = 0 historytemp = 0 historyid = 0 historyN = 500 history_s_XY = [(0, 0)] * historyN history_m_XY = [(0, 0)] * historyN screen = pygame.display.set_mode(size) pygame.display.set_caption("“飞向太空”——万有引力仿真程序") icon = pygame.image.load("_\\icon.ico").convert_alpha() pygame.display.set_icon(icon) keepGoing = True fonts = pygame.font.SysFont('consolas', 20) earthpic0 = pygame.image.load("_\\earthfromnorthpole.png").convert_alpha() earthpic = earthpic0 earthRect = earthpic.get_rect() moonpic0 = pygame.image.load("_\\moon.png").convert_alpha() moonpic = moonpic0 moonRect = moonpic.get_rect() ship0 = pygame.image.load("_\\ship.png").convert_alpha() ship0 = pygame.transform.smoothscale(ship0, ( int(ship0.get_rect().width * Sscale), int(ship0.get_rect().height * Sscale))) # Unrotate Ship fire0 = pygame.image.load("_\\fire.png").convert_alpha() fire0 = pygame.transform.smoothscale(fire0, ( int(fire0.get_rect().width * Fscale), int(fire0.get_rect().height * Fscale))) # Unrotate Fire ship = ship0 shipRect = ship0.get_rect() fire = fire1 = fire0 # fire1: Scaled but not rotate fireRect = fire0.get_rect() IsFireAllowed = True IsTurnAllowed = True IsOnEarth = True IsOnMoon = False IsFireReverse = False picx = 0 picy = 0 BLACK = (0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) EBLUE = (14, 80, 164) timer = pygame.time.Clock() while keepGoing: # Game loop for event in pygame.event.get(): if event.type == pygame.QUIT: keepGoing = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_ESCAPE: keepGoing = False elif event.key == pygame.K_r: ## 'R' if IsFireAllowed and (not IsOnEarth) and (Fhigh == 0): IsTurnAllowed = not IsTurnAllowed elif event.key == pygame.K_z: ## 'Z' Zoom_Type = (Zoom_Type + 1) % 3 ## if event.type == pygame.MOUSEBUTTONDOWN: ## if is_in_rect(event.pos,[width-140,height-40,135,35]): ## file = '火箭发射.mp4' ## os.system('%ProgramFiles(x86)%\Windows Media Player\wmplayer.exe '+ file) if IsOnEarth: IsTurnAllowed = True keys = pygame.key.get_pressed() if keys[pygame.K_1]: dt = base_dt IsFireAllowed = True elif keys[pygame.K_2]: dt = base_dt * 2 IsFireAllowed = False ## IsTurnAllowed=False elif keys[pygame.K_3]: dt = base_dt * 4 IsFireAllowed = False ## IsTurnAllowed=False elif keys[pygame.K_4]: dt = base_dt * 8 IsFireAllowed = False ## IsTurnAllowed=False elif keys[pygame.K_5]: dt = base_dt * 16 IsFireAllowed = False ## IsTurnAllowed=False elif keys[pygame.K_6]: dt = base_dt * 32 IsFireAllowed = False ## IsTurnAllowed=False elif keys[pygame.K_7]: dt = base_dt * 64 IsFireAllowed = False ## IsTurnAllowed=False elif keys[pygame.K_8]: dt = base_dt * 128 IsFireAllowed = False ## IsTurnAllowed=False elif keys[pygame.K_9]: dt = base_dt * 256 IsFireAllowed = False ## IsTurnAllowed=False if (not IsFireAllowed) and (not IsOnEarth): IsTurnAllowed = False if keys[pygame.K_LEFT]: Srotate += Sdrotate if keys[pygame.K_RIGHT]: Srotate -= Sdrotate ## ship=pygame.transform.rotate(ship0, Srotate) ## if Fhigh > 1e-5: ## fire=pygame.transform.rotate(fire1, Srotate) if keys[pygame.K_DOWN]: Fhigh += Fdhigh if Fhigh > FhighMax: Fhigh = FhighMax IsFireReverse = True elif not keys[pygame.K_UP]: Fhigh = 0 IsFireReverse = False if keys[pygame.K_UP]: Fhigh += Fdhigh if Fhigh > FhighMax: Fhigh = FhighMax elif not keys[pygame.K_DOWN]: Fhigh = 0 Dse = sqrt((Xs - Xe) * (Xs - Xe) + (Ys - Ye) * (Ys - Ye)) Dsm = sqrt((Xs - Xm) * (Xs - Xm) + (Ys - Ym) * (Ys - Ym)) Fse = G * Me * Ms / Dse / Dse Fsex = -Fse * (Xs - Xe) / Dse Fsey = -Fse * (Ys - Ye) / Dse Fsm = G * Mm * Ms / Dsm / Dsm Fsmx = -Fsm * (Xs - Xm) / Dsm Fsmy = -Fsm * (Ys - Ym) / Dsm if IsFireAllowed: Ffire = Kfire * Fhigh else: Ffire = 0 if IsFireReverse: Ffire = -Ffire Ffirex = -Ffire * sin(Srotate / 180 * pi) Ffirey = Ffire * cos(Srotate / 180 * pi) Fsx = Fsex + Fsmx + Ffirex Fsy = Fsey + Fsmy + Ffirey Vsx += dt * Fsx / Ms Vsy += dt * Fsy / Ms Xs += Vsx * dt Ys += Vsy * dt # 月球运动 Sta_m += Vm_0 / Dem * dt if Sta_m > (2*pi): Sta_m -= (2*pi) Xm = Dem * cos(Sta_m) Ym = Dem * sin(Sta_m) Vmx = - Vm_0 * sin(Sta_m) Vmy = Vm_0 * cos(Sta_m) (Kshow, x0, y0) = calc_Kshow_x0_y0(Zoom_Type) # 地球自转 Edrotate = dt / SecondPerDegree Erotate += Edrotate Erotate %= 360 if sqrt((Xs - Xe) * (Xs - Xe) + (Ys - Ye) * (Ys - Ye)) <= Re: IsOnEarth = True Xs -= Vsx * dt Ys -= Vsy * dt Vsx, Vsy = 0, 0 Xt = Xs - Xe Yt = Ys - Ye theta = asin(Yt / Dse) if Xt <= 0: theta = pi - theta theta += Edrotate * (pi / 180) Vsx = -(pi / SecondPerDegree / 180) * Re * sin(theta) Vsy = (pi / SecondPerDegree / 180) * Re * cos(theta) Ys = Ye + Re * sin(theta) Xs = Xe + Re * cos(theta) Srotate += Edrotate else: IsOnEarth = False if sqrt((Xs - Xm) * (Xs - Xm) + (Ys - Ym) * (Ys - Ym)) <= Rm: Xs -= Vsx * dt Ys -= Vsy * dt if not IsOnMoon: XXms = Xs - Xm YYms = Ys - Ym Vsx, Vsy = Vmx, Vmy Xs = Xm + XXms Ys = Ym + YYms IsOnMoon = True # Vsx = Vsy = Vs = 0 ## Xt = Xs - Xm ## Yt = Ys - Ym ## theta = asin(Yt / Dse) ## if Xt <= 0: ## theta = pi - theta ## theta += Edrotate * (pi / 180) ## Vsx = -(pi / SecondPerDegree / 180) * Re * sin(theta) ## Vsy = (pi / SecondPerDegree / 180) * Re * cos(theta) ## Ys = Ye + Re * sin(theta) ## Xs = Xe + Re * cos(theta) ##
<reponame>nanbi/Python-software import numpy as np import regreg.api as rr import regreg.affine as ra from .query import query from .randomization import split class M_estimator(query): def __init__(self, loss, epsilon, penalty, randomization, solve_args={'min_its':50, 'tol':1.e-10}): """ Fits the logistic regression to a candidate active set, without penalty. Calls the method bootstrap_covariance() to bootstrap the covariance matrix. Computes $\bar{\beta}_E$ which is the restricted M-estimator (i.e. subject to the constraint $\beta_{-E}=0$). Parameters: ----------- active: np.bool The active set from fitting the logistic lasso solve_args: dict Arguments to be passed to regreg solver. Returns: -------- None Notes: ------ Sets self._beta_unpenalized which will be used in the covariance matrix calculation. Also computes Hessian of loss at restricted M-estimator as well as the bootstrap covariance. """ query.__init__(self, randomization) (self.loss, self.epsilon, self.penalty, self.randomization, self.solve_args) = (loss, epsilon, penalty, randomization, solve_args) # Methods needed for subclassing a query def solve(self, scaling=1, solve_args={'min_its':20, 'tol':1.e-10}, nboot=2000): self.randomize() (loss, randomized_loss, epsilon, penalty, randomization, solve_args) = (self.loss, self.randomized_loss, self.epsilon, self.penalty, self.randomization, self.solve_args) # initial solution problem = rr.simple_problem(randomized_loss, penalty) self.initial_soln = problem.solve(**solve_args) # find the active groups and their direction vectors # as well as unpenalized groups groups = np.unique(penalty.groups) active_groups = np.zeros(len(groups), np.bool) unpenalized_groups = np.zeros(len(groups), np.bool) active_directions = [] active = np.zeros(loss.shape, np.bool) unpenalized = np.zeros(loss.shape, np.bool) initial_scalings = [] active_directions_list = [] ## added for group lasso active_penalty = [] for i, g in enumerate(groups): group = penalty.groups == g active_groups[i] = (np.linalg.norm(self.initial_soln[group]) > 1.e-6 * penalty.weights[g]) and (penalty.weights[g] > 0) unpenalized_groups[i] = (penalty.weights[g] == 0) if active_groups[i]: active[group] = True z = np.zeros(active.shape, np.float) z[group] = self.initial_soln[group] / np.linalg.norm(self.initial_soln[group]) active_directions.append(z) active_directions_list.append(z[group]) ## added for group lasso active_penalty.append(penalty.weights[g]) ## added initial_scalings.append(np.linalg.norm(self.initial_soln[group])) if unpenalized_groups[i]: unpenalized[group] = True self.active_penalty = active_penalty # solve the restricted problem self._overall = active + unpenalized > 0 self._inactive = ~self._overall self._unpenalized = unpenalized self.active_directions_list = active_directions_list ## added for group lasso self._active_directions = np.array(active_directions).T self._active_groups = np.array(active_groups, np.bool) self._unpenalized_groups = np.array(unpenalized_groups, np.bool) self.selection_variable = {'groups':self._active_groups, 'variables':self._overall, 'directions':self._active_directions} # initial state for opt variables initial_subgrad = -(self.randomized_loss.smooth_objective(self.initial_soln, 'grad') + self.randomized_loss.quadratic.objective(self.initial_soln, 'grad')) # the quadratic of a smooth_atom is not included in computing the smooth_objective self.initial_subgrad = initial_subgrad initial_subgrad = initial_subgrad[self._inactive] initial_unpenalized = self.initial_soln[self._unpenalized] self.observed_opt_state = np.concatenate([initial_scalings, initial_unpenalized, initial_subgrad], axis=0) # set the _solved bit self._solved = True # Now setup the pieces for linear decomposition (loss, epsilon, penalty, initial_soln, overall, inactive, unpenalized, active_groups, active_directions) = (self.loss, self.epsilon, self.penalty, self.initial_soln, self._overall, self._inactive, self._unpenalized, self._active_groups, self._active_directions) # scaling should be chosen to be Lipschitz constant for gradient of Gaussian part # we are implicitly assuming that # loss is a pairs model _sqrt_scaling = np.sqrt(scaling) _beta_unpenalized = restricted_Mest(loss, overall, solve_args=solve_args) beta_full = np.zeros(overall.shape) beta_full[overall] = _beta_unpenalized _hessian = loss.hessian(beta_full) self._beta_full = beta_full # observed state for score self.observed_score_state = np.hstack([_beta_unpenalized * _sqrt_scaling, -loss.smooth_objective(beta_full, 'grad')[inactive] / _sqrt_scaling]) # form linear part self.num_opt_var = self.observed_opt_state.shape[0] p = loss.shape[0] # shorthand for p # (\bar{\beta}_{E \cup U}, N_{-E}, c_E, \beta_U, z_{-E}) # E for active # U for unpenalized # -E for inactive _opt_linear_term = np.zeros((p, self._active_groups.sum() + unpenalized.sum() + inactive.sum())) _score_linear_term = np.zeros((p, p)) # \bar{\beta}_{E \cup U} piece -- the unpenalized M estimator Mest_slice = slice(0, overall.sum()) _Mest_hessian = _hessian[:,overall] _score_linear_term[:,Mest_slice] = -_Mest_hessian / _sqrt_scaling # N_{-(E \cup U)} piece -- inactive coordinates of score of M estimator at unpenalized solution null_idx = range(overall.sum(), p) inactive_idx = np.nonzero(inactive)[0] for _i, _n in zip(inactive_idx, null_idx): _score_linear_term[_i,_n] = -_sqrt_scaling # c_E piece scaling_slice = slice(0, active_groups.sum()) if len(active_directions)==0: _opt_hessian=0 else: _opt_hessian = (_hessian + epsilon * np.identity(p)).dot(active_directions) _opt_linear_term[:,scaling_slice] = _opt_hessian / _sqrt_scaling self.observed_opt_state[scaling_slice] *= _sqrt_scaling # beta_U piece unpenalized_slice = slice(active_groups.sum(), active_groups.sum() + unpenalized.sum()) unpenalized_directions = np.identity(p)[:,unpenalized] if unpenalized.sum(): _opt_linear_term[:,unpenalized_slice] = (_hessian + epsilon * np.identity(p)).dot(unpenalized_directions) / _sqrt_scaling self.observed_opt_state[unpenalized_slice] *= _sqrt_scaling # subgrad piece subgrad_idx = range(active_groups.sum() + unpenalized.sum(), active_groups.sum() + inactive.sum() + unpenalized.sum()) subgrad_slice = slice(active_groups.sum() + unpenalized.sum(), active_groups.sum() + inactive.sum() + unpenalized.sum()) for _i, _s in zip(inactive_idx, subgrad_idx): _opt_linear_term[_i,_s] = _sqrt_scaling self.observed_opt_state[subgrad_slice] /= _sqrt_scaling # form affine part _opt_affine_term = np.zeros(p) idx = 0 groups = np.unique(penalty.groups) for i, g in enumerate(groups): if active_groups[i]: group = penalty.groups == g _opt_affine_term[group] = active_directions[:,idx][group] * penalty.weights[g] idx += 1 # two transforms that encode score and optimization # variable roles # later, we will modify `score_transform` # in `linear_decomposition` self.opt_transform = (_opt_linear_term, _opt_affine_term) self.score_transform = (_score_linear_term, np.zeros(_score_linear_term.shape[0])) # now store everything needed for the projections # the projection acts only on the optimization # variables self.scaling_slice = scaling_slice # weights are scaled here because the linear terms scales them by scaling new_groups = penalty.groups[inactive] new_weights = dict([(g, penalty.weights[g] / _sqrt_scaling) for g in penalty.weights.keys() if g in np.unique(new_groups)]) # we form a dual group lasso object # to do the projection self.group_lasso_dual = rr.group_lasso_dual(new_groups, weights=new_weights, bound=1.) self.subgrad_slice = subgrad_slice self._setup = True self._marginalize_subgradient = False self.scaling_slice = scaling_slice self.unpenalized_slice = unpenalized_slice self.ndim = loss.shape[0] self.Q = ((_hessian + epsilon * np.identity(p))[:,active])[active,:] self.Qinv = np.linalg.inv(self.Q) self.form_VQLambda() self.nboot = nboot def form_VQLambda(self): nactive_groups = len(self.active_directions_list) nactive_vars = sum([self.active_directions_list[i].shape[0] for i in range(nactive_groups)]) V = np.zeros((nactive_vars, nactive_vars-nactive_groups)) #U = np.zeros((nvariables, ngroups)) Lambda = np.zeros((nactive_vars,nactive_vars)) temp_row, temp_col = 0, 0 for g in range(len(self.active_directions_list)): size_curr_group = self.active_directions_list[g].shape[0] #U[temp_row:(temp_row+size_curr_group),g] = self._active_directions[g] Lambda[temp_row:(temp_row+size_curr_group),temp_row:(temp_row+size_curr_group)] \ = self.active_penalty[g]*np.identity(size_curr_group) import scipy from scipy import linalg, matrix def null(A, eps=1e-12): u, s, vh = scipy.linalg.svd(A) padding = max(0, np.shape(A)[1] - np.shape(s)[0]) null_mask = np.concatenate(((s <= eps), np.ones((padding,), dtype=bool)), axis=0) null_space = scipy.compress(null_mask, vh, axis=0) return scipy.transpose(null_space) V_g = null(matrix(self.active_directions_list[g])) V[temp_row:(temp_row+V_g.shape[0]), temp_col:(temp_col+V_g.shape[1])] = V_g temp_row += V_g.shape[0] temp_col += V_g.shape[1] self.VQLambda = np.dot(np.dot(V.T,self.Qinv), Lambda.dot(V)) return self.VQLambda def derivative_logdet_jacobian(self, scalings): nactive_groups = len(self.active_directions_list) nactive_vars = np.sum([self.active_directions_list[i].shape[0] for i in range(nactive_groups)]) from scipy.linalg import block_diag matrix_list = [scalings[i]*np.identity(self.active_directions_list[i].shape[0]-1) for i in range(scalings.shape[0])] Gamma_minus = block_diag(*matrix_list) jacobian_inv = np.linalg.inv(Gamma_minus+self.VQLambda) group_sizes = [self._active_directions[i].shape[0] for i in range(nactive_groups)] group_sizes_cumsum = np.concatenate(([0], np.array(group_sizes).cumsum())) jacobian_inv_blocks = [jacobian_inv[group_sizes_cumsum[i]:group_sizes_cumsum[i+1],group_sizes_cumsum[i]:group_sizes_cumsum[i+1]] for i in range(nactive_groups)] der = np.zeros(self.observed_opt_state.shape[0]) der[self.scaling_slice] = np.array([np.matrix.trace(jacobian_inv_blocks[i]) for i in range(scalings.shape[0])]) return der def setup_sampler(self, scaling=1, solve_args={'min_its':20, 'tol':1.e-10}): pass def projection(self, opt_state): """ Full projection for Langevin. The state here will be only the state of the optimization variables. """ if not self._setup: raise ValueError('setup_sampler should be called before using this function') if ('subgradient' not in self.selection_variable and 'scaling' not in self.selection_variable): # have not conditioned on any thing else new_state = opt_state.copy() # not really necessary to copy new_state[self.scaling_slice] = np.maximum(opt_state[self.scaling_slice], 0) new_state[self.subgrad_slice] = self.group_lasso_dual.bound_prox(opt_state[self.subgrad_slice]) elif ('subgradient' not in self.selection_variable and 'scaling' in self.selection_variable): # conditioned on the initial scalings # only the subgradient in opt_state new_state = self.group_lasso_dual.bound_prox(opt_state) elif ('subgradient' in self.selection_variable and 'scaling' not in self.selection_variable): # conditioned on the subgradient # only the scaling in opt_state new_state = np.maximum(opt_state, 0) else: new_state = opt_state return new_state # optional things to condition on def decompose_subgradient(self, conditioning_groups=None, marginalizing_groups=None): """ ADD DOCSTRING conditioning_groups and marginalizing_groups should be disjoint """ groups = np.unique(self.penalty.groups) condition_inactive_groups = np.zeros_like(groups, dtype=bool) if conditioning_groups is None: conditioning_groups = np.zeros_like(groups, dtype=np.bool) if marginalizing_groups is None: marginalizing_groups = np.zeros_like(groups, dtype=np.bool) if np.any(conditioning_groups * marginalizing_groups): raise ValueError("cannot simultaneously condition and marginalize over a group's subgradient") if not self._setup: raise ValueError('setup_sampler should be called before using this function') condition_inactive_variables = np.zeros_like(self._inactive, dtype=bool) moving_inactive_groups = np.zeros_like(groups, dtype=bool) moving_inactive_variables = np.zeros_like(self._inactive, dtype=bool) self._inactive_groups = ~(self._active_groups+self._unpenalized) inactive_marginal_groups = np.zeros_like(self._inactive, dtype=bool) limits_marginal_groups = np.zeros_like(self._inactive) for i, g in enumerate(groups): if (self._inactive_groups[i]) and conditioning_groups[i]: group = self.penalty.groups == g condition_inactive_groups[i] = True condition_inactive_variables[group] = True elif (self._inactive_groups[i]) and (~conditioning_groups[i]) and (~marginalizing_groups[i]): group = self.penalty.groups == g moving_inactive_groups[i] = True moving_inactive_variables[group] = True if (self._inactive_groups[i]) and marginalizing_groups[i]: group = self.penalty.groups == g inactive_marginal_groups[i] = True limits_marginal_groups[i] = self.penalty.weights[g] if inactive_marginal_groups is not None: if inactive_marginal_groups.sum()>0: self._marginalize_subgradient = True self.inactive_marginal_groups = inactive_marginal_groups self.limits_marginal_groups = limits_marginal_groups opt_linear, opt_offset = self.opt_transform new_linear = np.zeros((opt_linear.shape[0], (self._active_groups.sum() + self._unpenalized_groups.sum() + moving_inactive_variables.sum()))) new_linear[:, self.scaling_slice] = opt_linear[:, self.scaling_slice] new_linear[:, self.unpenalized_slice] = opt_linear[:, self.unpenalized_slice] inactive_moving_idx = np.nonzero(moving_inactive_variables)[0] subgrad_idx = range(self._active_groups.sum()
for corp in [self.state.unknownCorpus, self.state.hamCorpus, self.state.spamCorpus]: for k in corp.keys(): if len(keys) >= max_results: break msg = corp[k] msg.load() if 'subject' in params: subj = str(msg['Subject']) if self._contains(subj, key, ic): push((k, corp)) if 'body' in params: # For [ 906581 ] Assertion failed in search # subject. Can the headers be a non-string? msg_body = msg.as_string() msg_body = msg_body[msg_body.index('\r\n\r\n'):] if self._contains(msg_body, key, ic): push((k, corp)) if 'headers' in params: for nm, val in msg.items(): # For [ 906581 ] Assertion failed in # search subject. Can the headers be # a non-string? nm = str(nm) val = str(val) if self._contains(nm, key, ic) or \ self._contains(val, key, ic): push((k, corp)) if len(keys): if len(keys) == 1: title = _("Found message") else: title = _("Found messages") keys = list(keys) else: page = _("<p>Could not find any matching messages. " \ "Maybe they expired?</p>") title = _("Did not find message") box = self._buildBox(title, 'status.gif', page) self.write(box) self.write(self._buildBox(_('Find message'), 'query.gif', self.html.findMessage)) self._writePostamble() return # Else show the most recent day's page, as decided by _buildReviewKeys. else: start = 0 # Build the lists of messages: spams, hams and unsure. if len(keys) == 0: keys, date, prior, this, next = self._buildReviewKeys(start) keyedMessageInfo = {options["Headers", "header_unsure_string"]: [], options["Headers", "header_ham_string"]: [], options["Headers", "header_spam_string"]: [], } invalid_keys = [] for key in keys: if isinstance(key, tuple): key, sourceCorpus = key else: sourceCorpus = self.state.unknownCorpus # Parse the message, get the judgement header and build a message # info object for each message. message = sourceCorpus[key] try: message.load() except IOError: # Someone has taken this file away from us. It was # probably a virus protection program, so that's ok. # Don't list it in the review, though. invalid_keys.append(key) continue judgement = message[options["Headers", "classification_header_name"]] if judgement is None: judgement = options["Headers", "header_unsure_string"] else: judgement = judgement.split(';')[0].strip() messageInfo = self._makeMessageInfo(message) keyedMessageInfo[judgement].append((key, messageInfo)) for key in invalid_keys: keys.remove(key) # Present the list of messages in their groups in reverse order of # appearance, by default, or according to the specified sort order. if keys: page = self.html.reviewtable.clone() if prior: page.prior.value = prior del page.priorButton.disabled if next: page.next.value = next del page.nextButton.disabled templateRow = page.reviewRow.clone() # The decision about whether to reverse the sort # order has to go here, because _sortMessages gets called # thrice, and so the ham list would end up sorted backwards. sort_order = params.get('sort') if self.previous_sort == sort_order: reverse = True self.previous_sort = None else: reverse = False self.previous_sort = sort_order page.table = "" # To make way for the real rows. for header, label in ((options["Headers", "header_unsure_string"], 'Unsure'), (options["Headers", "header_ham_string"], 'Ham'), (options["Headers", "header_spam_string"], 'Spam')): messages = keyedMessageInfo[header] if messages: sh = self.html.reviewSubHeader.clone() # Setup the header row sh.optionalHeaders = '' h = self.html.headerHeader.clone() for disp_header in options["html_ui", "display_headers"]: h.headerLink.href = 'review?sort=%sHeader' % \ (disp_header.lower(),) h.headerName = disp_header.title() sh.optionalHeaders += h if not options["html_ui", "display_score"]: del sh.score_header if not options["html_ui", "display_received_time"]: del sh.received_header subHeader = str(sh) subHeader = subHeader.replace('TYPE', label) page.table += self.html.blankRow page.table += subHeader self._appendMessages(page.table, messages, label, sort_order, reverse) page.table += self.html.trainRow if title == "": title = _("Untrained messages received on %s") % date box = self._buildBox(title, None, page) # No icon, to save space. else: page = _("<p>There are no untrained messages to display. " \ "Return <a href='home'>Home</a>, or " \ "<a href='review'>check again</a>.</p>") title = _("No untrained messages") box = self._buildBox(title, 'status.gif', page) self.write(box) self._writePostamble(help_topic="review") def onView(self, key, corpus): """View a message - linked from the Review page.""" self._writePreamble(_("View message"), parent=('review', _('Review'))) sourceCorpus = None message = None if self.state.unknownCorpus.get(key) is not None: sourceCorpus = self.state.unknownCorpus elif self.state.hamCorpus.get(key) is not None: sourceCorpus = self.state.hamCorpus elif self.state.spamCorpus.get(key) is not None: sourceCorpus = self.state.spamCorpus if sourceCorpus is not None: message = sourceCorpus.get(key) if message is not None: self.write("<pre>%s</pre>" % cgi.escape(message.as_string())) else: self.write(_("<p>Can't find message %r. Maybe it expired.</p>") % key) self._writePostamble() def onShowclues(self, key, subject, tokens='0'): """Show clues for a message - linked from the Review page.""" tokens = bool(int(tokens)) # needs the int, as bool('0') is True self._writePreamble(_("Message clues"), parent=('review', _('Review'))) sourceCorpus = None message = None if self.state.unknownCorpus.get(key) is not None: sourceCorpus = self.state.unknownCorpus elif self.state.hamCorpus.get(key) is not None: sourceCorpus = self.state.hamCorpus elif self.state.spamCorpus.get(key) is not None: sourceCorpus = self.state.spamCorpus if sourceCorpus is not None: message = sourceCorpus.get(key).as_string() if message is not None: # For Macs? message = message.replace('\r\n', '\n').replace('\r', '\n') results = self._buildCluesTable(message, subject, tokens) del results.classifyAnother self.write(results) else: self.write(_("<p>Can't find message %r. Maybe it expired.</p>") % key) self._writePostamble() def onPluginconfig(self): html = self._buildConfigPage(self.plugin.plugin_map) html.title = _('Home &gt; Plugin Configuration') html.pagename = _('&gt; Plugin Configuration') html.plugin_button.name.value = _("Back to basic configuration") html.plugin_button.action = "config" html.config_submit.value = _("Save plugin options") html.restore.value = _("Restore plugin options defaults") del html.exp_button del html.adv_button self.writeOKHeaders('text/html') self.write(html) def close_database(self): self.state.close() def reReadOptions(self): """Called by the config page when the user saves some new options, or restores the defaults.""" load_options() # Recreate the state. self.state = self.state.recreate_state() self.classifier = self.state.bayes def verifyInput(self, parms, pmap): '''Check that the given input is valid.''' # Most of the work here is done by the parent class, but # we have a few extra checks errmsg = UserInterface.UserInterface.verifyInput(self, parms, pmap) if pmap != parm_ini_map: return errmsg return errmsg def readUIResources(self): """Returns ui.html and a dictionary of Gifs.""" if self.lang_manager: ui_html = self.lang_manager.import_ui_html() else: from spambayes.core_resources import ui_html images = {} for baseName in UserInterface.IMAGES: moduleName = '%s.%s_gif' % ('spambayes.core_resources', baseName) module = __import__(moduleName, {}, {}, ('spambayes', 'core_resources')) images[baseName] = module.data return ui_html.data, images class CoreState: """This keeps the global state of the module - the command-line options, statistics like how many mails have been classified, the handle of the log file, the Classifier and FileCorpus objects, and so on.""" def __init__(self): """Initialises the State object that holds the state of the app. The default settings are read from Options.py and bayescustomize.ini and are then overridden by the command-line processing code in the __main__ code below.""" self.log_file = None self.bayes = None self.mutex = None self.prepared = False self.can_stop = True self.plugin = None # Unique names for cached messages - see `getNewMessageName()` below. self.last_base_message_name = '' self.uniquifier = 2 # Set up the statistics. self.numSpams = 0 self.numHams = 0 self.numUnsure = 0 self.servers = "" # Load up the other settings from Option.py / bayescustomize.ini self.ui_port = options["html_ui", "port"] self.launch_ui = options["html_ui", "launch_browser"] self.gzip_cache = options["Storage", "cache_use_gzip"] self.run_test_server = False self.is_test = False self.spamCorpus = self.hamCorpus = self.unknownCorpus = None self.spam_trainer = self.ham_trainer = None self.init() def init(self): assert not self.prepared, "init after prepare, but before close" ## no i18n yet... ## # Load the environment for translation. ## self.lang_manager = i18n.LanguageManager() ## # Set the system user default language. ## self.lang_manager.set_language(\ ## self.lang_manager.locale_default_lang()) ## # Set interface to use the user language in the configuration file. ## for language in reversed(options["globals", "language"]): ## # We leave the default in there as the last option, to fall ## # back on if necessary. ## self.lang_manager.add_language(language) ## if options["globals", "verbose"]: ## print "Asked to add languages: " + \ ## ", ".join(options["globals", "language"]) ## print "Set language to " + \ ## str(self.lang_manager.current_langs_codes) self.lang_manager = None # Open the log file. if options["globals", "verbose"]: self.log_file = open('_core_server.log', 'wb', 0) # Remember reported errors. self.reported_errors = {} def close(self): assert self.prepared, "closed without being prepared!" if self.bayes is not None: # Only store a non-empty db. if self.bayes.nham != 0 and self.bayes.nspam != 0: self.bayes.store() self.bayes.close() self.bayes = None spambayes.message.Message().message_info_db = None self.spamCorpus = self.hamCorpus = self.unknownCorpus = None self.spam_trainer = self.ham_trainer = None self.prepared = False self.close_platform_mutex() def prepare(self, can_stop=True): """Do whatever needs to be done to prepare for running. If can_stop is False, then we may not let the user shut down the proxy - for example, running as a Windows service this should be the case.""" self.init() # If we can, prevent multiple servers from running at the same time. assert self.mutex is None, "Should
selected_jobs ) if queue_paused: parser_status = 'paused' self._parser_status.setText( parser_status ) if current_action == '' and files_paused: current_action = 'paused' self._current_action.setText( current_action ) if files_paused: ClientGUIFunctions.SetBitmapButtonBitmap( self._pause_files_button, CC.global_pixmaps().file_play ) else: ClientGUIFunctions.SetBitmapButtonBitmap( self._pause_files_button, CC.global_pixmaps().file_pause ) if queue_paused: ClientGUIFunctions.SetBitmapButtonBitmap( self._pause_queue_button, CC.global_pixmaps().gallery_play ) else: ClientGUIFunctions.SetBitmapButtonBitmap( self._pause_queue_button, CC.global_pixmaps().gallery_pause ) ( file_network_job, page_network_job ) = self._simple_downloader_import.GetNetworkJobs() self._file_download_control.SetNetworkJob( file_network_job ) self._page_download_control.SetNetworkJob( page_network_job ) def CheckAbleToClose( self ): if self._simple_downloader_import.CurrentlyWorking(): raise HydrusExceptions.VetoException( 'This page is still importing.' ) def EventAdvance( self ): selected_jobs = self._pending_jobs_listbox.GetData( only_selected = True ) for job in selected_jobs: self._simple_downloader_import.AdvanceJob( job ) if len( selected_jobs ) > 0: self._UpdateImportStatus() def EventDelay( self ): selected_jobs = list( self._pending_jobs_listbox.GetData( only_selected = True ) ) selected_jobs.reverse() for job in selected_jobs: self._simple_downloader_import.DelayJob( job ) if len( selected_jobs ) > 0: self._UpdateImportStatus() def EventDelete( self ): selected_jobs = self._pending_jobs_listbox.GetData( only_selected = True ) message = 'Delete {} jobs?'.format( HydrusData.ToHumanInt( len( selected_jobs ) ) ) result = ClientGUIDialogsQuick.GetYesNo( self, message ) if result != QW.QDialog.Accepted: return for job in selected_jobs: self._simple_downloader_import.DeleteJob( job ) if len( selected_jobs ) > 0: self._UpdateImportStatus() def EventFormulaChanged( self ): formula = self._formulae.GetValue() formula_name = formula.GetName() self._simple_downloader_import.SetFormulaName( formula_name ) self._controller.new_options.SetString( 'favourite_simple_downloader_formula', formula_name ) def PauseQueue( self ): self._simple_downloader_import.PausePlayQueue() self._UpdateImportStatus() def PauseFiles( self ): self._simple_downloader_import.PausePlayFiles() self._UpdateImportStatus() def SetSearchFocus( self ): ClientGUIFunctions.SetFocusLater( self._page_url_input ) def Start( self ): self._simple_downloader_import.Start( self._page_key ) management_panel_types_to_classes[ MANAGEMENT_TYPE_IMPORT_SIMPLE_DOWNLOADER ] = ManagementPanelImporterSimpleDownloader class ManagementPanelImporterURLs( ManagementPanelImporter ): def __init__( self, parent, page, controller, management_controller ): ManagementPanelImporter.__init__( self, parent, page, controller, management_controller ) # self._url_panel = ClientGUICommon.StaticBox( self, 'url downloader' ) # self._import_queue_panel = ClientGUICommon.StaticBox( self._url_panel, 'imports' ) self._pause_button = ClientGUICommon.BetterBitmapButton( self._import_queue_panel, CC.global_pixmaps().file_pause, self.Pause ) self._pause_button.setToolTip( 'pause/play files' ) self._file_download_control = ClientGUINetworkJobControl.NetworkJobControl( self._import_queue_panel ) self._urls_import = self._management_controller.GetVariable( 'urls_import' ) self._file_seed_cache_control = ClientGUIFileSeedCache.FileSeedCacheStatusControl( self._import_queue_panel, self._controller, page_key = self._page_key ) # self._gallery_panel = ClientGUICommon.StaticBox( self._url_panel, 'search' ) self._gallery_download_control = ClientGUINetworkJobControl.NetworkJobControl( self._gallery_panel ) self._gallery_seed_log_control = ClientGUIGallerySeedLog.GallerySeedLogStatusControl( self._gallery_panel, self._controller, False, False, 'search', page_key = self._page_key ) # self._url_input = ClientGUIControls.TextAndPasteCtrl( self._url_panel, self._PendURLs ) self._url_input.setPlaceholderText( 'any url hydrus recognises, or a raw file url' ) ( file_import_options, tag_import_options ) = self._urls_import.GetOptions() show_downloader_options = True self._file_import_options = ClientGUIImport.FileImportOptionsButton( self._url_panel, file_import_options, show_downloader_options, self._urls_import.SetFileImportOptions ) self._tag_import_options = ClientGUIImport.TagImportOptionsButton( self._url_panel, tag_import_options, show_downloader_options, update_callable = self._urls_import.SetTagImportOptions, allow_default_selection = True ) # self._import_queue_panel.Add( self._pause_button, CC.FLAGS_ON_RIGHT ) self._import_queue_panel.Add( self._file_seed_cache_control, CC.FLAGS_EXPAND_PERPENDICULAR ) self._import_queue_panel.Add( self._file_download_control, CC.FLAGS_EXPAND_PERPENDICULAR ) self._gallery_panel.Add( self._gallery_seed_log_control, CC.FLAGS_EXPAND_PERPENDICULAR ) self._gallery_panel.Add( self._gallery_download_control, CC.FLAGS_EXPAND_PERPENDICULAR ) self._url_panel.Add( self._import_queue_panel, CC.FLAGS_EXPAND_PERPENDICULAR ) self._url_panel.Add( self._gallery_panel, CC.FLAGS_EXPAND_PERPENDICULAR ) self._url_panel.Add( self._url_input, CC.FLAGS_EXPAND_PERPENDICULAR ) self._url_panel.Add( self._file_import_options, CC.FLAGS_EXPAND_PERPENDICULAR ) self._url_panel.Add( self._tag_import_options, CC.FLAGS_EXPAND_PERPENDICULAR ) # vbox = QP.VBoxLayout() QP.AddToLayout( vbox, self._media_sort, CC.FLAGS_EXPAND_SIZER_PERPENDICULAR ) QP.AddToLayout( vbox, self._url_panel, CC.FLAGS_EXPAND_PERPENDICULAR ) self._MakeCurrentSelectionTagsBox( vbox ) self.widget().setLayout( vbox ) # file_seed_cache = self._urls_import.GetFileSeedCache() self._file_seed_cache_control.SetFileSeedCache( file_seed_cache ) gallery_seed_log = self._urls_import.GetGallerySeedLog() self._gallery_seed_log_control.SetGallerySeedLog( gallery_seed_log ) self._UpdateImportStatus() def _PendURLs( self, urls, filterable_tags = None, additional_service_keys_to_tags = None ): if filterable_tags is None: filterable_tags = set() if additional_service_keys_to_tags is None: additional_service_keys_to_tags = ClientTags.ServiceKeysToTags() urls = [ url for url in urls if url.startswith( 'http' ) ] self._urls_import.PendURLs( urls, filterable_tags = filterable_tags, additional_service_keys_to_tags = additional_service_keys_to_tags ) self._UpdateImportStatus() def _UpdateImportStatus( self ): paused = self._urls_import.IsPaused() if paused: ClientGUIFunctions.SetBitmapButtonBitmap( self._pause_button, CC.global_pixmaps().file_play ) else: ClientGUIFunctions.SetBitmapButtonBitmap( self._pause_button, CC.global_pixmaps().file_pause ) ( file_network_job, gallery_network_job ) = self._urls_import.GetNetworkJobs() self._file_download_control.SetNetworkJob( file_network_job ) self._gallery_download_control.SetNetworkJob( gallery_network_job ) def CheckAbleToClose( self ): if self._urls_import.CurrentlyWorking(): raise HydrusExceptions.VetoException( 'This page is still importing.' ) def Pause( self ): self._urls_import.PausePlay() self._UpdateImportStatus() def PendURL( self, url, filterable_tags = None, additional_service_keys_to_tags = None ): if filterable_tags is None: filterable_tags = set() if additional_service_keys_to_tags is None: additional_service_keys_to_tags = ClientTags.ServiceKeysToTags() self._PendURLs( ( url, ), filterable_tags = filterable_tags, additional_service_keys_to_tags = additional_service_keys_to_tags ) def SetSearchFocus( self ): ClientGUIFunctions.SetFocusLater( self._url_input ) def Start( self ): self._urls_import.Start( self._page_key ) management_panel_types_to_classes[ MANAGEMENT_TYPE_IMPORT_URLS ] = ManagementPanelImporterURLs class ManagementPanelPetitions( ManagementPanel ): TAG_DISPLAY_TYPE = ClientTags.TAG_DISPLAY_STORAGE def __init__( self, parent, page, controller, management_controller ): self._petition_service_key = management_controller.GetKey( 'petition_service' ) ManagementPanel.__init__( self, parent, page, controller, management_controller ) self._service = self._controller.services_manager.GetService( self._petition_service_key ) self._can_ban = self._service.HasPermission( HC.CONTENT_TYPE_ACCOUNTS, HC.PERMISSION_ACTION_MODERATE ) service_type = self._service.GetServiceType() self._num_petition_info = None self._current_petition = None self._last_petition_type_fetched = None # self._petitions_info_panel = ClientGUICommon.StaticBox( self, 'petitions info' ) self._refresh_num_petitions_button = ClientGUICommon.BetterButton( self._petitions_info_panel, 'refresh counts', self._FetchNumPetitions ) self._petition_types_to_controls = {} content_type_hboxes = [] petition_types = [] if service_type == HC.FILE_REPOSITORY: petition_types.append( ( HC.CONTENT_TYPE_FILES, HC.CONTENT_STATUS_PETITIONED ) ) elif service_type == HC.TAG_REPOSITORY: petition_types.append( ( HC.CONTENT_TYPE_MAPPINGS, HC.CONTENT_STATUS_PETITIONED ) ) petition_types.append( ( HC.CONTENT_TYPE_TAG_PARENTS, HC.CONTENT_STATUS_PENDING ) ) petition_types.append( ( HC.CONTENT_TYPE_TAG_PARENTS, HC.CONTENT_STATUS_PETITIONED ) ) petition_types.append( ( HC.CONTENT_TYPE_TAG_SIBLINGS, HC.CONTENT_STATUS_PENDING ) ) petition_types.append( ( HC.CONTENT_TYPE_TAG_SIBLINGS, HC.CONTENT_STATUS_PETITIONED ) ) for ( content_type, status ) in petition_types: func = HydrusData.Call( self._FetchPetition, content_type, status ) st = ClientGUICommon.BetterStaticText( self._petitions_info_panel ) button = ClientGUICommon.BetterButton( self._petitions_info_panel, 'fetch ' + HC.content_status_string_lookup[ status ] + ' ' + HC.content_type_string_lookup[ content_type ] + ' petition', func ) button.setEnabled( False ) self._petition_types_to_controls[ ( content_type, status ) ] = ( st, button ) hbox = QP.HBoxLayout() QP.AddToLayout( hbox, st, CC.FLAGS_CENTER_PERPENDICULAR_EXPAND_DEPTH ) QP.AddToLayout( hbox, button, CC.FLAGS_CENTER_PERPENDICULAR ) content_type_hboxes.append( hbox ) # self._petition_panel = ClientGUICommon.StaticBox( self, 'petition' ) self._num_files_to_show = ClientGUICommon.NoneableSpinCtrl( self._petition_panel, message = 'number of files to show', min = 1 ) self._num_files_to_show.SetValue( 256 ) self._action_text = ClientGUICommon.BetterStaticText( self._petition_panel, label = '' ) self._reason_text = QW.QTextEdit( self._petition_panel ) self._reason_text.setReadOnly( True ) self._reason_text.setMinimumHeight( 80 ) check_all = ClientGUICommon.BetterButton( self._petition_panel, 'check all', self._CheckAll ) flip_selected = ClientGUICommon.BetterButton( self._petition_panel, 'flip selected', self._FlipSelected ) check_none = ClientGUICommon.BetterButton( self._petition_panel, 'check none', self._CheckNone ) self._sort_by_left = ClientGUICommon.BetterButton( self._petition_panel, 'sort by left', self._SortBy, 'left' ) self._sort_by_right = ClientGUICommon.BetterButton( self._petition_panel, 'sort by right', self._SortBy, 'right' ) self._sort_by_left.setEnabled( False ) self._sort_by_right.setEnabled( False ) self._contents = QP.CheckListBox( self._petition_panel ) self._contents.setSelectionMode( QW.QAbstractItemView.ExtendedSelection ) self._contents.itemDoubleClicked.connect( self.EventContentDoubleClick ) ( min_width, min_height ) = ClientGUIFunctions.ConvertTextToPixels( self._contents, ( 16, 20 ) ) self._contents.setMinimumHeight( min_height ) self._process = QW.QPushButton( 'process', self._petition_panel ) self._process.clicked.connect( self.EventProcess ) self._process.setObjectName( 'HydrusAccept' ) self._copy_account_key_button = ClientGUICommon.BetterButton( self._petition_panel, 'copy petitioner account id', self._CopyAccountKey ) self._modify_petitioner = QW.QPushButton( 'modify petitioner', self._petition_panel ) self._modify_petitioner.clicked.connect( self.EventModifyPetitioner ) self._modify_petitioner.setEnabled( False ) if not self._can_ban: self._modify_petitioner.setVisible( False ) # self._petitions_info_panel.Add( self._refresh_num_petitions_button, CC.FLAGS_EXPAND_PERPENDICULAR ) for hbox in content_type_hboxes: self._petitions_info_panel.Add( hbox, CC.FLAGS_EXPAND_SIZER_PERPENDICULAR ) check_hbox = QP.HBoxLayout() QP.AddToLayout( check_hbox, check_all, CC.FLAGS_CENTER_PERPENDICULAR_EXPAND_DEPTH ) QP.AddToLayout( check_hbox, flip_selected, CC.FLAGS_CENTER_PERPENDICULAR_EXPAND_DEPTH ) QP.AddToLayout( check_hbox, check_none, CC.FLAGS_CENTER_PERPENDICULAR_EXPAND_DEPTH ) sort_hbox = QP.HBoxLayout() QP.AddToLayout( sort_hbox, self._sort_by_left, CC.FLAGS_CENTER_PERPENDICULAR_EXPAND_DEPTH ) QP.AddToLayout( sort_hbox, self._sort_by_right, CC.FLAGS_CENTER_PERPENDICULAR_EXPAND_DEPTH ) self._petition_panel.Add( ClientGUICommon.BetterStaticText( self._petition_panel, label = 'Double-click a petition to see its files, if it has them.' ), CC.FLAGS_EXPAND_PERPENDICULAR ) self._petition_panel.Add( self._num_files_to_show, CC.FLAGS_EXPAND_PERPENDICULAR ) self._petition_panel.Add( self._action_text, CC.FLAGS_EXPAND_PERPENDICULAR ) self._petition_panel.Add( self._reason_text, CC.FLAGS_EXPAND_PERPENDICULAR ) self._petition_panel.Add( check_hbox, CC.FLAGS_EXPAND_SIZER_PERPENDICULAR ) self._petition_panel.Add( sort_hbox, CC.FLAGS_EXPAND_SIZER_PERPENDICULAR ) self._petition_panel.Add( self._contents, CC.FLAGS_EXPAND_BOTH_WAYS ) self._petition_panel.Add( self._process, CC.FLAGS_EXPAND_PERPENDICULAR ) self._petition_panel.Add( self._copy_account_key_button, CC.FLAGS_EXPAND_PERPENDICULAR ) self._petition_panel.Add( self._modify_petitioner, CC.FLAGS_EXPAND_PERPENDICULAR ) vbox = QP.VBoxLayout() QP.AddToLayout( vbox, self._media_sort, CC.FLAGS_EXPAND_PERPENDICULAR ) QP.AddToLayout( vbox, self._media_collect, CC.FLAGS_EXPAND_PERPENDICULAR ) QP.AddToLayout( vbox, self._petitions_info_panel, CC.FLAGS_EXPAND_PERPENDICULAR ) QP.AddToLayout( vbox, self._petition_panel, CC.FLAGS_EXPAND_BOTH_WAYS ) self._MakeCurrentSelectionTagsBox( vbox ) self.widget().setLayout( vbox )
#!/usr/bin/env python # encoding: utf-8 # # test_map.py # # @Author: <NAME> <andrews> # @Date: 2017-07-02 13:08:00 # @Last modified by: andrews # @Last modified time: 2018-03-01 11:03:79 from copy import deepcopy import numpy as np from astropy import units as u import matplotlib import pytest from marvin import config from marvin.core.exceptions import MarvinError from marvin.tools.maps import Maps from marvin.tools.quantities import Map, EnhancedMap from marvin.tests import marvin_test_if from marvin.utils.datamodel.dap import datamodel from marvin.utils.datamodel.dap.plotting import get_default_plot_params from marvin.utils.general.maskbit import Maskbit value1 = np.array([[16.35, 0.8], [0, -10.]]) value2 = np.array([[591., 1e-8], [4., 10]]) value_prod12 = np.array([[9.66285000e+03, 8e-9], [0, -100]]) ivar1 = np.array([[4, 1], [6.97789734e+36, 1e8]]) ivar2 = np.array([[10, 1e-8], [5.76744385e+36, 0]]) ivar_sum12 = np.array([[2.85714286e+00, 9.99999990e-09], [3.15759543e+36, 0]]) ivar_prod12 = np.array([[1.10616234e-05, 1.56250000e-08], [0, 0.]]) ivar_pow_2 = np.array([[5.23472002e-08, 9.53674316e-01], [0, 25]]) ivar_pow_05 = np.array([[3.66072168e-03, 7.81250000e+00], [0, 0]]) ivar_pow_0 = np.array([[0, 0], [0, 0]]) ivar_pow_m1 = np.array([[4, 1.], [0, 1e+08]]) ivar_pow_m2 = np.array([[2.67322500e+02, 1.6e-01], [0, 2.5e+09]]) ivar_pow_m05 = np.array([[0.97859327, 5], [0, 0]]) u_flux = u.erg / u.cm**2 / u.s / u.def_unit('spaxel') u_flux2 = u_flux * u_flux def _get_maps_kwargs(galaxy, data_origin): if data_origin == 'file': maps_kwargs = dict(filename=galaxy.mapspath) else: maps_kwargs = dict(plateifu=galaxy.plateifu, release=galaxy.release, bintype=galaxy.bintype, template_kin=galaxy.template, mode='local' if data_origin == 'db' else 'remote') return maps_kwargs @pytest.fixture(scope='function', params=[('emline_gflux', 'ha_6564'), ('emline_gvel', 'oiii_5008'), ('stellar_vel', None), ('stellar_sigma', None)]) def map_(request, galaxy, data_origin): maps = Maps(**_get_maps_kwargs(galaxy, data_origin)) map_ = maps.getMap(property_name=request.param[0], channel=request.param[1]) map_.data_origin = data_origin return map_ class TestMap(object): def test_map(self, map_, galaxy): assert map_.getMaps().release == galaxy.release assert tuple(map_.shape) == tuple(galaxy.shape) assert map_.value.shape == tuple(galaxy.shape) assert map_.ivar.shape == tuple(galaxy.shape) assert map_.mask.shape == tuple(galaxy.shape) assert (map_.masked.data == map_.value).all() assert (map_.masked.mask == map_.mask.astype(bool)).all() assert map_.snr == pytest.approx(np.abs(map_.value * np.sqrt(map_.ivar))) assert datamodel[map_.getMaps()._dapver][map_.datamodel.full()].unit == map_.unit def test_plot(self, map_): fig, ax = map_.plot() assert isinstance(fig, matplotlib.figure.Figure) assert isinstance(ax, matplotlib.axes._subplots.Subplot) assert 'Make single panel map or one panel of multi-panel map plot.' in map_.plot.__doc__ @marvin_test_if(mark='skip', map_={'data_origin': ['db']}) def test_save_and_restore(self, temp_scratch, map_): fout = temp_scratch.join('test_map.mpf') map_.save(str(fout)) assert fout.check() is True map_restored = Map.restore(str(fout), delete=True) assert tuple(map_.shape) == tuple(map_restored.shape) @pytest.mark.parametrize('property_name, channel', [('emline_gflux', 'ha_6564'), ('stellar_vel', None)]) def test_deepcopy(self, galaxy, property_name, channel): maps = Maps(plateifu=galaxy.plateifu) map1 = maps.getMap(property_name=property_name, channel=channel) map2 = deepcopy(map1) for attr in vars(map1): if not attr.startswith('_'): value = getattr(map1, attr) value2 = getattr(map2, attr) if isinstance(value, np.ndarray): assert np.isclose(value, value2).all() elif isinstance(value, np.ma.core.MaskedArray): assert (np.isclose(value.data, value2.data).all() and (value.mask == value2.mask).all()) elif isinstance(value, Maskbit) or isinstance(value[0], Maskbit): if isinstance(value, Maskbit): value = [value] value2 = [value2] for mb, mb2 in zip(value, value2): for it in ['bits', 'description', 'labels', 'mask', 'name']: assert getattr(mb, it) == getattr(mb2, it) assert (mb.schema == mb2.schema).all().all() elif isinstance(value, Maps): pass else: assert value == value2, attr def test_getMap_invalid_property(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) with pytest.raises(ValueError) as ee: maps.getMap(property_name='mythical_property') assert 'Your input value is too ambiguous.' in str(ee.value) def test_getMap_invalid_channel(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) with pytest.raises(ValueError) as ee: maps.getMap(property_name='emline_gflux', channel='mythical_channel') assert 'Your input value is too ambiguous.' in str(ee.value) @marvin_test_if(mark='include', maps={'plateifu': '8485-1901', 'release': 'MPL-6', 'mode': 'local', 'data_origin': 'file'}) def test_quatities_reorder(self, maps): """Asserts the unit survives a quantity reorder (issue #374).""" ha = maps['emline_gflux_ha'] assert ha is not None assert ha.unit is not None reordered_ha = np.moveaxis(ha, 0, -1) assert reordered_ha.unit is not None class TestMapArith(object): def test_add_constant(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) ha = maps['emline_gflux_ha_6564'] ha10 = ha + 10. assert ha10.value == pytest.approx(ha.value + 10.) assert ha10.ivar == pytest.approx(ha.ivar) assert ha10.mask == pytest.approx(ha.mask) def test_subtract_constant(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) ha = maps['emline_gflux_ha_6564'] ha10 = ha - 10. assert ha10.value == pytest.approx(ha.value - 10.) assert ha10.ivar == pytest.approx(ha.ivar) assert ha10.mask == pytest.approx(ha.mask) def test_multiply_constant(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) ha = maps['emline_gflux_ha_6564'] ha10 = ha * 10. assert ha10.value == pytest.approx(ha.value * 10.) assert ha10.ivar == pytest.approx(ha.ivar / 10.**2) assert ha10.mask == pytest.approx(ha.mask) def test_divide_constant(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) ha = maps['emline_gflux_ha_6564'] ha10 = ha / 10. assert ha10.value == pytest.approx(ha.value / 10.) assert ha10.ivar == pytest.approx(ha.ivar * 10.**2) assert ha10.mask == pytest.approx(ha.mask) @pytest.mark.parametrize('ivar1, ivar2, expected', [(ivar1, ivar2, ivar_sum12)]) def test_add_ivar(self, ivar1, ivar2, expected): assert Map._add_ivar(ivar1, ivar2) == pytest.approx(expected) @pytest.mark.parametrize('ivar1, ivar2, value1, value2, value_prod12, expected', [(ivar1, ivar2, value1, value2, value_prod12, ivar_prod12)]) def test_mul_ivar(self, ivar1, ivar2, value1, value2, value_prod12, expected): ivar = Map._mul_ivar(ivar1, ivar2, value1, value2, value_prod12) ivar[np.isnan(ivar)] = 0 ivar[np.isinf(ivar)] = 0 assert ivar == pytest.approx(expected) @pytest.mark.parametrize('power, expected', [(2, ivar_pow_2), (0.5, ivar_pow_05), (0, ivar_pow_0), (-1, ivar_pow_m1), (-2, ivar_pow_m2), (-0.5, ivar_pow_m05)]) @pytest.mark.parametrize('ivar, value,', [(ivar1, value1)]) def test_pow_ivar(self, ivar, value, power, expected): ivar = Map._pow_ivar(ivar, value, power) ivar[np.isnan(ivar)] = 0 ivar[np.isinf(ivar)] = 0 assert ivar == pytest.approx(expected) @pytest.mark.parametrize('power', [2, 0.5, 0, -1, -2, -0.5]) def test_pow_ivar_none(self, power): assert Map._pow_ivar(None, np.arange(4), power) == pytest.approx(np.zeros(4)) @pytest.mark.parametrize('unit1, unit2, op, expected', [(u_flux, u_flux, '+', u_flux), (u_flux, u_flux, '-', u_flux), (u_flux, u_flux, '*', u_flux2), (u_flux, u_flux, '/', u.dimensionless_unscaled), (u.km, u.s, '*', u.km * u.s), (u.km, u.s, '/', u.km / u.s)]) def test_unit_propagation(self, unit1, unit2, op, expected): assert Map._unit_propagation(unit1, unit2, op) == expected @pytest.mark.parametrize('unit1, unit2, op', [(u_flux, u.km, '+'), (u_flux, u.km, '-')]) def test_unit_propagation_mismatch(self, unit1, unit2, op): with pytest.warns(UserWarning): assert Map._unit_propagation(unit1, unit2, op) is None @pytest.mark.parametrize('property1, channel1, property2, channel2', [('emline_gflux', 'ha_6564', 'emline_gflux', 'nii_6585'), ('emline_gvel', 'ha_6564', 'stellar_vel', None)]) def test_add_maps(self, galaxy, property1, channel1, property2, channel2): maps = Maps(plateifu=galaxy.plateifu) map1 = maps.getMap(property_name=property1, channel=channel1) map2 = maps.getMap(property_name=property2, channel=channel2) map12 = map1 + map2 assert map12.value == pytest.approx(map1.value + map2.value) assert map12.ivar == pytest.approx(map1._add_ivar(map1.ivar, map2.ivar)) assert map12.mask == pytest.approx(map1.mask | map2.mask) @pytest.mark.parametrize('property1, channel1, property2, channel2', [('emline_gflux', 'ha_6564', 'emline_gflux', 'nii_6585'), ('emline_gvel', 'ha_6564', 'stellar_vel', None)]) def test_subtract_maps(self, galaxy, property1, channel1, property2, channel2): maps = Maps(plateifu=galaxy.plateifu) map1 = maps.getMap(property_name=property1, channel=channel1) map2 = maps.getMap(property_name=property2, channel=channel2) map12 = map1 - map2 assert map12.value == pytest.approx(map1.value - map2.value) assert map12.ivar == pytest.approx(map1._add_ivar(map1.ivar, map2.ivar)) assert map12.mask == pytest.approx(map1.mask | map2.mask) @pytest.mark.parametrize('property1, channel1, property2, channel2', [('emline_gflux', 'ha_6564', 'emline_gflux', 'nii_6585'), ('emline_gvel', 'ha_6564', 'stellar_vel', None)]) def test_multiply_maps(self, galaxy, property1, channel1, property2, channel2): maps = Maps(plateifu=galaxy.plateifu) map1 = maps.getMap(property_name=property1, channel=channel1) map2 = maps.getMap(property_name=property2, channel=channel2) map12 = map1 * map2 ivar = map1._mul_ivar(map1.ivar, map2.ivar, map1.value, map2.value, map12.value) ivar[np.isnan(ivar)] = 0 ivar[np.isinf(ivar)] = 0 assert map12.value == pytest.approx(map1.value * map2.value) assert map12.ivar == pytest.approx(ivar) assert map12.mask == pytest.approx(map1.mask | map2.mask) @pytest.mark.parametrize('property1, channel1, property2, channel2', [('emline_gflux', 'ha_6564', 'emline_gflux', 'nii_6585'), ('emline_gvel', 'ha_6564', 'stellar_vel', None)]) def test_divide_maps(self, galaxy, property1, channel1, property2, channel2): maps = Maps(plateifu=galaxy.plateifu) map1 = maps.getMap(property_name=property1, channel=channel1) map2 = maps.getMap(property_name=property2, channel=channel2) map12 = map1 / map2 ivar = map1._mul_ivar(map1.ivar, map2.ivar, map1.value, map2.value, map12.value) ivar[np.isnan(ivar)] = 0 ivar[np.isinf(ivar)] = 0 mask = map1.mask | map2.mask bad = np.isnan(map12.value) | np.isinf(map12.value) mask[bad] = mask[bad] | map12.pixmask.labels_to_value('DONOTUSE') with np.errstate(divide='ignore', invalid='ignore'): assert map12.value == pytest.approx(map1.value / map2.value, nan_ok=True) assert map12.ivar == pytest.approx(ivar) assert map12.mask == pytest.approx(mask) @pytest.mark.runslow @pytest.mark.parametrize('power', [2, 0.5, 0, -1, -2, -0.5]) @pytest.mark.parametrize('property_name, channel', [('emline_gflux', 'ha_6564'), ('stellar_vel', None)]) def test_pow(self, galaxy, property_name, channel, power): maps = Maps(plateifu=galaxy.plateifu) map_orig = maps.getMap(property_name=property_name, channel=channel) map_new = map_orig**power sig_orig = np.sqrt(1. / map_orig.ivar) sig_new = map_new.value * power * sig_orig * map_orig.value ivar_new = 1 / sig_new**2. ivar_new[np.isnan(ivar_new)] = 0 ivar_new[np.isinf(ivar_new)] = 0 assert map_new.value == pytest.approx(map_orig.value**power, nan_ok=True) assert map_new.ivar == pytest.approx(ivar_new) assert (map_new.mask == map_orig.mask).all() @marvin_test_if(mark='skip', galaxy=dict(release=['MPL-4'])) def test_stellar_sigma_correction(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) stsig = maps['stellar_sigma'] stsigcorr = maps['stellar_sigmacorr'] expected = (stsig**2 - stsigcorr**2)**0.5 actual = stsig.inst_sigma_correction() assert actual.value == pytest.approx(expected.value, nan_ok=True) assert actual.ivar == pytest.approx(expected.ivar) assert (actual.mask == expected.mask).all() @marvin_test_if(mark='include', galaxy=dict(release=['MPL-4'])) def test_stellar_sigma_correction_MPL4(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) stsig = maps['stellar_sigma'] with pytest.raises(MarvinError) as ee: stsig.inst_sigma_correction() assert 'Instrumental broadening correction not implemented for MPL-4.' in str(ee.value) def test_stellar_sigma_correction_invalid_property(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) ha = maps['emline_gflux_ha_6564'] with pytest.raises(MarvinError) as ee: ha.inst_sigma_correction() assert ('Cannot correct {0}_{1} '.format(ha.datamodel.name, ha.datamodel.channel) + 'for instrumental broadening.') in str(ee.value) def test_emline_sigma_correction(self, galaxy): maps = Maps(plateifu=galaxy.plateifu) hasig = maps['emline_gsigma_ha_6564'] emsigcorr = maps['emline_instsigma_ha_6564'] expected = (hasig**2 - emsigcorr**2)**0.5 actual = hasig.inst_sigma_correction() assert actual.value == pytest.approx(expected.value, nan_ok=True) assert actual.ivar == pytest.approx(expected.ivar) assert (actual.mask == expected.mask).all() class TestMaskbit(object): def test_masked(self, maps_release_only): __, dapver = config.lookUpVersions(maps_release_only.release) params = get_default_plot_params(dapver) ha = maps_release_only['emline_gflux_ha_6564'] expected = ha.pixmask.get_mask(params['default']['bitmasks'], dtype=bool) assert ha.masked.data == pytest.approx(ha.value) assert (ha.masked.mask == expected).all() @marvin_test_if(mark='include', maps_release_only=dict(release=['MPL-4'])) def test_values_to_bits_mpl4(self, maps_release_only): ha = maps_release_only['emline_gflux_ha_6564'] assert ha.pixmask.values_to_bits(1) == [0] @marvin_test_if(mark='skip', maps_release_only=dict(release=['MPL-4'])) def test_values_to_bits(self, maps_release_only): ha = maps_release_only['emline_gflux_ha_6564'] assert ha.pixmask.values_to_bits(3) == [0, 1] @marvin_test_if(mark='include', maps_release_only=dict(release=['MPL-4'])) def test_values_to_labels_mpl4(self, maps_release_only): ha = maps_release_only['emline_gflux_ha_6564'] assert ha.pixmask.values_to_labels(1) == ['DONOTUSE'] @marvin_test_if(mark='skip', maps_release_only=dict(release=['MPL-4'])) def test_values_to_labels(self, maps_release_only): ha = maps_release_only['emline_gflux_ha_6564'] assert ha.pixmask.values_to_labels(3) == ['NOCOV', 'LOWCOV'] @marvin_test_if(mark='include', maps_release_only=dict(release=['MPL-4'])) def test_labels_to_value_mpl4(self, maps_release_only): ha = maps_release_only['emline_gflux_ha_6564'] assert ha.pixmask.labels_to_value('DONOTUSE') == 1 @marvin_test_if(mark='skip',
<reponame>Sketos/PyAutoArray<gh_stars>0 import autoarray as aa import autoarray.plot as aplt from os import path import matplotlib.pyplot as plt import os import pytest import numpy as np import shutil directory = path.dirname(path.realpath(__file__)) @pytest.fixture(name="plot_path") def make_plotter_setup(): return "{}/..//test_files/plot/".format(os.path.dirname(os.path.realpath(__file__))) @pytest.fixture(autouse=True) def set_config_path(): aa.conf.instance = aa.conf.Config( path.join(directory, "../test_files/plot"), path.join(directory, "output") ) class TestAbstractPlotterAttributes: def test__units__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.units.use_scaled == True assert plotter.units.in_kpc == False assert plotter.units.conversion_factor == None plotter = aplt.Plotter(units=aplt.Units(in_kpc=True, conversion_factor=2.0)) assert plotter.units.use_scaled == True assert plotter.units.in_kpc == True assert plotter.units.conversion_factor == 2.0 sub_plotter = aplt.SubPlotter() assert sub_plotter.units.use_scaled == True assert sub_plotter.units.in_kpc == False assert sub_plotter.units.conversion_factor == None sub_plotter = aplt.SubPlotter( units=aplt.Units(use_scaled=False, conversion_factor=2.0) ) assert sub_plotter.units.use_scaled == False assert sub_plotter.units.in_kpc == False assert sub_plotter.units.conversion_factor == 2.0 def test__figure__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.figure.figsize == (7, 7) assert plotter.figure.aspect == "auto" plotter = aplt.Plotter(figure=aplt.Figure(aspect="auto")) assert plotter.figure.figsize == (7, 7) assert plotter.figure.aspect == "auto" sub_plotter = aplt.SubPlotter() assert sub_plotter.figure.figsize == None assert sub_plotter.figure.aspect == "square" sub_plotter = aplt.SubPlotter(figure=aplt.Figure.sub(figsize=(6, 6))) assert sub_plotter.figure.figsize == (6, 6) assert sub_plotter.figure.aspect == "square" def test__colormap__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.cmap.cmap == "jet" assert plotter.cmap.norm == "linear" assert plotter.cmap.norm_min == None assert plotter.cmap.norm_max == None assert plotter.cmap.linthresh == 1.0 assert plotter.cmap.linscale == 2.0 plotter = aplt.Plotter( cmap=aplt.ColorMap( cmap="cold", norm="log", norm_min=0.1, norm_max=1.0, linthresh=1.5, linscale=2.0, ) ) assert plotter.cmap.cmap == "cold" assert plotter.cmap.norm == "log" assert plotter.cmap.norm_min == 0.1 assert plotter.cmap.norm_max == 1.0 assert plotter.cmap.linthresh == 1.5 assert plotter.cmap.linscale == 2.0 sub_plotter = aplt.SubPlotter() assert sub_plotter.cmap.cmap == "jet" assert sub_plotter.cmap.norm == "linear" assert sub_plotter.cmap.norm_min == None assert sub_plotter.cmap.norm_max == None assert sub_plotter.cmap.linthresh == 1.0 assert sub_plotter.cmap.linscale == 2.0 sub_plotter = aplt.SubPlotter( cmap=aplt.ColorMap.sub( cmap="cold", norm="log", norm_min=0.1, norm_max=1.0, linscale=2.0 ) ) assert sub_plotter.cmap.cmap == "cold" assert sub_plotter.cmap.norm == "log" assert sub_plotter.cmap.norm_min == 0.1 assert sub_plotter.cmap.norm_max == 1.0 assert sub_plotter.cmap.linthresh == 1.0 assert sub_plotter.cmap.linscale == 2.0 def test__colorbar__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.cb.ticksize == 1 assert plotter.cb.fraction == 3.0 assert plotter.cb.pad == 4.0 assert plotter.cb.tick_values == None assert plotter.cb.tick_labels == None plotter = aplt.Plotter( cb=aplt.ColorBar( ticksize=20, fraction=0.001, pad=10.0, tick_values=(1.0, 2.0), tick_labels=(3.0, 4.0), ) ) assert plotter.cb.ticksize == 20 assert plotter.cb.fraction == 0.001 assert plotter.cb.pad == 10.0 assert plotter.cb.tick_values == (1.0, 2.0) assert plotter.cb.tick_labels == (3.0, 4.0) sub_plotter = aplt.SubPlotter() assert sub_plotter.cb.ticksize == 1 assert sub_plotter.cb.fraction == 3.0 assert sub_plotter.cb.pad == 4.0 sub_plotter = aplt.SubPlotter(cb=aplt.ColorBar.sub(fraction=0.001, pad=10.0)) assert sub_plotter.cb.ticksize == 1 assert sub_plotter.cb.fraction == 0.001 assert sub_plotter.cb.pad == 10.0 def test__ticks__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.ticks.ysize == 14 assert plotter.ticks.xsize == 15 assert plotter.ticks.y_manual == None assert plotter.ticks.x_manual == None plotter = aplt.Plotter( ticks=aplt.Ticks( ysize=24, xsize=25, y_manual=[1.0, 2.0], x_manual=[3.0, 4.0] ) ) assert plotter.ticks.ysize == 24 assert plotter.ticks.xsize == 25 assert plotter.ticks.y_manual == [1.0, 2.0] assert plotter.ticks.x_manual == [3.0, 4.0] sub_plotter = aplt.SubPlotter() assert sub_plotter.ticks.ysize == 24 assert sub_plotter.ticks.xsize == 25 assert sub_plotter.ticks.y_manual == None assert sub_plotter.ticks.x_manual == None sub_plotter = aplt.SubPlotter( ticks=aplt.Ticks.sub(xsize=25, y_manual=[1.0, 2.0], x_manual=[3.0, 4.0]) ) assert sub_plotter.ticks.ysize == 24 assert sub_plotter.ticks.xsize == 25 assert sub_plotter.ticks.y_manual == [1.0, 2.0] assert sub_plotter.ticks.x_manual == [3.0, 4.0] def test__labels__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.labels.title == None assert plotter.labels._yunits == None assert plotter.labels._xunits == None assert plotter.labels.titlesize == 11 assert plotter.labels.ysize == 12 assert plotter.labels.xsize == 13 plotter = aplt.Plotter( labels=aplt.Labels( title="OMG", yunits="hi", xunits="hi2", titlesize=1, ysize=2, xsize=3 ) ) assert plotter.labels.title == "OMG" assert plotter.labels._yunits == "hi" assert plotter.labels._xunits == "hi2" assert plotter.labels.titlesize == 1 assert plotter.labels.ysize == 2 assert plotter.labels.xsize == 3 sub_plotter = aplt.SubPlotter() assert sub_plotter.labels.title == None assert sub_plotter.labels._yunits == None assert sub_plotter.labels._xunits == None assert sub_plotter.labels.titlesize == 15 assert sub_plotter.labels.ysize == 22 assert sub_plotter.labels.xsize == 23 sub_plotter = aplt.SubPlotter( labels=aplt.Labels.sub( title="OMG", yunits="hi", xunits="hi2", ysize=2, xsize=3 ) ) assert sub_plotter.labels.title == "OMG" assert sub_plotter.labels._yunits == "hi" assert sub_plotter.labels._xunits == "hi2" assert sub_plotter.labels.titlesize == 15 assert sub_plotter.labels.ysize == 2 assert sub_plotter.labels.xsize == 3 def test__legend__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.legend.include == True assert plotter.legend.fontsize == 12 plotter = aplt.Plotter(legend=aplt.Legend(include=False, fontsize=11)) assert plotter.legend.include == False assert plotter.legend.fontsize == 11 sub_plotter = aplt.SubPlotter() assert sub_plotter.legend.include == False assert sub_plotter.legend.fontsize == 13 sub_plotter = aplt.SubPlotter(legend=aplt.Legend.sub(include=True)) assert sub_plotter.legend.include == True assert sub_plotter.legend.fontsize == 13 def test__origin_scatterer__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.origin_scatterer.size == 80 assert plotter.origin_scatterer.marker == "x" assert plotter.origin_scatterer.colors == ["k"] plotter = aplt.Plotter( origin_scatterer=aplt.OriginScatterer(size=1, marker=".", colors="k") ) assert plotter.origin_scatterer.size == 1 assert plotter.origin_scatterer.marker == "." assert plotter.origin_scatterer.colors == ["k"] sub_plotter = aplt.SubPlotter() assert sub_plotter.origin_scatterer.size == 81 assert sub_plotter.origin_scatterer.marker == "." assert sub_plotter.origin_scatterer.colors == ["r"] sub_plotter = aplt.SubPlotter( origin_scatterer=aplt.OriginScatterer.sub(marker="o", colors=["r", "b"]) ) assert sub_plotter.origin_scatterer.size == 81 assert sub_plotter.origin_scatterer.marker == "o" assert sub_plotter.origin_scatterer.colors == ["r", "b"] def test__mask_scatterer__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.mask_scatterer.size == 12 assert plotter.mask_scatterer.marker == "." assert plotter.mask_scatterer.colors == ["g"] plotter = aplt.Plotter( mask_scatterer=aplt.MaskScatterer(size=1, marker="x", colors="k") ) assert plotter.mask_scatterer.size == 1 assert plotter.mask_scatterer.marker == "x" assert plotter.mask_scatterer.colors == ["k"] sub_plotter = aplt.SubPlotter() assert sub_plotter.mask_scatterer.size == 8 assert sub_plotter.mask_scatterer.marker == "." assert sub_plotter.mask_scatterer.colors == ["w"] sub_plotter = aplt.SubPlotter( mask_scatterer=aplt.MaskScatterer.sub(marker="o", colors=["r", "b"]) ) assert sub_plotter.mask_scatterer.size == 8 assert sub_plotter.mask_scatterer.marker == "o" assert sub_plotter.mask_scatterer.colors == ["r", "b"] def test__border_scatterer__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.border_scatterer.size == 13 assert plotter.border_scatterer.marker == "+" assert plotter.border_scatterer.colors == ["c"] plotter = aplt.Plotter( border_scatterer=aplt.BorderScatterer(size=1, marker="x", colors="k") ) assert plotter.border_scatterer.size == 1 assert plotter.border_scatterer.marker == "x" assert plotter.border_scatterer.colors == ["k"] sub_plotter = aplt.SubPlotter() assert sub_plotter.border_scatterer.size == 7 assert sub_plotter.border_scatterer.marker == "." assert sub_plotter.border_scatterer.colors == ["k"] sub_plotter = aplt.SubPlotter( border_scatterer=aplt.BorderScatterer.sub(marker="o", colors=["r", "b"]) ) assert sub_plotter.border_scatterer.size == 7 assert sub_plotter.border_scatterer.marker == "o" assert sub_plotter.border_scatterer.colors == ["r", "b"] def test__grid_scatterer__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.grid_scatterer.size == 14 assert plotter.grid_scatterer.marker == "x" assert plotter.grid_scatterer.colors == ["y"] plotter = aplt.Plotter( grid_scatterer=aplt.GridScatterer(size=1, marker="x", colors="k") ) assert plotter.grid_scatterer.size == 1 assert plotter.grid_scatterer.marker == "x" assert plotter.grid_scatterer.colors == ["k"] sub_plotter = aplt.SubPlotter() assert sub_plotter.grid_scatterer.size == 6 assert sub_plotter.grid_scatterer.marker == "." assert sub_plotter.grid_scatterer.colors == ["r"] sub_plotter = aplt.SubPlotter( grid_scatterer=aplt.GridScatterer.sub(marker="o", colors=["r", "b"]) ) assert sub_plotter.grid_scatterer.size == 6 assert sub_plotter.grid_scatterer.marker == "o" assert sub_plotter.grid_scatterer.colors == ["r", "b"] def test__positions_scatterer__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.positions_scatterer.size == 15 assert plotter.positions_scatterer.marker == "o" assert plotter.positions_scatterer.colors == ["r", "g", "b"] plotter = aplt.Plotter( positions_scatterer=aplt.PositionsScatterer(size=1, marker="x", colors="k") ) assert plotter.positions_scatterer.size == 1 assert plotter.positions_scatterer.marker == "x" assert plotter.positions_scatterer.colors == ["k"] sub_plotter = aplt.SubPlotter() assert sub_plotter.positions_scatterer.size == 5 assert sub_plotter.positions_scatterer.marker == "." assert sub_plotter.positions_scatterer.colors == ["c", "g", "b"] sub_plotter = aplt.SubPlotter( positions_scatterer=aplt.PositionsScatterer.sub( marker="o", colors=["r", "b"] ) ) assert sub_plotter.positions_scatterer.size == 5 assert sub_plotter.positions_scatterer.marker == "o" assert sub_plotter.positions_scatterer.colors == ["r", "b"] def test__index_scatterer__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.index_scatterer.size == 20 assert plotter.index_scatterer.marker == "." assert plotter.index_scatterer.colors == ["r", "g", "b", "y", "k", "w"] plotter = aplt.Plotter( index_scatterer=aplt.IndexScatterer(size=1, marker="x", colors="k") ) assert plotter.index_scatterer.size == 1 assert plotter.index_scatterer.marker == "x" assert plotter.index_scatterer.colors == ["k"] sub_plotter = aplt.SubPlotter() assert sub_plotter.index_scatterer.size == 21 assert sub_plotter.index_scatterer.marker == "+" assert sub_plotter.index_scatterer.colors == ["r", "g", "b", "y", "w", "k"] sub_plotter = aplt.SubPlotter( index_scatterer=aplt.IndexScatterer.sub(marker="o", colors="r") ) assert sub_plotter.index_scatterer.size == 21 assert sub_plotter.index_scatterer.marker == "o" assert sub_plotter.index_scatterer.colors == ["r"] def test__pixelization_grid_scatterer__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.pixelization_grid_scatterer.size == 5 assert plotter.pixelization_grid_scatterer.marker == "." assert plotter.pixelization_grid_scatterer.colors == ["r"] plotter = aplt.Plotter( pixelization_grid_scatterer=aplt.PixelizationGridScatterer( size=1, marker="x", colors="k" ) ) assert plotter.pixelization_grid_scatterer.size == 1 assert plotter.pixelization_grid_scatterer.marker == "x" assert plotter.pixelization_grid_scatterer.colors == ["k"] sub_plotter = aplt.SubPlotter() assert sub_plotter.pixelization_grid_scatterer.size == 6 assert sub_plotter.pixelization_grid_scatterer.marker == "o" assert sub_plotter.pixelization_grid_scatterer.colors == ["g"] sub_plotter = aplt.SubPlotter( pixelization_grid_scatterer=aplt.PixelizationGridScatterer.sub( marker="o", colors="r" ) ) assert sub_plotter.pixelization_grid_scatterer.size == 6 assert sub_plotter.pixelization_grid_scatterer.marker == "o" assert sub_plotter.pixelization_grid_scatterer.colors == ["r"] def test__liner__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.liner.width == 3 assert plotter.liner.style == "-" assert plotter.liner.colors == ["k", "w"] assert plotter.liner.pointsize == 2 plotter = aplt.Plotter( liner=aplt.Liner(width=1, style=".", colors=["k", "b"], pointsize=3) ) assert plotter.liner.width == 1 assert plotter.liner.style == "." assert plotter.liner.colors == ["k", "b"] assert plotter.liner.pointsize == 3 sub_plotter = aplt.SubPlotter() assert sub_plotter.liner.width == 1 assert sub_plotter.liner.style == "-" assert sub_plotter.liner.colors == ["k"] assert sub_plotter.liner.pointsize == 20 sub_plotter = aplt.SubPlotter( liner=aplt.Liner.sub(style=".", colors="r", pointsize=21) ) assert sub_plotter.liner.width == 1 assert sub_plotter.liner.style == "." assert sub_plotter.liner.colors == ["r"] assert sub_plotter.liner.pointsize == 21 def test__voronoi_drawer__from_config_or_via_manual_input(self): plotter = aplt.Plotter() assert plotter.voronoi_drawer.edgewidth == 0.3 assert plotter.voronoi_drawer.edgecolor == "k" assert plotter.voronoi_drawer.alpha == 0.7 plotter = aplt.Plotter( voronoi_drawer=aplt.VoronoiDrawer(edgewidth=0.5, edgecolor="r", alpha=1.0) ) assert plotter.voronoi_drawer.edgewidth == 0.5 assert plotter.voronoi_drawer.edgecolor == "r" assert plotter.voronoi_drawer.alpha == 1.0 sub_plotter =
import ipaddress import netaddr import numpy as np import pandas as pd from networkml.featurizers.features import Features MAC_BCAST = netaddr.EUI('FF-FF-FF-FF-FF-FF') ETH_TYPE_ARP = 0x806 ETH_TYPE_IP = 0x800 ETH_TYPE_IPV6 = 0x86DD ETH_TYPE_IPX = 0x8137 ETH_IP_TYPES = frozenset((ETH_TYPE_ARP, ETH_TYPE_IP, ETH_TYPE_IPV6)) WK_IP_PROTOS = ('tcp', 'udp', 'icmp', 'arp', 'icmpv6', 'gre', 'esp', 'ah') WK_IP_PROTOS_INDEX = {WK_IP_PROTOS.index(i): i for i in WK_IP_PROTOS} TCP_UDP_PROTOS = { 6: 'tcp', 17: 'udp', } class HostBase: CALC_COL_NAMES = ( ('frame.len', 'frame_len'), ('frame.time_delta_displayed', 'time_delta')) CALC_COL_FUNCS = ( ('max', lambda x: x.max()), ('min', lambda x: x.min()), ('count', lambda x: x.count()), ('total', lambda x: x.sum()), ('average', lambda x: x.mean()), ('median', lambda x: x.median()), ('variance', lambda x: x.var()), ('25q', lambda x: x.quantile(0.25)), ('75q', lambda x: x.quantile(0.75))) # https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml # TODO: enumerate most common ports from survey (complete indicator matrix too expensive) WK_PRIV_TCPUDP_PORTS = frozenset( [22, 23, 25, 53, 67, 68, 69, 80, 88, 110, 123, 137, 138, 139, 143, 161, 443, 631]) WK_NONPRIV_TCPUDP_PORTS = frozenset( [1900, 2375, 2376, 5222, 5349, 5353, 5354, 5349, 5357, 6653]) DROP_PROTOS = frozenset( ['frame', 'data', 'eth', 'ip', 'ipv6']) def _mac(self, mac): return netaddr.EUI(int(mac), dialect=netaddr.mac_unix_expanded) def _is_unicast(self, mac): mac_val = self._mac(mac) if mac_val == MAC_BCAST or mac_val.packed[0] & 1: return False return True def _numericintset(self, nums): if nums is not None: return frozenset(int(x) for x in nums if x is not None and pd.notna(x)) return frozenset() def _get_ip(self, row, cols): ipv = row['ip.version'] if not pd.isnull(ipv): ipv = int(ipv) if ipv == 4: prefix = 'ip' else: prefix = 'ipv6' for col in cols: val = row['.'.join((prefix, col))] if not pd.isnull(val): return ipaddress.ip_address(int(val)) return None def _get_src_ip(self, row): return self._get_ip(row, ('src', 'src_host')) def _get_dst_ip(self, row): return self._get_ip(row, ('dst', 'dst_host')) def _get_flags(self, mac_df, col_name, decode_map, suffix=None, field_name=None): try: col = mac_df[col_name] unique_flags = self._numericintset(col.unique()) except KeyError: unique_flags = [0] decoded_flags = set() for bit, decoded_flag in decode_map.items(): bitval = 2**bit for flags in sorted(filter(lambda x: x >= bitval, unique_flags)): if flags & bitval: decoded_flags.add(decoded_flag) if field_name is None: field_name = col_name.replace('.', '_') if suffix is not None: return {'tshark_%s_%s_%s' % ( field_name, decoded_flag, suffix): int(decoded_flag in decoded_flags) for decoded_flag in decode_map.values()} return {'tshark_%s_%s' % ( field_name, decoded_flag): int(decoded_flag in decoded_flags) for decoded_flag in decode_map.values()} def _tshark_flags(self, suffix, mac_df): mac_row_flags = {} for func in ( lambda x, y: self._get_flags(x, 'ip.dsfield', { 0: 'ecn0', 1: 'ecn1', 2: 'dscp0', 3: 'dscp1', 4: 'dscp2', 5: 'dscp3', 6: 'dscp4', 7: 'dscp5'}, suffix=y), lambda x, y: self._get_flags(x, 'ip.flags', { 0: 'fin', 1: 'syn', 2: 'rst', 3: 'psh', 4: 'ack', 5: 'urg', 6: 'ece', 7: 'cwr', 8: 'ns'}, suffix=y), lambda x, y: self._get_flags(x, 'tcp.flags', { 0: 'fin', 1: 'syn', 2: 'rst', 3: 'psh', 4: 'ack', 5: 'urg', 6: 'ece', 7: 'cwr', 8: 'ns'}, suffix=y), ): mac_row_flags.update(func(mac_df, suffix)) return mac_row_flags def _lowest_ip_proto_port(self, mac_df, ip_proto): if not mac_df.empty: src = mac_df['%s.srcport' % ip_proto] dst = mac_df['%s.dstport' % ip_proto] if src.count() and dst.count(): return self._numericintset(np.minimum(src, dst).unique()) # pylint: disable=no-member return frozenset() def _tshark_ports(self, suffix, mac_df): mac_row_ports = {} def port_priv(port): return port < 1024 for ip_proto_num, ip_proto in TCP_UDP_PROTOS.items(): proto_df = mac_df[mac_df['ip.proto']==ip_proto_num] lowest_ports = self._lowest_ip_proto_port(proto_df, ip_proto) for field_name, ports, wk_ports in ( ('priv', {port for port in lowest_ports if port_priv( port)}, self.WK_PRIV_TCPUDP_PORTS), ('nonpriv', {port for port in lowest_ports if not port_priv( port)}, self.WK_NONPRIV_TCPUDP_PORTS), ): port_flags = {port: int(port in ports) for port in wk_ports} port_flags.update( {'other': int(bool(lowest_ports) and not ports.issubset(wk_ports))}) mac_row_ports.update({ 'tshark_%s_%s_port_%s_%s' % (ip_proto, field_name, port, suffix): present for port, present in port_flags.items()}) return mac_row_ports def _tshark_ratio_ports(self, mac_df): mac_row_ports = {} def calc_ratio(src_count, dst_count): packet_ratio = 0 if src_count is not None and dst_count is not None: if dst_count > 0: packet_ratio = src_count / dst_count elif src_count > 0: packet_ratio = 1 return packet_ratio for ip_proto_num, ip_proto in TCP_UDP_PROTOS.items(): proto_df = mac_df[mac_df['ip.proto']==ip_proto_num] src = pd.DataFrame(columns=['%s.srcport' % ip_proto]) dst = pd.DataFrame(columns=['%s.dstport' % ip_proto]) if not proto_df.empty: try: src = proto_df['%s.srcport' % ip_proto] dst = proto_df['%s.dstport' % ip_proto] except KeyError: pass for field_name, wk_ports, port_src, port_dst in ( ('priv', self.WK_PRIV_TCPUDP_PORTS, src[src <= 1023], dst[dst <= 1023]), ('nonpriv', self.WK_NONPRIV_TCPUDP_PORTS, src[src > 1023], dst[dst > 1023])): src_values = port_src[src.isin(wk_ports)] dst_values = port_dst[dst.isin(wk_ports)] src_counts = {} if not src_values.empty: src_counts = src_values.value_counts() dst_counts = {} if not dst_values.empty: dst_counts = dst_values.value_counts() for port in wk_ports: src_count = src_counts.get(port, None) dst_count = dst_counts.get(port, None) mac_row_ports.update({ 'tshark_%s_%s_packet_ratio_io_port_%s' % (ip_proto, field_name, port): calc_ratio(src_count, dst_count)}) src_values = port_src[~port_src.isin(wk_ports)] src_count = 0 if not src_values.empty: src_count = src_values.value_counts().sum() dst_values = port_dst[~port_dst.isin(wk_ports)] dst_count = 0 if not dst_values.empty: dst_count = dst_values.value_counts().sum() mac_row_ports.update({ 'tshark_%s_%s_packet_ratio_io_port_%s' % (ip_proto, field_name, 'other'): calc_ratio(src_count, dst_count)}) return mac_row_ports def _tshark_ipversions(self, mac_df): try: ip_versions = self._numericintset(mac_df['ip.version'].unique()) except AttributeError: ip_versions = frozenset() return {'tshark_ipv%u' % v: int(v in ip_versions) for v in (4, 6)} def _tshark_non_ip(self, mac_df): try: eth_types = self._numericintset(mac_df['eth.type'].unique()) except AttributeError: eth_types = frozenset() return { 'tshark_ipx': int(ETH_TYPE_IPX in eth_types), 'tshark_nonip': int(bool(eth_types - ETH_IP_TYPES)), } def _tshark_both_private_ip(self, mac_df): try: both_private_ip = int(mac_df['_both_private_ip'].max() == 1) except KeyError: both_private_ip = 0 return { 'tshark_both_private_ip': both_private_ip, } def _tshark_ipv4_multicast(self, mac_df): try: ipv4_multicast = int(mac_df['_ipv4_multicast'].max() == 1) except KeyError: ipv4_multicast = 0 return { 'tshark_ipv4_multicast': ipv4_multicast, } def _tshark_wk_ip_protocol(self, mac_df): return self._get_flags(mac_df, '_protos_int', WK_IP_PROTOS_INDEX, suffix=None, field_name='wk_ip_protocol') def _tshark_vlan_id(self, mac_df): return { 'tshark_tagged_vlan': int(pd.notna(mac_df['vlan.id'].max())) } def _tshark_frame_epoch(self, mac_df): return { 'tshark_frame_epoch': float(mac_df['frame.time_epoch'].max()) } def _tshark_unique_ips(self, mac, mac_df): srcips = mac_df[mac_df['eth.src'] == mac]['_srcip'] dstips = mac_df[mac_df['eth.src'] == mac]['_dstip'] return { 'tshark_srcips': list(set(srcips.unique().tolist()) - {'None'}), 'tshark_unique_srcips': srcips.nunique(), 'tshark_unique_dstips': dstips.nunique(), } def _calc_cols(self, mac, mac_df): mac_row = {} for suffix, suffix_func in ( ('out', lambda x: mac_df[mac_df['eth.src'] == x]), ('in', lambda x: mac_df[mac_df['eth.src'] != x])): try: suffix_df = suffix_func(mac) except KeyError: continue for col_name, field_name in self.CALC_COL_NAMES: col = suffix_df[col_name] for calc_name, calc_func in self.CALC_COL_FUNCS: calc_col = 'tshark_%s_%s_%s' % ( calc_name, field_name, suffix) val = calc_func(col) if pd.isnull(val): val = 0 mac_row.update({calc_col: val}) for func in ( self._tshark_flags, self._tshark_ports): mac_row.update(func(suffix, suffix_df)) for func in ( self._tshark_ipversions, self._tshark_non_ip, self._tshark_both_private_ip, self._tshark_ipv4_multicast, self._tshark_wk_ip_protocol, self._tshark_vlan_id, self._tshark_frame_epoch, self._tshark_ratio_ports): mac_row.update(func(mac_df)) mac_row.update(self._tshark_unique_ips(mac, mac_df)) return mac_row def _calc_mac_row(self, mac, mac_df): mac_row = {'host_key': str(self._mac(mac))} mac_row.update(self._calc_cols(mac, mac_df)) return mac_row def _host_key(self, row): raise NotImplementedError def _df_ip_flags(self, ip_src, ip_dst): both_private_ip = 0 ipv4_multicast = 0 if not pd.isnull(ip_src) and not pd.isnull(ip_dst): both_private_ip = int(ip_src.is_private and ip_dst.is_private) ipv4_multicast = int(ip_dst.version == 4 and ip_dst.is_multicast) return (both_private_ip, ipv4_multicast) def _encode_df_proto_flags(self, short_row_keys, frame_protocols): if frame_protocols: short_frame_protocols = frozenset(frame_protocols.split(':')) else: short_frame_protocols = {} all_protos = short_row_keys.union( short_frame_protocols) - self.DROP_PROTOS all_protos_int = 0 for proto in all_protos.intersection(WK_IP_PROTOS): index = WK_IP_PROTOS.index(proto) all_protos_int += 2**index return all_protos_int def _df_proto_flags(self, row): short_row_keys = frozenset(x.split('.')[0] for x, y in row.items( ) if not pd.isnull(y) and not x.startswith('_')) return self._encode_df_proto_flags(short_row_keys, row['frame.protocols']) def _tshark_all(self, df, srcmacid): print('calculating intermediates', end='', flush=True) df['_host_key'], df['_srcip'], df['_dstip'], df['_both_private_ip'], df['_ipv4_multicast'], df['_protos_int'] = zip( *df.apply(self._host_key, axis=1)) eth_srcs = frozenset(df['eth.src'].unique()) eth_dsts = frozenset(df['eth.dst'].unique()) all_unicast_macs = frozenset( mac for mac in eth_srcs.union(eth_dsts) if self._is_unicast(mac)) host_keys = df['_host_key'].unique() host_keys_count = len(host_keys) print('.%u MACs, %u sessions' % (len(all_unicast_macs), host_keys_count), end='', flush=True) if srcmacid: minsrcipmac = df.groupby(['eth.src'])[ '_srcip'].nunique().idxmin(axis=0) assert minsrcipmac in all_unicast_macs print('.MAC %s has minimum number of source IPs, selected as canonical source' % self._mac(minsrcipmac), end='', flush=True) all_unicast_macs = {minsrcipmac} mac_rows = [] for i, mac in enumerate(all_unicast_macs, start=1): mac_df = df[(df['eth.src'] == mac) | (df['eth.dst'] == mac)] # If just one MAC, don't need groupby on host key. if len(all_unicast_macs) == 1: mac_rows.append(self._calc_mac_row(mac, mac_df)) else: s = 0 for _, key_df in mac_df.groupby('_host_key'): s += 1 if s % 100 == 0: print('.MAC %u/%u %.1f%%' % (i, len(all_unicast_macs), s / len(host_keys) * 100), end='', flush=True) mac_rows.append(self._calc_mac_row(mac, key_df)) print('.MAC %u/%u 100%%.' % (i, len(all_unicast_macs)), end='', flush=True) return mac_rows class Host(HostBase, Features): def _host_key(self, row): ip_src = self._get_src_ip(row) ip_dst = self._get_dst_ip(row) both_private_ip, ipv4_multicast = self._df_ip_flags(ip_src, ip_dst) protos_int = self._df_proto_flags(row) return (0, str(ip_src), str(ip_dst), both_private_ip, ipv4_multicast, protos_int) def host_tshark_all(self, df, parsed_args): return self._tshark_all(df, parsed_args.srcmacid) class SessionHost(HostBase, Features): def _host_key(self, row): eth_src = row['eth.src'] eth_dst = row['eth.dst'] ip_src = self._get_src_ip(row) ip_dst = self._get_dst_ip(row) both_private_ip, ipv4_multicast = self._df_ip_flags(ip_src, ip_dst) protos_int = self._df_proto_flags(row) if not pd.isnull(ip_src) and not pd.isnull(ip_dst): ip_proto = TCP_UDP_PROTOS.get(row['ip.version'], None) if ip_proto: src_port = row['%s.srcport' % ip_proto] dst_port = row['%s.dstport' % ip_proto] if ip_src > ip_dst: key
type "to-one" if relation_type == TO_ONE_RELATION: # tries to retrieve the "current" target # entity to be used for the application target_entity = self.get_value(item_name) # in case there is no item (target entity) # in the entity one must be created if target_entity == None: # "resolves" the target to one relation, loading or creating # the required model and sets the retrieved (target) entity # in the current model instance target_entity = self.resolve_to_one( item_value, target_model, permissive ) setattr(self, item_name, target_entity) # otherwise the entity already contains the # item it must be "re-used" and merged # with the item value else: # updates the item in the entity with # the map containing the value target_entity.apply( item_value, permissive = permissive ) # in case the relation is of type "to-many" elif relation_type == TO_MANY_RELATION: # "resolves" the target to many relation, loading or # creating the required models and sets the target entities # list in the current model instance target_entitites_list = self.resolve_to_many( item_value, target_model, permissive ) setattr(self, item_name, target_entitites_list) # otherwise it's a single attribute relation # the normal setting should apply else: # sets the attribute in the current model self._set_attribute(item_name, item_value) except BaseException as exception: # tries to call the fail apply method, in order to notify the # current instance about the failure of the apply procedure if hasattr(self, "fail_apply"): self.fail_apply(exception) # re-raises the exception back in the stack so that it can # be properly handled by the upper layers raise finally: # attaches the entity back to the data source # for correct persistence structures self.attach(force = False) # tries to call the post apply method, in order to notify the # current instance about the finishing of the apply procedure if hasattr(self, "post_apply"): self.post_apply() def get_system(self): """ Retrieves the current (associated) system instance reference that can be used to retrieve the plugin internal state and global data reference. :rtype: Object :return: The system instance associated with the current entity model. """ return self._system_instance def get_plugin(self): """ Retrieves the current (associated) plugin instance reference that can be used to retrieve the plugin internal state and global data reference. :rtype: Object :return: The plugin instance associated with the current entity model. """ return self._system_instance.plugin def get_attribute_name(self, attribute_name): """ Retrieves the attribute from the given composite attribute name. The attribute is retrieved using a composite approach and the name is separated by dots. :type attribute_name: String :param attribute_name: The name of the attribute to be retrieved. :rtype: Object :return: The attribute for the given attribute name. """ # splits the attribute name into tokens attribute_name_tokens = attribute_name and attribute_name.split(".") or [] # sets the initial current attribute value current_attribute = self # iterates over all the attribute name tokens for attribute_name_token in attribute_name_tokens: # updates the current attribute with the attribute name token current_attribute = current_attribute.get_value(attribute_name_token) # returns the current attribute return current_attribute def dumps(self, serializer): """ Serializes (dumps) the current object with the given serializer object. :type serializer: Serializer :param serializer: The serializer object to be used to serialize the current object. :rtype: String :return: The serialized value. """ # serializes the object (dumps) data = serializer.dumps(self) # returns the serialized value (data) return data def loads(self, serializer, data): """ Unserializes (loads) converting and loading the given data into the current object. :type serializer: Serializer :param serializer: The serializer object to be used to unserialize the given data. :rtype: String :return: The serialized data to be loaded. """ # unserializes the data (loads) # retrieving the model model = serializer.loads(data) # iterates over all the dictionary items # to load the values (from the model) for key, value in colony.legacy.items(model): # loads the given value in the current object self._load_value(key, value) def _load_value(self, key, value): """ Loads the value with the given key in the current object. :type key: String :param key: The key to be used to refer to the value in the current object. :type value: Object :param value: The value to be set in the current object. """ # in case the current object does not contain # an attribute with the key name must return # immediately, nothing to be set if not hasattr(self, key): return # sets the value in the current object setattr(self, key, value) def is_lazy_loaded(self, attribute_name): """ Indicates if the specified attribute is lazy loaded. :type attribute_name: String :param attribute_name: The attribute name. :rtype: bool :return: The lazy loaded flag. """ # sets the lazy loaded flag in case # the attribute value is not present lazy_loaded = not self.has_value(attribute_name) # returns the lazy loaded flag return lazy_loaded def lock_session(self): """ Locks the session associated with the current request, subsequent accesses to the session will be blocked until the session is released. """ # tries to retrieve the request session request_session = self.request.get_session() # in case the request session # is invalid if not request_session: # start a session if none is started and then # retrieves it from the request self.request.start_session() request_session = self.request.get_session() # locks the "just" retrieved (or created) request # session (blocks it) request_session.lock() def release_session(self): """ Releases the session associated with the current request, allowing further requests to access the session to be passed. """ # tries to retrieve the request session request_session = self.request.get_session() # in case the request session is invalid # an exception should be raised (invalid situation) if not request_session: raise RuntimeError("problem releasing session, no session available") # releases the "just" retrieved request # session (unblocks it) request_session.release() def get_session_attribute( self, session_attribute_name, namespace_name = None, unset_session_attribute = False ): """ Retrieves the session attribute from the current request with the given name and for the given namespace. Optionally it may be unset from session after retrieval. :type namespace_name: String :param namespace_name: The name of the namespace for the attribute to be retrieved. :type unset_session_attribute: bool :param unset_session_attribute: If the session attribute should be unset after retrieval. :rtype: Object :return The retrieved session attribute. """ # retrieves the currently available request to try # to access the session variables request = self.get_request() # tries to retrieve the request session request_session = request.get_session() # in case the request session # is invalid, must return invalid if not request_session: return None # resolves the complete session attribute name session_attribute_name = _get_complete_name(session_attribute_name, namespace_name) # retrieves the attribute from the session session_attribute = request_session.get_attribute(session_attribute_name) # in case the unset the session attribute flag is set # the session attribute is unset unset_session_attribute and request_session.unset_attribute(session_attribute_name) # returns the session attribute return session_attribute def set_session_attribute( self, session_attribute_name, session_attribute_value, namespace_name = None ): """ Sets the session attribute in the current request with the given name and for the given namespace. The session attribute value may be of any type. :type session_attribute_name: String :param session_attribute_name: The name of the session attribute to be set. :type session_attribute_value: Object :param session_attribute_value: The value of the session attribute to be set. :type namespace_name: String :param namespace_name: The name of the namespace for the attribute to be set. """ # retrieves the currently available request to try # to access the session variables request = self.get_request() # tries to retrieve the request session request_session = request.get_session() # in case the request session # is invalid if not request_session: # start a session if none is started and then # retrieves it from the request request.start_session() request_session = request.get_session() # resolves the complete session attribute name session_attribute_name = _get_complete_name(session_attribute_name, namespace_name) # sets the attribute in the session request_session.set_attribute(session_attribute_name, session_attribute_value) def unset_session_attribute(self, session_attribute_name, namespace_name = None): """ Unsets the session attribute from the current request with the given name and for the given namespace. :type session_attribute_name: String :param session_attribute_name: The name of the session attribute to be unset. :type namespace_name: String :param namespace_name: The name of the namespace for the attribute to be unset. """
<reponame>boffman/grizzly<filename>grizzly/users/restapi.py '''Communicates with HTTP and HTTPS, with built-in support for Azure authenticated endpoints. ## Request methods Supports the following request methods: * get * put * post ## Format Format of `host` is the following: ```plain http[s]://<hostname> ``` ## Examples Example on how to use it in a scenario: ```gherkin Given a user of type "RestApi" load testing "https://api.example.com" Then post request "test/request.j2.json" to endpoint "/api/test" Then get request from endpoint "/api/test" ``` To change how often the token should be refreshed, default is 3000 seconds: ```gherkin And set context variable "auth.refresh_time" to "3500" ``` ### Authentication #### Client secret ```gherkin Given a user of type "RestApi" load testing "https://api.example.com" And set context variable "auth.client.tenant" "<tenant name/guid>" And set context variable "auth.client.id" to "<client id>" And set context variable "auth.client.secret" to "<client secret>" And set context variable "auth.client.resource" to "<resource url/guid>" ``` #### Username and password `auth.user.redirect_uri` needs to correspond to the endpoint that the client secret is registrered for. ```gherkin Given a user of type "RestApi" load testing "https://api.example.com" And set context variable "auth.client.id" to "<client id>" And set context variable "auth.user.username" to "<EMAIL>" And set context variable "auth.user.password" to "<PASSWORD>!" And set context variable "auth.user.redirect_uri" to "/app-registrered-redirect-uri" ``` ''' import json import re from typing import Dict, Optional, Any, Tuple, List, Union, cast from time import time, perf_counter as time_perf_counter from functools import wraps from enum import Enum from urllib.parse import parse_qs, urlparse from uuid import uuid4 from locust.contrib.fasthttp import FastHttpSession from locust.exception import StopUser from locust.env import Environment import requests from ..types import GrizzlyResponse, RequestType, WrappedFunc, GrizzlyResponseContextManager from ..utils import merge_dicts from ..types import RequestMethod from ..tasks import RequestTask from ..clients import ResponseEventSession from .base import RequestLogger, ResponseHandler, GrizzlyUser, HttpRequests, AsyncRequests from . import logger from urllib3 import disable_warnings as urllib3_disable_warnings urllib3_disable_warnings() class AuthMethod(Enum): NONE = 1 CLIENT = 2 USER = 3 class refresh_token: def __call__(self, func: WrappedFunc) -> WrappedFunc: @wraps(func) def refresh_token(cls: 'RestApiUser', *args: Tuple[Any, ...], **kwargs: Dict[str, Any]) -> Any: auth_context = cls._context['auth'] use_auth_client = ( auth_context.get('client', {}).get('id', None) is not None and auth_context.get('client', {}).get('secret', None) is not None ) use_auth_user = ( auth_context.get('client', {}).get('id', None) is not None and auth_context.get('user', {}).get('username', None) is not None and auth_context.get('user', {}).get('password', None) is not None and auth_context.get('user', {}).get('redirect_uri', None) is not None ) if use_auth_client: auth_method = AuthMethod.CLIENT elif use_auth_user: auth_method = AuthMethod.USER else: auth_method = AuthMethod.NONE if auth_method is not AuthMethod.NONE and cls.session_started is not None: session_now = time() session_duration = session_now - cls.session_started # refresh token if session has been alive for at least refresh_time if session_duration >= auth_context.get('refresh_time', 3000) or cls.headers.get('Authorization', None) is None: cls.get_token(auth_method) else: try: del cls.headers['Authorization'] except KeyError: pass return func(cls, *args, **kwargs) return cast(WrappedFunc, refresh_token) class RestApiUser(ResponseHandler, RequestLogger, GrizzlyUser, HttpRequests, AsyncRequests): session_started: Optional[float] headers: Dict[str, Optional[str]] host: str _context: Dict[str, Any] = { 'verify_certificates': True, 'auth': { 'refresh_time': 3000, 'url': None, 'client': { 'id': None, 'secret': None, 'resource': None, 'tenant': None, }, 'user': { 'username': None, 'password': <PASSWORD>, 'redirect_uri': None, }, }, 'metadata': None, } def __init__(self, environment: Environment, *args: Tuple[Any, ...], **kwargs: Dict[str, Any]) -> None: super().__init__(environment, *args, **kwargs) self.headers = { 'Authorization': None, 'Content-Type': 'application/json', 'x-grizzly-user': f'{self.__class__.__name__}', } self.session_started = None self._context = merge_dicts( super().context(), # this is needed since we create a new class with this class as sub class, context will be messed up otherwise # in other words, don't use RestApiUser._context. This should only be used in classes which are direct created # in grizzly self.__class__._context, ) headers = self._context.get('metadata', None) if headers is not None: self.headers.update(headers) def on_start(self) -> None: self.session_started = time() def get_token(self, auth_method: AuthMethod) -> None: if auth_method == AuthMethod.CLIENT: self.get_client_token() elif auth_method == AuthMethod.USER: self.get_user_token() else: pass def get_user_token(self) -> None: def _parse_response_config(response: requests.Response) -> Dict[str, Any]: match = re.search(r'Config={(.*?)};', response.text, re.MULTILINE) if not match: raise ValueError(f'no config found in response from {response.url}') return cast(Dict[str, Any], json.loads(f'{{{match.group(1)}}}')) def update_state(state: Dict[str, str], response: requests.Response) -> Dict[str, Any]: config = _parse_response_config(response) for key in state.keys(): if key in config: state[key] = str(config[key]) elif key in response.headers: state[key] = str(response.headers[key]) else: raise ValueError(f'unexpected response body from {response.url}: missing "{key}" in config') return config def generate_uuid() -> str: uuid = uuid4().hex return '{}-{}-{}-{}-{}'.format( uuid[0:8], uuid[8:12], uuid[12:16], uuid[16:20], uuid[20:] ) headers_ua: Dict[str, str] = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:88.0) Gecko/20100101 Firefox/88.0' } auth_user_context = self._context['auth']['user'] start_time = time_perf_counter() total_response_length = 0 exception: Optional[Exception] = None try: if self._context['auth']['url'] is None: try: [_, tenant] = auth_user_context['username'].rsplit('@', 1) if tenant is None or len(tenant) < 1: raise RuntimeError() except Exception: raise ValueError(f'auth.url was not set and could not find tenant part in {auth_user_context["username"]}') self._context['auth']['url'] = f'https://login.microsoftonline.com/{tenant}/oauth2/authorize' auth_url_parsed = urlparse(self._context['auth']['url']) total_response_length = 0 with requests.Session() as client: headers: Dict[str, str] payload: Dict[str, Any] data: Dict[str, Any] state: Dict[str, str] = { 'hpgact': '', 'hpgid': '', 'sFT': '', 'sCtx': '', 'apiCanary': '', 'canary': '', 'correlationId': '', 'sessionId': '', 'x-ms-request-id': '', 'country': '', } # <!-- request 1 client_id = self._context['auth']['client']['id'] client_request_id = generate_uuid() username_lowercase = auth_user_context['username'].lower() redirect_uri_parsed = urlparse(auth_user_context['redirect_uri']) if len(redirect_uri_parsed.netloc) == 0: redirect_uri = f"{self._context['host']}{auth_user_context['redirect_uri']}" else: redirect_uri = auth_user_context['redirect_uri'] params: Dict[str, List[str]] = { 'response_type': ['id_token'], 'client_id': [client_id], 'redirect_uri': [redirect_uri], 'state': [generate_uuid()], 'client-request-id': [client_request_id], 'x-client-SKU': ['Js'], 'x-client-Ver': ['1.0.18'], 'nonce': [generate_uuid()], } headers = { 'Host': str(auth_url_parsed.netloc), **headers_ua, } response = client.get(cast(str, self._context['auth']['url']), headers=headers, params=params) logger.debug(f'user auth request 1: {response.url} ({response.status_code})') total_response_length += int(response.headers.get('content-length', '0')) if response.status_code != 200: raise RuntimeError(f'user auth request 1: {response.url} had unexpected status code {response.status_code}') referer = response.url config = update_state(state, response) # // request 1 --> # <!-- request 2 url_parsed = urlparse(config['urlGetCredentialType']) params = parse_qs(url_parsed.query) url = f'{url_parsed.scheme}://{url_parsed.netloc}{url_parsed.path}' params['mkt'] = ['sv-SE'] headers = { 'Accept': 'application/json', 'Host': str(auth_url_parsed.netloc), 'ContentType': 'application/json; charset=UTF-8', 'canary': state['apiCanary'], 'client-request-id': client_request_id, 'hpgact': state['hpgact'], 'hpgid': state['hpgid'], 'hpgrequestid': state['sessionId'], **headers_ua, } payload = { 'username': username_lowercase, 'isOtherIdpSupported': True, 'checkPhones': False, 'isRemoteNGCSupported': True, 'isCookieBannerShown': False, 'isFidoSupported': True, 'originalRequest': state['sCtx'], 'country': state['country'], 'forceotclogin': False, 'isExternalFederationDisallowed': False, 'isRemoteConnectSupported': False, 'federationFlags': 0, 'isSignup': False, 'flowToken': state['sFT'], 'isAccessPassSupported': True, } response = client.post(url, headers=headers, params=params, json=payload) total_response_length += int(response.headers.get('content-length', '0')) logger.debug(f'user auth request 2: {response.url} ({response.status_code})') if response.status_code != 200: raise RuntimeError(f'user auth request 2: {response.url} had unexpected status code {response.status_code}') data = cast(Dict[str, Any], json.loads(response.text)) if 'error' in data: error = data['error'] raise RuntimeError(f'error response from {url}: code={error["code"]}, message={error["message"]}') state['apiCanary'] = data['apiCanary'] assert state['sFT'] == data['FlowToken'], 'flow token between user auth request 1 and 2 differed' # // request 2 --> # <!-- request 3 assert config['urlPost'].startswith('https://'), f"response from {response.url} contained unexpected value '{config['urlPost']}'" url = config['urlPost'] headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Content-Type': 'application/x-www-form-urlencoded', 'Host': str(auth_url_parsed.netloc), 'Referer': referer, **headers_ua, } payload = { 'i13': '0', 'login': username_lowercase, 'loginfmt': username_lowercase, 'type': '11', 'LoginOptions': '3', 'lrt': '', 'lrtPartition': '', 'hisRegion': '', 'hisScaleUnit': '', 'passwd': <PASSWORD>['password'], 'ps': '2', # postedLoginStateViewId 'psRNGCDefaultType': '', 'psRNGCEntropy': '', 'psRNGCSLK': '', 'canary': state['canary'], 'ctx': state['sCtx'], 'hpgrequestid': state['sessionId'], 'flowToken': state['sFT'], 'PPSX': '', 'NewUser': '1', 'FoundMSAs': '', 'fspost': '0', 'i21': '0', # wasLearnMoreShown 'CookieDisclosure': '0', 'IsFidoSupported': '1', 'isSignupPost': '0', 'i19': '16369', # time on page } response = client.post(url, headers=headers, data=payload) total_response_length += int(response.headers.get('content-length', '0')) logger.debug(f'user auth request 3: {response.url} ({response.status_code})') if response.status_code != 200: raise RuntimeError(f'user auth request 3: {response.url} had unexpected status code {response.status_code}') config = _parse_response_config(response) exception_message = config.get('strServiceExceptionMessage', None) if exception_message is not None and len(exception_message.strip()) > 0: logger.error(exception_message) raise RuntimeError(exception_message) user_proofs = config.get('arrUserProofs', []) if len(user_proofs) > 0: user_proof = user_proofs[0] error_message = f'{username_lowercase} requires MFA for login: {user_proof["authMethodId"]} = {user_proof["display"]}' logger.error(error_message) raise RuntimeError(error_message) # update state state['sessionId'] = config['sessionId'] state['sFT'] = config['sFT'] # // request 3 --> # <!-- request 4 assert not config['urlPost'].startswith('https://'), f"unexpected response from {response.url}, incorrect username and/or password?" url = f'{str(auth_url_parsed.scheme)}://{str(auth_url_parsed.netloc)}{config["urlPost"]}' headers = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8', 'Content-Type': 'application/x-www-form-urlencoded', 'Host': str(auth_url_parsed.netloc), 'Referer': referer, **headers_ua, } payload = { 'LoginOptions': '3', 'type': '28', 'ctx': state['sCtx'], 'hprequestid': state['sessionId'], 'flowToken': state['sFT'], 'canary': state['canary'], 'i2': '', 'i17': '', 'i18': '', 'i19': '1337', } response = client.post(url, headers=headers, data=payload, allow_redirects=False) total_response_length += int(response.headers.get('content-length', '0')) logger.debug(f'user auth request 4: {response.url} ({response.status_code})') if response.status_code != 302: raise RuntimeError(f'user auth request 4: {response.url} had unexpected status code {response.status_code}') assert 'Location' in response.headers, f'Location header was not found in response from {response.url}' token_url = response.headers['Location'] assert token_url.startswith(f'{redirect_uri}'), f'unexpected redirect URI, got {token_url} but expected
len(jobs): Client.killJobs(jobs,2) _logger.debug("killJobs for Anal Active (%s)" % str(jobs)) # kill too long pending jobs timeLimit = datetime.datetime.utcnow() - datetime.timedelta(hours=1) varMap = {} varMap[':jobStatus'] = 'pending' varMap[':creationTime'] = timeLimit status,res = taskBuffer.querySQLS("SELECT PandaID FROM ATLAS_PANDA.jobsWaiting4 WHERE jobStatus=:jobStatus AND creationTime<:creationTime", varMap) jobs = [] if res is not None: for (id,) in res: jobs.append(id) # kill if len(jobs): if len(jobs): nJob = 100 iJob = 0 while iJob < len(jobs): _logger.debug("killJobs for Pending (%s)" % str(jobs[iJob:iJob+nJob])) Client.killJobs(jobs[iJob:iJob+nJob],4) iJob += nJob # kick waiting ES merge jobs which were generated from fake co-jumbo timeLimit = datetime.datetime.utcnow() - datetime.timedelta(minutes=10) varMap = {} varMap[':jobStatus'] = 'waiting' varMap[':creationTime'] = timeLimit varMap[':esMerge'] = EventServiceUtils.esMergeJobFlagNumber sql = "SELECT PandaID,computingSite FROM ATLAS_PANDA.jobsWaiting4 WHERE jobStatus=:jobStatus AND creationTime<:creationTime " sql += "AND eventService=:esMerge ORDER BY jediTaskID " status,res = taskBuffer.querySQLS(sql, varMap) jobsMap = {} if res is not None: for id,site in res: if site not in jobsMap: jobsMap[site] = [] jobsMap[site].append(id) # kick if len(jobsMap): for site in jobsMap: jobs = jobsMap[site] nJob = 100 iJob = 0 while iJob < len(jobs): _logger.debug("kick waiting ES merge (%s)" % str(jobs[iJob:iJob+nJob])) Client.reassignJobs(jobs[iJob:iJob+nJob], ) iJob += nJob # kill too long waiting jobs timeLimit = datetime.datetime.utcnow() - datetime.timedelta(hours=1) varMap = {} varMap[':jobStatus'] = 'waiting' varMap[':creationTime'] = timeLimit varMap[':coJumbo'] = EventServiceUtils.coJumboJobFlagNumber sql = "SELECT PandaID FROM ATLAS_PANDA.jobsWaiting4 WHERE jobStatus=:jobStatus AND creationTime<:creationTime " sql += "AND (eventService IS NULL OR eventService<>:coJumbo) " status,res = taskBuffer.querySQLS(sql, varMap) jobs = [] if res is not None: for (id,) in res: jobs.append(id) # kill if len(jobs): if len(jobs): nJob = 100 iJob = 0 while iJob < len(jobs): _logger.debug("killJobs for Waiting (%s)" % str(jobs[iJob:iJob+nJob])) Client.killJobs(jobs[iJob:iJob+nJob],4) iJob += nJob # kill too long running ES jobs timeLimit = datetime.datetime.utcnow() - datetime.timedelta(hours=24) varMap = {} varMap[':jobStatus1'] = 'running' varMap[':jobStatus2'] = 'starting' varMap[':timeLimit'] = timeLimit varMap[':esJob'] = EventServiceUtils.esJobFlagNumber varMap[':coJumbo'] = EventServiceUtils.coJumboJobFlagNumber sql = "SELECT PandaID FROM ATLAS_PANDA.jobsActive4 WHERE jobStatus IN (:jobStatus1,:jobStatus2) AND stateChangeTime<:timeLimit " sql += "AND eventService IN (:esJob,:coJumbo) AND currentPriority>=900 " status,res = taskBuffer.querySQLS(sql, varMap) jobs = [] if res is not None: for (id,) in res: jobs.append(id) # kill if len(jobs): nJob = 100 iJob = 0 while iJob < len(jobs): _logger.debug("killJobs for long running ES jobs (%s)" % str(jobs[iJob:iJob+nJob])) Client.killJobs(jobs[iJob:iJob+nJob], 2, keepUnmerged=True, jobSubStatus='es_toolong') iJob += nJob # kill too long running ES merge jobs timeLimit = datetime.datetime.utcnow() - datetime.timedelta(hours=24) varMap = {} varMap[':jobStatus1'] = 'running' varMap[':jobStatus2'] = 'starting' varMap[':timeLimit'] = timeLimit varMap[':esMergeJob'] = EventServiceUtils.esMergeJobFlagNumber sql = "SELECT PandaID FROM ATLAS_PANDA.jobsActive4 WHERE jobStatus IN (:jobStatus1,:jobStatus2) AND stateChangeTime<:timeLimit " sql += "AND eventService=:esMergeJob " status,res = taskBuffer.querySQLS(sql, varMap) jobs = [] if res is not None: for (id,) in res: jobs.append(id) # kill if len(jobs): nJob = 100 iJob = 0 while iJob < len(jobs): _logger.debug("killJobs for long running ES merge jobs (%s)" % str(jobs[iJob:iJob+nJob])) Client.killJobs(jobs[iJob:iJob+nJob], 2) iJob += nJob # kill too long waiting jobs timeLimit = datetime.datetime.utcnow() - datetime.timedelta(days=7) sql = "SELECT PandaID FROM ATLAS_PANDA.jobsWaiting4 WHERE ((creationTime<:timeLimit AND (eventService IS NULL OR eventService<>:coJumbo)) " sql += "OR modificationTime<:timeLimit) " varMap = {} varMap[':timeLimit'] = timeLimit varMap[':coJumbo'] = EventServiceUtils.coJumboJobFlagNumber status,res = taskBuffer.querySQLS(sql, varMap) jobs = [] if res is not None: for (id,) in res: jobs.append(id) # kill if len(jobs): Client.killJobs(jobs,4) _logger.debug("killJobs in jobsWaiting (%s)" % str(jobs)) # rebrokerage _logger.debug("Rebrokerage start") # get timeout value timeoutVal = taskBuffer.getConfigValue('rebroker','ANALY_TIMEOUT') if timeoutVal is None: timeoutVal = 12 _logger.debug("timeout value : {0}h".format(timeoutVal)) try: normalTimeLimit = datetime.datetime.utcnow() - datetime.timedelta(hours=timeoutVal) sortTimeLimit = datetime.datetime.utcnow() - datetime.timedelta(hours=3) sql = "WITH p AS ("\ "SELECT MIN(PandaID) PandaID,jobDefinitionID,prodUserName,prodUserID,computingSite,jediTaskID,processingType,workingGroup "\ "FROM ATLAS_PANDA.jobsActive4 "\ "WHERE prodSourceLabel IN (:prodSourceLabel1,:prodSourceLabel2) "\ "AND jobStatus IN (:jobStatus1,:jobStatus2,:jobStatus3) "\ "AND jobsetID IS NOT NULL AND lockedBy=:lockedBy "\ "GROUP BY jobDefinitionID,prodUserName,prodUserID,computingSite,jediTaskID,processingType,workingGroup "\ ") "\ "SELECT /*+ INDEX (s JOBS_STATUSLOG_PANDAID_IDX) */ "\ "p.jobDefinitionID,p.prodUserName,p.prodUserID,p.computingSite,s.modificationTime,p.jediTaskID,p.processingType,p.workingGroup " \ "FROM p, ATLAS_PANDA.jobs_statuslog s "\ "WHERE s.PandaID=p.PandaID AND s.jobStatus=:s_jobStatus AND s.modificationTime<:modificationTime " varMap = {} varMap[':prodSourceLabel1'] = 'user' varMap[':prodSourceLabel2'] = 'panda' varMap[':modificationTime'] = sortTimeLimit varMap[':lockedBy'] = 'jedi' varMap[':jobStatus1'] = 'activated' varMap[':jobStatus2'] = 'dummy' varMap[':jobStatus3'] = 'starting' varMap[':s_jobStatus'] = 'activated' # get jobs older than threshold ret,res = taskBuffer.querySQLS(sql, varMap) resList = [] keyList = set() if res is not None: for tmpItem in res: jobDefinitionID,prodUserName,prodUserID,computingSite,maxTime,jediTaskID,processingType,workingGroup\ = tmpItem tmpKey = (jediTaskID,jobDefinitionID) keyList.add(tmpKey) resList.append(tmpItem) # get stalled assigned job sqlA = "SELECT jobDefinitionID,prodUserName,prodUserID,computingSite,MAX(creationTime),jediTaskID,processingType,workingGroup " sqlA += "FROM ATLAS_PANDA.jobsDefined4 " sqlA += "WHERE prodSourceLabel IN (:prodSourceLabel1,:prodSourceLabel2) AND jobStatus IN (:jobStatus1,:jobStatus2) " sqlA += "AND creationTime<:modificationTime AND lockedBy=:lockedBy " sqlA += "GROUP BY jobDefinitionID,prodUserName,prodUserID,computingSite,jediTaskID,processingType,workingGroup " varMap = {} varMap[':prodSourceLabel1'] = 'user' varMap[':prodSourceLabel2'] = 'panda' varMap[':modificationTime'] = sortTimeLimit varMap[':lockedBy'] = 'jedi' varMap[':jobStatus1'] = 'assigned' varMap[':jobStatus2'] = 'defined' retA,resA = taskBuffer.querySQLS(sqlA, varMap) if resA is not None: for tmpItem in resA: jobDefinitionID,prodUserName,prodUserID,computingSite,maxTime,jediTaskID,processingType,workingGroup\ = tmpItem tmpKey = (jediTaskID,jobDefinitionID) if tmpKey not in keyList: keyList.add(tmpKey) resList.append(tmpItem) # sql to check recent activity sql = "SELECT PandaID,stateChangeTime,jobStatus FROM %s " sql += "WHERE prodUserName=:prodUserName AND jobDefinitionID=:jobDefinitionID " sql += "AND computingSite=:computingSite AND jediTaskID=:jediTaskID " sql += "AND jobStatus NOT IN (:jobStatus1,:jobStatus2,:jobStatus3) " sql += "AND stateChangeTime>:modificationTime " sql += "AND rownum <= 1" # sql to get associated jobs with jediTaskID sqlJJ = "SELECT PandaID FROM %s " sqlJJ += "WHERE jediTaskID=:jediTaskID AND jobStatus IN (:jobS1,:jobS2,:jobS3,:jobS4,:jobS5) " sqlJJ += "AND jobDefinitionID=:jobDefID AND computingSite=:computingSite " timeoutMap = {} if resList != []: recentRuntimeLimit = datetime.datetime.utcnow() - datetime.timedelta(hours=3) # loop over all user/jobID combinations iComb = 0 nComb = len(resList) _logger.debug("total combinations = %s" % nComb) for jobDefinitionID,prodUserName,prodUserID,computingSite,maxModificationTime,jediTaskID,\ processingType, workingGroup in resList: # check if jobs with the jobID have run recently varMap = {} varMap[':jediTaskID'] = jediTaskID varMap[':computingSite'] = computingSite varMap[':prodUserName'] = prodUserName varMap[':jobDefinitionID'] = jobDefinitionID varMap[':modificationTime'] = recentRuntimeLimit varMap[':jobStatus1'] = 'closed' varMap[':jobStatus2'] = 'failed' varMap[':jobStatus3'] = 'starting' _logger.debug(" rebro:%s/%s:ID=%s:%s jediTaskID=%s site=%s" % (iComb, nComb, jobDefinitionID, prodUserName, jediTaskID, computingSite)) iComb += 1 hasRecentJobs = False # check site if not siteMapper.checkSite(computingSite): _logger.debug(" -> skip unknown site=%s" % computingSite) continue # check site status tmpSiteStatus = siteMapper.getSite(computingSite).status if tmpSiteStatus not in ['offline','test']: if workingGroup: if workingGroup not in timeoutMap: tmp_timeoutVal = taskBuffer.getConfigValue('rebroker', 'ANALY_TIMEOUT_{}'.format(workingGroup)) if tmp_timeoutVal: timeoutMap[workingGroup] = datetime.datetime.utcnow() - \ datetime.timedelta(hours=tmp_timeoutVal) else: timeoutMap[workingGroup] = normalTimeLimit tmp_normalTimeLimit = timeoutMap[workingGroup] else: tmp_normalTimeLimit = normalTimeLimit # use normal time limit for normal site status if maxModificationTime > tmp_normalTimeLimit: _logger.debug(" -> skip wait for normal timelimit=%s<maxModTime=%s" % (tmp_normalTimeLimit, maxModificationTime)) continue for tableName in ['ATLAS_PANDA.jobsActive4','ATLAS_PANDA.jobsArchived4']: retU,resU = taskBuffer.querySQLS(sql % tableName, varMap) if resU is None: # database error raise RuntimeError("failed to check modTime") if resU != []: # found recent jobs hasRecentJobs = True _logger.debug(" -> skip due to recent activity %s to %s at %s" % (resU[0][0], resU[0][2], resU[0][1])) break else: _logger.debug(" -> immediate rebro due to site status=%s" % tmpSiteStatus) if hasRecentJobs: # skip since some jobs have run recently continue else: if jediTaskID is None: _logger.debug(" -> rebro for normal task : no action") else: _logger.debug(" -> rebro for JEDI task") killJobs = [] varMap = {} varMap[':jediTaskID'] = jediTaskID varMap[':jobDefID'] = jobDefinitionID varMap[':computingSite'] = computingSite varMap[':jobS1'] = 'defined' varMap[':jobS2'] = 'assigned' varMap[':jobS3'] = 'activated' varMap[':jobS4'] = 'dummy' varMap[':jobS5'] = 'starting' for tableName in ['ATLAS_PANDA.jobsDefined4','ATLAS_PANDA.jobsActive4']: retJJ,resJJ = taskBuffer.querySQLS(sqlJJ % tableName, varMap) for tmpPandaID, in resJJ: killJobs.append(tmpPandaID) # reverse sort to kill buildJob in the end killJobs.sort() killJobs.reverse() # kill to reassign taskBuffer.killJobs(killJobs,'JEDI','51',True) except Exception as e: _logger.error("rebrokerage failed with {0} : {1}".format(str(e), traceback.format_exc())) # kill too long running jobs timeLimit = datetime.datetime.utcnow() - datetime.timedelta(days=21) status,res = taskBuffer.querySQLS("SELECT PandaID FROM ATLAS_PANDA.jobsActive4 WHERE creationTime<:creationTime", {':creationTime':timeLimit}) jobs = [] if res is not None: for (id,) in res: jobs.append(id) # kill if len(jobs): nJob = 100 iJob = 0 while iJob < len(jobs): # set tobekill _logger.debug('killJobs for Running (%s)' % jobs[iJob:iJob+nJob]) Client.killJobs(jobs[iJob:iJob+nJob],2) # run watcher for id in jobs[iJob:iJob+nJob]: thr = Watcher(taskBuffer,id,single=True,sitemapper=siteMapper,sleepTime=60*24*21) thr.start() thr.join() time.sleep(1) iJob += nJob time.sleep(10) # kill too long waiting ddm jobs timeLimit = datetime.datetime.utcnow() - datetime.timedelta(days=5) varMap = {} varMap[':prodSourceLabel'] = 'ddm' varMap[':creationTime'] = timeLimit status,res = taskBuffer.querySQLS("SELECT PandaID FROM
"D312", "D314", "D315", "D316", "D317", "D318", "D319", "D321", "D323", "D324", "D325", "D327", "D328", "D329", "D330", "D331", "D332", "D333", "D334", "D338", "D339", "D341", "D344", "D345", "D346", "D347", "D348", "D350", "D351", "D352", "D355", "D356", "D357", "D358", "D360", "D361", "D364", "D365", "D366", "D367", "D371", "D372", "D373", "D374", "D376", "D377", "D379", "D380", "D383", "D384", "D385", "D386", "D388", "D390", "D391", "D392", "D394", "D395", "D398", "D399", "D401", "D402", "D403", "D406", "D407", "D408", "D410", "D411", "D412", "D414", "D415", "D416", "D419", "D420", "D421", "D422", "D423", "D424", "D426", "D428", "D429", "D430", "D431", "D433", "D434", "D436", "D440", "D441", "D442", "D443", "D444", "D445", "D447", "D450", "D451", "D452", "D453", "D454", "D455", "D456", "D458", "D459", "D461", "D462", "D463", "D464", "D465", "D467", "D468", "D469", "D470", "D471", "D472", "D473", "D474", "D475", "D476", "D477", "D480", "D482", "D483", "D484", "D486", "D487", "D488", "D489", "D490", "D491", "D492", "D493", "D494", "D495", "D496", "D497", "D499", "D501", "D502", "D503", "D504", "D505", "D508", "D509", "D510", "D511", "D512", "D513", "D514", "D518", "D520", "D522", "D523", "D524", "D526", "D527", "D528", "D530", "D531", "D532", "D537", "D538", "D539", "D540", "D541", "D542", "D543", "D544", "D545", "D546", "D547", "D548", "D549", "D550", "D551", "D552", "D553", "D554", "D555", "D557", "D559", "D560", "D561", "D562", "D564", "D565", "D566", "D567", "D568", "D569", "D570", "D571", "D573", "D574", "D575", "D576", "D577", "D578", "D579", "D582", "D585", "D586", "D587", "D588", "D589", "D590", "D591", "D592", "D593", "D594", "D595", "D596", "D597", "D599", "D600", "D604", "D605", "D606", "D607", "D608", "D611", "D612", "D613", "D614", "D615", "D617", "D619", "D621", "D622", "D623", "D624", "D628", "D629", "D630", "D634", "D635", "D636", "D637", "D638", "D639", "D640", "D641", "D643", "D644", "D645", "D646", "D649", "D650", "D651", "D652", "D653", "D654", "D655", "D656", "D660", "D661", "D662", "D665", "D666", "D667", "D668", "D670", "D671", "D672", "D673", "D674", "D675", "D676", "D677", "D678", "D679", "D680", "D681", "D682", "D683", "D684", "D685", "D686", "D688", "D689", "D690", "D691", "D693", "D694", "D695", "D696", "D697", "D700", "D701", "D702", "D703", "D704", "D705", "D706", "D707", "D708", "D709", "D710", "D711", "D712", "D714", "D715", "D717", "D718", "D719", "D720", "D725", "D727", "D728", "D730", "D731", "D732", "D733", "D734", "D735", "D736", "D737", "D738", "D740", "D741", "D742", "D744", "D745", "D746", "D748", "D749", "D750", "D751", "D752", "D754", "D755", "D756", "D757", "D758", "D759", "D760", "D761", "D762", "D763", "D764", "D765", "D766", "D767", "D768", "D769", "D770", "D771", "D773", "D774", "D775", "D776", "D777", "D780", "D781", "D782", "D783", "D784", "D785", "D786", "D787", "D788", "D789", "D790", "D791", "D793", "D794", "D796", "D797", "D798", "D799", "D801", "D802", "D803", "D804", "D805", "D807", "D808", "D810", "D811", "D812", "D813", "D814", "D815", "D817", "D818", "D819", "D821", "D823", "D824", "D825", "D826", "D827", "D828", "D829", "D830", "D832", "D834", "D835", "D836", "D839", "D841", "D842", "D843", "D844", "D845", "D847", "D848", "D849", "D850", "D851", "D852", "D853", "D854", "D855", "D856", "D858", "D859", "D860", "D861", "D862", "D863", "D864", "D865", "D867", "D868", "D869", "D870", "D871", "D872", "D873", "D874", "D875", "D876", "D878", "D879", "D881", "D882", "D883", "D884", "D885", "D886", "D888", "D889", "D890", "D891", "D892", "D894", "D895", "D896", "D897", "D898", "D899", "D901", "D902", "D903", "D905", "D906", "D907", "D909", "D910", "D911", "D912", "D913", "D915", "D917", "D918", "D920", "D921", "D923", "D924", "D925", "D926", "D927", "D928", "D930", "D931", "D932", "D933", "D934", "D935", "D938", "D940", "D942", "D943", "D944", "D945", "D946", "D947", "D948", "D949", "D951", "D952", "D956", "D957", "D958", "D959", "D960", "D961", "D962", "D963", "D964", "D965", "D966", "D967", "D968", "D969", "D970", "D971", "D972", "D974", "D975", "D976", "D977", "D978", "D980", "D981", "D982", "D983", "D984", "D987", "D988", "D990", "D993", "D994", "D995", "D996", "D997", "D998", "D999", "E001", "E003", "E004", "E006", "E007", "E008", "E009", "E010", "E011", "E012", "E013", "E014", "E015", "E016", "E017", "E019", "E020", "E021", "E022", "E023", "E024", "E025", "E026", "E027", "E028", "E029", "E030", "E031", "E033", "E034", "E036", "E037", "E038", "E039", "E040", "E041", "E043", "E044", "E045", "E047", "E048", "E049", "E050", "E052", "E053", "E054", "E055", "E056", "E057", "E058", "E060", "E061", "E062", "E063", "E064", "E065", "E066", "E067", "E068", "E069", "E070", "E071", "E072", "E074", "E078", "E079", "E081", "E082", "E083", "E084", "E085", "E086", "E087", "E088", "E089", "E090", "E091", "E092", "E093", "E094", "E096", "E098", "E100", "E101", "E102", "E103", "E104", "E106", "E107", "E109", "E111", "E113", "E114", "E115", "E116", "E118", "E120", "E122", "E124", "E125", "E126", "E127", "E128", "E130", "E131", "E132", "E133", "E134", "E136", "E139", "E141", "E142", "E143", "E144", "E145", "E146", "E147", "E148", "E149", "E152", "E153", "E154", "E155", "E156", "E158", "E159", "E160", "E161", "E163", "E164", "E165", "E167", "E168", "E169", "E170", "E171", "E172", "E173", "E177", "E178", "E179", "E180", "E182", "E184", "E185", "E187", "E188", "E189", "E191", "E192", "E193", "E195", "E196", "E199", "E200", "E201", "E202", "E203", "E204", "E205", "E206", "E207", "E208", "E209", "E210", "E212", "E213", "E214", "E215", "E216", "E217", "E219", "E221", "E223", "E224", "E226", "E227", "E228", "E229", "E230", "E232", "E233", "E234", "E235", "E236", "E237", "E238", "E239", "E240", "E241", "E242", "E243", "E244", "E245", "E246", "E248", "E249", "E250", "E251", "E252", "E253", "E255", "E256", "E258", "E259", "E261", "E263", "E264", "E265", "E266", "E269", "E270", "E271", "E272", "E273", "E274", "E280", "E281", "E282", "E283", "E284", "E285", "E287", "E288", "E289", "E290", "E291", "E292", "E295", "E297", "E299", "E301", "E304", "E305", "E306", "E307", "E309", "E310", "E311", "E313", "E314", "E317", "E320", "E321", "E323", "E325", "E326", "E327", "E328", "E329", "E330", "E332", "E333", "E334", "E335", "E336", "E337", "E338", "E339", "E340", "E341", "E342", "E343", "E345", "E346", "E348", "E349", "E350", "E351", "E353", "E354", "E356", "E358", "E360", "E363", "E364", "E365", "E366", "E367", "E368", "E369", "E370", "E371", "E372", "E373", "E374", "E375", "E376", "E377", "E379", "E380", "E381", "E382", "E386", "E387", "E388", "E389", "E390", "E391", "E392", "E393", "E394", "E395", "E396", "E397", "E398", "E400", "E401", "E402", "E403", "E405", "E406", "E407", "E409", "E410", "E412", "E413", "E414", "E415", "E416", "E417", "E419", "E420", "E421", "E422", "E423", "E424", "E425", "E426", "E428", "E429", "E430", "E431", "E432", "E433", "E434", "E435", "E436", "E437", "E438", "E439", "E441", "E443", "E445", "E447", "E448", "E450", "E451", "E454", "E456", "E457", "E458", "E459", "E462", "E463", "E464", "E465", "E466", "E467", "E469", "E470", "E471", "E472", "E473", "E474", "E475", "E476", "E479", "E480", "E481", "E482", "E483", "E484", "E485", "E486", "E487", "E488", "E489", "E490", "E491", "E492", "E493", "E494", "E496", "E497", "E498", "E500", "E502", "E504", "E505", "E506", "E507", "E509", "E510", "E512", "E514", "E515", "E517", "E518", "E519", "E520", "E522", "E523", "E524", "E526", "E527", "E528", "E530", "E531", "E532", "E535", "E536", "E537", "E538", "E539", "E540", "E541", "E542", "E543", "E544", "E546", "E547", "E548", "E549", "E550", "E551", "E553", "E554", "E555", "E557", "E558", "E559", "E560", "E562", "E563", "E564", "E565", "E566", "E569", "E570", "E571", "E573", "E574", "E576", "E578", "E581", "E583", "E584", "E587", "E588", "E589", "E590", "E591", "E592", "E593", "E594", "E596", "E597", "E599", "E600", "E602", "E605", "E606", "E607", "E608", "E610", "E611", "E613", "E615", "E617", "E618", "E620", "E621", "E622", "E623", "E624", "E625", "E626", "E627", "E629", "E630", "E632", "E633", "E635", "E638", "E639", "E640", "E644", "E645", "E646", "E647", "E648", "E649", "E651", "E652", "E654", "E655", "E656", "E659", "E660", "E661", "E662", "E664", "E665", "E666", "E668", "E669", "E671", "E673", "E674", "E675", "E677", "E678", "E679", "E680", "E681", "E682", "E683", "E684", "E685", "E687", "E689", "E690", "E691", "E692", "E693", "E694", "E695", "E698", "E700", "E704", "E705", "E706", "E707", "E708", "E709", "E711", "E713", "E714", "E715", "E716", "E718", "E719", "E722", "E723", "E724", "E726", "E729", "E730", "E731", "E734", "E735", "E736", "E737", "E738", "E742", "E743", "E745", "E746", "E747", "E748", "E749", "E750", "E751", "E752", "E753", "E754", "E757", "E758", "E759", "E760", "E761", "E763", "E764", "E767", "E769", "E770", "E772", "E773", "E777", "E778", "E779", "E780", "E782", "E783", "E784", "E785", "E786", "E787", "E788", "E789", "E790", "E791", "E793", "E794", "E795", "E798", "E799", "E800", "E801", "E803", "E804", "E805", "E806", "E807", "E808", "E809", "E810", "E811", "E812", "E813", "E814", "E815", "E816", "E817", "E818", "E819", "E820", "E821", "E825", "E829", "E830", "E833", "E834", "E835", "E836", "E837", "E838", "E839", "E840", "E841", "E842", "E843", "E844", "E847", "E848", "E850", "E851", "E852", "E853", "E854", "E855", "E856", "E858", "E859", "E860", "E862", "E863", "E864", "E865", "E868", "E869", "E870", "E872", "E873", "E874", "E875", "E876", "E877", "E878", "E879", "E880", "E882", "E883", "E884", "E885", "E887", "E888", "E889", "E891", "E892", "E893", "E894", "E896", "E897", "E899", "E900", "E901", "E902", "E903", "E904", "E905", "E906", "E907", "E908", "E910", "E911", "E912", "E914", "E915", "E917", "E919", "E921", "E922", "E923", "E924", "E925", "E927", "E928", "E929", "E930", "E931", "E932", "E933", "E934", "E936", "E938", "E939", "E940", "E941", "E944", "E945", "E946", "E947", "E949", "E951", "E952", "E953", "E954", "E955", "E956", "E957", "E958", "E959", "E960", "E961", "E962", "E963", "E965", "E967", "E968", "E970", "E971", "E972", "E973", "E974", "E975", "E976", "E977", "E978", "E979", "E980", "E981", "E982", "E983", "E984", "E986", "E987", "E988", "E989", "E990", "E991", "E992",
# Convert Font Awesome, Fork Awesome, Google Material Design, Material Design Icons, Kenney Game, Ionicons and Fontaudio # icon font parameters to C89, C++11 and C# compatible formats. # #------------------------------------------------------------------------------ # 1 - Source material # # 1.1 - Font Awesome # 1.1.1 - version 4 # https://raw.githubusercontent.com/FortAwesome/Font-Awesome/fa-4/src/icons.yml # https://github.com/FortAwesome/Font-Awesome/blob/fa-4/fonts/fontawesome-webfont.ttf # 1.1.2 - version 5 # https://raw.githubusercontent.com/FortAwesome/Font-Awesome/master/metadata/icons.yml # https://github.com/FortAwesome/Font-Awesome/blob/master/webfonts/fa-brands-400.ttf # https://github.com/FortAwesome/Font-Awesome/blob/master/webfonts/fa-regular-400.ttf # https://github.com/FortAwesome/Font-Awesome/blob/master/webfonts/fa-solid-900.ttf # 1.1.3 - version 5 Pro # Download files from https://fontawesome.com # \fontawesome-pro-n.n.n-web\metadata\icons.yml # \fontawesome-pro-n.n.n-web\webfonts\fa-brands-400.ttf # \fontawesome-pro-n.n.n-web\webfonts\fa-light-300.ttf # \fontawesome-pro-n.n.n-web\webfonts\fa-regular-400.ttf # \fontawesome-pro-n.n.n-web\webfonts\fa-solid-900.ttf # 1.2 - Fork Awesome # https://raw.githubusercontent.com/ForkAwesome/Fork-Awesome/master/src/icons/icons.yml # https://github.com/ForkAwesome/Fork-Awesome/blob/master/fonts/forkawesome-webfont.ttf # 1.3 - Google Material Design # https://raw.githubusercontent.com/google/material-design-icons/master/iconfont/codepoints # https://github.com/google/material-design-icons/blob/master/iconfont/MaterialIcons-Regular.ttf # 1.4 - Material Design Icons # https://raw.githubusercontent.com/Templarian/MaterialDesign-Webfont/master/css/materialdesignicons.css # https://github.com/Templarian/MaterialDesign-Webfont/blob/master/fonts/materialdesignicons-webfont.ttf # 1.5 - Kenney Game icons # https://raw.githubusercontent.com/nicodinh/kenney-icon-font/master/css/kenney-icons.css # https://github.com/nicodinh/kenney-icon-font/blob/master/fonts/kenney-icon-font.ttf # 1.6 - Ionicons # https://raw.githubusercontent.com/ionic-team/ionicons/master/src/docs/archived/v2/css/ionicons.css # https://github.com/ionic-team/ionicons/blob/master/src/docs/archived/v2/fonts/ionicons.ttf # 1.7 - Fontaudio # https://raw.githubusercontent.com/fefanto/fontaudio/master/font/fontaudio.css # https://github.com/fefanto/fontaudio/blob/master/font/fontaudio.ttf #------------------------------------------------------------------------------ # 2 - Data sample # # Font Awesome example: # - input: music: # changes: # - '1' # - 5.0.0 # label: Music # search: # terms: # - note # - sound # styles: # - solid # unicode: f001 # - output C++11: #define ICON_FA_MUSIC u8"\uf001" # - output C89: #define ICON_FA_MUSIC "\xEF\x80\x81" # - output C#: public const string Music = "\uf001"; # # All fonts have computed min and max unicode fonts ICON_MIN and ICON_MAX # - output C89, C++11: #define ICON_MIN_FA 0xf000 # #define ICON_MAX_FA 0xf2e0 # Exception for Font Awesome brands: we use ICON_MIN_FAB and ICON_MAX_FAB # to differentiate between brand and non-brand icons so they can be used together # (the defines must be unique in C and C++). # - output C#: public const int IconMin = 0xf000; # public const int IconMax = 0xf2e0; # #------------------------------------------------------------------------------ # 3 - Script dependencies # # 3.1 - Fonts source material online # 3.2 - Python 2.7 - https://www.python.org/download/releases/2.7/ # 3.3 - Requests - http://docs.python-requests.org/ # 3.4 - PyYAML - http://pyyaml.org/ # #------------------------------------------------------------------------------ # 4 - References # # GitHub repository: https://github.com/juliettef/IconFontCppHeaders/ # #------------------------------------------------------------------------------ import requests import yaml import os # Fonts class Font: font_name = '[ ERROR - missing font name ]' font_abbr = '[ ERROR - missing font abbreviation ]' font_minmax_abbr = '' # optional - use if min and max defines must be differentiated. See Font Awesome Brand for example. font_data = '[ ERROR - missing font data file or url ]' font_ttf = '[ ERROR - missing ttf file or url ]' font_file_name_ttf = '[ ERROR - missing ttf file name ]' @classmethod def get_icons( cls, input ): # intermediate representation of the fonts data, identify the min and max print( '[ ERROR - missing implementation of class method get_icons for {!s} ]'.format( cls.font_name )) icons_data = {} icons_data.update({ 'font_min' : '[ ERROR - missing font min ]', 'font_max' : '[ ERROR - missing font max ]', 'icons' : '[ ERROR - missing list of pairs [ font icon name, code ]]' }) return icons_data @classmethod def get_intermediate_representation( cls ): font_ir = {} input_raw = '' if 'http' in cls.font_data: # if url, download data response = requests.get( cls.font_data, timeout = 2 ) if response.status_code == 200: input_raw = response.content print( 'Downloaded - ' + cls.font_name ) else: raise Exception( 'Download failed - ' + cls.font_name ) else: # read data from file if present if os.path.isfile( cls.font_data ): with open( cls.font_data, 'r' ) as f: input_raw = f.read() print( 'File read - ' + cls.font_name ) else: raise Exception( 'File ' + cls.font_data + ' missing - ' + cls.font_name ) if input_raw: icons_data = cls.get_icons( input_raw ) font_ir.update( icons_data ) font_ir.update({ 'font_ttf' : cls.font_ttf, 'font_data' : cls.font_data, 'font_file_name_ttf' : cls.font_file_name_ttf, 'font_name' : cls.font_name, 'font_abbr' : cls.font_abbr, 'font_minmax_abbr' : cls.font_minmax_abbr }) print( 'Generated intermediate data - ' + cls.font_name ) return font_ir class FontFA4( Font ): # legacy Font Awesome version 4 font_name = 'Font Awesome 4' font_abbr = 'FA' font_data = 'https://raw.githubusercontent.com/FortAwesome/Font-Awesome/fa-4/src/icons.yml' font_ttf = 'https://github.com/FortAwesome/Font-Awesome/blob/fa-4/fonts/fontawesome-webfont.ttf' font_file_name_ttf = [[ font_abbr, font_ttf[ font_ttf.rfind('/')+1: ]]] @classmethod def get_icons( self, input ): icons_data = { } data = yaml.safe_load(input) font_min = 'ffff' font_max = '0' icons = [] for item in data[ 'icons' ]: if item[ 'unicode' ] < font_min: font_min = item[ 'unicode' ] if item[ 'unicode' ] >= font_max: font_max = item[ 'unicode' ] icons.append([ item[ 'id' ], item[ 'unicode' ]]) icons_data.update({ 'font_min' : font_min, 'font_max' : font_max, 'icons' : icons }) return icons_data class FontFK( FontFA4 ): # Fork Awesome, based on Font Awesome 4 font_name = 'Fork Awesome' font_abbr = 'FK' font_data = 'https://raw.githubusercontent.com/ForkAwesome/Fork-Awesome/master/src/icons/icons.yml' font_ttf = 'https://github.com/ForkAwesome/Fork-Awesome/blob/master/fonts/forkawesome-webfont.ttf' font_file_name_ttf = [[ font_abbr, font_ttf[ font_ttf.rfind('/')+1: ]]] class FontFA5( Font ): # Font Awesome version 5 - Regular and Solid styles font_name = 'Font Awesome 5' font_abbr = 'FA' font_data = 'https://raw.githubusercontent.com/FortAwesome/Font-Awesome/master/metadata/icons.yml' font_ttf = 'https://github.com/FortAwesome/Font-Awesome/blob/master/webfonts/fa-solid-900.ttf, ' +\ 'https://github.com/FortAwesome/Font-Awesome/blob/master/webfonts/fa-regular-400.ttf, ' font_file_name_ttf = [[ 'FAR', 'fa-regular-400.ttf' ], [ 'FAS', 'fa-solid-900.ttf' ]] font_fa_style = [ 'regular', 'solid' ] @classmethod def get_icons( self, input ): icons_data = { } data = yaml.safe_load(input) if data: font_min = 'ffff' font_max = '0' icons = [] for key in data: item = data[ key ] for style in item[ 'styles' ]: if style in self.font_fa_style: if [ key, item[ 'unicode' ]] not in icons: if item[ 'unicode' ] < font_min: font_min = item[ 'unicode' ] if item[ 'unicode' ] >= font_max: font_max = item[ 'unicode' ] icons.append([ key, item[ 'unicode' ] ]) icons_data.update({ 'font_min':font_min, 'font_max':font_max, 'icons':icons }) return icons_data class FontFA5Brands( FontFA5 ): # Font Awesome version 5 - Brand style font_name = 'Font Awesome 5 Brands' font_minmax_abbr = 'FAB' font_ttf = 'https://github.com/FortAwesome/Font-Awesome/blob/master/webfonts/fa-brands-400.ttf' font_file_name_ttf = [[ 'FAB', 'fa-brands-400.ttf' ]] font_fa_style = [ 'brands' ] class FontFA5Pro( FontFA5 ): # Font Awesome version 5 Pro - Light, Regular and Solid styles font_name = 'Font Awesome 5 Pro' font_data = 'icons.yml' font_ttf = 'fa-light-300.ttf, fa-regular-400.ttf, fa-solid-900.ttf' font_file_name_ttf = [[ 'FAL', 'fa-light-300.ttf' ], [ 'FAR', 'fa-regular-400.ttf' ], [ 'FAS', 'fa-solid-900.ttf' ]] font_fa_style = [ 'light', 'regular', 'solid' ] class FontFA5ProBrands( FontFA5 ): # Font Awesome version 5 Pro - Brand style font_name = 'Font Awesome 5 Pro Brands' font_minmax_abbr = 'FAB' font_data = 'icons.yml' font_ttf = 'fa-brands-400.ttf' font_file_name_ttf = [[ 'FAB', 'fa-brands-400.ttf' ]] font_fa_style = [ 'brands' ] class FontMD( Font ): # Material Design font_name = 'Material Design' font_abbr = 'MD' font_data = 'https://raw.githubusercontent.com/google/material-design-icons/master/iconfont/codepoints' font_ttf = 'https://github.com/google/material-design-icons/blob/master/iconfont/MaterialIcons-Regular.ttf' font_file_name_ttf = [[ font_abbr, font_ttf[ font_ttf.rfind('/')+1: ]]] @classmethod def get_icons( self, input ): icons_data = {} lines = str.split( input, '\n' ) if lines: font_min = 'ffff' font_max = '0' icons = [] for line in lines : words = str.split(line) if words and len( words ) >= 2: if words[ 1 ] < font_min: font_min = words[ 1 ] if words[ 1 ] >= font_max: font_max = words[ 1 ] icons.append( words ) icons_data.update({ 'font_min' : font_min, 'font_max' : font_max, 'icons' : icons }) return icons_data class FontMDI( Font ): # Material Design Icons font_name = 'Material Design Icons' font_abbr = 'MDI' font_data = 'https://raw.githubusercontent.com/Templarian/MaterialDesign-Webfont/master/css/materialdesignicons.css' font_ttf = 'https://github.com/Templarian/MaterialDesign-Webfont/blob/master/fonts/materialdesignicons-webfont.ttf' font_file_name_ttf = [[ font_abbr, font_ttf[ font_ttf.rfind('/')+1: ]]] @classmethod def get_icons( self, input ): icons_data = {} input_trimmed = input[ input.find( '-moz-osx-font-smoothing: grayscale;\n}\n\n' ) + len( '-moz-osx-font-smoothing: grayscale;\n}\n\n' ) : input.find( '.mdi-18px.mdi-set,' )] lines = str.split( input_trimmed, '}\n\n' ) if lines: font_min = 'ffff' font_max = '0' icons = [] for line in lines : if '.mdi-' in line: words = str.split(line) if words and '.mdi-' in words[ 0 ]: font_id = words[ 0 ].partition( '.mdi-' )[2].partition( '::before' )[0] font_code = words[ 3 ].partition( '"\\' )[2].partition( '";' )[0].zfill(4) if font_code < font_min: font_min = font_code if font_code >= font_max: font_max = font_code icons.append([ font_id, font_code ]) icons_data.update({ 'font_min' : font_min, 'font_max' : font_max, 'icons' : icons }) return icons_data class FontKI( Font ): # Kenney Game icons font_name = 'Kenney' font_abbr = 'KI' font_data = 'https://raw.githubusercontent.com/nicodinh/kenney-icon-font/master/css/kenney-icons.css' font_ttf = 'https://github.com/nicodinh/kenney-icon-font/blob/master/fonts/kenney-icon-font.ttf' font_file_name_ttf = [[ font_abbr, font_ttf[ font_ttf.rfind('/')+1: ]]] @classmethod def get_icons( self, input ): icons_data = {} lines = str.split( input, '\n' ) if lines: font_min = 'ffff' font_max = '0' icons = [] for line in lines : if '.ki-' in line: words = str.split(line) if words and '.ki-' in words[ 0 ]: font_id = words[ 0 ].partition( '.ki-' )[2].partition( ':before' )[0] font_code = words[ 2 ].partition( '"\\' )[2].partition( '";' )[0] if font_code < font_min: font_min = font_code if font_code >= font_max: font_max = font_code icons.append([ font_id, font_code ]) icons_data.update({