input
stringlengths
2.65k
237k
output
stringclasses
1 value
testFileC] for filesetFile in testFilesetC.files: assert filesetFile in goldenFiles, \ "ERROR: Unknown file in fileset" goldenFiles.remove(filesetFile) assert len(goldenFiles) == 0, \ "ERROR: Fileset is missing files" myThread.transaction.rollback() testFilesetB.loadData() testFilesetC.loadData() assert len(testFilesetB.files) == 0, \ "ERROR: Fileset B has too many files" assert len(testFilesetC.files) == 0, \ "ERROR: Fileset C has too many files" testFilesetA.delete() testFileA.delete() testFileB.delete() testFileC.delete() def testMarkOpen(self): """ _testMarkOpen_ Test that setting the openess of a fileset in the constructor works as well as changing it with the markOpen() method. """ testFilesetA = Fileset(name="TestFileset1", is_open=False) testFilesetA.create() testFilesetB = Fileset(name="TestFileset2", is_open=True) testFilesetB.create() testFilesetC = Fileset(name=testFilesetA.name) testFilesetC.load() testFilesetD = Fileset(name=testFilesetB.name) testFilesetD.load() assert testFilesetC.open is False, \ "ERROR: FilesetC should be closed." assert testFilesetD.open is True, \ "ERROR: FilesetD should be open." testFilesetA.markOpen(True) testFilesetB.markOpen(False) testFilesetE = Fileset(name=testFilesetA.name) testFilesetE.load() testFilesetF = Fileset(name=testFilesetB.name) testFilesetF.load() assert testFilesetE.open is True, \ "ERROR: FilesetE should be open." assert testFilesetF.open is False, \ "ERROR: FilesetF should be closed." myThread = threading.currentThread() daoFactory = DAOFactory(package="WMCore.WMBS", logger=myThread.logger, dbinterface=myThread.dbi) openFilesetDAO = daoFactory(classname="Fileset.ListOpen") openFilesetNames = openFilesetDAO.execute() assert len(openFilesetNames) == 1, \ "ERROR: Too many open filesets." assert "TestFileset1" in openFilesetNames, \ "ERROR: Wrong fileset listed as open." return def testFilesetClosing(self): """ _testFilesetClosing_ Verify the proper operation of the closable fileset DAO object. A fileset is closable if: - All of the subscriptions that feed it has completed processing all files in their input fileset _ All of the jobs for feeder subscriptions have completed - The fileset that feeds the subscription is closed - The workflow for the subscription is fully injected. """ testOutputFileset1 = Fileset(name="TestOutputFileset1") testOutputFileset1.create() testOutputFileset2 = Fileset(name="TestOutputFileset2") testOutputFileset2.create() testOutputFileset3 = Fileset(name="TestOutputFileset3") testOutputFileset3.create() testOutputFileset4 = Fileset(name="TestOutputFileset4") testOutputFileset4.create() testMergedOutputFileset1 = Fileset(name="TestMergedOutputFileset1") testMergedOutputFileset1.create() testMergedOutputFileset2 = Fileset(name="TestMergedOutputFileset2") testMergedOutputFileset2.create() testMergedOutputFileset3 = Fileset(name="TestMergedOutputFileset3") testMergedOutputFileset3.create() testMergedOutputFileset4 = Fileset(name="TestMergedOutputFileset4") testMergedOutputFileset4.create() testFilesetOpen = Fileset(name="TestFilesetOpen", is_open=True) testFilesetOpen.create() testFileA = File(lfn="/this/is/a/lfnA", size=1024, events=20, checksums={'cksum': 3}) testFileB = File(lfn="/this/is/a/lfnB", size=1024, events=20, checksums={'cksum': 3}) testFilesetOpen.addFile(testFileA) testFilesetOpen.addFile(testFileB) testFilesetOpen.commit() testFilesetClosed = Fileset(name="TestFilesetClosed", is_open=False) testFilesetClosed.create() testFileC = File(lfn="/this/is/a/lfnC", size=1024, events=20, checksums={'cksum': 3}) testFileD = File(lfn="/this/is/a/lfnD", size=1024, events=20, checksums={'cksum': 3}) testFilesetClosed.addFile(testFileC) testFilesetClosed.addFile(testFileD) testFilesetClosed.commit() testWorkflow1 = Workflow(spec="spec1.xml", owner="Steve", name="wf001", task="sometask") testWorkflow1.create() testWorkflow1.addOutput("out1", testOutputFileset1, testMergedOutputFileset1) testWorkflow1.addOutput("out2", testOutputFileset2, testMergedOutputFileset2) testWorkflow2 = Workflow(spec="spec2.xml", owner="Steve", name="wf002", task="sometask") testWorkflow2.create() testWorkflow2.addOutput("out3", testOutputFileset3, testMergedOutputFileset3) testWorkflow3 = Workflow(spec="spec4.xml", owner="Steve", name="wf004", task="sometask") testWorkflow3.create() testWorkflow3.addOutput("out4", testOutputFileset4, testMergedOutputFileset4) testSubscription1 = Subscription(fileset=testFilesetClosed, workflow=testWorkflow1) testSubscription1.create() testSubscription1.completeFiles([testFileC, testFileD]) testSubscription2 = Subscription(fileset=testFilesetOpen, workflow=testWorkflow2) testSubscription2.create() testSubscription2.completeFiles([testFileA, testFileB]) testSubscription3 = Subscription(fileset=testFilesetClosed, workflow=testWorkflow3) testSubscription3.create() testJobGroup = JobGroup(subscription=testSubscription1) testJobGroup.create() testJob = Job(name="TestJob1") testJob.create(testJobGroup) testJob["state"] = "executing" myThread = threading.currentThread() daoFactory = DAOFactory(package="WMCore.WMBS", logger=myThread.logger, dbinterface=myThread.dbi) changeStateDAO = daoFactory(classname="Jobs.ChangeState") changeStateDAO.execute(jobs=[testJob]) closableFilesetDAO = daoFactory(classname="Fileset.ListClosable") closableFilesets = closableFilesetDAO.execute() assert len(closableFilesets) == 0, \ "Error: There should be no closable filesets." testJob["state"] = "cleanout" changeStateDAO.execute(jobs=[testJob]) closableFilesets = closableFilesetDAO.execute() assert len(closableFilesets) == 0, \ "Error: There should be no closable filesets." injected = daoFactory(classname="Workflow.MarkInjectedWorkflows") injected.execute(names=["wf001", "wf002", "wf003"], injected=True) closableFilesets = closableFilesetDAO.execute() goldenFilesets = ["TestOutputFileset1", "TestOutputFileset2"] for closableFileset in closableFilesets: newFileset = Fileset(id=closableFileset) newFileset.load() assert newFileset.name in goldenFilesets, \ "Error: Unknown closable fileset" goldenFilesets.remove(newFileset.name) assert len(goldenFilesets) == 0, \ "Error: Filesets are missing" return def testFilesetClosing2(self): """ _testFilesetClosing2_ Verify that fileset closing works correctly in the case where multiple subscriptions feed into a single fileset. """ testOutputFileset1 = Fileset(name="TestOutputFileset1") testOutputFileset1.create() testOutputFileset2 = Fileset(name="TestOutputFileset2") testOutputFileset2.create() testMergedOutputFileset1 = Fileset(name="TestMergedOutputFileset1") testMergedOutputFileset1.create() testMergedOutputFileset2 = Fileset(name="TestMergedOutputFileset2") testMergedOutputFileset2.create() testFilesetOpen = Fileset(name="TestFilesetOpen", is_open=True) testFilesetOpen.create() testFileA = File(lfn="/this/is/a/lfnA", size=1024, events=20, checksums={'cksum': 3}) testFileB = File(lfn="/this/is/a/lfnB", size=1024, events=20, checksums={'cksum': 3}) testFilesetOpen.addFile(testFileA) testFilesetOpen.addFile(testFileB) testFilesetOpen.commit() testFilesetClosed1 = Fileset(name="TestFilesetClosed1", is_open=False) testFilesetClosed1.create() testFileC = File(lfn="/this/is/a/lfnC", size=1024, events=20, checksums={'cksum': 3}) testFileD = File(lfn="/this/is/a/lfnD", size=1024, events=20, checksums={'cksum': 3}) testFilesetClosed1.addFile(testFileC) testFilesetClosed1.addFile(testFileD) testFilesetClosed1.commit() testFilesetClosed2 = Fileset(name="TestFilesetClosed2", is_open=False) testFilesetClosed2.create() testFileE = File(lfn="/this/is/a/lfnE", size=1024, events=20, checksums={'cksum': 3}) testFileF = File(lfn="/this/is/a/lfnF", size=1024, events=20, checksums={'cksum': 3}) testFilesetClosed2.addFile(testFileE) testFilesetClosed2.addFile(testFileF) testFilesetClosed2.commit() testFilesetClosed3 = Fileset(name="TestFilesetClosed3", is_open=False) testFilesetClosed3.create() testFileG = File(lfn="/this/is/a/lfnG", size=1024, events=20, checksums={'cksum': 3}) testFileH = File(lfn="/this/is/a/lfnH", size=1024, events=20, checksums={'cksum': 3}) testFilesetClosed3.addFile(testFileG) testFilesetClosed3.addFile(testFileH) testFilesetClosed3.commit() testWorkflow1 = Workflow(spec="spec1.xml", owner="Steve", name="wf001", task="sometask") testWorkflow1.create() testWorkflow1.addOutput("out1", testOutputFileset1, testMergedOutputFileset1) testWorkflow2 = Workflow(spec="spec2.xml", owner="Steve", name="wf002", task="sometask") testWorkflow2.create() testWorkflow2.addOutput("out2", testOutputFileset2, testMergedOutputFileset2) testSubscription1 = Subscription(fileset=testFilesetOpen, workflow=testWorkflow1) testSubscription1.create() testSubscription1.completeFiles([testFileA, testFileB]) testSubscription2 = Subscription(fileset=testFilesetClosed1, workflow=testWorkflow1) testSubscription2.create() testSubscription3 = Subscription(fileset=testFilesetClosed2, workflow=testWorkflow2) testSubscription3.create() testSubscription3.completeFiles([testFileE, testFileF]) testSubscription4 = Subscription(fileset=testFilesetClosed3, workflow=testWorkflow2) testSubscription4.create() testSubscription4.completeFiles([testFileG, testFileH]) myThread = threading.currentThread() daoFactory = DAOFactory(package="WMCore.WMBS", logger=myThread.logger, dbinterface=myThread.dbi) injected = daoFactory(classname="Workflow.MarkInjectedWorkflows") injected.execute(names=["wf001", "wf002"], injected=True) closableFilesetDAO = daoFactory(classname="Fileset.ListClosable") closableFilesets = closableFilesetDAO.execute() goldenFilesets = ["TestOutputFileset2"] for closableFileset in closableFilesets: newFileset = Fileset(id=closableFileset) newFileset.load() assert newFileset.name in goldenFilesets, \ "Error: Unknown closable fileset" goldenFilesets.remove(newFileset.name) assert len(goldenFilesets) == 0, \ "Error: Filesets are missing" return def testFilesetClosing3(self): """ _testFilesetClosing3_ Verify that fileset closing works correctly in the case where multiple subscriptions feed into a single fileset and accounts for running jobs correctly. """ testOutputFileset1 = Fileset(name="TestOutputFileset1") testOutputFileset1.create() testOutputFileset2 = Fileset(name="TestOutputFileset2") testOutputFileset2.create() testMergedOutputFileset1 = Fileset(name="TestMergedOutputFileset1") testMergedOutputFileset1.create() testMergedOutputFileset2 = Fileset(name="TestMergedOutputFileset2") testMergedOutputFileset2.create() testFilesetOpen = Fileset(name="TestFilesetOpen", is_open=False) testFilesetOpen.create() testFileA = File(lfn="/this/is/a/lfnA", size=1024, events=20, checksums={'cksum': 3}) testFileB = File(lfn="/this/is/a/lfnB", size=1024, events=20, checksums={'cksum': 3}) testFilesetOpen.addFile(testFileA) testFilesetOpen.addFile(testFileB) testFilesetOpen.commit() testFilesetClosed1 = Fileset(name="TestFilesetClosed1", is_open=False) testFilesetClosed1.create() testFileC = File(lfn="/this/is/a/lfnC", size=1024, events=20, checksums={'cksum': 3}) testFileD = File(lfn="/this/is/a/lfnD", size=1024, events=20, checksums={'cksum': 3}) testFilesetClosed1.addFile(testFileC) testFilesetClosed1.addFile(testFileD) testFilesetClosed1.commit() testFilesetClosed2 = Fileset(name="TestFilesetClosed2", is_open=False) testFilesetClosed2.create() testFileE = File(lfn="/this/is/a/lfnE", size=1024, events=20, checksums={'cksum': 3}) testFileF = File(lfn="/this/is/a/lfnF", size=1024, events=20, checksums={'cksum': 3}) testFilesetClosed2.addFile(testFileE) testFilesetClosed2.addFile(testFileF) testFilesetClosed2.commit() testFilesetClosed3 = Fileset(name="TestFilesetClosed3", is_open=False) testFilesetClosed3.create() testFileG = File(lfn="/this/is/a/lfnG", size=1024, events=20, checksums={'cksum': 3}) testFileH = File(lfn="/this/is/a/lfnH", size=1024, events=20, checksums={'cksum': 3}) testFilesetClosed3.addFile(testFileG) testFilesetClosed3.addFile(testFileH) testFilesetClosed3.commit() testWorkflow1 = Workflow(spec="spec1.xml", owner="Steve", name="wf001", task="sometask") testWorkflow1.create() testWorkflow1.addOutput("out1", testOutputFileset1, testMergedOutputFileset1) testWorkflow2 = Workflow(spec="spec2.xml", owner="Steve", name="wf002", task="sometask") testWorkflow2.create() testWorkflow2.addOutput("out2", testOutputFileset2, testMergedOutputFileset2) testSubscription1 = Subscription(fileset=testFilesetOpen, workflow=testWorkflow1) testSubscription1.create() testSubscription1.completeFiles([testFileA, testFileB]) testSubscription2 = Subscription(fileset=testFilesetClosed1, workflow=testWorkflow1) testSubscription2.create() testJobGroup = JobGroup(subscription=testSubscription2) testJobGroup.create() testJob = Job(name="TestJob1") testJob.create(testJobGroup) testSubscription3 = Subscription(fileset=testFilesetClosed2, workflow=testWorkflow2) testSubscription3.create() testSubscription3.completeFiles([testFileE, testFileF]) testSubscription4 = Subscription(fileset=testFilesetClosed3, workflow=testWorkflow2) testSubscription4.create() testSubscription4.completeFiles([testFileG, testFileH]) myThread = threading.currentThread() daoFactory = DAOFactory(package="WMCore.WMBS", logger=myThread.logger, dbinterface=myThread.dbi) injected = daoFactory(classname="Workflow.MarkInjectedWorkflows") injected.execute(names=["wf001", "wf002"], injected=True) closableFilesetDAO = daoFactory(classname="Fileset.ListClosable") closableFilesets = closableFilesetDAO.execute() goldenFilesets = ["TestOutputFileset2"] for closableFileset in closableFilesets: newFileset = Fileset(id=closableFileset) newFileset.load() assert newFileset.name in goldenFilesets, \ "Error: Unknown closable fileset" goldenFilesets.remove(newFileset.name) assert len(goldenFilesets) == 0, \ "Error: Filesets are missing" return def testFilesetClosing4(self): """ _testFilesetClosing4_ Verify that fileset closing works correctly when a workflow completly fails out and does not produce any files. """ testOutputFileset1 = Fileset(name="TestOutputFileset1") testOutputFileset1.create() testOutputFileset2 = Fileset(name="TestOutputFileset2") testOutputFileset2.create() testOutputFileset3 = Fileset(name="TestOutputFileset3") testOutputFileset3.create() testMergedOutputFileset1 = Fileset(name="TestMergedOutputFileset1") testMergedOutputFileset1.create() testMergedOutputFileset2 = Fileset(name="TestMergedOutputFileset2") testMergedOutputFileset2.create() testMergedOutputFileset3 = Fileset(name="TestMergedOutputFileset3") testMergedOutputFileset3.create() testOutputFileset1.markOpen(False) testOutputFileset2.markOpen(True) testOutputFileset3.markOpen(True) testInputFileset = Fileset(name="TestInputFileset") testInputFileset.create() testInputFileset.markOpen(False) testWorkflow1 = Workflow(spec="spec1.xml", owner="Steve", name="wf001", task="sometask") testWorkflow1.create() testWorkflow1.addOutput("out1", testOutputFileset1, testMergedOutputFileset1) testWorkflow2 = Workflow(spec="spec2.xml", owner="Steve", name="wf002", task="sometask") testWorkflow2.create() testWorkflow2.addOutput("out2", testOutputFileset2, testMergedOutputFileset2) testWorkflow3 = Workflow(spec="spec3.xml", owner="Steve", name="wf003", task="sometask") testWorkflow3.create() testWorkflow3.addOutput("out3", testOutputFileset3, testMergedOutputFileset3) testSubscription1 = Subscription(fileset=testInputFileset, workflow=testWorkflow1) testSubscription1.create() testSubscription2 = Subscription(fileset=testOutputFileset1, workflow=testWorkflow2) testSubscription2.create() testSubscription3 = Subscription(fileset=testOutputFileset2, workflow=testWorkflow3) testSubscription3.create() myThread = threading.currentThread() daoFactory = DAOFactory(package="WMCore.WMBS", logger=myThread.logger, dbinterface=myThread.dbi) injected = daoFactory(classname="Workflow.MarkInjectedWorkflows") injected.execute(names=["wf001", "wf002", "wf003"], injected=True) closableFilesetDAO = daoFactory(classname="Fileset.ListClosable") closableFilesets = closableFilesetDAO.execute() assert len(closableFilesets) == 1, \ "Error: Wrong number of closable filesets" assert closableFilesets[0] == testOutputFileset2.id, \ "Error: Wrong fileset is marked as closable." return def testFilesetClosing5(self): """ _testFilesetClosing5_ Verify that fileset closing works in the case where one cleanup subscription is used to cleanup files from all the other merge subscriptions in the request. """ inputFileset = Fileset(name="InputFileset") inputFileset.create() inputFileset.markOpen(False) cleanupFileset = Fileset(name="CleanupFileset") cleanupFileset.create() cleanupFileset.markOpen(True) testOutputFileset1 = Fileset(name="TestOutputFileset1") testOutputFileset1.create() testOutputFileset1.markOpen(True) testOutputFileset2 = Fileset(name="TestOutputFileset2") testOutputFileset2.create() testOutputFileset2.markOpen(True) testOutputFileset3 = Fileset(name="TestOutputFileset3") testOutputFileset3.create() testOutputFileset3.markOpen(True) cleanupWorkflow = Workflow(spec="spec1.xml", owner="Steve", name="wf001", task="cleanup") cleanupWorkflow.create() testWorkflow1 = Workflow(spec="spec1.xml", owner="Steve", name="wf001", task="sometask1") testWorkflow1.create() testWorkflow1.addOutput("out1", testOutputFileset1) testWorkflow1.addOutput("out1", cleanupFileset) testWorkflow2 = Workflow(spec="spec1.xml", owner="Steve", name="wf001", task="sometask2") testWorkflow2.create() testWorkflow2.addOutput("out1", testOutputFileset2) testWorkflow2.addOutput("out1", cleanupFileset) testWorkflow3 = Workflow(spec="spec1.xml", owner="Steve", name="wf001", task="sometask3") testWorkflow3.create() testWorkflow3.addOutput("out1", testOutputFileset3) testWorkflow3.addOutput("out1", cleanupFileset) cleanupSubscription = Subscription(fileset=cleanupFileset, workflow=cleanupWorkflow) cleanupSubscription.create() testSubscription1 = Subscription(fileset=inputFileset, workflow=testWorkflow1) testSubscription1.create() testSubscription2 = Subscription(fileset=testOutputFileset1, workflow=testWorkflow2) testSubscription2.create() testSubscription3 = Subscription(fileset=testOutputFileset2, workflow=testWorkflow3) testSubscription3.create() testFileA = File(lfn="/this/is/a/lfnA", size=1024, events=20, checksums={'cksum': 3}, locations=set(["T2_CH_CERN"])) testFileA.addRun(Run(1, *[45])) testFileA.create() inputFileset.addFile(testFileA) inputFileset.commit() testJobGroupA = JobGroup(subscription=testSubscription1) testJobGroupA.create() testJobA = Job(name="TestJobA", files=[testFileA]) testJobA.create(testJobGroupA) testJobA["state"] = "executing" myThread = threading.currentThread() daoFactory = DAOFactory(package="WMCore.WMBS", logger=myThread.logger, dbinterface=myThread.dbi) injected = daoFactory(classname="Workflow.MarkInjectedWorkflows") injected.execute(names=["wf001"], injected=True) changeStateDAO = daoFactory(classname="Jobs.ChangeState") changeStateDAO.execute(jobs=[testJobA]) closableFilesetDAO = daoFactory(classname="Fileset.ListClosable") closableFilesets = closableFilesetDAO.execute() self.assertEqual(len(closableFilesets), 0, "Error: There should be no closable filesets.") testSubscription1.completeFiles(testFileA) testJobA["state"] = "cleanout" changeStateDAO.execute(jobs=[testJobA]) testFileB = File(lfn="/this/is/a/lfnB", size=1024, events=20, checksums={'cksum': 3}, locations=set(["T2_CH_CERN"])) testFileB.addRun(Run(1, *[45])) testFileB.create() testOutputFileset1.addFile(testFileB) testOutputFileset1.commit() cleanupFileset.addFile(testFileB) cleanupFileset.commit()
load balancers must use ipv4 . :rtype: dict :return: { 'LoadBalancers': [ { 'LoadBalancerArn': 'string', 'DNSName': 'string', 'CanonicalHostedZoneId': 'string', 'CreatedTime': datetime(2015, 1, 1), 'LoadBalancerName': 'string', 'Scheme': 'internet-facing'|'internal', 'VpcId': 'string', 'State': { 'Code': 'active'|'provisioning'|'failed', 'Reason': 'string' }, 'Type': 'application', 'AvailabilityZones': [ { 'ZoneName': 'string', 'SubnetId': 'string' }, ], 'SecurityGroups': [ 'string', ], 'IpAddressType': 'ipv4'|'dualstack' }, ] } :returns: (string) -- """ pass def create_rule(ListenerArn=None, Conditions=None, Priority=None, Actions=None): """ Creates a rule for the specified listener. Each rule can have one action and one condition. Rules are evaluated in priority order, from the lowest value to the highest value. When the condition for a rule is met, the specified action is taken. If no conditions are met, the default action for the default rule is taken. For more information, see Listener Rules in the Application Load Balancers Guide . To view your current rules, use DescribeRules . To update a rule, use ModifyRule . To set the priorities of your rules, use SetRulePriorities . To delete a rule, use DeleteRule . See also: AWS API Documentation Examples This example creates a rule that forwards requests to the specified target group if the URL contains the specified pattern (for example, /img/*). Expected Output: :example: response = client.create_rule( ListenerArn='string', Conditions=[ { 'Field': 'string', 'Values': [ 'string', ] }, ], Priority=123, Actions=[ { 'Type': 'forward', 'TargetGroupArn': 'string' }, ] ) :type ListenerArn: string :param ListenerArn: [REQUIRED] The Amazon Resource Name (ARN) of the listener. :type Conditions: list :param Conditions: [REQUIRED] A condition. Each condition specifies a field name and a single value. If the field name is host-header , you can specify a single host name (for example, my.example.com). A host name is case insensitive, can be up to 128 characters in length, and can contain any of the following characters. Note that you can include up to three wildcard characters. A-Z, a-z, 0-9 . (matches 0 or more characters) ? (matches exactly 1 character) If the field name is path-pattern , you can specify a single path pattern. A path pattern is case sensitive, can be up to 128 characters in length, and can contain any of the following characters. Note that you can include up to three wildcard characters. A-Z, a-z, 0-9 _ - . $ / ~ ' ' @ : + (using amp;) (matches 0 or more characters) ? (matches exactly 1 character) (dict) --Information about a condition for a rule. Field (string) --The name of the field. The possible values are host-header and path-pattern . Values (list) --The condition value. If the field name is host-header , you can specify a single host name (for example, my.example.com). A host name is case insensitive, can be up to 128 characters in length, and can contain any of the following characters. Note that you can include up to three wildcard characters. A-Z, a-z, 0-9 . (matches 0 or more characters) ? (matches exactly 1 character) If the field name is path-pattern , you can specify a single path pattern (for example, /img/*). A path pattern is case sensitive, can be up to 128 characters in length, and can contain any of the following characters. Note that you can include up to three wildcard characters. A-Z, a-z, 0-9 _ - . $ / ~ ' ' @ : + (using amp;) (matches 0 or more characters) ? (matches exactly 1 character) (string) -- :type Priority: integer :param Priority: [REQUIRED] The priority for the rule. A listener can't have multiple rules with the same priority. :type Actions: list :param Actions: [REQUIRED] An action. Each action has the type forward and specifies a target group. (dict) --Information about an action. Type (string) -- [REQUIRED]The type of action. TargetGroupArn (string) -- [REQUIRED]The Amazon Resource Name (ARN) of the target group. :rtype: dict :return: { 'Rules': [ { 'RuleArn': 'string', 'Priority': 'string', 'Conditions': [ { 'Field': 'string', 'Values': [ 'string', ] }, ], 'Actions': [ { 'Type': 'forward', 'TargetGroupArn': 'string' }, ], 'IsDefault': True|False }, ] } :returns: A-Z, a-z, 0-9 . (matches 0 or more characters) ? (matches exactly 1 character) """ pass def create_target_group(Name=None, Protocol=None, Port=None, VpcId=None, HealthCheckProtocol=None, HealthCheckPort=None, HealthCheckPath=None, HealthCheckIntervalSeconds=None, HealthCheckTimeoutSeconds=None, HealthyThresholdCount=None, UnhealthyThresholdCount=None, Matcher=None): """ Creates a target group. To register targets with the target group, use RegisterTargets . To update the health check settings for the target group, use ModifyTargetGroup . To monitor the health of targets in the target group, use DescribeTargetHealth . To route traffic to the targets in a target group, specify the target group in an action using CreateListener or CreateRule . To delete a target group, use DeleteTargetGroup . For more information, see Target Groups for Your Application Load Balancers in the Application Load Balancers Guide . See also: AWS API Documentation Examples This example creates a target group that you can use to route traffic to targets using HTTP on port 80. This target group uses the default health check configuration. Expected Output: :example: response = client.create_target_group( Name='string', Protocol='HTTP'|'HTTPS', Port=123, VpcId='string', HealthCheckProtocol='HTTP'|'HTTPS', HealthCheckPort='string', HealthCheckPath='string', HealthCheckIntervalSeconds=123, HealthCheckTimeoutSeconds=123, HealthyThresholdCount=123, UnhealthyThresholdCount=123, Matcher={ 'HttpCode': 'string' } ) :type Name: string :param Name: [REQUIRED] The name of the target group. This name must be unique per region per account, can have a maximum of 32 characters, must contain only alphanumeric characters or hyphens, and must not begin or end with a hyphen. :type Protocol: string :param Protocol: [REQUIRED] The protocol to use for routing traffic to the targets. :type Port: integer :param Port: [REQUIRED] The port on which the targets receive traffic. This port is used unless you specify a port override when registering the target. :type VpcId: string :param VpcId: [REQUIRED] The identifier of the virtual private cloud (VPC). :type HealthCheckProtocol: string :param HealthCheckProtocol: The protocol the load balancer uses when performing health checks on targets. The default is the HTTP protocol. :type HealthCheckPort: string :param HealthCheckPort: The port the load balancer uses when performing health checks on targets. The default is traffic-port , which indicates the port on which each target receives traffic from the load balancer. :type HealthCheckPath: string :param HealthCheckPath: The ping path that is the destination on the targets for health checks. The default is /. :type HealthCheckIntervalSeconds: integer :param HealthCheckIntervalSeconds: The approximate amount of time, in seconds, between health checks of an individual target. The default is 30 seconds. :type HealthCheckTimeoutSeconds: integer :param HealthCheckTimeoutSeconds: The amount of time, in seconds, during which no response from a target means a failed health check. The default is 5 seconds. :type HealthyThresholdCount: integer :param HealthyThresholdCount: The number of consecutive health checks successes required before considering an unhealthy target healthy. The default is 5. :type UnhealthyThresholdCount: integer :param UnhealthyThresholdCount: The number of consecutive health check failures required before considering a target unhealthy. The default is 2. :type Matcher: dict :param Matcher: The HTTP codes to use when checking for a successful response from a target. The default is 200. HttpCode (string) -- [REQUIRED]The HTTP codes. You can specify values between 200 and 499. The default value is 200. You can specify multiple values (for example, '200,202') or a range of values (for example, '200-299'). :rtype: dict :return: { 'TargetGroups': [ { 'TargetGroupArn': 'string', 'TargetGroupName': 'string', 'Protocol': 'HTTP'|'HTTPS', 'Port': 123, 'VpcId': 'string', 'HealthCheckProtocol': 'HTTP'|'HTTPS', 'HealthCheckPort': 'string', 'HealthCheckIntervalSeconds': 123, 'HealthCheckTimeoutSeconds': 123, 'HealthyThresholdCount': 123, 'UnhealthyThresholdCount': 123, 'HealthCheckPath': 'string', 'Matcher': { 'HttpCode': 'string' }, 'LoadBalancerArns': [ 'string', ] }, ] } :returns: (string) -- """ pass def delete_listener(ListenerArn=None): """ Deletes the specified listener. Alternatively, your listener is deleted when you delete the load balancer it is attached to using DeleteLoadBalancer
<reponame>PennyHow/PyTrx<filename>DEM.py #PyTrx (c) by <NAME>, <NAME>, <NAME> # #PyTrx is licensed under a MIT License. # #You should have received a copy of the license along with this #work. If not, see <https://choosealicense.com/licenses/mit/>. """ The DEM module contains functionality for handling DEM data and implementing this data into the :class:`PyTrx.CamEnv.CamEnv` object class. """ #Import packages import numpy as np import scipy.io as sio import gdal import math from scipy import interpolate from gdalconst import GA_ReadOnly import struct from scipy.interpolate import RectBivariateSpline #------------------------------------------------------------------------------ class ExplicitRaster(object): """A class to represent a numeric Raster with explicit XY cell referencing in each grid cell. :param X: X data :type X: arr :param Y: Y data :type Y: arr :param Z: Z data :type Z: arr :param nodata: Condition for NaN data values, default to 'nan' :type nodata: int, optional """ #Basic constuctor method def __init__(self, X, Y, Z, nodata=float('nan')): '''Explicit Raster initialisation.''' #Check XYZ data is all the same size if not (X.shape==Y.shape and X.shape==Z.shape): print('Raster data and/or co-ordinate arrays are differently sized') print('X-shape ' + str(X.shape)) print('Y-shape ' + str(Y.shape)) print('Z-shape ' + str(Z.shape)) return #Define class atrributes self._data=np.array([X,Y,Z]) self._nodata=nodata self._extents=[X[0][0]-0.5*(X[0][1]-X[0][0]),X[-1][-1]+0.5*(X[-1][-1]- X[-1][-2]),Y[0][0]-0.5*(Y[1][0]-Y[0][0]),Y[-1][-1]+0.5* (Y[-1][-1]-Y[-2][-1])] def getData(self,dim=None): """Return DEM data. XYZ dimensions can be individually called with the dim input variable (integer: 0, 1, or 2). :param dim: Dimension to retrieve (0, 1, or 2), default to None :type dim: int :returns: DEM dimension as array :rtype: arr """ #Return all DEM data if no dimension is specified if dim==None: return self._data #Return specific DEM dimension elif (dim==0 or dim==1 or dim==2): return self._data[dim] #Return None if no DEM data present else: return None def getZ(self): """Return height (Z) data of DEM. :returns: DEM Z values :rtype: arr """ return self.getData(2) def getZcoord(self, x, y): """Return height (Z) at a given XY coordinate in DEM. :param x: X coordinate :type x: int :param y: Y coordinate :type y: int :returns: DEM Z value for given coordinate :rtype: int """ rowcoords = self.getData(0)[0,:] colcoords = self.getData(1)[:,0] demz = self.getZ() xcoord = (np.abs(rowcoords-x)).argmin() ycoord = (np.abs(colcoords-y)).argmin() return demz[ycoord,xcoord] def getShape(self): """Return the shape of the DEM data array. :returns: DEM shape :rtype: arr """ return self._data[0].shape def getRows(self): """Return the number of rows in the DEM data array. :returns: DEM row count :rtype: int """ return self._data[0].shape[0] def getCols(self): """Return the number of columns in the DEM data array. :returns: DEM column count :rtype: int """ return self._data[0].shape[1] def getNoData(self): """Return fill value for no data in DEM array. :returns: DEM nan fill value :rtype: int """ return self._nodata def getExtent(self): """Return DEM extent. :returns: DEM extent :rtype: list """ return self._extents def subset(self,cmin,cmax,rmin,rmax): """Return a specified subset of the DEM array. :param cmin: Column minimum extent :type cmin: int :param cmax: Column maximum extent :type cmax: int :param rmin: Row minimum extent :type rmin: int :param rmax: Row maximum extent :type rmax: int :returns: Subset of DEM :rtype: :class:`PyTrx.DEM.ExplicitRaster` """ #Find minimum extent value cmin=int(max(0,cmin)) rmin=int(max(0,rmin)) #Find maximum extent value cmax=int(min(self._data[0].shape[1],cmax)) rmax=int(min(self._data[0].shape[0],rmax)) #Extract XYZ subset X=self._data[0][rmin:rmax,cmin:cmax] Y=self._data[1][rmin:rmax,cmin:cmax] Z=self._data[2][rmin:rmax,cmin:cmax] #Construct new XYZ array return ExplicitRaster(X,Y,Z) def densify(self, densefac=2): """Function to densify the DEM array by a given densification factor. The array is multiplied by the given densification factor and then subsequently values are interpolated using the SciPy function RectBivariateSpline. The densification factor is set to 2 by default, meaning that the size of the DEM array is doubled. :param densefac: Densification factor :type densefac: int :returns: Densified DEM :rtype: :class:`PyTrx.DEM.ExplicitRaster` """ #Get XYZ dem data x=self._data[0,0,:] y=self._data[1,:,0] z=np.transpose(self._data[2]) #Multipy size of xy arrays by the densification factor nx=((x.size-1)*densefac)+1 ny=((y.size-1)*densefac)+1 #Define new array data spacing xd = np.linspace(x[0], x[-1], nx) yd = np.linspace(y[0], y[-1], ny) #Create mesh grid yv,xv = np.meshgrid(yd,xd) #Interpolate f=RectBivariateSpline(x, y, z, bbox=[None, None, None, None], kx=1, ky=1, s=0) #Create empty array for Z data zv=np.zeros((nx,ny)) #Reshape XYZ arrays xv=np.reshape(xv,(nx*ny)) yv=np.reshape(yv,(nx*ny)) zv=np.reshape(zv,(nx*ny)) #Populate empty Z array for i in range(xv.size): zv[i]=f(xv[i],yv[i]) #Transpose arrays for compatibility xv=np.transpose(np.reshape(xv,(nx,ny))) yv=np.transpose(np.reshape(yv,(nx,ny))) zv=np.transpose(np.reshape(zv,(nx,ny))) #Construct new XYZ array return ExplicitRaster(xv,yv,zv) def reportDEM(self): """Self reporter for DEM class object. Returns the number of rows and columns in the array, how NaN values in the array are filled, and the data extent coordinates. """ print('\nDEM object reporting:\n') print('Data has ' + str(self.getRows()) + ' rows by ' + str(self.getCols()) + ' columns') print('No data item is: ' + str(self.getNoData())) print('Data Extent Coordinates are [xmin,xmax,ymin,ymax]: ' + str(self.getExtent())) def load_DEM(demfile): """Function for loading DEM data from different file types, which is automatically detected. Recognised file types: .mat and .tif. :param demfile: DEM filepath :type demfile: str :returns: A DEM object :rtype: :class:`PyTrx.DEM.ExplicitRaster` """ #Determine file type based on filename suffix suffix=demfile.split('.')[-1].upper() #MAT file import if detected if suffix==("MAT"): return DEM_FromMat(demfile) #TIF file import if detected elif suffix==("TIF") or suffix==("TIFF"): return DEM_FromTiff(demfile) #No DEM data passed if file type is not recognised else: print('DEM format (suffix) not supported') print('DEM file: ' + str(demfile) + ' not read') return None def DEM_FromMat(matfile): """Function for loading a DEM array from a Matlab (.mat) file containing separate X, Y, Z matrices. :param matfile: DEM .mat filepath :type matfile: str :returns: A DEM object :rtype: :class:`PyTrx.DEM.ExplicitRaster` """ #Load Matlab file and XYZ matrices as arrays mat = sio.loadmat(matfile) X=np.ascontiguousarray(mat['X']) Y=np.ascontiguousarray(mat['Y']) Z=np.ascontiguousarray(mat['Z']) #Flip array if not compatible if Y[0][0]>Y[-1][0]: print('\nFlipping input DEM') X = np.flipud(X) Y = np.flipud(Y) Z = np.flipud(Z) #Construct DEM array dem=ExplicitRaster(X,Y,Z) return dem def DEM_FromTiff(tiffFile): """Function for loading a DEM array from a .tiff file containing raster-formatted data. The tiff data importing is handled by GDAL. :param tiffFile: DEM .tif filepath :type tiffFile: str :returns: A DEM object :rtype: :class:`PyTrx.DEM.ExplicitRaster` """ #Open tiff file with GDAL dataset = gdal.Open(tiffFile, GA_ReadOnly) #Define columns and rows in raster cols = dataset.RasterXSize rows = dataset.RasterYSize #Transform raster and define origins for populating geotransform = dataset.GetGeoTransform() originX = geotransform[0] originY = geotransform[3] pixelWidth = geotransform[1] pixelHeight = geotransform[5] #Get Z data from raster band = dataset.GetRasterBand(1) scanline = band.ReadRaster( 0, 0, band.XSize, band.YSize,band.XSize, band.YSize, band.DataType) value = struct.unpack('f' * band.XSize *band.YSize, scanline) Z=np.array(value).reshape(rows,cols) #Create empty arrays for XY data X=np.zeros((rows,cols)) Y=np.zeros((rows,cols)) #Populate empty arrays from origins originX=originX+(pixelWidth*0.5) originY=originY+(pixelWidth*0.5) for i in range(rows): for j in range(cols): X[i,j]=(j*pixelWidth)+originX Y[i,j]=(i*pixelHeight)+originY #Flip array if not compatible if Y[0,0]>Y[-1,0]: X=np.flipud(X) Y=np.flipud(Y) Z=np.flipud(Z) #Construct DEM array dem=ExplicitRaster(X,Y,Z) return dem def voxelviewshed(dem, viewpoint): """Calculate a viewshed over a DEM from a given viewpoint in the DEM scene. This function is based on the viewshed function (voxelviewshed.m) available in ImGRAFT. The ImGRAFT voxelviewshed.m script is available at: http://github.com/grinsted/ImGRAFT/blob/master/voxelviewshed.m :param dem: A DEM object :type dem: :class:`PyTrx.DEM.ExplicitRaster` :param viewpoint: 3-element vector specifying the viewpoint :type viewpoint: list :returns: Boolean visibility matrix (which is the same size as dem) :rtype: arr """ #Get XYZ arrays X=dem.getData(0) Y=dem.getData(1) Z=dem.getData(2) #Get array shape sz=Z.shape #Get grid spacing dx=abs(X[1,1]-X[0,0]) dy=abs(Y[1,1]-Y[0,0]) #Linearise the grid X=np.reshape(X,X.shape[0]*X.shape[1],order='F') Y=np.reshape(Y,Y.shape[0]*Y.shape[1],order='F') Z=np.reshape(Z,Z.shape[0]*Z.shape[1],order='F') #Define viewpoint in DEM grid space X=(X-viewpoint[0])/dx Y=(Y-viewpoint[1])/dy Z=Z-viewpoint[2] #Create empty array d=np.zeros(len(X)) #Populate array for i in range(len(X)): if (np.isnan(X[i]) or np.isnan(Y[i]) or np.isnan(Z[i])): d[i]=float('NaN') else: d[i]=np.sqrt(X[i]*X[i]+Y[i]*Y[i]+Z[i]*Z[i]) #Pythagoras' theorem #ImGRAFT/Matlab equiv: x=atan2(Y,X)+math.pi)/(math.pi*2); (MAT) dint=np.round(np.sqrt(X*X+Y*Y)) #Create empty array x=np.empty(X.shape[0]) #Populate array for i in range(X.shape[0]): x[i]=(math.atan2(Y[i],X[i])+math.pi)/(math.pi*2) y=Z/d #Round values and sort array #ImGRAFT/Matlab equiv: [~,ix]=sortrows([round(sqrt(X.^2+Y.^2)) x]); (MAT) ix=np.lexsort((x,dint)).tolist() #Return a boolean of all array values that are not zero #ImGRAFT/Matlab equiv: loopix=find(diff(x(ix))<0); (MAT) loopix=np.nonzero(np.diff(x[ix])<0)[0] #Create boolean array of 1's
import sys import time import tensorflow as tf import numpy as np from data_utils import SeqBatcher, Batcher from cnn import CNN from bilstm import BiLSTM from bilstm_char import BiLSTMChar from cnn_char import CNNChar import eval_f1 as evaluation import json import tf_utils from os import listdir import os import logging from utils import make_sure_path_exists FLAGS = tf.app.flags.FLAGS def main(argv): print("CUDA_VISIBLE_DEVICES=", os.environ.get('CUDA_VISIBLE_DEVICES', 0)) train_dir = FLAGS.train_dir dev_dir = FLAGS.dev_dir maps_dir = FLAGS.maps_dir logger = init_logger() logger.info(' '.join(sys.argv) + '\n') if FLAGS.evaluate_only: if FLAGS.load_dir == '': FLAGS.load_dir = FLAGS.model_dir if FLAGS.load_dir == '': logger.error('Must supply load_dir in evaluation mode') sys.exit(1) if train_dir == '': logger.error('Must supply input data directory generated from tsv_to_tfrecords.py') sys.exit(1) logger.info('\n'.join(sorted(["%s : %s" % (str(k), str(v)) for k, v in FLAGS.__dict__['__flags'].items()]))) with open(maps_dir + '/label.txt', 'r') as f: labels_str_id_map = {l.split('\t')[0]: int(l.split('\t')[1].strip()) for l in f.readlines()} labels_id_str_map = {i: s for s, i in labels_str_id_map.items()} labels_size = len(labels_id_str_map) with open(maps_dir + '/token.txt', 'r') as f: vocab_str_id_map = {l.split('\t')[0]: int(l.split('\t')[1].strip()) for l in f.readlines()} vocab_id_str_map = {i: s for s, i in vocab_str_id_map.items()} vocab_size = len(vocab_id_str_map) with open(maps_dir + '/shape.txt', 'r') as f: shape_str_id_map = {l.split('\t')[0]: int(l.split('\t')[1].strip()) for l in f.readlines()} shape_id_str_map = {i: s for s, i in shape_str_id_map.items()} shape_domain_size = len(shape_id_str_map) with open(maps_dir + '/char.txt', 'r') as f: char_str_id_map = {l.split('\t')[0]: int(l.split('\t')[1].strip()) for l in f.readlines()} char_id_str_map = {i: s for s, i in char_str_id_map.items()} char_domain_size = len(char_id_str_map) # with open(maps_dir + '/sizes.txt', 'r') as f: # num_train_examples = int(f.readline()[:-1]) logger.info("num classes: %d" % labels_size) size_files = [maps_dir + "/" + fname for fname in listdir(maps_dir) if fname.find("sizes") != -1] num_train_examples = 0 num_tokens = 0 for size_file in size_files: logger.info(size_file) with open(size_file, 'r') as f: num_train_examples += int(f.readline()[:-1]) num_tokens += int(f.readline()[:-1]) logger.info("num train examples: %d" % num_train_examples) logger.info("num train tokens: %d" % num_tokens) dev_top_dir = '/'.join(dev_dir.split("/")[:-2]) if dev_dir.find("*") != -1 else dev_dir logger.info(dev_top_dir) dev_size_files = [dev_top_dir + "/" + fname for fname in listdir(dev_top_dir) if fname.find("sizes") != -1] num_dev_examples = 0 num_dev_tokens = 0 for size_file in dev_size_files: logger.info(size_file) with open(size_file, 'r') as f: num_dev_examples += int(f.readline()[:-1]) num_dev_tokens += int(f.readline()[:-1]) logger.info("num dev examples: %d" % num_dev_examples) logger.info("num dev tokens: %d" % num_dev_tokens) # with open(dev_dir + '/sizes.txt', 'r') as f: # num_dev_examples = int(f.readline()[:-1]) type_set = {} type_int_int_map = {} outside_set = ["O", "<PAD>", "<S>", "</S>", "<ZERO>"] for label, id in labels_str_id_map.items(): label_type = label if label in outside_set else label[2:] if label_type not in type_set: type_set[label_type] = len(type_set) type_int_int_map[id] = type_set[label_type] logger.info(type_set) # All NER types # load embeddings, if given; initialize in range [-.01, .01] embeddings_shape = (vocab_size - 1, FLAGS.embed_dim) embeddings = tf_utils.embedding_values(embeddings_shape, old=False) used_words = set() if FLAGS.embeddings != '': with open(FLAGS.embeddings, 'r') as f: for line in f.readlines(): split_line = line.strip().split(" ") if len(split_line) != FLAGS.embed_dim + 1: continue word = split_line[0] embedding = split_line[1:] if word in vocab_str_id_map: used_words.add(word) # shift by -1 because we are going to add a 0 constant vector for the padding later embeddings[vocab_str_id_map[word] - 1] = list(map(float, embedding)) embeddings_used = len(used_words) logger.info("Loaded %d/%d embeddings (%2.2f%% coverage)" % ( embeddings_used, vocab_size, embeddings_used / vocab_size * 100)) layers_map = sorted(json.loads(FLAGS.layers.replace("'", '"')).items()) if FLAGS.model == 'cnn' else None pad_width = int(layers_map[0][1]['width'] / 2) if layers_map is not None else 1 with tf.Graph().as_default(): train_batcher = Batcher(train_dir, FLAGS.batch_size) if FLAGS.memmap_train else SeqBatcher(train_dir, FLAGS.batch_size) dev_batch_size = FLAGS.batch_size # num_dev_examples dev_batcher = SeqBatcher(dev_dir, dev_batch_size, num_buckets=0, num_epochs=1) if FLAGS.ontonotes: domain_dev_batchers = {domain: SeqBatcher(dev_dir.replace('*', domain), dev_batch_size, num_buckets=0, num_epochs=1) for domain in ['bc', 'nw', 'bn', 'wb', 'mz', 'tc']} train_eval_batch_size = FLAGS.batch_size train_eval_batcher = SeqBatcher(train_dir, train_eval_batch_size, num_buckets=0, num_epochs=1) char_embedding_model = BiLSTMChar(char_domain_size, FLAGS.char_dim, int(FLAGS.char_tok_dim / 2)) \ if FLAGS.char_dim > 0 and FLAGS.char_model == "lstm" else \ (CNNChar(char_domain_size, FLAGS.char_dim, FLAGS.char_tok_dim, layers_map[0][1]['width']) if FLAGS.char_dim > 0 and FLAGS.char_model == "cnn" else None) char_embeddings = char_embedding_model.outputs if char_embedding_model is not None else None if FLAGS.model == 'cnn': model = CNN( num_classes=labels_size, vocab_size=vocab_size, shape_domain_size=shape_domain_size, char_domain_size=char_domain_size, char_size=FLAGS.char_tok_dim, embedding_size=FLAGS.embed_dim, shape_size=FLAGS.shape_dim, nonlinearity=FLAGS.nonlinearity, layers_map=layers_map, viterbi=FLAGS.viterbi, projection=FLAGS.projection, loss=FLAGS.loss, margin=FLAGS.margin, repeats=FLAGS.block_repeats, share_repeats=FLAGS.share_repeats, char_embeddings=char_embeddings, embeddings=embeddings) elif FLAGS.model == "bilstm": model = BiLSTM( num_classes=labels_size, vocab_size=vocab_size, shape_domain_size=shape_domain_size, char_domain_size=char_domain_size, char_size=FLAGS.char_dim, embedding_size=FLAGS.embed_dim, shape_size=FLAGS.shape_dim, nonlinearity=FLAGS.nonlinearity, viterbi=FLAGS.viterbi, hidden_dim=FLAGS.lstm_dim, char_embeddings=char_embeddings, embeddings=embeddings) else: logger.info(FLAGS.model + ' is not a valid model type') sys.exit(1) # Define Training procedure global_step = tf.Variable(0, name='global_step', trainable=False) optimizer = tf.train.AdamOptimizer(learning_rate=model.lr, beta1=FLAGS.beta1, beta2=FLAGS.beta2, epsilon=FLAGS.epsilon, name="optimizer") model_vars = tf.global_variables() logger.info("model vars: %d" % len(model_vars)) logger.info(map(lambda v: v.name, model_vars)) # todo put in func total_parameters = 0 for variable in tf.trainable_variables(): # shape is an array of tf.Dimension shape = variable.get_shape() variable_parametes = 1 for dim in shape: variable_parametes *= dim.value total_parameters += variable_parametes logger.info("Total trainable parameters: %d" % (total_parameters)) if FLAGS.clip_norm > 0: grads, _ = tf.clip_by_global_norm(tf.gradients(model.loss, model_vars), FLAGS.clip_norm) train_op = optimizer.apply_gradients(zip(grads, model_vars), global_step=global_step) else: train_op = optimizer.minimize(model.loss, global_step=global_step, var_list=model_vars) tf.global_variables_initializer() opt_vars = [optimizer.get_slot(s, n) for n in optimizer.get_slot_names() for s in model_vars if optimizer.get_slot(s, n) is not None] model_vars += opt_vars if FLAGS.load_dir: reader = tf.train.NewCheckpointReader(FLAGS.load_dir + "/model.tf") saved_var_map = reader.get_variable_to_shape_map() intersect_vars = [k for k in tf.global_variables() if k.name.split(':')[0] in saved_var_map and k.get_shape() == saved_var_map[ k.name.split(':')[0]]] leftovers = [k for k in tf.global_variables() if k.name.split(':')[0] not in saved_var_map or k.get_shape() != saved_var_map[ k.name.split(':')[0]]] logger.warning("WARNING: Loading pretrained model, but not loading: " + ' '.join( list(map(lambda v: v.name, leftovers)))) loader = tf.train.Saver(var_list=intersect_vars) else: loader = tf.train.Saver(var_list=model_vars) saver = tf.train.Saver(var_list=model_vars) sv = tf.train.Supervisor(logdir=FLAGS.model_dir if FLAGS.model_dir != '' else None, global_step=global_step, saver=None, save_model_secs=0, save_summaries_secs=0) training_start_time = time.time() with sv.managed_session(FLAGS.master, config=tf.ConfigProto(allow_soft_placement=True)) as sess: def run_evaluation(eval_batches, output=None, extra_text=""): predictions = [] for b, (eval_label_batch, eval_token_batch, eval_shape_batch, eval_char_batch, eval_seq_len_batch, eval_tok_len_batch, eval_mask_batch) in enumerate(eval_batches): batch_size, batch_seq_len = eval_token_batch.shape char_lens = np.sum(eval_tok_len_batch, axis=1) max_char_len = np.max(eval_tok_len_batch) eval_padded_char_batch = np.zeros((batch_size, max_char_len * batch_seq_len)) for b in range(batch_size): char_indices = [item for sublist in [range(i * max_char_len, i * max_char_len + d) for i, d in enumerate(eval_tok_len_batch[b])] for item in sublist] eval_padded_char_batch[b, char_indices] = eval_char_batch[b][:char_lens[b]] char_embedding_feeds = {} if FLAGS.char_dim == 0 else { char_embedding_model.input_chars: eval_padded_char_batch, char_embedding_model.batch_size: batch_size, char_embedding_model.max_seq_len: batch_seq_len, char_embedding_model.token_lengths: eval_tok_len_batch, char_embedding_model.max_tok_len: max_char_len } basic_feeds = { model.input_x1: eval_token_batch, model.input_x2: eval_shape_batch, model.input_y: eval_label_batch, model.input_mask: eval_mask_batch, model.max_seq_len: batch_seq_len, model.batch_size: batch_size, model.sequence_lengths: eval_seq_len_batch } basic_feeds.update(char_embedding_feeds) total_feeds = basic_feeds.copy() if FLAGS.viterbi: preds, transition_params = sess.run([model.predictions, model.transition_params], feed_dict=total_feeds) viterbi_repad = np.empty((batch_size, batch_seq_len)) for batch_idx, (unary_scores, sequence_lens) in enumerate(zip(preds, eval_seq_len_batch)): viterbi_sequence, _ = tf.contrib.crf.viterbi_decode(unary_scores, transition_params) viterbi_repad[batch_idx] = viterbi_sequence predictions.append(viterbi_repad) else: preds, scores = sess.run([model.predictions, model.unflat_scores], feed_dict=total_feeds) predictions.append(preds) if output is not None: evaluation.output_predicted_to_file( (FLAGS.model_dir if FLAGS.model_dir != '' else FLAGS.load_dir) + "/" + output + ".txt", eval_batches, predictions, labels_id_str_map, vocab_id_str_map, pad_width) # print evaluation precision, recall, f1_micro = evaluation.segment_eval(eval_batches, predictions, labels_id_str_map, vocab_id_str_map, pad_width=pad_width, start_end=FLAGS.start_end, logger=logger, extra_text="Segment evaluation %s:" % extra_text) return f1_micro, precision threads = tf.train.start_queue_runners(sess=sess) log_every = int(max(100, num_train_examples / 5)) if FLAGS.load_dir != '': logger.info("Deserializing model: " + FLAGS.load_dir + "/model.tf") loader.restore(sess, FLAGS.load_dir + "/model.tf") def get_dev_batches(seq_batcher): batches = [] # load all the dev batches into memory done = False while not done: try: dev_batch = sess.run(seq_batcher.next_batch_op) dev_label_batch, dev_token_batch, dev_shape_batch, dev_char_batch, dev_seq_len_batch, dev_tok_len_batch = dev_batch mask_batch = np.zeros(dev_token_batch.shape) actual_seq_lens = np.add(np.sum(dev_seq_len_batch, axis=1), (2 if FLAGS.start_end else 1) * pad_width * ( (dev_seq_len_batch != 0).sum(axis=1) + ( 0 if FLAGS.start_end else 1))) for i, seq_len in enumerate(actual_seq_lens): mask_batch[i, :seq_len] = 1 batches.append((dev_label_batch, dev_token_batch, dev_shape_batch, dev_char_batch, dev_seq_len_batch, dev_tok_len_batch, mask_batch)) except: done = True return batches dev_batches = get_dev_batches(dev_batcher) train_batches = [] if FLAGS.train_eval: # load all the train batches into memory done = False while not done: try: train_batch = sess.run(train_eval_batcher.next_batch_op) train_label_batch, train_token_batch, train_shape_batch, train_char_batch, train_seq_len_batch, train_tok_len_batch = train_batch mask_batch = np.zeros(train_token_batch.shape) actual_seq_lens = np.add(np.sum(train_seq_len_batch, axis=1), (2 if FLAGS.start_end else 1) * pad_width * ( (train_seq_len_batch != 0).sum(axis=1) + ( 0 if FLAGS.start_end else 1))) for i, seq_len in enumerate(actual_seq_lens): mask_batch[i, :seq_len] = 1 train_batches.append((train_label_batch, train_token_batch, train_shape_batch, train_char_batch, train_seq_len_batch, train_tok_len_batch, mask_batch)) except Exception as e: done = True if FLAGS.memmap_train: train_batcher.load_and_bucket_data(sess) def train(max_epochs, best_score, model_hidden_drop, model_input_drop, until_convergence, max_lower=6, min_iters=20): logger.info("Training on %d sentences (%d examples)" % (num_train_examples, num_train_examples)) start_time = time.time() train_batcher._step = 1.0 converged = False examples = 0 log_every_running = log_every epoch_loss = 0.0 num_lower = 0 training_iteration = 0
(other, distance) pairs that with all the known objects at distance less or equal than near_distance to obj, except obj itself. Notice that it includes the ones colliding with obj. obj is not required to be a known object If the game logic wants the list ordered by ascending distances, use ranked_objs_near instead. """ raise NotImplementedError(msg_abstract) def ranked_objs_near(self, obj, near_distance): """ Same as objs_near_wdistance but the list is ordered in increasing distance obj is not required to be a known object """ raise NotImplementedError(msg_abstract) def iter_all_collisions(self): """ Iterator that exposes all collisions between known objects. At each step it will yield a pair (obj, other). If (obj1, obj2) is seen when consuming the iterator, then (obj2, obj1) will not be seen. In other worlds, 'obj1 collides with obj2' means (obj1, obj2) or (obj2, obj1) will appear in the iterator output but not both. """ def knows(self, obj): """Returns True if obj was added to the collision manager, false otherwise Used for debug and testing. """ raise NotImplementedError(msg_abstract) def known_objs(self): """Returns a set with all the objects known by the CollisionManager Used for debug and testing. """ raise NotImplementedError(msg_abstract) def objs_touching_point(self, x, y): """Returns a container with known objects touching point (x, y) Useful for mouse pick """ raise NotImplementedError(msg_abstract) def objs_into_box(self, minx, maxx, miny, maxy): """Returns a container with know objects that fully fits into the axis aligned rectangle defined by params Useful for elastic box selection """ raise NotImplementedError(msg_abstract) # Cshape implementations ################################################# class CircleShape(Cshape): """ Implements the Cshape interface that uses discs as geometric shape. Distance is the euclidean distance. Look at Cshape for other class and methods documentation. """ def __init__(self, center, r): """ :Parameters: `center` : euclid.Vector2 rectangle center `r` : float disc radius """ self.center = center self.r = r def overlaps(self, other): if isinstance(other, CircleShape): return circle_overlaps_circle(self, other) elif isinstance(other, AARectShape): return aa_rect_overlaps_circle(other, self) raise NotImplementedError( "Collision between CircleShape and {0} is not implemented".format(other.__class__.__name__)) def distance(self, other): if isinstance(other, CircleShape): return circle_distance_circle(self, other) elif isinstance(other, AARectShape): return aa_rect_distance_circle(other, self) raise NotImplementedError( "Distance between CircleShape and {0} is not implemented".format(other.__class__.__name__)) def near_than(self, other, near_distance): return self.distance(other) <= near_distance def touches_point(self, x, y): return abs(self.center - (x, y)) <= self.r def fits_in_box(self, packed_box): r = self.r return (((packed_box[0] + r) <= self.center[0] <= (packed_box[1] - r)) and ((packed_box[2] + r) <= self.center[1] <= (packed_box[3] - r))) def minmax(self): r = self.r return (self.center[0] - r, self.center[0] + r, self.center[1] - r, self.center[1] + r) def copy(self): return CircleShape(eu.Vector2(*self.center), self.r) class AARectShape(Cshape): """ Implements the Cshape interface that uses rectangles with sides parallel to the coordinate axis as geometric shape. Distance is not the euclidean distance but the rectangular or max-min distance, max( min(x0 - x1), min(y0 - y1) : (xi, yi) in recti ) Good if actors don't rotate. Look at Cshape for other class and methods documentation. """ def __init__(self, center, half_width, half_height): """ :Parameters: `center` : euclid.Vector2 rectangle center `half_width` : float half width of rectangle `half_height` : float half height of rectangle """ self.center = center self.rx = half_width self.ry = half_height def overlaps(self, other): if isinstance(other, AARectShape): return aa_rect_overlaps_aa_rect(self, other) elif isinstance(other, CircleShape): return aa_rect_overlaps_circle(self, other) raise NotImplementedError( "Collision between AARectShape and {0} is not implemented".format(other.__class__.__name__)) def distance(self, other): if isinstance(other, AARectShape): return aa_rect_distance_aa_rect(self, other) elif isinstance(other, CircleShape): return aa_rect_distance_circle(self, other) raise NotImplementedError( "Distance between AARectShape and {0} is not implemented".format(other.__class__.__name__)) def near_than(self, other, near_distance): return self.distance(other) <= near_distance def touches_point(self, x, y): return (abs(self.center[0] - x) < self.rx and abs(self.center[1] - y) < self.ry) def fits_in_box(self, packed_box): return ((packed_box[0] + self.rx <= self.center[0] <= packed_box[1] - self.rx) and (packed_box[2] + self.ry <= self.center[1] <= packed_box[3] - self.ry)) def minmax(self): return (self.center[0] - self.rx, self.center[0] + self.rx, self.center[1] - self.ry, self.center[1] + self.ry) def copy(self): return AARectShape(eu.Vector2(*self.center), self.rx, self.ry) def clamp(value, minimum, maximum): return max(min(value, maximum), minimum) def aa_rect_overlaps_aa_rect(aa_rect, other): """ Tells if two axis aligned rectangles overlap. The rects must have members 'center', 'rx', 'ry' where the latest two are the rect half_width and half_height. """ return abs(aa_rect.center[0] - other.center[0]) < aa_rect.rx + other.rx and \ abs(aa_rect.center[1] - other.center[1]) < aa_rect.ry + other.ry def circle_overlaps_circle(circle, other): """ Tells if two circles overlap. The circles must have members 'center', 'r', where the latest is the radius. """ return (circle.center - other.center).magnitude_squared() < (circle.r + other.r) ** 2 def aa_rect_overlaps_circle(aa_rect, circle): """ Tells if an axis aligned rectangle and a circle overlap. The rect must have members 'center', 'rx', 'ry' where the latest two are the rect half_width and half_height. The circle must have members 'center', 'r', where the latest is the radius. """ d = circle.center - aa_rect.center # Point in the rect nearest to circle center. d_clamped = eu.Vector2(clamp(d.x, -aa_rect.rx, aa_rect.rx), clamp(d.y, -aa_rect.ry, aa_rect.ry)) return (d - d_clamped).magnitude_squared() < circle.r ** 2 def circle_distance_circle(circle, other): """ Give the distance between two circles. The circles must have members 'center', 'r', where the latest is the radius. """ d = abs(circle.center - other.center) - circle.r - other.r if d < 0.0: d = 0.0 return d def aa_rect_distance_circle(aa_rect, circle): """ Give the distance between an axis-aligned rectangle and a circle. The rect must have members 'center', 'rx', 'ry' where the latest two are the rect half_width and half_height. The circle must have members 'center', 'r', where the latest is the radius. """ d = circle.center - aa_rect.center # Point in the rect nearest to circle center. d_clamped = eu.Vector2(clamp(d.x, -aa_rect.rx, aa_rect.rx), clamp(d.y, -aa_rect.ry, aa_rect.ry)) d = abs(d - d_clamped) - circle.r if d < 0.0: d = 0.0 return d def aa_rect_distance_aa_rect(aa_rect, other): """ Give the distance between two axis-aligned rectangles. The rect must have members 'center', 'rx', 'ry' where the latest two are the rect half_width and half_height. """ d = max((abs(aa_rect.center[0] - other.center[0]) - aa_rect.rx - other.rx, abs(aa_rect.center[1] - other.center[1]) - aa_rect.ry - other.ry)) if d < 0.0: d = 0.0 return d # CollisionManager implementations ####################################### class CollisionManagerBruteForce(CollisionManager): """ Implements the CollisionManager interface with with the simpler code possible. Intended for reference and debugging, it has very bad performance. Look at CollisionManager for other class and methods documentation. """ def __init__(self): self.objs = set() def add(self, obj): # ? use weakref ? python 2.7 has weakset self.objs.add(obj) def remove_tricky(self, obj): self.objs.remove(obj) def clear(self): self.objs.clear() def they_collide(self, obj1, obj2): return obj1.cshape.overlaps(obj2.cshape) def objs_colliding(self, obj): f_overlaps = obj.cshape.overlaps return [other for other in self.objs if (other is not obj) and f_overlaps(other.cshape)] def iter_colliding(self, obj): f_overlaps = obj.cshape.overlaps for other in self.objs: if other is not obj and f_overlaps(other.cshape): yield other def any_near(self, obj, near_distance): f_near_than = obj.cshape.near_than for other in self.objs: if other is not obj and f_near_than(other.cshape, near_distance): return other return None def objs_near(self, obj, near_distance): f_near_than = obj.cshape.near_than return [other for other in self.objs if (other is not obj) and f_near_than(other.cshape, near_distance)] def objs_near_wdistance(self, obj, near_distance): f_distance = obj.cshape.distance res = [] for other in self.objs: if other is obj: continue d = f_distance(other.cshape) if d <= near_distance: res.append((other, d)) return res # def objs_near_wdistance(self, obj, near_distance): # # alternative version, needs python 2.5+ # f_distance = obj.cshape.distance # def f(other): # return other, f_distance(other.cshape) # import itertools as it # return [(other, d) for other,d in it.imap(f, self.objs) if # (other is not obj) and # (d <= near_distance)] def ranked_objs_near(self, obj, near_distance): tmp = self.objs_near_wdistance(obj, near_distance) tmp.sort(key=op.itemgetter(1)) return tmp def iter_all_collisions(self): # O(n**2) for i, obj in enumerate(self.objs): f_overlaps = obj.cshape.overlaps for j, other in enumerate(self.objs): if j >= i: break if f_overlaps(other.cshape): yield (obj, other) def knows(self, obj): return obj in self.objs def known_objs(self): return self.objs def objs_touching_point(self, x, y): touching = set() for obj in self.objs: if obj.cshape.touches_point(x, y): touching.add(obj) return touching def objs_into_box(self, minx, maxx, miny, maxy): into = set() packed_box = minx, maxx, miny, maxy for obj in self.objs: if obj.cshape.fits_in_box(packed_box): into.add(obj) return into class CollisionManagerGrid(CollisionManager): """ Implements the CollisionManager interface based on the scheme known
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os class opts(object): def __init__(self): self.parser = argparse.ArgumentParser() # basic experiment setting self.parser.add_argument('--task', default='gnn_mot', help='mot') self.parser.add_argument('--exp_id', default='default') self.parser.add_argument('--test', action='store_true') self.parser.add_argument('--load_model', default='', help='path to pretrained model') self.parser.add_argument('--resume', action='store_true', help='resume an experiment. ' 'Reloaded the optimizer parameter and ' 'set load_model to model_last.pth ' 'in the exp dir if load_model is empty.') # system self.parser.add_argument('--gpus', default='0, 1', help='-1 for CPU, use comma for multiple gpus') self.parser.add_argument('--num_workers', type=int, default=8, help='dataloader threads. 0 for single-thread.') self.parser.add_argument('--not_cuda_benchmark', action='store_true', help='disable when the input size is not fixed.') self.parser.add_argument('--seed', type=int, default=317, help='random seed') # from CornerNet self.parser.add_argument('--port', type=str, default='8899', help='port to run distributed training') # log self.parser.add_argument('--print_iter', type=int, default=0, help='disable progress bar and print to screen.') self.parser.add_argument('--hide_data_time', action='store_true', help='not display time during training.') self.parser.add_argument('--save_all', action='store_true', help='save model to disk every 5 epochs.') self.parser.add_argument('--metric', default='loss', help='main metric to save best model') self.parser.add_argument('--vis_thresh', type=float, default=0.5, help='visualization threshold.') # model self.parser.add_argument('--arch', default='dla_34', help='model architecture. Currently tested' 'resdcn_34 | resdcn_50 | resfpndcn_34 |' 'dla_34 | hrnet_32') self.parser.add_argument('--head_conv', type=int, default=-1, help='conv layer channels for output head' '0 for no conv layer' '-1 for default setting: ' '256 for resnets and 256 for dla.') self.parser.add_argument('--down_ratio', type=int, default=4, help='output stride. Currently only supports 4.') self.parser.add_argument('--num_gnn_layers', type=int, default=1, help='number of gnn layers') self.parser.add_argument('--gnn_type', type=str, default='GraphConv', help='type of gnn layers') self.parser.add_argument('-n', '--nodes', default=1, type=int, help='number of node machines to train on') self.parser.add_argument('--nr', default=0, type=int, help='ranking within the nodes') self.parser.add_argument('--rank_offset', default=0, type=int, help='offset the ranking so that multi-experiments wont conflict') self.parser.add_argument('--omit_gnn', type=int, default=0, help='whether to omit GNN during model forward') self.parser.add_argument('--use_residual', type=int, default=0, help='whether to omit GNN during model forward') self.parser.add_argument('--return_pre_gnn_layer_outputs', type=int, default=0, help='whether to return previous gnn layer outputs (i.e. before the last layer of GNN)') self.parser.add_argument('--heads_share_params', type=int, default=0, help='whether to share a same set of params for heads at each gnn layer') self.parser.add_argument('--load_distributed_model', type=int, default=0, help='whether the pretrained model is a distributed or not') # input self.parser.add_argument('--input_res', type=int, default=-1, help='input height and width. -1 for default from ' 'dataset. Will be overriden by input_h | input_w') self.parser.add_argument('--input_h', type=int, default=-1, help='input height. -1 for default from dataset.') self.parser.add_argument('--input_w', type=int, default=-1, help='input width. -1 for default from dataset.') self.parser.add_argument('--crop_size', type=tuple, default=(96, 32), help="the size of the crops from the previous frame") self.parser.add_argument('--default_backbone_feature_resolution', type=tuple, default=[152, 272], help='the default output resolution of dla34 backbone') self.parser.add_argument('--save_some_time', type=int, default=0, help='whether to just create a small dataset to save time for debugging') # train self.parser.add_argument('--lr', type=float, default=1e-4, help='learning rate for batch size 32.') self.parser.add_argument('--lr_step', type=str, default='20,27', help='drop learning rate by 10.') self.parser.add_argument('--num_epochs', type=int, default=30, help='total training epochs.') self.parser.add_argument('--batch_size', type=int, default=12, help='batch size') self.parser.add_argument('--master_batch_size', type=int, default=-1, help='batch size on the master gpu.') self.parser.add_argument('--num_iters', type=int, default=-1, help='default: #samples / batch_size.') self.parser.add_argument('--val_intervals', type=int, default=5, help='number of epochs to run validation.') self.parser.add_argument('--trainval', action='store_true', help='include validation in training and ' 'test on test set') self.parser.add_argument('--graph_type', type=str, default='global', choices=['global', 'local'], help='the type of graph to construct') self.parser.add_argument('--launch_distributed', type=int, default=1, help='whether to launch distributed for training, or single-thread for debugging') self.parser.add_argument('--trainable_modules', nargs='+', default=['base', 'dla_up', 'ida_up', 'hm', 'wh', 'id', 'reg', 'hm_0', 'wh_0', 'id_0', 'reg_0', 'gnn_pool', 'gnn'], help='parts of the network modules to train') self.parser.add_argument('--module_lrs', nargs='+', type=float, default=[], help='network module learning rates') self.parser.add_argument('--load_modules', nargs='+', default=['base', 'dla_up', 'ida_up', 'hm', 'wh', 'id', 'reg', 'hm_0', 'wh_0', 'id_0', 'reg_0', 'gnn_pool', 'gnn'], help='parts of the network modules to load') self.parser.add_argument('--copy_head_weights', type=int, default=1, help='whether to copy the head weights across heads') self.parser.add_argument('--freeze_bn', type=int, default=0, help='whether to freeze batch norm') self.parser.add_argument('--use_roi_align', type=int, default=0, help='whether to use roi_align to get crop features') self.parser.add_argument('--edge_regression', type=int, default=0, help='whether to use edge regression') self.parser.add_argument('--motion_model', type=int, default=0, help='whether to use motion model') # test self.parser.add_argument('--K', type=int, default=128, help='max number of output objects.') self.parser.add_argument('--p_K', type=int, default=None, help='max number of previous frame objects.') self.parser.add_argument('--not_prefetch_test', action='store_true', help='not use parallal data pre-processing.') self.parser.add_argument('--fix_res', action='store_true', help='fix testing resolution or keep ' 'the original resolution') self.parser.add_argument('--keep_res', action='store_true', help='keep the original resolution' ' during validation.') self.parser.add_argument('--inference_gnn_output_layer', type=int, default=-1, help='choose the gnn layer output for inference') # Visualization self.parser.add_argument('--viz_attention', type=int, default=0, help='whether to visualize graph attention') self.parser.add_argument('--vis_attn_frame', type=int, default=2, help='# frame to visualize') self.parser.add_argument('--viz_heatmap_radius', type=int, default=100, help='heatmap radius to visualize') self.parser.add_argument('--vis_attn_thres', type=float, default=6.3e-4, help='attn threshold to visualize') # tracking self.parser.add_argument('--test_mot16', default=False, help='test mot16') self.parser.add_argument('--val_mot15', default=False, help='val mot15') self.parser.add_argument('--test_mot15', default=False, help='test mot15') self.parser.add_argument('--val_mot16', default=False, help='val mot16 or mot15') self.parser.add_argument('--test_mot17', default=False, help='test mot17') self.parser.add_argument('--val_mot17', default=False, help='val mot17') self.parser.add_argument('--val_mot20', default=False, help='val mot20') self.parser.add_argument('--test_mot20', default=False, help='test mot20') # self.parser.add_argument('--conf_thres', type=float, default=0.6, help='confidence thresh for tracking') self.parser.add_argument('--det_thres', type=float, default=0.3, help='confidence thresh for detection') self.parser.add_argument('--nms_thres', type=float, default=0.4, help='iou thresh for nms') self.parser.add_argument('--track_buffer', type=int, default=30, help='tracking buffer') self.parser.add_argument('--min-box-area', type=float, default=200, help='filter out tiny boxes') self.parser.add_argument('--input-video', type=str, default='../videos/MOT16-03.mp4', help='path to the input video') self.parser.add_argument('--output-format', type=str, default='video', help='video or text') self.parser.add_argument('--output-root', type=str, default='../results', help='expected output root path') self.parser.add_argument('--load_prev_from_det', type=int, default=0, help='whether to load prev images directly from the provided det') self.parser.add_argument('--use_letter_box', type=int, default=0, help='whether to use letter box transform on prev crops') self.parser.add_argument('--save_images', type=int, default=0, help='whether to save image visualizations') self.parser.add_argument('--save_videos', type=int, default=0, help='whether to save video visualizations') self.parser.add_argument('--exp_name', type=str, help='experiment name') self.parser.add_argument('--eval_from_file_only', type=int, default=0, help='whether to eval directly from saved result file') self.parser.add_argument('--eval_result_dir', type=str, help='when eval directly from file, this is the saved results') self.parser.add_argument('--visualize_gt', type=int, default=0) self.parser.add_argument('--visualize_compare', type=int, default=0) self.parser.add_argument('--compare_seq', type=str, default=None) self.parser.add_argument('--result_dir_1', type=str, default=None) self.parser.add_argument('--result_dir_2', type=str, default=None) self.parser.add_argument('--compile_images_only', type=int, default=0) # mot self.parser.add_argument('--data_cfg', type=str, default='../src/lib/cfg/data.json', help='load data from cfg') self.parser.add_argument('--data_dir', type=str, default='./data') # loss self.parser.add_argument('--mse_loss', action='store_true', help='use mse loss or focal loss to train ' 'keypoint heatmaps.') self.parser.add_argument('--reg_loss', default='l1', help='regression loss: sl1 | l1 | l2') self.parser.add_argument('--hm_weight', type=float, default=1, help='loss weight for keypoint heatmaps.') self.parser.add_argument('--off_weight', type=float, default=1, help='loss weight for keypoint local offsets.') self.parser.add_argument('--wh_weight', type=float, default=0.1, help='loss weight for bounding box size.') self.parser.add_argument('--id_loss', default='ce', help='reid loss: ce | triplet') self.parser.add_argument('--id_weight', type=float, default=1, help='loss weight for id') self.parser.add_argument('--edge_reg_weight', type=float, default=1, help='loss weight for edge regression') self.parser.add_argument('--reid_dim', type=int, default=512, help='feature dim for reid') self.parser.add_argument('--norm_wh', action='store_true', help='L1(\hat(y) / y, 1) or L1(\hat(y), y)') self.parser.add_argument('--dense_wh', action='store_true', help='apply weighted regression near center or ' 'just apply regression on center point.') self.parser.add_argument('--cat_spec_wh', action='store_true', help='category specific bounding box size.') self.parser.add_argument('--not_reg_offset', action='store_true', help='not regress local offset.') def parse(self, args=''): if args == '': opt = self.parser.parse_args() else: opt = self.parser.parse_args(args) opt.gpus_str = opt.gpus opt.gpus = [int(gpu) for gpu in opt.gpus.split(',')] opt.world_size = len(opt.gpus) * opt.nodes opt.lr_step = [int(i) for i in opt.lr_step.split(',')] opt.fix_res = not opt.keep_res print('Fix size testing.' if opt.fix_res else 'Keep resolution testing.') opt.reg_offset = not opt.not_reg_offset if opt.head_conv == -1: # init default head_conv opt.head_conv = 256 if 'dla' in opt.arch else 256 opt.pad = 31 opt.num_stacks = 1 if opt.trainval: opt.val_intervals = 100000000 if opt.master_batch_size == -1: opt.master_batch_size = opt.batch_size // len(opt.gpus) rest_batch_size = (opt.batch_size - opt.master_batch_size) opt.chunk_sizes = [opt.master_batch_size] for i in range(len(opt.gpus) - 1): slave_chunk_size = rest_batch_size // (len(opt.gpus) - 1) if i < rest_batch_size % (len(opt.gpus) - 1): slave_chunk_size += 1 opt.chunk_sizes.append(slave_chunk_size) if opt.task == 'gnn_mot': print('training chunk_sizes:', [opt.batch_size for _ in opt.gpus]) else: print('training chunk_sizes:', opt.chunk_sizes) opt.root_dir = os.path.join(os.path.dirname(__file__), '..', '..') opt.exp_dir = os.path.join(opt.root_dir, 'exp', opt.task) opt.save_dir = os.path.join(opt.exp_dir, opt.exp_id) opt.debug_dir = os.path.join(opt.save_dir, 'debug') print('The output will be saved to ', opt.save_dir) if opt.resume and opt.load_model == '': model_path = opt.save_dir[:-4] if opt.save_dir.endswith('TEST') \ else opt.save_dir opt.load_model = os.path.join(model_path, 'model_last.pth') return opt def update_dataset_info_and_set_heads(self, opt, dataset): input_h, input_w = dataset.default_resolution opt.mean, opt.std = dataset.mean, dataset.std opt.num_classes = dataset.num_classes # input_h(w): opt.input_h overrides opt.input_res overrides dataset default input_h = opt.input_res if opt.input_res > 0 else input_h input_w = opt.input_res if opt.input_res > 0 else input_w opt.input_h = opt.input_h if opt.input_h > 0 else input_h opt.input_w = opt.input_w if opt.input_w > 0 else input_w opt.output_h = opt.input_h // opt.down_ratio opt.output_w = opt.input_w // opt.down_ratio opt.input_res = max(opt.input_h, opt.input_w) opt.output_res = max(opt.output_h, opt.output_w) if opt.task == 'mot' or opt.task == 'gnn_mot': opt.heads = {'hm': opt.num_classes, 'wh': 2 if not opt.cat_spec_wh else 2 * opt.num_classes, 'id': opt.reid_dim} if opt.reg_offset: opt.heads.update({'reg': 2}) opt.nID = dataset.nID opt.img_size = (1088, 608) else: assert 0, 'task not defined!' print('heads', opt.heads) return opt def init(self, args=''):
pixel_value_offset = image_mean image = tf.math.subtract(image, pixel_value_offset) image = tf.math.divide(image, pixel_value_scale, name=scope) # image = math_ops.div(image, pixel_value_scale, name=scope) return image def upsample_simple(images, shape_out, up, numClasses): filter_up = tf.constant(1.0, shape=[up, up, numClasses, numClasses]) return tf.nn.conv2d_transpose(images, filter_up, output_shape=shape_out, strides=[1, up, up, 1]) # </editor-fold> # <editor-fold desc="Loss Utilities (softmax_cross_entropy_with_logits_v2, sparse_softmax_cross_entropy_with_logits, sigmoid_cross_entropy_with_logits, l2_loss, nce_loss)"> def softmax_cross_entropy_with_logits_v2(labels, logits, axis=None, name=None, dim=None): return tf.nn.softmax_cross_entropy_with_logits_v2(labels, logits, axis=axis, name=name, dim=dim) def sparse_softmax_cross_entropy_with_logits(labels=None, logits=None, name=None, _sentinel=None): return tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits, name=name, _sentinel=_sentinel) def sigmoid_cross_entropy_with_logits(labels=None, logits=None, name=None, _sentinel=None): return tf.nn.sigmoid_cross_entropy_with_logits(_sentinel=_sentinel, labels=labels, logits=logits, name=name) def l2_loss(t, name=None): return tf.nn.l2_loss(t, name=name) def nce_loss(weights, biases, labels, inputs, num_sampled, num_classes, num_true=1, sampled_values=None, remove_accidental_hits=False, partition_strategy="mod", name="nce_loss"): return tf.nn.nce_loss(weights, biases, labels, inputs, num_sampled, num_classes, num_true=num_true, sampled_values=sampled_values, remove_accidental_hits=remove_accidental_hits, partition_strategy=partition_strategy, name=name) # </editor-fold> # <editor-fold desc="Utilities (conv1d_op, conv2d_op)"> def conv1d_op(value=None, filters=None, stride=None, padding=None, use_cudnn_on_gpu=None, data_format=None, name=None, input=None, # pylint: disable=redefined-builtin dilations=None): return tf.nn.conv1d(value=value, filters=filters, stride=stride, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, data_format=data_format, name=name, input=input, dilations=dilations) def conv2d_op(input, filter=None, strides=None, padding=None, use_cudnn_on_gpu=True, data_format="NHWC", dilations=[1, 1, 1, 1], name=None): return tf.compat.v1.nn.conv2d(input, filter=filter, strides=strides, padding=padding, use_cudnn_on_gpu=use_cudnn_on_gpu, data_format=data_format, dilations=dilations, name=name) # </editor-fold> # <editor-fold desc="Backup (old stuff we do not want to delete yet)"> def conv2d_bn_lrn_drop(inputs, kernel_shape, is_training, strides=None, activation=relu, use_bn=False, renorm=False, use_mvn=False, use_lrn=False, keep_prob=1.0, dropout_maps=False, initOpt=0, biasInit=0.1, padding='SAME', name="conv2d"): """Adds a 2-D convolutional layer given 4-D `inputs` and `kernel` with optional BatchNorm, LocalResponseNorm and Dropout. Args: scope_or_name: `string` or `VariableScope`, the scope to open. inputs: `4-D Tensor`, it is assumed that `inputs` is shaped `[batch_size, Y, X, Z]`. kernel: `4-D Tensor`, [kernel_height, kernel_width, in_channels, out_channels] kernel. bias: `1-D Tensor`, [out_channels] bias. strides: list of `ints`, length 4, the stride of the sliding window for each dimension of `inputs`. activation: activation function to be used (default: `relu`). use_bn: `bool`, whether or not to include batch normalization in the layer. is_training: `bool`, whether or not the layer is in training mode. This is only used if `use_bn` == True. use_lrn: `bool`, whether or not to include local response normalization in the layer. keep_prob: `double`, dropout keep prob. dropout_maps: `bool`, If true whole maps are dropped or not, otherwise single elements. padding: `string` from 'SAME', 'VALID'. The type of padding algorithm used in the convolution. Returns: `4-D Tensor`, has the same type `inputs`. """ with tf.compat.v1.variable_scope(name): if strides is None: strides = [1, 1, 1, 1] stddev = 5e-2 if initOpt == 0: stddev = np.sqrt(2.0 / (kernel_shape[0] * kernel_shape[1] * kernel_shape[2] + kernel_shape[3])) if initOpt == 1: stddev = 5e-2 if initOpt == 2: stddev = min(np.sqrt(2.0 / (kernel_shape[0] * kernel_shape[1] * kernel_shape[2])), 5e-2) initializer = tf.random_normal_initializer(stddev=stddev) if initOpt < 0: initializer = tf.random.truncated_normal_initializer(0.0, -initOpt) kernel = tf.compat.v1.get_variable("weights", kernel_shape, initializer=initializer) conv = conv2d_op(inputs, kernel, strides, padding=padding, name='conv') bias = tf.compat.v1.get_variable("biases", kernel_shape[3], initializer=tf.constant_initializer(value=biasInit)) outputs = tf.nn.bias_add(conv, bias, name='preActivation') if use_bn: print("WARNING BATCH NORM is deprcated") raise AttributeError # outputs = batch_norm(outputs, training=training, scale=True, fused=True, renorm=renorm, # scope="batchNorm") if use_mvn: outputs = feat_norm(outputs, kernel_shape[3]) if activation: outputs = activation(outputs, name='activation') if use_lrn: outputs = tf.nn.local_response_normalization(outputs, name='localResponseNorm') if is_training: if dropout_maps: conv_shape = tf.shape(outputs) n_shape = tf.stack([conv_shape[0], 1, 1, conv_shape[3]]) outputs = dropout(outputs, keep_prob=keep_prob, noise_shape=n_shape) else: outputs = dropout(outputs, keep_prob=keep_prob, is_training=is_training) return outputs # def sep_conv2d_bn_lrn_drop(scope_or_name, # inputs, # kernel_shape, # depth_multiplier, # training, # strides=None, # activation=relu, # use_bn=False, # renorm=False, # use_mvn=False, # use_lrn=False, # keep_prob=1.0, # dropout_maps=False, # initOpt=0, # biasInit=0.1, # padding='SAME'): # if strides is None: # strides = [1, 1, 1, 1] # with tf.compat.v1.variable_scope(scope_or_name): # if initOpt == 0: # stddev1 = np.sqrt(2.0 / (kernel_shape[0] * kernel_shape[1] * kernel_shape[2] + 1)) # stddev2 = np.sqrt(2.0 / (kernel_shape[2] + kernel_shape[3])) # if initOpt == 1: # stddev1 = 5e-2 # stddev2 = 5e-2 # if initOpt == 2: # stddev1 = min(np.sqrt(2.0 / (kernel_shape[0] * kernel_shape[1] * kernel_shape[2])), 5e-2) # stddev2 = min(np.sqrt(2.0 / (kernel_shape[2])), 5e-2) # kernel1 = tf.compat.v1.get_variable("weights_sep", [kernel_shape[0], kernel_shape[1], kernel_shape[2], depth_multiplier], # initializer=tf.random_normal_initializer(stddev=stddev1)) # kernel2 = tf.compat.v1.get_variable("weights_1x1", [1, 1, depth_multiplier*kernel_shape[2], kernel_shape[3]], # initializer=tf.random_normal_initializer(stddev=stddev2)) # # conv = tf.nn.separable_conv2d(inputs, depthwise_filter=kernel1, pointwise_filter=kernel2, strides=strides, # padding=padding, name="sep_conv") # bias = tf.compat.v1.get_variable("biases", kernel_shape[3], # initializer=tf.constant_initializer(value=biasInit)) # outputs = tf.nn.bias_add(conv, bias, name='preActivation') # if use_bn: # outputs = batch_norm(outputs, training=training, scale=True, fused=True, renorm=renorm, # scope="batchNorm") # if use_mvn: # outputs = feat_norm(outputs, kernel_shape[3]) # if activation: # outputs = activation(outputs, name='activation') # if use_lrn: # outputs = tf.nn.local_response_normalization(outputs, name='localResponseNorm') # if training: # if dropout_maps: # conv_shape = tf.shape(outputs) # n_shape = tf.stack([conv_shape[0], 1, 1, conv_shape[3]]) # outputs = dropout(outputs, keep_prob=keep_prob, noise_shape=n_shape) # else: # outputs = dropout(outputs, keep_prob=keep_prob) # return outputs # def dil_conv2d_bn_lrn_drop(scope_or_name, # inputs, # kernel_shape, # rate, # training, # activation=relu, # use_bn=False, # use_mvn=False, # use_lrn=True, # keep_prob=1.0, # dropout_maps=False, # initOpt=0, padding="SAME"): # """Adds a 2-D convolutional layer given 4-D `inputs` and `kernel` with optional BatchNorm, LocalResponseNorm and Dropout. # # Args: # scope_or_name: `string` or `VariableScope`, the scope to open. # inputs: `4-D Tensor`, it is assumed that `inputs` is shaped `[batch_size, Y, X, Z]`. # kernel: `4-D Tensor`, [kernel_height, kernel_width, in_channels, out_channels] kernel. # bias: `1-D Tensor`, [out_channels] bias. # rate: `int`, Dilation factor. # activation: activation function to be used (default: `relu`). # use_bn: `bool`, whether or not to include batch normalization in the layer. # training: `bool`, whether or not the layer is in training mode. This is only used if `use_bn` == True. # use_lrn: `bool`, whether or not to include local response normalization in the layer. # keep_prob: `double`, dropout keep prob. # dropout_maps: `bool`, If true whole maps are dropped or not, otherwise single elements. # padding: `string` from 'SAME', 'VALID'. The type of padding algorithm used in the convolution. # # Returns: # `4-D Tensor`, has the same type `inputs`. # """ # with tf.compat.v1.variable_scope(scope_or_name): # if initOpt == 0: # stddev = np.sqrt(2.0 / (kernel_shape[0] * kernel_shape[1] * kernel_shape[2] + kernel_shape[3])) # if initOpt == 1: # stddev = 5e-2 # if initOpt == 2: # stddev = min(np.sqrt(2.0 / (kernel_shape[0] * kernel_shape[1] * kernel_shape[2])), 5e-2) # kernel = tf.compat.v1.get_variable("weights", kernel_shape, # initializer=tf.random_normal_initializer(stddev=stddev)) # conv = tf.nn.atrous_conv2d(inputs, kernel, rate=rate, padding=padding) # bias = tf.compat.v1.get_variable("bias", kernel_shape[3], # initializer=tf.constant_initializer(value=0.1)) # outputs = tf.nn.bias_add(conv, bias, name='preActivation') # if use_bn: # outputs = batch_norm(outputs, training=training, scale=True, fused=True, scope="batchNorm") # if use_mvn: # outputs = feat_norm(outputs, kernel_shape[3]) # if activation: # outputs = activation(outputs, name='activation') # if use_lrn: # outputs = tf.nn.local_response_normalization(outputs, name='localResponseNorm') # if training: # if dropout_maps: # conv_shape = tf.shape(outputs) # n_shape = tf.stack([conv_shape[0], 1, 1, conv_shape[3]]) # outputs = dropout(outputs, keep_prob=keep_prob, noise_shape=n_shape) # else: # outputs = dropout(outputs, keep_prob=keep_prob) # return outputs # def deconv2d_bn_lrn_drop(scope_or_name, inputs, kernel_shape, out_shape, training, subS=2, activation=relu, # use_bn=False, # use_mvn=False, # use_lrn=False, # keep_prob=1.0, # dropout_maps=False, # initOpt=0): # with tf.compat.v1.variable_scope(scope_or_name): # if initOpt == 0: # stddev = np.sqrt(2.0 / (kernel_shape[0] * kernel_shape[1] * kernel_shape[2] + kernel_shape[3])) # if initOpt == 1: # stddev = 5e-2 # if initOpt == 2: # stddev = min(np.sqrt(2.0 / (kernel_shape[0] * kernel_shape[1] * kernel_shape[2])), 5e-2) # kernel = tf.compat.v1.get_variable("weights", kernel_shape, # initializer=tf.random_normal_initializer(stddev=stddev)) # bias = tf.compat.v1.get_variable("bias", kernel_shape[2], # initializer=tf.constant_initializer(value=0.1)) # conv = tf.nn.conv2d_transpose(inputs, kernel, out_shape, strides=[1, subS, subS, 1], padding='SAME', # name='conv') # outputs = tf.nn.bias_add(conv, bias, name='preActivation') # if use_bn: # outputs = batch_norm(outputs, training=training, scale=True, fused=True, scope="batchNorm") # if use_mvn: # outputs = feat_norm(outputs, kernel_shape[3]) # if activation: # outputs = activation(outputs, name='activation') # if use_lrn: # outputs = tf.nn.local_response_normalization(outputs, name='localResponseNorm') # if training: # if dropout_maps: # conv_shape = tf.shape(outputs) # n_shape = tf.stack([conv_shape[0], 1, 1, conv_shape[3]]) # outputs = dropout(outputs, keep_prob=keep_prob, noise_shape=n_shape) # else: # outputs = dropout(outputs, keep_prob=keep_prob) # return outputs # def cublstm_fix(scope_or_name, # inputs, # seq_length, # n_hidden, # training, # use_bn=False, # use_gpu=True, ): # with tf.compat.v1.variable_scope(scope_or_name): # if use_gpu: # # forward direction # with tf.compat.v1.variable_scope("culstm_forward"): # culstm_fw = CudnnLSTM(num_layers=1, num_units=n_hidden, direction="unidirectional", # dtype=tf.float32) # culstm_fw.build(inputs.get_shape()) # outputs_fw, _ = culstm_fw(inputs, training=True) # # culstm_fw = tf.keras.layers.CuDNNLSTM(units=n_hidden, return_sequences=True) # # culstm_fw.build(inputs.get_shape()) # # outputs_fw = culstm_fw(inputs, training=training) # # backward direction # with tf.compat.v1.variable_scope("culstm_backward"): # culstm_bw = CudnnLSTM(num_layers=1, num_units=n_hidden, direction="unidirectional", # dtype=tf.float32) # culstm_bw.build(inputs.get_shape()) # reverse_inputs = tf.reverse_sequence(inputs, seq_length, batch_axis=1, seq_axis=0) # outputs_bw, _ = culstm_bw(reverse_inputs, training=True) # outputs_bw = tf.reverse_sequence(outputs_bw, seq_length, batch_axis=1, seq_axis=0) # # culstm_bw = tf.keras.layers.CuDNNLSTM(units=n_hidden, return_sequences=True) # # culstm_bw.build(inputs.get_shape()) # # reverse_inputs = tf.reverse_sequence(inputs, seq_length, batch_axis=1, seq_axis=0) # # outputs_bw = culstm_bw(reverse_inputs, training=training) # # outputs_bw = tf.reverse_sequence(outputs_bw, seq_length, batch_axis=1, seq_axis=0) # # concat # outputs = tf.concat([outputs_fw, outputs_bw], axis=2) # # else: # single_cell = lambda: CudnnCompatibleLSTMCell(n_hidden, reuse=tf.compat.v1.get_variable_scope().reuse) # # forward direction # with tf.compat.v1.variable_scope("culstm_forward"): # cell_fw = MultiRNNCell([single_cell() for _ in range(1)]) # outputs_fw, _ = rnn(cell_fw, inputs, dtype=tf.float32, time_major=True) # # backward direction # with tf.compat.v1.variable_scope("culstm_backward"): # cell_bw = MultiRNNCell([single_cell() for _ in range(1)]) # reverse_inputs = tf.reverse_sequence(inputs, seq_length, batch_axis=1, seq_axis=0) # outputs_bw, _ = rnn(cell_bw, reverse_inputs, dtype=tf.float32, time_major=True) # outputs_bw = tf.reverse_sequence(outputs_bw, seq_length, batch_axis=1, seq_axis=0) # # concat # outputs = tf.concat([outputs_fw, outputs_bw], axis=2) # # forward direction # # with tf.compat.v1.variable_scope("culstm_forward"): # # culstm_fw = tf.keras.layers.LSTM(units=n_hidden,activation='tanh',recurrent_activation='sigmoid', return_sequences=True) # # culstm_fw.build(inputs.get_shape()) # # outputs_fw = culstm_fw(inputs, training=training) # # # backward direction # # with tf.compat.v1.variable_scope("culstm_backward"): # # culstm_bw = tf.keras.layers.LSTM(units=n_hidden,activation='tanh',recurrent_activation='sigmoid', return_sequences=True) # # culstm_bw.build(inputs.get_shape()) # # reverse_inputs = tf.reverse_sequence(inputs, seq_length, batch_axis=1, seq_axis=0) # # outputs_bw = culstm_bw(reverse_inputs, training=training) # # outputs_bw = tf.reverse_sequence(outputs_bw, seq_length, batch_axis=1, seq_axis=0) # # #
<gh_stars>1-10 """ TODO: replaces previous versions 161110 Plots Accuracy for labeling for various learning and propagation methods Since graph creation takes most time, especially for large graphs, saves graphs to a file format, then loads them later again. First version: Nov 10, 2016 This version: Jan 26, 2020 """ import numpy as np import datetime import random import sys sys.path.append('./../sslh') from fileInteraction import save_csv_record from utils import (from_dictionary_beliefs, create_parameterized_H, replace_fraction_of_rows, to_centering_beliefs, eps_convergence_linbp_parameterized, matrix_difference, matrix_difference_classwise, introduce_errors, showfig) from estimation import (estimateH, estimateH_baseline_serial, estimateH_baseline_parallel) import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from matplotlib.ticker import LogLocator import pandas as pd pd.set_option('display.max_columns', None) # show all columns from pandas pd.options.mode.chained_assignment = None # default='warn' from graphGenerator import planted_distribution_model_H from inference import linBP_symmetric_parameterized, beliefPropagation # import seaborn.apionly as sns # importing without activating it. For color palette # # -- Determine path to data *irrespective* of where the file is run from # from os.path import abspath, dirname, join # from inspect import getfile, currentframe # current_path = dirname(abspath(getfile(currentframe()))) # figure_directory = join(current_path, 'figs') # data_directory = join(current_path, 'data') # # # # def run(choice, variant, create_data=False, add_data=False, create_graph=False, # create_fig=True, show_plot=True, show_pdf=True, shorten_length=False, show_arrows=True): # """main parameterized method to produce all figures. # Can be run from external jupyther notebook or method to produce all figures in PDF # """ # # # -- Setup # CHOICE = choice # determines the CSV data file to use # VARIANT = variant # determines the variant of how the figures are plotted # CREATE_DATA = create_data # starts new CSV file and stores experimental timing results # ADD_DATA = add_data # adds data to existing file # CREATE_GRAPH = create_graph # creates the actual graph for experiments (stores W and X in CSV files) # -- Determine path to data *irrespective* of where the file is run from from os.path import abspath, dirname, join from inspect import getfile, currentframe current_path = dirname(abspath(getfile(currentframe()))) figure_directory = join(current_path, 'figs') data_directory = join(current_path, 'datacache') def run(choice, variant, create_data=False, add_data=False, show_plot=False, create_pdf=False, show_pdf=False, show_fig=True): """main parameterized method to produce all figures. All relevant choice and parameters are encoded in this method. Calling methods just choose the CHOICE and VARIANT Can be run from external jupyther notebook or method to produce all figures in PDF """ # -- Setup # 305, 315, 213, 108 CHOICE = choice VARIANT = variant CREATE_DATA = create_data ADD_DATA = add_data SHOW_FIG = show_fig STD_FILL = True SHORTEN_LENGTH = False SHOW_PDF = show_pdf SHOW_PLOT = show_plot CREATE_PDF = create_pdf SHOW_TITLE = True # show parameters in title of plot LABEL_FONTSIZE = 16 # size of number labels in figure csv_filename = 'Fig_End-to-End_accuracy_{}.csv'.format(CHOICE) filename = 'Fig_End-to-End_accuracy_{}-{}'.format(CHOICE, VARIANT) # PDF filename includes CHOICE and VARIANT header = ['currenttime', 'option', 'f', 'accuracy'] if CREATE_DATA: save_csv_record(join(data_directory, csv_filename), header, append=False) # -- Default Graph parameters rep_DifferentGraphs = 10 # iterations on different graphs rep_SameGraph = 10 # iterations on same graph initial_h0 = None # initial vector to start finding optimal H distribution = 'powerlaw' exponent = -0.3 length = 5 variant = 1 EC = True # Non-backtracking for learning ymin = 0.3 ymax = 1 xmin = 0.001 xmax = 1 xtick_lab = [0.00001, 0.0001, 0.001, 0.01, 0.1, 1] xtick_labels = ['1e-5', '0.01\%', '0.1\%', '1\%', '10\%', '100\%'] ytick_lab = np.arange(0, 1.1, 0.1) f_vec = [0.9 * pow(0.1, 1 / 5) ** x for x in range(21)] k = 3 a = 1 # this value was erroneously set to 5 previously!!! TODO: fix everywhere else err = 0 avoidNeighbors = False convergencePercentage_W = None stratified = True labels = ['*']*10 clip_on_vec = [True] * 10 draw_std_vec = range(10) numberOfSplits = 1 linestyle_vec = ['dashed'] + ['solid'] * 10 linewidth_vec = [5, 4, 3, 3, 3, 3] + [3]*10 marker_vec = [None, None, 'o', 'x', 'o', '^'] + [None]*10 markersize_vec = [0, 0, 4, 8, 6, 6] + [6]*10 propagation_method_vec = ['Lin'] * 10 constraint_vec = [False]*15 alpha0 = np.array([a, 1., 1.]) facecolor_vec = ["#4C72B0", "#55A868", "#C44E52", "#8172B2", "#CCB974", "#64B5CD"] # SEABORN_PALETTES = dict( # deep=["#4C72B0", "#55A868", "#C44E52", # "#8172B2", "#CCB974", "#64B5CD"], # muted=["#4878CF", "#6ACC65", "#D65F5F", # "#B47CC7", "#C4AD66", "#77BEDB"], # pastel=["#92C6FF", "#97F0AA", "#FF9F9A", # "#D0BBFF", "#FFFEA3", "#B0E0E6"], # bright=["#003FFF", "#03ED3A", "#E8000B", # "#8A2BE2", "#FFC400", "#00D7FF"], # dark=["#001C7F", "#017517", "#8C0900", # "#7600A1", "#B8860B", "#006374"], # colorblind=["#0072B2", "#009E73", "#D55E00", # "#CC79A7", "#F0E442", "#56B4E9"] # ) # facecolors = ['darkorange', 'blue', 'black'] # facecolors = ['#6495ED', '#F08080', 'black'] # facecolors = ['#66c2a5', '#fc8d62', '#8da0cb'] # C = (sns.color_palette("colorblind", 4)) # facecolor_vec = [C[0], C[2], C[1], C[3]] # facecolor_vec = ["#0072B2", "#D55E00", "#009E73", "#CC79A7",] # -- Options with propagation variants if CHOICE == 101: n = 10000 h = 8 d = 25 option_vec = ['opt1', 'opt2', 'opt3'] learning_method_vec = ['GT'] * 2 + ['DHE'] weight_vec = [None] * 1 + [1] * 1 + [100] * 1 alpha_vec = [0] * 3 beta_vec = [0] * 1 + [1] * 2 gamma_vec = [0] * 3 s_vec = [0.5] + [3] * 2 numMaxIt_vec = [10] + [4]*2 randomize_vec = [False] * 2 + [True] xmin = 0.0001 ymin = 0.6 ymax = 1 facecolor_vec = ['black', "#C44E52", "#4C72B0", "#8172B2", "#55A868", "#CCB974", "#64B5CD"] linestyle_vec = ['dashed'] + ['solid'] * 10 labels = ['LinBP w/GT', 'CP w/GT', 'CP w/DCEr', 'BP'] linewidth_vec = [5, 5, 3, ] marker_vec = [None, 'o', 'x'] markersize_vec = [0, 8, 8] elif CHOICE == 111: n = 10000 h = 3 d = 25 option_vec = ['opt1', 'opt2', 'opt3'] learning_method_vec = ['GT'] * 2 + ['DHE'] weight_vec = [None] * 1 + [1] * 1 + [100] * 1 alpha_vec = [0] * 3 beta_vec = [0] * 1 + [1] * 2 gamma_vec = [0] * 3 s_vec = [0.5] + [3] * 2 numMaxIt_vec = [10] + [4] * 2 randomize_vec = [False] * 2 + [True] xmin = 0.0001 ymin = 0.6 ymax = 1 facecolor_vec = ['black', "#C44E52", "#4C72B0", "#8172B2", "#55A868", "#CCB974", "#64B5CD"] linestyle_vec = ['dashed'] + ['solid'] * 10 labels = ['LinBP w/GT', 'CP w/GT', 'CP w/DCEr', 'BP'] linewidth_vec = [5, 5, 3] marker_vec = [None, 'o', 'x'] markersize_vec = [0, 8, 8] # BP options elif CHOICE == 301: ## 101 with BP n = 10000 h = 8 d = 25 option_vec = ['opt1', 'opt2', 'opt3', 'opt4'] learning_method_vec = ['GT'] * 2 + ['DHE'] + ['GT'] weight_vec = [None] * 1 + [1] * 1 + [100] * 1 + [None] propagation_method_vec = ['Lin'] * 3 + ['BP'] alpha_vec = [0] * 3 + [None] beta_vec = [0] * 1 + [1] * 2 + [None] gamma_vec = [0] * 3 + [None] s_vec = [0.5] + [3] * 2 + [0.1] numMaxIt_vec = [10] + [4]*2 + [10] randomize_vec = [False] * 2 + [True] + [False] xmin = 0.0001 ymin = 0.6 ymax = 1 facecolor_vec = ['black', "#C44E52", "#4C72B0", "#8172B2", "#55A868", "#CCB974", "#64B5CD"] linestyle_vec = ['dashed'] + ['solid'] * 10 labels = ['LinBP w/GT', 'CP w/GT', 'CP w/DCEr', 'BP'] linewidth_vec = [5, 5, 3, 3] marker_vec = [None, 'o', 'x', '^'] markersize_vec = [0, 8, 8, 8] elif CHOICE == 303: ### like 311 BP, but with fewer iterations n = 10000 h = 8 d = 25 option_vec = ['opt1', 'opt2', 'opt3', 'opt4', 'opt5'] learning_method_vec = ['GT'] * 2 + ['DHE'] + ['GT']*2 weight_vec = [None, 1, 100, None, None] propagation_method_vec = ['Lin'] * 3 + ['BP'] * 2 alpha_vec = [0] * 3 + [None]*2 beta_vec = [0] * 1 + [1] * 2 + [None]*2 gamma_vec = [0] * 3 + [None]*2 s_vec = [0.5] + [3] * 2 + [None]*2 numMaxIt_vec = [10] + [4] * 2 + [4] + [20] randomize_vec = [False] * 2 + [True] + [False]*2 xmin = 0.0001 ymin = 0.3 ymax = 1 xmax = 0.002 facecolor_vec = ['black', "#C44E52", "#4C72B0", "#8172B2", "#55A868", "#CCB974", "#64B5CD"] linestyle_vec = ['dashed'] + ['solid'] * 10 labels = ['LinBP w/GT', 'CP
# This file was generated automatically by generate_protocols.py from nintendo.nex import notification, rmc, common, streams import logging logger = logging.getLogger(__name__) class RankingOrderCalc: STANDARD = 0 ORDINAL = 1 class RankingMode: GLOBAL = 0 GLOBAL_AROUND_SELF = 1 SELF = 4 class RankingStatFlags: RANKING_COUNT = 1 TOTAL_SCORE = 2 LOWEST_SCORE = 4 HIGHEST_SCORE = 8 AVERAGE_SCORE = 16 ALL = 31 class RankingOrderParam(common.Structure): def __init__(self): super().__init__() self.order_calc = 0 self.group_index = 255 self.group_num = 0 self.time_scope = 2 self.offset = None self.count = None def check_required(self, settings): for field in ['offset', 'count']: if getattr(self, field) is None: raise ValueError("No value assigned to required field: %s" %field) def load(self, stream): self.order_calc = stream.u8() self.group_index = stream.u8() self.group_num = stream.u8() self.time_scope = stream.u8() self.offset = stream.u32() self.count = stream.u8() def save(self, stream): self.check_required(stream.settings) stream.u8(self.order_calc) stream.u8(self.group_index) stream.u8(self.group_num) stream.u8(self.time_scope) stream.u32(self.offset) stream.u8(self.count) class RankingRankData(common.Structure): def __init__(self): super().__init__() self.pid = None self.unique_id = None self.rank = None self.category = None self.score = None self.groups = None self.param = None self.common_data = None self.update_time = None def check_required(self, settings): for field in ['pid', 'unique_id', 'rank', 'category', 'score', 'groups', 'param', 'common_data']: if getattr(self, field) is None: raise ValueError("No value assigned to required field: %s" %field) if settings["nex.version"] >= 40000: for field in ['update_time']: if getattr(self, field) is None: raise ValueError("No value assigned to required field: %s" %field) def load(self, stream): self.pid = stream.pid() self.unique_id = stream.u64() self.rank = stream.u32() self.category = stream.u32() self.score = stream.u32() self.groups = stream.list(stream.u8) self.param = stream.u64() self.common_data = stream.buffer() if stream.settings["nex.version"] >= 40000: self.update_time = stream.datetime() def save(self, stream): self.check_required(stream.settings) stream.pid(self.pid) stream.u64(self.unique_id) stream.u32(self.rank) stream.u32(self.category) stream.u32(self.score) stream.list(self.groups, stream.u8) stream.u64(self.param) stream.buffer(self.common_data) if stream.settings["nex.version"] >= 40000: stream.datetime(self.update_time) class RankingResult(common.Structure): def __init__(self): super().__init__() self.data = None self.total = None self.since_time = None def check_required(self, settings): for field in ['data', 'total', 'since_time']: if getattr(self, field) is None: raise ValueError("No value assigned to required field: %s" %field) def load(self, stream): self.data = stream.list(RankingRankData) self.total = stream.u32() self.since_time = stream.datetime() def save(self, stream): self.check_required(stream.settings) stream.list(self.data, stream.add) stream.u32(self.total) stream.datetime(self.since_time) class RankingCachedResult(RankingResult): def __init__(self): super().__init__() self.created_time = None self.expired_time = None self.max_length = None def check_required(self, settings): for field in ['created_time', 'expired_time', 'max_length']: if getattr(self, field) is None: raise ValueError("No value assigned to required field: %s" %field) def load(self, stream): self.created_time = stream.datetime() self.expired_time = stream.datetime() self.max_length = stream.u8() def save(self, stream): self.check_required(stream.settings) stream.datetime(self.created_time) stream.datetime(self.expired_time) stream.u8(self.max_length) common.DataHolder.register(RankingCachedResult, "RankingCachedResult") class RankingStats(common.Structure): def __init__(self): super().__init__() self.stats = None def check_required(self, settings): for field in ['stats']: if getattr(self, field) is None: raise ValueError("No value assigned to required field: %s" %field) def load(self, stream): self.stats = stream.list(stream.double) def save(self, stream): self.check_required(stream.settings) stream.list(self.stats, stream.double) class RankingScoreData(common.Structure): def __init__(self): super().__init__() self.category = None self.score = None self.order = None self.update_mode = None self.groups = None self.param = None def check_required(self, settings): for field in ['category', 'score', 'order', 'update_mode', 'groups', 'param']: if getattr(self, field) is None: raise ValueError("No value assigned to required field: %s" %field) def load(self, stream): self.category = stream.u32() self.score = stream.u32() self.order = stream.u8() self.update_mode = stream.u8() self.groups = stream.list(stream.u8) self.param = stream.u64() def save(self, stream): self.check_required(stream.settings) stream.u32(self.category) stream.u32(self.score) stream.u8(self.order) stream.u8(self.update_mode) stream.list(self.groups, stream.u8) stream.u64(self.param) class RankingChangeAttributesParam(common.Structure): def __init__(self): super().__init__() self.flags = None self.groups = None self.param = None def check_required(self, settings): for field in ['flags', 'groups', 'param']: if getattr(self, field) is None: raise ValueError("No value assigned to required field: %s" %field) def load(self, stream): self.flags = stream.u8() self.groups = stream.list(stream.u8) self.param = stream.u64() def save(self, stream): self.check_required(stream.settings) stream.u8(self.flags) stream.list(self.groups, stream.u8) stream.u64(self.param) class RankingProtocol: METHOD_UPLOAD_SCORE = 1 METHOD_DELETE_SCORE = 2 METHOD_DELETE_ALL_SCORES = 3 METHOD_UPLOAD_COMMON_DATA = 4 METHOD_DELETE_COMMON_DATA = 5 METHOD_GET_COMMON_DATA = 6 METHOD_CHANGE_ATTRIBUTES = 7 METHOD_CHANGE_ALL_ATTRIBUTES = 8 METHOD_GET_RANKING = 9 METHOD_GET_APPROX_ORDER = 10 METHOD_GET_STATS = 11 METHOD_GET_RANKING_BY_PID_LIST = 12 METHOD_GET_RANKING_BY_UNIQUE_ID_LIST = 13 METHOD_GET_CACHED_TOPX_RANKING = 14 METHOD_GET_CACHED_TOPX_RANKINGS = 15 PROTOCOL_ID = 0x70 class RankingClient(RankingProtocol): def __init__(self, client): self.settings = client.settings self.client = client async def upload_score(self, score_data, unique_id): logger.info("RankingClient.upload_score()") #--- request --- stream = streams.StreamOut(self.settings) stream.add(score_data) stream.u64(unique_id) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_UPLOAD_SCORE, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.upload_score -> done") async def delete_score(self, category, unique_id): logger.info("RankingClient.delete_score()") #--- request --- stream = streams.StreamOut(self.settings) stream.u32(category) stream.u64(unique_id) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_DELETE_SCORE, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.delete_score -> done") async def delete_all_scores(self, unique_id): logger.info("RankingClient.delete_all_scores()") #--- request --- stream = streams.StreamOut(self.settings) stream.u64(unique_id) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_DELETE_ALL_SCORES, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.delete_all_scores -> done") async def upload_common_data(self, common_data, unique_id): logger.info("RankingClient.upload_common_data()") #--- request --- stream = streams.StreamOut(self.settings) stream.buffer(common_data) stream.u64(unique_id) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_UPLOAD_COMMON_DATA, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.upload_common_data -> done") async def delete_common_data(self, unique_id): logger.info("RankingClient.delete_common_data()") #--- request --- stream = streams.StreamOut(self.settings) stream.u64(unique_id) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_DELETE_COMMON_DATA, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.delete_common_data -> done") async def get_common_data(self, unique_id): logger.info("RankingClient.get_common_data()") #--- request --- stream = streams.StreamOut(self.settings) stream.u64(unique_id) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_GET_COMMON_DATA, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) data = stream.buffer() if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.get_common_data -> done") return data async def change_attributes(self, category, param, unique_id): logger.info("RankingClient.change_attributes()") #--- request --- stream = streams.StreamOut(self.settings) stream.u32(category) stream.add(param) stream.u64(unique_id) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_CHANGE_ATTRIBUTES, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.change_attributes -> done") async def change_all_attributes(self, param, unique_id): logger.info("RankingClient.change_all_attributes()") #--- request --- stream = streams.StreamOut(self.settings) stream.add(param) stream.u64(unique_id) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_CHANGE_ALL_ATTRIBUTES, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.change_all_attributes -> done") async def get_ranking(self, mode, category, order, unique_id, pid): logger.info("RankingClient.get_ranking()") #--- request --- stream = streams.StreamOut(self.settings) stream.u8(mode) stream.u32(category) stream.add(order) stream.u64(unique_id) stream.pid(pid) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_GET_RANKING, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) result = stream.extract(RankingResult) if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.get_ranking -> done") return result async def get_approx_order(self, category, order, score, unique_id, pid): logger.info("RankingClient.get_approx_order()") #--- request --- stream = streams.StreamOut(self.settings) stream.u32(category) stream.add(order) stream.u32(score) stream.u64(unique_id) stream.pid(pid) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_GET_APPROX_ORDER, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) order = stream.u32() if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.get_approx_order -> done") return order async def get_stats(self, category, order, flags): logger.info("RankingClient.get_stats()") #--- request --- stream = streams.StreamOut(self.settings) stream.u32(category) stream.add(order) stream.u32(flags) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_GET_STATS, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) stats = stream.extract(RankingStats) if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.get_stats -> done") return stats async def get_ranking_by_pid_list(self, pids, mode, category, order, unique_id): logger.info("RankingClient.get_ranking_by_pid_list()") #--- request --- stream = streams.StreamOut(self.settings) stream.list(pids, stream.pid) stream.u8(mode) stream.u32(category) stream.add(order) stream.u64(unique_id) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_GET_RANKING_BY_PID_LIST, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) result = stream.extract(RankingResult) if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.get_ranking_by_pid_list -> done") return result async def get_ranking_by_unique_id_list(self, ids, mode, category, order, unique_id): logger.info("RankingClient.get_ranking_by_unique_id_list()") #--- request --- stream = streams.StreamOut(self.settings) stream.list(ids, stream.u64) stream.u8(mode) stream.u32(category) stream.add(order) stream.u64(unique_id) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_GET_RANKING_BY_UNIQUE_ID_LIST, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) result = stream.extract(RankingResult) if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.get_ranking_by_unique_id_list -> done") return result async def get_cached_topx_ranking(self, category, order): logger.info("RankingClient.get_cached_topx_ranking()") #--- request --- stream = streams.StreamOut(self.settings) stream.u32(category) stream.add(order) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_GET_CACHED_TOPX_RANKING, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) result = stream.extract(RankingCachedResult) if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.get_cached_topx_ranking -> done") return result async def get_cached_topx_rankings(self, categories, order): logger.info("RankingClient.get_cached_topx_rankings()") #--- request --- stream = streams.StreamOut(self.settings) stream.list(categories, stream.u32) stream.list(order, stream.add) data = await self.client.request(self.PROTOCOL_ID, self.METHOD_GET_CACHED_TOPX_RANKINGS, stream.get()) #--- response --- stream = streams.StreamIn(data, self.settings) results = stream.list(RankingCachedResult) if not stream.eof(): raise ValueError("Response is bigger than expected (got %i bytes, but only %i were read)" %(stream.size(), stream.tell())) logger.info("RankingClient.get_cached_topx_rankings -> done") return results class RankingServer(RankingProtocol): def __init__(self): self.methods = { self.METHOD_UPLOAD_SCORE: self.handle_upload_score, self.METHOD_DELETE_SCORE: self.handle_delete_score, self.METHOD_DELETE_ALL_SCORES: self.handle_delete_all_scores, self.METHOD_UPLOAD_COMMON_DATA: self.handle_upload_common_data, self.METHOD_DELETE_COMMON_DATA: self.handle_delete_common_data, self.METHOD_GET_COMMON_DATA: self.handle_get_common_data, self.METHOD_CHANGE_ATTRIBUTES: self.handle_change_attributes, self.METHOD_CHANGE_ALL_ATTRIBUTES: self.handle_change_all_attributes, self.METHOD_GET_RANKING: self.handle_get_ranking, self.METHOD_GET_APPROX_ORDER: self.handle_get_approx_order, self.METHOD_GET_STATS: self.handle_get_stats, self.METHOD_GET_RANKING_BY_PID_LIST: self.handle_get_ranking_by_pid_list, self.METHOD_GET_RANKING_BY_UNIQUE_ID_LIST: self.handle_get_ranking_by_unique_id_list, self.METHOD_GET_CACHED_TOPX_RANKING: self.handle_get_cached_topx_ranking, self.METHOD_GET_CACHED_TOPX_RANKINGS: self.handle_get_cached_topx_rankings, } async def handle(self, client, method_id, input, output): if method_id in self.methods: await self.methods[method_id](client, input, output) else: logger.warning("Unknown method called on RankingServer: %i", method_id) raise common.RMCError("Core::NotImplemented") async def handle_upload_score(self, client, input, output): logger.info("RankingServer.upload_score()") #--- request --- score_data = input.extract(RankingScoreData) unique_id = input.u64() await self.upload_score(client, score_data, unique_id) async def handle_delete_score(self, client, input, output): logger.info("RankingServer.delete_score()") #--- request --- category = input.u32() unique_id = input.u64() await self.delete_score(client, category, unique_id) async def handle_delete_all_scores(self, client, input, output): logger.info("RankingServer.delete_all_scores()") #--- request --- unique_id = input.u64() await self.delete_all_scores(client, unique_id) async def handle_upload_common_data(self, client, input, output): logger.info("RankingServer.upload_common_data()") #--- request --- common_data = input.buffer() unique_id = input.u64() await self.upload_common_data(client, common_data, unique_id) async def handle_delete_common_data(self, client, input, output): logger.info("RankingServer.delete_common_data()") #--- request --- unique_id = input.u64() await self.delete_common_data(client, unique_id) async def handle_get_common_data(self, client, input, output): logger.info("RankingServer.get_common_data()") #--- request --- unique_id = input.u64() response = await self.get_common_data(client, unique_id) #--- response --- if not isinstance(response, bytes): raise RuntimeError("Expected bytes, got %s" %response.__class__.__name__) output.buffer(response) async def handle_change_attributes(self, client, input, output): logger.info("RankingServer.change_attributes()") #--- request --- category = input.u32() param = input.extract(RankingChangeAttributesParam) unique_id = input.u64() await self.change_attributes(client, category, param, unique_id) async def handle_change_all_attributes(self, client, input, output): logger.info("RankingServer.change_all_attributes()") #--- request --- param = input.extract(RankingChangeAttributesParam) unique_id = input.u64() await self.change_all_attributes(client, param, unique_id) async def handle_get_ranking(self, client, input, output): logger.info("RankingServer.get_ranking()") #--- request --- mode = input.u8() category = input.u32() order = input.extract(RankingOrderParam) unique_id = input.u64() pid = input.pid() response = await self.get_ranking(client, mode, category, order, unique_id, pid) #--- response --- if not isinstance(response, RankingResult): raise RuntimeError("Expected RankingResult, got %s" %response.__class__.__name__) output.add(response) async def handle_get_approx_order(self, client, input, output): logger.info("RankingServer.get_approx_order()") #--- request --- category = input.u32() order = input.extract(RankingOrderParam) score = input.u32() unique_id = input.u64() pid = input.pid() response = await self.get_approx_order(client, category, order, score, unique_id, pid) #--- response --- if not isinstance(response, int): raise RuntimeError("Expected int, got %s" %response.__class__.__name__) output.u32(response) async def handle_get_stats(self, client, input, output): logger.info("RankingServer.get_stats()") #--- request --- category = input.u32() order = input.extract(RankingOrderParam) flags = input.u32() response = await self.get_stats(client, category, order, flags) #--- response --- if not isinstance(response, RankingStats): raise RuntimeError("Expected RankingStats, got %s" %response.__class__.__name__) output.add(response) async def handle_get_ranking_by_pid_list(self, client, input, output): logger.info("RankingServer.get_ranking_by_pid_list()") #--- request --- pids = input.list(input.pid) mode = input.u8() category = input.u32() order = input.extract(RankingOrderParam) unique_id
of this class. """ return '%s:%s' % (exp_id, state_name) @classmethod def get_state_reference_for_question(cls, question_id): """Generate the state_reference for the state in the question. Args: question_id: str. The id of the question. Returns: str. The state_reference for a new instance of this class. """ return question_id @classmethod def get_instance_id(cls, entity_type, state_reference): """Generates the id for the newly created model instance. Args: entity_type: str. The type of entity i.e ENTITY_TYPE_EXPLORATION or ENTITY_TYPE_QUESTION which are declared in feconf.py. state_reference: str. The reference to the state for which model instance is being created. For exploration state it will be of the form 'exp_id:state_name', and for question it will be of the form 'question_id'. Returns: instance_id: str. The generated id of the instance. """ instance_id = ( '%s:%s' % (entity_type, state_reference)) return instance_id @classmethod def create_model_instance( cls, entity_type, state_reference, interaction_id, learner_answer_info_list, learner_answer_info_schema_version, accumulated_answer_info_json_size_bytes): """Creates a new LearnerAnswerDetailsModel for the given entity type then writes it to the datastore. Args: entity_type: str. The type of entity i.e ENTITY_TYPE_EXPLORATION or ENTITY_TYPE_QUESTION which are declared in feconf.py. state_reference: str. The reference to the state for which model instance is being created. For exploration state it will be of the form 'exp_id:state_name', and for question it will be of the form 'question_id'. interaction_id: str. The ID of the interaction for which the answer details are received. learner_answer_info_list: list(LearnerAnswerInfo). The list of LearnerAnswerInfo objects in dict format, which is defined in the stats_domain. learner_answer_info_schema_version: int. The version of LearnerAnswerInfo dict, which is currently supported by the Oppia. accumulated_answer_info_json_size_bytes: int. The size of the learner_answer_info_list in bytes. """ instance_id = cls.get_instance_id(entity_type, state_reference) answer_details_instance = cls( id=instance_id, entity_type=entity_type, state_reference=state_reference, interaction_id=interaction_id, learner_answer_info_list=learner_answer_info_list, learner_answer_info_schema_version=( learner_answer_info_schema_version), accumulated_answer_info_json_size_bytes=( accumulated_answer_info_json_size_bytes)) answer_details_instance.put() @classmethod def get_model_instance( cls, entity_type, state_reference): """Returns the model instance related to the entity type and state reference. Args: entity_type: str. The type of entity i.e ENTITY_TYPE_EXPLORATION or ENTITY_TYPE_QUESTION which are declared in feconf.py. state_reference: str. The reference to a state, for which the model is to be fetched. Foe exploration state it will be of the form 'exp_id:state_name', and for question state it will be of the form 'question_id'. Returns: LearnerAnswerDetailsModel or None. The answer details model associated with the given entity type and state reference or None if the instance is not found. Doesn't include deleted entries. """ instance_id = cls.get_instance_id(entity_type, state_reference) model_instance = cls.get(instance_id, strict=False) if model_instance: return model_instance return None @staticmethod def get_export_policy(): """Model does not contain user data.""" return base_models.EXPORT_POLICY.NOT_APPLICABLE class ExplorationAnnotationsModel(base_models.BaseMapReduceBatchResultsModel): """Batch model for storing MapReduce calculation output for exploration-level statistics. This model is keyed using a custom ID of the format {[EXPLORATION_ID]:[EXPLORATION_VERSION]}. """ # ID of exploration. exploration_id = ndb.StringProperty(indexed=True) # Version of exploration. version = ndb.StringProperty(indexed=False) # Number of students who started the exploration. num_starts = ndb.IntegerProperty(indexed=False) # Number of students who have completed the exploration. num_completions = ndb.IntegerProperty(indexed=False) # Keyed by state name that describes the numbers of hits for each state # {state_name: {'first_entry_count': ..., # 'total_entry_count': ..., # 'no_answer_count': ...}} state_hit_counts = ndb.JsonProperty(indexed=False) @staticmethod def get_deletion_policy(): """ExplorationAnnotationsModels are aggregated and anonymized, and cannot be tied back to an individual user. """ return base_models.DELETION_POLICY.NOT_APPLICABLE @staticmethod def get_user_id_migration_policy(): """ExplorationAnnotationsModel doesn't have any field with user ID.""" return base_models.USER_ID_MIGRATION_POLICY.NOT_APPLICABLE @classmethod def get_entity_id(cls, exploration_id, exploration_version): """Gets entity_id for a batch model based on given exploration state. Args: exploration_id: str. ID of the exploration currently being played. exploration_version: int. Version of the exploration currently being played. Returns: str. Returns entity_id for a new instance of this class. """ return '%s:%s' % (exploration_id, exploration_version) @classmethod def create( cls, exp_id, version, num_starts, num_completions, state_hit_counts): """Creates a new ExplorationAnnotationsModel and then writes it to the datastore. Args: exp_id: str. ID of the exploration currently being played. version: int. Version of exploration. num_starts: int. Number of students who started the exploration. num_completions: int. Number of students who have completed the exploration. state_hit_counts: dict. Describes the number of hits for each state. """ entity_id = cls.get_entity_id(exp_id, version) cls( id=entity_id, exploration_id=exp_id, version=version, num_starts=num_starts, num_completions=num_completions, state_hit_counts=state_hit_counts).put() @classmethod def get_versions(cls, exploration_id): """This function returns a list containing versions of ExplorationAnnotationsModel for a specific exploration_id. Args: exploration_id: str. ID of the exploration currently being played. Returns: list(int). List of versions corresponding to annotation models with given exp_id. """ return [ annotations.version for annotations in cls.get_all().filter( cls.exploration_id == exploration_id ).fetch(feconf.DEFAULT_QUERY_LIMIT)] @staticmethod def get_export_policy(): """Model does not contain user data.""" return base_models.EXPORT_POLICY.NOT_APPLICABLE class StateAnswersModel(base_models.BaseModel): """Store all answers of a state. This model encapsulates a sharded storage system for answers. Multiple entries in the model may contain answers for the same state. The initial entry has a shard ID of 0 and contains information about how many shards exist for this state. All other meta information is duplicated across all shards, since they are immutable or are local to that shard. This model is keyed using a custom ID of the format {[EXPLORATION_ID]:[EXPLORATION_VERSION]:[STATE_NAME]:[SHARD_ID]}. """ # This provides about 124k of padding for the other properties and entity # storage overhead (since the max entity size is 1MB). The meta data can # get close to 50k or exceed it, so plenty of padding is left to avoid # risking overflowing an entity. _MAX_ANSWER_LIST_BYTE_SIZE = 900000 # Explicitly store exploration ID, exploration version and state name # so we can easily do queries on them. exploration_id = ndb.StringProperty(indexed=True, required=True) exploration_version = ndb.IntegerProperty(indexed=True, required=True) state_name = ndb.StringProperty(indexed=True, required=True) # Which shard this corresponds to in the list of shards. If this is 0 it # represents the master shard which includes the shard_count. All other # shards look similar to the master shard except they do not populate # shard_count. shard_id = ndb.IntegerProperty(indexed=True, required=True) # Store interaction type to know which calculations should be performed. interaction_id = ndb.StringProperty(indexed=True, required=True) # Store how many extra shards are associated with this state. This is only # present when shard_id is 0. This starts at 0 (the main shard is not # counted). shard_count = ndb.IntegerProperty(indexed=True, required=False) # The total number of bytes needed to store all of the answers in the # submitted_answer_list, minus any overhead of the property itself. This # value is found by summing the JSON sizes of all answer dicts stored inside # submitted_answer_list. # pylint: disable=invalid-name accumulated_answer_json_size_bytes = ndb.IntegerProperty( indexed=False, required=False, default=0) # pylint: enable=invalid-name # List of answer dicts, each of which is stored as JSON blob. The content # of answer dicts is specified in core.domain.stats_domain.StateAnswers. # NOTE: The answers stored in submitted_answers_list must be sorted # according to the chronological order of their submission otherwise # TopNUnresolvedAnswersByFrequency calculation in # InteractionAnswerSummariesAggregator will output invalid results. submitted_answer_list = ndb.JsonProperty(repeated=True, indexed=False) # The version of the submitted_answer_list currently supported by Oppia. If # the internal JSON structure of submitted_answer_list changes, # CURRENT_SCHEMA_VERSION in this class needs to be incremented. schema_version = ndb.IntegerProperty( indexed=True, default=feconf.CURRENT_STATE_ANSWERS_SCHEMA_VERSION) @staticmethod def get_deletion_policy(): """StateAnswersModels are aggregated and anonymized, and cannot be tied back to an individual user. """ return base_models.DELETION_POLICY.NOT_APPLICABLE @staticmethod def get_user_id_migration_policy(): """StateAnswersModel doesn't have any field with user ID.""" return base_models.USER_ID_MIGRATION_POLICY.NOT_APPLICABLE @classmethod def _get_model( cls, exploration_id, exploration_version, state_name, shard_id): """Gets model instance based on given exploration state and shard_id. Args: exploration_id: str. The exploration ID. exploration_version: int. The version of the exploration to fetch answers for. state_name: str. The name of the state to fetch answers for. shard_id: int. The ID of the shard to fetch answers for. Returns: StateAnswersModel. The model associated with the specified exploration state and shard ID, or None if no answers have been submitted corresponding to this state. """ entity_id = cls._get_entity_id( exploration_id, exploration_version, state_name, shard_id) return cls.get(entity_id, strict=False) @classmethod def get_master_model(cls, exploration_id, exploration_version, state_name): """Retrieves the master model associated with the specific exploration state. Returns None if no answers have yet been submitted to the specified exploration state. Args: exploration_id: str. The exploration ID. exploration_version: int. The version of the exploration
import itertools import os import sys import pandas from geopandas import GeoDataFrame, sjoin from pandas import DataFrame from shapely.geometry import Polygon import numpy as np import math from gtfspy.util import wgs84_width, wgs84_height, df_to_utm_gdf, ut_to_utc_datetime, makedirs, wgs84_distance import random import matplotlib.pyplot as plt def split_data_frame_list(df, target_column, separator=None): """ df = dataframe to split, target_column = the column containing the values to split separator = the symbol used to perform the split returns: a dataframe with each entry for the target column separated, with each element moved into a new row. The values in the other columns are duplicated across the newly divided rows. """ row_accumulator = [] def split_list_to_rows(row, separate_by=None): if separate_by: split_row = row[target_column].split(separate_by) else: split_row = row[target_column] for s in split_row: new_row = row.to_dict() new_row[target_column] = s row_accumulator.append(new_row) df.apply(split_list_to_rows, axis=1, args=(separator, )) new_df = pandas.DataFrame(row_accumulator) return new_df def get_custom_spatial_bounds(distance, lat, lon): height = wgs84_height(distance) width = wgs84_width(distance, lat) return {'lon_min': lon-width, 'lon_max': lon+width, 'lat_min': lat-height, 'lat_max': lat+height} def create_grid_tesselation(xmin, ymin, xmax, ymax, width, height, random_seed=None): random.seed(a=random_seed) r_width = random.randint(0, width) r_height = random.randint(0, height) rows = int(np.ceil((ymax - ymin + r_height) / height)) cols = int(np.ceil((xmax - xmin + r_width) / width)) x_left_origin = xmin - r_width x_right_origin = x_left_origin + width y_top_origin = ymax + r_height y_bottom_origin = y_top_origin - height polygons = [] for i in range(cols): y_top = y_top_origin y_bottom = y_bottom_origin for j in range(rows): polygons.append(Polygon( [(x_left_origin, y_top), (x_right_origin, y_top), (x_right_origin, y_bottom), (x_left_origin, y_bottom)])) y_top = y_top - height y_bottom = y_bottom - height x_left_origin = x_left_origin + width x_right_origin = x_right_origin + width return polygons def stop_sample(gtfs, sample_size=None, sample_fraction=None, tesselation_distance=1000, random_seed=1, **kwargs): stops, crs_utm = df_to_utm_gdf(gtfs.stops()) total_n_stops = len(stops.index) assert sample_size or sample_fraction if sample_fraction: assert 0 < sample_fraction <= 1 if sample_size: sample_size = max(sample_size, total_n_stops * sample_fraction) else: sample_size = total_n_stops * sample_fraction sample_size = math.ceil(sample_size) print("Using sample size:", sample_size) polygons = create_grid_tesselation(*stops.total_bounds, height=tesselation_distance, width=tesselation_distance, random_seed=random_seed) grid = GeoDataFrame({'geometry': polygons}, crs=crs_utm) grid["id"] = grid.index stops = sjoin(stops, grid, how="left", op='within') stops_grouped = stops.groupby(["id"]) stops_grouped = stops_grouped.agg({'stop_I': 'count'}, axis=1) stops_grouped = stops_grouped.reset_index() sample_sizes = [] for i in stops_grouped.itertuples(): (div, mod) = divmod(sample_size * i.stop_I, total_n_stops) sample_sizes.append({"id": int(i.id), "div": div, "mod": mod}) to_allocate = sample_size - sum([x["div"] for x in sample_sizes]) sample_sizes = sorted(sample_sizes, key=lambda k: k['mod'], reverse=True) sample_sizes = [{"id": x["id"], "div": x["div"] + 1, "mod": x['mod']} if i < to_allocate else {"id": x["id"], "div": x["div"], "mod": x['mod']} for i, x in enumerate(sample_sizes)] stops = stops.sort_values("stop_I") sample = GeoDataFrame() for row in sample_sizes: if row["div"] > 0: sample = sample.append(stops.loc[stops.id == row["id"]].sample(n=row["div"], random_state=random_seed)) import matplotlib.pyplot as plt """ plt.figure() ax = grid.plot(facecolor="none", edgecolor='black', lw=0.7) ax = stops.plot(ax=ax, column="id") ax = sample.plot(ax=ax, color="red") plt.show() """ return sample["stop_I"].tolist() def split_into_equal_length_parts(array, n_splits): # Taken from: # http://stackoverflow.com/questions/2130016/splitting-a-list-of-arbitrary-size-into-only-roughly-n-equal-parts # Pretty nice solution. a = array n = n_splits k, m = divmod(len(a), n) lists = [a[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n)] assert(lists[0][0] == array[0]) assert(lists[-1][-1] == array[-1]) return lists def round_sigfigs(num, sig_figs): """Round to specified number of sigfigs. source: http://code.activestate.com/recipes/578114-round-number-to-specified-number-of-significant-di/ """ if num != 0: return round(num, -int(math.floor(math.log10(abs(num))) - (sig_figs - 1))) else: return 0 # Can't take the log of 0 def split_by_char_closest_to_middle(text, delimiter=" ", filler="\n"): n = len(text)/2 words = text.split(delimiter) candidate_len = 0 prev_len = 0 for word in words: candidate_len += len(word) if candidate_len > n: if n - prev_len < candidate_len - n: split_len = prev_len break else: split_len = candidate_len break prev_len = candidate_len candidate_len += 1 char_list = list(text) char_list[split_len] = filler text = "".join(char_list) text = text.replace(delimiter, " ") return text def apply_suffix(d, suffix, filler="_"): d = {k+filler+suffix: v for k, v in d.items()} return d def check_day_start(gtfs, desired_weekday): """ Assuming a weekly extract, gets the utc of the start of the desired weekday :param gtfs: :param day_start: :param desired_weekday: :return: """ day_start_add = 24 * 3600 day_start, _ = gtfs.get_day_start_ut_span() tz = gtfs.get_timezone_pytz() print("original weekday:", ut_to_utc_datetime(day_start, tz).weekday()) weekday = ut_to_utc_datetime(day_start, tz).weekday() day_start += day_start_add * (9-weekday if weekday > desired_weekday else 2-weekday) print("day start:", day_start) print("day start weekday:", ut_to_utc_datetime(day_start, tz).weekday()) return day_start def subtract_dataframes(df1, df2, suffixes=("_x", "_y"), drop_cols=False, **kwargs): """ Merges the dataframes and subtracts the matching columns :param df1: pandas DataFrame :param df2: pandas DataFrame :param suffixes: :param drop_cols: :param kwargs: :return: """ cols1 = list(df1) cols2 = list(df2) common_cols = [col for col in cols1 if col in cols2] kwargs["right_index"] = kwargs.get("right_index", True) kwargs["left_index"] = kwargs.get("left_index", True) diff_suffix = kwargs.get("diff_suffix", "|diff") df = df1.merge(df2, suffixes=suffixes, **kwargs) for col in common_cols: df[col+diff_suffix] = df[col+suffixes[0]] - df[col+suffixes[1]] if drop_cols: df.drop([col+suffixes[0], col+suffixes[1]], inplace=True, axis=1) return df def get_differences_between_dataframes(dfs): """ Subtracts the difference of all combinations of dataframes. Dataframes are matched by index. Columns with similar name are subtracted. :param dfs: dict, {name str: df pandas.DataFrame } :return: dfs_to_return list of pandas.DataFrame, names_to_return list of strings """ pairs = itertools.combinations(dfs.items(), 2) dfs_to_return = [] names_to_return = [] for (name1, df1), (name2, df2) in pairs: suffixes = ("|" + name1, "|" + name2) df = subtract_dataframes(df1, df2, suffixes=suffixes) df = df.reset_index() dfs_to_return.append(df) names_to_return.append((name1, name2)) return dfs_to_return, names_to_return def drop_nans(df): init_len = len(df.index) df = df.replace([np.inf, -np.inf], np.nan).dropna() len_after_clean = len(df.index) print("WARNING! Of {init} rows, {removed} rows with missing data were removed" .format(init=init_len, removed=init_len - len_after_clean)) return df def flatten_2d_array(array): return [item for sublist in array for item in sublist] def stops_within_buffer(input_geometry, gtfs, buffer_m=0): """ Returns the stops that are within the given buffer of a given geometry :param input_geometry: GeoDataFrame or shapely :param gtfs: GTFS :param buffer_m: int :return: """ stops_gdf, crs = df_to_utm_gdf(gtfs.stops()) len_stops_init = len(stops_gdf.index) if isinstance(input_geometry, GeoDataFrame): buffer_gdf = input_geometry elif isinstance(input_geometry, DataFrame): buffer_gdf, crs = df_to_utm_gdf(input_geometry) else: raise NotImplementedError buffer_gdf = buffer_gdf.copy() buffer_gdf["geometry"] = buffer_gdf["geometry"].buffer(buffer_m) stops_gdf = sjoin(stops_gdf, buffer_gdf, how='inner') len_stops_final = len(stops_gdf.index) print("filetered from {init} to {final} stops".format(init=len_stops_init, final=len_stops_final)) return stops_gdf def filter_stops_spatially(df, gtfs, cols, buffer=None, geometry=None): """ filters a dataframe spatially based on stops :param buffer: int or list :param df: DataFrame :param gtfs: GTFS :param cols: name of the stop column or list :param geometry: GeoDataFrame or list :return: DataFrame """ if not isinstance(cols, list): cols = [cols] if not isinstance(buffer, list): buffer = [buffer] if not isinstance(geometry, list): geometry = [geometry] assert len(cols) == len(buffer) == len(geometry) for col_arg, buffer_m, gdf in zip(cols, buffer, geometry): if buffer_m and gdf is not None: stops = stops_within_buffer(gdf, gtfs, buffer_m=buffer_m) else: stops = stops_within_buffer(gdf, gtfs) df = df.loc[df[col_arg].isin(stops["stop_I"])].copy() return df def tidy_value(v, ft=3): if abs(v) <= 10 ** (-1 * ft) or abs(v) >= 10 ** ft: return format(v, '.2E') else: return format(v, ".3f") def tidy_label(label, capitalize=False): if capitalize: label = label.capitalize() label = label.replace("_", " ") return label def find_df_value(df, key_col, key, value_col): print(key) return df.loc[df[key_col] == key, value_col].iloc[0] def query_yes_no(question, default="yes"): """Ask a yes/no question via raw_input() and return their answer. "question" is a string that is presented to the user. "default" is the presumed answer if the user just hits <Enter>. It must be "yes" (the default), "no" or None (meaning an answer is required of the user). The "answer" return value is True for "yes" or False for "no". """ valid = {"yes": True, "y": True, "ye": True, "no": False, "n": False} if default is None: prompt = " [y/n] " elif default == "yes": prompt = " [Y/n] " elif default == "no": prompt = " [y/N] " else: raise ValueError("invalid default answer: '%s'" % default) while True: sys.stdout.write(question + prompt) choice = input().lower() if default is not None and choice == '': return valid[default] elif choice in valid: return valid[choice] else: sys.stdout.write("Please respond with 'yes' or 'no' " "(or 'y' or 'n').\n") def save_fig(func): def inner(*args, **kwargs): if kwargs.get("plot_separately", False): fig = plt.figure(figsize=kwargs.get("figsize", [9, 5])) fig.add_subplot(111, projection=kwargs.get("projection", None)) func(*args) #plt.tight_layout() # plt.show() fig_format = kwargs.get("fig_format", "png") folder = kwargs.get("folder", "") fname = kwargs.get("fname", "") plotname = kwargs.get("plotname", "") fname = fname + plotname + "." + fig_format plt.tight_layout() plt.savefig(os.path.join(makedirs(folder), fname), bbox_inches='tight', format=fig_format, dpi=300) else: ax = func(*args,
if mit_param(k): return res if kwargs.get('d'): return float(res) return res except ZeroDivisionError: print("agla: Division durch Null (Krümmung)") return print("agla: nur einen Parameterwert angeben") return else: if len(wert) != 1: print("agla: einen Punkt in der Ebene angeben") return gl = self.args[0] p = wert[0] if not (isinstance(p, Vektor) and p.dim == 2): print('agla: einen Punkt der Kurve angeben') return x, y = Symbol('x'), Symbol('y') if gl.subs({x:p.x, y:p.y}).lhs != 0: print('agla: einen Punkt der Kurve angeben') return try: r = abs(einfach(1 / self.kruemm(p))) except ZeroDivisionError: print('agla: Division durch Null (Krümmung)') return if mit_param(r): return einfach(r) if kwargs.get('d'): return float(r) return einfach(r) krRadius = kr_radius def stueck(self, *bereich, **kwargs): """Kurvenstück / Änderung des Parameterbereiches""" if kwargs.get('h'): print("\nStück einer Kurve\n") print("Im Raum R^3 und in der Ebene R^2 (Parameterform,") print("Funktionsgleichung bzw. Polarkoordinaten):\n") print("Aufruf kurve . stück( par_unt, par_ob )\n") print(" kurve Kurve") print(" par_unt untere und obere Bereichsgrenzen") print(" par_ob des Kurvenparameters\n") return if self.dim == 2 and self._typ == 'imp': print('agla: nicht verfügbar (implizite Gleichung)') return bereich = sympify(bereich) if not (isinstance(bereich, Tuple) and len(bereich) == 2): print("agla: untere und obere Bereichsgrenzen angeben") return if not (is_zahl(bereich[0]) and is_zahl(bereich[1])): print("agla: zwei Zahlenwerte angeben") return return Kurve(self.pkt(), (self.par, bereich[0], bereich[1])) def kruemm(self, *wert, **kwargs): """Krümmung""" if kwargs.get('h'): print("\nKrümmung der Kurve\n") print("Im Raum R^3 und in der Ebene R^2 (Parameterform,") print("Funktionsgleichung bzw. Polarkoordinaten):\n") print("Aufruf kurve . krümm( /[ wert ] )\n") print(" kurve Kurve") print(" wert Wert des Kurvenparameters\n") print("Rückgabe bei Angabe eines Parameterwertes:") print(" Krümmung im zugehörigen Kurvenpunkt") print(" bei leerer Argumentliste oder freiem Bezeichner:") print(" Krümmung im allgemeinen Kurvenpunkt\n") print("In der Ebene R^2 (für Kurven, die mittels impliziter Gleichung") print("erzeugt wurden):\n") print("Aufruf kurve . krümm( punkt )\n") print(" punkt Punkt der Kurve\n") print("Zusatz d=1 Dezimaldarstellung\n") return if self.dim == 3 or (self.dim == 2 and self._typ != 'imp'): par = self.par pkt = self.pkt(par) p1 = pkt.diff(par) p2 = p1.diff(par) if self.dim == 3: try: k = einfach( ( p1.sp(p1) * p2.sp(p2) - (p1.sp(p2))**2 ) / (p1.sp(p1))**3 ) from sympy import sqrt # zur Vermeidung eines Fehlers k = sqrt(k) except ZeroDivisionError: return elif self.dim == 2 and self._typ != 'imp': try: k = determinante(Vektor(p1.x, p2.x), Vektor(p1.y, p2.y)) / \ (p1.x**2 + p1.y**2)**Rational(3, 2) except ZeroDivisionError: return if self.dim == 3 or (self.dim == 2 and self._typ != 'imp'): if not wert: if mit_param(k): return einfach(k) if kwargs.get('d'): return float(k) return einfach(k) if len(wert) == 1: pw = sympify(wert[0]) if not is_zahl(pw): print("agla: einen Zahlenwert angeben") return try: pw = nsimplify(pw) except RecursionError: pass res = k.subs(par, pw) if mit_param(res): return einfach(res) if kwargs.get('d'): return float(res) return einfach(res) print("agla: nur einen Parameterwert angeben") return else: if len(wert) != 1: print("agla: einen Punkt der Kurve angeben") return gl = self.args[0] p = wert[0] if not (isinstance(p, Vektor) and p.dim == 2): print('agla: einen Punkt in der Ebene angeben') return x, y = Symbol('x'), Symbol('y') if gl.subs({x:p.x, y:p.y}).lhs != 0: print('agla: einen Punkt der Kurve angeben') return Fx, Fy = gl.lhs.diff(x), gl.lhs.diff(y) zahl = (int, Integer, float, Float, Rational) Fxx = 0 if isinstance(Fx, zahl) else Fx.diff(x) Fyy = 0 if isinstance(Fy, zahl) else Fy.diff(y) Fxy = 0 if isinstance(Fx, zahl) else Fy.diff(y) Fyx = 0 if isinstance(Fy, zahl) else Fy.diff(x) d = determinante(Vektor(Fxx, Fyx, Fx), Vektor(Fxy, Fyy, Fy), \ Vektor(Fx, Fy, 0)) try: k = d / (Fx**2 + Fy**2)**Rational(3, 2) if not isinstance(k, zahl): k = k.subs({x:p.x, y:p.y}) except ZeroDivisionError: print('agla: Division durch Null') return if mit_param(k): return einfach(k) if kwargs.get('d'): return float(k) return einfach(k) def wind(self, *wert, **kwargs): """Windung, Torsion""" if self.dim != 3: print('agla: nur im Raum R^3 definiert') return if kwargs.get('h'): print("\nWindung / Torsion der Kurve\n") print("Im Raum R^3:\n") print("Aufruf kurve . wind( /[ wert ] )\n") print(" kurve Kurve") print(" wert Wert des Kurvenparameters\n") print("Rückgabe bei Angabe eines Parameterwertes:") print(" Windung im zugehörigen Kurvenpunkt") print(" bei leerer Argumentliste oder freiem Bezeichner:") print(" Windung im allgemeinen Kurvenpunkt\n") print("Zusatz d=1 Dezimaldarstellung\n") return par = self.par pkt = self.pkt(par) p1 = pkt.diff(par) p2 = p1.diff(par) p3 = p2.diff(par) k = self.kruemm(par) if k != 0: w = einfach( 1/k**2 * ( p1.vp(p2).sp(p3) ) / (p1.sp(p1))**3 ) else: print("agla: Division durch Null (Krümmung)") return if not wert: if mit_param(w): return w if kwargs.get('d'): return float(w) return w if len(wert) == 1: pw = sympify(wert[0]) if not is_zahl(pw): print("agla: einen Zahlenwert angeben") return try: pw = nsimplify(pw) except RecursionError: pass res = w.subs(par, pw) if mit_param(res): return res if kwargs.get('d'): return float(res) return res print("agla: nur einen Parameterwert angeben") return tors = wind def par_wert(self, *args, **kwargs): """Parameterwert eines Kurvenpunktes""" if mit_param(self): print('agla: nicht implementiert (Parameter)') return if self.dim == 2 and self._typ == 'imp': print('agla: nicht verfügbar (implizite Gleichung)') return if kwargs.get('h'): print("\nParameterwert eines Punktes der Kurve\n") print("Im Raum R^3 und in der Ebene R^2 (Parameterform,") print("Funktionsgleichung bzw. Polarkoordinaten):\n") print("Aufruf kurve . par_wert( punkt, start )\n") print(" kurve Kurve") print(" punkt Punkt") print(" start Startwert des nummerischen") print(" Verfahrens\n") print("Der Parameterwert wird über die Minimierung des Abstandes") print("des Punktes zu einem Kurvenpunkt gesucht; es wird 'nsolve'") print("verwendet (siehe SymPy-Dokumentation)\n") print("Zusatz d=1 - Dezimaldarstellung") print(" g=1 - Grafik der Abstandsfunktion") print(" (Abstand des gegebenen Punktes zu den Kur-") print(" venpunkten)\n") return if len(args) != 2: print("agla: einen Punkt und einen Startwert angeben") return punkt, start = args start = sympify(start) if not (isinstance(punkt, Vektor) and punkt.dim == self.dim and \ is_zahl(start)): if self.dim == 3: print("agla: einen Punkt im Raum und einen Startwert angeben") else: print("agla: einen Punkt in der Ebene und einen " + \ "Startwert angeben") return from numpy import abs start = float(start) if kwargs.get('g'): import numpy as np from numpy import (pi, sqrt, sin, cos, tan, exp, log, sinh, cosh, tanh, arcsin, arccos, arctan, arcsinh, arccosh, arctanh) ln = log import matplotlib.pyplot as plt print("\nAbstandsfunktion") fig = plt.figure(figsize=(4, 3)) plt.axes().set_aspect('equal') ax = fig.add_subplot(1, 1, 1) t = Symbol('t') aa = str(punkt.abstand(self.pkt(t))**2) t = np.arange(float(self.ber[0]), float(self.ber[1]), 1/200.0) y = sqrt(abs(eval(aa))) for tick in ax.xaxis.get_major_ticks(): tick.label1.set_fontsize(9) tick.label1.set_fontname('Times New Roman') for tick in ax.yaxis.get_major_ticks(): tick.label1.set_fontsize(9) tick.label1.set_fontname('Times New Roman') for pos in ('top', 'bottom', 'right', 'left'): ax.spines[pos].set_linewidth(0.5) plt.plot(t, y) plt.show() return t = Symbol('t') f = lambda t: punkt.abstand(self.pkt(t))**2 f1 = lambda t: punkt.abstand(self.pkt(t)).evalf() d = kwargs.get('d') try: res = nsolve(f(t).diff(t), start) except: print("agla: mit einem anderen Startwert versuchen\n" + \ " der Punkt ist eventuell kein Kurvenpunkt") return if abs(f1(res)) < 10**(-6): try: res = nsimplify(res) if d: return float(res) return res except RecursionError: pass if d: return float(res) return res else: print("agla: mit einem anderen Startwert versuchen\n" + \ " der Punkt ist eventuell kein Kurvenpunkt") parWert = par_wert def schnitt(self, *args, **kwargs): """Schnitt mit einer anderen Kurve""" if self.dim == 2 and self._typ == 'imp': print('agla: nicht implementiert (implizite Gleichung)') return if mit_param(self): print('agla: nicht implementiert (Parameter)') return if kwargs.get('h'): print("\nParameterwerte eines Schnittpunktes mit einer anderen") print("parametrisierten Kurve\n") print("Im Raum R^3 und in der Ebene R^2 (Parameterform,") print("Funktionsgleichung bzw. Polarkoordinaten):\n") print("Aufruf kurve . schnitt( kurve1, start1, start2 )\n") print(" kurve Kurve") print(" start Startwert des nummerischen Verfahrens\n") print("Rückgabe ( Parameterwert für die gegebene Kurve,") print(" Parameterwert für die andere Kurve )\n") print("Die beiden Startwerte für die Kurven sind so genau wie möglich") print("anzugeben; die Parameterwerte werden über die Minimierung des") print("Abstandes der Kurvenpunkte zueinander gesucht; es wird 'nsolve'") print("verwendet (siehe SymPy-Dokumentation)\n") return if len(args) != 3: print("agla: drei Argumente angeben") return kurve, start1, start2 = args if isinstance(kurve, Kurve) and mit_param(kurve): print("agla: nicht implementiert(Parameter)") return start1 = sympify(start1) start2 = sympify(start2) if not (isinstance(kurve, Kurve) and kurve.dim == self.dim and is_zahl(start1) and is_zahl(start2)): if self.dim ==
<reponame>davidt/rbtools<gh_stars>0 from __future__ import print_function, unicode_literals import fnmatch import logging import marshal import os import re import six import socket import stat import string import subprocess from rbtools.clients import SCMClient, RepositoryInfo from rbtools.clients.errors import (AmendError, EmptyChangeError, InvalidRevisionSpecError, SCMError, TooManyRevisionsError) from rbtools.utils.checks import check_gnu_diff, check_install from rbtools.utils.filesystem import make_empty_files, make_tempfile from rbtools.utils.process import die, execute class P4Wrapper(object): """A wrapper around p4 commands. All calls out to p4 go through an instance of this class. It keeps a separation between all the standard SCMClient logic and any parsing and handling of p4 invocation and results. """ KEYVAL_RE = re.compile('^([^:]+): (.+)$') COUNTERS_RE = re.compile('^([^ ]+) = (.+)$') def __init__(self, options): self.options = options def is_supported(self): return check_install(['p4', 'help']) def counters(self): lines = self.run_p4(['counters'], split_lines=True) return self._parse_keyval_lines(lines, self.COUNTERS_RE) def change(self, changenum, marshalled=True, password=None): return self.run_p4(['change', '-o', str(changenum)], password=password, ignore_errors=True, none_on_ignored_error=True, marshalled=marshalled) def modify_change(self, new_change_spec): """new_change_spec must contain the changelist number.""" return self.run_p4(['change', '-i'], input_string=new_change_spec) def files(self, path): return self.run_p4(['files', path], marshalled=True) def filelog(self, path): return self.run_p4(['filelog', path], marshalled=True) def fstat(self, depot_path, fields=[]): args = ['fstat'] if fields: args += ['-T', ','.join(fields)] args.append(depot_path) lines = self.run_p4(args, split_lines=True) stat_info = {} for line in lines: line = line.strip() if line.startswith('... '): parts = line.split(' ', 2) stat_info[parts[1]] = parts[2] return stat_info def info(self): lines = self.run_p4(['info'], ignore_errors=True, split_lines=True) return self._parse_keyval_lines(lines) def opened(self, changenum): return self.run_p4(['opened', '-c', str(changenum)], marshalled=True) def print_file(self, depot_path, out_file=None): cmd = ['print'] if out_file: cmd += ['-o', out_file] cmd += ['-q', depot_path] return self.run_p4(cmd) def where(self, depot_path): return self.run_p4(['where', depot_path], marshalled=True) def run_p4(self, p4_args, marshalled=False, password=<PASSWORD>, ignore_errors=False, input_string=None, *args, **kwargs): """Invoke p4. In the current implementation, the arguments 'marshalled' and 'input_string' cannot be used together, i.e. this command doesn't allow inputting and outputting at the same time. """ cmd = ['p4'] if marshalled: cmd += ['-G'] if getattr(self.options, 'p4_client', None): cmd += ['-c', self.options.p4_client] if getattr(self.options, 'p4_port', None): cmd += ['-p', self.options.p4_port] if getattr(self.options, 'p4_passwd', None): cmd += ['-P', self.options.p4_passwd] cmd += p4_args if password is not None: cmd += ['-P', password] if marshalled: p = subprocess.Popen(cmd, stdout=subprocess.PIPE) result = [] has_error = False while 1: try: data = marshal.load(p.stdout) except EOFError: break else: result.append(data) if data.get('code', None) == 'error': has_error = True rc = p.wait() if not ignore_errors and (rc or has_error): for record in result: if 'data' in record: print(record['data']) raise SCMError('Failed to execute command: %s\n' % cmd) return result elif input_string is not None: p = subprocess.Popen(cmd, stdin=subprocess.PIPE) p.communicate(input_string) # Send input, wait, set returncode if not ignore_errors and p.returncode: raise SCMError('Failed to execute command: %s\n' % cmd) return None else: result = execute(cmd, ignore_errors=ignore_errors, *args, **kwargs) return result def _parse_keyval_lines(self, lines, regex=KEYVAL_RE): keyvals = {} for line in lines: m = regex.match(line) if m: key = m.groups()[0] value = m.groups()[1] keyvals[key] = value.strip() return keyvals class PerforceClient(SCMClient): """ A wrapper around the p4 Perforce tool that fetches repository information and generates compatible diffs. """ name = 'Perforce' can_amend_commit = True supports_diff_exclude_patterns = True supports_diff_extra_args = True supports_patch_revert = True DATE_RE = re.compile(br'(\w+)\s+(\w+)\s+(\d+)\s+(\d\d:\d\d:\d\d)\s+' br'(\d\d\d\d)') ENCODED_COUNTER_URL_RE = re.compile('reviewboard.url\.(\S+)') REVISION_CURRENT_SYNC = '--rbtools-current-sync' REVISION_PENDING_CLN_PREFIX = '--rbtools-pending-cln:' REVISION_DEFAULT_CLN = 'default' ADDED_FILES_RE = re.compile(r'^==== //depot/(\S+)#\d+ ==A== \S+ ====$', re.M) DELETED_FILES_RE = re.compile(r'^==== //depot/(\S+)#\d+ ==D== \S+ ====$', re.M) def __init__(self, p4_class=P4Wrapper, **kwargs): super(PerforceClient, self).__init__(**kwargs) self.p4 = p4_class(self.options) def get_repository_info(self): if not self.p4.is_supported(): logging.debug('Unable to execute "p4 help": skipping Perforce') return None p4_info = self.p4.info() # For the repository path, we first prefer p4 brokers, then the # upstream p4 server. If neither of those are found, just return None. repository_path = (p4_info.get('Broker address') or p4_info.get('Server address')) if repository_path is None: return None client_root = p4_info.get('Client root') if client_root is None: return None norm_cwd = os.path.normcase(os.path.realpath(os.getcwd()) + os.path.sep) norm_client_root = os.path.normcase(os.path.realpath(client_root) + os.path.sep) # Don't accept the repository if the current directory is outside the # root of the Perforce client. if not norm_cwd.startswith(norm_client_root): return None try: parts = repository_path.split(':') hostname = None if len(parts) == 3 and parts[0] == 'ssl': hostname = parts[1] port = parts[2] elif len(parts) == 2: hostname, port = parts if not hostname: die('Path %s is not a valid Perforce P4PORT' % repository_path) info = socket.gethostbyaddr(hostname) # Build the list of repository paths we want to tr to look up. servers = [hostname] if info[0] != hostname: servers.append(info[0]) # If aliases exist for hostname, create a list of alias:port # strings for repository_path. if info[1]: servers += info[1] repository_path = ['%s:%s' % (server, port) for server in servers] # If there's only one repository path found, then we don't # need to do a more expensive lookup of all registered # paths. We can look up just this path directly. if len(repository_path) == 1: repository_path = repository_path[0] except (socket.gaierror, socket.herror): pass server_version = p4_info.get('Server version', None) if not server_version: return None m = re.search(r'[^ ]*/([0-9]+)\.([0-9]+)/[0-9]+ .*$', server_version, re.M) if m: self.p4d_version = int(m.group(1)), int(m.group(2)) else: # Gracefully bail if we don't get a match return None # Now that we know it's Perforce, make sure we have GNU diff # installed, and error out if we don't. check_gnu_diff() return RepositoryInfo(path=repository_path, supports_changesets=True) def parse_revision_spec(self, revisions=[]): """Parses the given revision spec. The 'revisions' argument is a list of revisions as specified by the user. Items in the list do not necessarily represent a single revision, since the user can use SCM-native syntaxes such as "r1..r2" or "r1:r2". SCMTool-specific overrides of this method are expected to deal with such syntaxes. This will return a dictionary with the following keys: 'base': A revision to use as the base of the resulting diff. 'tip': A revision to use as the tip of the resulting diff. These will be used to generate the diffs to upload to Review Board (or print). The diff for review will include the changes in (base, tip]. If zero revisions are passed in, this will return the 'default' changelist. If a single revision is passed in, this will return the parent of that revision for 'base' and the passed-in revision for 'tip'. The result may have special internal revisions or prefixes based on whether the changeset is submitted, pending, or shelved. If two revisions are passed in, they need to both be submitted changesets. """ n_revs = len(revisions) if n_revs == 0: return { 'base': self.REVISION_CURRENT_SYNC, 'tip': (self.REVISION_PENDING_CLN_PREFIX + self.REVISION_DEFAULT_CLN) } elif n_revs == 1: # A single specified CLN can be any of submitted, pending, or # shelved. These are stored with special prefixes and/or names # because the way that we get the contents of the files changes # based on which of these is in effect. status = self._get_changelist_status(revisions[0]) # Both pending and shelved changes are treated as "pending", # through the same code path. This is because the documentation for # 'p4 change' tells a filthy lie, saying that shelved changes will # have their status listed as shelved. In fact, when you shelve # changes, it sticks the data up on the server, but leaves your # working copy intact, and the change is still marked as pending. # Even after reverting the working copy, the change won't have its # status as "shelved". That said, there's perhaps a way that it # could (perhaps from other clients?), so it's still handled in # this conditional. # # The diff routine will first look for opened files in the client, # and if that fails, it will then do the diff against the shelved # copy. if status in ('pending', 'shelved'): return { 'base': self.REVISION_CURRENT_SYNC, 'tip': self.REVISION_PENDING_CLN_PREFIX + revisions[0], } elif status == 'submitted': try: cln = int(revisions[0]) return { 'base': str(cln - 1), 'tip': str(cln), } except ValueError: raise InvalidRevisionSpecError( '%s does not appear to be a valid changelist' % revisions[0]) else: raise InvalidRevisionSpecError( '%s does not appear to be a valid changelist' % revisions[0]) elif n_revs == 2: result = {} # The base revision must be a submitted CLN status = self._get_changelist_status(revisions[0]) if
test_failure=SHARED["netfac_r_ok"].id) # re-create deleted netfac r_data = self.assert_create(self.db_org_admin, "netfac", data) # re-delete self.assert_delete(self.db_org_admin, "netfac", test_success=SHARED["netfac_id"]) ########################################################################## def test_org_admin_002_POST_PUT_DELETE_poc(self): data = self.make_data_poc(net_id=SHARED["net_rw_ok"].id) r_data = self.assert_create( self.db_org_admin, "poc", data, test_failures={ "invalid": { "net_id": "" }, "perms": { # set network to one the user doesnt have perms to "net_id": SHARED["net_r_ok"].id }, "status": { "net_id": SHARED["net_rw_pending"].id } }) SHARED["poc_id"] = r_data.get("id") self.assert_update(self.db_org_admin, "poc", SHARED["poc_id"], {"role": "Sales"}, test_failures={ "invalid": { "role": "NOPE" }, "perms": { "net_id": SHARED["net_r_ok"].id } }) self.assert_delete(self.db_org_admin, "poc", test_success=SHARED["poc_id"], test_failure=SHARED["poc_r_ok_users"].id) ########################################################################## def test_org_admin_002_POST_PUT_DELETE_ixlan(self): data = self.make_data_ixlan(ix_id=SHARED["ix_rw_ok"].id) r_data = self.assert_create( self.db_org_admin, "ixlan", data, test_failures={ "invalid": { "ix_id": "" }, "perms": { "ix_id": SHARED["ix_r_ok"].id }, "status": { "ix_id": SHARED["ix_rw_pending"].id } }) SHARED["ixlan_id"] = r_data["id"] self.assert_update(self.db_org_admin, "ixlan", SHARED["ixlan_id"], {"name": self.make_name("Test")}, test_failures={ "invalid": { "mtu": "NEEDS TO BE INT" }, "perms": { "ix_id": SHARED["ix_r_ok"].id } }) self.assert_delete(self.db_org_admin, "ixlan", test_success=SHARED["ixlan_id"], test_failure=SHARED["ixlan_r_ok"].id) ########################################################################## def test_org_admin_002_POST_PUT_DELETE_ixpfx(self): data = self.make_data_ixpfx(ixlan_id=SHARED["ixlan_rw_ok"].id, prefix="192.168.3.11/25") r_data = self.assert_create( self.db_org_admin, "ixpfx", data, test_failures={ "invalid": { "prefix": "127.0.0.0/8" }, "perms": { "prefix": "192.168.127.12/24", "ixlan_id": SHARED["ixlan_r_ok"].id }, "status": { "prefix": "192.168.127.12/24", "ixlan_id": SHARED["ixlan_rw_pending"].id } }) SHARED["ixpfx_id"] = r_data["id"] #self.assert_create(self.db_org_admin, "ixpfx", data, test_failures={ # "invalid": { # "prefix": "206.126.236.0/25" # }, #}, test_success=False) self.assert_update(self.db_org_admin, "ixpfx", SHARED["ixpfx_id"], {"prefix": "192.168.3.11/24"}, test_failures={ "invalid": { "prefix": "NEEDS TO BE VALID PREFIX" }, "perms": { "ixlan_id": SHARED["ixlan_r_ok"].id } }) self.assert_delete(self.db_org_admin, "ixpfx", test_success=SHARED["ixpfx_id"], test_failure=SHARED["ixpfx_r_ok"].id) # re-create deleted ixpfx r_data = self.assert_create(self.db_org_admin, "ixpfx", data) # re-delete self.assert_delete(self.db_org_admin, "ixpfx", test_success=SHARED["ixpfx_id"]) # re-creating a deleted ixpfx that we dont have write permissions do # should fail pfx = IXLanPrefix.objects.create(ixlan=SHARED["ixlan_r_ok"], prefix=u"192.168.127.12/24", protocol="IPv4") pfx.delete() data.update(prefix="192.168.127.12/24") r_data = self.assert_create(self.db_org_admin, "ixpfx", data, test_failures={"invalid": { }}, test_success=False) # make sure protocols are validated r_data = self.assert_create(self.db_org_admin, "ixpfx", data, test_failures={ "invalid": { "prefix": "192.168.3.11/24", "protocol": "IPv6" }, }, test_success=False) ########################################################################## def test_org_admin_002_POST_PUT_DELETE_netixlan(self): data = self.make_data_netixlan(net_id=SHARED["net_rw_ok"].id, ixlan_id=SHARED["ixlan_rw_ok"].id) r_data = self.assert_create( self.db_org_admin, "netixlan", data, test_failures={ "invalid": { "ipaddr4": u"a b c" }, "perms": { # set network to one the user doesnt have perms to "ipaddr4": self.get_ip4(), "ipaddr6": self.get_ip6(), "net_id": SHARED["net_r_ok"].id } }) SHARED["netixlan_id"] = r_data.get("id") self.assert_update(self.db_org_admin, "netixlan", SHARED["netixlan_id"], {"speed": 2000}, test_failures={ "invalid": { "ipaddr4": "NEEDS TO BE VALID IP" }, "perms": { "net_id": SHARED["net_r_ok"].id } }) self.assert_delete(self.db_org_admin, "netixlan", test_success=SHARED["netixlan_id"], test_failure=SHARED["netixlan_r_ok"].id) ########################################################################## def test_org_admin_002_POST_PUT_DELETE_ixfac(self): data = { "fac_id": SHARED["fac_rw2_ok"].id, "ix_id": SHARED["ix_rw2_ok"].id } r_data = self.assert_create( self.db_org_admin, "ixfac", data, test_failures={ "invalid": { "ix_id": "" }, "perms": { # set network to one the user doesnt have perms to "ix_id": SHARED["ix_r_ok"].id }, "status": { "fac_id": SHARED["fac_rw2_pending"].id, "ix_id": SHARED["ix_rw2_pending"].id } }) SHARED["ixfac_id"] = r_data.get("id") self.assert_update(self.db_org_admin, "ixfac", SHARED["ixfac_id"], {"fac_id": SHARED["fac_r2_ok"].id}, test_failures={ "invalid": { "fac_id": "" }, "perms": { "ix_id": SHARED["ix_r_ok"].id } }) self.assert_delete(self.db_org_admin, "ixfac", test_success=SHARED["ixfac_id"], test_failure=SHARED["ixfac_r_ok"].id) ########################################################################## def test_org_admin_003_PUT_org(self): self.assert_update(self.db_org_admin, "org", SHARED["org_rw_ok"].id, {"name": self.make_name("Test")}, test_failures={ "invalid": { "name": "" }, "perms": { "id": SHARED["org_r_ok"].id } }) ########################################################################## def test_zz_org_admin_004_DELETE_org(self): self.assert_delete(self.db_org_admin, "org", test_success=SHARED["org_rw_ok"].id, test_failure=SHARED["org_r_ok"].id) ########################################################################## # GUEST TESTS ########################################################################## def test_guest_001_GET_org(self): self.assert_get_handleref(self.db_guest, "org", SHARED["org_r_ok"].id) ########################################################################## def test_guest_001_GET_net(self): data = self.assert_get_handleref(self.db_guest, "net", SHARED["net_r_ok"].id) for poc in data.get("poc_set"): self.assertEqual(poc["visible"], "Public") ########################################################################## def __test_guest_001_GET_asn(self): """ ASN endpoint is currently disabled """ return self.assert_get_handleref(self.db_guest, "asn", SHARED["net_r_ok"].asn) with self.assertRaises(InvalidRequestException) as inst: self.assert_get_handleref(self.db_guest, "asn", "%s[" % SHARED["net_r_ok"].asn) ########################################################################## def test_guest_001_GET_ix(self): self.assert_get_handleref(self.db_guest, "ix", SHARED["ix_r_ok"].id) ########################################################################## def test_guest_001_GET_fac(self): self.assert_get_handleref(self.db_guest, "fac", SHARED["fac_r_ok"].id) ########################################################################## def test_guest_001_GET_poc_private(self): self.assert_get_forbidden(self.db_guest, "poc", SHARED["poc_r_ok_private"].id) ########################################################################## def test_guest_001_GET_poc_users(self): self.assert_get_forbidden(self.db_guest, "poc", SHARED["poc_r_ok_users"].id) ########################################################################## def test_guest_001_GET_poc_public(self): self.assert_get_handleref(self.db_guest, "poc", SHARED["poc_r_ok_public"].id) ########################################################################## def test_guest_001_GET_nefac(self): self.assert_get_handleref(self.db_guest, "netfac", SHARED["netfac_r_ok"].id) ########################################################################## def test_guest_001_GET_netixlan(self): self.assert_get_handleref(self.db_guest, "netixlan", SHARED["netixlan_r_ok"].id) ########################################################################## def test_guest_001_GET_ixfac(self): self.assert_get_handleref(self.db_guest, "ixfac", SHARED["ixfac_r_ok"].id) ########################################################################## def test_guest_001_GET_ixlan(self): self.assert_get_handleref(self.db_guest, "ixlan", SHARED["ixlan_r_ok"].id) ########################################################################## def test_guest_001_GET_ixpfx(self): self.assert_get_handleref(self.db_guest, "ixpfx", SHARED["ixpfx_r_ok"].id) ########################################################################## def test_guest_001_GET_list_404(self): for tag in REFTAG_MAP: with self.assertRaises(NotFoundException) as inst: data = self.db_guest.all(tag, limit=1, id=99999999) if tag == "net": with self.assertRaises(NotFoundException) as inst: data = self.db_guest.all(tag, limit=1, asn=99999999999) for tag in REFTAG_MAP: if tag == "poc": data = self.db_guest.all(tag, id=SHARED["poc_r_ok_public"].id) else: data = self.db_guest.all(tag, id=SHARED["%s_r_ok" % tag].id) self.assertEqual(len(data), 1) self.assert_handleref_integrity(data[0]) ########################################################################## def test_guest_005_list_all(self): data = self.db_guest.all("org") self.assertGreater(len(data), 1) self.assert_handleref_integrity(data[0]) self.assert_data_integrity(data[0], "org") ########################################################################## def test_guest_005_list_all_tags(self): for tag in REFTAG_MAP: if tag == "poc": continue data = self.db_guest.all(tag, limit=10) self.assertLess(len(data), 11) self.assert_handleref_integrity(data[0]) data = self.db_guest.all("poc", limit=10, visible="Public") self.assertLess(len(data), 11) self.assert_handleref_integrity(data[0]) ########################################################################## def test_org_admin_005_list(self): for tag in REFTAG_MAP: data = self.db_org_admin.all(tag, limit=10) self.assertLess(len(data), 11) self.assert_handleref_integrity(data[0]) for row in data: self.assertEqual(row["status"], "ok") ########################################################################## def test_guest_005_fields_filter(self): data = self.db_guest.all("org", limit=10, fields=",".join( ["name", "status"])) self.assertGreater(len(data), 0) for row in data: self.assertEqual(sorted(row.keys()), sorted([u"name", u"status"])) data = self.db_guest.get("org", 1, fields=",".join(["name", "status"])) self.assertGreater(len(data), 0) self.assertEqual(sorted(data[0].keys()), sorted([u"name", u"status"])) ########################################################################## def test_guest_005_list_limit(self): data = self.db_guest.all("org", limit=10) self.assertEqual(len(data), 10) self.assert_handleref_integrity(data[0]) self.assert_data_integrity(data[0], "org") ########################################################################## def test_guest_005_list_pagination(self): n = 1 for i in range(0, 10): data = self.db_guest.all("org", skip=i * 10, limit=10) for row in data: self.assertEqual(row.get("id"), n) n += 1 ########################################################################## def test_guest_005_list_since(self): data = self.db_guest.all("net", since=int(START_TIMESTAMP) - 10, status="deleted") self.assertEqual(len(data), 2) self.assert_handleref_integrity(data[0]) self.assert_data_integrity(data[0], "net") ########################################################################## def test_guest_005_get_depth_all(self): """ Test all end points single object GET with all valid depths This also asserts data structure integrity for objects expanded by the depth parameter """ for depth in [0, 1, 2, 3, 4]: for tag, slz in REFTAG_MAP_SLZ.items(): note_tag = "(%s %s)" % (tag, depth) if tag == "poc": o = SHARED["%s_r_ok_public" % tag] else: o = SHARED["%s_r_ok" % tag] data = self.db_guest.get(tag, o.id, depth=depth) self.assertEqual(len(data), 1, msg="Data length %s" % note_tag) pk_flds, n_flds = self.serializer_related_fields(slz) obj = data[0] self.assert_related_depth(obj, slz, depth, depth, note_tag, typ="single") ########################################################################## def test_guest_005_list_depth_all(self): """ Tests all end points multiple object GET with all valid depths This also asserts data structure integrity for objects expanded by the depth parameter """ for depth in [0, 1, 2, 3]: for tag, slz in REFTAG_MAP_SLZ.items(): note_tag = "(%s %s)" % (tag, depth) if tag == "poc": o = SHARED["%s_r_ok_public" % tag] else: o = SHARED["%s_r_ok" % tag] data = self.db_guest.all(tag, id=o.id, depth=depth) self.assertEqual(len(data), 1, msg="Data length %s" % note_tag) pk_flds, n_flds = self.serializer_related_fields(slz) obj = data[0] self.assert_related_depth(obj, slz, depth, depth, note_tag, typ="listing") ########################################################################## def test_guest_005_list_depth_not_set(self): data = self.db_guest.all("org", id=SHARED["org_r_ok"].id) self.assertEqual(data[0].get("net_set"), None) ########################################################################## def test_guest_005_list_depth_0(self): data = self.db_guest.all("org", id=SHARED["org_r_ok"].id, depth=0) self.assertEqual(data[0].get("net_set"), None) ########################################################################## def test_guest_005_list_depth_1(self): data = self.db_guest.all("org", id=SHARED["org_r_ok"].id, depth=1) self.assertEqual(len(data[0].get("net_set")), 3) self.assertEqual(data[0].get("net_set")[0], SHARED["net_r_ok"].id) self.assertEqual(data[0].get("net_set")[1], SHARED["net_r2_ok"].id) self.assertEqual(data[0].get("net_set")[2], SHARED["net_r3_ok"].id) ############################################################################# def test_guest_005_list_depth_2(self): data = self.db_guest.all("org", id=SHARED["org_r_ok"].id, depth=2) self.assertEqual(len(data[0].get("net_set")), 3) obj = data[0].get("net_set")[0] self.assertEqual(obj.get("id"), SHARED["net_r_ok"].id) self.assert_data_integrity(obj, "net", ignore=["org_id"]) ############################################################################# def test_guest_005_list_depth_3(self): data = self.db_guest.all("org", id=SHARED["org_r_ok"].id, depth=3) self.assertEqual(len(data[0].get("net_set")), 3) obj = data[0].get("net_set")[0] self.assertEqual(obj.get("id"), SHARED["net_r_ok"].id) self.assert_data_integrity(obj, "net", ignore=["org_id"]) obj = obj.get("netfac_set") self.assertEqual(len(obj), 1) self.assertEqual(obj[0], SHARED["netfac_r_ok"].id) ########################################################################## def test_guest_005_list_filter_dates_numeric(self): for flt, ass in NUMERIC_TESTS.items(): for fld in ["created", "updated"]: if flt in ["gt", "gte"]: DATE = DATES["yesterday"] elif flt in ["lt"]: DATE = DATES["tomorrow"] else: DATE = DATES["today"] if flt: kwargs = {"%s__%s" % (fld, flt): DATE[1]} else: kwargs = {fld: DATE[1]} data = self.db_guest.all("fac", limit=10, **kwargs) self.assertGreater( len(data), 0, msg="%s_%s - data length assertion" % (fld, flt)) for row in data: self.assert_data_integrity(row, "fac") try: dt = datetime.datetime.strptime( row[fld], "%Y-%m-%dT%H:%M:%SZ").date() except ValueError: dt = datetime.datetime.strptime( row[fld], "%Y-%m-%dT%H:%M:%S.%fZ").date() fnc = getattr(self, "assert%s" % ass) fnc(dt, DATE[0], msg="%s__%s: %s, %s" % (fld, flt, row[fld], DATE[1])) ########################################################################## def test_guest_005_list_filter_numeric(self): data = self.db_guest.all("net", asn=SHARED["net_r_ok"].asn) self.assertEqual(len(data), 1) self.assert_data_integrity(data[0], "net") self.assertEqual(data[0]["asn"], SHARED["net_r_ok"].asn) ########################################################################## def test_guest_005_list_filter_numeric_lte(self): data = self.db_guest.all("fac", id__lte=SHARED["fac_rw_ok"].id) self.assertGreater(len(data), 0) self.assert_data_integrity(data[0], "fac") for fac in data: self.assertLessEqual(long(fac["id"]), SHARED["fac_rw_ok"].id) ########################################################################## def test_guest_005_list_filter_numeric_lt(self): data = self.db_guest.all("fac", id__lt=SHARED["fac_rw_ok"].id) self.assertGreater(len(data), 0) self.assert_data_integrity(data[0], "fac") for fac in data: self.assertLess(long(fac["id"]), SHARED["fac_rw_ok"].id) ########################################################################## def test_guest_005_list_filter_numeric_gte(self): data = self.db_guest.all("fac", id__gte=SHARED["fac_r_ok"].id) self.assertGreater(len(data), 0) self.assert_data_integrity(data[0], "fac") for fac in data: self.assertGreaterEqual(long(fac["id"]), SHARED["fac_r_ok"].id) ########################################################################## def test_guest_005_list_filter_numeric_gt(self): data = self.db_guest.all("fac", id__gt=SHARED["fac_r_ok"].id) self.assertGreater(len(data), 0) self.assert_data_integrity(data[0], "fac") for fac in data: self.assertGreater(long(fac["id"]), SHARED["fac_r_ok"].id) ########################################################################## def test_guest_005_list_filter_numeric_in(self): ids = [SHARED["fac_r_ok"].id, SHARED["fac_rw_ok"].id] data = self.db_guest.all("fac", id__in="%s,%s" % tuple(ids)) self.assertEqual(len(data), len(ids)) self.assert_data_integrity(data[0], "fac") for fac in data: self.assertIn(long(fac["id"]), ids) ########################################################################## def test_guest_005_list_filter_string(self): data = self.db_guest.all("ix", name=SHARED["ix_r_ok"].name) self.assertEqual(len(data), 1) self.assert_data_integrity(data[0], "ix") self.assertEqual(data[0]["name"], SHARED["ix_r_ok"].name) ########################################################################## def test_guest_005_list_filter_string_contains(self): token = SHARED["ix_r_ok"].name[3:5] data = self.db_guest.all("ix", name__contains=token.lower()) self.assertGreater(len(data), 0) self.assert_data_integrity(data[0], "ix") for ix in data: self.assertIn(token, ix["name"]) ########################################################################## def test_guest_005_list_filter_string_startswith(self): token = SHARED["ix_r_ok"].name[0:5] data = self.db_guest.all("ix", name__startswith=token.lower()) self.assertGreater(len(data), 0) self.assert_data_integrity(data[0], "ix") for ix in data: self.assertEqual(ix["name"][:5], token) ########################################################################## def test_guest_005_list_filter_string_in(self): cities = ["API Test:IX:RW:ok", "API Test:IX:R:ok"] data = self.db_guest.all("ix", name__in="%s,%s" % tuple(cities)) self.assertGreater(len(data), 0) self.assert_data_integrity(data[0], "ix") for ix in data: self.assertIn(ix["name"], cities) ##########################################################################
<filename>performance/driver/classes/observer/marathonevents.py<gh_stars>1-10 import json import requests import threading import time from .utils import CurlSSE, CurlSSEDisconnectedError from .utils import RawSSE, RawSSEDisconnectedError from datetime import datetime from performance.driver.core.classes import Observer from performance.driver.core.template import TemplateString, TemplateDict from performance.driver.core.events import LogLineEvent, TeardownEvent, StartEvent from performance.driver.core.utils.http import is_accessible from performance.driver.core.reflection import subscribesToHint, publishesHint from performance.driver.classes.channel.marathon import MarathonDeploymentRequestedEvent from performance.driver.classes.observer.events.marathon import * from queue import Queue ################################################################################ class MarathonEventsObserver(Observer): """ The *Marathon Events Observer* is extracting high-level events by subscribing to the Server-Side Events endpoint on marathon. :: observers: - class: observer.MarathonEventsObserver # The URL to the marathon SSE endpoint url: "{{marathon_url}}/v2/events" # [Optional] Use an external curl process for receiving the events # instead of the built-in raw SSE client curl: no # [Optional] Use the timestamp from the event. If set to no, the time # the event is arrived to the perf-driver is used useEventTimestamp: no # [Optional] Additional headers to send headers: Accept: test/plain Since this observer requires an active HTTP session to marathon, it also publishes the ``MarathonStartedEvent`` when an HTTP connection was successfully established. The following events are forwarded from the event bus: * ``MarathonDeploymentStepSuccessEvent`` * ``MarathonDeploymentStepFailureEvent`` * ``MarathonDeploymentInfoEvent`` * ``MarathonDeploymentSuccessEvent`` * ``MarathonDeploymentFailedEvent`` .. note:: In order to properly populcate the event's trace ID, this observer is also listening for `http` channel requests in order to extract the affected application name(s). .. note:: This observer will automatically inject an ``Authorization`` header if a ``dcos_auth_token`` definition exists, so you don't have to specify it through the ``headers`` configuration. Note that a ``dcos_auth_token`` can be dynamically injected via an authentication task. """ @subscribesToHint(MarathonDeploymentRequestedEvent, TeardownEvent, StartEvent) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) config = self.getRenderedConfig() self.useCurl = config.get('curl', False) self.eventReceiverThread = None self.eventEmitterThread = None self.eventQueue = Queue() self.instanceTraceIDs = {} self.instanceTraceIDsLock = threading.Lock() self.running = True self.activeSse = None # # Subscribe into receiving LogLine events, and place us above the # # average priority in order to provide translated, high-level events # # to the rest of the components that reside on order=5 (default) # self.eventbus.subscribe(self.handleLogLineEvent, events=(LogLineEvent,), order=2) # When an HTTP request is initiated, get the application name and use this # as the means of linking the traceids to the source self.eventbus.subscribe( self.handleDeploymentRequest, events=(MarathonDeploymentRequestedEvent, ), order=2) # Also subscribe to the teardown event in order to cleanly stop the event # handling thread. The order=2 here is ensuring that the `running` flag is # set to `False` before marathon thread is killed. self.eventbus.subscribe( self.handleTeardownEvent, events=(TeardownEvent, ), order=2) # Also subscribe to the setup event in order to start the polling loop. self.eventbus.subscribe(self.handleStartEvent, events=(StartEvent, )) def handleDeploymentRequest(self, event): """ Look for an HTTP request that could trigger a deployment, and get the ID in order to resolve it to a deployment at a later time """ with self.instanceTraceIDsLock: self.instanceTraceIDs[event.instance] = event.traceids # @publishesHint(MarathonStartedEvent) # def handleLogLineEvent(self, event): # """ # Provide translations for some well-known marathon log lines # """ # if 'All services up and running.' in event.line: # self.logger.info('Marathon web server started') # self.eventbus.publish(MarathonStartedEvent()) def handleTeardownEvent(self, event): """ The teardown event is stopping the event handling thread """ self.logger.debug('Tearing down marathon event monitor') self.running = False # Interrupt any active request if self.activeSse: self.activeSse.close() # Join queue self.eventQueue.put((None, None)) self.eventQueue.join() # Join threads if self.eventReceiverThread: self.eventReceiverThread.join() self.eventReceiverThread = None if self.eventEmitterThread: self.eventEmitterThread.join() self.eventEmitterThread = None def handleStartEvent(self, event): """ The start event is starting the event handling thread """ # Start the event reader thread self.eventReceiverThread = threading.Thread( target=self.eventReceiverHandler, name="marathonevents-drain") self.eventReceiverThread.start() # Start the event emmiter thread self.eventEmitterThread = threading.Thread( target=self.eventEmitterThreadHandler, name="marathonevents-emitter") self.eventEmitterThread.start() def allTraceIDs(self): """ Return the trace IDs of all affected instances """ traceids = set() with self.instanceTraceIDsLock: for key, ids in self.instanceTraceIDs.items(): traceids.update(ids) return traceids def getTraceIDs(self, ids): """ Collect the unique trace IDs for the given app ids """ traceids = set() with self.instanceTraceIDsLock: for id in ids: if id in self.instanceTraceIDs: traceids.update(self.instanceTraceIDs[id]) return traceids def getStepsAffectedIDs(self, steps): """ Collect the IDs affected from this deployment """ ids = set() # Collect the apps from the deployment steps for step in steps: for action in step['actions']: if 'app' in action: ids.update([action['app']]) elif 'pod' in action: ids.update([action['pod']]) return list(ids) def removeIDs(self, ids): """ Remove IDs from the list """ with self.instanceTraceIDsLock: for id in ids: if id in self.instanceTraceIDs: del self.instanceTraceIDs[id] @publishesHint(MarathonStartedEvent, MarathonGroupChangeSuccessEvent, MarathonGroupChangeFailedEvent, MarathonDeploymentSuccessEvent, MarathonDeploymentFailedEvent, MarathonDeploymentStatusEvent, MarathonDeploymentStepSuccessEvent, MarathonDeploymentStepFailureEvent, MarathonSSEEvent) def eventEmitterThreadHandler(self): """ This event is draining the receiver queue and is forwarding the events to the internal event bus """ config = self.getRenderedConfig(); useEventTimestamp = config.get("useEventTimestamp", True) while self.running: (eventName, eventData) = self.eventQueue.get() # If we have drained the queue and we are instructed to quit, exit now if eventName is None: self.logger.debug('Received interrupt event') self.eventQueue.task_done() break # If we were interrupted, drain queue if not self.running: self.logger.debug('Ignoring event because we are shutting down') self.eventQueue.task_done() continue # Dispatch raw event self.logger.debug('Received event {}: {}'.format(eventName, eventData)) eventInst = MarathonSSEEvent(eventName, eventData) # If we should use the timestamp from the event, replace ts if useEventTimestamp and 'timestamp' in eventData: utc_time = datetime.strptime(eventData["timestamp"], "%Y-%m-%dT%H:%M:%S.%fZ") eventTs = (utc_time - datetime(1970, 1, 1)).total_seconds() self.logger.debug('Using event ts={}, instead of ts={}'.format(eventTs, eventInst.ts)) eventInst.ts = eventTs # Publish event & Release pointer self.eventbus.publish(eventInst) eventInst = None # # group_change_success # if eventName == 'group_change_success': deploymentId = None affectedIds = [eventData['groupId']] self.eventbus.publish( MarathonGroupChangeSuccessEvent( deploymentId, affectedIds, traceid=self.getTraceIDs(affectedIds))) # # group_change_failed # elif eventName == 'group_change_failed': deploymentId = None affectedIds = [eventData['groupId']] self.eventbus.publish( MarathonGroupChangeFailedEvent( deploymentId, affectedIds, eventData['reason'], traceid=self.getTraceIDs(affectedIds))) # # deployment_success # elif eventName == 'deployment_success': plan = eventData.get('plan', {}) deploymentId = plan.get('id', None) affectedIds = self.getStepsAffectedIDs(plan.get('steps', [])) self.eventbus.publish( MarathonDeploymentSuccessEvent( deploymentId, eventData, traceid=self.getTraceIDs( affectedIds))) self.removeIDs(affectedIds) # # deployment_failed # elif eventName == 'deployment_failed': plan = eventData.get('plan', {}) deploymentId = plan.get('id', None) affectedIds = self.getStepsAffectedIDs(plan.get('steps', [])) self.eventbus.publish( MarathonDeploymentFailedEvent( deploymentId, affectedIds, traceid=self.getTraceIDs(affectedIds))) self.removeIDs(affectedIds) # # deployment_info # elif eventName == 'deployment_info': plan = eventData.get('plan', {}) deploymentId = plan.get('id', None) affectedIds = self.getStepsAffectedIDs([eventData.get('currentStep')]) self.eventbus.publish( MarathonDeploymentStatusEvent( deploymentId, affectedIds, traceid=self.getTraceIDs(affectedIds))) # # deployment_step_success # elif eventName == 'deployment_step_success': plan = eventData.get('plan', {}) deploymentId = plan.get('id', None) affectedIds = self.getStepsAffectedIDs([eventData.get('currentStep')]) self.eventbus.publish( MarathonDeploymentStepSuccessEvent( deploymentId, affectedIds, traceid=self.getTraceIDs(affectedIds))) # # deployment_step_failure # elif eventName == 'deployment_step_failure': plan = eventData.get('plan', {}) deploymentId = plan.get('id', None) affectedIds = self.getStepsAffectedIDs([eventData.get('currentStep')]) self.eventbus.publish( MarathonDeploymentStepFailureEvent( deploymentId, affectedIds, traceid=self.getTraceIDs(affectedIds))) # Warn unknown events else: self.logger.debug( 'Unhandled marathon event \'{}\' received'.format(eventName)) # Inform queue that the task is done self.eventQueue.task_done() self.logger.debug('Terminated event receiver thread') def eventReceiverHandler(self): """ This thread is responsible for receiving events from the SSE bus as quickly as possible, in order to avoid slowing down marathon. """ # Render URL definitions = self.getDefinitions() config = self.getRenderedConfig(); url = config.get('url') headers = config.get('headers', {}) # Wait til endpoint responds while self.running: # If we are missing an `Authorization` header but we have a # `dcos_auth_token` definition, allocate an `Authorization` header now # # Note: We are putting this within the loop because the `dcos_auth_token` # might appear at a later time if an authentication task is already # in progress. # if not 'Authorization' in headers \ and 'dcos_auth_token' in definitions: headers['Authorization'] = 'token={}'.format( definitions['dcos_auth_token']) # # Poll the endpoint until it responds # self.logger.info('Checking if {} is alive'.format(url)) if is_accessible(url, headers=headers, status_code=[200, 405, 400]): break # Wait for 5 seconds counter = 5 while counter > 0: time.sleep(0.1) counter -= 0.1 # Make this loop breakable if not self.running: return # We are ready self.logger.info('Marathon web server is responding') self.eventbus.publish(MarathonStartedEvent()) # Append our required headers headers['Accept'] = 'text/event-stream' # Bind on event stream is_connected = False while self.running: # # Process server-side events in per-line basis. The SSE protocol has the # following response syntax: # # event: event-name # data: {event json payload} # <empty line> # ... # try: # If we were instructed to use the external CURL create a CurlSSE # instance, otherwise use the default RawSSE if self.useCurl: self.activeSse = CurlSSE(url, headers=headers) else: self.activeSse = RawSSE(url, headers=headers) # Handle events from the
:param password: :param port_override: :param port: """ __slots__ = [ 'id', 'name', 'healthy', 'tags', 'secret_store_id', 'egress_filter', 'hostname', 'username', 'password', 'port_override', 'port', ] def __init__( self, id=None, name=None, healthy=None, tags=None, secret_store_id=None, egress_filter=None, hostname=None, username=None, password=None, port_override=None, port=None, ): self.id = id self.name = name self.healthy = healthy self.tags = tags self.secret_store_id = secret_store_id self.egress_filter = egress_filter self.hostname = hostname self.username = username self.password = password self.port_override = port_override self.port = port def __repr__(self): return '<sdm.Teradata ' + \ 'id: ' + repr(self.id) + ' ' +\ 'name: ' + repr(self.name) + ' ' +\ 'healthy: ' + repr(self.healthy) + ' ' +\ 'tags: ' + repr(self.tags) + ' ' +\ 'secret_store_id: ' + repr(self.secret_store_id) + ' ' +\ 'egress_filter: ' + repr(self.egress_filter) + ' ' +\ 'hostname: ' + repr(self.hostname) + ' ' +\ 'username: ' + repr(self.username) + ' ' +\ 'password: ' + repr(self.password) + ' ' +\ 'port_override: ' + repr(self.port_override) + ' ' +\ 'port: ' + repr(self.port) + ' ' +\ '>' def to_dict(self): return { 'id': self.id, 'name': self.name, 'healthy': self.healthy, 'tags': self.tags, 'secret_store_id': self.secret_store_id, 'egress_filter': self.egress_filter, 'hostname': self.hostname, 'username': self.username, 'password': <PASSWORD>, 'port_override': self.port_override, 'port': self.port, } @classmethod def from_dict(cls, d): return cls( id=d.get('id'), name=d.get('name'), healthy=d.get('healthy'), tags=d.get('tags'), secret_store_id=d.get('secret_store_id'), egress_filter=d.get('egress_filter'), hostname=d.get('hostname'), username=d.get('username'), password=d.get('password'), port_override=d.get('port_override'), port=d.get('port'), ) class NodeCreateResponse: """NodeCreateResponse reports how the Nodes were created in the system. :param meta: Reserved for future use. :param node: The created Node. :param token: The auth token generated for the Node. The Node will use this token to authenticate with the strongDM API. :param rate_limit: Rate limit information. """ __slots__ = [ 'meta', 'node', 'token', 'rate_limit', ] def __init__( self, meta=None, node=None, token=None, rate_limit=None, ): self.meta = meta self.node = node self.token = token self.rate_limit = rate_limit def __repr__(self): return '<sdm.NodeCreateResponse ' + \ 'meta: ' + repr(self.meta) + ' ' +\ 'node: ' + repr(self.node) + ' ' +\ 'token: ' + repr(self.token) + ' ' +\ 'rate_limit: ' + repr(self.rate_limit) + ' ' +\ '>' def to_dict(self): return { 'meta': self.meta, 'node': self.node, 'token': self.token, 'rate_limit': self.rate_limit, } @classmethod def from_dict(cls, d): return cls( meta=d.get('meta'), node=d.get('node'), token=d.get('token'), rate_limit=d.get('rate_limit'), ) class NodeGetResponse: """NodeGetResponse returns a requested Node. :param meta: Reserved for future use. :param node: The requested Node. :param rate_limit: Rate limit information. """ __slots__ = [ 'meta', 'node', 'rate_limit', ] def __init__( self, meta=None, node=None, rate_limit=None, ): self.meta = meta self.node = node self.rate_limit = rate_limit def __repr__(self): return '<sdm.NodeGetResponse ' + \ 'meta: ' + repr(self.meta) + ' ' +\ 'node: ' + repr(self.node) + ' ' +\ 'rate_limit: ' + repr(self.rate_limit) + ' ' +\ '>' def to_dict(self): return { 'meta': self.meta, 'node': self.node, 'rate_limit': self.rate_limit, } @classmethod def from_dict(cls, d): return cls( meta=d.get('meta'), node=d.get('node'), rate_limit=d.get('rate_limit'), ) class NodeUpdateResponse: """NodeUpdateResponse returns the fields of a Node after it has been updated by a NodeUpdateRequest. :param meta: Reserved for future use. :param node: The updated Node. :param rate_limit: Rate limit information. """ __slots__ = [ 'meta', 'node', 'rate_limit', ] def __init__( self, meta=None, node=None, rate_limit=None, ): self.meta = meta self.node = node self.rate_limit = rate_limit def __repr__(self): return '<sdm.NodeUpdateResponse ' + \ 'meta: ' + repr(self.meta) + ' ' +\ 'node: ' + repr(self.node) + ' ' +\ 'rate_limit: ' + repr(self.rate_limit) + ' ' +\ '>' def to_dict(self): return { 'meta': self.meta, 'node': self.node, 'rate_limit': self.rate_limit, } @classmethod def from_dict(cls, d): return cls( meta=d.get('meta'), node=d.get('node'), rate_limit=d.get('rate_limit'), ) class NodeDeleteResponse: """NodeDeleteResponse returns information about a Node that was deleted. :param meta: Reserved for future use. :param rate_limit: Rate limit information. """ __slots__ = [ 'meta', 'rate_limit', ] def __init__( self, meta=None, rate_limit=None, ): self.meta = meta self.rate_limit = rate_limit def __repr__(self): return '<sdm.NodeDeleteResponse ' + \ 'meta: ' + repr(self.meta) + ' ' +\ 'rate_limit: ' + repr(self.rate_limit) + ' ' +\ '>' def to_dict(self): return { 'meta': self.meta, 'rate_limit': self.rate_limit, } @classmethod def from_dict(cls, d): return cls( meta=d.get('meta'), rate_limit=d.get('rate_limit'), ) class Relay: """Relay represents a StrongDM CLI installation running in relay mode. :param id: Unique identifier of the Relay. :param name: Unique human-readable name of the Relay. Node names must include only letters, numbers, and hyphens (no spaces, underscores, or other special characters). Generated if not provided on create. :param state: The current state of the relay. One of: "new", "verifying_restart", "awaiting_restart", "restarting", "started", "stopped", "dead", "unknown". :param tags: Tags is a map of key, value pairs. :param gateway_filter: GatewayFilter can be used to restrict the peering between relays and gateways. """ __slots__ = [ 'id', 'name', 'state', 'tags', 'gateway_filter', ] def __init__( self, id=None, name=None, state=None, tags=None, gateway_filter=None, ): self.id = id self.name = name self.state = state self.tags = tags self.gateway_filter = gateway_filter def __repr__(self): return '<sdm.Relay ' + \ 'id: ' + repr(self.id) + ' ' +\ 'name: ' + repr(self.name) + ' ' +\ 'state: ' + repr(self.state) + ' ' +\ 'tags: ' + repr(self.tags) + ' ' +\ 'gateway_filter: ' + repr(self.gateway_filter) + ' ' +\ '>' def to_dict(self): return { 'id': self.id, 'name': self.name, 'state': self.state, 'tags': self.tags, 'gateway_filter': self.gateway_filter, } @classmethod def from_dict(cls, d): return cls( id=d.get('id'), name=d.get('name'), state=d.get('state'), tags=d.get('tags'), gateway_filter=d.get('gateway_filter'), ) class Gateway: """Gateway represents a StrongDM CLI installation running in gateway mode. :param id: Unique identifier of the Gateway. :param name: Unique human-readable name of the Gateway. Node names must include only letters, numbers, and hyphens (no spaces, underscores, or other special characters). Generated if not provided on create. :param state: The current state of the gateway. One of: "new", "verifying_restart", "restarting", "started", "stopped", "dead", "unknown" :param listen_address: The public hostname/port tuple at which the gateway will be accessible to clients. :param bind_address: The hostname/port tuple which the gateway daemon will bind to. If not provided on create, set to "0.0.0.0:<listen_address_port>". :param tags: Tags is a map of key, value pairs. :param gateway_filter: GatewayFilter can be used to restrict the peering between relays and gateways. """ __slots__ = [ 'id', 'name', 'state', 'listen_address', 'bind_address', 'tags', 'gateway_filter', ] def __init__( self, id=None, name=None, state=None, listen_address=None, bind_address=None, tags=None, gateway_filter=None, ): self.id = id self.name = name self.state = state self.listen_address = listen_address self.bind_address = bind_address self.tags = tags self.gateway_filter = gateway_filter def __repr__(self): return '<sdm.Gateway ' + \ 'id: ' + repr(self.id) + ' ' +\ 'name: ' + repr(self.name) + ' ' +\ 'state: ' + repr(self.state) + ' ' +\ 'listen_address: ' + repr(self.listen_address) + ' ' +\ 'bind_address: ' + repr(self.bind_address) + ' ' +\ 'tags: ' + repr(self.tags) + ' ' +\ 'gateway_filter: ' + repr(self.gateway_filter) + ' ' +\ '>' def to_dict(self): return { 'id': self.id, 'name': self.name, 'state': self.state, 'listen_address': self.listen_address, 'bind_address': self.bind_address, 'tags': self.tags, 'gateway_filter': self.gateway_filter, } @classmethod def from_dict(cls, d): return cls( id=d.get('id'), name=d.get('name'), state=d.get('state'), listen_address=d.get('listen_address'), bind_address=d.get('bind_address'), tags=d.get('tags'), gateway_filter=d.get('gateway_filter'), ) class ResourceCreateResponse: """ResourceCreateResponse reports how the Resources were created in the system. :param meta: Reserved for future use. :param resource: The created Resource. :param rate_limit: Rate limit information. """ __slots__ = [ 'meta', 'resource', 'rate_limit', ] def __init__( self, meta=None, resource=None, rate_limit=None, ): self.meta = meta self.resource = resource self.rate_limit = rate_limit def __repr__(self): return '<sdm.ResourceCreateResponse ' + \ 'meta: ' + repr(self.meta) + ' ' +\ 'resource: ' + repr(self.resource) + ' ' +\ 'rate_limit: ' + repr(self.rate_limit) + ' ' +\ '>' def to_dict(self): return { 'meta': self.meta, 'resource': self.resource, 'rate_limit': self.rate_limit, } @classmethod def from_dict(cls, d): return cls( meta=d.get('meta'), resource=d.get('resource'), rate_limit=d.get('rate_limit'), ) class ResourceGetResponse: """ResourceGetResponse returns a requested Resource. :param meta: Reserved for future use. :param resource: The requested Resource. :param rate_limit: Rate limit information. """ __slots__ = [ 'meta', 'resource', 'rate_limit', ] def __init__( self, meta=None, resource=None, rate_limit=None, ): self.meta = meta self.resource = resource self.rate_limit = rate_limit def __repr__(self): return '<sdm.ResourceGetResponse ' + \ 'meta: ' + repr(self.meta) + ' ' +\ 'resource: ' + repr(self.resource) +
"""finds bad channels.""" import mne import numpy as np from mne.channels.interpolation import _make_interpolation_matrix from psutil import virtual_memory from scipy import signal from scipy.stats import iqr from statsmodels import robust from pyprep.removeTrend import removeTrend from pyprep.utilities import filter_design class NoisyChannels: """Implements the functionality of the `findNoisyChannels` function. It is a part of the PREP (preprocessing pipeline) for EEG data recorded using 10-20 montage style described in [1]. References ---------- [1] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>. (2015). The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Frontiers in Neuroinformatics, 9, 16. """ def __init__(self, raw): """Initialize the class.""" # Make sure that we got an MNE object assert isinstance(raw, mne.io.BaseRaw) self.raw_mne = raw.copy() self.sample_rate = raw.info["sfreq"] self.EEGData = self.raw_mne.get_data(picks="eeg") self.EEGData = removeTrend(self.EEGData, sample_rate=self.sample_rate) self.EEGData_beforeFilt = self.EEGData self.ch_names_original = np.asarray(raw.info["ch_names"]) self.n_chans_original = len(self.ch_names_original) self.n_chans_new = self.n_chans_original self.signal_len = len(self.raw_mne.times) self.original_dimensions = np.shape(self.EEGData) self.new_dimensions = self.original_dimensions self.original_channels = np.arange(self.original_dimensions[0]) self.new_channels = self.original_channels self.ch_names_new = self.ch_names_original self.channels_interpolate = self.original_channels # The identified bad channels self.bad_by_nan = [] self.bad_by_flat = [] self.bad_by_deviation = [] self.bad_by_hf_noise = [] self.bad_by_correlation = [] self.bad_by_SNR = [] self.bad_by_dropout = [] self.bad_by_ransac = [] def get_bads(self, verbose=False): """Get a list of all bad channels. This function makes a list of all the bad channels and prints them if verbose is True. Parameters ---------- verbose : boolean If verbose, print a summary of bad channels. """ bads = ( self.bad_by_nan + self.bad_by_flat + self.bad_by_deviation + self.bad_by_hf_noise + self.bad_by_SNR + self.bad_by_correlation + self.bad_by_dropout + self.bad_by_ransac ) bads = list(set(bads)) if verbose: print("Found {} uniquely bad channels.".format(len(bads))) print("\n{} by n/a: {}".format(len(self.bad_by_nan), self.bad_by_nan)) print("\n{} by flat: {}".format(len(self.bad_by_flat), self.bad_by_flat)) print( "\n{} by deviation: {}".format( len(self.bad_by_deviation), self.bad_by_deviation ) ) print( "\n{} by hf noise: {}".format( len(self.bad_by_hf_noise), self.bad_by_hf_noise ) ) print( "\n{} by correl: {}".format( len(self.bad_by_correlation), self.bad_by_correlation ) ) print("\n{} by SNR {}".format(len(self.bad_by_SNR), self.bad_by_SNR)) print( "\n{} by dropout: {}".format( len(self.bad_by_dropout), self.bad_by_dropout ) ) print( "\n{} by ransac: {}".format(len(self.bad_by_ransac), self.bad_by_ransac) ) return bads def find_all_bads(self, ransac=True): """Call all the functions to detect bad channels. This function calls all the bad-channel detecting functions. Parameters ---------- ransac: boolean To detect channels by ransac or not. """ self.find_bad_by_nan_flat() self.find_bad_by_deviation() self.find_bad_by_SNR() if ransac: self.find_bad_by_ransac() return None def find_bad_by_nan_flat(self): """Detect channels that have zero or NaN values.""" nan_channel_mask = [False] * self.original_dimensions[0] no_signal_channel_mask = [False] * self.original_dimensions[0] for i in range(0, self.original_dimensions[0]): nan_channel_mask[i] = np.sum(np.isnan(self.EEGData[i, :])) > 0 for i in range(0, self.original_dimensions[0]): no_signal_channel_mask[i] = robust.mad(self.EEGData[i, :], c=1) < 10 ** ( -10 ) or np.std(self.EEGData[i, :]) < 10 ** (-10) nan_channels = self.channels_interpolate[nan_channel_mask] flat_channels = self.channels_interpolate[no_signal_channel_mask] nans_no_data_channels = np.union1d(nan_channels, flat_channels) self.channels_interpolate = np.setdiff1d( self.channels_interpolate, nans_no_data_channels ) for i in range(0, len(nan_channels)): self.bad_by_nan.append(self.ch_names_original[nan_channels[i]]) for i in range(0, len(flat_channels)): self.bad_by_flat.append(self.ch_names_original[flat_channels[i]]) self.raw_mne.drop_channels(list(set(self.bad_by_nan + self.bad_by_flat))) self.EEGData = self.raw_mne.get_data(picks="eeg") self.ch_names_new = np.asarray(self.raw_mne.info["ch_names"]) self.n_chans_new = len(self.ch_names_new) self.new_dimensions = np.shape(self.EEGData) return None def find_bad_by_deviation(self, deviation_threshold=5.0): """Robust z-score of the robust standard deviation for each channel is calculated. Channels having a z-score greater than 5 are detected as bad. Parameters ---------- deviation_threshold: float z-score threshold above which channels will be labelled bad. """ deviation_channel_mask = [False] * (self.new_dimensions[0]) channel_deviation = np.zeros(self.new_dimensions[0]) for i in range(0, self.new_dimensions[0]): channel_deviation[i] = 0.7413 * iqr(self.EEGData[i, :]) channel_deviationSD = 0.7413 * iqr(channel_deviation) channel_deviationMedian = np.nanmedian(channel_deviation) robust_channel_deviation = np.divide( np.subtract(channel_deviation, channel_deviationMedian), channel_deviationSD ) for i in range(0, self.new_dimensions[0]): deviation_channel_mask[i] = abs( robust_channel_deviation[i] ) > deviation_threshold or np.isnan(robust_channel_deviation[i]) deviation_channels = self.channels_interpolate[deviation_channel_mask] for i in range(0, len(deviation_channels)): self.bad_by_deviation.append(self.ch_names_original[deviation_channels[i]]) return None def find_bad_by_hfnoise(self, HF_zscore_threshold=5.0): """Noisiness of the channel is determined by finding the ratio of the median absolute deviation of high frequency to low frequency components. Low pass 50 Hz filter is used to separate the frequency components. A robust z-score is then calculated relative to all the channels. Parameters ---------- HF_zscore_threshold: float z-score threshold above which channels would be labelled as bad. """ data_tmp = np.transpose(self.EEGData) dimension = np.shape(data_tmp) if self.sample_rate > 100: EEG_filt = np.zeros((dimension[0], dimension[1])) bandpass_filter = filter_design( N_order=100, amp=np.array([1, 1, 0, 0]), freq=np.array([0, 90 / self.sample_rate, 100 / self.sample_rate, 1]), ) for i in range(0, dimension[1]): EEG_filt[:, i] = signal.filtfilt(bandpass_filter, 1, data_tmp[:, i]) noisiness = np.divide( robust.mad(np.subtract(data_tmp, EEG_filt), c=1), robust.mad(EEG_filt, c=1), ) noisiness_median = np.nanmedian(noisiness) noiseSD = ( np.median(np.absolute(np.subtract(noisiness, np.median(noisiness)))) * 1.4826 ) zscore_HFNoise = np.divide( np.subtract(noisiness, noisiness_median), noiseSD ) HFnoise_channel_mask = [False] * self.new_dimensions[0] for i in range(0, self.new_dimensions[0]): HFnoise_channel_mask[i] = zscore_HFNoise[ i ] > HF_zscore_threshold or np.isnan(zscore_HFNoise[i]) HFNoise_channels = self.channels_interpolate[HFnoise_channel_mask] else: EEG_filt = data_tmp noisiness_median = 0 noisinessSD = 1 zscore_HFNoise = np.zeros((self.new_dimensions[0], 1)) HFNoise_channels = [] self.EEGData_beforeFilt = data_tmp self.EEGData = np.transpose(EEG_filt) for i in range(0, len(HFNoise_channels)): self.bad_by_hf_noise.append(self.ch_names_original[HFNoise_channels[i]]) return None def find_bad_by_correlation( self, correlation_secs=1.0, correlation_threshold=0.4, frac_bad=0.1 ): """Find correlation between the low frequency components of the EEG below 50 Hz. Correlation is done using a sliding non-overlapping time window. The maximum absolute correlation is as the 98th percentile of the absolute values of the correlations with the other channels If the maximum correlation is less than 0.4 then the channel is designated as bad by corre- lation. Parameters ---------- correlation_secs: float length of the correlation time window (default: 1 secs). correlation_threshold: float correlation threshold below which channel is marked bad. frac_bad: float percentage of data windows in which the correlation threshold was not surpassed and if a channel gets a value of greater than 1%, it is designated bad. """ self.find_bad_by_hfnoise() # since filtering is performed there correlation_frames = correlation_secs * self.sample_rate correlation_window = np.arange(correlation_frames) correlation_offsets = np.arange( 1, (self.new_dimensions[1] - correlation_frames), correlation_frames ) w_correlation = len(correlation_offsets) maximum_correlations = np.ones((self.original_dimensions[0], w_correlation)) drop_out = np.zeros((self.new_dimensions[0], w_correlation)) channel_correlation = np.ones((w_correlation, self.new_dimensions[0])) noiselevels = np.zeros((w_correlation, self.new_dimensions[0])) channel_deviations = np.zeros((w_correlation, self.new_dimensions[0])) drop = np.zeros((w_correlation, self.new_dimensions[0])) len_correlation_window = len(correlation_window) EEGData = np.transpose(self.EEGData) EEG_new_win = np.reshape( np.transpose(EEGData[0 : len_correlation_window * w_correlation, :]), (self.new_dimensions[0], len_correlation_window, w_correlation), order="F", ) data_win = np.reshape( np.transpose( self.EEGData_beforeFilt[0 : len_correlation_window * w_correlation, :] ), (self.new_dimensions[0], len_correlation_window, w_correlation), order="F", ) for k in range(0, w_correlation): eeg_portion = np.transpose(np.squeeze(EEG_new_win[:, :, k])) data_portion = np.transpose(np.squeeze(data_win[:, :, k])) window_correlation = np.corrcoef(np.transpose(eeg_portion)) abs_corr = np.abs( np.subtract(window_correlation, np.diag(np.diag(window_correlation))) ) channel_correlation[k, :] = np.quantile(abs_corr, 0.98, axis=0) noiselevels[k, :] = np.divide( robust.mad(np.subtract(data_portion, eeg_portion), c=1), robust.mad(eeg_portion, c=1), ) channel_deviations[k, :] = 0.7413 * iqr(data_portion, axis=0) for i in range(0, w_correlation): for j in range(0, self.new_dimensions[0]): drop[i, j] = np.int( np.isnan(channel_correlation[i, j]) or np.isnan(noiselevels[i, j]) ) if drop[i, j] == 1: channel_deviations[i, j] = 0 noiselevels[i, j] = 0 maximum_correlations[self.channels_interpolate, :] = np.transpose( channel_correlation ) drop_out[:] = np.transpose(drop) thresholded_correlations = maximum_correlations < correlation_threshold thresholded_correlations = thresholded_correlations.astype(int) fraction_BadCorrelationWindows = np.mean(thresholded_correlations, axis=1) fraction_BadDropOutWindows = np.mean(drop_out, axis=1) bad_correlation_channels_idx = np.argwhere( fraction_BadCorrelationWindows > frac_bad ) bad_correlation_channels_name = self.ch_names_original[ bad_correlation_channels_idx.astype(int) ] self.bad_by_correlation = [i[0] for i in bad_correlation_channels_name] dropout_channels_idx = np.argwhere(fraction_BadDropOutWindows > frac_bad) dropout_channels_name = self.ch_names_original[dropout_channels_idx.astype(int)] self.bad_by_dropout = [i[0] for i in dropout_channels_name] return None def find_bad_by_SNR(self): """Determine the channels that fail both by correlation and HF noise.""" self.find_bad_by_correlation() set_hf = set(self.bad_by_hf_noise) set_correlation = set(self.bad_by_correlation) not_hf = set_correlation - set_hf self.bad_by_SNR = self.bad_by_hf_noise + list(not_hf) return None def find_bad_by_ransac( self, n_samples=50, fraction_good=0.25, corr_thresh=0.75, fraction_bad=0.4, corr_window_secs=5.0, ): """Detect channels that are not predicted well by other channels. Here, a ransac approach (see [1], and a short discussion in [2]) is adopted to predict a "clean EEG" dataset. After identifying clean EEG channels through the other methods, the clean EEG dataset is constructed by repeatedly sampling a small subset of clean EEG channels and interpolation the complete data. The median of all those repetitions forms the clean EEG dataset. In a second step, the original and the ransac predicted data are correlated and channels, which do not correlate well with themselves across the two datasets are considered `bad_by_ransac`. Parameters ---------- n_samples : int Number of samples used for computation of ransac. fraction_good : float Fraction of channels used for robust reconstruction of the signal. This needs to be in the range [0, 1], where obviously neither 0 nor 1 would make sense. corr_thresh : float The minimum correlation threshold that should be attained within a data window. fraction_bad : float If this
+= A[k, d] * np.conj(B[c - k, d]) return suma def helm_coefficients_josep(Ybus, Yseries, V0, S0, Ysh0, pq, pv, sl, pqpv, tolerance=1e-6, max_coeff=30, verbose=False): """ Holomorphic Embedding LoadFlow Method as formulated by <NAME> in 2020 THis function just returns the coefficients for further usage in other routines :param Yseries: Admittance matrix of the series elements :param V0: vector of specified voltages :param S0: vector of specified power :param Ysh0: vector of shunt admittances (including the shunts of the branches) :param pq: list of pq nodes :param pv: list of pv nodes :param sl: list of slack nodes :param pqpv: sorted list of pq and pv nodes :param tolerance: target error (or tolerance) :param max_coeff: maximum number of coefficients :param verbose: print intermediate information :return: U, X, Q, iterations """ npqpv = len(pqpv) npv = len(pv) nsl = len(sl) n = Yseries.shape[0] # --------------------------- PREPARING IMPLEMENTATION ------------------------------------------------------------- U = np.zeros((max_coeff, npqpv), dtype=complex) # voltages W = np.zeros((max_coeff, npqpv), dtype=complex) # compute X=1/conj(U) Q = np.zeros((max_coeff, npqpv), dtype=complex) # unknown reactive powers Vm0 = np.abs(V0) Vm2 = Vm0 * Vm0 if n < 2: return U, W, Q, 0 if verbose: print('Yseries') print(Yseries.toarray()) df = pd.DataFrame(data=np.c_[Ysh0.imag, S0.real, S0.imag, Vm0], columns=['Ysh', 'P0', 'Q0', 'V0']) print(df) Yred = Yseries[np.ix_(pqpv, pqpv)] # admittance matrix without slack buses Yslack = -Yseries[np.ix_(pqpv, sl)] # yes, it is the negative of this Yslack_vec = Yslack.sum(axis=1).A1 G = np.real(Yred) # real parts of Yij B = np.imag(Yred) # imaginary parts of Yij P_red = S0.real[pqpv] Q_red = S0.imag[pqpv] Vslack = V0[sl] Ysh_red = Ysh0[pqpv] # indices 0 based in the internal scheme nsl_counted = np.zeros(n, dtype=int) compt = 0 for i in range(n): if i in sl: compt += 1 nsl_counted[i] = compt pq_ = pq - nsl_counted[pq] pv_ = pv - nsl_counted[pv] # .......................CALCULATION OF TERMS [0] ------------------------------------------------------------------ U[0, :] = spsolve(Yred, Yslack_vec) W[0, :] = 1 / np.conj(U[0, :]) # .......................CALCULATION OF TERMS [1] ------------------------------------------------------------------ valor = np.zeros(npqpv, dtype=complex) # get the current injections that appear due to the slack buses reduction I_inj_slack = Yslack * Vslack valor[pq_] = I_inj_slack[pq_] - Yslack_vec[pq_] + (P_red[pq_] - Q_red[pq_] * 1j) * W[0, pq_] - U[0, pq_] * Ysh_red[pq_] valor[pv_] = I_inj_slack[pv_] - Yslack_vec[pv_] + P_red[pv_] * W[0, pv_] - U[0, pv_] * Ysh_red[pv_] # compose the right-hand side vector RHS = np.r_[valor.real, valor.imag, Vm2[pv] - (U[0, pv_] * U[0, pv_]).real] # Form the system matrix (MAT) Upv = U[0, pv_] Xpv = W[0, pv_] VRE = coo_matrix((2 * Upv.real, (np.arange(npv), pv_)), shape=(npv, npqpv)).tocsc() VIM = coo_matrix((2 * Upv.imag, (np.arange(npv), pv_)), shape=(npv, npqpv)).tocsc() XIM = coo_matrix((-Xpv.imag, (pv_, np.arange(npv))), shape=(npqpv, npv)).tocsc() XRE = coo_matrix((Xpv.real, (pv_, np.arange(npv))), shape=(npqpv, npv)).tocsc() EMPTY = csc_matrix((npv, npv)) MAT = vs((hs((G, -B, XIM)), hs((B, G, XRE)), hs((VRE, VIM, EMPTY))), format='csc') if verbose: print('MAT') print(MAT.toarray()) # factorize (only once) MAT_LU = factorized(MAT.tocsc()) # solve LHS = MAT_LU(RHS) # update coefficients U[1, :] = LHS[:npqpv] + 1j * LHS[npqpv:2 * npqpv] Q[0, pv_] = LHS[2 * npqpv:] W[1, :] = -W[0, :] * np.conj(U[1, :]) / np.conj(U[0, :]) # .......................CALCULATION OF TERMS [>=2] ---------------------------------------------------------------- iter_ = 1 range_pqpv = np.arange(npqpv, dtype=np.int64) V = V0.copy() c = 2 converged = False norm_f = tolerance + 1.0 # any number that violates the convergence while c < max_coeff and not converged: # c defines the current depth valor[pq_] = (P_red[pq_] - Q_red[pq_] * 1j) * W[c - 1, pq_] - U[c - 1, pq_] * Ysh_red[pq_] valor[pv_] = -1j * conv2(W, Q, c, pv_) - U[c - 1, pv_] * Ysh_red[pv_] + W[c - 1, pv_] * P_red[pv_] RHS = np.r_[valor.real, valor.imag, -conv3(U, U, c, pv_).real] LHS = MAT_LU(RHS) # update voltage coefficients U[c, :] = LHS[:npqpv] + 1j * LHS[npqpv:2 * npqpv] # update reactive power Q[c - 1, pv_] = LHS[2 * npqpv:] # update voltage inverse coefficients W[c, range_pqpv] = -conv1(U, W, c, range_pqpv) / np.conj(U[0, range_pqpv]) # compute power mismatch if not np.mod(c, 2): # check the mismatch every 4 iterations V[pqpv] = U.sum(axis=0) Scalc = V * np.conj(Ybus * V) dP = np.abs(S0[pqpv].real - Scalc[pqpv].real) dQ = np.abs(S0[pq].imag - Scalc[pq].imag) norm_f = np.linalg.norm(np.r_[dP, dQ], np.inf) # same as max(abs()) # check convergence converged = norm_f < tolerance print('mismatch check at c=', c) c += 1 iter_ += 1 return U, W, Q, iter_, norm_f def helm_josep(Ybus, Yseries, V0, S0, Ysh0, pq, pv, sl, pqpv, tolerance=1e-6, max_coeff=30, use_pade=True, verbose=False): """ Holomorphic Embedding LoadFlow Method as formulated by <NAME> in 2020 :param Ybus: Complete admittance matrix :param Yseries: Admittance matrix of the series elements :param V0: vector of specified voltages :param S0: vector of specified power :param Ysh0: vector of shunt admittances (including the shunts of the branches) :param pq: list of pq nodes :param pv: list of pv nodes :param sl: list of slack nodes :param pqpv: sorted list of pq and pv nodes :param tolerance: target error (or tolerance) :param max_coeff: maximum number of coefficients :param use_pade: Use the Padè approximation? otherwise a simple summation is done :param verbose: print intermediate information :return: V, converged, norm_f, Scalc, iter_, elapsed """ start_time = time.time() # compute the series of coefficients U, X, Q, iter_, norm_f = helm_coefficients_josep(Ybus, Yseries, V0, S0, Ysh0, pq, pv, sl, pqpv, tolerance=tolerance, max_coeff=max_coeff, verbose=verbose) # --------------------------- RESULTS COMPOSITION ------------------------------------------------------------------ if verbose: print('V coefficients') print(U) # compute the final voltage vector V = V0.copy() if use_pade: try: V[pqpv] = pade4all(iter_, U, 1.0) except: warn('Padè failed :(, using coefficients summation') V[pqpv] = U.sum(axis=0) else: V[pqpv] = U.sum(axis=0) # compute power mismatch Scalc = V * np.conj(Ybus * V) dP = np.abs(S0[pqpv].real - Scalc[pqpv].real) dQ = np.abs(S0[pq].imag - Scalc[pq].imag) norm_f = np.linalg.norm(np.r_[dP, dQ], np.inf) # same as max(abs()) # check convergence converged = norm_f < tolerance elapsed = time.time() - start_time return V, converged, norm_f, Scalc, iter_, elapsed def test_voltage(grid): """ Grid solution test :param grid: MultiCircuit instance :return: True/False """ nc = grid.compile_snapshot() inputs = nc.compute()[0] # pick the first island tolerance = 1e-6 V, converged_, error, Scalc_, iter_, elapsed_ = helm_josep(Ybus=inputs.Ybus, Yseries=inputs.Yseries, V0=inputs.Vbus, S0=inputs.Sbus, Ysh0=inputs.Ysh_helm, pq=inputs.pq, pv=inputs.pv, sl=inputs.ref, pqpv=inputs.pqpv, tolerance=tolerance, max_coeff=50, use_pade=True, verbose=True) Vm = np.abs(V) Va = np.angle(V) dP = np.abs(inputs.Sbus.real - Scalc_.real) dP[inputs.ref] = 0 dQ = np.abs(inputs.Sbus.imag - Scalc_.imag) dQ[inputs.pv] = np.nan dQ[inputs.ref] = np.nan df = pd.DataFrame(data=np.c_[inputs.types, Vm, Va, np.abs(inputs.Vbus), dP, dQ], columns=['Types', 'Vm', 'Va', 'Vset', 'P mismatch', 'Q mismatch']) print(df) print('Error', error) print('P error', np.max(np.abs(dP))) print('Elapsed', elapsed_) print('Iterations', iter_) return error < tolerance def test_sigma(grid): """ Sigma-distances test :param grid: :return: """ nc = grid.compile_snapshot() inputs = nc.compute()[0] # pick the first island U_, X_, Q_, iter_, normF = helm_coefficients_josep(Ybus=inputs.Ybus, Yseries=inputs.Yseries, V0=inputs.Vbus, S0=inputs.Sbus, Ysh0=-inputs.Ysh_helm, pq=inputs.pq, pv=inputs.pv, sl=inputs.ref, pqpv=inputs.pqpv, tolerance=1e-6, max_coeff=50, verbose=False) n = inputs.nbus Sig_re = np.zeros(n, dtype=float) Sig_im = np.zeros(n, dtype=float) Sigma = sigma_function(U_, X_, iter_ - 1, inputs.Vbus[inputs.ref]) Sig_re[inputs.pqpv] = np.real(Sigma) Sig_im[inputs.pqpv] = np.imag(Sigma) sigma_distances = sigma_distance(Sig_re, Sig_im) # sigma plot sx = np.linspace(-0.25, np.max(Sig_re)+0.1, 100) sy1 = np.sqrt(0.25 + sx) sy2 = -np.sqrt(0.25 + sx) fig = plt.figure(figsize=(8, 7)) ax = fig.add_subplot(111) ax.plot(Sig_re, Sig_im, 'o') ax.plot(sx, sy1, 'b') ax.plot(sx, sy2, 'r') ax.set_title('Sigma plot') ax.set_xlabel('$\sigma_{re}$') ax.set_ylabel('$\sigma_{im}$') plt.show() return sigma_distances def test_pade(grid): """ Sigma-distances test :param grid: :return: """ nc = grid.compile_snapshot() inputs = nc.compute()[0] # pick the first island U_, X_, Q_, iter_, normF = helm_coefficients_josep(Ybus=inputs.Ybus, Yseries=inputs.Yseries, V0=inputs.Vbus, S0=inputs.Sbus, Ysh0=-inputs.Ysh_helm, pq=inputs.pq, pv=inputs.pv, sl=inputs.ref, pqpv=inputs.pqpv, tolerance=1e-6, max_coeff=50, verbose=False) alphas = np.arange(0, 1.1, 0.01) n = inputs.nbus na = len(alphas) V = np.zeros((na, n)) V[:, inputs.ref] = np.abs(inputs.Vbus[inputs.ref]) for i, alpha in enumerate(alphas): V[i, inputs.pqpv] = np.abs(pade4all(order=iter_, coeff_mat=U_, s=alpha)) plt.axvline(0, c='k') plt.axvline(1, c='k') plt.plot(alphas, V) plt.ylabel('Voltage (p.u.)') plt.xlabel('$\lambda$') plt.show() if __name__ == '__main__': from GridCal.Engine import FileOpen import pandas as pd np.set_printoptions(linewidth=2000, suppress=True) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) # fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/IEEE39_1W.gridcal' fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/IEEE 14.xlsx' # fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/lynn5buspv.xlsx' # fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/IEEE 118.xlsx' # fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/1354 Pegase.xlsx' # fname = 'helm_data1.gridcal' #
= copy.copy(orig) for k, v in test_failures["perms"].items(): data_perms[k] = v with self.assertRaises(PermissionDeniedException) as inst: db.update(typ, **data_perms) # we test failure to update readonly fields if "readonly" in test_failures: data_ro = copy.copy(orig) b_data = self.assert_get_handleref(db, typ, id) data_ro.update(**test_failures["readonly"]) db.update(typ, **data_ro) u_data = self.assert_get_handleref(db, typ, id) for k, v in test_failures["readonly"].items(): self.assertEqual(u_data.get(k), b_data.get(k)) ########################################################################## def assert_list_filter_related(self, target, rel, fld="id", valid=None, valid_m=None): #if not valid: # valid = [o.id for k, o in SHARED.items() if type( # o) != int and k.find("%s_" % target) == 0] if fld != "id": qfld = "_%s" % fld else: qfld = fld ids = [ getattr(SHARED["%s_r_ok" % rel], fld), getattr(SHARED["%s_rw_ok" % rel], fld) ] kwargs_s = { "%s_%s" % (rel, qfld): getattr(SHARED["%s_r_ok" % rel], fld) } kwargs_m = { "%s_%s__in" % (rel, qfld): ",".join([str(id) for id in ids]) } if hasattr(REFTAG_MAP[target], "%s" % rel): valid_s = [ r.id for r in REFTAG_MAP[target].objects.filter(**kwargs_s) .filter(status="ok") ] valid_m = [ r.id for r in REFTAG_MAP[target] .objects.filter(**{ "%s_%s__in" % (rel, qfld): ids }).filter(status="ok") ] elif target == "poc": valid_s = [SHARED["%s_r_ok_public" % target].id] valid_m = [ SHARED["%s_r_ok_public" % target].id, SHARED["%s_rw_ok_public" % target].id ] else: valid_s = [SHARED["%s_r_ok" % target].id] valid_m = [ SHARED["%s_r_ok" % target].id, SHARED["%s_rw_ok" % target].id ] # exact data = self.db_guest.all(target, **kwargs_s) self.assertGreater(len(data), 0) for row in data: self.assert_data_integrity(row, target) self.assertIn(row["id"], valid_s) # in data = self.db_guest.all(target, **kwargs_m) self.assertGreater(len(data), 0) for row in data: self.assert_data_integrity(row, target) self.assertIn(row["id"], valid_m) ########################################################################## def assert_related_depth(self, obj, serializer_class, r_depth, t_depth, note_tag, typ="listing", list_exclude=[]): """ Assert the data indegrity of structures within a result that have been expanded via the depth parameter """ # get all the realtion ship properties declared in the serializer pk_flds, n_flds = self.serializer_related_fields(serializer_class) # some tag so we can track where the assertions fail since this will # be doing nested checks note_tag = "%s(%d/%d)" % (note_tag, r_depth, t_depth) # first check that the provided object is not None, as this should # never be the case self.assertNotEqual(type(obj), NoneType, msg=note_tag) # single primary key relation fields for pk_fld in pk_flds: # serializer has marked field as to be excluded from serialized data # dont check for it if pk_fld in list_exclude: continue if typ == "listing": # in listing mode, depth should never expand pk relations self.assertEqual( obj.get(pk_fld), None, msg="PK Relation %s %s" % (note_tag, pk_fld)) else: # in single get mode, expand everything as long as we are at # a relative depth greater than 1 if r_depth >= 1: self.assert_related_depth( obj.get(pk_fld), REFTAG_MAP_SLZ.get(pk_fld), r_depth - 1, t_depth, "%s.%s" % (note_tag, pk_fld), typ=typ) else: self.assertIn( type(obj.get(pk_fld)), [int, long, NoneType], msg="PK Relation %s %s" % (note_tag, pk_fld)) # nested set relations for n_fld, n_fld_cls in n_flds: if r_depth > 1: # sets should be expanded to objects self.assertIn(n_fld, obj, msg="Nested set existing (dN) %s %s" % (note_tag, n_fld)) # make sure set exists and is of the correct type self.assertEqual( type(obj[n_fld]), list, msg="Nested set list type (dN) %s %s" % (note_tag, n_fld)) # assert further depth expansions on all expanded objects in # the set for row in obj[n_fld]: self.assert_related_depth( row, n_fld_cls, r_depth - 2, t_depth, "%s.%s" % (note_tag, n_fld), typ=typ, list_exclude=getattr( n_fld_cls.Meta, "list_exclude", [])) elif r_depth == 1: # sets should be expanded to ids self.assertIn(n_fld, obj, msg="Nested set existing (d1) %s %s" % (note_tag, n_fld)) # make sure set exists and is of the correct type self.assertEqual( type(obj[n_fld]), list, msg="Nested set list type (d1) %s %s" % (note_tag, n_fld)) # make all values in the set are of type int or long for row in obj[n_fld]: self.assertIn( type(row), [long, int], msg="Nested set containing ids (d1) %s %s" % (note_tag, n_fld)) else: # sets should not exist self.assertNotIn(n_fld, obj, msg="Netsted set not existing (d0) %s %s" % (note_tag, n_fld)) ########################################################################## # TESTS WITH USER THAT IS NOT A MEMBER OF AN ORGANIZATION ########################################################################## def test_user_001_GET_org(self): self.assert_get_handleref(self.db_user, "org", SHARED["org_r_ok"].id) ########################################################################## def test_user_001_GET_net(self): data = self.assert_get_handleref(self.db_user, "net", SHARED["net_r_ok"].id) self.assertNotEqual(len(data.get("poc_set")), 0) ########################################################################## def test_user_001_GET_ix(self): self.assert_get_handleref(self.db_user, "ix", SHARED["ix_r_ok"].id) ########################################################################## def test_user_001_GET_fac(self): self.assert_get_handleref(self.db_user, "fac", SHARED["fac_r_ok"].id) ########################################################################## def test_user_001_GET_fac_netcount(self): data = self.assert_get_handleref(self.db_user, "fac", SHARED["fac_r_ok"].id) self.assertEqual(data.get("net_count"), 1) ########################################################################## def test_user_001_GET_poc_public(self): self.assert_get_handleref(self.db_user, "poc", SHARED["poc_r_ok_public"].id) ########################################################################## def test_user_001_GET_poc_users(self): self.assert_get_handleref(self.db_user, "poc", SHARED["poc_r_ok_users"].id) ########################################################################## def test_user_001_GET_poc_private(self): self.assert_get_forbidden(self.db_user, "poc", SHARED["poc_r_ok_private"].id) ########################################################################## def test_user_001_GET_nefac(self): self.assert_get_handleref(self.db_user, "netfac", SHARED["netfac_r_ok"].id) ########################################################################## def test_user_001_GET_netixlan(self): self.assert_get_handleref(self.db_user, "netixlan", SHARED["netixlan_r_ok"].id) ########################################################################## def test_user_001_GET_ixfac(self): self.assert_get_handleref(self.db_user, "ixfac", SHARED["ixfac_r_ok"].id) ########################################################################## def test_user_001_GET_ixlan(self): self.assert_get_handleref(self.db_user, "ixlan", SHARED["ixlan_r_ok"].id) ########################################################################## def test_user_001_GET_ixpfx(self): self.assert_get_handleref(self.db_user, "ixpfx", SHARED["ixpfx_r_ok"].id) ########################################################################## def test_user_005_list_poc(self): data = self.db_guest.all("poc", limit=1000) for row in data: self.assertIn(row.get("visible"), ["Users", "Public"]) data = self.db_guest.all("poc", visible="Private", limit=100) self.assertEqual(0, len(data)) ########################################################################## # TESTS WITH USER THAT IS ORGANIZATION MEMBER ########################################################################## def test_org_member_001_GET_poc_public(self): self.assert_get_handleref(self.db_org_member, "poc", SHARED["poc_r_ok_public"].id) ########################################################################## def test_org_member_001_GET_poc_users(self): self.assert_get_handleref(self.db_org_member, "poc", SHARED["poc_r_ok_users"].id) ########################################################################## def test_org_member_001_GET_poc_private(self): self.assert_get_handleref(self.db_org_member, "poc", SHARED["poc_r_ok_private"].id) ########################################################################## # TESTS WITH USER THAT IS ORGANIZATION ADMINISTRATOR ########################################################################## ########################################################################## def test_org_admin_001_GET_poc_public(self): self.assert_get_handleref(self.db_org_admin, "poc", SHARED["poc_r_ok_public"].id) ########################################################################## def test_org_admin_001_GET_poc_users(self): self.assert_get_handleref(self.db_org_admin, "poc", SHARED["poc_r_ok_users"].id) ########################################################################## def test_org_admin_001_GET_poc_private(self): # org admin is admin of rw org, so trying to access the private poc of the r org # should still be forbidden self.assert_get_forbidden(self.db_org_admin, "poc", SHARED["poc_r_ok_private"].id) ########################################################################## def test_org_admin_002_POST_PUT_DELETE_ix(self): data = self.make_data_ix(prefix=self.get_prefix4()) r_data = self.assert_create( self.db_org_admin, "ix", data, ignore=["prefix"], test_failures={ "invalid": { "prefix": self.get_prefix4(), "name": "" }, "perms": { "prefix": self.get_prefix4(), # need to set name again so it doesnt fail unique validation "name": self.make_name("Test"), # set org to an organization the user doesnt have perms to "org_id": SHARED["org_r_ok"].id }, "status": { # need to set name again so it doesnt fail unique validation "prefix": self.get_prefix4(), "name": self.make_name("Test"), "org_id": SHARED["org_rwp"].id } }) SHARED["ix_id"] = r_data.get("id") self.assert_update(self.db_org_admin, "ix", SHARED["ix_id"], {"name": self.make_name("Test")}, test_failures={ "invalid": { "name": "" }, "perms": { "id": SHARED["ix_r_ok"].id } }) self.assert_delete(self.db_org_admin, "ix", test_success=SHARED["ix_id"], test_failure=SHARED["ix_r_ok"].id) self.assert_create( self.db_org_admin, "ix", data, test_success=False, test_failures={ "invalid": { "prefix": self.get_prefix4(), "policy_email": "", "tech_email": "" }, }) self.assert_create(self.db_org_admin, "ix", data, test_success=False, test_failures={ "invalid": { "prefix": "" }, }) ########################################################################## def test_org_admin_002_POST_PUT_DELETE_fac(self): data = self.make_data_fac() r_data = self.assert_create( self.db_org_admin, "fac", data, test_failures={ "invalid": { "name": "" }, "perms": { # need to set name again so it doesnt fail unique validation "name": self.make_name("Test"), # set org to an organization the user doesnt have perms to "org_id": SHARED["org_r_ok"].id }, "status": { "name": self.make_name("Test"), "org_id": SHARED["org_rwp"].id } }) SHARED["fac_id"] = r_data.get("id") self.assert_update( self.db_org_admin, "fac", SHARED["fac_id"], {"name": self.make_name("Test")}, test_failures={ "invalid": { "name": "" }, "perms": { "id": SHARED["fac_r_ok"].id }, "readonly": { "latitude": 1, #this should not take as it is read only "longitude": 1 #this should not take as it is read only } }, ) self.assert_delete(self.db_org_admin, "fac", test_success=SHARED["fac_id"], test_failure=SHARED["fac_r_ok"].id) ########################################################################## def test_org_admin_002_POST_PUT_DELETE_net(self): data = self.make_data_net(asn=9000900) r_data = self.assert_create( self.db_org_admin, "net", data, test_failures={ "invalid": { "name": "" }, "perms": { # need to set name again so it doesnt fail unique validation "name": self.make_name("Test"), "asn": data["asn"] + 1, # set org to an organization the user doesnt have perms to "org_id": SHARED["org_r_ok"].id }, "status": { "org_id": SHARED["org_rwp"].id, "asn": data["asn"] + 1, "name": self.make_name("Test") } }) SHARED["net_id"] = r_data.get("id") self.assert_update(self.db_org_admin, "net", SHARED["net_id"], {"name": self.make_name("Test")}, test_failures={ "invalid": { "name": "" }, "perms": { "id": SHARED["net_r_ok"].id } }) self.assert_delete(self.db_org_admin, "net", test_success=SHARED["net_id"], test_failure=SHARED["net_r_ok"].id) # Test RiR not found failure r_data = self.assert_create( self.db_org_admin, "net", data, test_failures={"invalid": { "asn": 9999999 }}, test_success=False) ########################################################################## def test_org_admin_002_PUT_net_write_only_fields(self): """ with this we check that certain fields that are allowed to be set via the api, but sre not supposed to be rendered in the api data, work correctly """ def test_write_only_fields_missing(orig, updated): assert (updated.has_key("allow_ixp_update") == False) net = SHARED["net_rw_ok"] self.assertEqual(net.allow_ixp_update, False) self.assert_update(self.db_org_admin, "net", net.id, {"allow_ixp_update": True}, test_success=[test_write_only_fields_missing]) net.refresh_from_db() self.assertEqual(net.allow_ixp_update, True) ########################################################################## def test_org_admin_002_POST_PUT_DELETE_netfac(self): data = { "net_id": SHARED["net_rw_ok"].id, "fac_id": SHARED["fac_rw_ok"].id, "local_asn": 12345 } r_data = self.assert_create( self.db_org_admin, "netfac", data, test_failures={ "invalid": { "net_id": "" }, "perms": { # set network to one the user doesnt have perms to "net_id": SHARED["net_r_ok"].id }, "status": { "net_id": SHARED["net_rw_pending"].id, "fac_id": SHARED["fac_rw_pending"].id, } }) SHARED["netfac_id"] = r_data.get("id") self.assert_update(self.db_org_admin, "netfac", SHARED["netfac_id"], {"local_asn": random.randint(999, 9999)}, test_failures={ "invalid": { "fac_id": "" }, "perms": { "net_id": SHARED["net_r_ok"].id } }) self.assert_delete(self.db_org_admin, "netfac", test_success=SHARED["netfac_id"],
import io import tempfile import unittest import numpy from gensound.sound import * from gensound.sound import _repeat_array class SoundUtilsTest(unittest.TestCase): def test_repeat_array_single_channel(self): array = numpy.array([[1, 2, 3]]).T repeated = [1, 2, 3] * 3 self.assertEqual(tuple(_repeat_array(array, 6).flatten()), tuple(repeated[:6])) self.assertEqual(tuple(_repeat_array(array, 8).flatten()), tuple(repeated[:8])) self.assertEqual(tuple(_repeat_array(array, 2).flatten()), tuple(repeated[:2])) def test_repeat_array_two_channel(self): array = numpy.array([[1, 2, 3], [4, 5, 6]]).T repeated = numpy.array([[1, 2, 3] * 3, [4, 5, 6] * 3]).T six = _repeat_array(array, 6) self.assertEqual(six.shape, (6, 2)) self.assertEqual(six.tolist(), repeated[:6].tolist()) eight = _repeat_array(array, 8) self.assertEqual(eight.shape, (8, 2)) self.assertEqual(eight.tolist(), repeated[:8].tolist()) two = _repeat_array(array, 2) self.assertEqual(two.shape, (2, 2)) self.assertEqual(two.tolist(), repeated[:2].tolist()) def test_repeat_array_invalid_input(self): array = numpy.array([[1, 2, 3]]) null = numpy.array([[]]) lessdimen = numpy.array([1, 2, 3]) overdimen = numpy.array([[[1, 2]], [[3, 4]]]) with self.assertRaises(ValueError) as cm: _repeat_array(array, 0) self.assertEqual(str(cm.exception), 'want_length must be greater than 0 but got 0') with self.assertRaises(ValueError) as cm: _repeat_array(array, -1) self.assertEqual(str(cm.exception), 'want_length must be greater than 0 but got -1') with self.assertRaises(ValueError) as cm: _repeat_array(null, 1) self.assertEqual(str(cm.exception), 'sound should have least one element') with self.assertRaises(ValueError) as cm: _repeat_array(lessdimen, 1) self.assertEqual(str(cm.exception), 'sound should two dimensions') with self.assertRaises(ValueError) as cm: _repeat_array(overdimen, 1) self.assertEqual(str(cm.exception), 'sound should two dimensions') def test_overlay(self): a = Sound.from_array([0.0, 0.1], 2) b = Sound.from_array([0.2, 0.3], 2) c = Sound.from_array([0.4, 0.5], 2) self.assertEqual(overlay(a, b, c).samplerate, 2) self.assertEqual(overlay(a, b, c).duration, 1) self.assertEqual(overlay(a, b, c), Sound.from_array([0.6, 0.9], 2)) self.assertEqual(overlay(overlay(a, b), c), Sound.from_array([0.6, 0.9], 2)) self.assertEqual(overlay(a, overlay(b, c)), Sound.from_array([0.6, 0.9], 2)) self.assertEqual(overlay(overlay(a, c), b), Sound.from_array([0.6, 0.9], 2)) def test_overlay_different_duration(self): a = Sound.from_array([0.0, 0.1], 2) b = Sound.from_array([0.2, 0.3], 2) c = Sound.from_array([0.4, 0.5, 0.6, 0.7], 2) self.assertEqual(overlay(a, b, c).samplerate, 2) self.assertEqual(overlay(a, b, c).duration, 2) self.assertEqual(overlay(a, b, c), Sound.from_array([0.6, 0.9, 0.6, 0.7], 2)) def test_overlay_different_samplerate(self): a = Sound.from_array([0.0, 0.1], 2) b = Sound.from_array([0.2, 0.3], 2) c = Sound.from_array([0.4, 0.5], 3) with self.assertRaises(DifferentSamplerateError) as cm: overlay(a, b, c) self.assertEqual(cm.exception.frequency, (2, 2, 3)) def test_overlay_different_channels(self): a = Sound.from_sinwave(220) b = Sound.from_sinwave(440) c = Sound.from_sinwave(880).as_stereo() with self.assertRaises(DifferentChannelsError) as cm: overlay(a, b, c) self.assertEqual(cm.exception.channels, (1, 1, 2)) def test_concat(self): a = Sound.from_array([0.0, 0.1], 2) b = Sound.from_array([0.2, 0.3], 2) c = Sound.from_array([0.4, 0.5], 2) self.assertEqual(concat(a, b, c).samplerate, 2) self.assertEqual(concat(a, b, c).duration, 3) self.assertEqual(concat(a, b, c), Sound.from_array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5], 2)) self.assertEqual(concat(concat(a, b), c), Sound.from_array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5], 2)) self.assertEqual(concat(a, concat(b, c)), Sound.from_array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5], 2)) self.assertEqual(concat(c, b, a), Sound.from_array([0.4, 0.5, 0.2, 0.3, 0.0, 0.1], 2)) def test_concat_different_duration(self): a = Sound.from_array([0.0, 0.1], 2) b = Sound.from_array([0.2, 0.3], 2) c = Sound.from_array([0.4, 0.5, 0.6, 0.7], 2) self.assertEqual(concat(a, b, c).samplerate, 2) self.assertEqual(concat(a, b, c).duration, 4) self.assertEqual(concat(a, b, c), Sound.from_array([ 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 ], 2)) def test_concat_different_samplerate(self): a = Sound.from_array([0.0, 0.1], 2) b = Sound.from_array([0.2, 0.3], 2) c = Sound.from_array([0.4, 0.5], 3) with self.assertRaises(DifferentSamplerateError) as cm: concat(a, b, c) self.assertEqual(cm.exception.frequency, (2, 2, 3)) def test_concat_different_channels(self): a = Sound.from_sinwave(220) b = Sound.from_sinwave(440) c = Sound.from_sinwave(880).as_stereo() with self.assertRaises(DifferentChannelsError) as cm: concat(a, b, c) self.assertEqual(cm.exception.channels, (1, 1, 2)) def test_merge_channels(self): a = Sound.from_array([0.0, 0.1], 2) b = Sound.from_array([0.2, 0.3], 2) c = Sound.from_array([0.4, 0.5], 2) abc = Sound.from_array([[0.0, 0.2, 0.4], [0.1, 0.3, 0.5]], 2) self.assertEqual(merge_channels(a, b, c), abc) c_stereo = merge_channels(Sound.from_array([0.3, 0.6], 2), Sound.from_array([0.5, 0.4], 2)) self.assertEqual(merge_channels(a, b, c_stereo), abc) class SoundTest(unittest.TestCase): def test_constructor(self): sound = Sound(numpy.array([-1.0, 0.5, 1.0]), 1) self.assertEqual(sound.samplerate, 1) self.assertEqual(sound.duration, 3) self.assertEqual(tuple(sound.data), (-1.0, 0.5, 1.0)) def test_constructor_clip(self): sound = Sound(numpy.array([-1.1, -1.0, 1.0, 1.1]), 2) self.assertEqual(sound.samplerate, 2) self.assertEqual(sound.duration, 2) self.assertEqual(tuple(sound.data), (-1.0, -1.0, 1.0, 1.0)) def test_constructor_invalid(self): with self.assertRaises(InvalidSamplerateError) as cm: Sound(numpy.array([0]), 0) self.assertEqual(cm.exception.frequency, 0) with self.assertRaises(InvalidSamplerateError) as cm: Sound(numpy.array([0]), -1) self.assertEqual(cm.exception.frequency, -1) with self.assertRaises(InvalidDurationError) as cm: Sound(numpy.array([]), 1) self.assertEqual(cm.exception.duration, 0) with self.assertRaises(ValueError) as cm: Sound(numpy.array([[[1], [2]], [[3], [4]]]), 1) self.assertEqual(str(cm.exception), 'data dimensions must be 1 or 2 but got 3') def test_equals(self): a = Sound.from_array([0.1, 0.2, 0.3], 1) b = Sound.from_array([0.4, 0.5, 0.6], 1) self.assertEqual(a, a) self.assertEqual(b, b) self.assertNotEqual(a, b) self.assertNotEqual(a, None) self.assertNotEqual(a, 1) self.assertNotEqual(a, 'a') def test_from_array(self): self.assertEqual(Sound(numpy.array([-0.5, 0.5]), 44100), Sound.from_array([-0.5, 0.5], 44100)) self.assertEqual(Sound(numpy.array([0.1, -0.1]), 100), Sound.from_array([0.1, -0.1], 100)) def test_from_array_invalid(self): with self.assertRaises(InvalidDurationError) as cm: Sound.from_array([], 44100) self.assertEqual(cm.exception.duration, 0) with self.assertRaises(InvalidSamplerateError) as cm: Sound.from_array([0], 0) self.assertEqual(cm.exception.frequency, 0) def test_from_sinwave_with_smooth_end(self): sound = Sound.from_sinwave(440, duration=1, volume=0.5, samplerate=44100, smooth_end=True) self.assertEqual(sound.samplerate, 44100) self.assertAlmostEqual(sound.duration, 1, places=1) self.assertAlmostEqual(sound.volume, 0.5, places=4) sound = Sound.from_sinwave(880, duration=2, volume=0.8, samplerate=88200, smooth_end=True) self.assertEqual(sound.samplerate, 88200) self.assertAlmostEqual(sound.duration, 2, places=1) self.assertAlmostEqual(sound.volume, 0.8, places=4) def test_from_sinwave_without_smooth_end(self): sound = Sound.from_sinwave(440, duration=1, volume=0.5, samplerate=44100, smooth_end=False) self.assertEqual(sound.samplerate, 44100) self.assertEqual(sound.duration, 1.0) self.assertAlmostEqual(sound.volume, 0.5, places=4) sound = Sound.from_sinwave(880, duration=2, volume=0.8, samplerate=88200, smooth_end=False) self.assertEqual(sound.samplerate, 88200) self.assertEqual(sound.duration, 2.0) self.assertAlmostEqual(sound.volume, 0.8, places=4) def test_from_sinwave_invalid(self): with self.assertRaises(InvalidFrequencyError) as cm: Sound.from_sinwave(0) self.assertEqual(cm.exception.frequency, 0) with self.assertRaises(InvalidDurationError) as cm: Sound.from_sinwave(440, duration=0) self.assertEqual(cm.exception.duration, 0) with self.assertRaises(InvalidVolumeError) as cm: Sound.from_sinwave(440, volume=-0.1) self.assertEqual(cm.exception.volume, -0.1) with self.assertRaises(InvalidVolumeError) as cm: Sound.from_sinwave(440, volume=1.1) self.assertEqual(cm.exception.volume, 1.1) with self.assertRaises(InvalidSamplerateError) as cm: Sound.from_sinwave(440, samplerate=0) self.assertEqual(cm.exception.frequency, 0) def test_from_sawtoothwave(self): sound = Sound.from_sawtoothwave(440, duration=1, volume=0.5, samplerate=44100) self.assertEqual(sound.samplerate, 44100) self.assertEqual(sound.duration, 1.0) self.assertTrue((-0.5 <= sound.data).all()) self.assertTrue((sound.data <= 0.5).all()) self.assertEqual(sound.volume, 0.5) sound = Sound.from_sawtoothwave(880, duration=2, volume=0.8, samplerate=88200) self.assertEqual(sound.samplerate, 88200) self.assertTrue(sound.duration, 2.0) self.assertTrue((-0.8 <= sound.data).all()) self.assertTrue((sound.data <= 0.8).all()) self.assertTrue(sound.volume, 0.8) sound = Sound.from_sawtoothwave(1, duration=2, samplerate=3) self.assertTrue(numpy.allclose(sound.data[:, 0], (-1.0, 0.0, 1.0, -1.0, 0.0, 1.0))) def test_from_sawtoothwave_invalid(self): with self.assertRaises(InvalidFrequencyError) as cm: Sound.from_sawtoothwave(0) self.assertEqual(cm.exception.frequency, 0) with self.assertRaises(InvalidDurationError) as cm: Sound.from_sawtoothwave(440, duration=0) self.assertEqual(cm.exception.duration, 0) with self.assertRaises(InvalidVolumeError) as cm: Sound.from_sawtoothwave(440, volume=-0.1) self.assertEqual(cm.exception.volume, -0.1) with self.assertRaises(InvalidVolumeError) as cm: Sound.from_sawtoothwave(440, volume=1.1) self.assertEqual(cm.exception.volume, 1.1) with self.assertRaises(InvalidSamplerateError) as cm: Sound.from_sawtoothwave(440, samplerate=0) self.assertEqual(cm.exception.frequency, 0) def test_from_squarewave(self): sound = Sound.from_squarewave(440, duration=1, volume=0.5, samplerate=44100) self.assertEqual(sound.samplerate, 44100) self.assertEqual(sound.duration, 1.0) self.assertTrue((-0.5 <= sound.data).all()) self.assertTrue((sound.data <= 0.5).all()) self.assertEqual(sound.volume, 0.5) sound = Sound.from_squarewave(880, duration=2, volume=0.8, samplerate=88200) self.assertEqual(sound.samplerate, 88200) self.assertTrue(sound.duration, 2.0) self.assertTrue((-0.8 <= sound.data).all()) self.assertTrue((sound.data <= 0.8).all()) self.assertTrue(sound.volume, 0.8) sound = Sound.from_squarewave(1, duration=2, samplerate=4) self.assertTrue(numpy.allclose(sound.data[:, 0], (1, 1, -1, -1, 1, 1, -1, -1))) def test_from_squarewave_invalid(self): with self.assertRaises(InvalidFrequencyError) as cm: Sound.from_squarewave(0) self.assertEqual(cm.exception.frequency, 0) with self.assertRaises(InvalidDurationError) as cm: Sound.from_squarewave(440, duration=0) self.assertEqual(cm.exception.duration, 0) with self.assertRaises(InvalidVolumeError) as cm: Sound.from_squarewave(440, volume=-0.1) self.assertEqual(cm.exception.volume, -0.1) with self.assertRaises(InvalidVolumeError) as cm: Sound.from_squarewave(440, volume=1.1) self.assertEqual(cm.exception.volume, 1.1) with self.assertRaises(InvalidSamplerateError) as cm: Sound.from_squarewave(440, samplerate=0) self.assertEqual(cm.exception.frequency, 0) def test_silence(self): sound = Sound.silence(duration=1.0, samplerate=100) self.assertEqual(sound.samplerate, 100) self.assertEqual(sound.duration, 1.0) self.assertTrue((sound.data == 0).all()) sound = Sound.silence(duration=2.0, samplerate=20) self.assertEqual(sound.samplerate, 20) self.assertEqual(sound.duration, 2.0) self.assertTrue((sound.data == 0).all()) def test_silence_invlid(self): with self.assertRaises(InvalidDurationError) as cm: Sound.silence(duration=0) self.assertEqual(cm.exception.duration, 0) with self.assertRaises(InvalidSamplerateError) as cm: Sound.silence(samplerate=0) self.assertEqual(cm.exception.frequency, 0) def test_whitenoise(self): sound = Sound.from_whitenoise(duration=2, volume=0.1, samplerate=100) self.assertEqual(sound.samplerate, 100) self.assertEqual(sound.duration, 2) self.assertTrue((-0.1 <= sound.data).all()) self.assertTrue((sound.data <= 0.1).all()) def test_whitenoise_invalid(self): with self.assertRaises(InvalidDurationError) as cm: Sound.from_whitenoise(duration=0) self.assertEqual(cm.exception.duration, 0) with self.assertRaises(InvalidVolumeError) as cm: Sound.from_whitenoise(volume=-0.1) self.assertEqual(cm.exception.volume, -0.1) with self.assertRaises(InvalidVolumeError) as cm: Sound.from_whitenoise(volume=1.1) self.assertEqual(cm.exception.volume, 1.1) with self.assertRaises(InvalidSamplerateError) as cm: Sound.from_whitenoise(samplerate=0) self.assertEqual(cm.exception.frequency, 0) def test_from_fft(self): f = numpy.zeros([2, 1024 // 2 + 1, 2], numpy.complex) f[:, -1, 0] = 1024 // 2 f[0, 128, 1] = numpy.complex(0, -numpy.pi) f[1, 256, 1] = numpy.complex(0, -numpy.pi) s = Sound.from_fft(f) self.assertEqual(s.samplerate, 1024) self.assertEqual(s.n_channels, 2) self.assertEqual(s.duration, 1.0) from_sin = merge_channels(Sound.from_sinwave(128, samplerate=1024), Sound.from_sinwave(256, samplerate=1024)) self.assertTrue(numpy.allclose(s.data / s.volume, from_sin.data / from_sin.volume)) def test_from_fft_invalid(self): f = numpy.zeros([1024 // 2 + 1, 2], numpy.complex) with self.assertRaises(InvalidSamplerateError) as cm: Sound.from_fft(f, samplerate=0) self.assertEqual(cm.exception.frequency, 0) def test_fft_single_channel(self): sound = Sound.from_sinwave(440, duration=0.1) f = sound.fft() self.assertTrue((0 <= f[:, :, 0]).all()) self.assertEqual(f.shape[0], 1) self.assertEqual(f.shape[2], 2) self.assertGreaterEqual(f[:, :, 0].min(), 0) self.assertLessEqual(f[:, :, 0].max(), sound.samplerate) self.assertEqual(f[0, :, 1].argmax(), abs(f[0, :, 0] - 440).argmin()) def test_fft_two_channel(self): sound = merge_channels(Sound.from_sinwave(440, duration=0.1), Sound.from_sinwave(220, duration=0.1)) f = sound.fft() self.assertTrue((0 <= f[:, :, 0]).all()) self.assertEqual(f.shape[0], 2) self.assertEqual(f.shape[2], 2) self.assertGreaterEqual(f[:, :, 0].min(), 0) self.assertLessEqual(f[:, :, 0].max(), sound.samplerate) self.assertEqual(f[0, :, 1].argmax(), abs(f[0, :, 0] - 440).argmin()) self.assertEqual(f[1, :, 1].argmax(), abs(f[1, :, 0] - 220).argmin()) def test_repeat(self): sound = Sound.from_array([0.0, 0.1, 0.2], 3) self.assertEqual(sound.duration, 1) self.assertEqual(tuple(sound.data), (0.0, 0.1, 0.2)) sound = sound.repeat(2) self.assertEqual(sound.duration, 2) self.assertEqual(tuple(sound.data), (0.0, 0.1, 0.2, 0.0, 0.1, 0.2)) sound = sound.repeat(2 / 3) self.assertEqual(sound.duration, 2 / 3) self.assertEqual(tuple(sound.data), (0.0, 0.1)) def test_repeat_invalid(self): sound = Sound.from_sinwave(440) with self.assertRaises(InvalidDurationError) as cm: sound.repeat(0) self.assertEqual(cm.exception.duration, 0) def test_trim_just(self): sound = Sound.from_array([[0.0, 0.3], [0.1, 0.4], [0.2, 0.5]], 1) self.assertEqual(sound[0.0].n_channels, 2) self.assertEqual(tuple(sound[0.0].data[0, :]), (0.0, 0.3)) self.assertEqual(sound[0.4999999999].n_channels, 2) self.assertEqual(tuple(sound[0.4999999999].data[0, :]), (0.0, 0.3)) self.assertEqual(sound[0.5000000001].n_channels, 2) self.assertEqual(tuple(sound[0.5000000001].data[0, :]), (0.1, 0.4)) self.assertEqual(sound[1.0].n_channels, 2) self.assertEqual(tuple(sound[1.0].data[0, :]), (0.1, 0.4)) self.assertEqual(sound[2.0].n_channels, 2) self.assertEqual(tuple(sound[2.0].data[0, :]), (0.2, 0.5)) self.assertEqual(sound[3.0].n_channels, 2) self.assertEqual(tuple(sound[3.0].data[0, :]), (0.2, 0.5)) def test_trim_just_invalid(self): sound = Sound.from_array([0.0, 0.1, 0.2], 3) with self.assertRaises(OutOfDurationError) as cm: sound[-0.001] self.assertEqual(cm.exception.duration, -0.001)
<gh_stars>1000+ """ Execution of data pipelines. Uses forking (multiprocessing processes) for parallelism and message queues for inter-process communication. """ import datetime from datetime import timezone as tz import functools import multiprocessing import os import sys import signal import atexit import time import traceback from multiprocessing import queues from . import pipelines, config from .logging import logger, pipeline_events, system_statistics, run_log, node_cost from . import events def run_pipeline(pipeline: pipelines.Pipeline, nodes: {pipelines.Node} = None, with_upstreams: bool = False, interactively_started: bool = False ) -> [events.Event]: """ Runs a pipeline in a forked sub process. Acts as a generator that yields events from the sub process. Using forking has two advantages: 1. The pipeline is also forked and thus can be modified without affecting the original pipeline. 2. It's possible to hand over control to the parent process while the pipeline is running, for example for sending output to a browser. Args: pipeline: The pipeline to run nodes: A list of pipeline children that should run with_upstreams: When true and `nodes` are provided, then all upstreams of `nodes` in `pipeline` are also run Yields: Events emitted during pipeline execution """ # use forking for starting child processes to avoid cleanup functions and leakage and pickle problems # # On newer macs you need to set # OBJC_DISABLE_INITIALIZE_FORK_SAFETY=YES # env variable *before* starting python/flask otherwise you will get core dumps when any forked process calls # into certain native code (e.g. requests)! Note that this is done automatically if you create your virtual env # via the scripts from mara-app >= 2.1.1 # multiprocessing_context = multiprocessing.get_context('fork') # A queue for receiving events from forked sub processes event_queue = multiprocessing_context.Queue() # The function that is run in a sub process def run(): try: # capture output of print statements and other unplanned output logger.redirect_output(event_queue, pipeline.path()) # all nodes that have not run yet, ordered by priority node_queue: [pipelines.Node] = [] # data needed for computing cost node_durations_and_run_times = node_cost.node_durations_and_run_times(pipeline) # Putting nodes into the node queue def queue(nodes: [pipelines.Node]): for node in nodes: node_cost.compute_cost(node, node_durations_and_run_times) node_queue.append(node) node_queue.sort(key=lambda node: node.cost, reverse=True) if nodes: # only run a set of child nodes def with_all_upstreams(nodes: {pipelines.Node}): """recursively find all upstreams of a list of nodes""" return functools.reduce(set.union, [with_all_upstreams(node.upstreams) for node in nodes], nodes) # when requested, include all upstreams of nodes, otherwise just use provided nodes nodes_to_run = with_all_upstreams(set(nodes)) if with_upstreams else set(nodes) # remove everything from pipeline that should not be run # (that's makes updating dependencies between nodes easier) for node in set(pipeline.nodes.values()) - nodes_to_run: pipeline.remove(node) # queue remaining nodes queue(list((pipeline.nodes).values())) else: # remove dependencies to siblings pipeline.upstreams = set() pipeline.downstreams = set() # queue whole pipeline queue([pipeline]) # book keeping run_start_time = datetime.datetime.now(tz.utc) # all nodes that already ran or that won't be run anymore processed_nodes: {pipelines.Node} = set() # running pipelines with start times and number of running children running_pipelines: {pipelines.Pipeline: [datetime.datetime, int]} = {} failed_pipelines: {pipelines.Pipeline} = set() # pipelines with failed tasks running_task_processes: {pipelines.Task: TaskProcess} = {} # make sure any running tasks are killed when this executor process is shutdown executor_pid = os.getpid() def ensure_task_processes_killed(): # as we fork, the TaskProcess also runs this function -> ignore it there if os.getpid() != executor_pid: return try: for tp in list(running_task_processes.values()): # type: TaskProcess if tp.is_alive(): # give it a chance to gracefully shutdown tp.terminate() statistics_process.kill() except BaseException as e: print(f"Exception during TaskProcess cleanup: {repr(e)}", file=sys.stderr, flush=True) return atexit.register(ensure_task_processes_killed) def dequeue() -> pipelines.Node: """ Finds the next task in the queue - without upstreams or where all upstreams have been run already - where the pipeline specific maximum number of parallel tasks per pipeline is not reached """ for node in node_queue: # type: pipelines.Node if ((not node.upstreams or len(node.upstreams & processed_nodes) == len(node.upstreams)) and (not isinstance(node.parent, pipelines.Pipeline) or (not node.parent.max_number_of_parallel_tasks) or (not node.parent in running_pipelines) or (running_pipelines[node.parent][1] < node.parent.max_number_of_parallel_tasks))): node_queue.remove(node) processed_as_parent_failed = False parent = node.parent while parent: # if the parent pipeline failed (and no overwrite), don't launch new nodes # this needs to go down to the ultimate parent as we can have cases where we already # queued a subpipeline and now the parent pipeline failed but the tasks parent pipeline # (the sub pipeline) is not failed. # If a task from a parent pipeline fails, even with force_run_all_children on the # sub pipeline, the sub pipeline would stop. Only if the failed parent pipeline also has # force_run_all_children, the task would get scheduled if parent in failed_pipelines and not parent.force_run_all_children: processed_nodes.add(node) processed_as_parent_failed = True break else: parent = parent.parent if not processed_as_parent_failed: return node def track_finished_pipelines(): """when all nodes of a pipeline have been processed, then emit events""" for running_pipeline, (start_time, running_children) \ in dict(running_pipelines).items(): # type: pipelines.Pipeline if len(set(running_pipeline.nodes.values()) & processed_nodes) == len(running_pipeline.nodes): succeeded = running_pipeline not in failed_pipelines event_queue.put(pipeline_events.Output( node_path=running_pipeline.path(), format=logger.Format.ITALICS, is_error=not succeeded, message=f'{"succeeded" if succeeded else "failed"}, {logger.format_time_difference(run_start_time, datetime.datetime.now(tz.utc))}')) event_queue.put(pipeline_events.NodeFinished( node_path=running_pipeline.path(), start_time=start_time, end_time=datetime.datetime.now(tz.utc), is_pipeline=True, succeeded=succeeded)) del running_pipelines[running_pipeline] processed_nodes.add(running_pipeline) # announce run start event_queue.put(pipeline_events.RunStarted(node_path=pipeline.path(), start_time=run_start_time, pid=os.getpid(), interactively_started=interactively_started, node_ids=[node.id for node in (nodes or [])], is_root_pipeline=(pipeline.parent is None)) ) # collect system stats in a separate Process statistics_process = multiprocessing.Process( target=lambda: system_statistics.generate_system_statistics(event_queue), name='system_statistics') statistics_process.start() # run as long # - as task processes are still running # - as there is still stuff in the node queue while running_task_processes or node_queue: # don't do anything if the maximum number of parallel tasks is currently running if len(running_task_processes) < config.max_number_of_parallel_tasks(): next_node = dequeue() # get the next runnable node from the queue if next_node: if isinstance(next_node, pipelines.Pipeline): # connect pipeline nodes without upstreams to upstreams of pipeline for upstream in next_node.upstreams: for pipeline_node in next_node.nodes.values(): if not pipeline_node.upstreams: next_node.add_dependency(upstream, pipeline_node) # connect pipeline nodes without downstreams to downstream of pipeline for downstream in next_node.downstreams: for pipeline_node in next_node.nodes.values(): if not pipeline_node.downstreams: next_node.add_dependency(pipeline_node, downstream) # get cost information for children node_durations_and_run_times.update(node_cost.node_durations_and_run_times(next_node)) # queue all child nodes queue(list(next_node.nodes.values())) # book keeping and event emission pipeline_start_time = datetime.datetime.now(tz.utc) running_pipelines[next_node] = [pipeline_start_time, 0] event_queue.put(pipeline_events.NodeStarted(next_node.path(), pipeline_start_time, True)) event_queue.put(pipeline_events.Output( node_path=next_node.path(), format=logger.Format.ITALICS, message='★ ' + node_cost.format_duration( node_durations_and_run_times.get(tuple(next_node.path()), [0, 0])[0]))) elif isinstance(next_node, pipelines.ParallelTask): # create sub tasks and queue them task_start_time = datetime.datetime.now(tz.utc) try: logger.redirect_output(event_queue, next_node.path()) logger.log('☆ Launching tasks', format=logger.Format.ITALICS) sub_pipeline = next_node.launch() next_node.parent.replace(next_node, sub_pipeline) queue([sub_pipeline]) except Exception as e: event_queue.put(pipeline_events.NodeStarted( node_path=next_node.path(), start_time=task_start_time, is_pipeline=True)) logger.log(message=f'Could not launch parallel tasks', format=logger.Format.ITALICS, is_error=True) logger.log(message=traceback.format_exc(), format=pipeline_events.Output.Format.VERBATIM, is_error=True) event_queue.put(pipeline_events.NodeFinished( node_path=next_node.path(), start_time=task_start_time, end_time=datetime.datetime.now(tz.utc), is_pipeline=True, succeeded=False)) failed_pipelines.add(next_node.parent) processed_nodes.add(next_node) finally: logger.redirect_output(event_queue, pipeline.path()) else: # run a task in a subprocess if next_node.parent in running_pipelines: running_pipelines[next_node.parent][1] += 1 event_queue.put( pipeline_events.NodeStarted(next_node.path(), datetime.datetime.now(tz.utc), False)) event_queue.put(pipeline_events.Output( node_path=next_node.path(), format=logger.Format.ITALICS, message='★ ' + node_cost.format_duration( node_durations_and_run_times.get(tuple(next_node.path()), [0, 0])[0]))) status_queue = multiprocessing_context.Queue() process = TaskProcess(next_node, event_queue, status_queue) process.start() running_task_processes[next_node] = process # check whether some of the running processes finished for task_process in list(running_task_processes.values()): # type: TaskProcess if task_process.is_alive(): pass else: del running_task_processes[task_process.task] if task_process.task.parent in running_pipelines: running_pipelines[task_process.task.parent][1] -= 1 processed_nodes.add(task_process.task) succeeded = not (task_process.status_queue.get() == False or task_process.exitcode != 0) if not succeeded and not task_process.task.parent.ignore_errors: for parent in task_process.task.parents()[:-1]: failed_pipelines.add(parent) end_time = datetime.datetime.now(tz.utc) event_queue.put( pipeline_events.Output(task_process.task.path(), ('succeeded' if succeeded else 'failed') + ', ' + logger.format_time_difference(task_process.start_time, end_time), format=logger.Format.ITALICS, is_error=not succeeded)) event_queue.put(pipeline_events.NodeFinished(task_process.task.path(), task_process.start_time, end_time, False, succeeded)) # check if some pipelines finished track_finished_pipelines() # don't busy-wait time.sleep(0.001) except: event_queue.put(pipeline_events.Output(node_path=pipeline.path(), message=traceback.format_exc(), format=logger.Format.ITALICS, is_error=True)) # run again because `dequeue` might have moved more nodes to `finished_nodes` track_finished_pipelines() # kill the stats process (joining or terminating does not work in gunicorn) os.kill(statistics_process.pid, signal.SIGKILL) statistics_process.join() # run finished event_queue.put(pipeline_events.RunFinished(node_path=pipeline.path(), end_time=datetime.datetime.now(tz.utc), succeeded=not failed_pipelines, interactively_started=interactively_started)) # fork the process and run `run` run_process = multiprocessing_context.Process(target=run, name='pipeline-' + '-'.join(pipeline.path())) run_process.start() runlogger = run_log.RunLogger() # make sure that we close this run (if still open) as failed when we close this python process # On SIGKILL we will still leave behind open runs... # this needs to run after we forked off the run_process as that one should not inherit the atexit function def ensure_closed_run_on_abort(): try: run_log.close_open_run_after_error(runlogger.run_id) except BaseException as e: print(f"Exception during 'close_open_run_after_error()': {repr(e)}", file=sys.stderr, flush=True) return
f.SetGeometry(ogr.CreateGeometryFromWkt('POLYGON ((0 0,0 1,1 1,1 0,0 0))')) lyr.CreateFeature(f) f = None ds = None # Split features layer = QgsVectorLayer(u'{}'.format(tmpfile) + "|layername=" + "test", 'test', u'ogr') self.assertTrue(layer.isValid()) self.assertTrue(layer.isSpatial()) self.assertEqual([f for f in layer.getFeatures()][0].geometry().asWkt(), 'Polygon ((0 0, 0 1, 1 1, 1 0, 0 0))') layer.startEditing() self.assertEqual(layer.splitFeatures([QgsPointXY(0.5, 0), QgsPointXY(0.5, 1)], 0), 0) self.assertTrue(layer.commitChanges()) self.assertEqual(layer.featureCount(), 2) layer = QgsVectorLayer(u'{}'.format(tmpfile) + "|layername=" + "test", 'test', u'ogr') self.assertEqual(layer.featureCount(), 2) self.assertEqual([f for f in layer.getFeatures()][0].geometry().asWkt(), 'Polygon ((0.5 0, 0.5 1, 1 1, 1 0, 0.5 0))') self.assertEqual([f for f in layer.getFeatures()][1].geometry().asWkt(), 'Polygon ((0.5 1, 0.5 0, 0 0, 0 1, 0.5 1))') def testCreateAttributeIndex(self): tmpfile = os.path.join(self.basetestpath, 'testGeopackageAttributeIndex.gpkg') ds = ogr.GetDriverByName('GPKG').CreateDataSource(tmpfile) lyr = ds.CreateLayer('test', geom_type=ogr.wkbPolygon) lyr.CreateField(ogr.FieldDefn('str_field', ogr.OFTString)) lyr.CreateField(ogr.FieldDefn('str_field2', ogr.OFTString)) f = None ds = None vl = QgsVectorLayer(u'{}'.format(tmpfile) + "|layername=" + "test", 'test', u'ogr') self.assertTrue(vl.isValid()) self.assertTrue(vl.dataProvider().capabilities() & QgsVectorDataProvider.CreateAttributeIndex) self.assertFalse(vl.dataProvider().createAttributeIndex(-1)) self.assertFalse(vl.dataProvider().createAttributeIndex(100)) # should not be allowed - there's already a index on the primary key self.assertFalse(vl.dataProvider().createAttributeIndex(0)) self.assertTrue(vl.dataProvider().createAttributeIndex(1)) con = spatialite_connect(tmpfile, isolation_level=None) cur = con.cursor() rs = cur.execute("SELECT * FROM sqlite_master WHERE type='index' AND tbl_name='test'") res = [row for row in rs] self.assertEqual(len(res), 1) index_name = res[0][1] rs = cur.execute("PRAGMA index_info({})".format(index_name)) res = [row for row in rs] self.assertEqual(len(res), 1) self.assertEqual(res[0][2], 'str_field') # second index self.assertTrue(vl.dataProvider().createAttributeIndex(2)) rs = cur.execute("SELECT * FROM sqlite_master WHERE type='index' AND tbl_name='test'") res = [row for row in rs] self.assertEqual(len(res), 2) indexed_columns = [] for row in res: index_name = row[1] rs = cur.execute("PRAGMA index_info({})".format(index_name)) res = [row for row in rs] self.assertEqual(len(res), 1) indexed_columns.append(res[0][2]) self.assertCountEqual(indexed_columns, ['str_field', 'str_field2']) con.close() def testCreateSpatialIndex(self): tmpfile = os.path.join(self.basetestpath, 'testGeopackageSpatialIndex.gpkg') ds = ogr.GetDriverByName('GPKG').CreateDataSource(tmpfile) lyr = ds.CreateLayer('test', geom_type=ogr.wkbPolygon, options=['SPATIAL_INDEX=NO']) lyr.CreateField(ogr.FieldDefn('str_field', ogr.OFTString)) lyr.CreateField(ogr.FieldDefn('str_field2', ogr.OFTString)) f = None ds = None vl = QgsVectorLayer(u'{}'.format(tmpfile) + "|layername=" + "test", 'test', u'ogr') self.assertTrue(vl.isValid()) self.assertTrue(vl.dataProvider().capabilities() & QgsVectorDataProvider.CreateSpatialIndex) self.assertTrue(vl.dataProvider().createSpatialIndex()) def testSubSetStringEditable_bug17795_but_with_modified_behavior(self): """Test that a layer is editable after setting a subset""" tmpfile = os.path.join(self.basetestpath, 'testSubSetStringEditable_bug17795.gpkg') shutil.copy(TEST_DATA_DIR + '/' + 'provider/bug_17795.gpkg', tmpfile) isEditable = QgsVectorDataProvider.ChangeAttributeValues testPath = tmpfile + '|layername=bug_17795' vl = QgsVectorLayer(testPath, 'subset_test', 'ogr') self.assertTrue(vl.isValid()) self.assertTrue(vl.dataProvider().capabilities() & isEditable) vl = QgsVectorLayer(testPath, 'subset_test', 'ogr') vl.setSubsetString('') self.assertTrue(vl.isValid()) self.assertTrue(vl.dataProvider().capabilities() & isEditable) vl = QgsVectorLayer(testPath, 'subset_test', 'ogr') vl.setSubsetString('"category" = \'one\'') self.assertTrue(vl.isValid()) self.assertTrue(vl.dataProvider().capabilities() & isEditable) vl.setSubsetString('') self.assertTrue(vl.dataProvider().capabilities() & isEditable) def testSubsetStringExtent_bug17863(self): """Check that the extent is correct when applied in the ctor and when modified after a subset string is set """ def _lessdigits(s): return re.sub(r'(\d+\.\d{3})\d+', r'\1', s) tmpfile = os.path.join(self.basetestpath, 'testSubsetStringExtent_bug17863.gpkg') shutil.copy(TEST_DATA_DIR + '/' + 'provider/bug_17795.gpkg', tmpfile) testPath = tmpfile + '|layername=bug_17795' subSetString = '"name" = \'int\'' subSet = '|layername=bug_17795|subset=%s' % subSetString # unfiltered vl = QgsVectorLayer(testPath, 'test', 'ogr') self.assertTrue(vl.isValid()) unfiltered_extent = _lessdigits(vl.extent().toString()) del(vl) # filter after construction ... subSet_vl2 = QgsVectorLayer(testPath, 'test', 'ogr') self.assertEqual(_lessdigits(subSet_vl2.extent().toString()), unfiltered_extent) # ... apply filter now! subSet_vl2.setSubsetString(subSetString) self.assertEqual(subSet_vl2.subsetString(), subSetString) self.assertNotEqual(_lessdigits(subSet_vl2.extent().toString()), unfiltered_extent) filtered_extent = _lessdigits(subSet_vl2.extent().toString()) del(subSet_vl2) # filtered in constructor subSet_vl = QgsVectorLayer(testPath + subSet, 'subset_test', 'ogr') self.assertEqual(subSet_vl.subsetString(), subSetString) self.assertTrue(subSet_vl.isValid()) # This was failing in bug 17863 self.assertEqual(_lessdigits(subSet_vl.extent().toString()), filtered_extent) self.assertNotEqual(_lessdigits(subSet_vl.extent().toString()), unfiltered_extent) def testRequestWithoutGeometryOnLayerMixedGeometry(self): """ Test bugfix for https://issues.qgis.org/issues/19077 """ # Issue is more a generic one of the OGR provider, but easy to trigger with GPKG tmpfile = os.path.join(self.basetestpath, 'testRequestWithoutGeometryOnLayerMixedGeometry.gpkg') ds = ogr.GetDriverByName('GPKG').CreateDataSource(tmpfile) lyr = ds.CreateLayer('test', geom_type=ogr.wkbUnknown, options=['SPATIAL_INDEX=NO']) f = ogr.Feature(lyr.GetLayerDefn()) f.SetGeometry(ogr.CreateGeometryFromWkt('POINT(0 1)')) lyr.CreateFeature(f) f = ogr.Feature(lyr.GetLayerDefn()) f.SetGeometry(ogr.CreateGeometryFromWkt('LINESTRING(0 0,1 0)')) lyr.CreateFeature(f) f = ogr.Feature(lyr.GetLayerDefn()) f.SetGeometry(ogr.CreateGeometryFromWkt('LINESTRING(0 0,1 0)')) lyr.CreateFeature(f) f = None ds = None vl = QgsVectorLayer(u'{}'.format(tmpfile) + "|geometrytype=Point|layername=" + "test", 'test', u'ogr') self.assertTrue(vl.isValid()) request = QgsFeatureRequest().setFlags(QgsFeatureRequest.NoGeometry) features = [f for f in vl.getFeatures(request)] self.assertEqual(len(features), 1) def testAddingTwoIntFieldsWithWidth(self): """ Test buggfix for https://issues.qgis.org/issues/19009 """ tmpfile = os.path.join(self.basetestpath, 'testRequestWithoutGeometryOnLayerMixedGeometry.gpkg') ds = ogr.GetDriverByName('GPKG').CreateDataSource(tmpfile) lyr = ds.CreateLayer('test', geom_type=ogr.wkbPoint, options=['SPATIAL_INDEX=NO']) lyr.CreateField(ogr.FieldDefn('a', ogr.OFTInteger)) ds = None vl = QgsVectorLayer(u'{}'.format(tmpfile) + "|layername=" + "test", 'test', u'ogr') self.assertTrue(vl.isValid()) vl.startEditing() self.assertTrue(vl.addAttribute(QgsField("b", QVariant.Int, "integer", 10))) self.assertTrue(vl.commitChanges()) vl.startEditing() self.assertTrue(vl.addAttribute(QgsField("c", QVariant.Int, "integer", 10))) self.assertTrue(vl.commitChanges()) def testApproxFeatureCountAndExtent(self): """ Test perf improvement for for https://issues.qgis.org/issues/18402 """ tmpfile = os.path.join(self.basetestpath, 'testApproxFeatureCountAndExtent.gpkg') ds = ogr.GetDriverByName('GPKG').CreateDataSource(tmpfile) lyr = ds.CreateLayer('test', geom_type=ogr.wkbPoint) f = ogr.Feature(lyr.GetLayerDefn()) f.SetGeometry(ogr.CreateGeometryFromWkt('POINT(0 1)')) lyr.CreateFeature(f) f = ogr.Feature(lyr.GetLayerDefn()) f.SetGeometry(ogr.CreateGeometryFromWkt('POINT(2 3)')) lyr.CreateFeature(f) fid = f.GetFID() f = ogr.Feature(lyr.GetLayerDefn()) f.SetGeometry(ogr.CreateGeometryFromWkt('POINT(4 5)')) lyr.CreateFeature(f) lyr.DeleteFeature(fid) ds = None ds = ogr.Open(tmpfile, update=1) ds.ExecuteSQL('DROP TABLE gpkg_ogr_contents') ds = None os.environ['QGIS_GPKG_FC_THRESHOLD'] = '1' vl = QgsVectorLayer(u'{}'.format(tmpfile) + "|layername=" + "test", 'test', u'ogr') self.assertTrue(vl.isValid()) fc = vl.featureCount() del os.environ['QGIS_GPKG_FC_THRESHOLD'] self.assertEqual(fc, 3) # didn't notice the hole reference = QgsGeometry.fromRect(QgsRectangle(0, 1, 4, 5)) provider_extent = QgsGeometry.fromRect(vl.extent()) self.assertTrue(QgsGeometry.compare(provider_extent.asPolygon()[0], reference.asPolygon()[0], 0.00001), provider_extent.asPolygon()[0]) def testRegenerateFid(self): """ Test regenerating feature ids """ fields = QgsFields() fields.append(QgsField('fid', QVariant.Int)) fields.append(QgsField('f1', QVariant.Int)) tmpfile = os.path.join(self.basetestpath, 'testRegenerateFid.gpkg') options = {} options['update'] = True options['driverName'] = 'GPKG' options['layerName'] = 'table1' exporter = QgsVectorLayerExporter(tmpfile, "ogr", fields, QgsWkbTypes.Polygon, QgsCoordinateReferenceSystem(3111), False, options, QgsFeatureSink.RegeneratePrimaryKey) self.assertFalse(exporter.errorCode(), 'unexpected export error {}: {}'.format(exporter.errorCode(), exporter.errorMessage())) feat = QgsFeature(fields) feat['fid'] = 0 feat['f1'] = 10 exporter.addFeature(feat) feat['fid'] = 0 feat['f1'] = 20 exporter.addFeature(feat) feat['fid'] = 1 feat['f1'] = 30 exporter.addFeature(feat) feat['fid'] = 1 feat['f1'] = 40 exporter.addFeature(feat) del exporter # make sure layers exist lyr = QgsVectorLayer('{}|layername=table1'.format(tmpfile), "lyr1", "ogr") self.assertTrue(lyr.isValid()) self.assertEqual(lyr.crs().authid(), 'EPSG:3111') self.assertEqual(lyr.wkbType(), QgsWkbTypes.Polygon) values = set([f['f1'] for f in lyr.getFeatures()]) self.assertEqual(values, set([10, 20, 30, 40])) fids = set([f['fid'] for f in lyr.getFeatures()]) self.assertEqual(len(fids), 4) def testTransaction(self): tmpfile = os.path.join(self.basetestpath, 'testTransaction.gpkg') ds = ogr.GetDriverByName('GPKG').CreateDataSource(tmpfile) lyr = ds.CreateLayer('lyr1', geom_type=ogr.wkbPoint) f = ogr.Feature(lyr.GetLayerDefn()) f.SetGeometry(ogr.CreateGeometryFromWkt('POINT(0 1)')) lyr.CreateFeature(f) lyr = ds.CreateLayer('lyr2', geom_type=ogr.wkbPoint) f = ogr.Feature(lyr.GetLayerDefn()) f.SetGeometry(ogr.CreateGeometryFromWkt('POINT(2 3)')) lyr.CreateFeature(f) f = ogr.Feature(lyr.GetLayerDefn()) f.SetGeometry(ogr.CreateGeometryFromWkt('POINT(4 5)')) lyr.CreateFeature(f) ds = None vl1 = QgsVectorLayer(u'{}'.format(tmpfile) + "|layername=" + "lyr1", 'test', u'ogr') self.assertTrue(vl1.isValid()) vl2 = QgsVectorLayer(u'{}'.format(tmpfile) + "|layername=" + "lyr2", 'test', u'ogr') self.assertTrue(vl2.isValid()) # prepare a project with transactions enabled p = QgsProject() p.setAutoTransaction(True) p.addMapLayers([vl1, vl2]) self.assertTrue(vl1.startEditing()) self.assertIsNotNone(vl1.dataProvider().transaction()) self.assertTrue(vl1.deleteFeature(1)) # An iterator opened on the layer should see the feature deleted self.assertEqual(len([f for f in vl1.getFeatures(QgsFeatureRequest())]), 0) # But not if opened from another connection vl1_external = QgsVectorLayer(u'{}'.format(tmpfile) + "|layername=" + "lyr1", 'test', u'ogr') self.assertTrue(vl1_external.isValid()) self.assertEqual(len([f for f in vl1_external.getFeatures(QgsFeatureRequest())]), 1) del vl1_external self.assertTrue(vl1.commitChanges()) # Should still get zero features on vl1 self.assertEqual(len([f for f in vl1.getFeatures(QgsFeatureRequest())]), 0) self.assertEqual(len([f for f in vl2.getFeatures(QgsFeatureRequest())]), 2) # Test undo/redo self.assertTrue(vl2.startEditing()) self.assertIsNotNone(vl2.dataProvider().transaction()) self.assertTrue(vl2.editBuffer().deleteFeature(1)) self.assertEqual(len([f for f in vl2.getFeatures(QgsFeatureRequest())]), 1) self.assertTrue(vl2.editBuffer().deleteFeature(2)) self.assertEqual(len([f for f in vl2.getFeatures(QgsFeatureRequest())]), 0) vl2.undoStack().undo() self.assertEqual(len([f for f in vl2.getFeatures(QgsFeatureRequest())]), 1) vl2.undoStack().undo() self.assertEqual(len([f for f in vl2.getFeatures(QgsFeatureRequest())]), 2) vl2.undoStack().redo() self.assertEqual(len([f for f in vl2.getFeatures(QgsFeatureRequest())]), 1) self.assertTrue(vl2.commitChanges()) self.assertEqual(len([f for f in vl2.getFeatures(QgsFeatureRequest())]), 1) del vl1 del vl2 vl2_external = QgsVectorLayer(u'{}'.format(tmpfile) + "|layername=" + "lyr2", 'test', u'ogr') self.assertTrue(vl2_external.isValid()) self.assertEqual(len([f for f in vl2_external.getFeatures(QgsFeatureRequest())]), 1) del vl2_external def testJson(self): if int(gdal.VersionInfo('VERSION_NUM')) < GDAL_COMPUTE_VERSION(2, 4, 0): return tmpfile = os.path.join(self.basetestpath, 'test_json.gpkg') testdata_path = unitTestDataPath('provider') shutil.copy(os.path.join(unitTestDataPath('provider'), 'test_json.gpkg'), tmpfile) vl = QgsVectorLayer('{}|layerid=0'.format(tmpfile, 'foo', 'ogr')) self.assertTrue(vl.isValid()) fields = vl.dataProvider().fields() self.assertEqual(fields.at(fields.indexFromName('json_content')).type(), QVariant.Map) fi = vl.getFeatures(QgsFeatureRequest()) f = QgsFeature() #test reading dict value from attribute while fi.nextFeature(f): if f['fid'] == 1: self.assertIsInstance(f['json_content'], dict) self.assertEqual(f['json_content'], {'foo': 'bar'}) #test changing dict value in attribute f['json_content'] = {'foo': 'baz'} self.assertEqual(f['json_content'], {'foo': 'baz'}) #test changint dict to list f['json_content'] = ['eins', 'zwei', 'drei'] self.assertEqual(f['json_content'], ['eins', 'zwei', 'drei']) #test changing list value in attribute f['json_content'] = ['eins', 'zwei', 'drei', 4] self.assertEqual(f['json_content'], ['eins', 'zwei', 'drei', 4]) #test changing to complex json structure f['json_content'] = {'name': 'Lily', 'age': '0', 'cars': {'car1': ['fiat tipo', 'fiat punto', 'davoser schlitten'], 'car2': 'bobbycar', 'car3': 'tesla'}} self.assertEqual(f['json_content'], {'name': 'Lily', 'age': '0', 'cars': {'car1': ['fiat tipo', 'fiat punto', 'davoser schlitten'], 'car2': 'bobbycar', 'car3': 'tesla'}}) #test adding attribute vl.startEditing() self.assertTrue(vl.addAttribute(QgsField('json_content2', QVariant.Map, "JSON", 60, 0, 'no comment', QVariant.String))) self.assertTrue(vl.commitChanges()) vl.startEditing() self.assertTrue(vl.addAttribute(QgsField('json_content3', QVariant.Map, "JSON", 60, 0, 'no comment', QVariant.String))) self.assertTrue(vl.commitChanges()) #test setting values to new attributes while fi.nextFeature(f): if f['fid'] == 2: f['json_content'] = {'uno': 'foo'} f['json_content2'] = ['uno', 'due', 'tre'] f['json_content3'] = {'uno': ['uno', 'due', 'tre']} self.assertEqual(f['json_content'], {'foo': 'baz'}) self.assertEqual(f['json_content2'], ['uno', 'due', 'tre']) self.assertEqual(f['json_content3'], {'uno': ['uno', 'due', 'tre']}) #test deleting attribute vl.startEditing() self.assertTrue(vl.deleteAttribute(vl.fields().indexFromName('json_content3'))) self.assertTrue(vl.commitChanges()) #test if index of existent field is not -1 and the one of the deleted is -1 self.assertNotEqual(vl.fields().indexFromName('json_content2'), -1) self.assertEqual(vl.fields().indexFromName('json_content3'), -1) def test_quote_identifier(self): """Regression #21100""" tmpfile = os.path.join(self.basetestpath, 'bug_21100-wierd_field_names.gpkg') # spellok shutil.copy(os.path.join(unitTestDataPath(''), 'bug_21100-wierd_field_names.gpkg'), tmpfile) # spellok vl = QgsVectorLayer('{}|layerid=0'.format(tmpfile), 'foo', 'ogr') self.assertTrue(vl.isValid()) for i in range(1, len(vl.fields())): self.assertEqual(vl.uniqueValues(i), {'a', 'b', 'c'}) def testGeopackageLayerMetadata(self): """ Geopackage layer description
import math import random import geomstats.backend as gs from geomstats.geometry.spd_matrices import SPDMatrices from tests.data_generation import _OpenSetTestData, _RiemannianMetricTestData SQRT_2 = math.sqrt(2.0) LN_2 = math.log(2.0) EXP_1 = math.exp(1.0) EXP_2 = math.exp(2.0) SINH_1 = math.sinh(1.0) class SPDMatricesTestData(_OpenSetTestData): smoke_space_args_list = [(2,), (3,), (4,), (5,)] smoke_n_points_list = [1, 2, 1, 2] n_list = random.sample(range(2, 5), 2) space_args_list = [(n,) for n in n_list] n_points_list = random.sample(range(1, 5), 2) shape_list = [(n, n) for n in n_list] n_vecs_list = random.sample(range(1, 10), 2) def belongs_test_data(self): smoke_data = [ dict(n=2, mat=[[3.0, -1.0], [-1.0, 3.0]], expected=True), dict(n=2, mat=[[1.0, 1.0], [2.0, 1.0]], expected=False), dict( n=3, mat=[[1.0, 2.0, 3.0], [2.0, 4.0, 5.0], [3.0, 5.0, 6.0]], expected=False, ), dict( n=2, mat=[[[1.0, 0.0], [0.0, 1.0]], [[1.0, -1.0], [0.0, 1.0]]], expected=[True, False], ), ] return self.generate_tests(smoke_data) def projection_test_data(self): smoke_data = [ dict(n=2, mat=[[1.0, 0.0], [0.0, 1.0]], expected=[[1.0, 0.0], [0.0, 1.0]]), dict( n=2, mat=[[-1.0, 0.0], [0.0, -2.0]], expected=[[gs.atol, 0.0], [0.0, gs.atol]], ), ] return self.generate_tests(smoke_data) def logm_test_data(self): smoke_data = [ dict(spd_mat=[[1.0, 0.0], [0.0, 1.0]], expected=[[0.0, 0.0], [0.0, 0.0]]) ] return self.generate_tests(smoke_data) def cholesky_factor_test_data(self): smoke_data = [ dict( n=2, spd_mat=[[[1.0, 2.0], [2.0, 5.0]], [[1.0, 0.0], [0.0, 1.0]]], expected=[[[1.0, 0.0], [2.0, 1.0]], [[1.0, 0.0], [0.0, 1.0]]], ), dict( n=3, spd_mat=[[2.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 2.0]], expected=[ [SQRT_2, 0.0, 0.0], [0.0, SQRT_2, 0.0], [0.0, 0.0, SQRT_2], ], ), ] return self.generate_tests(smoke_data) def cholesky_factor_belongs_test_data(self): list_n = random.sample(range(1, 100), 10) n_samples = 10 random_data = [ dict(n=n, mat=SPDMatrices(n).random_point(n_samples)) for n in list_n ] return self.generate_tests([], random_data) def differential_cholesky_factor_test_data(self): smoke_data = [ dict( n=2, tangent_vec=[[1.0, 1.0], [1.0, 1.0]], base_point=[[4.0, 2.0], [2.0, 5.0]], expected=[[1 / 4, 0.0], [3 / 8, 1 / 16]], ) ] return self.generate_tests(smoke_data) def differential_power_test_data(self): smoke_data = [ dict( power=0.5, tangent_vec=[[2.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.5, 0.5]], base_point=[[1.0, 0.0, 0.0], [0.0, 2.5, 1.5], [0.0, 1.5, 2.5]], expected=[ [1.0, 1 / 3, 1 / 3], [1 / 3, 0.125, 0.125], [1 / 3, 0.125, 0.125], ], ) ] return self.generate_tests(smoke_data) def inverse_differential_power_test_data(self): smoke_data = [ dict( power=0.5, tangent_vec=[ [1.0, 1 / 3, 1 / 3], [1 / 3, 0.125, 0.125], [1 / 3, 0.125, 0.125], ], base_point=[[1.0, 0.0, 0.0], [0.0, 2.5, 1.5], [0.0, 1.5, 2.5]], expected=[[2.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.5, 0.5]], ) ] return self.generate_tests(smoke_data) def differential_log_test_data(self): smoke_data = [ dict( tangent_vec=[[1.0, 1.0, 3.0], [1.0, 1.0, 3.0], [3.0, 3.0, 4.0]], base_point=[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 4.0]], expected=[ [1.0, 1.0, 2 * LN_2], [1.0, 1.0, 2 * LN_2], [2 * LN_2, 2 * LN_2, 1], ], ) ] return self.generate_tests(smoke_data) def inverse_differential_log_test_data(self): smoke_data = [ dict( tangent_vec=[ [1.0, 1.0, 2 * LN_2], [1.0, 1.0, 2 * LN_2], [2 * LN_2, 2 * LN_2, 1], ], base_point=[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 4.0]], expected=[[1.0, 1.0, 3.0], [1.0, 1.0, 3.0], [3.0, 3.0, 4.0]], ) ] return self.generate_tests(smoke_data) def differential_exp_test_data(self): smoke_data = [ dict( tangent_vec=[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], base_point=[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]], expected=[ [EXP_1, EXP_1, SINH_1], [EXP_1, EXP_1, SINH_1], [SINH_1, SINH_1, 1 / EXP_1], ], ) ] return self.generate_tests(smoke_data) def inverse_differential_exp_test_data(self): smoke_data = [ dict( tangent_vec=[ [EXP_1, EXP_1, SINH_1], [EXP_1, EXP_1, SINH_1], [SINH_1, SINH_1, 1 / EXP_1], ], base_point=[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, -1.0]], expected=[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], ) ] return self.generate_tests(smoke_data) def random_point_belongs_test_data(self): belongs_atol = gs.atol * 100000 return self._random_point_belongs_test_data( self.smoke_space_args_list, self.smoke_n_points_list, self.space_args_list, self.n_points_list, belongs_atol, ) def to_tangent_is_tangent_test_data(self): is_tangent_atol = gs.atol * 1000 return self._to_tangent_is_tangent_test_data( SPDMatrices, self.space_args_list, self.shape_list, self.n_vecs_list, is_tangent_atol, ) def random_tangent_vec_is_tangent_test_data(self): return self._random_tangent_vec_is_tangent_test_data( SPDMatrices, self.space_args_list, self.n_vecs_list ) def projection_belongs_test_data(self): return self._projection_belongs_test_data( self.space_args_list, self.shape_list, self.n_points_list ) def to_tangent_is_tangent_in_ambient_space_test_data(self): return self._to_tangent_is_tangent_in_ambient_space_test_data( SPDMatrices, self.space_args_list, self.shape_list ) class SPDMetricAffineTestData(_RiemannianMetricTestData): n_list = random.sample(range(2, 5), 2) power_affine_list = [1.0, -0.5] metric_args_list = list(zip(n_list, power_affine_list)) shape_list = [(n, n) for n in n_list] space_list = [SPDMatrices(n) for n in n_list] n_points_list = random.sample(range(1, 5), 2) n_points_a_list = random.sample(range(1, 5), 2) n_tangent_vecs_list = random.sample(range(1, 5), 2) n_points_b_list = [1] alpha_list = [1] * 2 n_rungs_list = [1] * 2 scheme_list = ["pole"] * 2 def inner_product_test_data(self): smoke_data = [ dict( n=3, power_affine=0.5, tangent_vec_a=[[2.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.5, 0.5]], tangent_vec_b=[[2.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.5, 0.5]], base_point=[[1.0, 0.0, 0.0], [0.0, 2.5, 1.5], [0.0, 1.5, 2.5]], expected=713 / 144, ) ] return self.generate_tests(smoke_data) def exp_test_data(self): smoke_data = [ dict( n=2, power_affine=1.0, tangent_vec=[[2.0, 0.0], [0.0, 2.0]], base_point=[[1.0, 0.0], [0.0, 1.0]], expected=[[EXP_2, 0.0], [0.0, EXP_2]], ) ] return self.generate_tests(smoke_data) def log_test_data(self): smoke_data = [ dict( n=2, power_affine=1.0, point=[[1.0, 0.0], [0.0, 1.0]], base_point=[[2.0, 0.0], [0.0, 2.0]], expected=[[-2 * LN_2, 0.0], [0.0, -2 * LN_2]], ) ] return self.generate_tests(smoke_data) def exp_shape_test_data(self): return self._exp_shape_test_data( self.metric_args_list, self.space_list, self.shape_list ) def log_shape_test_data(self): return self._log_shape_test_data(self.metric_args_list, self.space_list) def squared_dist_is_symmetric_test_data(self): return self._squared_dist_is_symmetric_test_data( self.metric_args_list, self.space_list, self.n_points_a_list, self.n_points_b_list, atol=gs.atol * 1000, ) def exp_belongs_test_data(self): return self._exp_belongs_test_data( self.metric_args_list, self.space_list, self.shape_list, self.n_tangent_vecs_list, belongs_atol=gs.atol * 1000, ) def log_is_tangent_test_data(self): return self._log_is_tangent_test_data( self.metric_args_list, self.space_list, self.n_points_list, is_tangent_atol=gs.atol * 1000, ) def geodesic_ivp_belongs_test_data(self): return self._geodesic_ivp_belongs_test_data( self.metric_args_list, self.space_list, self.shape_list, self.n_points_list, belongs_atol=gs.atol * 1000, ) def geodesic_bvp_belongs_test_data(self): return self._geodesic_bvp_belongs_test_data( self.metric_args_list, self.space_list, self.n_points_list, belongs_atol=gs.atol * 1000, ) def exp_after_log_test_data(self): return self._exp_after_log_test_data( self.metric_args_list, self.space_list, self.n_points_list, rtol=gs.rtol * 100, atol=gs.atol * 10000, ) def log_after_exp_test_data(self): return self._log_after_exp_test_data( self.metric_args_list, self.space_list, self.shape_list, self.n_tangent_vecs_list, amplitude=10, rtol=gs.rtol * 100, atol=gs.atol * 10000, ) def exp_ladder_parallel_transport_test_data(self): return self._exp_ladder_parallel_transport_test_data( self.metric_args_list, self.space_list, self.shape_list, self.n_tangent_vecs_list, self.n_rungs_list, self.alpha_list, self.scheme_list, ) def exp_geodesic_ivp_test_data(self): return self._exp_geodesic_ivp_test_data( self.metric_args_list, self.space_list, self.shape_list, self.n_tangent_vecs_list, self.n_points_list, rtol=gs.rtol * 1000, atol=gs.atol * 1000, ) def parallel_transport_ivp_is_isometry_test_data(self): return self._parallel_transport_ivp_is_isometry_test_data( self.metric_args_list, self.space_list, self.shape_list, self.n_tangent_vecs_list, is_tangent_atol=gs.atol * 1000, atol=gs.atol * 1000, ) def parallel_transport_bvp_is_isometry_test_data(self): return self._parallel_transport_bvp_is_isometry_test_data( self.metric_args_list, self.space_list, self.shape_list, self.n_tangent_vecs_list, is_tangent_atol=gs.atol * 1000, atol=gs.atol * 1000, ) def dist_is_symmetric_test_data(self): return self._dist_is_symmetric_test_data( self.metric_args_list, self.space_list, self.n_points_a_list, self.n_points_b_list, ) def dist_is_positive_test_data(self): return self._dist_is_positive_test_data( self.metric_args_list, self.space_list, self.n_points_a_list, self.n_points_b_list, ) def squared_dist_is_positive_test_data(self): return self._squared_dist_is_positive_test_data( self.metric_args_list, self.space_list, self.n_points_a_list, self.n_points_b_list, ) def dist_is_norm_of_log_test_data(self): return self._dist_is_norm_of_log_test_data( self.metric_args_list, self.space_list, self.n_points_a_list, self.n_points_b_list, ) def dist_point_to_itself_is_zero_test_data(self): return self._dist_point_to_itself_is_zero_test_data( self.metric_args_list, self.space_list, self.n_points_list, atol=gs.atol * 1000, ) def inner_product_is_symmetric_test_data(self): return self._inner_product_is_symmetric_test_data( self.metric_args_list, self.space_list, self.shape_list, self.n_tangent_vecs_list, ) def triangle_inequality_of_dist_test_data(self): return self._triangle_inequality_of_dist_test_data( self.metric_args_list, self.space_list, self.n_points_list ) class SPDMetricBuresWassersteinTestData(_RiemannianMetricTestData): n_list = random.sample(range(2, 5), 2) metric_args_list = [(n,) for n in n_list] shape_list = [(n, n) for n in n_list] space_list = [SPDMatrices(n) for n in n_list] n_points_list = random.sample(range(1, 5), 2) n_tangent_vecs_list = random.sample(range(1, 5), 2) n_points_a_list = random.sample(range(1, 5), 2) n_points_b_list = [1] alpha_list = [1] * 2 n_rungs_list = [1] * 2 scheme_list = ["pole"] * 2 def inner_product_test_data(self): smoke_data = [ dict( n=3, tangent_vec_a=[[2.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.5, 0.5]], tangent_vec_b=[[1.0, 2.0, 4.0], [2.0, 3.0, 8.0], [4.0, 8.0, 5.0]], base_point=[[1.0, 0.0, 0.0], [0.0, 1.5, 0.5], [0.0, 0.5, 1.5]], expected=4.0, ) ] return self.generate_tests(smoke_data) def exp_test_data(self): smoke_data = [ dict( n=2, tangent_vec=[[2.0, 0.0], [0.0, 2.0]], base_point=[[1.0, 0.0], [0.0, 1.0]], expected=[[4.0, 0.0], [0.0, 4.0]], ) ] return self.generate_tests(smoke_data) def log_test_data(self): smoke_data = [ dict( n=2, point=[[4.0, 0.0], [0.0, 4.0]], base_point=[[1.0, 0.0], [0.0, 1.0]], expected=[[2.0, 0.0], [0.0, 2.0]], ) ] return self.generate_tests(smoke_data) def squared_dist_test_data(self): smoke_data = [ dict( n=2, point_a=[[1.0, 0.0], [0.0, 1.0]], point_b=[[2.0, 0.0], [0.0, 2.0]], expected=2 + 4 - (2 * 2 * SQRT_2), ) ] return self.generate_tests(smoke_data) def exp_shape_test_data(self): return self._exp_shape_test_data( self.metric_args_list, self.space_list, self.shape_list, ) def log_shape_test_data(self): return self._log_shape_test_data( self.metric_args_list, self.space_list, ) def squared_dist_is_symmetric_test_data(self): return self._squared_dist_is_symmetric_test_data( self.metric_args_list, self.space_list, self.n_points_a_list, self.n_points_b_list, atol=gs.atol * 1000, ) def exp_belongs_test_data(self): return self._exp_belongs_test_data( self.metric_args_list, self.space_list, self.shape_list, self.n_tangent_vecs_list, belongs_atol=gs.atol * 1000, ) def log_is_tangent_test_data(self): return self._log_is_tangent_test_data( self.metric_args_list, self.space_list, self.n_points_list, is_tangent_atol=gs.atol * 1000, ) def geodesic_ivp_belongs_test_data(self): return self._geodesic_ivp_belongs_test_data( self.metric_args_list, self.space_list, self.shape_list, self.n_points_list, belongs_atol=gs.atol * 1000, ) def geodesic_bvp_belongs_test_data(self): return self._geodesic_bvp_belongs_test_data( self.metric_args_list, self.space_list, self.n_points_list, belongs_atol=gs.atol * 1000, ) def exp_after_log_test_data(self): return self._exp_after_log_test_data( self.metric_args_list, self.space_list, self.n_points_list, rtol=gs.rtol * 10, atol=gs.atol * 10, ) def log_after_exp_test_data(self): return self._log_after_exp_test_data( self.metric_args_list, self.space_list, self.shape_list, self.n_tangent_vecs_list, amplitude=7.0, rtol=gs.rtol * 10, atol=gs.atol * 10, ) def exp_ladder_parallel_transport_test_data(self): return self._exp_ladder_parallel_transport_test_data( self.metric_args_list, self.space_list, self.shape_list, self.n_tangent_vecs_list, self.n_rungs_list, self.alpha_list, self.scheme_list, ) def exp_geodesic_ivp_test_data(self): return self._exp_geodesic_ivp_test_data( self.metric_args_list, self.space_list, self.shape_list, self.n_tangent_vecs_list, self.n_points_list, rtol=gs.rtol * 100000, atol=gs.atol * 100000, ) def parallel_transport_ivp_is_isometry_test_data(self): return self._parallel_transport_ivp_is_isometry_test_data( self.metric_args_list, self.space_list, self.shape_list, self.n_tangent_vecs_list, is_tangent_atol=gs.atol * 1000, atol=gs.atol
<reponame>athaun/Python-ai-assistant<gh_stars>1-10 """ Persistent cache storage for web ressources, with different cache eviction strategies, and optional compression. """ __version__ = "1.1.0" __author__ = "desbma" __license__ = "LGPLv2" import bz2 import collections import enum import functools import inspect import lzma import os import pickle import queue import sqlite3 import threading import zlib DB_FORMAT_VERSION = 2 # incremented at each incompatible database/pickle format change PICKLE_PROTOCOL_VERSION = 4 DISABLE_PERSISTENT_CACHING = False # useful for tests class Compression(enum.IntEnum): NONE = 0 DEFLATE = 1 BZIP2 = 2 LZMA = 3 CachingStrategy = enum.Enum("CachingStrategy", ("FIFO", "LRU")) class WebCache: def __init__(self, db_filepath, table_name, *, caching_strategy, expiration=None, compression=Compression.NONE, compression_level=9, auto_compression_threshold=1, safe_mode=False): """ Args: db_filepath: Database filepath table_name: Database table name used for the cache caching_strategy: CachingStrategy enum defining how cache entries are removed expiration: Cache item lifetime in seconds, used to clean items with the FIFO and LRU strateges, or None if items never expire compression: Algorithm used to compress cache items compression_level: Compression level (0-9) auto_compression_threshold: Don't compress if compression ratio is above this value safe_mode: If False, will enable some optimizations that increase cache write speed, but may compromise cache integrity in case of Python crash or power loss """ # attribs self.__table_name = table_name assert(caching_strategy in CachingStrategy) self.__caching_strategy = caching_strategy self.__expiration = expiration assert(compression in Compression) self.__compression = compression self.__compression_level = compression_level assert(0 < auto_compression_threshold <= 1) self.__auto_compression_threshold = auto_compression_threshold # connection if DISABLE_PERSISTENT_CACHING: self.__connection = sqlite3.connect(":memory:") else: self.__db_filepath = db_filepath self.__connection = sqlite3.connect(self.__db_filepath) # create tables if necessary with self.__connection: if not safe_mode: # enable some optimizations that can cause data corruption in case of power loss or python crash self.__connection.executescript("""PRAGMA journal_mode = MEMORY; PRAGMA synchronous = OFF;""") self.__connection.execute("""CREATE TABLE IF NOT EXISTS %s ( url TEXT PRIMARY KEY, added_timestamp INTEGER NOT NULL, last_accessed_timestamp INTEGER NOT NULL, compression INTEGER NOT NULL, data BLOB NOT NULL );""" % (self.getDbTableName())) self.__connection.execute("""CREATE TABLE IF NOT EXISTS %s ( url TEXT NOT NULL, post_data BLOB NOT NULL, added_timestamp INTEGER NOT NULL, last_accessed_timestamp INTEGER NOT NULL, compression INTEGER NOT NULL, data BLOB NOT NULL );""" % (self.getDbTableName(post=True))) self.__connection.execute("CREATE INDEX IF NOT EXISTS idx ON %s(url, post_data);" % (self.getDbTableName(post=True))) # stats self.__hit_count = 0 self.__miss_count = 0 def getDbTableName(self, *, post=False): """ Get sqlite table name. """ return "%s%s_f%u" % (self.__table_name, "_post" if post else "", DB_FORMAT_VERSION) def getDatabaseFileSize(self): """ Return the file size of the database as a pretty string. """ if DISABLE_PERSISTENT_CACHING: return "?" size = os.path.getsize(self.__db_filepath) if size > 1000000000: size = "%0.3fGB" % (size / 1000000000) elif size > 1000000: size = "%0.2fMB" % (size / 1000000) elif size > 1000: size = "%uKB" % (size // 1000) else: size = "%uB" % (size) return size def getCacheHitStats(self): return self.__hit_count, self.__miss_count def __len__(self): """ Return the number of items in the cache. """ row_count = 0 with self.__connection: for post in (False, True): row_count += self.__connection.execute("SELECT COUNT(*) FROM %s;" % (self.getDbTableName(post=post))).fetchone()[0] return row_count def __del__(self): try: self.__connection.close() except AttributeError: pass def __getitem__(self, url_data): """ Get an item from cache. """ if isinstance(url_data, tuple): url, post_data = url_data else: url = url_data post_data = None with self.__connection: if post_data is not None: post_bin_data = sqlite3.Binary(pickle.dumps(post_data, protocol=PICKLE_PROTOCOL_VERSION)) r = self.__connection.execute("""SELECT data, compression FROM %s WHERE url = ? AND post_data = ?;""" % (self.getDbTableName(post=True)), (url, post_bin_data)).fetchone() else: r = self.__connection.execute("""SELECT data, compression FROM %s WHERE url = ?;""" % (self.getDbTableName()), (url,)).fetchone() if not r: raise KeyError(url_data) data, compression = r if compression == Compression.DEFLATE: buffer = memoryview(data) data = zlib.decompress(buffer) elif compression == Compression.BZIP2: buffer = memoryview(data) data = bz2.decompress(buffer) elif compression == Compression.LZMA: buffer = memoryview(data) data = lzma.decompress(buffer) if self.__caching_strategy is CachingStrategy.LRU: # update last access time with self.__connection: if post_data is not None: self.__connection.execute("UPDATE " + self.getDbTableName(post=True) + " " + "SET last_accessed_timestamp = strftime('%s', 'now') WHERE url = ? AND post_data = ?;", (url, post_bin_data)) else: self.__connection.execute("UPDATE " + self.getDbTableName() + " " + "SET last_accessed_timestamp = strftime('%s', 'now') WHERE url = ?;", (url,)) return data def __setitem__(self, url_data, data): """ Store an item in cache. """ if isinstance(url_data, tuple): url, post_data = url_data else: url = url_data post_data = None if self.__compression is Compression.DEFLATE: buffer = memoryview(data) compressed_data = zlib.compress(buffer, self.__compression_level) elif self.__compression is Compression.BZIP2: buffer = memoryview(data) compressed_data = bz2.compress(buffer, compresslevel=self.__compression_level) elif self.__compression is Compression.LZMA: buffer = memoryview(data) compressed_data = lzma.compress(buffer, format=lzma.FORMAT_ALONE, preset=self.__compression_level) if (self.__compression is Compression.NONE) or (len(compressed_data) > len(data) * self.__auto_compression_threshold): data_to_store = data compression = Compression.NONE else: data_to_store = compressed_data compression = self.__compression # if self.__compression is not Compression.NONE: # print("%s compression: " # "original size = %u b, " # "compressed size = %u b, " # "compression threshold (%.1f%%) = %u b" % ("Disabling" if (compression is Compression.NONE) else "Enabling", # len(data), # len(compressed_data), # self.__auto_compression_threshold * 100, # self.__auto_compression_threshold * len(data))) with self.__connection: if post_data is not None: post_bin_data = sqlite3.Binary(pickle.dumps(post_data, protocol=PICKLE_PROTOCOL_VERSION)) self.__connection.execute("INSERT OR REPLACE INTO " + self.getDbTableName(post=True) + " (url, post_data, added_timestamp, last_accessed_timestamp, compression, data) VALUES (?, ?, strftime('%s','now'), strftime('%s','now'), ?, ?);", (url, post_bin_data, compression, sqlite3.Binary(data_to_store))) else: self.__connection.execute("INSERT OR REPLACE INTO " + self.getDbTableName() + " (url, added_timestamp, last_accessed_timestamp, compression, data) VALUES (?, strftime('%s','now'), strftime('%s','now'), ?, ?);", (url, compression, sqlite3.Binary(data_to_store))) def __delitem__(self, url_data): """ Remove an item from cache. """ if isinstance(url_data, tuple): url, post_data = url_data else: url = url_data post_data = None with self.__connection: if post_data is not None: post_bin_data = sqlite3.Binary(pickle.dumps(post_data, protocol=PICKLE_PROTOCOL_VERSION)) deleted_count = self.__connection.execute("DELETE FROM " + self.getDbTableName(post=True) + " " + "WHERE url = ? AND post_data = ?;", (url, post_bin_data)).rowcount else: deleted_count = self.__connection.execute("DELETE FROM " + self.getDbTableName() + " WHERE url = ?;", (url,)).rowcount if deleted_count == 0: raise KeyError(url_data) def purge(self): """ Purge cache by removing obsolete items. """ purged_count = 0 if self.__expiration is not None: with self.__connection: if self.__caching_strategy is CachingStrategy.FIFO: # dump least recently added rows for post in (False, True): purged_count += self.__connection.execute("DELETE FROM " + self.getDbTableName(post=post) + " " "WHERE (strftime('%s', 'now') - added_timestamp) > ?;", (self.__expiration,)).rowcount elif self.__caching_strategy is CachingStrategy.LRU: # dump least recently accessed rows for post in (False, True): purged_count += self.__connection.execute("DELETE FROM " + self.getDbTableName(post=post) + " " "WHERE (strftime('%s', 'now') - last_accessed_timestamp) > ?;", (self.__expiration,)).rowcount return purged_count def __contains__(self, url_data): """ Return true if an item is present in cache for that url, False instead. """ if isinstance(url_data, tuple): url, post_data = url_data else: url = url_data post_data = None with self.__connection: if post_data is not None: post_bin_data = sqlite3.Binary(pickle.dumps(post_data, protocol=PICKLE_PROTOCOL_VERSION)) hit = (self.__connection.execute("""SELECT COUNT(*) FROM %s WHERE url = ? AND post_data = ?;""" % (self.getDbTableName(post=True)), (url, post_bin_data)).fetchone()[0] > 0) else: hit = (self.__connection.execute("""SELECT COUNT(*) FROM %s WHERE url = ?;""" % (self.getDbTableName()), (url,)).fetchone()[0] > 0) if hit: self.__hit_count += 1 else: self.__miss_count += 1 return hit class ThreadedWebCache: """ Similar to WebCache, but delegate all sqlite3 calls to a dedicated thread. This allows getting rid of the 'same thread' sqlite3 module limitation. Caller thread send calls in the execute queue and get the results in the result queue. All calls are blocking and synchronous. """ def __init__(self, *args, **kwargs): # this is the tricky part: # attach methods from WebCache, decorated by callToThread, to this object's class methods = inspect.getmembers(WebCache, inspect.isfunction) for method_name, method in methods: if (method_name in ("__init__", "__del__")) or (method_name not in WebCache.__dict__): continue new_method = __class__.callToThread(method) setattr(self.__class__, method_name, new_method) # start thread self.thread = WebCacheThread() self.thread.execute_queue.put_nowait((threading.get_ident(), args, kwargs)) self.thread.start() self.thread.execute_queue.join() # check WebCache object construction went ok try: e = self.thread.exception_queue[threading.get_ident()].get_nowait() except queue.Empty: pass else: raise e def __del__(self): self.thread.stop() def waitResult(self): """ Wait for the execution of the last enqueued job to be done, and return the result or raise an exception. """ self.thread.execute_queue.join() try: e = self.thread.exception_queue[threading.get_ident()].get_nowait() except queue.Empty: return self.thread.result_queue[threading.get_ident()].get_nowait() else: raise e @staticmethod def callToThread(method): """ Wrap call to method to send it to WebCacheThread. """ def func_wrapped(self, *args, **kwargs): self.thread.execute_queue.put_nowait((threading.get_ident(), method, args, kwargs)) return self.waitResult() return func_wrapped class WebCacheThread(threading.Thread): """ Thread executing all sqlite3 calls for the ThreadedWebCache class.
self.stormIsInPrint('List[0]=1, List[-1]=4', msgs) self.stormIsInPrint('List size is now 4', msgs) self.stormIsInPrint('Sum is now 10', msgs) self.stormIsInPrint('elst size is 0', msgs) # Convert primitive python objects to List objects q = '$v=(foo,bar,baz) [ test:str=$v.index(1) test:int=$v.length() ]' nodes = await core.nodes(q) self.eq(nodes[0].ndef, ('test:str', 'bar')) self.eq(nodes[1].ndef, ('test:int', 3)) # Python Tuples can be treated like a List object for accessing via data inside of. q = '[ test:comp=(10,lol) ] $x=$node.ndef().index(1).index(1) [ test:str=$x ]' nodes = await core.nodes(q) self.eq(nodes[0].ndef, ('test:str', 'lol')) # sad case - index out of bounds. q = 'test:comp=(10,lol) $x=$node.ndef().index(2)' mesgs = await core.stormlist(q) errs = [m[1] for m in mesgs if m[0] == 'err'] self.len(1, errs) self.eq(errs[0][0], 'StormRuntimeError') self.eq('bar', await core.callStorm('$foo = (foo, bar) return($foo.1)')) self.eq('foo', await core.callStorm('$foo = (foo, bar) return($foo."-2")')) self.eq('bar', await core.callStorm('$foo = (foo, bar) return($foo.pop())')) with self.raises(s_exc.StormRuntimeError): await core.callStorm('$lib.list().pop()') async def test_storm_lib_fire(self): async with self.getTestCore() as core: text = '$lib.fire(foo:bar, baz=faz)' gotn = [mesg for mesg in await core.stormlist(text) if mesg[0] == 'storm:fire'] self.len(1, gotn) self.eq(gotn[0][1]['type'], 'foo:bar') self.eq(gotn[0][1]['data']['baz'], 'faz') await core.addTagProp('score', ('int', {}), {}) await core.callStorm('[inet:ipv4=1.2.3.4 +#foo=2021 +#foo:score=9001]') q = 'inet:ipv4 $lib.fire(msg:pack, sode=$node.getStorNodes())' gotn = [mesg async for mesg in core.storm(q) if mesg[0] == 'storm:fire'] self.len(1, gotn) self.eq(gotn[0][1]['data']['sode'][0]['tagprops'], {'foo': {'score': (9001, 9)}}) self.eq(gotn[0][1]['type'], 'msg:pack') async def test_storm_node_repr(self): text = ''' [ inet:ipv4=1.2.3.4 :loc=us] $ipv4 = $node.repr() $loc = $node.repr(loc) $latlong = $node.repr(latlong, defv="??") $valu = $lib.str.format("{ipv4} in {loc} at {latlong}", ipv4=$ipv4, loc=$loc, latlong=$latlong) [ test:str=$valu ] +test:str ''' async with self.getTestCore() as core: nodes = await core.nodes(text) self.len(1, nodes) self.eq(nodes[0].ndef[1], '1.2.3.4 in us at ??') mesgs = await core.stormlist('inet:ipv4 $repr=$node.repr(newp)') err = mesgs[-2][1] self.eq(err[0], 'NoSuchProp') self.eq(err[1].get('prop'), 'newp') self.eq(err[1].get('form'), 'inet:ipv4') async def test_storm_csv(self): async with self.getTestCore() as core: await core.nodes('[test:str=1234 :tick=2001]') await core.nodes('[test:str=9876 :tick=3001]') q = "test:str " \ "$tick=$node.repr(tick) " \ "$lib.csv.emit($node.form(), $node.value(), $tick, table=mytable)" mesgs = await core.stormlist(q, {'show': ('err', 'csv:row')}) csv_rows = [m for m in mesgs if m[0] == 'csv:row'] self.len(2, csv_rows) csv_rows.sort(key=lambda x: x[1].get('row')[1]) self.eq(csv_rows[0], ('csv:row', {'row': ['test:str', '1234', '2001/01/01 00:00:00.000'], 'table': 'mytable'})) self.eq(csv_rows[1], ('csv:row', {'row': ['test:str', '9876', '3001/01/01 00:00:00.000'], 'table': 'mytable'})) q = 'test:str $hehe=$node.props.hehe $lib.csv.emit(:tick, $hehe)' mesgs = await core.stormlist(q, {'show': ('err', 'csv:row')}) csv_rows = [m for m in mesgs if m[0] == 'csv:row'] self.len(2, csv_rows) self.eq(csv_rows[0], ('csv:row', {'row': [978307200000, None], 'table': None})) self.eq(csv_rows[1], ('csv:row', {'row': [32535216000000, None], 'table': None})) # Sad path case... q = ''' [ test:str=woot ] $lib.csv.emit($path) ''' mesgs = await core.stormlist(q, {'show': ('err', 'csv:row')}) err = mesgs[-2] self.eq(err[1][0], 'NoSuchType') async def test_storm_text(self): async with self.getTestCore() as core: nodes = await core.nodes(''' [ test:int=10 ] $text=$lib.text(hehe) { +test:int>=10 $text.add(haha) } [ test:str=$text.str() ] +test:str''') self.len(1, nodes) self.eq(nodes[0].ndef, ('test:str', 'hehehaha')) q = '''$t=$lib.text(beepboop) $lib.print($lib.len($t)) $t.add("more!") $lib.print($lib.len($t)) ''' msgs = await core.stormlist(q) self.stormIsInPrint('8', msgs) self.stormIsInPrint('13', msgs) async def test_storm_set(self): async with self.getTestCore() as core: await core.nodes('[inet:ipv4=1.2.3.4 :asn=20]') await core.nodes('[inet:ipv4=5.6.7.8 :asn=30]') q = ''' $set = $lib.set() inet:ipv4 $set.add(:asn) [ graph:node="*" ] +graph:node [ :data=$set.list() ] ''' nodes = await core.nodes(q) self.len(1, nodes) self.eq(tuple(sorted(nodes[0].get('data'))), (20, 30)) q = ''' $set = $lib.set() inet:ipv4 $set.adds((:asn,:asn)) [ graph:node="*" ] +graph:node [ :data=$set.list() ] ''' nodes = await core.nodes(q) self.len(1, nodes) self.eq(tuple(sorted(nodes[0].get('data'))), (20, 30)) q = ''' $set = $lib.set() inet:ipv4 $set.adds((:asn,:asn)) { +:asn=20 $set.rem(:asn) } [ graph:node="*" ] +graph:node [ :data=$set.list() ] ''' nodes = await core.nodes(q) self.len(1, nodes) self.eq(tuple(sorted(nodes[0].get('data'))), (30,)) q = ''' $set = $lib.set() inet:ipv4 $set.add(:asn) $set.rems((:asn,:asn)) [ graph:node="*" ] +graph:node [ :data=$set.list() ] ''' nodes = await core.nodes(q) self.len(1, nodes) self.eq(tuple(sorted(nodes[0].get('data'))), ()) q = '$set = $lib.set(a, b, c, b, a) [test:int=$set.size()]' nodes = await core.nodes(q) self.len(1, nodes) self.eq(nodes[0].ndef, ('test:int', 3)) q = '''$set = $lib.set(a, b, c) for $v in $set { $lib.print('set valu: {v}', v=$v) } ''' mesgs = await core.stormlist(q) self.stormIsInPrint('set valu: a', mesgs) self.stormIsInPrint('set valu: b', mesgs) self.stormIsInPrint('set valu: c', mesgs) q = ''' $set = $lib.set() $set.add(foo) if $set.has(foo) { [ test:str=asdf ] } ''' nodes = await core.nodes(q) self.len(1, nodes) self.eq(nodes[0].ndef, ('test:str', 'asdf')) async def test_storm_path(self): async with self.getTestCore() as core: await core.nodes('[ inet:dns:a=(vertex.link, 192.168.3.11) ]') q = ''' inet:fqdn=vertex.link -> inet:dns:a -> inet:ipv4 $idens = $path.idens() [ graph:node="*" ] +graph:node [ :data=$idens ] ''' idens = ( '02488bc284ffd0f60f474d5af66a8c0cf89789f766b51fde1d3da9b227005f47', '20153b758f9d5eaaa38e4f4a65c36da797c3e59e549620fa7c4895e1a920991f', '3ecd51e142a5acfcde42c02ff5c68378bfaf1eaf49fe9721550b6e7d6013b699', ) nodes = await core.nodes(q) self.len(1, nodes) self.eq(tuple(sorted(nodes[0].get('data'))), idens) opts = {'vars': {'testvar': 'test'}} text = "[ test:str='123' ] $testkey=testvar [ test:str=$path.vars.$testkey ]" nodes = await core.nodes(text, opts=opts) self.len(2, nodes) self.eq(nodes[0].ndef, ('test:str', 'test')) text = "[ test:str='123' ] [ test:str=$path.vars.testkey ]" mesgs = await core.stormlist(text) errs = [m[1] for m in mesgs if m[0] == 'err'] self.len(1, errs) err = errs[0] self.eq(err[0], 'StormRuntimeError') self.isin('No var with name: testkey', err[1].get('mesg')) opts = {'vars': {'testkey': 'testvar'}} text = "[ test:str='123' ] $path.vars.$testkey = test [ test:str=$path.vars.testvar ]" nodes = await core.nodes(text, opts=opts) self.len(2, nodes) self.eq(nodes[0].ndef, ('test:str', 'test')) self.eq(nodes[1].ndef, ('test:str', '123')) opts = {'vars': {'testvar': 'test', 'testkey': 'testvar'}} text = ''' [ test:str='123' ] for ($name, $valu) in $path.vars { $lib.print('{name}={valu}', name=$name, valu=$valu) } ''' msgs = await core.stormlist(text, opts=opts) self.stormIsInPrint('testvar=test', msgs) self.stormIsInPrint('testkey=testvar', msgs) async with core.getLocalProxy() as proxy: msgs = await proxy.storm(''' [ ps:contact=* ] $path.meta.foo = bar $path.meta.baz = faz $path.meta.baz = $lib.undef { for ($name, $valu) in $path.meta { $lib.print('meta: {name}={valu}', name=$name, valu=$valu) } } if $path.meta.foo { $lib.print(foofoofoo) } ''').list() self.stormIsInPrint('foofoofoo', msgs) self.stormIsInPrint('meta: foo=bar', msgs) pode = [m[1] for m in msgs if m[0] == 'node'][0] self.len(1, pode[1]['path']) self.eq('bar', pode[1]['path']['foo']) async def test_storm_trace(self): async with self.getTestCore() as core: await core.nodes('[ inet:dns:a=(vertex.link, 192.168.3.11) ]') q = ''' inet:fqdn=vertex.link $trace=$path.trace() -> inet:dns:a -> inet:ipv4 /* Make a trace object from a path which already has nodes */ $trace2=$path.trace() [ graph:node="*" ] +graph:node [ :data=$trace.idens() ] /* Print the contents of the second trace */ $lib.print($trace2.idens()) ''' mesgs = await core.stormlist(q) podes = [m[1] for m in mesgs if m[0] == 'node'] self.len(1, podes) pode = podes[0] idens = ( '02488bc284ffd0f60f474d5af66a8c0cf89789f766b51fde1d3da9b227005f47', '20153b758f9d5eaaa38e4f4a65c36da797c3e59e549620fa7c4895e1a920991f', '3ecd51e142a5acfcde42c02ff5c68378bfaf1eaf49fe9721550b6e7d6013b699', ) self.eq(tuple(sorted(pode[1]['props'].get('data'))), idens) for iden in idens: self.stormIsInPrint(iden, mesgs) async def test_stormuser(self): # Do not include persistent vars support in this test see # test_persistent_vars for that behavior. async with self.getTestCore() as core: q = '$lib.print($lib.user.name())' mesgs = await core.stormlist(q) self.stormIsInPrint('root', mesgs) async def test_persistent_vars(self): with self.getTestDir() as dirn: async with self.getTestCore(dirn=dirn) as core: async with core.getLocalProxy() as prox: # User setup for $lib.user.vars() tests ret1 = await prox.addUser('user1', passwd='<PASSWORD>') iden1 = ret1.get('iden') await prox.addUserRule(iden1, (True, ('node', 'add'))) await prox.addUserRule(iden1, (True, ('node', 'prop', 'set'))) await prox.addUserRule(iden1, (True, ('globals', 'get', 'userkey',))) # Basic tests as root for $lib.globals q = '''$lib.globals.set(adminkey, sekrit) $lib.globals.set(userkey, lessThanSekrit) $lib.globals.set(throwaway, beep) $valu=$lib.globals.get(adminkey) $lib.print($valu) ''' mesgs = await s_test.alist(prox.storm(q)) self.stormIsInPrint('sekrit', mesgs) popq = '''$valu = $lib.globals.pop(throwaway) $lib.print("pop valu is {valu}", valu=$valu) ''' mesgs = await s_test.alist(prox.storm(popq)) self.stormIsInPrint('pop valu is beep', mesgs) q = '''$x=$lib.dict(foo=1) $lib.globals.set(bar, $x) $y=$lib.globals.get(bar) $lib.print("valu={v}", v=$y.foo) ''' mesgs = await s_test.alist(prox.storm(q)) self.stormIsInPrint('valu=1', mesgs) # get and pop take a secondary default value which may be returned q = '''$valu = $lib.globals.get(throwaway, $(0)) $lib.print("get valu is {valu}", valu=$valu) ''' mesgs = await s_test.alist(prox.storm(q)) self.stormIsInPrint('get valu is 0', mesgs) q = '''$valu = $lib.globals.pop(throwaway, $(0)) $lib.print("pop valu is {valu}", valu=$valu) ''' mesgs = await s_test.alist(prox.storm(q)) self.stormIsInPrint('pop valu is 0', mesgs) listq = '''for ($key, $valu) in $lib.globals.list() { $string = $lib.str.format("{key} is {valu}", key=$key, valu=$valu) $lib.print($string) } ''' mesgs = await s_test.alist(prox.storm(listq)) self.len(3, [m for m in mesgs if m[0] == 'print']) self.stormIsInPrint('adminkey is sekrit', mesgs) self.stormIsInPrint('userkey is lessThanSekrit', mesgs) # Storing a valu into the hive gets toprim()'d q = '[test:str=test] $lib.user.vars.set(mynode, $node) return($lib.user.vars.get(mynode))' data = await prox.callStorm(q) self.eq(data, 'test') # Sad path - names must be strings. q = '$lib.globals.set((my, nested, valu), haha)' mesgs = await prox.storm(q).list() err = 'The name of a persistent variable must be a string.' self.stormIsInErr(err, mesgs) # Sad path - names must be strings. q = '$lib.globals.set((my, nested, valu), haha)' mesgs = await prox.storm(q).list() err = 'The name of a persistent variable must be a string.' self.stormIsInErr(err, mesgs) async with core.getLocalProxy() as uprox: self.true(await uprox.setCellUser(iden1)) q = '''$lib.user.vars.set(somekey, hehe)
'1626443':{'en': 'El Monte, CA'}, '1626444':{'en': 'El Monte, CA'}, '1626445':{'en': 'Arcadia, CA'}, '1626446':{'en': 'Arcadia, CA'}, '1626447':{'en': 'Arcadia, CA'}, '1626448':{'en': 'El Monte, CA'}, '1626449':{'en': 'Pasadena, CA'}, '1626452':{'en': 'El Monte, CA'}, '1626453':{'en': 'El Monte, CA'}, '1626454':{'en': 'El Monte, CA'}, '1626457':{'en': 'Alhambra, CA'}, '1626458':{'en': 'Alhambra, CA'}, '1626462':{'en': 'Arcadia, CA'}, '1626564':{'en': 'Pasadena, CA'}, '1626568':{'en': 'Pasadena, CA'}, '1626570':{'en': 'Alhambra, CA'}, '1626574':{'en': 'Arcadia, CA'}, '1626576':{'en': 'Alhambra, CA'}, '1626577':{'en': 'Pasadena, CA'}, '1626578':{'en': 'Pasadena, CA'}, '1626579':{'en': 'El Monte, CA'}, '1626583':{'en': 'Pasadena, CA'}, '1626584':{'en': 'Pasadena, CA'}, '1626585':{'en': 'Pasadena, CA'}, '1626599':{'en': 'Monrovia, CA'}, '1626683':{'en': 'Pasadena, CA'}, '1626732':{'en': 'Covina, CA'}, '1626744':{'en': 'Pasadena, CA'}, '1626765':{'en': 'Pasadena, CA'}, '162679':{'en': 'Pasadena, CA'}, '1626799':{'en': 'South Pasadena, CA'}, '1626812':{'en': 'Azusa, CA'}, '1626815':{'en': 'Azusa, CA'}, '1626821':{'en': 'Arcadia, CA'}, '1626844':{'en': 'Pasadena, CA'}, '1626852':{'en': 'Glendora, CA'}, '1626857':{'en': 'Glendora, CA'}, '1626858':{'en': 'Covina, CA'}, '1626859':{'en': 'Covina, CA'}, '1626914':{'en': 'Glendora, CA'}, '1626915':{'en': 'Covina, CA'}, '1626917':{'en': 'La Puente, CA'}, '1626919':{'en': 'West Covina, CA'}, '1626943':{'en': 'Alhambra, CA'}, '1626963':{'en': 'Glendora, CA'}, '1626966':{'en': 'Covina, CA'}, '1626967':{'en': 'Covina, CA'}, '1626969':{'en': 'Azusa, CA'}, '1626974':{'en': 'Covina, CA'}, '1628':{'en': 'California'}, '1629':{'en': 'Tennessee'}, '1630':{'en': 'Illinois'}, '1630208':{'en': 'Geneva, IL'}, '1630226':{'en': 'Bolingbrook, IL'}, '1630229':{'en': 'Aurora, IL'}, '1630231':{'en': 'West Chicago, IL'}, '1630232':{'en': 'Geneva, IL'}, '1630236':{'en': 'Aurora, IL'}, '1630238':{'en': 'Bensenville, IL'}, '1630243':{'en': 'Lemont, IL'}, '1630250':{'en': 'Itasca, IL'}, '1630257':{'en': 'Lemont, IL'}, '1630260':{'en': 'Wheaton, IL'}, '1630262':{'en': 'Geneva, IL'}, '1630264':{'en': 'Aurora, IL'}, '1630275':{'en': 'Downers Grove, IL'}, '1630279':{'en': 'Elmhurst, IL'}, '1630285':{'en': 'Itasca, IL'}, '1630293':{'en': 'West Chicago, IL'}, '1630305':{'en': 'Naperville, IL'}, '1630340':{'en': 'Aurora, IL'}, '1630350':{'en': 'Bensenville, IL'}, '1630355':{'en': 'Naperville, IL'}, '1630357':{'en': 'Naperville, IL'}, '1630365':{'en': 'Elburn, IL'}, '1630368':{'en': 'Oak Brook, IL'}, '1630369':{'en': 'Naperville, IL'}, '1630375':{'en': 'Aurora, IL'}, '1630377':{'en': 'St. Charles, IL'}, '1630378':{'en': 'Bolingbrook, IL'}, '1630393':{'en': 'Warrenville, IL'}, '1630406':{'en': 'Batavia, IL'}, '1630416':{'en': 'Naperville, IL'}, '1630420':{'en': 'Naperville, IL'}, '1630422':{'en': 'Bensenville, IL'}, '1630428':{'en': 'Naperville, IL'}, '1630443':{'en': 'St. Charles, IL'}, '1630444':{'en': 'St. Charles, IL'}, '1630458':{'en': 'Addison, IL'}, '1630462':{'en': 'Wheaton, IL'}, '1630466':{'en': 'Sugar Grove, IL'}, '1630469':{'en': 'Glen Ellyn, IL'}, '1630482':{'en': 'Batavia, IL'}, '1630495':{'en': 'Lombard, IL'}, '1630499':{'en': 'Aurora, IL'}, '1630505':{'en': 'Naperville, IL'}, '1630513':{'en': 'St. Charles, IL'}, '1630521':{'en': 'Bensenville, IL'}, '1630527':{'en': 'Naperville, IL'}, '1630530':{'en': 'Elmhurst, IL'}, '1630543':{'en': 'Addison, IL'}, '1630545':{'en': 'G<NAME>, IL'}, '1630548':{'en': 'Naperville, IL'}, '1630551':{'en': 'Oswego, IL'}, '1630552':{'en': 'Plano, IL'}, '1630553':{'en': 'Yorkville, IL'}, '1630554':{'en': 'Oswego, IL'}, '1630556':{'en': 'Big Rock, IL'}, '1630562':{'en': 'West Chicago, IL'}, '1630571':{'en': 'Oak Brook, IL'}, '1630572':{'en': 'Oak Brook, IL'}, '1630573':{'en': 'Oak Brook, IL'}, '1630574':{'en': 'Oak Brook, IL'}, '1630575':{'en': 'Oak Brook, IL'}, '1630579':{'en': 'Naperville, IL'}, '1630584':{'en': 'St. Charles, IL'}, '1630585':{'en': 'Aurora, IL'}, '1630587':{'en': 'St. Charles, IL'}, '1630595':{'en': 'Bensenville, IL'}, '1630616':{'en': 'Bensenville, IL'}, '1630617':{'en': 'Elmhurst, IL'}, '1630620':{'en': 'Lombard, IL'}, '1630627':{'en': 'Lombard, IL'}, '1630628':{'en': 'Addison, IL'}, '1630629':{'en': 'Lombard, IL'}, '1630637':{'en': 'Naperville, IL'}, '1630653':{'en': 'Wheaton, IL'}, '1630665':{'en': 'Wheaton, IL'}, '1630668':{'en': 'Wheaton, IL'}, '1630679':{'en': 'Bolingbrook, IL'}, '1630681':{'en': 'Wheaton, IL'}, '1630682':{'en': 'Wheaton, IL'}, '1630692':{'en': 'Aurora, IL'}, '1630717':{'en': 'Naperville, IL'}, '1630718':{'en': 'Naperville, IL'}, '1630719':{'en': 'Downers Grove, IL'}, '1630739':{'en': 'Bolingbrook, IL'}, '1630752':{'en': 'Wheaton, IL'}, '1630758':{'en': 'Elmhurst, IL'}, '1630759':{'en': 'Bolingbrook, IL'}, '1630761':{'en': 'Batavia, IL'}, '1630762':{'en': 'St. Charles, IL'}, '1630766':{'en': 'Bensenville, IL'}, '1630769':{'en': 'Downers Grove, IL'}, '1630771':{'en': 'Bolingbrook, IL'}, '1630773':{'en': 'Itasca, IL'}, '1630778':{'en': 'Naperville, IL'}, '1630782':{'en': 'Elmhurst, IL'}, '1630783':{'en': 'Bolingbrook, IL'}, '1630787':{'en': 'Bensenville, IL'}, '1630790':{'en': '<NAME>, IL'}, '1630801':{'en': 'Aurora, IL'}, '1630820':{'en': 'Aurora, IL'}, '1630832':{'en': 'Elmhurst, IL'}, '1630833':{'en': 'Elmhurst, IL'}, '1630834':{'en': 'Elmhurst, IL'}, '1630836':{'en': 'Warrenville, IL'}, '1630844':{'en': 'Aurora, IL'}, '1630845':{'en': 'Geneva, IL'}, '1630848':{'en': 'Naperville, IL'}, '1630851':{'en': 'Aurora, IL'}, '1630856':{'en': 'Hinsdale, IL'}, '1630858':{'en': '<NAME>, IL'}, '1630859':{'en': 'Aurora, IL'}, '1630860':{'en': 'Bensenville, IL'}, '1630876':{'en': 'West Chicago, IL'}, '1630879':{'en': 'Batavia, IL'}, '1630882':{'en': 'Yorkville, IL'}, '1630892':{'en': 'Aurora, IL'}, '1630896':{'en': 'Aurora, IL'}, '1630897':{'en': 'Aurora, IL'}, '1630898':{'en': 'Aurora, IL'}, '1630904':{'en': 'Naperville, IL'}, '1630906':{'en': 'Aurora, IL'}, '1630907':{'en': 'Aurora, IL'}, '1630916':{'en': 'Lombard, IL'}, '1630922':{'en': 'Naperville, IL'}, '1630928':{'en': 'Oak Brook, IL'}, '1630932':{'en': 'Lombard, IL'}, '1630933':{'en': 'Winfield, IL'}, '1630941':{'en': 'Elmhurst, IL'}, '1630942':{'en': '<NAME>, IL'}, '1630954':{'en': 'Oak Brook, IL'}, '1630960':{'en': 'Downers Grove, IL'}, '1630961':{'en': 'Naperville, IL'}, '1630966':{'en': 'Aurora, IL'}, '1630968':{'en': 'Downers Grove, IL'}, '1630969':{'en': 'Downers Grove, IL'}, '1630972':{'en': 'Bolingbrook, IL'}, '1630978':{'en': 'Aurora, IL'}, '1630983':{'en': 'Naperville, IL'}, '1630990':{'en': 'Oak Brook, IL'}, '1630993':{'en': 'Elmhurst, IL'}, '1631':{'en': 'New York'}, '1631204':{'en': 'Southampton, NY'}, '1631206':{'en': 'Bay Shore, NY'}, '1631208':{'en': 'Riverhead, NY'}, '1631225':{'en': 'Lindenhurst, NY'}, '1631226':{'en': 'Lindenhurst, NY'}, '1631242':{'en': 'Deer Park, NY'}, '1631243':{'en': 'Deer Park, NY'}, '1631249':{'en': 'Farmingdale, NY'}, '1631254':{'en': 'Deer Park, NY'}, '1631259':{'en': 'Southampton, NY'}, '1631261':{'en': 'Northport, NY'}, '1631264':{'en': 'Amityville, NY'}, '1631265':{'en': 'Smithtown, NY'}, '1631266':{'en': 'East Northport, NY'}, '1631267':{'en': 'Amagansett, NY'}, '1631269':{'en': 'Kings Park, NY'}, '1631273':{'en': 'Brentwood, NY'}, '1631274':{'en': 'Deer Park, NY'}, '1631283':{'en': 'Southampton, NY'}, '1631287':{'en': 'Southampton, NY'}, '1631293':{'en': 'Farmingdale, NY'}, '1631298':{'en': 'Mattituck, NY'}, '1631324':{'en': 'East Hampton, NY'}, '1631328':{'en': 'Bay Shore, NY'}, '1631329':{'en': 'East Hampton, NY'}, '1631351':{'en': 'Huntington, NY'}, '1631360':{'en': 'Smithtown, NY'}, '1631363':{'en': 'Blue Point, NY'}, '1631368':{'en': 'East Northport, NY'}, '1631369':{'en': 'Riverhead, NY'}, '1631376':{'en': 'West Islip, NY'}, '1631392':{'en': 'Deer Park, NY'}, '1631420':{'en': 'Farmingdale, NY'}, '1631427':{'en': 'Huntington, NY'}, '1631462':{'en': 'Commack, NY'}, '1631465':{'en': 'Melville, NY'}, '1631472':{'en': 'Bayport, NY'}, '1631475':{'en': 'Patchogue, NY'}, '1631477':{'en': 'Greenport, NY'}, '1631499':{'en': 'Commack, NY'}, '1631537':{'en': 'Bridgehampton, NY'}, '1631543':{'en': 'Commack, NY'}, '1631544':{'en': 'Kings Park, NY'}, '1631569':{'en': 'Patchogue, NY'}, '1631583':{'en': 'Ocean Beach, NY'}, '1631584':{'en': 'St. James, NY'}, '1631586':{'en': 'Deer Park, NY'}, '1631591':{'en': 'Riverhead, NY'}, '1631592':{'en': 'Lindenhurst, NY'}, '1631595':{'en': 'Deer Park, NY'}, '1631598':{'en': 'Amityville, NY'}, '1631604':{'en': 'East Hampton, NY'}, '1631608':{'en': 'Amityville, NY'}, '1631632':{'en': 'Stony Brook, NY'}, '1631647':{'en': 'Bay Shore, NY'}, '1631653':{'en': 'Quogue, NY'}, '1631665':{'en': 'Bay Shore, NY'}, '1631666':{'en': 'Bay Shore, NY'}, '1631667':{'en': 'Deer Park, NY'}, '1631668':{'en': 'Montauk, NY'}, '1631687':{'en': 'Patchogue, NY'}, '1631691':{'en': 'Amityville, NY'}, '1631694':{'en': 'Farmingdale, NY'}, '1631723':{'en': 'Hampton Bays, NY'}, '1631725':{'en': 'Sag Harbor, NY'}, '1631726':{'en': 'Water Mill, NY'}, '1631727':{'en': 'Riverhead, NY'}, '1631728':{'en': 'Hampton Bays, NY'}, '1631734':{'en': 'Cutchogue, NY'}, '1631738':{'en': 'Ronkonkoma, NY'}, '1631749':{'en': 'Shelter Island, NY'}, '1631752':{'en': 'Farmingdale, NY'}, '1631753':{'en': 'Farmingdale, NY'}, '1631765':{'en': 'Southold, NY'}, '1631789':{'en': 'Amityville, NY'}, '1631841':{'en': 'Amityville, NY'}, '1631842':{'en': 'Copiague, NY'}, '1631858':{'en': 'Commack, NY'}, '1631863':{'en': 'Smithtown, NY'}, '1631864':{'en': 'Commack, NY'}, '1631884':{'en': 'Lindenhurst, NY'}, '1631907':{'en': 'East Hampton, NY'}, '1631929':{'en': 'Wading River, NY'}, '1631940':{'en': 'Deer Park, NY'}, '1631941':{'en': 'Setauket- East Setauket, NY'}, '1631956':{'en': 'Lindenhurst, NY'}, '1631957':{'en': 'Lindenhurst, NY'}, '1631968':{'en': 'Bay Shore, NY'}, '1631969':{'en': 'Bay Shore, NY'}, '1631991':{'en': 'Lindenhurst, NY'}, '1636':{'en': 'Missouri'}, '1636230':{'en': 'Ballwin, MO'}, '1636239':{'en': 'Washington, MO'}, '1636240':{'en': 'O\'Fallon, MO'}, '1636256':{'en': 'Ballwin, MO'}, '1636257':{'en': 'Pacific, MO'}, '1636271':{'en': 'Pacific, MO'}, '1636272':{'en': 'O\'Fallon, MO'}, '1636274':{'en': 'Cedar Hill, MO'}, '1636278':{'en': 'St. Peters, MO'}, '1636279':{'en': 'St. Peters, MO'}, '1636281':{'en': 'O\'Fallon, MO'}, '1636282':{'en': 'Arnold, MO'}, '1636285':{'en': '<NAME>, MO'}, '1636287':{'en': 'Arnold, MO'}, '1636294':{'en': 'O\'Fallon, MO'}, '1636296':{'en': 'Arnold, MO'}, '1636305':{'en': 'Fenton, MO'}, '1636326':{'en': 'Fenton, MO'}, '1636327':{'en': 'Wentzville, MO'}, '1636332':{'en': 'Wentzville, MO'}, '1636337':{'en': '<NAME>, MO'}, '1636343':{'en': 'Fenton, MO'}, '1636349':{'en': 'Fenton, MO'}, '1636376':{'en': 'High Ridge, MO'}, '1636379':{'en': 'O\'Fallon, MO'}, '1636390':{'en': 'Washington, MO'}, '1636397':{'en': 'St. Peters, MO'}, '1636433':{'en': 'Marthasville, MO'}, '1636456':{'en': 'Warrenton, MO'}, '1636462':{'en': 'Troy, MO'}, '1636475':{'en': 'Pevely, MO'}, '1636479':{'en': 'Pevely, MO'}, '1636493':{'en': 'St. Charles, MO'}, '1636496':{'en': 'Fenton, MO'}, '1636519':{'en': 'Chesterfield, MO'}, '1636527':{'en': 'Ballwin, MO'}, '1636528':{'en': 'Troy, MO'}, '1636530':{'en': 'Chesterfield, MO'}, '1636532':{'en': 'Chesterfield, MO'}, '1636536':{'en': 'Chesterfield, MO'}, '1636537':{'en': 'Chesterfield, MO'}, '1636583':{'en': 'Union, MO'}, '1636584':{'en': 'Union, MO'}, '1636586':{'en': 'De Soto, MO'}, '1636587':{'en': 'Eureka, MO'}, '1636625':{'en': 'Lake Saint Louis, MO'}, '1636629':{'en': 'Saint Clair, MO'}, '1636639':{'en': 'Wentzville, MO'}, '1636671':{'en': 'House Springs, MO'}, '1636677':{'en': 'High Ridge, MO'}, '1636717':{'en': 'Fenton, MO'}, '1636723':{'en': 'St. Charles, MO'}, '1636724':{'en': 'St. Charles, MO'}, '1636728':{'en': 'Chesterfield, MO'}, '1636745':{'en': 'Wright City, MO'}, '1636789':{'en': 'Hillsboro, MO'}, '1636797':{'en': 'Hillsboro, MO'}, '1636887':{'en': 'Wentzville, MO'}, '1636916':{'en': 'St. Charles, MO'}, '1636922':{'en': 'St. Peters, MO'}, '1636925':{'en': 'St. Charles, MO'}, '1636931':{'en': 'Festus, MO'}, '1636933':{'en': 'Festus, MO'}, '1636937':{'en': 'Festus, MO'}, '1636938':{'en': 'Eureka, MO'}, '1636940':{'en': 'St. Charles, MO'}, '1636946':{'en': 'St. Charles, MO'}, '1636947':{'en': 'St. Charles, MO'}, '1636949':{'en': 'St. Charles, MO'}, '1636970':{'en': 'St. Peters, MO'}, '1636978':{'en': 'O\'Fallon, MO'}, '1636980':{'en': 'O\'Fallon, MO'}, '1639':{'en': 'Saskatchewan'}, '1640':{'en': 'New Jersey'}, '1641':{'en': 'Iowa'}, '1641209':{'en': 'Fairfield, IA'}, '1641228':{'en': 'Charles City, IA'}, '1641236':{'en': 'Grinnell, IA'}, '1641259':{'en': 'Monroe, IA'}, '1641322':{'en': 'Corning, IA'}, '1641324':{'en': 'Northwood, IA'}, '1641333':{'en': 'Lenox, IA'}, '1641342':{'en': 'Osceola, IA'}, '1641357':{'en': 'Clear Lake, IA'}, '1641366':{'en': 'Conrad, IA'}, '1641394':{'en': 'New Hampton, IA'}, '1641421':{'en': 'Mason City, IA'}, '1641422':{'en': 'Mason City, IA'}, '1641423':{'en': 'Mason City, IA'}, '1641424':{'en': 'Mason City, IA'}, '1641435':{'en': 'Nashua, IA'}, '1641437':{'en': 'Centerville, IA'}, '1641444':{'en': 'Belmond, IA'}, '1641446':{'en': 'Leon, IA'}, '1641456':{'en': 'Hampton, IA'}, '1641464':{'en': 'Mount Ayr, IA'}, '1641469':{'en': 'Fairfield, IA'}, '1641472':{'en': 'Fairfield, IA'}, '1641473':{'en': 'Gladbrook, IA'}, '1641484':{'en': 'Toledo, IA'}, '1641522':{'en': 'Brooklyn, IA'}, '1641585':{'en': 'Forest City, IA'}, '1641592':{'en': 'Lake Mills, IA'}, '1641594':{'en': 'Sully, IA'}, '1641622':{'en': 'Sigourney, IA'}, '1641623':{'en': 'Montezuma, IA'}, '1641628':{'en': 'Pella, IA'}, '1641637':{'en':
+ 130653.05862079248 * self.t) X1 += 0.00000000006 * math.cos(6.20953170755 + 110.45013870291 * self.t) X1 += 0.00000000007 * math.cos(1.43696950392 + 77631.16950289288 * self.t) X1 += 0.00000000006 * math.cos(1.84528711156 + 53131.16220727349 * self.t) X1 += 0.00000000006 * math.cos(4.02329719726 + 26013.3653604904 * self.t) X1 += 0.00000000006 * math.cos(0.25065144064 + 25508.4593720589 * self.t) X1 += 0.00000000006 * math.cos(5.41297359057 + 26667.8345460565 * self.t) X1 += 0.00000000006 * math.cos(1.27873892607 + 70268.93716521488 * self.t) X1 += 0.00000000006 * math.cos(3.75153393501 + 103918.14464590348 * self.t) X1 += 0.00000000008 * math.cos(0.93245740025 + 157587.04459711789 * self.t) X1 += 0.00000000006 * math.cos(1.85606762274 + 6885.39370741431 * self.t) X1 += 0.00000000007 * math.cos(4.77971152102 + 214364.80099922928 * self.t) X1 += 0.00000000007 * math.cos(4.36588080270 + 25754.2910182883 * self.t) X1 += 0.00000000007 * math.cos(1.29774422851 + 26422.0028998271 * self.t) X1 += 0.00000000006 * math.cos(2.52395990409 + 60055.65161900389 * self.t) X1 += 0.00000000006 * math.cos(6.00893693971 + 78149.51395352086 * self.t) X1 += 0.00000000005 * math.cos(0.89617169225 + 50064.3997872543 * self.t) X1 += 0.00000000006 * math.cos(2.63212801251 + 128221.00242116769 * self.t) X1 += 0.00000000006 * math.cos(4.95615912967 + 75615.49841673308 * self.t) X1 += 0.00000000005 * math.cos(1.27204675441 + 137678.43511695448 * self.t) X1 += 0.00000000007 * math.cos(5.96534970508 + 56727.51596272369 * self.t) X1 += 0.00000000007 * math.cos(5.86123151663 + 8194.0315157251 * self.t) X1 += 0.00000000005 * math.cos(6.05965648339 + 130226.46042991648 * self.t) X1 += 0.00000000006 * math.cos(5.74195245077 + 80382.71710258449 * self.t) X1 += 0.00000000006 * math.cos(2.26934702805 + 51653.47268253809 * self.t) X1 += 0.00000000006 * math.cos(0.06833462464 + 123669.04892410889 * self.t) X1 += 0.00000000006 * math.cos(3.85232597863 + 72602.13355808688 * self.t) X1 += 0.00000000006 * math.cos(4.43482215622 + 50056.79860528649 * self.t) X1 += 0.00000000005 * math.cos(1.17789065193 + 102769.89703549728 * self.t) X1 += 0.00000000006 * math.cos(3.77265893918 + 74820.89066227368 * self.t) X1 += 0.00000000006 * math.cos(1.81837030655 + 161079.61616398748 * self.t) X1 += 0.00000000006 * math.cos(3.17899498144 + 103932.37173990508 * self.t) X1 += 0.00000000006 * math.cos(2.61088164463 + 25234.9505773057 * self.t) X1 += 0.00000000007 * math.cos(1.11412129297 + 154938.58977164488 * self.t) X1 += 0.00000000005 * math.cos(3.94989870298 + 419.2408263917 * self.t) X1 += 0.00000000005 * math.cos(3.88779112513 + 19406.9221056581 * self.t) X1 += 0.00000000006 * math.cos(3.53467301913 + 1265.81129610991 * self.t) X1 += 0.00000000007 * math.cos(0.99187081299 + 64901.5035354069 * self.t) X1 += 0.00000000005 * math.cos(2.45437001625 + 73711.51211018028 * self.t) X1 += 0.00000000005 * math.cos(0.40751082829 + 78213.95662030189 * self.t) X1 += 0.00000000006 * math.cos(0.47609620784 + 182085.87484340828 * self.t) X1 += 0.00000000005 * math.cos(0.72963478402 + 102755.66994149568 * self.t) X1 += 0.00000000005 * math.cos(3.23310371062 + 40565.01050729069 * self.t) X1 += 0.00000000005 * math.cos(4.56090628241 + 102.84895673509 * self.t) X1 += 0.00000000005 * math.cos(2.73032624940 + 51748.96427478889 * self.t) X1 += 0.00000000005 * math.cos(2.42117857215 + 53399.86794141051 * self.t) X1 += 0.00000000005 * math.cos(3.99699244254 + 27780.31262856009 * self.t) X1 += 0.00000000005 * math.cos(6.27879128389 + 80482.22271142589 * self.t) X1 += 0.00000000005 * math.cos(4.04842386586 + 25938.5837619231 * self.t) X1 += 0.00000000005 * math.cos(0.51237606895 + 26402.33313892731 * self.t) X1 += 0.00000000005 * math.cos(5.15124896226 + 25773.96077918809 * self.t) X1 += 0.00000000005 * math.cos(1.58549672991 + 77616.94240889128 * self.t) X1 += 0.00000000005 * math.cos(2.07804016284 + 34282.4222922663 * self.t) X1 += 0.00000000006 * math.cos(0.18266035721 + 50050.17269325269 * self.t) X1 += 0.00000000005 * math.cos(3.56668263605 + 17893.8716258491 * self.t) X1 += 0.00000000004 * math.cos(2.54682197432 + 130432.64597835368 * self.t) X1 += 0.00000000004 * math.cos(1.97821363637 + 51852.54468397449 * self.t) X1 += 0.00000000004 * math.cos(0.66387666740 + 32370.73517408209 * self.t) X1 += 0.00000000005 * math.cos(2.92531330514 + 204151.51545301828 * self.t) X1 += 0.00000000006 * math.cos(3.31682565623 + 75930.75684933408 * self.t) X1 += 0.00000000004 * math.cos(3.69733037417 + 25668.17468021549 * self.t) X1 += 0.00000000005 * math.cos(6.08000873981 + 6043.9847638919 * self.t) X1 += 0.00000000005 * math.cos(4.31437334805 + 39450.5966658569 * self.t) X1 += 0.00000000005 * math.cos(3.85449175904 + 24491.96051677309 * self.t) X1 += 0.00000000004 * math.cos(2.80245159203 + 51955.63745819309 * self.t) X1 += 0.00000000004 * math.cos(5.66172545911 + 103498.66000202828 * self.t) X1 += 0.00000000005 * math.cos(1.63974900109 + 52396.4627430707 * self.t) X1 += 0.00000000004 * math.cos(4.13434256469 + 104505.63519426509 * self.t) X1 += 0.00000000005 * math.cos(4.01690246624 + 23754.46293121869 * self.t) X1 += 0.00000000005 * math.cos(0.99791835393 + 123201.08393375449 * self.t) X1 += 0.00000000004 * math.cos(1.49755025165 + 54087.2495838491 * self.t) X1 += 0.00000000004 * math.cos(5.20879448063 + 637.24008950771 * self.t) X1 += 0.00000000004 * math.cos(2.16539647390 + 28791.7631137333 * self.t) X1 += 0.00000000004 * math.cos(3.49822855731 + 23384.5308043821 * self.t) X1 += 0.00000000005 * math.cos(6.09748705519 + 53029.2464823839 * self.t) X1 += 0.00000000005 * math.cos(4.96740570225 + 18848.98373249069 * self.t) X1 += 0.00000000004 * math.cos(3.38348270644 + 26824.02347258949 * self.t) X1 += 0.00000000004 * math.cos(2.28014232477 + 25352.2704455259 * self.t) X1 += 0.00000000004 * math.cos(5.11054976948 + 133882.3344703199 * self.t) X1 += 0.00000000004 * math.cos(2.44432694792 + 132658.51662954128 * self.t) X1 += 0.00000000004 * math.cos(4.79464066723 + 53772.23654291649 * self.t) X1 += 0.00000000004 * math.cos(3.58245667544 + 183571.16555011149 * self.t) X1 += 0.00000000004 * math.cos(1.18282836563 + 167850.32676523308 * self.t) X1 += 0.00000000005 * math.cos(0.57469466163 + 145204.99856862429 * self.t) X1 += 0.00000000004 * math.cos(2.91942328210 + 27171.2271913513 * self.t) X1 += 0.00000000004 * math.cos(2.74420174911 + 25005.0667267641 * self.t) X1 += 0.00000000004 * math.cos(4.57300561972 + 50483.8844311295 * self.t) X1 += 0.00000000004 * math.cos(1.71297602638 + 78786.53066029989 * self.t) X1 += 0.00000000004 * math.cos(4.98597716653 + 949.4194264533 * self.t) X1 += 0.00000000005 * math.cos(5.48294820542 + 45892.48661567349 * self.t) X1 += 0.00000000004 * math.cos(5.09042463265 + 1795.5022612045 * self.t) X1 += 0.00000000005 * math.cos(3.41506026848 + 26709.8907598969 * self.t) X1 += 0.00000000005 * math.cos(2.24856476273 + 25466.4031582185 * self.t) X1 += 0.00000000004 * math.cos(5.84172747790 + 52065.84377941249 * self.t) X1 += 0.00000000004 * math.cos(1.67956658507 + 2222.1004520805 * self.t) X1 += 0.00000000004 * math.cos(2.68517686010 + 78270.58180110609 * self.t) X1 += 0.00000000004 * math.cos(4.37036821346 + 25653.94758621389 * self.t) X1 += 0.00000000004 * math.cos(3.79249696812 + 49842.36607279289 * self.t) X1 += 0.00000000004 * math.cos(0.19068653380 + 143005.91122533729 * self.t) X1 += 0.00000000004 * math.cos(3.27752582001 + 78800.75775430149 * self.t) X1 += 0.00000000004 * math.cos(4.85511136724 + 65697.31390725628 * self.t) X1 += 0.00000000003 * math.cos(0.19189003895 + 52195.23222656469 * self.t) X1 += 0.00000000004 * math.cos(5.02476065705 + 130459.42928625426 * self.t) X1 += 0.00000000004 * math.cos(3.97588615914 + 24491.47288180609 * self.t) X1 += 0.00000000004 * math.cos(4.14710532879 + 3178.38960805111 * self.t) X1 += 0.00000000004 * math.cos(2.12747516147 + 220.16882495529 * self.t) X1 += 0.00000000004 * math.cos(4.96500381777 + 52250.8316991992 * self.t) X1 += 0.00000000003 * math.cos(4.30211830006 + 78160.86046798748 * self.t) X1 += 0.00000000004 * math.cos(4.46270461199 + 87367.86023632369 * self.t) X1 += 0.00000000004 * math.cos(1.72859821695 + 130435.87818999648 * self.t) X1 += 0.00000000004 * math.cos(4.85546199905 + 53234.94439585409 * self.t) X1 += 0.00000000004 * math.cos(1.63790933088 + 26575.7817103119 * self.t) X1 += 0.00000000004 * math.cos(4.02571570033 + 25600.5122078035 * self.t) X1 += 0.00000000003 * math.cos(0.66645810174 + 1486.2239385487 * self.t) X1 += 0.00000000005 * math.cos(4.92448477691 + 86144.04239554508 * self.t) X1 += 0.00000000004 * math.cos(2.91181818574 + 32132.3755404331 * self.t) X1 += 0.00000000004 * math.cos(2.61773549272 + 66653.40128383189 * self.t) X1 += 0.00000000003 * math.cos(1.93014248251 + 52310.1591502169 * self.t) X1 += 0.00000000003 * math.cos(3.81387230068 + 45290.90021070109 * self.t) X1 += 0.00000000003 * math.cos(0.34402480925 + 70383.86408886709 * self.t) X1 += 0.00000000003 * math.cos(4.41765442359 + 52252.31617190749 * self.t) X1 += 0.00000000005 * math.cos(1.98227688514 + 52808.83383994509 * self.t) X1 += 0.00000000003 * math.cos(5.60337796614 + 1588.82907780029 * self.t) X1 += 0.00000000004 * math.cos(5.75007070234 + 58857.2749540315 * self.t) X1 += 0.00000000004 * math.cos(4.77171683373 + 51951.70530492999 * self.t) X1 += 0.00000000003 * math.cos(3.97223691848 + 50264.8506174147 * self.t) X1 += 0.00000000004 * math.cos(2.74364830901 + 20043.9183776823 * self.t) X1 += 0.00000000004 * math.cos(5.35376721002 + 128320.99566497609 * self.t) X1 += 0.00000000003 * math.cos(5.53627007155 + 25986.18444079209 * self.t) X1 += 0.00000000003 * math.cos(0.12735495966 + 26190.1094773233 * self.t) X1 += 0.00000000004 * math.cos(3.03031240281 + 136722.83537534589 * self.t) X1 += 0.00000000003 * math.cos(4.41334655990 + 65717.47130312308 * self.t) X1 += 0.00000000003 * math.cos(4.19581525920 + 181026.49291321907 * self.t) X1 += 0.00000000003 * math.cos(2.72755670550 + 51535.66517935089 * self.t) X1 += 0.00000000004 * math.cos(1.89805960768 + 129799.86223904048 * self.t) X1 += 0.00000000003 * math.cos(0.20996976206 + 26073.91986505609 * self.t) X1 += 0.00000000003 * math.cos(5.45365526915 + 26102.3740530593 * self.t) X1 += 0.00000000003 * math.cos(3.40818167058 + 52168.44891866409 * self.t) X1 += 0.00000000004 * math.cos(0.98011046066 + 52155.8927047651 * self.t) X1 += 0.00000000004 * math.cos(2.86756899369 + 37698.6989174319 * self.t) X1 += 0.00000000003 * math.cos(5.28107423901 + 51109.06698847489 * self.t) X1 += 0.00000000003 * math.cos(3.44421079458 + 26247.4486938499 * self.t) X1 += 0.00000000003 * math.cos(2.21941423663 + 25928.8452242655
from app.utils import splitDict from app.service.charts import Charts class groupsCharts(Charts): def __init__(self, bddCon): super().__init__(bddCon) def charts(self, form): charts = list() recall = dict() error = False # Variables input date = self.pickDate(form, recall)[0] groupName = form.groups.data recall["Groupe"] = groupName #if Catch erreurs then stop sql = """ SELECT COUNT(job_.id_job_) AS nb_job FROM job_, groupes WHERE job_.id_groupe = groupes.id_groupe AND groupes.group_name = '{groupName}' {date} GROUP BY groupes.id_groupe; """ jobsTotal = self.e.fetch(command=sql.format(date=date, groupName=groupName)) if(super().detectError(jobsTotal)): return charts, recall, True # Group, conso sql = """ SELECT COUNT(job_.id_job_) as nb_job FROM job_, groupes WHERE job_.id_groupe = groupes.id_groupe AND groupes.group_name = '{groupName}' {test} {date} GROUP BY groupes.id_groupe; """ jobsSuccess = self.e.fetch(command=sql.format( date=date, test = 'AND (job_.failed = 0 OR job_.exit_status = 0)', groupName = groupName)) jobsFailed = self.e.fetch(command=sql.format( date=date, test = 'AND job_.failed != 0 AND job_.exit_status != 0', groupName = groupName)) jobsSuccess = super().nameDict("Jobs réussi", super().isNullDict("nb_job", jobsSuccess)) jobsFailed = super().nameDict("Jobs mauvais", super().isNullDict("nb_job", jobsFailed)) jobsSuccessFailed = (jobsSuccess, jobsFailed) # Group, Exec time sql = """ SELECT min(job_.ru_wallclock) as min, avg(job_.ru_wallclock) as avg, max(job_.ru_wallclock) as max FROM job_, groupes WHERE job_.id_groupe = groupes.id_groupe AND groupes.group_name = '{groupName}' {date} GROUP BY groupes.group_name ; """ execTimeMAM = self.e.fetch(command=sql.format( date=date, groupName = groupName)) execTimeMAM = splitDict(execTimeMAM) sql = """ SELECT COUNT(job_.id_job_) as {select} FROM job_, groupes WHERE job_.id_groupe = groupes.id_groupe AND groupes.group_name = '{groupName}' AND (job_.failed = 0 OR job_.exit_status = 0) {date} -- avg donné par requête imbriquée AND job_.ru_wallclock {test} ( SELECT AVG(job_.ru_wallclock) FROM job_, groupes WHERE job_.id_groupe = groupes.id_groupe AND groupes.group_name = '{groupName}' AND (job_.failed = 0 OR job_.exit_status = 0) {date} GROUP BY groupes.group_name) GROUP BY groupes.group_name ; """ execTimeSupAvg = self.e.fetch(command=sql.format( select='sup_avg', date=date, test = ">", groupName = groupName)) execTimeInfAvg = self.e.fetch(command=sql.format( select='inf_avg', date=date, test = "<", groupName = groupName)) execTimeSupAvg = super().nameDict("Temps d'éxecution moyen supérieur", super().isNullDict("sup_avg", execTimeSupAvg)) execTimeInfAvg = super().nameDict("Temps d'éxecution moyen inférieur", super().isNullDict("inf_avg", execTimeInfAvg)) execTimeComparaison = (execTimeSupAvg, execTimeInfAvg) sql = """ SELECT COUNT(job_.id_job_) as {select} FROM job_, groupes WHERE job_.id_groupe = groupes.id_groupe AND groupes.group_name = '{groupName}' AND (job_.failed = 0 OR job_.exit_status = 0) {date} AND job_.ru_wallclock {test} GROUP BY groupes.group_name ; """ execTime1 = self.e.fetch(command=sql.format( select='exectime', date=date, test = " < 86400 ", groupName=groupName)) execTime2 = self.e.fetch(command=sql.format( select='exectime', date=date, test = " > 86400 AND job_.ru_wallclock < 604800 ", groupName=groupName)) execTime3 = self.e.fetch(command=sql.format( select='exectime', date=date, test = " > 604800 AND job_.ru_wallclock < 18144000 ", groupName=groupName)) execTime4 = self.e.fetch(command=sql.format( select='exectime', date=date, test = " > 18144000 ", groupName=groupName)) execTime1 = super().nameDict("< 24", super().isNullDict("exectime", execTime1)) execTime2 = super().nameDict("[24; 168]", super().isNullDict("exectime", execTime2)) execTime3 = super().nameDict("[168; 5 040]", super().isNullDict("exectime", execTime3)) execTime4 = super().nameDict("> 5 040", super().isNullDict("exectime", execTime4)) execTime = (execTime1, execTime2, execTime3, execTime4) #Posibilité que des valeurs disparaissent car value = 0. # Mem Usage sql = """ SELECT MAX(job_.maxvmem) AS max, AVG(job_.maxvmem) AS avg, MIN(job_.maxvmem) AS min FROM job_, groupes WHERE job_.id_groupe = groupes.id_groupe AND groupes.group_name = '{groupName}' AND (job_.failed = 0 OR job_.exit_status = 0) {date} GROUP BY groupes.group_name ; """ memUseMAM = self.e.fetch(command=sql.format( date=date, groupName=groupName)) memUseMAM = splitDict(memUseMAM) sql = """ SELECT COUNT(job_.id_job_) as {select} FROM job_, groupes WHERE job_.id_groupe = groupes.id_groupe AND groupes.group_name = '{groupName}' AND (job_.failed = 0 OR job_.exit_status = 0) {date} AND job_.maxvmem {test} ( SELECT AVG(job_.maxvmem) FROM job_, groupes WHERE job_.id_groupe = groupes.id_groupe AND groupes.group_name = '{groupName}' AND (job_.failed = 0 OR job_.exit_status = 0) {date} GROUP BY groupes.group_name) GROUP BY groupes.group_name ; """ memUseSupAvg = self.e.fetch(command=sql.format( select='jobs_sup_avg', date=date, test = ">", groupName=groupName)) memUseInfAvg = self.e.fetch(command=sql.format( select='jobs_inf_avg', date=date, test = "<", groupName=groupName)) memUseSupAvg = super().nameDict("Utilisation de la mémoire moyenne supérieur", super().isNullDict("jobs_sup_avg", memUseSupAvg)) memUseInfAvg = super().nameDict("Utilisation de la mémoire moyenne inférieur", super().isNullDict("jobs_inf_avg", memUseInfAvg)) memUseComparaison = (memUseSupAvg, memUseInfAvg) sql = """ SELECT COUNT(job_.id_job_) as {select} FROM job_, groupes WHERE job_.id_groupe = groupes.id_groupe AND groupes.group_name = '{groupName}' AND (job_.failed = 0 OR job_.exit_status = 0) {date} {test} GROUP BY groupes.group_name ; """ mUsage1 = self.e.fetch(command=sql.format( select='musage', date=date, test = " < 1073741824 ", groupName=groupName)) mUsage2 = self.e.fetch(command=sql.format( select='musage', date=date, test = " > 1073741824 AND job_.maxvmem < 4294967296 ", groupName=groupName)) mUsage3 = self.e.fetch(command=sql.format( select='musage', date=date, test = " > 4294967296 AND job_.maxvmem < 858993459 ", groupName=groupName)) mUsage4 = self.e.fetch(command=sql.format( select='musage', date=date, test = " > 8589934592 AND job_.maxvmem < 17179869184 ", groupName=groupName)) mUsage5 = self.e.fetch(command=sql.format( select='musage', date=date, test = " > 17179869184 AND job_.maxvmem < 34359738368 ", groupName=groupName)) mUsage6 = self.e.fetch(command=sql.format( select='musage', date=date, test = " > 34359738368 AND job_.maxvmem < 68719476736 ", groupName=groupName)) mUsage7 = self.e.fetch(command=sql.format( select='musage', date=date, test = " > 68719476736 AND job_.maxvmem < 137438953472 ", groupName=groupName)) mUsage8 = self.e.fetch(command=sql.format( select='musage', date=date, test = " > 137438953472 ", groupName=groupName)) mUsage1 = super().nameDict("< 1", super().isNullDict("musage", mUsage1)) mUsage2 = super().nameDict("[1; 4]", super().isNullDict("musage", mUsage2)) mUsage3 = super().nameDict("[4; 8]", super().isNullDict("musage", mUsage3)) mUsage4 = super().nameDict("[8; 16]", super().isNullDict("musage", mUsage4)) mUsage5 = super().nameDict("[16; 32]", super().isNullDict("musage", mUsage5)) mUsage6 = super().nameDict("[32; 64]", super().isNullDict("musage", mUsage6)) mUsage7 = super().nameDict("[64; 128]", super().isNullDict("musage", mUsage7)) mUsage8 = super().nameDict("> 128", super().isNullDict("musage", mUsage8)) memUsage = (mUsage1, mUsage2, mUsage3, mUsage4, mUsage5, mUsage6, mUsage7, mUsage8) #Posibilité que des valeurs disparaissent car value = 0. # Slots usage sql = """ SELECT min(job_.slots) as min, avg(job_.slots) as avg, max(job_.slots) as max FROM job_, groupes WHERE job_.id_groupe = groupes.id_groupe AND groupes.group_name = '{groupName}' AND (job_.failed = 0 OR job_.exit_status = 0) {date} GROUP BY groupes.group_name ; """ slotsPerJobsMAM = self.e.fetch(command=sql.format( date=date, groupName=groupName)) slotsPerJobsMAM = splitDict(slotsPerJobsMAM) sql = """ SELECT COUNT(job_.id_job_) as {select} FROM job_, groupes WHERE job_.id_groupe = groupes.id_groupe AND groupes.group_name = '{groupName}' AND (job_.failed = 0 OR job_.exit_status = 0) {date} AND job_.slots {test} ( SELECT AVG(job_.slots) FROM job_, groupes WHERE job_.id_groupe = groupes.id_groupe AND groupes.group_name = '{groupName}' AND (job_.failed = 0 OR job_.exit_status = 0) {date} GROUP BY groupes.group_name) GROUP BY groupes.group_name ; """ slotsPerJobsSupAvg = self.e.fetch(command=sql.format( select='jobs_sup_avg', date=date, test = ">", groupName=groupName)) slotsPerJobsInfAvg = self.e.fetch(command=sql.format( select='jobs_inf_avg', date=date, test = "<", groupName=groupName)) slotsPerJobsSupAvg = super().nameDict("Slots par job moyen supérieur", super().isNullDict("jobs_sup_avg", slotsPerJobsSupAvg)) slotsPerJobsInfAvg = super().nameDict("Slots par job moyen inférieur", super().isNullDict("jobs_inf_avg", slotsPerJobsInfAvg)) slotsPerJobsComparaison = (slotsPerJobsSupAvg, slotsPerJobsInfAvg) sql = """ SELECT COUNT(job_.id_job_) as {select} FROM job_, groupes WHERE job_.id_groupe = groupes.id_groupe AND groupes.group_name = '{groupName}' AND (job_.failed = 0 OR job_.exit_status = 0) {date} AND job_.slots {test} GROUP BY groupes.group_name; """ slots1 = self.e.fetch(command=sql.format( select='slots', date=date, test = " = 1 ", groupName=groupName)) slots2 = self.e.fetch(command=sql.format( select='slots', date=date, test = " > 1 AND job_.slots <= 4 ", groupName=groupName)) slots3 = self.e.fetch(command=sql.format( select='slots', date=date, test = " > 5 AND job_.slots <= 8 ", groupName=groupName)) slots4 = self.e.fetch(command=sql.format( select='slots', date=date, test = " > 9 AND job_.slots <= 16 ", groupName=groupName)) slots5 = self.e.fetch(command=sql.format( select='slots', date=date, test = " > 17 AND job_.slots <= 32 ", groupName=groupName)) slots6 = self.e.fetch(command=sql.format( select='slots', date=date, test = " > 33 AND job_.slots <= 64 ", groupName=groupName)) slots7 = self.e.fetch(command=sql.format( select='slots', date=date, test = " > 65 AND job_.slots <= 128 ", groupName=groupName)) slots8 = self.e.fetch(command=sql.format( select='slots', date=date, test = " > 128 ", groupName=groupName)) slots1 = super().nameDict("= 1", super().isNullDict("slots", slots1)) slots2 = super().nameDict("[1; 4]", super().isNullDict("slots", slots2)) slots3 = super().nameDict("[5; 8]", super().isNullDict("slots", slots3)) slots4 = super().nameDict("[9; 16]", super().isNullDict("slots", slots4)) slots5 = super().nameDict("[17; 32]", super().isNullDict("slots", slots5)) slots6 = super().nameDict("[33; 64]", super().isNullDict("slots", slots6)) slots7 = super().nameDict("[65; 128]", super().isNullDict("slots", slots7)) slots8 = super().nameDict("> 128", super().isNullDict("slots", slots8)) slotsPerJob = (slots1, slots2, slots3, slots4, slots5, slots6, slots7, slots8) charts.append( {"id": "chart1", "name" : "Information utilisateur/groupe", "charts" : ( {"id":"jobsSuccessFailed", "type": "PieChart", "values" : jobsSuccessFailed, "title" : "Taux réussite"}, )}) charts.append( {"id": "chart2", "name" : "Temps d'éxecution", "charts": ( {"id":"execTimeMAM", "type": "BarChart", "values" : execTimeMAM, "title" : "Temps d'exécution (heures)"}, {"id":"execTimeComparaison", "type": "PieChart", "values" : execTimeComparaison, "title" : "Temps d'exécution moyen (heures)"}, {"id":"execTime", "type": "BarChart", "values" : execTime, "title" : "Temps d'exécution (heures)"} )}) charts.append( {"id":
<filename>Akitrix.py import json import os import threading import time import urllib.error import urllib.request import discord import pymysql from PIL import Image, ImageEnhance from discord.ext import commands import AkitrixDB import Image_Edit '''Unique token for bot to connect with Discord API''' TOKEN = 'YOUR API KEY' def get_prefix(bot, message): with open('prefix.json', 'r') as f: guild_dict = json.load(f) if str(message.guild.id) in guild_dict.keys(): return guild_dict[str(message.guild.id)] else: return ';' intents = discord.Intents(messages=True, guilds=True, members=True, presences=True) bot = commands.Bot(command_prefix=get_prefix, intents=intents) '''Writes current time to a text file every 10 minutes to track last running timestamp of bot''' def update_time(): threading.Timer(600.0, update_time).start() with open('BotRuntime.txt', 'w') as f: f.write(str(time.asctime()) + '\n') update_time() permissionlist = ['administrator', 'ban_members', 'kick_members', 'manage_channels', 'manage_guild', 'manage_messages', 'add_reactions', 'read_messages', 'send_messages', 'send_tts_messages', 'embed_links', 'attach_files', 'read_message_history', 'mention_everyone', 'external_emojis', 'connect', 'speak', 'mute_members', 'deafen_members', 'move_members', 'change_nickname', 'manage_nicknames', 'manage_roles', 'manage_webhooks', 'manage_emojis', 'bot_owner'] '''Throughout the project, 'ctx' is a discord.Context object which consists details on the guild and channel where a command was invoked, and also the user that invoked it.''' @bot.command(name="akiset") async def set_prefix(ctx, prefix): with open('prefix.json', 'r') as json_file: guild_dict = json.load(json_file) guild_dict[str(ctx.guild.id)] = prefix with open('prefix.json', 'w') as json_file: json.dump(guild_dict, json_file, indent=4) await ctx.send("The prefix is now set to ``{0}``".format(prefix)) '''Lists permissions of specified user in chat''' @bot.command(name="perms") async def list_perms(ctx, *member): if len(member) == 1: member = ctx.guild.get_member(int(''.join(d for d in member[0] if d.isdigit()))) else: member = ctx.message.author memberperms = [] if member.guild_permissions.administrator: await ctx.send('This user is an administrator!') else: for x in permissionlist: if x == "bot_owner" and member.id in [432126465254096896]: memberperms.append(x) elif x == "bot_owner": pass else: check = getattr(member.guild_permissions, x) if check: memberperms.append(x) memberperms_str = '\n'.join(memberperms) embed = discord.Embed(color=discord.Colour.gold(), title="{0}'s roles".format(member.name), description=memberperms_str) embed.set_thumbnail(url=member.avatar_url) await ctx.send(embed=embed) @bot.command(name="perm_check") async def perm_check(ctx, member, required_perms): missing_perms = [] for i in required_perms: if i == "bot_owner" and (ctx.author.id not in [<PASSWORD>]): missing_perms.append(i) elif i == "bot_owner": pass else: check = getattr(member.guild_permissions, i) if not check: missing_perms.append(i) if len(missing_perms) != len(required_perms): return True else: await ctx.send( f"You are missing one or more of the following permissions: `{','.join(i for i in missing_perms)}`") return False @bot.command(name="yeet") async def yeet(ctx, *, message): message = message.lower() message2 = list(message) for i in range(1, len(message2), 2): message2[i] = message2[i].upper() await ctx.send(''.join(message2)) @bot.listen() async def on_member_join(member): channel = member.guild.system_channel filename = str(member.id) filepath = 'assets/Avatars/' + filename if "gif" in str(member.avatar_url): filepath += ".gif" else: filepath += "-process.jpg" with open(os.path.join(filepath), "wb+") as f: await member.avatar_url.save(filepath) if filepath[-3:] == "gif": new_filepath = filepath[:-3] + "-process.jpg" Image.open(filepath).convert('RGB').save(new_filepath) filepath = new_filepath final_image = Image_Edit.welcome_image(filepath, member.id) await channel.send(content="Hello there, {0.mention}".format(member), file=discord.File(final_image)) os.remove(final_image) datamod = AkitrixDB.Database() datamod.initialize(member.guild.id, member.guild.name) datamod.add_member(member.id, member.name, str(member.avatar_url), 0, 10000, 1, 100) timer = bot.get_command("reset-timer") await timer.__call__(channel, member.id) datamod.terminate() @bot.listen() async def on_member_remove(member): channel = member.guild.system_channel await channel.send("Goodbye {0}...we'll miss you!".format(member.name)) datamod = AkitrixDB.Database() datamod.initialize(member.guild.id, member.guild.name) datamod.remove_member(member.id) datamod.terminate() @bot.command(name="cr") async def newroleyay(ctx, *, newrole): check = await perm_check(ctx, ctx.author, ["manage_roles"]) if check: guild = ctx.guild await guild.create_role(name=newrole) await ctx.send("New Role Created: ```{0}```".format(newrole)) @bot.command(name="ar") async def add_role(ctx, member, *role): check = await perm_check(ctx, ctx.author, ["manage_roles"]) if check: role = discord.utils.get(ctx.guild.roles, name=' '.join(role)) if role is None: await ctx.send("This role is not available") member = ctx.guild.get_member(int(''.join(d for d in member if d.isdigit()))) await member.add_roles(role) await ctx.send("`{0}` added to {1.mention}".format(role.name, member)) @bot.command(name="rr") async def remove_role(ctx, member, *role): check = await perm_check(ctx, ctx.author, ["manage_roles"]) if check: role = discord.utils.get(ctx.guild.roles, name=' '.join(role)) if role is None: await ctx.send("This role is not available") member = ctx.guild.get_member(int(''.join(d for d in member if d.isdigit()))) await member.remove_roles(role) await ctx.send("`{0}` removed from {1.mention}".format(role.name, member)) @bot.command(name="dr") async def byerole(ctx, *, oldrole): check = await perm_check(ctx, ctx.author, ["manage_roles"]) if check: guild = ctx.guild role = discord.utils.get(guild.roles, name=oldrole) if role is None: role = guild.get_role(int(oldrole)) await role.delete() await ctx.send("R.I.P This role got deleted: ```{0}```".format(oldrole)) @bot.command(name="mention") async def mentiontime(ctx, *, person): guild = ctx.guild member = discord.utils.get(guild.members, name=person) if member is None: member = guild.get_role(int(person)) await ctx.send("{0} wants you now, {1.mention}".format(ctx.message.author.mention, member)) @bot.command(name="enlarge", aliases=['emojibig', 'emoteyeet']) async def emojibig(ctx, *, emote): emoji_converter = commands.PartialEmojiConverter() emoji = await emoji_converter.convert(ctx, emote) emotestring = str(emote) colon1 = emotestring.find(':') colon2 = emotestring.rfind(':') filename = emotestring[colon1 + 1:colon2] filepath = 'assets/Emotes/' + filename if emotestring[1] == "a": filepath += ".gif" else: filepath += ".jpg" with open(os.path.join(filepath), "wb+") as f: await emoji.url.save(filepath) await ctx.send(file=discord.File(filepath)) os.remove(filepath) @bot.command(name="avatar", aliases=["av"]) async def display_avatar(ctx, *member): if len(member) == 1: member = ctx.guild.get_member(int(''.join(d for d in member[0] if d.isdigit()))) else: member = ctx.message.author filename = ''.join(i for i in member.name if i.isalnum()) filepath = 'assets/Avatars/' + filename if "gif" in str(member.avatar_url): filepath += ".gif" else: filepath += ".jpg" with open(os.path.join(filepath), "wb+") as f: await member.avatar_url.save(filepath) await ctx.send(file=discord.File(filepath)) os.remove(filepath) @bot.command(name="deepfry") async def deepfry(ctx, *avatar): factor = 10 if len(avatar) == 0 or (avatar[0].isnumeric() and len(avatar[0]) <= 4): messages = await ctx.history(limit=20).flatten() message_index = -1 is_embed = False for message in range(0, len(messages)): if (len(messages[message].embeds) >= 1 and not isinstance(messages[message].embeds[0].image, type(discord.Embed.Empty))): is_embed = True message_index = message break elif len(messages[message].attachments) >= 1: message_index = message break if is_embed: image_url = messages[message_index].embeds[0].image.url else: image_url = messages[message_index].attachments[0].url dot = image_url.rfind('.') image_url2 = 'assets/DeepFry/' + str(ctx.author.id) if image_url[dot + 1:] == "gif": ext = ".gif" elif image_url[dot + 1:] == "png": ext = "-original.png" else: ext = "-original.jpg" image_url2 += ext if not is_embed: await messages[message_index].attachments[0].save(image_url2) else: urllib.request.urlretrieve(image_url, image_url2) if len(avatar) != 0 and avatar[0].isnumeric(): factor = int(avatar[0]) else: if avatar[0].isnumeric() and len(avatar[0]) > 4: member = ctx.guild.get_member(avatar[0]) else: member = ctx.guild.get_member(int(''.join(d for d in avatar[0] if d.isdigit()))) if avatar[-1].isnumeric() and len(avatar[-1]) <= 4: factor = int(avatar[-1]) image_url = member.avatar_url image_url2 = 'assets/DeepFry/' + str(ctx.author.id) if "gif" in str(image_url): ext = ".gif" else: ext = "-original.jpg" image_url2 += ext with open(image_url2, "wb+") as f: await member.avatar_url.save(image_url2) if image_url2[-3:] == "gif": temp_image = image_url2[:-3] + "-original.jpg" Image.open(image_url2).convert('RGB').save(temp_image) image_url2 = temp_image img = Image.open(image_url2) converter = ImageEnhance.Color(img) img2 = converter.enhance(factor) img2.convert("RGB").save(image_url2) await ctx.send(file=discord.File(image_url2)) os.remove(image_url2) @bot.command(name="roles") async def listroles(ctx): guild = ctx.guild list_roles = [] for role in guild.roles: if len(role.members) == 0 or not role.members[0].bot: list_roles.append(str(role)) list_roles_str = ', '.join(list_roles) embed = discord.Embed(color=discord.Colour.gold(), title="Roles in: `{0}`".format(guild.name), description=f"```{list_roles_str}```") embed.set_thumbnail(url=guild.icon_url) await ctx.send(embed=embed) @bot.command(name="report") async def report(ctx, *report): i = await bot.application_info() owner = i.owner await owner.send( "**Server:** {0}\n**User:** {1}\n**Report:** {2}".format(ctx.guild.name, ctx.author.name, ' '.join(report))) @bot.command(name="fulldb") async def add_db(ctx): check = await perm_check(ctx, ctx.author, ["bot_owner"]) if check: try: members = ctx.guild.members datamod = AkitrixDB.Database() datamod.initialize(ctx.guild.id, ctx.guild.name) inmembers = [] for i in range(len(members)): member = members[i] added = datamod.add_member(member.id, member.name, str(member.avatar_url), 0, 10000, 1, 100) if added: inmembers.append(member) datamod.terminate() await ctx.send("The members are added to the database!") if len(inmembers) != 0: await ctx.send("Some new members have been added! Would you like to view them...?") def check(message): return message.author == ctx.author response = await bot.wait_for('message', check=check) if response.content == "y": embed = discord.Embed(color=discord.Colour.dark_blue(), title="Newly added members:") embed.set_thumbnail(url=ctx.guild.icon_url) embed.add_field(name="Members", value=str([i.mention for i in inmembers]), inline=False) await ctx.send(embed=embed) except pymysql.err.OperationalError: await ctx.send("The server is having issues...") @bot.command(name="setcred") async def set_credits(ctx, *people): check = await perm_check(ctx, ctx.author, ["administrator", "bot_owner"]) if check: if people[0] == "all": members = [i for i in ctx.guild.members] elif people[0] == "allindb": members = "all" else: members = [ctx.guild.get_member(int(''.join(d for d in people[0] if d.isdigit())))] amount = 1000 if people[-1].isdigit(): amount = int(people[-1]) datamod = AkitrixDB.Database() datamod.initialize(0, 'Main') if members != "all": for member in members: datamod.reset_credits(member.id, amount) else: datamod.reset_all_credits(amount) datamod.terminate() if len(members) > 1: await ctx.send("Everyone's credits has been set to {0}".format(amount)) else: await ctx.send("{0}'s credits has been set to {1}".format(members[0].name, amount)) @bot.command(name="resetxp") async def resetxp(ctx, *people): check = await perm_check(ctx, ctx.author, ["administrator"]) if check: if people[0] == "all": members = [i for i in ctx.guild.members] else: members = [ctx.guild.get_member(int(''.join(d for d in people[0] if d.isdigit())))] datamod = AkitrixDB.Database() datamod.initialize(0, 'Main') for member in members: datamod.reset_xp(member.id) datamod.terminate() if len(members) > 1: await ctx.send("Everyone's XP has been reset") else: await ctx.send("{0}'s XP has been reset".format(members[0].name)) # @bot.event # async def on_message(message): # await bot.process_commands(message) # # xp_gain = len(message.content) // (random.randint(3, 7)) # if len(message.embeds)!=0: # for embed in message.embeds: # print(embed.to_dict()) # datamod = AkitrixDB.Database() # datamod.initialize('Main') # datamod.update_xp(message.author.id, xp_gain) @bot.event async def on_user_update(before, after): datamod = AkitrixDB.Database() datamod.initialize(0, 'Main') if before.avatar != after.avatar: datamod.update_pfp(after.id, after.avatar_url) if before.name != after.name: datamod.update_name(after.id, after.name) datamod.terminate() @bot.event async def on_guild_update(before, after): if before.name != after.name: datamod = AkitrixDB.Database() datamod.initialize(before.id, after.name) datamod.terminate() @bot.command(name="profile") async def profile(ctx, *member): try: if len(member) == 0: member_id = ctx.message.author.id elif isinstance(member[0], int): member_id = member[0] elif not member[0].isdigit(): member_id
3 doubles: X, Y, Z, representing the | coordinates in model space of the X axis of the axis system. | | | Example: | The following example retrieves in XAxisCoord the coordinates of the X | axis of the axisSystem axis system: | | Dim XAxisCoord(2) | axisSystem.GetXAxis XAxisCoord :param tuple o_x_axis: :return: None :rtype: None """ vba_function_name = 'get_x_axis' vba_code = """ Public Function get_x_axis(axis_system) Dim oXAxis (2) axis_system.GetXAxis oXAxis get_x_axis = oXAxis End Function """ system_service = self.application.system_service return system_service.evaluate(vba_code, 0, vba_function_name, [self.com_object]) def get_y_axis(self) -> tuple: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-07-06 14:02:20.222384)) | o Sub GetYAxis(CATSafeArrayVariant oYAxis) | | Returns the coordinates X,Y,Z of the Y axis of the axis | system. | | Parameters: | | oYAxis | A Safe Array made up of 3 doubles: X, Y, Z, representing the | coordinates in model space of the Y axis of the axis system. | | | Example: | The following example retrieves in YAxisCoord the coordinates of the Y | axis of the axisSystem axis system: | | Dim YAxisCoord(2) | axisSystem.GetYAxis XAxisCoord :param tuple o_y_axis: :return: None :rtype: None """ vba_function_name = 'get_y_axis' vba_code = """ Public Function get_y_axis(axis_system) Dim oYAxis (2) axis_system.GetYAxis oYAxis get_y_axis = oYAxis End Function """ system_service = self.application.system_service return system_service.evaluate(vba_code, 0, vba_function_name, [self.com_object]) def get_z_axis(self) -> tuple: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-07-06 14:02:20.222384)) | o Sub GetZAxis(CATSafeArrayVariant oZAxis) | | Returns the coordinates X,Y,Z of the Z axis of the axis | system. | | Parameters: | | oZAxis | A Safe Array made up of 3 doubles: X, Y, Z, representing the | coordinates in model space of the Z axis of the axis system. | | | Example: | The following example retrieves in ZAxisCoord the coordinates of the Z | axis of the axisSystem axis system: | | Dim ZAxisCoord(2) | axisSystem.GetZAxis ZAxisCoord :param tuple o_z_axis: :return: None :rtype: None """ vba_function_name = 'get_z_axis' vba_code = """ Public Function get_z_axis(axis_system) Dim oZAxis (2) axis_system.GetZAxis oZAxis get_z_axis = oZAxis End Function """ system_service = self.application.system_service return system_service.evaluate(vba_code, 0, vba_function_name, [self.com_object]) def put_origin(self, i_origin: tuple) -> None: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-07-06 14:02:20.222384)) | o Sub PutOrigin(CATSafeArrayVariant iOrigin) | | Defines the coordinates X,Y,Z of the origin point of the axis | system. | | Parameters: | | iOrigin | A Safe Array made up of 3 doubles: X, Y, Z, representing the | coordinates in model space of the origin point of the axis system. | | | Example: | The following example puts in originCoord the new coordinates of the | origin point of the axisSystem axis system: | | Dim originCoord(2) | originCoord ( 0 ) = 100.000000 | originCoord ( 1 ) = 200.000000 | originCoord ( 2 ) = 10.000000 | axisSystem.PutOrigin originCoord :param tuple i_origin: :return: None :rtype: None """ return self.axis_system.PutOrigin(i_origin) # # # # Autogenerated comment: # # some methods require a system service call as the methods expects a vb array object # # passed to it and there is no way to do this directly with python. In those cases the following code # # should be uncommented and edited accordingly. Otherwise completely remove all this. # # vba_function_name = 'put_origin' # # vba_code = """ # # Public Function put_origin(axis_system) # # Dim iOrigin (2) # # axis_system.PutOrigin iOrigin # # put_origin = iOrigin # # End Function # # """ # # system_service = self.application.system_service # # return system_service.evaluate(vba_code, 0, vba_function_name, [self.com_object]) def put_vectors(self, i_vector_x: tuple, i_vector_y: tuple) -> None: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-07-06 14:02:20.222384)) | o Sub PutVectors(CATSafeArrayVariant iVectorX, | CATSafeArrayVariant iVectorY) | | Defines the coordinates X,Y,Z of the axes X and Y of the axis | system. | | Parameters: | | iVectorX | A Safe Array made up of 3 doubles: X, Y, Z, representing the | coordinates in model space of the X axis vector of the axis system. | | iVectorY | A Safe Array made up of 3 doubles: X, Y, Z, representing the | coordinates in model space of the Y axis vector of the axis system. | | | Example: | The following example modifies in vectorXCoord and vectorYCoord the | coordinates of the vectors of the axisSystem axis | system: | | Dim vectorXCoord(2) | vectorYCoord ( 0 ) = 1.000000 | vectorYCoord ( 1 ) = -1.000000 | vectorYCoord ( 2 ) = 0.000000 | Dim vectorYCoord(2) | vectorYCoord ( 0 ) = 0.000000 | vectorYCoord ( 1 ) = 0.000000 | vectorYCoord ( 2 ) = 1.000000 | axisSystem.PutVectors vectorXCoord, vectorYCoord :param tuple i_vector_x: :param tuple i_vector_y: :return: None :rtype: None """ return self.axis_system.PutVectors(i_vector_x, i_vector_y) # # # # Autogenerated comment: # # some methods require a system service call as the methods expects a vb array object # # passed to it and there is no way to do this directly with python. In those cases the following code # # should be uncommented and edited accordingly. Otherwise completely remove all this. # # vba_function_name = 'put_vectors' # # vba_code = """ # # Public Function put_vectors(axis_system) # # Dim iVectorX (2) # # axis_system.PutVectors iVectorX # # put_vectors = iVectorX # # End Function # # """ # # system_service = self.application.system_service # # return system_service.evaluate(vba_code, 0, vba_function_name, [self.com_object]) def put_x_axis(self, i_x_axis: tuple) -> None: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-07-06 14:02:20.222384)) | o Sub PutXAxis(CATSafeArrayVariant iXAxis) | | Defines the coordinates X,Y,Z of the X axis of the axis | system. | | Parameters: | | iXAxis | A Safe Array made up of 3 doubles: X, Y, Z, representing the | coordinates in model space of the X axis of the axis system. | | | Example: | The following example puts in XAxisCoord the new coordinates of the X | axis of the axisSystem axis system: | | Dim XAxis(2) | XAxis ( 0 ) = 100.000000 | XAxis ( 1 ) = 200.000000 | XAxis ( 2 ) = 10.000000 | axisSystem.PutXAxis XAxis :param tuple i_x_axis: :return: None :rtype: None """ return self.axis_system.PutXAxis(i_x_axis) # # # # Autogenerated comment: # # some methods require a system service call as the methods expects a vb array object # # passed to it and there is no way to do this directly with python. In those cases the following code # # should be uncommented and edited accordingly. Otherwise completely remove all this. # # vba_function_name = 'put_x_axis' # # vba_code = """ # # Public Function put_x_axis(axis_system) # # Dim iXAxis (2) # # axis_system.PutXAxis iXAxis # # put_x_axis = iXAxis # # End Function # # """ # # system_service = self.application.system_service # # return system_service.evaluate(vba_code, 0, vba_function_name, [self.com_object]) def put_y_axis(self, i_y_axis: tuple) -> None: """ .. note:: :class: toggle CAA V5 Visual Basic Help (2020-07-06 14:02:20.222384)) | o Sub PutYAxis(CATSafeArrayVariant iYAxis) | | Defines the coordinates X,Y,Z of the Y axis of the axis | system. | | Parameters: | | iYAxis | A Safe Array made up of 3 doubles: X, Y, Z, representing the | coordinates in model space of the Y axis of the axis system. | | | Example: | The following example puts in XAxisCoord the new coordinates of the Y | axis of the axisSystem axis system: |
TCTAGG 123456 AS:i:77', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: dm.addFile(filename, scoreTag='AS') self.assertEqual( { 'ref1': { 'query1': 77.0, }, }, dm.scores) self.assertEqual(77.0, dm.score('ref1', 'query1')) def testOneQueryMappedWithScoreTagFloat(self): """ If one query is mapped to one reference, the scores matrix must have the correct score if a score tag is passed and the score is of type float (the AS:f:77.5 in the SAM record). """ data = '\n'.join([ '@SQ SN:ref1 LN:10', 'query1 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:f:77.5', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: dm.addFile(filename, scoreTag='AS') self.assertEqual( { 'ref1': { 'query1': 77.5, }, }, dm.scores) self.assertEqual(77.5, dm.score('ref1', 'query1')) def testNonExistentQueryNotMapped(self): """ If a query (not even existing in this case) is not mapped to the reference, the score between the two must be zero. """ data = '\n'.join([ '@SQ SN:ref1 LN:10', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: dm.addFile(filename, scoreTag='AS') self.assertEqual(0.0, dm.score('ref1', 'query1')) def testNonExistentQuery(self): """ The score for a non-existent query must be zero. """ data = '\n'.join([ '@SQ SN:ref1 LN:10', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: dm.addFile(filename, scoreTag='AS') self.assertEqual(0.0, dm.score('ref1', 'query1')) def testQueryNotMapped(self): """ If a query did not map to a reference, the score between the two must be zero. """ data = '\n'.join([ '@SQ SN:ref1 LN:10', '@SQ SN:ref2 LN:10', 'query1 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:77', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: dm.addFile(filename, scoreTag='AS') self.assertEqual( { 'ref2': { 'query1': 77, }, }, dm.scores) self.assertEqual(0.0, dm.score('ref1', 'query1')) def testJaccardDistanceToSelf(self): """ The Jaccard distance between a reference and itself must be zero. """ data = '\n'.join([ '@SQ SN:ref1 LN:10', 'query1 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: dm.addFile(filename) self.assertEqual(0.0, dm.jaccardDistance('ref1', 'ref1')) def testJaccardDistanceToIdentical(self): """ The Jaccard distance between a reference and another with the same set of matching queries must be zero. """ data = '\n'.join([ '@SQ SN:ref1 LN:10', '@SQ SN:ref2 LN:10', 'query1 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query1 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query2 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query2 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: dm.addFile(filename) self.assertEqual(0.0, dm.jaccardDistance('ref1', 'ref1')) def testJaccardDistanceWithNoQueriesInCommon(self): """ The Jaccarddistance between two references that have no matching queries in common must be 1.0. """ data = '\n'.join([ '@SQ SN:ref1 LN:10', '@SQ SN:ref2 LN:10', 'query1 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query2 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: dm.addFile(filename) self.assertEqual(1.0, dm.jaccardDistance('ref1', 'ref2')) def testJaccardDistanceWithOneQueryInCommon(self): """ The Jaccard similarity between two references with one query in common is one over the number of queries that match them in total (four), i.e., 1/4 and the Jaccard distance is 1.0 minus this, or 3/4. """ data = '\n'.join([ '@SQ SN:ref1 LN:10', '@SQ SN:ref2 LN:10', 'query1 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query1 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query2 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query3 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query4 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: dm.addFile(filename) self.assertEqual(0.75, dm.jaccardDistance('ref1', 'ref2')) def testJaccardDistanceWithTwoQueriesInCommon(self): """ The Jaccard similarity between two references with two queries in common is two over the number of queries that match them in total (five), i.e., 2/5 and the Jaccard distance is 1.0 minus this, or 3/5. """ data = '\n'.join([ '@SQ SN:ref1 LN:10', '@SQ SN:ref2 LN:10', 'query1 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query1 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query2 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query3 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query4 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query5 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query5 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: dm.addFile(filename) self.assertEqual(0.6, dm.jaccardDistance('ref1', 'ref2')) def testSoergelDistanceWithNegativeScore(self): """ Soergel distance cannot be computed if a negative score is present. A ValueError must be raised in such cases. """ data = '\n'.join([ '@SQ SN:ref1 LN:10', 'query1 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:-50', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: error = (fr"^Alignment 1 in {filename!r} has tag 'AS' with " fr"negative value \(-50\)\.$") self.assertRaisesRegex(ValueError, error, dm.addFile, filename, scoreTag='AS') def testSoergelDistanceWithOneQueryInCommonNoScoreTag(self): """ The Soergel similarity between two references with one query in common if no score tag was given is one over the number of queries that match them in total (four), i.e., 1/4 and the distance is 1.0 minus this, or 3/4. """ data = '\n'.join([ '@SQ SN:ref1 LN:10', '@SQ SN:ref2 LN:10', 'query1 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query1 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query2 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query3 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', 'query4 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: dm.addFile(filename) self.assertEqual(0.75, dm.soergelDistance('ref1', 'ref2')) def testSoergelDistanceWithNoQueryInCommon(self): """ The Soergel similarity between two references with no queries in common when using a score tag given is the sum of the minimum scores (all are zero) over the sum of the maximum scores (50 + 10 + 60 + 30 = 150), i.e., zero, and the distance is 1.0 minus this, or 1.0. """ data = '\n'.join([ '@SQ SN:ref1 LN:10', '@SQ SN:ref2 LN:10', 'query1 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:50', 'query2 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:10', 'query3 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:60', 'query4 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:30', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: dm.addFile(filename, scoreTag='AS') self.assertEqual(1.0, dm.soergelDistance('ref1', 'ref2')) def testSoergelDistanceToIdentical(self): """ The Soergel similarity between two references with two queries in common with the same scores must be zero. """ data = '\n'.join([ '@SQ SN:ref1 LN:10', '@SQ SN:ref2 LN:10', 'query1 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:10', 'query1 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:10', 'query2 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:20', 'query2 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:20', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: dm.addFile(filename, scoreTag='AS') self.assertEqual(0.0, dm.soergelDistance('ref1', 'ref2')) def testSoergelDistanceSameQueriesDifferentScores(self): """ The Soergel similarity between two references with two queries in common but with different scores is the sum of the minimum scores (10 + 15 = 25) over the sum of the maximum scores (30 + 70 = 100), or 1/4, and the distance is 1.0 minus this, or 3/4. The unrelated query3 and ref3 are ignored. """ data = '\n'.join([ '@SQ SN:ref1 LN:10', '@SQ SN:ref2 LN:10', '@SQ SN:ref3 LN:10', 'query1 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:10', 'query1 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:30', 'query2 0 ref1 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:15', 'query2 0 ref2 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:70', 'query3 0 ref3 2 60 2=2X2M * 0 0 TCTAGG 123456 AS:i:70', ]).replace(' ', '\t') dm = DistanceMatrix() with dataFile(data) as filename: dm.addFile(filename, scoreTag='AS') self.assertEqual(0.75, dm.soergelDistance('ref1', 'ref2')) def testSoergelDistanceWithOneQueryInCommon(self):
file, then _set_state is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_state() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=six.text_type, is_leaf=True, yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """state must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True)""", }) self.__state = t if hasattr(self, '_set'): self._set() def _unset_state(self): self.__state = YANGDynClass(base=six.text_type, is_leaf=True, yang_name="state", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) def _get_resourceId(self): """ Getter method for resourceId, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/resourceId (string) """ return self.__resourceId def _set_resourceId(self, v, load=False): """ Setter method for resourceId, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/resourceId (string) If this variable is read-only (config: false) in the source YANG file, then _set_resourceId is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_resourceId() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=six.text_type, is_leaf=True, yang_name="resourceId", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """resourceId must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="resourceId", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True)""", }) self.__resourceId = t if hasattr(self, '_set'): self._set() def _unset_resourceId(self): self.__resourceId = YANGDynClass(base=six.text_type, is_leaf=True, yang_name="resourceId", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) def _get_nativeConditionType(self): """ Getter method for nativeConditionType, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/nativeConditionType (string) """ return self.__nativeConditionType def _set_nativeConditionType(self, v, load=False): """ Setter method for nativeConditionType, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/nativeConditionType (string) If this variable is read-only (config: false) in the source YANG file, then _set_nativeConditionType is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_nativeConditionType() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=six.text_type, is_leaf=True, yang_name="nativeConditionType", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """nativeConditionType must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="nativeConditionType", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True)""", }) self.__nativeConditionType = t if hasattr(self, '_set'): self._set() def _unset_nativeConditionType(self): self.__nativeConditionType = YANGDynClass(base=six.text_type, is_leaf=True, yang_name="nativeConditionType", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) def _get_conditionSeverity(self): """ Getter method for conditionSeverity, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/conditionSeverity (string) """ return self.__conditionSeverity def _set_conditionSeverity(self, v, load=False): """ Setter method for conditionSeverity, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/conditionSeverity (string) If this variable is read-only (config: false) in the source YANG file, then _set_conditionSeverity is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_conditionSeverity() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=six.text_type, is_leaf=True, yang_name="conditionSeverity", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """conditionSeverity must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="conditionSeverity", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True)""", }) self.__conditionSeverity = t if hasattr(self, '_set'): self._set() def _unset_conditionSeverity(self): self.__conditionSeverity = YANGDynClass(base=six.text_type, is_leaf=True, yang_name="conditionSeverity", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) def _get_serviceAffecting(self): """ Getter method for serviceAffecting, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/serviceAffecting (string) """ return self.__serviceAffecting def _set_serviceAffecting(self, v, load=False): """ Setter method for serviceAffecting, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/serviceAffecting (string) If this variable is read-only (config: false) in the source YANG file, then _set_serviceAffecting is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_serviceAffecting() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=six.text_type, is_leaf=True, yang_name="serviceAffecting", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """serviceAffecting must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="serviceAffecting", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True)""", }) self.__serviceAffecting = t if hasattr(self, '_set'): self._set() def _unset_serviceAffecting(self): self.__serviceAffecting = YANGDynClass(base=six.text_type, is_leaf=True, yang_name="serviceAffecting", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) def _get_manualClearable(self): """ Getter method for manualClearable, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/manualClearable (string) """ return self.__manualClearable def _set_manualClearable(self, v, load=False): """ Setter method for manualClearable, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/manualClearable (string) If this variable is read-only (config: false) in the source YANG file, then _set_manualClearable is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_manualClearable() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=six.text_type, is_leaf=True, yang_name="manualClearable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """manualClearable must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="manualClearable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True)""", }) self.__manualClearable = t if hasattr(self, '_set'): self._set() def _unset_manualClearable(self): self.__manualClearable = YANGDynClass(base=six.text_type, is_leaf=True, yang_name="manualClearable", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) def _get_additionalText(self): """ Getter method for additionalText, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/additionalText (string) """ return self.__additionalText def _set_additionalText(self, v, load=False): """ Setter method for additionalText, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/additionalText (string) If this variable is read-only (config: false) in the source YANG file, then _set_additionalText is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_additionalText() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=six.text_type, is_leaf=True, yang_name="additionalText", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """additionalText must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="additionalText", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True)""", }) self.__additionalText = t if hasattr(self, '_set'): self._set() def _unset_additionalText(self): self.__additionalText = YANGDynClass(base=six.text_type, is_leaf=True, yang_name="additionalText", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) def _get_firstRaiseTime(self): """ Getter method for firstRaiseTime, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/firstRaiseTime (string) """ return self.__firstRaiseTime def _set_firstRaiseTime(self, v, load=False): """ Setter method for firstRaiseTime, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/firstRaiseTime (string) If this variable is read-only (config: false) in the source YANG file, then _set_firstRaiseTime is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_firstRaiseTime() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=six.text_type, is_leaf=True, yang_name="firstRaiseTime", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """firstRaiseTime must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="firstRaiseTime", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True)""", }) self.__firstRaiseTime = t if hasattr(self, '_set'): self._set() def _unset_firstRaiseTime(self): self.__firstRaiseTime = YANGDynClass(base=six.text_type, is_leaf=True, yang_name="firstRaiseTime", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) def _get_lastRaiseTime(self): """ Getter method for lastRaiseTime, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/lastRaiseTime (string) """ return self.__lastRaiseTime def _set_lastRaiseTime(self, v, load=False): """ Setter method for lastRaiseTime, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/lastRaiseTime (string) If this variable is read-only (config: false) in the source YANG file, then _set_lastRaiseTime is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_lastRaiseTime() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=six.text_type, is_leaf=True, yang_name="lastRaiseTime", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """lastRaiseTime must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=six.text_type, is_leaf=True, yang_name="lastRaiseTime", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True)""", }) self.__lastRaiseTime = t if hasattr(self, '_set'): self._set() def _unset_lastRaiseTime(self): self.__lastRaiseTime = YANGDynClass(base=six.text_type, is_leaf=True, yang_name="lastRaiseTime", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='https://rmt.verizon.com/bnc-filtered-alarms', defining_module='bnc-filtered-alarms', yang_type='string', is_config=True) def _get_numberOfOccurrences(self): """ Getter method for numberOfOccurrences, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/numberOfOccurrences (uint32) """ return self.__numberOfOccurrences def _set_numberOfOccurrences(self, v, load=False): """ Setter method for numberOfOccurrences, mapped from YANG variable /bncFilteredAlarm/alarm/attributes/numberOfOccurrences (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_numberOfOccurrences is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_numberOfOccurrences() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="numberOfOccurrences",
of the time series (useful when multiple time series are run simultaneously), and the predictive model used. """ assert ( model in self.available_models ), f"Requested model {model} not currently supported. Please choose one from: {self.available_models}" if model_parameters is None: model_parameters = self.parameter_type[model]() assert isinstance( model_parameters, self.parameter_type[model] ), f"Expected parameter type {self.parameter_type[model]}, but got {model_parameters}" if choose_priors: changepoint_prior, model_parameters = self._choose_priors(model, model_parameters) if getattr(model_parameters, "data", 0) is None: model_parameters.data = self.data logging.debug(f"Newest model parameters: {model_parameters}") if not self.data.is_univariate() and not self.models[model].is_multivariate(): msg = "Model {model.name} support univariate time series, but get {type}.".format( model=model, type=type(self.data.value) ) logging.error(msg) raise ValueError(msg) # parameters_dict = dataclasses.asdict(model_parameters) # pyre-fixme[45]: Cannot instantiate abstract class `_PredictiveModel` with `__init__`, `is_multivariate`, `pred_mean` and 4 additional abstract methods.Pyre underlying_model = self.models[model](data=self.data, parameters=model_parameters) underlying_model.setup() logging.debug(f"Creating detector with lag {lag} and debug option {debug}.") bocpd = _BayesOnlineChangePoint(data=self.data, lag=lag, debug=debug, agg_cp=agg_cp) logging.debug( f"Running .detector() with model {underlying_model}, threshold {threshold}, changepoint prior {changepoint_prior}." ) detector_results_all = bocpd.detector( model=underlying_model, threshold=threshold, changepoint_prior=changepoint_prior, ) self.detected_flag = True change_points = [] for ts_name, detector_results in detector_results_all.items(): change_indices = detector_results["change_points"] change_probs = detector_results["change_prob"] self.change_prob[ts_name] = change_probs self._run_length_prob[ts_name] = detector_results["run_length_prob"] logging.debug( f"Obtained {len(change_indices)} change points from underlying model in ts={ts_name}." ) for cp_index in change_indices: cp_time = self.data.time.values[cp_index] cp = TimeSeriesChangePoint( start_time=cp_time, end_time=cp_time, confidence=change_probs[cp_index], ) bocpd_metadata = BOCPDMetadata(model=model, ts_name=ts_name) change_points.append((cp, bocpd_metadata)) logging.debug(f"Returning {len(change_points)} change points to client in ts={ts_name}.") return change_points def plot( self, change_points: List[Tuple[TimeSeriesChangePoint, BOCPDMetadata]], ts_names: Optional[List[str]] = None ) -> None: """Plots the change points, along with the time series. Use this function to visualize the results of the changepoint detection. Args: change_points: List of changepoints, which are the return value of the detector() function. ts_names: List of names of the time series, useful in case multiple time series are used. Returns: None. """ # TODO note: Once D23226664 lands, replace this with self.data.time_col_name time_col_name = 'time' # Group changepoints together change_points_per_ts = self.group_changepoints_by_timeseries(change_points) ts_names = ts_names or list(change_points_per_ts.keys()) data_df = self.data.to_dataframe() for ts_name in ts_names: ts_changepoints = change_points_per_ts[ts_name] plt.plot(data_df[time_col_name].values, data_df[ts_name].values) logging.info(f"Plotting {len(ts_changepoints)} change points for {ts_name}.") if len(ts_changepoints) == 0: logging.warning("No change points detected!") for change in ts_changepoints: plt.axvline(x=change[0].start_time, color="red") plt.show() def _choose_priors(self, model: BOCPDModelType, params: BOCPDModelParameters) -> Tuple[Any, BOCPDModelParameters]: """Chooses priors which are defined by the model parameters. Chooses priors which are defined by the model parameters. All BOCPDModelParameters classes have a changepoint prior to iterate on. Other parameters can be added to specific models. This function runs a parameter search using the hyperparameter tuning library to get the best hyperparameters. Args: model: Type of predictive model. params: Parameters class, containing list of values of the parameters on which to run hyperparameter tuning. Returns: best_cp_prior: best value of the prior on the changepoint probabilities. params: parameter dictionary, where the selected values are set. """ # test these changepoint_priors param_dict = params.prior_choice # which parameter seaching method are we using search_method = params.search_method # pick search iterations and method based on definition if search_method == 'random': search_N, SearchMethod = 3, SearchMethodEnum.RANDOM_SEARCH_UNIFORM elif search_method == 'gridsearch': search_N, SearchMethod = 1, SearchMethodEnum.GRID_SEARCH else: raise Exception(f'Search method has to be in random or gridsearch but it is {search_method}!') # construct the custom parameters for the HPT library custom_parameters = [ {"name": k, "type": "choice", "values": v, "value_type": "float", "is_ordered": False } for k, v in param_dict.items() ] eval_fn = self._get_eval_function(model, params) # Use the HPT library seed_value = 100 ts_tuner = tpt.SearchMethodFactory.create_search_method( parameters=custom_parameters, selected_search_method=SearchMethod, seed=seed_value ) for _ in range(search_N): ts_tuner.generate_evaluate_new_parameter_values( evaluation_function=eval_fn, arm_count=4 ) scores_df = ( ts_tuner.list_parameter_value_scores() ) scores_df = scores_df.sort_values(by='mean', ascending=False) best_params = scores_df.parameters.values[0] params.set_prior(best_params) best_cp_prior = best_params['cp_prior'] return best_cp_prior, params def _get_eval_function(self, model: BOCPDModelType, model_parameters: BOCPDModelParameters): """ generates the objective function evaluated by hyperparameter tuning library for choosing the priors """ def eval_fn(params_to_eval: Dict[str, float]) -> float: changepoint_prior = params_to_eval['cp_prior'] model_parameters.set_prior(params_to_eval) logging.debug(model_parameters) logging.debug(params_to_eval) # pyre-fixme[45]: Cannot instantiate abstract class `_PredictiveModel` with `__init__`, `is_multivariate`, `pred_mean` and 4 additional abstract methods.Pyre underlying_model = self.models[model](data=self.data, parameters=model_parameters) change_point = _BayesOnlineChangePoint(data=self.data, lag=3, debug=False) change_point.detector(model=underlying_model, changepoint_prior=changepoint_prior, threshold=0.4) post_pred = np.mean(change_point.get_posterior_predictive()) return post_pred return eval_fn def group_changepoints_by_timeseries( self, change_points: List[Tuple[TimeSeriesChangePoint, BOCPDMetadata]] ) -> Dict[str, List[Tuple[TimeSeriesChangePoint, BOCPDMetadata]]]: """Helper function to group changepoints by time series. For multivariate inputs, all changepoints are output in a list and the time series they correspond to is referenced in the metadata. This function is a helper function to group these changepoints by time series. Args: change_points: List of changepoints, with metadata containing the time series names. This is the return value of the detector() method. Returns: Dictionary, with time series names, and their corresponding changepoints. """ if self.data.is_univariate(): data_df = self.data.to_dataframe() ts_names = [x for x in data_df.columns if x != 'time'] else: # Multivariate ts_names = self.data.value.columns change_points_per_ts = {} for ts_name in ts_names: change_points_per_ts[ts_name] = [] for cp in change_points: change_points_per_ts[cp[1].ts_name].append(cp) return dict(change_points_per_ts) def get_change_prob(self) -> Dict[str, np.ndarray]: """Returns the probability of being a changepoint. Args: None. Returns: For every point in the time series. The return type is a dict, with the name of the timeseries as the key, and the value is an array of probabilities of the same length as the timeseries data. """ if not self.detected_flag: raise ValueError('detector needs to be run before getting prob') return self.change_prob def get_run_length_matrix(self) -> Dict[str, np.ndarray]: """Returns the entire run-time posterior. Args: None. Returns: The return type is a dict, with the name of the timeseries as the key, and the value is an array of probabilities of the same length as the timeseries data. """ if not self.detected_flag: raise ValueError('detector needs to be run before getting prob') return self._run_length_prob class _BayesOnlineChangePoint(Detector): """The underlying implementation of the BOCPD algorithm. This is called by the class BayesianOnlineChangepoint. The user should call the top level class, and not this one. Given an univariate time series, this class performs changepoint detection, i.e. it tells us when the time series shows a change. This is online, which means it gives the best estimate based on a lookehead number of time steps (which is the lag). This faithfully implements the algorithm in Adams & McKay, 2007. "Bayesian Online Changepoint Detection" https://arxiv.org/abs/0710.3742 The basic idea is to see whether the new values are improbable, when compared to a bayesian predictive model, built from the previous observations. Attributes:: data: This is univariate time series data. We require more than 10 points, otherwise it is not very meaningful to define changepoints. T: number of values in the time series data. lag: This specifies, how many time steps we will look ahead to determine the change. There is a tradeoff in setting this parameter. A small lag means we can detect a change really fast, which is important in many applications. However, this also means we will make more mistakes/have lower confidence since we might mistake a spike for change. threshold: Threshold between 0 and 1. Probability values above this threshold will be denoted as changepoint. debug: This is a boolean. If set to true, this shows additional plots. Currently, it shows a plot of the predicted mean and variance, after lag steps, and the predictive probability of the next point. If the results are unusual, the user should set it to true in order to debug. agg_cp: It is tested and believed that by aggregating run-length posterior, we may have a stronger signal for changepoint detection. When setting this parameter as True, posterior will be the aggregation of run-length posterior by fetching maximum values diagonally. """ rt_posterior: Optional[np.ndarray] = None pred_mean_arr: Optional[np.ndarray] = None pred_std_arr: Optional[np.ndarray] = None next_pred_prob: Optional[np.ndarray] = None def __init__(self, data: TimeSeriesData, lag: int = 10, debug: bool = False, agg_cp: bool = False): self.data = data self.T = data.value.shape[0] self.lag = lag self.threshold = None self.debug = debug self.agg_cp = agg_cp # We use tensors for all data throughout; if the data is univariate # then the last dimension is trivial.
<reponame>fpjnijweide/clrs # Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """JAX implementation of CLRS baseline models.""" import functools import os import pickle from typing import Dict, List, Optional, Tuple, Union import chex from clrs._src import decoders from clrs._src import losses from clrs._src import model from clrs._src import nets from clrs._src import probing from clrs._src import samplers from clrs._src import specs import haiku as hk import jax import jax.numpy as jnp import optax _Array = chex.Array _DataPoint = probing.DataPoint _Features = samplers.Features _FeaturesChunked = samplers.FeaturesChunked _Feedback = samplers.Feedback _Location = specs.Location _Seed = jnp.ndarray _Spec = specs.Spec _Stage = specs.Stage _Trajectory = samplers.Trajectory _Type = specs.Type _OutputClass = specs.OutputClass class BaselineModel(model.Model): """Model implementation with selectable message passing algorithm.""" def __init__( self, spec: Union[_Spec, List[_Spec]], dummy_trajectory: Union[List[_Feedback], _Feedback], nb_heads: int = 1, hidden_dim: int = 32, kind: str = 'mpnn', encode_hints: bool = False, decode_hints: bool = True, decode_diffs: bool = False, use_lstm: bool = False, learning_rate: float = 0.005, checkpoint_path: str = '/tmp/clrs3', freeze_processor: bool = False, dropout_prob: float = 0.0, name: str = 'base_model', ): """Constructor for BaselineModel. The model consists of encoders, processor and decoders. It can train and evaluate either a single algorithm or a set of algorithms; in the latter case, a single processor is shared among all the algorithms, while the encoders and decoders are separate for each algorithm. Args: spec: Either a single spec for one algorithm, or a list of specs for multiple algorithms to be trained and evaluated. dummy_trajectory: Either a single feedback batch, in the single-algorithm case, or a list of feedback batches, in the multi-algorithm case, that comply with the `spec` (or list of specs), to initialize network size. nb_heads: Number of heads for GAT processors. hidden_dim: Size of the hidden state of the model, i.e., size of the message-passing vectors. kind: Type of processor (see `processors.py`). encode_hints: Whether to provide hints as model inputs. decode_hints: Whether to provide hints as model outputs. decode_diffs: Whether to predict masks within the model. use_lstm: Whether to insert an LSTM after message passing. learning_rate: Learning rate for training. checkpoint_path: Path for loading/saving checkpoints. freeze_processor: If True, the processor weights will be frozen and only encoders and decoders (and, if used, the lstm) will be trained. dropout_prob: Dropout rate in the message-passing stage. name: Model name. Raises: ValueError: if `encode_hints=True` and `decode_hints=False`. """ super(BaselineModel, self).__init__(spec=spec) if encode_hints and not decode_hints: raise ValueError('`encode_hints=True`, `decode_hints=False` is invalid.') self.decode_hints = decode_hints self.decode_diffs = decode_diffs self.checkpoint_path = checkpoint_path self.name = name self._freeze_processor = freeze_processor self.opt = optax.adam(learning_rate) self.nb_dims = [] if isinstance(dummy_trajectory, _Feedback): assert len(self._spec) == 1 dummy_trajectory = [dummy_trajectory] for traj in dummy_trajectory: nb_dims = {} for inp in traj.features.inputs: nb_dims[inp.name] = inp.data.shape[-1] for hint in traj.features.hints: nb_dims[hint.name] = hint.data.shape[-1] for outp in traj.outputs: nb_dims[outp.name] = outp.data.shape[-1] self.nb_dims.append(nb_dims) self._create_net_fns(hidden_dim, encode_hints, kind, use_lstm, dropout_prob, nb_heads) self.params = None self.opt_state = None self.opt_state_skeleton = None def _create_net_fns(self, hidden_dim, encode_hints, kind, use_lstm, dropout_prob, nb_heads): def _use_net(*args, **kwargs): return nets.Net(self._spec, hidden_dim, encode_hints, self.decode_hints, self.decode_diffs, kind, use_lstm, dropout_prob, nb_heads, self.nb_dims)(*args, **kwargs) self.net_fn = hk.transform(_use_net) self.net_fn_apply = jax.jit(self.net_fn.apply, static_argnames=['repred', 'algorithm_index']) def init(self, features: Union[_Features, List[_Features]], seed: _Seed): if not isinstance(features, list): assert len(self._spec) == 1 features = [features] self.params = self.net_fn.init(jax.random.PRNGKey(seed), features, True, -1) self.opt_state = self.opt.init(self.params) # We will use the optimizer state skeleton for traversal when we # want to avoid updating the state of params of untrained algorithms. self.opt_state_skeleton = self.opt.init(jnp.zeros(1)) def feedback(self, rng_key: hk.PRNGSequence, feedback: _Feedback, algorithm_index: Optional[int] = None) -> float: """Advance to the next task, incorporating any available feedback.""" if algorithm_index is None: assert len(self._spec) == 1 algorithm_index = 0 self.params, self.opt_state, cur_loss = self.update( rng_key, self.params, self.opt_state, feedback, algorithm_index) return cur_loss def predict(self, rng_key: hk.PRNGSequence, features: _Features, algorithm_index: Optional[int] = None): """Model inference step.""" if algorithm_index is None: assert len(self._spec) == 1 algorithm_index = 0 outs, hint_preds, diff_logits, gt_diff = self.net_fn_apply( self.params, rng_key, [features], repred=True, algorithm_index=algorithm_index) return decoders.postprocess(self._spec[algorithm_index], outs), (hint_preds, diff_logits, gt_diff) def update( self, rng_key: hk.PRNGSequence, params: hk.Params, opt_state: optax.OptState, feedback: _Feedback, algorithm_index: Optional[int] = None, ) -> Tuple[hk.Params, optax.OptState, _Array]: """Model update step.""" if algorithm_index is None: assert len(self._spec) == 1 algorithm_index = 0 def loss(params, rng_key, feedback): """Calculates model loss f(feedback; params).""" (output_preds, hint_preds, diff_logits, gt_diffs) = self.net_fn_apply(params, rng_key, [feedback.features], repred=False, algorithm_index=algorithm_index) nb_nodes = _nb_nodes(feedback, is_chunked=False) lengths = feedback.features.lengths total_loss = 0.0 # Calculate output loss. for truth in feedback.outputs: total_loss += losses.output_loss( truth=truth, pred=output_preds[truth.name], nb_nodes=nb_nodes, ) # Optionally accumulate diff losses. if self.decode_diffs: total_loss += losses.diff_loss( diff_logits=diff_logits, gt_diffs=gt_diffs, lengths=lengths, ) # Optionally accumulate hint losses. if self.decode_hints: for truth in feedback.features.hints: total_loss += losses.hint_loss( truth=truth, preds=[x[truth.name] for x in hint_preds], gt_diffs=gt_diffs, lengths=lengths, nb_nodes=nb_nodes, decode_diffs=self.decode_diffs, ) return total_loss # Calculate and apply gradients. assert algorithm_index >= 0 lss, grads = jax.value_and_grad(loss)(params, rng_key, feedback) new_params, opt_state = self._update_params(params, grads, opt_state) return new_params, opt_state, lss def _update_params(self, params, grads, opt_state): updates, opt_state = filter_null_grads( grads, self.opt, opt_state, self.opt_state_skeleton) if self._freeze_processor: params_subset = _filter_processor(params) updates_subset = _filter_processor(updates) new_params = optax.apply_updates(params_subset, updates_subset) new_params = hk.data_structures.merge(params, new_params) else: new_params = optax.apply_updates(params, updates) return new_params, opt_state def verbose_loss(self, feedback: _Feedback, extra_info) -> Dict[str, _Array]: """Gets verbose loss information.""" hint_preds, diff_logits, gt_diffs = extra_info nb_nodes = _nb_nodes(feedback, is_chunked=False) lengths = feedback.features.lengths losses_ = {} # Optionally accumulate diff losses. if self.decode_diffs: losses_.update( losses.diff_loss( diff_logits=diff_logits, gt_diffs=gt_diffs, lengths=lengths, verbose=True, )) # Optionally accumulate hint losses. if self.decode_hints: for truth in feedback.features.hints: losses_.update( losses.hint_loss( truth=truth, preds=hint_preds, gt_diffs=gt_diffs, lengths=lengths, nb_nodes=nb_nodes, decode_diffs=self.decode_diffs, verbose=True, )) return losses_ def restore_model(self, file_name: str, only_load_processor: bool = False): """Restore model from `file_name`.""" path = os.path.join(self.checkpoint_path, file_name) with open(path, 'rb') as f: restored_state = pickle.load(f) if only_load_processor: restored_params = _filter_processor(restored_state['params']) else: restored_params = restored_state['params'] self.params = hk.data_structures.merge(self.params, restored_params) self.opt_state = restored_state['opt_state'] def save_model(self, file_name: str): """Save model (processor weights only) to `file_name`.""" os.makedirs(self.checkpoint_path, exist_ok=True) to_save = {'params': self.params, 'opt_state': self.opt_state} path = os.path.join(self.checkpoint_path, file_name) with open(path, 'wb') as f: pickle.dump(to_save, f) class BaselineModelChunked(BaselineModel): """Model that processes time-chunked data. Unlike `BaselineModel`, which processes full samples, `BaselineModelChunked` processes fixed-timelength chunks of data. Each tensor of inputs and hints has dimensions chunk_length x batch_size x ... The beginning of a new sample withing the chunk is signalled by a tensor called `is_first` of dimensions chunk_length x batch_size. The chunked model is intended for training. For validation and test, use `BaselineModel`. """ def _create_net_fns(self, hidden_dim, encode_hints, kind, use_lstm, dropout_prob, nb_heads): def _use_net(*args, **kwargs): return nets.NetChunked( self._spec, hidden_dim, encode_hints, self.decode_hints, self.decode_diffs, kind, use_lstm, dropout_prob, nb_heads, self.nb_dims)(*args, **kwargs) self.net_fn = hk.transform(_use_net) self.net_fn_apply = jax.jit( functools.partial(self.net_fn.apply, init_mp_state=False), static_argnames=['repred', 'algorithm_index']) def _init_mp_state(self, features_list: List[_FeaturesChunked], rng_key: _Array): def _empty_mp_state(): return nets.MessagePassingStateChunked( inputs=None, hints=None, is_first=None, hint_preds=None, hiddens=None, lstm_state=None) empty_mp_states = [_empty_mp_state() for _ in range(len(features_list))] dummy_params = self.net_fn.init( rng_key, features_list, empty_mp_states, False, init_mp_state=True, algorithm_index=-1) _, mp_states = self.net_fn.apply( dummy_params, rng_key, features_list, empty_mp_states, False, init_mp_state=True, algorithm_index=-1) return mp_states def init(self, features: Union[_FeaturesChunked, List[_FeaturesChunked]], seed: _Seed): if not isinstance(features, list): assert len(self._spec) == 1 features = [features] self.mp_states = self._init_mp_state(features, jax.random.PRNGKey(seed)) self.params = self.net_fn.init( jax.random.PRNGKey(seed), features, self.mp_states, True, init_mp_state=False, algorithm_index=-1) self.opt_state = self.opt.init(self.params) # We will use the optimizer state skeleton for traversal when we # want to avoid updating the state of params of untrained algorithms. self.opt_state_skeleton = self.opt.init(jnp.zeros(1)) def predict(self, rng_key: hk.PRNGSequence, features: _FeaturesChunked, algorithm_index: Optional[int] = None): """Inference not implemented. Chunked model intended for training only.""" raise NotImplementedError def update( self, rng_key: hk.PRNGSequence, params: hk.Params, opt_state: optax.OptState, feedback: _Feedback, algorithm_index: Optional[int] = None, ) -> Tuple[hk.Params, optax.OptState, _Array]: """Model update step.""" if algorithm_index is None: assert len(self._spec) == 1 algorithm_index = 0 def loss(params, rng_key, feedback): ((output_preds, hint_preds, diff_logits, gt_diffs), mp_state) = self.net_fn_apply(params,
to the workflow\'s output folder)') parser_update_stage.set_defaults(func=workflow_cli.update_stage) register_parser(parser_update_stage, subparsers_action=subparsers_update, categories='workflow') parser_update_member = subparsers_update.add_parser("member", help="Update the membership of a user in an org", description="Update the membership of a user in an org", prog="dx update member", parents=[stdout_args, env_args]) parser_update_member.add_argument("org_id", help="ID of the org") parser_update_member.add_argument("username_or_user_id", help="Username or ID of user") parser_update_member.add_argument("--level", choices=["ADMIN", "MEMBER"], help="The new org membership level of the specified user") parser_update_member.add_argument("--allow-billable-activities", choices=["true", "false"], help='The new "allowBillableActivities" membership permission of the specified user in the org; default false if demoting the specified user from ADMIN to MEMBER') parser_update_member.add_argument("--app-access", choices=["true", "false"], help='The new "appAccess" membership permission of the specified user in the org; default true if demoting the specified user from ADMIN to MEMBER') parser_update_member.add_argument("--project-access", choices=["ADMINISTER", "CONTRIBUTE", "UPLOAD", "VIEW", "NONE"], help='The new default implicit maximum permission the specified user will receive to projects explicitly shared with the org; default CONTRIBUTE if demoting the specified user from ADMIN to MEMBER') parser_update_member.set_defaults(func=update_membership) register_parser(parser_update_member, subparsers_action=subparsers_update, categories="org") parser_update_project = subparsers_update.add_parser("project", help="Updates a specified project with the specified options", description="", prog="dx update project", parents=[stdout_args, env_args]) parser_update_project.add_argument('project_id', help="Project ID or project name") parser_update_project.add_argument('--name', help="New project name") parser_update_project.add_argument('--summary', help="Project summary") parser_update_project.add_argument('--description', help="Project description") parser_update_project.add_argument('--protected', choices=["true", "false"], help="Whether the project should be PROTECTED") parser_update_project.add_argument('--restricted', choices=["true", "false"], help="Whether the project should be RESTRICTED") parser_update_project.add_argument('--download-restricted', choices=["true", "false"], help="Whether the project should be DOWNLOAD RESTRICTED") parser_update_project.add_argument('--containsPHI', choices=["true"], help="Flag to tell if project contains PHI") parser_update_project.add_argument('--bill-to', help="Update the user or org ID of the billing account", type=str) parser_update_project.set_defaults(func=update_project) register_parser(parser_update_project, subparsers_action=subparsers_update, categories="metadata") ##################################### # install ##################################### parser_install = subparsers.add_parser('install', help='Install an app', description='Install an app by name. To see a list of apps you can install, hit <TAB> twice after "dx install" or run "' + BOLD('dx find apps') + '" to see a list of available apps.', prog='dx install', parents=[env_args]) install_app_action = parser_install.add_argument('app', help='ID or name of app to install') install_app_action.completer = DXAppCompleter(installed=False) parser_install.set_defaults(func=install) register_parser(parser_install, categories='exec') ##################################### # uninstall ##################################### parser_uninstall = subparsers.add_parser('uninstall', help='Uninstall an app', description='Uninstall an app by name.', prog='dx uninstall', parents=[env_args]) uninstall_app_action = parser_uninstall.add_argument('app', help='ID or name of app to uninstall') uninstall_app_action.completer = DXAppCompleter(installed=True) parser_uninstall.set_defaults(func=uninstall) register_parser(parser_uninstall, categories='exec') ##################################### # run ##################################### parser_run = subparsers.add_parser('run', help='Run an applet, app, or workflow', add_help=False, description=(fill('Run an applet, app, or workflow. To see a list of executables you can run, hit <TAB> twice after "dx run" or run "' + BOLD('dx find apps') + '" or "' + BOLD('dx find globalworkflows') + '" to see a list of available apps and global workflows.') + '\n\n' + fill('If any inputs are required but not specified, an interactive mode for selecting inputs will be launched. Inputs can be set in multiple ways. Run "' + BOLD('dx run --input-help') + '" for more details.') + '\n\n' + fill('Run "' + BOLD('dx run --instance-type-help') + '" to see a list of specifications for computers available to run executables.')), prog='dx run', formatter_class=argparse.RawTextHelpFormatter, parents=[exec_input_args, stdout_args, env_args, extra_args, instance_type_arg, property_args, tag_args]) run_executable_action = parser_run.add_argument('executable', help=fill('Name or ID of an applet, app, or workflow to run; must be provided if --clone is not set', width_adjustment=-24), nargs="?", default="") run_executable_action.completer = MultiCompleter([DXAppCompleter(), DXPathCompleter(classes=['applet', 'workflow'], visibility="visible")]) parser_run.add_argument('-d', '--depends-on', help=fill('ID of job, analysis, or data object that must be in the "done" or ' + '"closed" state, as appropriate, before this executable can be run; ' + 'repeat as necessary (e.g. "--depends-on id1 ... --depends-on idN"). ' + 'Cannot be supplied when running workflows', width_adjustment=-24), action='append', type=str) parser_run.add_argument('-h', '--help', help='show this help message and exit', nargs=0, action=runHelp) parser_run.add_argument('--clone', help=fill('Job or analysis ID or name from which to use as default options (will use the exact same executable ID, destination project and folder, job input, instance type requests, and a similar name unless explicitly overridden by command-line arguments)', width_adjustment=-24)) parser_run.add_argument('--alias', '--version', dest='alias', help=fill('Alias (tag) or version of the app to run (default: "default" if an app)', width_adjustment=-24)) parser_run.add_argument('--destination', '--folder', metavar='PATH', dest='folder', help=fill('The full project:folder path in which to output the results. By default, the current working directory will be used.', width_adjustment=-24)) parser_run.add_argument('--batch-folders', dest='batch_folders', help=fill('Output results to separate folders, one per batch, using batch ID as the name of the output folder. The batch output folder location will be relative to the path set in --destination', width_adjustment=-24), action='store_true') parser_run.add_argument('--project', metavar='PROJECT', help=fill('Project name or ID in which to run the executable. This can also ' + 'be specified together with the output folder in --destination.', width_adjustment=-24)) parser_run.add_argument('--stage-output-folder', metavar=('STAGE_ID', 'FOLDER'), help=fill('A stage identifier (ID, name, or index), and a folder path to ' + 'use as its output folder', width_adjustment=-24), nargs=2, action='append', default=[]) parser_run.add_argument('--stage-relative-output-folder', metavar=('STAGE_ID', 'FOLDER'), help=fill('A stage identifier (ID, name, or index), and a relative folder ' + 'path to the workflow output folder to use as the output folder', width_adjustment=-24), nargs=2, action='append', default=[]) parser_run.add_argument('--rerun-stage', metavar='STAGE_ID', dest='rerun_stages', help=fill('A stage (using its ID, name, or index) to rerun, or "*" to ' + 'indicate all stages should be rerun; repeat as necessary', width_adjustment=-24), action='append') parser_run.add_argument('--name', help=fill('Name for the job (default is the app or applet name)', width_adjustment=-24)) parser_run.add_argument('--delay-workspace-destruction', help=fill('Whether to keep the job\'s temporary workspace around for debugging purposes for 3 days after it succeeds or fails', width_adjustment=-24), action='store_true') parser_run.add_argument('--priority', choices=['normal', 'high'], help='Request a scheduling priority for all resulting jobs') parser_run.add_argument('-y', '--yes', dest='confirm', help='Do not ask for confirmation', action='store_false') parser_run.add_argument('--wait', help='Wait until the job is done before returning', action='store_true') parser_run.add_argument('--watch', help="Watch the job after launching it; sets --priority high", action='store_true') parser_run.add_argument('--allow-ssh', action='append', nargs='?', metavar='ADDRESS', help=fill('Configure the job to allow SSH access; sets --priority high. If an argument is ' + 'supplied, it is interpreted as an IP or hostname mask to allow connections from, ' + 'e.g. "--allow-ssh 172.16.17.32 --allow-ssh berkeley.edu"', width_adjustment=-24)) parser_run.add_argument('--ssh', help=fill("Configure the job to allow SSH access and connect to it after launching; " + "sets --priority high", width_adjustment=-24), action='store_true') parser_run.add_argument('--ssh-proxy', metavar=('<address>:<port>'), help=fill('SSH connect via proxy, argument supplied is used as the proxy address and port', width_adjustment=-24)) parser_run.add_argument('--debug-on', action='append', choices=['AppError', 'AppInternalError', 'ExecutionError', 'All'], help=fill("Configure the job to hold for debugging when any of the listed errors occur", width_adjustment=-24)) parser_run.add_argument('--ignore-reuse', help=fill("Disable job reuse for execution", width_adjustment=-24), action='store_true') parser_run.add_argument('--batch-tsv', dest='batch_tsv', metavar="FILE", help=fill('A file in tab separated value (tsv) format, with a subset ' + 'of the executable input arguments. A job will be launched ' + 'for each table row.', width_adjustment=-24)) parser_run.add_argument('--input-help', help=fill('Print help and examples for how to specify inputs', width_adjustment=-24), action=runInputHelp, nargs=0) parser_run.set_defaults(func=run, verbose=False, help=False, details=None, stage_instance_types=None, stage_folders=None) register_parser(parser_run, categories='exec') ##################################### # watch ##################################### parser_watch = subparsers.add_parser('watch', help='Watch logs of a job and its subjobs', prog='dx watch', description='Monitors logging output from a running job', parents=[env_args, no_color_arg]) parser_watch.add_argument('jobid', help='ID of the job to watch') # .completer = TODO parser_watch.add_argument('-n', '--num-recent-messages', help='Number of recent messages to get', type=int, default=1024*256) parser_watch.add_argument('--tree', help='Include the entire job tree', action='store_true') parser_watch.add_argument('-l', '--levels', action='append', choices=["EMERG", "ALERT", "CRITICAL", "ERROR", "WARNING", "NOTICE", "INFO", "DEBUG", "STDERR", "STDOUT"]) parser_watch.add_argument('--get-stdout', help='Extract stdout only from this job', action='store_true') parser_watch.add_argument('--get-stderr', help='Extract stderr only from this job', action='store_true') parser_watch.add_argument('--get-streams', help='Extract only stdout and stderr from this job', action='store_true') parser_watch.add_argument('--no-timestamps', help='Omit timestamps from messages', action='store_false', dest='timestamps') parser_watch.add_argument('--job-ids', help='Print job ID in each message', action='store_true') parser_watch.add_argument('--no-job-info', help='Omit job info and status updates', action='store_false', dest='job_info') parser_watch.add_argument('-q', '--quiet', help='Do not print extra info messages', action='store_true') parser_watch.add_argument('-f', '--format', help='Message format. Available fields: job, level, msg, date') parser_watch.add_argument('--no-wait', '--no-follow', action='store_false', dest='tail', help='Exit after the first new message is received, instead of waiting for all logs') parser_watch.set_defaults(func=watch) register_parser(parser_watch, categories='exec') ##################################### # shh_config ##################################### parser_ssh_config = subparsers.add_parser('ssh_config', help='Configure SSH keys for your DNAnexus account', description='Configure SSH access credentials for your DNAnexus account', prog='dx ssh_config', parents=[env_args]) parser_ssh_config.add_argument('ssh_keygen_args', help='Command-line arguments to pass to ssh-keygen', nargs=argparse.REMAINDER) parser_ssh_config.add_argument('--revoke', help='Revoke SSH public key associated with your DNAnexus account; you will no longer be able to SSH into any jobs.', action='store_true') parser_ssh_config.set_defaults(func=ssh_config) register_parser(parser_ssh_config, categories='exec') ##################################### # ssh ##################################### parser_ssh = subparsers.add_parser('ssh', help='Connect to a running job via SSH', description='Use an SSH client to connect to a job being executed on the DNAnexus ' + 'platform. The job must be launched using "dx run --allow-ssh" or ' + 'equivalent API options. Use "dx ssh_config" or the Profile page on ' + 'the DNAnexus website to configure SSH for your DNAnexus account.', prog='dx ssh', parents=[env_args]) parser_ssh.add_argument('job_id', help='Name of job to connect to') parser_ssh.add_argument('ssh_args', help='Command-line arguments to pass to the SSH client', nargs=argparse.REMAINDER) parser_ssh.add_argument('--ssh-proxy', metavar=('<address>:<port>'), help='SSH connect via proxy, argument supplied is used as the proxy address and port') # If ssh is run with the supress-running-check flag, then dx won't prompt # the user whether they would like to terminate the currently running job # after they exit ssh. Among other things, this will allow users to setup # ssh
<gh_stars>0 # -*- coding: utf-8 -*- """ Network Control Theory Tutorial @author: Johannes.Wiesner """ import json import numpy as np import pandas as pd import networkx as nx import dash import dash_cytoscape as cyto import dash_html_components as html from dash.dependencies import Input, Output, State import dash_core_components as dcc import dash_bootstrap_components as dbc import dash_table import itertools import operator import plotly.express as px from network_control.utils import matrix_normalization from network_control.energies import minimum_input,optimal_input from nct_utils import state_trajectory ############################################################################### ## Set Default Data ########################################################### ############################################################################### # set seed np.random.seed(28) # create a default adjacency matrix A = np.array([[0, 1, 2, 1, 0, 0, 0, 0, 0], [1, 0, 0, 3, 0, 0, 0, 0, 0], [2, 0, 0, 4, 0, 0, 0, 0, 0], [1, 3, 4, 0, 5, 0, 0, 0, 0], [0, 0, 0, 5, 0, 6, 0, 0, 0], [0, 0, 0, 0, 6, 0, 1, 1, 0], [0, 0, 0, 0, 0, 1, 0, 1, 1], [0, 0, 0, 0, 0, 1, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 0]]) # create default (random) x0 and xf (between 0 and 1) states_df = pd.DataFrame({'x0':np.round(np.random.rand(len(A)),2),'xf':np.round(np.random.rand(len(A)),2)}) states_df.reset_index(inplace=True) ############################################################################### ## Dash App ################################################################### ############################################################################### ## Topology-Modification ###################################################### # FIXME: transform networkx coordinates into dash/plotly space # - Positions could however also be irrelevant here, because layout component # from dash can also decide automatically over node positions def from_A_to_elements(A): '''Create a lists of elements from a numpy adjaceny matrix that can be inter- preted by dash_cytoscape.Cytoscape. The following steps are implemented from https://community.plotly.com/t/converting-networkx-graph-object-into-cytoscape-format/23224/2 ''' # create graph object G = nx.Graph(A) # get node positions pos = nx.spring_layout(G) # convert networkx to cytoscape layout cy = nx.readwrite.json_graph.cytoscape_data(G) # Add the dictionary key 'label' to the node dict (this is a required attribute for dash) # Delete the key 'value' from node dict (not needed) # Delete the key 'name' from node dict (not needed) # Add the dictionary key 'controller' to the node dict and set to True for node_dict in cy['elements']['nodes']: for _,d in node_dict.items(): d['label'] = d.pop('value') del d['name'] d['controller'] = True d['constrain'] = True # NOTE: in cytoscape, all ids of the nodes must be strings, that's why # we convert the edge ids also to strings (but check if this is really # necessary) for edge_dict in cy['elements']['edges']: for _,d in edge_dict.items(): d['source'] = str(d['source']) d['target'] = str(d['target']) # Add the positions you got from as a value for data in the nodes portion of cy # NOTE: This might be not necessary, as positions can be automatically # determined in the layout attribute from cyto.Cytoscape (see FIXME above) for n,p in zip(cy['elements']['nodes'],pos.values()): n['pos'] = {'x':p[0],'y':p[1]} # Take the results and write them to a list elements = cy['elements']['nodes'] + cy['elements']['edges'] return elements # NOTE: What's that utils module? https://dash.plotly.com/cytoscape/reference def get_edge_dicts(elements): '''Extract all edge dictionaries from elements. Edge dicts are identfied by their 'weight' key''' edge_dicts = [] for d in elements: if 'weight' in d['data']: edge_dicts.append(d) return edge_dicts # NOTE: What's that utils module? https://dash.plotly.com/cytoscape/reference def get_node_dicts(elements): '''Extract all node dictionaries from elements. Node dicts are identified by not having a 'weight' key''' node_dicts = [] for d in elements: if not 'weight' in d['data']: node_dicts.append(d) return node_dicts def add_edges(selectedNodeData,edge_weight,elements): '''For each combination of selected nodes, check if this combination is connected by an edge. If not, create an edge dict for that combination and modify the elements list''' edge_dicts = get_edge_dicts(elements) edge_ids = [(d['data']['source'],d['data']['target']) for d in edge_dicts] # get a list of ids of all nodes that user has currently selected and that # should be connected by an edge. Sort the list alphanumerically (that ensures # that we get only get combinations of source and target ids where source id # is always the lower integer) node_ids = [d['id'] for d in selectedNodeData] node_ids.sort() # create all pair-wise combinations of the selected nodes source_and_target_ids = list(itertools.combinations(node_ids,2)) # for each source and target tuple, check if this edge already exists. If not, # create a new edge dict and add it to elements for (source,target) in source_and_target_ids: if not (source,target) in edge_ids: new_edge = {'data':{'weight':edge_weight,'source':source,'target':target}} elements.append(new_edge) return elements def drop_edges(selectedEdgeData,elements): '''Drop an input list of selected edges from cytoscape elements''' # get source and target ids for all currently selected edges source_and_target_ids = [(d['source'],d['target']) for d in selectedEdgeData] # iterate over all dictionaries in elements, identify edge dicts by their # 'weight' key and check again if this edge dict belongs to the currently selected # edges. If yes, add its index to list of to be dropped dictionaires. drop_these_dicts = [] for idx,d in enumerate(elements): if 'weight' in d['data']: if (d['data']['source'],d['data']['target']) in source_and_target_ids: drop_these_dicts.append(idx) # drop selected edge dictionaries from elements elements = [i for j,i in enumerate(elements) if j not in drop_these_dicts] return elements def get_edge_min_max(elements): '''Get minimum and maximum edge weights''' # get all edges from elements edge_dicts = get_edge_dicts(elements) # find minimum and maximum weights edge_weights = [d['data']['weight'] for d in edge_dicts] weights_max = max(edge_weights) weights_min = min(edge_weights) return weights_min,weights_max # FIXME: Delete this function if it's not necessary def set_edge_width(elements,edge_weight): '''Return the edge width for a single edge''' weights_min,weights_max = get_edge_min_max(elements) min_width = 1 # constant (selected by me) max_width = 10 # constant (selected by me) edge_width = min_width + ((max_width - min_width) / (weights_max - weights_min)) * (edge_weight - weights_min) return edge_width def set_edge_weights(selectedEdgeData,edge_weight,elements): '''Modify the weights of the selected edges''' # get source and target ids for all currently selected edges source_and_target_ids = [(d['source'],d['target']) for d in selectedEdgeData] # iterate over all dictionaries in elements, identify edge dicts by their # 'weight' key and check again if this edge dict belongs to the currently selected # edges. If yes, add its index to list of to be dropped dictionaires. modify_these_dicts = [] for idx,d in enumerate(elements): if 'weight' in d['data']: if (d['data']['source'],d['data']['target']) in source_and_target_ids: modify_these_dicts.append(idx) # drop selected edge dictionaries from elements for i in modify_these_dicts: elements[i]['data']['weight'] = edge_weight return elements ## Figure Plotting ########################################################### def from_elements_to_A(elements): '''Extract nodes and edges from current elements and convert them to adjacency matrix ''' # FIXME: This is inefficient, we iterate over the same list twice (see #8) edge_dicts = get_edge_dicts(elements) node_dicts = get_node_dicts((elements)) edges = [(d['data']['source'],d['data']['target'],d['data']['weight']) for d in edge_dicts] nodes = [d['data']['id'] for d in node_dicts] n_nodes = len(nodes) A = np.zeros((n_nodes,n_nodes)) for edge in edges: i = int(edge[0]) j = int(edge[1]) weight = edge[2] A[i,j] = weight A[j,i] = weight return A # FIXME: lots of repetitions to from_elements_to_S def from_elements_to_B(elements): '''Extract nodes from current elements, check which nodes are selected as controllers and get a corresponding control matrix B that can be fed to control_package functions. ''' # get a list of all nodes from current elements (get their ID and their # controller attribute) node_dicts = get_node_dicts(elements) nodes = [(d['data']['id'],d['data']['controller']) for d in node_dicts] # sort nodes by their ids and get controller attribute nodes.sort(key=operator.itemgetter(0)) c_attributes = [n[1] for n in nodes] # create B matrix B = np.zeros(shape=(len(nodes),len(nodes))) for idx,c in enumerate(c_attributes): if c == True: B[idx,idx] = 1 return B # FIXME: lots of repetitions to from_elements_to_B def from_elements_to_S(elements): '''Extract nodes from current elements, check which nodes are selected to be constrained and get a corresponding matrix S that can be fed to control_package functions. ''' # get a list of all nodes from current elements (get their ID and their # controller attribute) node_dicts = get_node_dicts(elements) nodes = [(d['data']['id'],d['data']['constrain']) for d in node_dicts] # sort nodes by their ids and get controller attribute nodes.sort(key=operator.itemgetter(0)) constrain_attributes = [n[1] for n in nodes] # create B matrix S = np.zeros(shape=(len(nodes),len(nodes))) for idx,constrain in enumerate(constrain_attributes): if constrain == True: S[idx,idx] = 1 return S def get_state_trajectory_fig(A,x0,T,c): '''Generate a plotly figure that plots a state trajectory using an input
# MIT License # # Copyright (c) 2020-2021 CNRS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from collections import Counter from typing import Optional, Text, Tuple, Union import numpy as np import torch from torch_audiomentations.core.transforms_interface import BaseWaveformTransform from typing_extensions import Literal from pyannote.audio.core.task import Problem, Resolution, Specifications, Task from pyannote.audio.tasks.segmentation.mixins import SegmentationTaskMixin from pyannote.audio.utils.loss import binary_cross_entropy, mse_loss from pyannote.audio.utils.permutation import permutate from pyannote.core import SlidingWindow from pyannote.database import Protocol class Segmentation(SegmentationTaskMixin, Task): """Speaker segmentation Parameters ---------- protocol : Protocol pyannote.database protocol duration : float, optional Chunks duration. Defaults to 2s. max_num_speakers : int, optional Force maximum number of speakers per chunk (must be at least 2). Defaults to estimating it from the training set. warm_up : float or (float, float), optional Use that many seconds on the left- and rightmost parts of each chunk to warm up the model. While the model does process those left- and right-most parts, only the remaining central part of each chunk is used for computing the loss during training, and for aggregating scores during inference. Defaults to 0. (i.e. no warm-up). balance: str, optional When provided, training samples are sampled uniformly with respect to that key. For instance, setting `balance` to "uri" will make sure that each file will be equally represented in the training samples. overlap: dict, optional Controls how artificial chunks with overlapping speech are generated: - "probability" key is the probability of artificial overlapping chunks. Setting "probability" to 0.6 means that, on average, 40% of training chunks are "real" chunks, while 60% are artifical chunks made out of the (weighted) sum of two chunks. Defaults to 0.5. - "snr_min" and "snr_max" keys control the minimum and maximum signal-to-noise ratio between summed chunks, in dB. Default to 0.0 and 10. weight: str, optional When provided, use this key to as frame-wise weight in loss function. batch_size : int, optional Number of training samples per batch. Defaults to 32. num_workers : int, optional Number of workers used for generating training samples. Defaults to multiprocessing.cpu_count() // 2. pin_memory : bool, optional If True, data loaders will copy tensors into CUDA pinned memory before returning them. See pytorch documentation for more details. Defaults to False. augmentation : BaseWaveformTransform, optional torch_audiomentations waveform transform, used by dataloader during training. vad_loss : {"bce", "mse"}, optional Add voice activity detection loss. Reference ---------- <NAME> and <NAME> "End-To-End Speaker Segmentation for Overlap-Aware Resegmentation." Proc. Interspeech 2021 """ ACRONYM = "seg" OVERLAP_DEFAULTS = {"probability": 0.5, "snr_min": 0.0, "snr_max": 10.0} def __init__( self, protocol: Protocol, duration: float = 2.0, max_num_speakers: int = None, warm_up: Union[float, Tuple[float, float]] = 0.0, overlap: dict = OVERLAP_DEFAULTS, balance: Text = None, weight: Text = None, batch_size: int = 32, num_workers: int = None, pin_memory: bool = False, augmentation: BaseWaveformTransform = None, loss: Literal["bce", "mse"] = "bce", vad_loss: Literal["bce", "mse"] = None, ): super().__init__( protocol, duration=duration, warm_up=warm_up, batch_size=batch_size, num_workers=num_workers, pin_memory=pin_memory, augmentation=augmentation, ) self.max_num_speakers = max_num_speakers self.overlap = overlap self.balance = balance self.weight = weight if loss not in ["bce", "mse"]: raise ValueError("'loss' must be one of {'bce', 'mse'}.") self.loss = loss self.vad_loss = vad_loss def setup(self, stage: Optional[str] = None): super().setup(stage=stage) if self.max_num_speakers is None: # TODO: optimize this # slide a window (with 1s step) over the whole training set # and keep track of the number of speakers in each location num_speakers = [] for file in self._train: start = file["annotated"][0].start end = file["annotated"][-1].end window = SlidingWindow( start=start, end=end, duration=self.duration, step=1.0, ) for chunk in window: num_speakers.append(len(file["annotation"].crop(chunk).labels())) # because there might a few outliers, estimate the upper bound for the # number of speakers as the 99th percentile num_speakers, counts = zip(*list(Counter(num_speakers).items())) num_speakers, counts = np.array(num_speakers), np.array(counts) sorting_indices = np.argsort(num_speakers) num_speakers = num_speakers[sorting_indices] counts = counts[sorting_indices] self.max_num_speakers = max( 2, num_speakers[np.where(np.cumsum(counts) / np.sum(counts) > 0.99)[0][0]], ) # now that we know about the number of speakers upper bound # we can set task specifications self.specifications = Specifications( problem=Problem.MULTI_LABEL_CLASSIFICATION, resolution=Resolution.FRAME, duration=self.duration, warm_up=self.warm_up, classes=[f"speaker#{i+1}" for i in range(self.max_num_speakers)], permutation_invariant=True, ) def prepare_y(self, one_hot_y: np.ndarray): """Zero-pad segmentation targets Parameters ---------- one_hot_y : (num_frames, num_speakers) np.ndarray One-hot-encoding of current chunk speaker activity: * one_hot_y[t, k] = 1 if kth speaker is active at tth frame * one_hot_y[t, k] = 0 otherwise. Returns ------- padded_one_hot_y : (num_frames, self.max_num_speakers) np.ndarray One-hot-encoding of current chunk speaker activity: * one_hot_y[t, k] = 1 if kth speaker is active at tth frame * one_hot_y[t, k] = 0 otherwise. """ num_frames, num_speakers = one_hot_y.shape if num_speakers > self.max_num_speakers: raise ValueError() if num_speakers < self.max_num_speakers: one_hot_y = np.pad( one_hot_y, ((0, 0), (0, self.max_num_speakers - num_speakers)) ) return one_hot_y def val__getitem__(self, idx): f, chunk = self._validation[idx] sample = self.prepare_chunk(f, chunk, duration=self.duration, stage="val") y, labels = sample["y"], sample.pop("labels") # since number of speakers is estimated from the training set, # we might encounter validation chunks that have more speakers. # in that case, we arbitrarily remove last speakers if y.shape[1] > self.max_num_speakers: y = y[:, : self.max_num_speakers] labels = labels[: self.max_num_speakers] sample["y"] = self.prepare_y(y) return sample def segmentation_loss( self, permutated_prediction: torch.Tensor, target: torch.Tensor, weight: torch.Tensor = None, ) -> torch.Tensor: """Permutation-invariant segmentation loss Parameters ---------- permutated_prediction : (batch_size, num_frames, num_classes) torch.Tensor Permutated speaker activity predictions. target : (batch_size, num_frames, num_speakers) torch.Tensor Speaker activity. weight : (batch_size, num_frames, 1) torch.Tensor, optional Frames weight. Returns ------- seg_loss : torch.Tensor Permutation-invariant segmentation loss """ if self.loss == "bce": seg_loss = binary_cross_entropy( permutated_prediction, target.float(), weight=weight ) elif self.loss == "mse": seg_loss = mse_loss(permutated_prediction, target.float(), weight=weight) return seg_loss def voice_activity_detection_loss( self, permutated_prediction: torch.Tensor, target: torch.Tensor, weight: torch.Tensor = None, ) -> torch.Tensor: """Voice activity detection loss Parameters ---------- permutated_prediction : (batch_size, num_frames, num_classes) torch.Tensor Speaker activity predictions. target : (batch_size, num_frames, num_speakers) torch.Tensor Speaker activity. weight : (batch_size, num_frames, 1) torch.Tensor, optional Frames weight. Returns ------- vad_loss : torch.Tensor Voice activity detection loss. """ vad_prediction, _ = torch.max(permutated_prediction, dim=2, keepdim=True) # (batch_size, num_frames, 1) vad_target, _ = torch.max(target.float(), dim=2, keepdim=False) # (batch_size, num_frames) if self.vad_loss == "bce": loss = binary_cross_entropy(vad_prediction, vad_target, weight=weight) elif self.vad_loss == "mse": loss = mse_loss(vad_prediction, vad_target, weight=weight) return loss def training_step(self, batch, batch_idx: int): """Compute permutation-invariant binary cross-entropy Parameters ---------- batch : (usually) dict of torch.Tensor Current batch. batch_idx: int Batch index. Returns ------- loss : {str: torch.tensor} {"loss": loss} """ # forward pass prediction = self.model(batch["X"]) batch_size, num_frames, _ = prediction.shape # (batch_size, num_frames, num_classes) # target target = batch["y"] permutated_prediction, _ = permutate(target, prediction) # frames weight weight_key = getattr(self, "weight", None) weight = batch.get( weight_key, torch.ones(batch_size, num_frames, 1, device=self.model.device), ) # (batch_size, num_frames, 1) # warm-up warm_up_left = round(self.warm_up[0] / self.duration * num_frames) weight[:, :warm_up_left] = 0.0 warm_up_right = round(self.warm_up[1] / self.duration * num_frames) weight[:, num_frames - warm_up_right :] = 0.0 seg_loss = self.segmentation_loss(permutated_prediction, target, weight=weight) self.model.log( f"{self.ACRONYM}@train_seg_loss", seg_loss, on_step=False, on_epoch=True, prog_bar=False, logger=True, ) if self.vad_loss is None: vad_loss = 0.0 else: vad_loss = self.voice_activity_detection_loss( permutated_prediction, target, weight=weight ) self.model.log( f"{self.ACRONYM}@train_vad_loss", vad_loss, on_step=False, on_epoch=True, prog_bar=False, logger=True, ) loss = seg_loss + vad_loss self.model.log( f"{self.ACRONYM}@train_loss", loss, on_step=False,
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.python.framework.importer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from google.protobuf import text_format from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import op_def_pb2 from tensorflow.python.framework import constant_op from tensorflow.python.framework import device from tensorflow.python.framework import dtypes from tensorflow.python.framework import importer from tensorflow.python.framework import op_def_registry from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import versions from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables import tensorflow.python.ops.nn_grad # pylint: disable=unused-import from tensorflow.python.platform import test def _unknown_shape(op): return [tensor_shape.unknown_shape() for _ in op.outputs] # NOTE(cwhipkey): Dummy shape registration for ops used in the tests, since they # don't have C++ op registrations on which to attach C++ shape fns. ops.RegisterShape("If")(_unknown_shape) ops.RegisterShape("Iff")(_unknown_shape) ops.RegisterShape("Ii")(_unknown_shape) ops.RegisterShape("Iif")(_unknown_shape) ops.RegisterShape("Iii")(_unknown_shape) ops.RegisterShape("In")(_unknown_shape) ops.RegisterShape("Iri")(_unknown_shape) ops.RegisterShape("None")(_unknown_shape) ops.RegisterShape("Of")(_unknown_shape) ops.RegisterShape("Oi")(_unknown_shape) ops.RegisterShape("Oif")(_unknown_shape) ops.RegisterShape("Oii")(_unknown_shape) ops.RegisterShape("OpWithDefaultAttr")(_unknown_shape) ops.RegisterShape("OpWithFutureDefaultAttr")(_unknown_shape) ops.RegisterShape("Or")(_unknown_shape) ops.RegisterShape("Otl")(_unknown_shape) ops.RegisterShape("Unary")(_unknown_shape) _op_list = op_def_pb2.OpList() text_format.Merge(""" op { name: 'None' } op { name: 'Oi' output_arg { name: 'a' type: DT_INT32 } } op { name: 'Or' output_arg { name: 'a' type: DT_INT32 is_ref: true } } op { name: 'Of' output_arg { name: 'a' type: DT_FLOAT } } op { name: 'Ii' input_arg { name: 'a' type: DT_INT32 } } op { name: 'If' input_arg { name: 'a' type: DT_FLOAT } } op { name: 'Oii' output_arg { name: 'a' type: DT_INT32 } output_arg { name: 'b' type: DT_INT32 } } op { name: 'Oif' output_arg { name: 'a' type: DT_INT32 } output_arg { name: 'b' type: DT_FLOAT } } op { name: 'Iii' input_arg { name: 'a' type: DT_INT32 } input_arg { name: 'b' type: DT_INT32 } } op { name: 'Iff' input_arg { name: 'a' type: DT_FLOAT } input_arg { name: 'b' type: DT_FLOAT } } op { name: 'Iif' input_arg { name: 'a' type: DT_INT32 } input_arg { name: 'b' type: DT_FLOAT } } op { name: 'Iri' input_arg { name: 'a' type: DT_INT32 is_ref: true } input_arg { name: 'b' type: DT_INT32 } } op { name: 'In' input_arg { name: 'a' number_attr: 'N' type_attr: 'T' } attr { name: 'N' type: 'int' minimum: 1 } attr { name: 'T' type: 'type' } } op { name: 'Otl' output_arg { name: 'a' type_list_attr: 't' } attr { name: 'T' type: 'list(type)' minimum: 1 } } op { name: 'Unary' input_arg { name: 'a' type_attr: 'T' } output_arg { name: 'b' type_attr: 'T' } attr { name: 'T' type: 'type' } } op { name: 'OpWithDefaultAttr' output_arg { name: 'a' type: DT_INT32 } attr { name: 'default_float' type: 'float' default_value { f: 123.0 } } } op { name: 'OpWithFutureDefaultAttr' } """, _op_list) op_def_registry.register_op_list(_op_list) # NOTE(mrry): Dummy shape registrations for ops used in the tests. for op_def in _op_list.op: ops.RegisterShape(op_def.name)(None) class ImportGraphDefTest(test.TestCase): def _MakeGraphDef(self, text, producer=versions.GRAPH_DEF_VERSION, min_consumer=versions.GRAPH_DEF_VERSION_MIN_CONSUMER): text = "versions: { producer: %d min_consumer: %d };\n%s" % (producer, min_consumer, text) ret = graph_pb2.GraphDef() text_format.Merge(text, ret) return ret def testBasic(self): with ops.Graph().as_default(): a, b, c, d = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'Oif' } node { name: 'B' op: 'Otl' attr { key: 't' value { list { type: DT_INT32 type: DT_FLOAT } } } } node { name: 'C' op: 'In' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_INT32 } } input: 'A:0' input: 'B:0' } node { name: 'D' op: 'In' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_FLOAT } } input: 'A:1' input: 'B:1' } """), return_elements=["A", "B", "C", "D"], name="import") # Assert that the import process creates distinct tensors. self.assertNotEqual(a.outputs[0].name, a.outputs[1].name) self.assertNotEqual(b.outputs[0].name, b.outputs[1].name) self.assertNotEqual(a.outputs[0].name, b.outputs[0].name) self.assertNotEqual(a.outputs[0].name, b.outputs[1].name) self.assertNotEqual(a.outputs[1].name, b.outputs[0].name) self.assertNotEqual(a.outputs[1].name, b.outputs[1].name) # Assert that the ops are connected according to the GraphDef topology. self.assertEqual(c.inputs[0], a.outputs[0]) self.assertEqual(c.inputs[1], b.outputs[0]) self.assertEqual(d.inputs[0], a.outputs[1]) self.assertEqual(d.inputs[1], b.outputs[1]) # Check the types of the returned ops and tensors. self.assertEqual(a.type, "Oif") self.assertEqual(b.type, "Otl") self.assertEqual(c.type, "In") self.assertEqual(d.type, "In") self.assertEqual(a.outputs[0].dtype, dtypes.int32) self.assertEqual(a.outputs[1].dtype, dtypes.float32) self.assertEqual(b.outputs[0].dtype, dtypes.int32) self.assertEqual(b.outputs[1].dtype, dtypes.float32) # Check the names of the returned ops. self.assertEqual(a.name, "import/A") self.assertEqual(b.name, "import/B") self.assertEqual(c.name, "import/C") self.assertEqual(d.name, "import/D") # Check that the op_def is still available. self.assertNotEqual(None, a.op_def) def testInputMap(self): with ops.Graph().as_default(): feed_a_0 = constant_op.constant(0, dtype=dtypes.int32) feed_b_1 = constant_op.constant(1, dtype=dtypes.int32) a, b, c, d = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'Oii' } node { name: 'B' op: 'Oii' } node { name: 'C' op: 'In' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_INT32 } } input: 'A:0' input: 'B:0' } node { name: 'D' op: 'In' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_INT32 } } input: 'A:1' input: 'B:1' } """), input_map={"A:0": feed_a_0, "B:1": feed_b_1}, return_elements=["A", "B", "C", "D"]) self.assertEqual(c.inputs[0], feed_a_0) self.assertEqual(c.inputs[1], b.outputs[0]) self.assertEqual(d.inputs[0], a.outputs[1]) self.assertEqual(d.inputs[1], feed_b_1) def testInputMapBytes(self): with ops.Graph().as_default(): feed_a_0 = constant_op.constant(0, dtype=dtypes.int32) feed_b_1 = constant_op.constant(1, dtype=dtypes.int32) a, b, c, d = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'Oii' } node { name: 'B' op: 'Oii' } node { name: 'C' op: 'In' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_INT32 } } input: 'A:0' input: 'B:0' } node { name: 'D' op: 'In' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_INT32 } } input: 'A:1' input: 'B:1' } """), input_map={b"A:0": feed_a_0, b"B:1": feed_b_1}, return_elements=[b"A", b"B", b"C", b"D"]) self.assertEqual(c.inputs[0], feed_a_0) self.assertEqual(c.inputs[1], b.outputs[0]) self.assertEqual(d.inputs[0], a.outputs[1]) self.assertEqual(d.inputs[1], feed_b_1) def testInputMapUnicode(self): with ops.Graph().as_default(): feed_a_0 = constant_op.constant(0, dtype=dtypes.int32) feed_b_1 = constant_op.constant(1, dtype=dtypes.int32) a, b, c, d = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'Oii' } node { name: 'B' op: 'Oii' } node { name: 'C' op: 'In' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_INT32 } } input: 'A:0' input: 'B:0' } node { name: 'D' op: 'In' attr { key: 'N' value { i: 2 } } attr { key: 'T' value { type: DT_INT32 } } input: 'A:1' input: 'B:1' } """), input_map={u"A:0": feed_a_0, u"B:1": feed_b_1}, return_elements=[u"A", u"B", u"C", u"D"]) self.assertEqual(c.inputs[0], feed_a_0) self.assertEqual(c.inputs[1], b.outputs[0]) self.assertEqual(d.inputs[0], a.outputs[1]) self.assertEqual(d.inputs[1], feed_b_1) def testImplicitZerothOutput(self): with ops.Graph().as_default(): a, b = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'Oii' } node { name: 'B' op: 'Ii' input: 'A' } """), return_elements=["A", "B"]) self.assertEqual(b.inputs[0], a.outputs[0]) def testInputMapImplicitZerothOutput(self): with ops.Graph().as_default(): feed_a_0 = constant_op.constant(0, dtype=dtypes.int32) b, = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'Oii' } node { name: 'B' op: 'Ii' input: 'A:0' } """), input_map={"A": feed_a_0}, return_elements=["B"]) self.assertEqual(b.inputs[0], feed_a_0) def testWithControlDependency(self): with ops.Graph().as_default(): a, b = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'None' } node { name: 'B' op: 'None' input: '^A' } """), return_elements=["A", "B"]) self.assertEqual(b.control_inputs, [a]) def testWithRefs(self): with ops.Graph().as_default(): a, b, c, d = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'Or' } node { name: 'B' op: 'Oi' } node { name: 'C' op: 'Iii' input: 'A:0' input: 'B:0' } node { name: 'D' op: 'Iri' input: 'A:0' input: 'B:0' } """), return_elements=["A", "B", "C", "D"]) self.assertEqual(c.inputs[0], a.outputs[0]) self.assertEqual(c.inputs[1], b.outputs[0]) self.assertEqual(d.inputs[0], a.outputs[0]) self.assertEqual(d.inputs[1], b.outputs[0]) self.assertEqual(a.outputs[0].dtype, dtypes.int32_ref) self.assertEqual(c._input_dtypes, [dtypes.int32, dtypes.int32]) self.assertEqual(c.outputs, []) self.assertEqual(d._input_dtypes, [dtypes.int32_ref, dtypes.int32]) self.assertEqual(d.outputs, []) def testCyclic(self): with ops.Graph().as_default(): a, b = importer.import_graph_def( self._MakeGraphDef(""" node { name: 'A' op: 'Unary' attr { key: 'T' value { type: DT_INT32 } } input: 'B:0' } node { name: 'B' op: 'Unary' attr { key: 'T' value { type: DT_INT32 } } input: 'A:0' } """), return_elements=["A", "B"]) self.assertEqual(a.inputs[0], b.outputs[0]) self.assertEqual(b.inputs[0], a.outputs[0])
<reponame>viveklam/beep # Copyright 2019 Toyota Research Institute. All rights reserved. """Unit tests related to cycler run data structures""" import json import os import subprocess import unittest import boto3 import numpy as np import pandas as pd from botocore.exceptions import NoRegionError, NoCredentialsError from beep import MODULE_DIR from beep.structure import RawCyclerRun, ProcessedCyclerRun, \ process_file_list_from_json, EISpectrum, get_project_sequence, \ get_protocol_parameters, get_diagnostic_parameters, \ determine_paused from monty.serialization import loadfn, dumpfn from monty.tempfile import ScratchDir from beep.utils import os_format import matplotlib.pyplot as plt BIG_FILE_TESTS = os.environ.get("BEEP_BIG_TESTS", False) SKIP_MSG = "Tests requiring large files with diagnostic cycles are disabled, set BIG_FILE_TESTS to run full tests" TEST_DIR = os.path.dirname(__file__) TEST_FILE_DIR = os.path.join(TEST_DIR, "test_files") class RawCyclerRunTest(unittest.TestCase): def setUp(self): self.arbin_bad = os.path.join(TEST_FILE_DIR, "2017-05-09_test-TC-contact_CH33.csv") self.arbin_file = os.path.join(TEST_FILE_DIR, "2017-12-04_4_65C-69per_6C_CH29.csv") self.maccor_file = os.path.join(TEST_FILE_DIR, "xTESLADIAG_000019_CH70.070") self.maccor_file_w_diagnostics = os.path.join(TEST_FILE_DIR, "xTESLADIAG_000020_CH71.071") self.maccor_file_w_parameters = os.path.join(TEST_FILE_DIR, "PreDiag_000287_000128.092") self.maccor_file_timezone = os.path.join(TEST_FILE_DIR, "PredictionDiagnostics_000109_tztest.010") self.maccor_file_timestamp = os.path.join(TEST_FILE_DIR, "PredictionDiagnostics_000151_test.052") self.maccor_file_paused = os.path.join(TEST_FILE_DIR, "PredictionDiagnostics_000151_paused.052") self.indigo_file = os.path.join(TEST_FILE_DIR, "indigo_test_sample.h5") self.biologic_file = os.path.join(TEST_FILE_DIR, "raw", "biologic_test_file_short.mpt") def test_serialization(self): smaller_run = RawCyclerRun.from_file(self.arbin_bad) with ScratchDir('.'): dumpfn(smaller_run, "smaller_cycler_run.json") resurrected = loadfn("smaller_cycler_run.json") pd.testing.assert_frame_equal(smaller_run.data, resurrected.data, check_dtype=True) def test_ingestion_maccor(self): raw_cycler_run = RawCyclerRun.from_maccor_file(self.maccor_file, include_eis=False) # Simple test of whether or not correct number of columns is parsed for data/metadata self.assertEqual(set(raw_cycler_run.metadata.keys()), {"barcode", "_today_datetime", "start_datetime", "filename", "protocol", "channel_id"}) self.assertEqual(70, raw_cycler_run.metadata['channel_id']) # self.assertIsNotNone(raw_cycler_run.eis) # Test filename recognition raw_cycler_run = RawCyclerRun.from_file(self.maccor_file) self.assertEqual(set(raw_cycler_run.metadata.keys()), {"barcode", "_today_datetime", "start_datetime", "filename", "protocol", "channel_id"}) # Quick test to see whether columns get recasted self.assertTrue({"data_point", "cycle_index", "step_index", "voltage", "temperature", "current", "charge_capacity", "discharge_capacity"} < set(raw_cycler_run.data.columns)) def test_timezone_maccor(self): raw_cycler_run = RawCyclerRun.from_maccor_file(self.maccor_file_timezone, include_eis=False) # Simple test of whether or not correct number of columns is parsed for data/metadata self.assertEqual(set(raw_cycler_run.metadata.keys()), {"barcode", "_today_datetime", "start_datetime", "filename", "protocol", "channel_id"}) self.assertEqual(10, raw_cycler_run.metadata['channel_id']) # self.assertIsNotNone(raw_cycler_run.eis) # Test filename recognition raw_cycler_run = RawCyclerRun.from_file(self.maccor_file) self.assertEqual(set(raw_cycler_run.metadata.keys()), {"barcode", "_today_datetime", "start_datetime", "filename", "protocol", "channel_id"}) # Quick test to see whether columns get recasted self.assertTrue({"data_point", "cycle_index", "step_index", "voltage", "temperature", "current", "charge_capacity", "discharge_capacity"} < set(raw_cycler_run.data.columns)) def test_timestamp_maccor(self): raw_cycler_run = RawCyclerRun.from_maccor_file(self.maccor_file_timestamp, include_eis=False) # Simple test of whether or not correct number of columns is parsed for data/metadata self.assertEqual(set(raw_cycler_run.metadata.keys()), {"barcode", "_today_datetime", "start_datetime", "filename", "protocol", "channel_id"}) # self.assertIsNotNone(raw_cycler_run.eis) # Test filename recognition raw_cycler_run = RawCyclerRun.from_file(self.maccor_file) self.assertEqual(set(raw_cycler_run.metadata.keys()), {"barcode", "_today_datetime", "start_datetime", "filename", "protocol", "channel_id"}) # Quick test to see whether columns get recasted self.assertTrue({"data_point", "cycle_index", "step_index", "voltage", "temperature", "current", "charge_capacity", "discharge_capacity"} < set(raw_cycler_run.data.columns)) def test_quantity_sum_maccor(self): raw_cycler_run = RawCyclerRun.from_maccor_file(self.maccor_file_w_diagnostics, include_eis=False) cycle_sign = np.sign(np.diff(raw_cycler_run.data['cycle_index'])) capacity_sign = np.sign(np.diff(raw_cycler_run.data['charge_capacity'])) self.assertTrue(np.all(capacity_sign >= -cycle_sign)) # Capacity increases throughout cycle capacity_sign = np.sign(np.diff(raw_cycler_run.data['discharge_capacity'])) self.assertTrue(np.all(capacity_sign >= -cycle_sign)) # Capacity increases throughout cycle # Note that the compression is from 45 M / 6 M as of 02/25/2019 def test_binary_save(self): cycler_run = RawCyclerRun.from_file(self.arbin_file) with ScratchDir('.'): cycler_run.save_numpy_binary("test") loaded = cycler_run.load_numpy_binary("test") # Test equivalence of columns # More strict test self.assertTrue(np.all(loaded.data[RawCyclerRun.FLOAT_COLUMNS] == cycler_run.data[RawCyclerRun.FLOAT_COLUMNS])) self.assertTrue(np.all(loaded.data[RawCyclerRun.INT_COLUMNS] == cycler_run.data[RawCyclerRun.INT_COLUMNS])) # Looser test (for future size testing) self.assertTrue(np.allclose(loaded.data[RawCyclerRun.FLOAT_COLUMNS], cycler_run.data[RawCyclerRun.FLOAT_COLUMNS])) self.assertTrue(np.all(loaded.data[RawCyclerRun.INT_COLUMNS] == cycler_run.data[RawCyclerRun.INT_COLUMNS])) def test_get_interpolated_discharge_cycles(self): cycler_run = RawCyclerRun.from_file(self.arbin_file) all_interpolated = cycler_run.get_interpolated_cycles() all_interpolated = all_interpolated[(all_interpolated.step_type == 'discharge')] lengths = [len(df) for index, df in all_interpolated.groupby("cycle_index")] self.assertTrue(np.all(np.array(lengths) == 1000)) # Found these manually all_interpolated = all_interpolated.drop(columns=["step_type"]) y_at_point = all_interpolated.iloc[[1500]] x_at_point = all_interpolated.voltage[1500] cycle_1 = cycler_run.data[cycler_run.data['cycle_index'] == 1] # Discharge step is 12 discharge = cycle_1[cycle_1.step_index == 12] discharge = discharge.sort_values('voltage') # Get an interval between which one can find the interpolated value measurement_index = np.max(np.where(discharge.voltage - x_at_point < 0)) interval = discharge.iloc[measurement_index:measurement_index + 2] interval = interval.drop(columns=["date_time_iso"]) # Drop non-numeric column # Test interpolation with a by-hand calculation of slope diff = np.diff(interval, axis=0) pred = interval.iloc[[0]] + diff * (x_at_point - interval.voltage.iloc[0]) \ / (interval.voltage.iloc[1] - interval.voltage.iloc[0]) pred = pred.reset_index() for col_name in y_at_point.columns: self.assertAlmostEqual(pred[col_name].iloc[0], y_at_point[col_name].iloc[0], places=5) def test_get_interpolated_charge_cycles(self): cycler_run = RawCyclerRun.from_file(self.arbin_file) all_interpolated = cycler_run.get_interpolated_cycles() all_interpolated = all_interpolated[(all_interpolated.step_type == 'charge')] lengths = [len(df) for index, df in all_interpolated.groupby("cycle_index")] self.assertTrue(np.all(np.array(lengths) == 1000)) self.assertTrue(all_interpolated['current'].mean() > 0) @unittest.skipUnless(BIG_FILE_TESTS, SKIP_MSG) def test_get_diagnostic(self): os.environ['BEEP_ROOT'] = TEST_FILE_DIR cycler_run = RawCyclerRun.from_file(self.maccor_file_w_parameters) v_range, resolution, nominal_capacity, full_fast_charge, diagnostic_available = \ cycler_run.determine_structuring_parameters() self.assertEqual(nominal_capacity, 4.84) self.assertEqual(v_range, [2.7, 4.2]) self.assertEqual(diagnostic_available['cycle_type'], ['reset', 'hppc', 'rpt_0.2C', 'rpt_1C', 'rpt_2C']) diag_summary = cycler_run.get_diagnostic_summary(diagnostic_available) self.assertEqual(diag_summary.cycle_index.tolist(), [1, 2, 3, 4, 5, 36, 37, 38, 39, 40, 141, 142, 143, 144, 145, 246, 247 ]) self.assertEqual(diag_summary.cycle_type.tolist(), ['reset', 'hppc', 'rpt_0.2C', 'rpt_1C', 'rpt_2C', 'reset', 'hppc', 'rpt_0.2C', 'rpt_1C', 'rpt_2C', 'reset', 'hppc', 'rpt_0.2C', 'rpt_1C', 'rpt_2C', 'reset', 'hppc' ]) diag_interpolated = cycler_run.get_interpolated_diagnostic_cycles(diagnostic_available, resolution=1000) diag_cycle = diag_interpolated[(diag_interpolated.cycle_type == 'rpt_0.2C') & (diag_interpolated.step_type == 1)] self.assertEqual(diag_cycle.cycle_index.unique().tolist(), [3, 38, 143]) plt.figure() plt.plot(diag_cycle.discharge_capacity, diag_cycle.voltage) plt.savefig(os.path.join(TEST_FILE_DIR, "discharge_capacity_interpolation.png")) plt.figure() plt.plot(diag_cycle.voltage, diag_cycle.discharge_dQdV) plt.savefig(os.path.join(TEST_FILE_DIR, "discharge_dQdV_interpolation.png")) self.assertEqual(len(diag_cycle.index), 3000) hppcs = diag_interpolated[(diag_interpolated.cycle_type == 'hppc') & pd.isnull(diag_interpolated.current)] self.assertEqual(len(hppcs), 0) hppc_dischg1 = diag_interpolated[(diag_interpolated.cycle_index == 37) & (diag_interpolated.step_type == 2) & (diag_interpolated.step_index_counter == 3) & ~pd.isnull(diag_interpolated.current)] print(hppc_dischg1) plt.figure() plt.plot(hppc_dischg1.test_time, hppc_dischg1.voltage) plt.savefig(os.path.join(TEST_FILE_DIR, "hppc_discharge_pulse_1.png")) self.assertEqual(len(hppc_dischg1), 176) processed_cycler_run = cycler_run.to_processed_cycler_run() self.assertNotIn(diag_summary.index.tolist(), processed_cycler_run.cycles_interpolated.cycle_index.unique()) processed_cycler_run_loc = os.path.join(TEST_FILE_DIR, 'processed_diagnostic.json') dumpfn(processed_cycler_run, processed_cycler_run_loc) proc_size = os.path.getsize(processed_cycler_run_loc) self.assertLess(proc_size, 29000000) test = loadfn(processed_cycler_run_loc) self.assertIsInstance(test.diagnostic_summary, pd.DataFrame) os.remove(processed_cycler_run_loc) def test_get_interpolated_cycles_maccor(self): cycler_run = RawCyclerRun.from_file(self.maccor_file) all_interpolated = cycler_run.get_interpolated_cycles(v_range=[3.0, 4.2], resolution=10000) interp2 = all_interpolated[(all_interpolated.cycle_index == 2) & (all_interpolated.step_type == 'discharge')].sort_values('discharge_capacity') interp3 = all_interpolated[(all_interpolated.cycle_index == 1) & (all_interpolated.step_type == 'charge')].sort_values('charge_capacity') self.assertTrue(interp3.current.mean() > 0) self.assertEqual(len(interp3.voltage), 10000) self.assertEqual(interp3.voltage.median(), 3.6) np.testing.assert_almost_equal(interp3[interp3.voltage <= interp3.voltage.median()].current.iloc[0], 2.4227011, decimal=6) cycle_2 = cycler_run.data[cycler_run.data['cycle_index'] == 2] discharge = cycle_2[cycle_2.step_index == 12] discharge = discharge.sort_values('discharge_capacity') acceptable_error = 0.01 acceptable_error_offest = 0.001 voltages_to_check = [3.3, 3.2, 3.1] columns_to_check = ['voltage', 'current', 'discharge_capacity', 'charge_capacity'] for voltage_check in voltages_to_check: closest_interp2_index = interp2.index[(interp2['voltage'] - voltage_check).abs().min() == (interp2['voltage'] - voltage_check).abs()] closest_interp2_match = interp2.loc[closest_interp2_index] print(closest_interp2_match) closest_discharge_index = discharge.index[(discharge['voltage'] - voltage_check).abs().min() == (discharge['voltage'] - voltage_check).abs()] closest_discharge_match = discharge.loc[closest_discharge_index] print(closest_discharge_match) for column_check in columns_to_check: off_by = (closest_interp2_match.iloc[0][column_check] - closest_discharge_match.iloc[0][column_check]) print(column_check) print(np.abs(off_by)) print(np.abs(closest_interp2_match.iloc[0][column_check]) * acceptable_error) assert np.abs(off_by) <= (np.abs(closest_interp2_match.iloc[0][column_check]) * acceptable_error + acceptable_error_offest) def test_get_summary(self): cycler_run = RawCyclerRun.from_file(self.maccor_file_w_diagnostics) summary = cycler_run.get_summary(nominal_capacity=4.7, full_fast_charge=0.8) self.assertTrue(set.issubset({'discharge_capacity', 'charge_capacity', 'dc_internal_resistance', 'temperature_maximum', 'temperature_average', 'temperature_minimum', 'date_time_iso', 'charge_throughput', 'energy_throughput', 'charge_energy', 'discharge_energy', 'energy_efficiency'}, set(summary.columns))) self.assertEqual(len(summary.index), len(summary['date_time_iso'])) self.assertFalse(summary['paused'].any()) def test_get_energy(self): cycler_run = RawCyclerRun.from_file(self.arbin_file) summary = cycler_run.get_summary(nominal_capacity=4.7, full_fast_charge=0.8) self.assertEqual(summary['charge_energy'][5], 3.7134638) self.assertEqual(summary['energy_efficiency'][5], 0.872866405753033) def test_get_charge_throughput(self): cycler_run = RawCyclerRun.from_file(self.arbin_file) summary = cycler_run.get_summary(nominal_capacity=4.7, full_fast_charge=0.8) self.assertEqual(summary['charge_throughput'][5], 6.7614094) self.assertEqual(summary['energy_throughput'][5], 23.2752363) def test_ingestion_indigo(self): # specific raw_cycler_run = RawCyclerRun.from_indigo_file(self.indigo_file) self.assertTrue({"data_point", "cycle_index", "step_index", "voltage", "temperature", "current", "charge_capacity", "discharge_capacity"} < set(raw_cycler_run.data.columns)) self.assertEqual(set(raw_cycler_run.metadata.keys()), set({"indigo_cell_id", "_today_datetime", "start_datetime","filename"})) # general raw_cycler_run = RawCyclerRun.from_file(self.indigo_file) self.assertTrue({"data_point", "cycle_index", "step_index", "voltage", "temperature", "current", "charge_capacity", "discharge_capacity"} < set(raw_cycler_run.data.columns)) self.assertEqual(set(raw_cycler_run.metadata.keys()), set({"indigo_cell_id", "_today_datetime", "start_datetime","filename"})) def test_ingestion_biologic(self): # specific raw_cycler_run = RawCyclerRun.from_biologic_file(self.biologic_file) self.assertEqual({"cycle_index", "step_index", "voltage", "current", "discharge_capacity", "charge_capacity", "data_point", "charge_energy", "discharge_energy"}, set(raw_cycler_run.data.columns)) self.assertEqual(set({"_today_datetime", "filename"}), set(raw_cycler_run.metadata.keys())) # general raw_cycler_run = RawCyclerRun.from_file(self.biologic_file) self.assertEqual({"cycle_index", "step_index", "voltage", "current", "discharge_capacity", "charge_capacity", "data_point", "charge_energy", "discharge_energy"}, set(raw_cycler_run.data.columns)) self.assertEqual(set({"_today_datetime", "filename"}), set(raw_cycler_run.metadata.keys())) def test_get_project_name(self): project_name_parts = get_project_sequence(os.path.join(TEST_FILE_DIR, "PredictionDiagnostics_000109_tztest.010")) project_name = project_name_parts[0] self.assertEqual(project_name, "PredictionDiagnostics") def test_get_protocol_parameters(self): os.environ['BEEP_ROOT'] = TEST_FILE_DIR filepath = os.path.join(TEST_FILE_DIR, "PredictionDiagnostics_000109_tztest.010") test_path = os.path.join('data-share', 'raw', 'parameters') parameters, _ = get_protocol_parameters(filepath, parameters_path=test_path) self.assertEqual(parameters['diagnostic_type'].iloc[0], 'HPPC+RPT') self.assertEqual(parameters['diagnostic_parameter_set'].iloc[0], 'Tesla21700') self.assertEqual(parameters['seq_num'].iloc[0], 109) self.assertEqual(len(parameters.index), 1) parameters_missing, project_missing = get_protocol_parameters('Fake', parameters_path=test_path) self.assertEqual(parameters_missing, None) self.assertEqual(project_missing, None) filepath = os.path.join(TEST_FILE_DIR, "PreDiag_000292_tztest.010") parameters, _ = get_protocol_parameters(filepath, parameters_path=test_path) self.assertIsNone(parameters) def test_determine_structering_parameters(self): os.environ['BEEP_ROOT'] = TEST_FILE_DIR raw_cycler_run = RawCyclerRun.from_file(self.maccor_file_timestamp) v_range, resolution, nominal_capacity, full_fast_charge, diagnostic_available = \ raw_cycler_run.determine_structuring_parameters() diagnostic_available_test = {'parameter_set': 'Tesla21700', 'cycle_type': ['reset', 'hppc', 'rpt_0.2C', 'rpt_1C', 'rpt_2C'], 'length': 5, 'diagnostic_starts_at': [1, 36, 141, 246, 351, 456, 561, 666, 771, 876, 981, 1086, 1191, 1296, 1401, 1506, 1611, 1716, 1821, 1926, 2031, 2136, 2241, 2346, 2451, 2556, 2661, 2766, 2871, 2976, 3081, 3186, 3291, 3396, 3501, 3606, 3711, 3816, 3921, 4026, 4131, 4236, 4341, 4446, 4551, 4656, 4761, 4866, 4971, 5076, 5181, 5286, 5391, 5496, 5601, 5706, 5811, 5916, 6021, 6126, 6231, 6336, 6441, 6546, 6651, 6756, 6861, 6966, 7071, 7176, 7281, 7386, 7491, 7596, 7701, 7806, 7911, 8016, 8121, 8226, 8331, 8436, 8541, 8646, 8751, 8856, 8961, 9066, 9171, 9276, 9381, 9486, 9591, 9696, 9801, 9906, 10011, 10116, 10221, 10326, 10431] } self.assertEqual(v_range, [2.7, 4.2]) self.assertEqual(resolution, 1000) self.assertEqual(nominal_capacity, 4.84) self.assertEqual(full_fast_charge, 0.8) self.assertEqual(diagnostic_available, diagnostic_available_test) def test_get_diagnostic_parameters(self): os.environ['BEEP_ROOT'] = TEST_FILE_DIR diagnostic_available = {'parameter_set': 'Tesla21700', 'cycle_type': ['reset', 'hppc', 'rpt_0.2C', 'rpt_1C', 'rpt_2C'], 'length': 5, 'diagnostic_starts_at': [1, 36, 141] } diagnostic_parameter_path = os.path.join(MODULE_DIR, 'procedure_templates') project_name = 'PreDiag' v_range = get_diagnostic_parameters( diagnostic_available, diagnostic_parameter_path, project_name) self.assertEqual(v_range, [2.7, 4.2]) def test_get_interpolated_diagnostic_cycles(self): cycler_run = RawCyclerRun.from_file(self.maccor_file_w_diagnostics) diagnostic_available = {'type': 'HPPC', 'cycle_type': ['hppc'], 'length': 1, 'diagnostic_starts_at': [1] } d_interp = \ cycler_run.get_interpolated_diagnostic_cycles( diagnostic_available, resolution=500) self.assertGreaterEqual( len(d_interp.cycle_index.unique()), 1) # Ensure step indices are partitioned and processed separately self.assertEqual(len(d_interp.step_index.unique()), 9) first_step = d_interp[(d_interp.step_index == 7) & (d_interp.step_index_counter == 1)] second_step = d_interp[(d_interp.step_index == 7) & (d_interp.step_index_counter == 4)] self.assertLess(first_step.voltage.diff().max(), 0.001) self.assertLess(second_step.voltage.diff().max(), 0.001) self.assertTrue('date_time_iso' in d_interp.columns) self.assertFalse(d_interp.date_time_iso.isna().all()) def test_get_diagnostic_summary(self): cycler_run = RawCyclerRun.from_file(self.maccor_file_w_diagnostics) diagnostic_available =
the Astrophysical factor (GeV**2/cm**5) to compute the dm flux Parameters ---------- jfactor : Astrophysical factor J (GeV**2/cm**5) """ if jfactor < 1.e-40 : raise ValueError('\nValue of jfactor must be greater than 1.e-40.') # Set the jfactor self._jfactor = jfactor # Return return @property def dfactor(self) : """ Return the value of the Astrophysical factor used to compute the flux """ # Return return self._dfactor @dfactor.setter def dfactor(self, dfactor) : """ Set the value of the Astrophysical factor (GeV/cm**2) to compute the dm flux Parameters ---------- dfactor : Astrophysical factor D (GeV/cm**2) """ # Set the jfactor self._dfactor = dfactor # Return return @property def mmin(self) : """ Return Minimum value mass (GeV) used to compute the dm flux """ # Return return self._mmin @mmin.setter def mmin(self, m_min) : """ Set the value of minimum mass (GeV) used to compute the dm flux """ # Just check that the minimum mass is greater than # 10.0 GeV. if m_min < 10. : raise ValueError(('\nMinimum mass {0} GeV '.format(m_min) + 'is below the allowed value (10GeV)')) # Set minimum energy self._mmin = m_min # Update masses mvalues = self._marray(self._mmin, self._mmax, self._mpoints) self._masses = mvalues # Return return @property def mmax(self) : """ Return Maximum value of mass (GeV) used to compute the dm flux """ # Return return self._mmax @mmax.setter def mmax(self, m_max) : """ Set the value of minimum mass (GeV) used to compute the dm flux """ if m_max > 1.e+5 : raise ValueError(('\nMaximum mass {0} GeV '.format(m_max) + 'is above the allowed value (1.e+5GeV)')) # Set minimum energy self._mmax = m_max # Update masses mvalues = self._marray(self._mmin, self._mmax, self._mpoints) self._masses = mvalues # Return return @property def masses(self) : """ Return the values of the energy array used to compute the spectrum """ # Return return self._masses @masses.setter def masses(self, m_vals) : """ Set the masses used to compute the spectrum Parameters ---------- - evals : tuple with: - mmin : Minimum mass (GeV) - mmax : Maximum mass (GeV) - mpoints : Number of points to create the array """ mmin, mmax, mpoints = m_vals # Check if emin and emax are valid if mmin < 10.0 : raise ValueError(('Mass {0} '.format(mmin) + 'is lower than the allowed value 10.0')) if mmax > 1.e+5 : raise ValueError(('Mass {0} '.format(mmax) + 'is greater than the allowed value 1.e+5')) # Create energy array mvalues = self._marray(mmin, mmax, mpoints) self._masses = mvalues # Return return @staticmethod def _marray(mmin, mmax, mpoints) : """ Create list of masses to generate the fits table. The calculation is based in the number of points The masses are computed assuming logarithmic distance """ logmmin = np.log10(mmin) logmmax = np.log10(mmax) width = (logmmax - logmmin)/(mpoints-1) masses = [] for index in range(mpoints) : masses.append(math.pow(10., logmmin+index*width)) # Return return masses @property def delta(self) : """ Return what kind of dark matter particle is used to compute the dm flux """ # Return return self._delta @delta.setter def delta(self, delta) : """ Set the value of delta to describe what kind of dark matter particle is used to compute the dm flux. Parameters ---------- delta : String, either Majorana or Dirac """ # Just to check that delta is valid if delta not in ALLOWED_FERMIONS : raise ValueError(('\nKind of Dark matter particle not ' + 'supported.\nOptions are:{0}'.format(ALLOWED_FERMIONS))) # Set minimum energy self._delta = delta # Return return @property def hasEW(self) : """ Return whether EW corrections are included or not """ # Return return self._dminterp.hasEW @hasEW.setter def hasEW(self, has_EW) : """ Include EW corrections in computation of DM spectra """ self._dminterp.hasEW = has_EW # Update the tuple of allowed channels if has_EW : self._allowed_channels = ALLOWED_CHANNELS else : self._allowed_channels = ALLOWED_CHANNELSNOEW # Return return @property def allowed_channels(self) : """ Return tuple of allowed channels according to whether or not to include EW corrections in spectra """ # Return return self._allowed_channels @property def channel(self) : ''' Return channel used to compute the gamma-ray flux ''' # Return return self._channel @channel.setter def channel(self, ch) : ''' Set channel used to compute the dmspectrum. Also updates the channel parameter of the spectrum interpolator dminterp If channel is not valid, raise value error ''' # Check if channel is valid if ch not in self._allowed_channels : msg = ('\nChannel {0} not found in'.format(channel) + 'allowed channels. Options are: {0}'.format(ALLOWED_FERMIONS)) raise ValueError(msg) # Set channel self._channel = ch # Update dminterp instance self._dminterp.channel = ch # Return return @property def tablemodel(self) : """ Return GModelSpectralTable """ # Return return self._model @property def process(self) : """ Return dm process """ # Return return self._dminterp.process @process.setter def process(self, process_vals) : """ Set annihilation (anna) or decay process in dminterp Also update the properties jfactor and sigmav for anna or dfactor and lifetime for decay """ # Extract values dmprocess = process_vals[0] astfactor = process_vals[1] paroi = process_vals[2] # Check that process is valid VALID_PROCESSES = ['anna', 'decay'] if dmprocess not in VALID_PROCESSES : msg = 'Valid options are: {0}'.format(VALID_PROCESSES) raise ValueError(msg) if astfactor < 1.e-40 or paroi < 1.e-40 : raise ValueError('\nParameters must be greater than 1.e-40.') # Update properties if dmprocess == 'anna' : self._jfactor = astfactor self._sigmav = paroi elif dmprocess == 'decay' : self._dfactor = astfactor self._lifetime = paroi self._dminterp.process = dmprocess # Update # Return return @property def elist(self) : """ Return list of energy values used to compute the spectrum """ # Return return self._dminterp.energy @elist.setter def elist(self, evals) : """ Update energy values used to compute the spectrum evals[0] --> emin evals[1] --> emax evals[2] --> epoints """ # Check that emin and emax are ok # I set the minimum to 500 MeV if evals[0] < 5.0e-3 or evals[1] > 1.e+5 : raise ValueError('\nParameters outside of range') # Update properties self._dminterp.energy = evals # Return return @staticmethod def _norm_anna(sigmav, mass, delta, jfactor) : """ Compute normalization of the dm flux compatible with gammalib Parameters ---------- sigmav : Value of annihilation cross-section (cm**3/s) mass : Mass of dark matter particles (GeV) delta : String to indicate if dark matter is a Majorana or Dirac fermion jfactor : Astrophysica factor for annihilation Return ------ norm : (1/[MeV* cm^2 * s]) """ d = 0. # Check delta if delta == 'Majorana' : d = 2. elif delta == 'Dirac' : d = 4. # Compute ppfactor ppfactor = sigmav / (d*4.*gammalib.pi*mass*mass) norm = ppfactor * jfactor return norm * 1.0e-3 @staticmethod def _norm_decay(lifetime, mass, dfactor) : """ Compute normalization of the dm flux compatible with gammalib Parameters ---------- lifetime : Value of decay lifetime (s) mass : Mass of dark matter particles (GeV) dfactor : Astrophysical factor for ecay Return ------ norm : (1/[MeV* cm^2 * s]) """ # Compute ppfactor ppfactor = 1 / (4.*gammalib.pi*mass*lifetime) norm = ppfactor * dfactor return norm * 1.0e-3 def create_modeltable(self) : """ Create fits table with spectrum for specific channel """ # Number of points in energy array n_eng = len(self._dminterp.energy) # Array with definitions of energy bins # The min and max values are encapsulated in the # dm spectrum interpolator dminterp gemin = gammalib.GEnergy(self._dminterp.emin, 'GeV') gemax = gammalib.GEnergy(self._dminterp.emax, 'GeV') ebins = gammalib.GEbounds(n_eng, gemin, gemax) # Then create the GModelPar objects for mass dmmass = gammalib.GModelPar('Mass', self._mmin, 1.0) dmmass.unit('GeV') # Create the GSpectralTablePar objects par_mass = gammalib.GModelSpectralTablePar(dmmass, self._masses) # Create the container GSpectralTablePars and append the pars pars = gammalib.GModelSpectralTablePars() pars.append(par_mass) # GNdarray to save the spectra spectra = gammalib.GNdarray(self._mpoints,n_eng) # filling the spectrum desc = 'Computing {}-spectrrum'.format(self._dminterp.process) for index, mass in tqdm(enumerate(self._masses),desc=desc,leave=False): # Change the value of the mass self._dminterp.mass = mass dmspec = self._dminterp.spectra() for eindex in range(n_eng): spectra[index, eindex] = dmspec[eindex] # Get ppfactor and normalization # This normalization computed here # is not neccessary. You can change the normalization
= 60 + coef if intelligence == 3: x = 40 + coef if intelligence == 4: x = 20 + coef if x >= 90: x = 90 if random.randint(1, 100) <= x: cardplayers.remove(ids[1]) else: cardplayers.remove(ids[0]) i = 10 except: try: print('try3') int(ids[1]) index = 0 coef = 0 user = users.find_one({'id': ids[1]}) if user != None: coef += user['intelligence'] if ids[index] == 'miku': intelligence = mikustats['intelligence'] if ids[index] == 'alisa': intelligence = alisastats['intelligence'] if ids[index] == 'lena': intelligence = lenastats['intelligence'] if ids[index] == 'slavya': intelligence = slavyastats['intelligence'] if ids[index] == 'zhenya': intelligence = zhenyastats['intelligence'] if ids[index] == 'uliana': intelligence = ulianastats['intelligence'] if intelligence == 1: x = 75 + coef if intelligence == 2: x = 60 + coef if intelligence == 3: x = 40 + coef if intelligence == 4: x = 20 + coef if x >= 90: x = 90 if random.randint(1, 100) <= x: cardplayers.remove(ids[0]) else: cardplayers.remove(ids[1]) i = 10 except: print('try4') if ids[0] == 'miku': intelligence1 = mikustats['intelligence'] if ids[0] == 'alisa': intelligence1 = alisastats['intelligence'] if ids[0] == 'lena': intelligence1 = lenastats['intelligence'] if ids[0] == 'slavya': intelligence1 = slavyastats['intelligence'] if ids[0] == 'zhenya': intelligence1 = zhenyastats['intelligence'] if ids[0] == 'uliana': intelligence1 = ulianastats['intelligence'] if ids[1] == 'miku': intelligence2 = mikustats['intelligence'] if ids[1] == 'alisa': intelligence2 = alisastats['intelligence'] if ids[1] == 'lena': intelligence2 = lenastats['intelligence'] if ids[1] == 'slavya': intelligence2 = slavyastats['intelligence'] if ids[1] == 'zhenya': intelligence2 = zhenyastats['intelligence'] if ids[1] == 'uliana': intelligence2 = ulianastats['intelligence'] z = intelligence1 - intelligence2 if z == 0: x = 50 elif z == 1: x = 60 elif z == 2: x = 75 elif z == 3: x = 85 elif z == -1: x = 40 elif z == -2: x = 25 elif z == -3: x = 15 if random.randint(1, 100) <= x: cardplayers.remove(ids[1]) else: cardplayers.remove(ids[0]) i = 10 text = '' x = 0 for dd in cardplayers: x += 1 try: int(dd) text += users.find_one({'id': dd})['pionername'] + '\n' except: text += nametopioner(dd) + '\n' text1 = '' text3 = '' if electronicstats['cardsturn'] == 1: text1 = 'Завершился первый этап турнира! А вот и наши победители:\n\n' elif electronicstats['cardsturn'] == 2: if x > 1: text1 = 'Второй этап турнира подошёл к концу! Встречайте победителей:\n\n' else: text1 = 'Финал подошёл к концу! И наш победитель:\n\n' elif electronicstats['cardsturn'] == 3: if x == 2: text1 = 'Полуфинал завершён! В финале встретятся:\n\n' else: text1 = 'Встречайте победителя турнира:\n\n' elif electronicstats['cardsturn'] == 4: text1 = 'Турнир завершён! И наш победитель:\n\n' if x == 2: text3 = 'Настало время для финала! Кто же станет победителем на этот раз?' elif x == 4: text3 = 'На очереди у нас полуфинал. Кто же из четырёх оставшихся игроков попадёт в финал?' elif x == 8: text3 = 'Скоро начнётся раунд 2. Игроки, приготовьтесь!' electronicstats['cardsturn'] += 1 electronic.send_message(-1001351496983, text1 + text + '\n' + text3, parse_mode='markdown') setka = [] i = 0 if len(cardplayers) > 1: x = len(cardplayers) / 2 while i < x: player1 = random.choice(cardplayers) cardplayers.remove(player1) player2 = random.choice(cardplayers) cardplayers.remove(player2) lst = [player1, player2] setka.append(lst) i += 1 t = threading.Timer(120, cards_nextturn) t.start() else: time.sleep(2) bot.send_chat_action(-1001351496983, 'typing') time.sleep(5) try: name = users.find_one({'id': cardplayers[0]})['pionername'] except: name = nametopioner(cardplayers[0]) bot.send_message(-1001351496983, 'Отлично! Поздравляю, ' + name + '! А теперь приберитесь тут, скоро ужин.', parse_mode='markdown') bot.send_sticker(-1001351496983, 'CAADAgADqwADgi0zDzm_zSmMbMmiAg') setka = [] cardplayers = [] electronicstats['waitingplayers'] = 0 electronicstats['playingcards'] = 0 electronicstats['cardsturn'] = 0 else: electronic.send_message(-1001351496983, 'К сожалению, игроков для турнира сегодня не набралось. Ну ничего, в следующий раз попробуем!') setka = [] cardplayers = [] electronicstats['waitingplayers'] = 0 electronicstats['playingcards'] = 0 electronicstats['cardsturn'] = 0 except: setka = [] cardplayers = [] electronicstats['waitingplayers'] = 0 electronicstats['playingcards'] = 0 electronicstats['cardsturn'] = 0 electronic.send_message(-1001351496983, 'Непредвиденные обстоятельства! Турнир придётся отменить!') def talkwithplayer(player, pioner): if pioner == 'miku': t = threading.Timer(random.randint(10, 90), sayto, args=[miku, 'miku', player, cards_startround_mikutexts]) t.start() if pioner == 'alisa': t = threading.Timer(random.randint(10, 90), sayto, args=[alisa, 'alisa', player, cards_startround_alisatexts]) t.start() if pioner == 'zhenya': t = threading.Timer(random.randint(10, 90), sayto, args=[zhenya, 'zhenya', player, cards_startround_zhenyatexts]) t.start() if pioner == 'uliana': t = threading.Timer(random.randint(10, 90), sayto, args=[uliana, 'uliana', player, cards_startround_ulianatexts]) t.start() if pioner == 'slavya': t = threading.Timer(random.randint(10, 90), sayto, args=[slavya, 'slavya', player, cards_startround_slavyatexts]) t.start() if pioner == 'lena': t = threading.Timer(random.randint(10, 90), sayto, args=[lena, 'lena', player, cards_startround_lenatexts]) t.start() cards_startround_mikutexts = ['Ой, Привет! Если не помнишь, то меня Мику зовут. Мы сейчас с тобой ' + \ 'играем! Ты хорошо играешь? Я не очень...', 'Привет! Мы с тобой уже знакомы, если помнишь... ' + \ 'Удачи на турнире!'] cards_startround_alisatexts = ['Ну привет. Готовься проиграть!'] cards_startround_slavyatexts = ['Привет! Интересно, кто победит в турнире в этот раз...'] cards_startround_ulianatexts = ['Привет-привет! Я сегодня настроена на победу, так что советую сразу сдаться!'] cards_startround_lenatexts = ['Привет. Удачи на сегодняшнем турнире!'] cards_startround_zhenyatexts = ['Выходит, мы с тобой сегодня играем. Давай сразу к игре, без лишних разговоров!'] def sayto(pioner, pionername, id, texts): x = users.find_one({'id': id}) if x['gender'] == 'female': gndr = 'а' else: gndr = '' if pionername == 'miku': textstochat = ['Привет, ' + x['pionername'] + '! <NAME> зовут! Мы ещё не знакомы, можем ' + \ '[поговорить](https://t.me/ES_MikuBot) после турнира... А сейчас - удачи!'] elif pionername == 'alisa': textstochat = ['Ну привет, ' + x['pionername'] + '! Думаешь победить в турнире? Даже не надейся! Меня тебе ' + \ 'точно не обыграть!'] elif pionername == 'slavya': textstochat = ['Привет, ' + x['pionername'] + '! Чего-то я тебя не видела раньше... <NAME> зовут! Можем ' + \ '[познакомиться](https://t.me/SlavyaBot) на досуге. Ну а сейчас готовься к игре!'] elif pionername == 'uliana': textstochat = ['Привет! Тебя ведь ' + x['pionername'] + ' зовут? Я Ульяна! Готов' + gndr + ' проиграть?'] elif pionername == 'lena': textstochat = ['Привет, ' + x[ 'pionername'] + '. <NAME> зовут... Хотя ты наверняка уже знаешь, ведь в турнирной сетке написано. ' + \ 'Удачи!'] elif pionername == 'zhenya': textstochat = ['Ну привет, ' + x['pionername'] + '. Не знаю, зачем я вообще играю, но уже поздно передумывать.'] try: pioner.send_chat_action(id, 'typing') time.sleep(5) pioner.send_message(id, random.choice(texts)) except: pioner.send_chat_action(-1001351496983, 'typing') time.sleep(5) pioner.send_message(-1001351496983, random.choice(textstochat), parse_mode='markdown') def nametopioner(pioner): if pioner == 'miku': return '[Мику](https://t.me/ES_MikuBot)' if pioner == 'alisa': return '[Алиса](https://t.me/ES_AlisaBot)' if pioner == 'zhenya': return '[Женя](https://t.me/ES_ZhenyaBot)' if pioner == 'uliana': return '[Ульяна](https://t.me/ES_UlianaBot)' if pioner == 'slavya': return '[Славя](https://t.me/SlavyaBot)' if pioner == 'lena': return '[Лена](https://t.me/ES_LenaBot)' if pioner == 'electronic': return '[Электроник](https://t.me/ES_ElectronicBot)' if pioner == 'shurik': return '[Шурик](https://t.me/ES_Shurikbot)' def addtogame(name, game): game.append(name) def sendmes(sender, text, parse_mode): sender.send_message(-1001351496983, text, parse_mode=parse_mode) def sendstick(sender, stick): sender.send_sticker(-1001351496983, stick) ####################################### ELECTRONIC ############################################## @electronic.message_handler(commands=['control']) def electroniccontrol(m): config.about(m, electronic) adm=admins.find_one({'name':'el_admins'}) if m.from_user.id in adm['el_admins']: if adm['controller'] == None: admins.update_one({'name':'el_admins'},{'$set':{'controller': {'id': m.from_user.id, 'name': m.from_user.first_name}}}) electronic.send_message(m.from_user.id, 'Привет! надеюсь ты знаешь, как управлять мной.') @electronic.message_handler(commands=['stopcontrol']) def electronicstopcontrol(m): config.about(m, electronic) x='el_admins' adm=admins.find_one({'name':x}) if adm['controller'] != None: if adm['controller']['id'] == m.from_user.id: admins.update_one({'name':x},{'$set':{'controller':None}}) electronic.send_message(m.from_user.id, 'Ты больше не управляешь мной!') @electronic.message_handler(content_types=['sticker']) def stickercatchelectronic(m): stickhandler(m, electronic) @electronic.message_handler(content_types=['audio']) @electronic.message_handler(content_types=['voice']) def stickercatchelectronic(m): audiohandler(m, electronic) @electronic.message_handler(content_types = ['document']) def docsss(m): dochandler(m, electronic) @electronic.message_handler(content_types=['photo']) def photocatchel(m): pichandler(m, electronic) @electronic.message_handler() def electronichandler(m): try: if ban.find_one({'id': m.from_user.id}) == None: if electronicstats['waitingplayers'] == 1: if m.text.lower() == 'хочу принять участие в турнире!': x = users.find_one({'id': m.from_user.id}) if x['gender'] == 'female': gndr = 'а' else: gndr = '' if x['id'] not in cardplayers: if m.from_user.id == m.chat.id: texts = ['Привет! Записал тебя в список участников. Жди начала турнира!', 'Хорошо. Записал тебя!', 'Рад, что тебя заинтересовала моя игра. Теперь ты тоже в списке участников!'] text = random.choice(texts) electronic.send_message(m.chat.id, text) cardplayers.append(x['id']) else: if m.reply_to_message != None: if m.reply_to_message.from_user.id == 609648686: texts = ['Привет, [' + x['pionername'] + '](tg://user?id=' + str( x['id']) + ')! Записал тебя в список участников. Жди начала турнира!', 'Хорошо, [' + x['pionername'] + '](tg://user?id=' + str( x['id']) + '). Записал тебя!', 'Рад, что тебя заинтересовала моя игра. Теперь ты тоже в списке участников!'] text = random.choice(texts) electronic.send_message(m.chat.id, text, parse_mode='markdown', reply_to_message_id=m.message_id) cardplayers.append(x['id']) else: if m.from_user.id == m.chat.id: reply_to_message_id = None else: reply_to_message_id = m.message_id electronic.send_message(m.chat.id, '[' + x['pionername'] + '](tg://user?id=' + str(x['id']) + \ '), ты уже записан' + gndr + ' на турнир!', parse_mode='markdown', reply_to_message_id=reply_to_message_id) else:
<reponame>Haiiliin/PyAbaqus<gh_stars>1-10 import typing from abaqusConstants import * from ..BasicGeometry.Cell import Cell from ..BasicGeometry.Edge import Edge from ..BasicGeometry.Face import Face from ..BasicGeometry.InterestingPoint import InterestingPoint from ..BasicGeometry.Vertex import Vertex from ..Datum.Datum import Datum from ..Datum.DatumPlane import DatumPlane from ..Mesh.MeshFace import MeshFace from ..Mesh.MeshNode import MeshNode from ..Sketcher.ConstrainedSketch import ConstrainedSketch class Feature: """Abaqus/CAE is a feature-based modeling system, and features are stored in the Feature object. The user defines the parameters of the feature, and Abaqus/CAE modifies the model based on the value of the parameters. This evaluation of the parameters is called regeneration of the feature. Feature objects contain both the parameters and the resulting model modification. Attributes ---------- name: str A String specifying the repository key. id: int An Int specifying the ID of the feature. Notes ----- This object can be accessed by: .. code-block:: python import part mdb.models[name].parts[name].features[name] mdb.models[name].parts[name].featuresById[i] import assembly mdb.models[name].rootAssembly.features[name] mdb.models[name].rootAssembly.featuresById[i] """ # A String specifying the repository key. name: str = '' # An Int specifying the ID of the feature. id: int = None def AttachmentPoints(self, name: str, points: float, projectionMethod: SymbolicConstant = PROJECT_BY_PROXIMITY, projectOnFaces: tuple[Face] = (), projectOnElementFaces: tuple[MeshFace] = (), projectionDirStartPt: float = None, projectionDirEndPt: float = None, setName: str = ''): """This method creates an attachment points Feature. Attachment points may be created using datum points, vertices, reference points, attachment points, interesting points, orphan mesh nodes or coordinates. Optionally, the attachment points can be projected on geometric faces or element faces. Notes ----- This function can be accessed by: .. code-block:: python mdb.models[name].parts[*name*].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints Parameters ---------- name A String specifying a unique Feature name. points A tuple of points. Each point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point. projectionMethod A SymbolicConstant specifying the projection method. Possible values are PROJECT_BY_PROXIMITY and PROJECT_BY_DIRECTION. The default value is PROJECT_BY_PROXIMITY. projectOnFaces A sequence of Face objects specifying the geometry faces onto which the points are to be projected. projectOnElementFaces A sequence of MeshFace objects specifying the orphan mesh element faces onto which the points are to be projected. projectionDirStartPt A point specifying the start point of the projection direction. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point. projectionDirEndPt A point specifying the end point of the projection direction. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point. setName A String specifying a unique set name. Returns ------- feature: Feature A Feature object """ pass def AttachmentPointsAlongDirection(self, name: str, startPoint: float, pointCreationMethod: SymbolicConstant, endPoint: float = None, direction: str = '', spacing: str = '', numPtsAlongDir: str = '', numPtsBetweenPts: str = '', createPtAtStartPt: Boolean = True, createPtAtEndPt: Boolean = True, projectionMethod: SymbolicConstant = PROJECT_BY_PROXIMITY, projectOnFaces: tuple[Face] = (), projectOnElementFaces: tuple[MeshFace] = (), projectionDirStartPt: float = None, projectionDirEndPt: float = None, flipDirection: Boolean = OFF, setName: str = ''): """This method creates a Feature object by creating attachment points along a direction or between two points. A Datum point, a ConstrainedSketchVertex, a Reference point, an Attachment point, an Interesting point, or an orphan mesh Node can be specified as the start or end point. The direction can be specified using a straight edge or a datum axis. Notes ----- This function can be accessed by: .. code-block:: python mdb.models[name].parts[*name*].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints Parameters ---------- name A String specifying a unique Feature name. startPoint A point specifying the start point of the direction along which to create points. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point. pointCreationMethod A SymbolicConstant specifying the point creation method. Possible values are AUTO_FIT, NUM_PTS_ALONG_DIR, and NUM_PTS_BETWEEN_PTS. endPoint A point specifying the end point if creating points between two points. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point. direction The direction can be specified by a straight edge or a datum axis. spacing A float specifying the spacing to be used between two points. numPtsAlongDir An integer specifying the number of points to be created along the specified direction. numPtsBetweenPts An integer specifying the number of points to be created between the start and end points. createPtAtStartPt A Boolean specifying whether to create an attachment point at the start point. The default value is True. createPtAtEndPt A Boolean specifying whether to create an attachment point at the end point. The default value is True. projectionMethod A SymbolicConstant specifying the projection method. Possible values are PROJECT_BY_PROXIMITY and PROJECT_BY_DIRECTION. The default value is PROJECT_BY_PROXIMITY. projectOnFaces A sequence of Face objects specifying the geometry faces onto which the points are to be projected. projectOnElementFaces A sequence of MeshFace objects specifying the orphan mesh element faces onto which the points are to be projected. projectionDirStartPt A point specifying the start point of the projection direction. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point. projectionDirEndPt A point specifying the end point of the projection direction. The point can be a ConstrainedSketchVertex, Datum point, Reference point, Attachment point, orphan mesh Node, Interesting point object, or a tuple of Floats representing the coordinates of a point. flipDirection A Boolean specifying if the direction along which the attachment points are created should be reversed. This argument is valid only when *pointCreationMethod*=NUM_PTS_ALONG_DIR. setName A String specifying a unique set name. Returns ------- feature: Feature A Feature object """ pass def AttachmentPointsOffsetFromEdges(self, name: str, edges: tuple, startPoint: str = '', flipDirection: str = '', pointCreationMethod: SymbolicConstant = None, numberOfPoints: str = '', spacingBetweenPoints: str = '', offsetFromStartPoint: str = 0, offsetFromEndPoint: str = 0, spacingMethod: SymbolicConstant = AUTO_FIT_PTS, patterningMethod: SymbolicConstant = None, referenceFace: str = '', startPointForPatternDirection: float = None, endPointForPatternDirection: float = None, offsetFromEdges: str = '', numberOfRows: str = 1, spacingBetweenRows: str = '', projectionMethod: SymbolicConstant = PROJECT_BY_PROXIMITY, projectOnFaces: tuple[Face] = (), projectOnElementFaces: tuple[MeshFace] = (), projectionDirStartPt: float = None, projectionDirEndPt: float = None, setName: str = ''): """This method creates a Feature object by creating attachment points along or offset from one or more connected edges. Notes ----- This function can be accessed by: .. code-block:: python mdb.models[name].parts[*name*].AttachmentPoints mdb.models[name].rootAssembly.AttachmentPoints Parameters ---------- name A String specifying a unique Feature name. edges A sequence of connected Edge objects specifying the geometry edges from which to offset the points. startPoint A ConstrainedSketchVertex of the selected edges that specifies the point from which to create points. This point can be one of the two end vertices of the connected edges. In case of edges forming a closed loop and having multiple vertices, this point can be any one of the vertices on the edges. flipDirection This parameter is required to indicate the direction in which to create the points. This parameter is required only in case of edges forming a closed loop. pointCreationMethod A SymbolicConstant specifying the point creation method. Possible values are BY_NUMBER or BY_SPACING. numberOfPoints An integer specifying the number of points to be created along the selected edges.
<reponame>shivaathreya/ibis<filename>lib/ingest/tests/test_parquet_opt_ddl_time.py """Tests for parquet_opt_ddl_time.py""" import difflib import os import unittest from mock import patch, MagicMock from lib.ingest.parquet_opt_ddl_time import ConnectionManager, DDLTypes, main BASE_DIR = os.path.dirname(os.path.abspath(__file__)) class ParquetOptTimeFunctionsTest(unittest.TestCase): """Tests.""" def setUp(self): pass def tearDown(self): self.conn_mgr = None self.ddl_types = None def compare_xml(self, test_xml, expected_xml): """Compare two xml files.""" same = True test_xml = [xml.strip().replace('\t', '') for xml in test_xml.splitlines()] expected_xml = [xml.strip().replace('\t', '') for xml in expected_xml.splitlines()] if "".join(expected_xml) != "".join(test_xml): same = False print "" print test_xml print expected_xml print "XML strings don't match." diff = difflib.unified_diff(test_xml, expected_xml) print '\n'.join(list(diff)) return same @patch('lib.ingest.parquet_opt_ddl_time.ConnectionManager', autospec=True) @patch('lib.ingest.parquet_opt_ddl_time.sys', autospec=True) @patch('lib.ingest.parquet_opt_ddl_time.os', autospec=True) @patch('lib.ingest.parquet_opt_ddl_time.open') def test_main_full_load(self, m_open, m_os, m_sys, m_cm): """test main method""" m_sys.argv = ['test_arg0', 'test_arg1', 'test_arg2', 'test_arg3', 'test_arg4', 'full_load', 'test_arg6'] cm_methods = MagicMock() cm_methods.create_ingest_table.return_value = 'test_ingest_hql' cm_methods.create_parquet_live.return_value = 'test_live_hql' cm_methods.get_hql.return_value = 'test_hql' cm_methods.get_incremental_hql.return_value = 'test_incr_hql' cm_methods.create_externaltable.return_value = \ ('views', 'invalidate', 'info') m_cm.return_value = cm_methods main() self.assertEquals(m_open.call_count, 5) cm_methods.create_externaltable.return_value = ('', '', '') m_cm.return_value = cm_methods main() self.assertEquals(m_open.call_count, 7) @patch('lib.ingest.parquet_opt_ddl_time.ConnectionManager', autospec=True) @patch('lib.ingest.parquet_opt_ddl_time.sys', autospec=True) @patch('lib.ingest.parquet_opt_ddl_time.os', autospec=True) @patch('lib.ingest.parquet_opt_ddl_time.open') def test_main_incr(self, m_open, m_os, m_sys, m_cm): """test main method""" m_sys.argv = ['test_arg0', 'test_arg1', 'test_arg2', 'test_arg3', 'test_arg4', 'incremental', 'test_arg6'] cm_methods = MagicMock() cm_methods.create_ingest_table.return_value = 'test_ingest_hql' cm_methods.create_parquet_live.return_value = 'test_live_hql' cm_methods.get_hql.return_value = 'test_hql' cm_methods.get_incremental_hql.return_value = 'test_incr_hql' cm_methods.create_externaltable.return_value = \ ('views', 'invalidate', 'info') m_cm.return_value = cm_methods main() self.assertEquals(m_open.call_count, 5) @patch.object(ConnectionManager, 'sqoop_eval', autospec=True) @patch.object(ConnectionManager, 'get_schema', autospec=True) def test_get_full_hql(self, m_schema, m_sqoop_eval): """test full hql""" with open(BASE_DIR + '/fixtures/ddl_td_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() m_sqoop_eval.return_value = sqoop_eval_output m_schema.return_value = DDLTypes( input_mapping=sqoop_eval_output, data_source="td", ingest_timestamp="2016-01-01 16:47:56") self.conn_mgr = ConnectionManager( 'database_test', 'table_test', '', 'domain', 'jdbc_url_conn_test', 'connect_factories', 'username', 'password', 'view', 'int', 'domain', 'impala_host_name', '2016-01-01 16:47:56', 'hdfs_test', 'jars_test', 'jdbc_test', 'ingestion') test_create_hql = self.conn_mgr.get_hql() with open(BASE_DIR + '/expected/full_create_table.hql', 'r') as file_h: expected_create_table_hql = file_h.read() self.assertTrue(self.compare_xml(expected_create_table_hql, test_create_hql)) @patch.object(ConnectionManager, 'sqoop_eval', autospec=True) @patch.object(ConnectionManager, 'get_schema', autospec=True) def test_get_full_hql_for_incremental(self, m_schema, m_sqoop_eval): """test incremental hql""" with open(BASE_DIR + '/fixtures/ddl_td_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() m_sqoop_eval.return_value = sqoop_eval_output m_schema.return_value = DDLTypes( input_mapping=sqoop_eval_output, data_source="td", ingest_timestamp="2016-01-01 16:47:56") self.conn_mgr = ConnectionManager( 'database_test', 'table_test', '', 'domain', 'jdbc_url_conn_test', 'connect_factories', 'username', 'password', 'view', 'int', 'domain', 'impala_host_name', '2016-01-01 16:47:56', 'hdfs_test', 'jars_test', 'jdbc_test', 'ingestion') test_create_hql = self.conn_mgr.get_hql("incremental") with open(BASE_DIR + '/expected/incremental_full_create_table.hql', 'r') as file_h: expected_create_table_hql = file_h.read() self.assertTrue( self.compare_xml(expected_create_table_hql, test_create_hql)) @patch.object(ConnectionManager, 'sqoop_eval', autospec=True) @patch.object(ConnectionManager, 'get_schema', autospec=True) def test_get_incremental_hql(self, m_schema, m_sqoop_eval): """test incremental hql""" with open(BASE_DIR + '/fixtures/ddl_td_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() m_sqoop_eval.return_value = sqoop_eval_output m_schema.return_value = DDLTypes( input_mapping=sqoop_eval_output, data_source="td", ingest_timestamp="2016-01-01 16:47:56") self.conn_mgr = ConnectionManager( 'database_test', 'table_test', '', 'domain', 'jdbc_url_conn_test', 'connect_factories', 'username', 'password', 'view', 'int', 'domain', 'impala_host_name', '2016-01-01 16:47:56', 'hdfs_test', 'jars_test', 'jdbc_test', 'ingestion') test_create_hql = self.conn_mgr.get_incremental_hql() with open(BASE_DIR + '/expected/incr_create_table.hql', 'r') as file_h: expected_create_table_hql = file_h.read() self.assertTrue( self.compare_xml(expected_create_table_hql, test_create_hql)) def test_get_types_schema_mysql(self): """test avro parquet hql for mysql""" with open(BASE_DIR + '/fixtures/ddl_mysql.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="mysql", ingest_timestamp="2016-01-01 16:47:56") with open(BASE_DIR + '/expected/mysql_avro_parquet_select.txt', 'r') as file_h: expected_select_hql = file_h.read() with open(BASE_DIR + '/expected/mysql_avro_parquet_create.txt', 'r') as file_h: expected_create_hql = file_h.read() test_select_hql, test_create_hql = self.ddl_types.create_ddl_mappings() self.assertTrue(self.compare_xml(test_select_hql, expected_select_hql)) self.assertTrue(self.compare_xml(test_create_hql, expected_create_hql)) def test_get_types_schema_ora(self): """test avro parquet hql for oracle""" with open(BASE_DIR + '/fixtures/ddl_ora_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="oracle", ingest_timestamp="2016-01-01 16:47:56") with open(BASE_DIR + '/expected/ora_avro_parquet_hql.txt', 'r') as file_h: expected_select_hql = file_h.read() with open(BASE_DIR + '/expected/ora_avro_parquet_create.txt', 'r') as file_h: expected_create_hql = file_h.read() test_select_hql, test_create_hql = self.ddl_types.create_ddl_mappings() self.assertTrue(self.compare_xml(expected_select_hql, test_select_hql)) self.assertTrue(self.compare_xml(expected_create_hql, test_create_hql)) def test_get_types_schema_db2(self): """test avro parquet hql for db2""" with open(BASE_DIR + '/fixtures/ddl_db2_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="db2", ingest_timestamp="2016-01-01 16:47:56") with open(BASE_DIR + '/expected/db2_avro_parquet_hql.txt', 'r') as file_h: expected_select_hql = file_h.read() with open(BASE_DIR + '/expected/db2_avro_parquet_create.txt', 'r') as file_h: expected_create_hql = file_h.read() test_select_hql, test_create_hql = self.ddl_types.create_ddl_mappings() self.assertTrue(self.compare_xml(test_select_hql, expected_select_hql)) self.assertTrue(self.compare_xml(test_create_hql, expected_create_hql)) def test_get_types_schema_td(self): """test avro parquet hql for td""" with open(BASE_DIR + '/fixtures/ddl_td_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="td", ingest_timestamp="2016-01-01 16:47:56") with open(BASE_DIR + '/expected/td_avro_parquet_hql.txt', 'r') as file_h: expected_select_hql = file_h.read() with open(BASE_DIR + '/expected/td_avro_parquet_create.txt', 'r') as file_h: expected_create_hql = file_h.read() test_select_hql, test_create_hql = self.ddl_types.create_ddl_mappings() self.assertTrue(self.compare_xml(expected_select_hql, test_select_hql)) self.assertTrue(self.compare_xml(expected_create_hql, test_create_hql)) def test_get_types_schema_mapping(self): with open(BASE_DIR + '/fixtures/ddl_td_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="td", ingest_timestamp="2016-01-01 16:47:56") td_column_type_1 = self.ddl_types.get_types_schema('A1') self.assertTrue(self.compare_xml(td_column_type_1, 'STRING')) td_column_type_2 = self.ddl_types.get_types_schema('TS') self.assertTrue(self.compare_xml(td_column_type_2, 'TIMESTAMP')) td_column_type_3 = self.ddl_types.get_types_schema('N') self.assertTrue(self.compare_xml(td_column_type_3, 'INT')) ora_column_type_1 = self.ddl_types.get_types_schema( 'INTERVAL DAY(2) TO SECOND(6)') self.assertTrue(self.compare_xml(ora_column_type_1, 'STRING')) ora_column_type_2 = self.ddl_types.get_types_schema('URITYPE') self.assertTrue(self.compare_xml(ora_column_type_2, 'STRING')) def test_format_select(self): """test avro parquet hql for db2""" with open(BASE_DIR + '/fixtures/ddl_ora_avro_underscore.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="oracle", ingest_timestamp="2016-01-01 16:47:56") row_with = "_testColumnName" row_without = "testColumnName" row_with_spaces = "row with spaces" int_expected = 'CAST(`i_testColumnName` AS INT) AS `_testColumnName`' string_expected = ('CAST(`testColumnName` AS STRING)' ' AS `testColumnName`') timestamp_expected = "CAST(from_unixtime(unix_timestamp" \ "(`testColumnName`, " \ "'yyyy-MM-dd')) " \ "AS TIMESTAMP) " \ "AS `testColumnName`" string_spaces_exepected = "CAST(`rowwithspaces` AS STRING) " \ "AS `rowwithspaces`" self.assertEqual(self.ddl_types.format_select(row_with, 'INT'), int_expected) self.assertEqual(self.ddl_types.format_select(row_without, 'STRING'), string_expected) self.assertEqual( self.ddl_types.format_select(row_without, 'TIMESTAMP', timestamp_format='yyyy-MM-dd'), timestamp_expected) self.assertEqual( self.ddl_types.format_select(row_with_spaces, 'STRING'), string_spaces_exepected) def test_remove_6_in_timestamp_columns(self): with open(BASE_DIR + '/fixtures/ddl_td_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="td", ingest_timestamp="2016-01-01 16:47:56") timestamp_column = "TIMESTAMP(6)" timestamp_column_standard = "TIMESTAMP" self.assertEqual( self.ddl_types.remove_6_in_timestamp_columns(timestamp_column), ['TIMESTAMP', '6']) self.assertEqual(self.ddl_types.remove_6_in_timestamp_columns( timestamp_column_standard), ['TIMESTAMP']) def test_func_of_all_special_types(self): with open(BASE_DIR + '/fixtures/ddl_td_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="td", ingest_timestamp="2016-01-01 16:47:56") function_names = self.ddl_types.func_of_all_special_types().keys() self.assertEqual(function_names, ['CHAR', 'TIMESTAMP', 'DECIMAL', 'VARCHAR', 'TIMESTAMP_DATE']) def test_timestamp_date_td(self): with open(BASE_DIR + '/fixtures/ddl_td_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="td", ingest_timestamp="2016-01-01 16:47:56") timestamp_output = self.ddl_types.timestamp_date( ['', 'TEST_TIMESTAMP', 'AT', '']) self.assertEqual(timestamp_output, "CAST(from_unixtime(unix_timestamp" "(`TEST_TIMESTAMP`, 'yyyy-MM-dd')) " "AS TIMESTAMP) AS `TEST_TIMESTAMP`") def test_timestamp_date_ora(self): with open(BASE_DIR + '/fixtures/ddl_td_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="oracle", ingest_timestamp="2016-01-01 16:47:56") timestamp_output = self.ddl_types.timestamp_date( ['', '_TEST_TIMESTAMP', 'TIMESTAMP', '']) timestamp_result = "CAST(from_unixtime(unix_timestamp" \ "(`i_TEST_TIMESTAMP`, 'yyyy-MM-dd HH:mm:ss')) " \ "AS TIMESTAMP) AS `_TEST_TIMESTAMP`" self.assertEqual(timestamp_output, timestamp_result) def test_timestamp_t_td(self): with open(BASE_DIR + '/fixtures/ddl_td_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="td", ingest_timestamp="2016-01-01 16:47:56") timestamp_output = self.ddl_types.timestamp_t( ['', 'TEST_TIMESTAMP', 'AT', '']) self.assertEqual(timestamp_output, 'CAST(`TEST_TIMESTAMP` AS TIMESTAMP) ' 'AS `TEST_TIMESTAMP`') def test_char_t_td(self): with open(BASE_DIR + '/fixtures/ddl_td_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="td", ingest_timestamp="2016-01-01 16:47:56") char_output = self.ddl_types.char_t( ['', 'TEST_CHAR', 'CF', '', '', '5']) self.assertEqual(char_output, 'CAST(`TEST_CHAR` AS CHAR(5)) AS `TEST_CHAR`') def test_varchar_t_td(self): with open(BASE_DIR + '/fixtures/ddl_td_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="td", ingest_timestamp="2016-01-01 16:47:56") varchar_output = self.ddl_types.varchar_t( ['', 'TEST_VARCHAR', 'CV', '', '', '5']) self.assertEqual( varchar_output, 'CAST(`TEST_VARCHAR` AS VARCHAR(5))' ' AS `TEST_VARCHAR`') def test_decimal_t_td(self): with open(BASE_DIR + '/fixtures/ddl_td_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="td", ingest_timestamp="2016-01-01 16:47:56") decimal_output = self.ddl_types.decimal_t( ['', 'TEST_DECIMAL', 'D', '', '', '5', '1', '2.5']) self.assertEqual(decimal_output, 'CAST(`TEST_DECIMAL` AS DECIMAL(1,2.5)) ' 'AS `TEST_DECIMAL`') def test_convert_spl_chars(self): with open(BASE_DIR + '/fixtures/ddl_td_avro_parquet.txt', 'r') as file_h: sqoop_eval_output = file_h.read() self.ddl_types = DDLTypes(input_mapping=sqoop_eval_output, data_source="td", ingest_timestamp="2016-01-01 16:47:56") column_with_spaces = 'column with spaces' column_without_spaces = 'columnWithoutSpaces' removed_spaces = self.ddl_types.convert_spl_chars(column_with_spaces) not_removed = self.ddl_types.convert_spl_chars(column_without_spaces) self.assertEqual(removed_spaces, 'columnwithspaces') self.assertEqual(not_removed, column_without_spaces) @patch.object(ConnectionManager, 'get_schema', autospec=True) def test_create_externaltable(self, m_get_schema): """test incremental views""" jdbcurl = ('jdbc:sqlserver://fake.sqlserver:1433;database=fake_database;encrypt=true;' 'trustServerCertificate=true') m_get_schema.return_value = MagicMock(spec=DDLTypes) conn_mgr = ConnectionManager( 'fake_database', 'mock_table', 'dbo', 'mock_domain', jdbcurl, 'mock_connection_factories', 'mock_db_username', 'mock_password_file', 'fake_view_open|fake_view_im', 'int', 'domain', 'impala_host_name', '2016-01-01 16:47:56', 'mock_hdfs_loc', 'jars_test', 'hive_jdbc_url', 'ingestion') conn_mgr.ddl_types.get_create_hql.return_value = 'mock_create_hql' view_hql, impl_txt, views_info_txt = \ conn_mgr.create_externaltable('incremental') with open(BASE_DIR + '/expected/incremental_views_sqlserver.hql', 'r') as file_h: expected_view_hql = file_h.read() with open(BASE_DIR + '/expected/views_invalidate_sqlserver.txt', 'r') as file_h: expected_impl_txt = file_h.read() with open(BASE_DIR + '/expected/views_info_txt.txt', 'r') as file_h: expected_views_info_txt = file_h.read() self.assertTrue(self.compare_xml(expected_view_hql, view_hql)) self.assertTrue(self.compare_xml(expected_impl_txt, impl_txt)) self.assertTrue(self.compare_xml( expected_views_info_txt, views_info_txt)) @patch.object(ConnectionManager, 'get_schema', autospec=True) @patch('lib.ingest.parquet_opt_ddl_time.ImpalaConnect', autospec=True) def test_create_externaltable_perf(self, mock_impala_conn, m_get_schema): """test perf views with domain""" jdbcurl = ('jdbc:sqlserver://fake.sqlserver:1433;database=fake_database;encrypt=true;' 'trustServerCertificate=true') m_get_schema.return_value = MagicMock(spec=DDLTypes) mock_impala_conn.run_query.side_effect = [[['test0']], None, [['test0']], None, [['test0']], None, [['test0']], None] conn_mgr = ConnectionManager( 'fake_database', 'mock_table', 'dbo', 'mock_domain', jdbcurl, 'mock_connection_factories', 'mock_db_username', 'mock_password_file', 'fake_view_open|fake_view_im|pharmacy', 'PERF', 'pharmacy', 'impala_host_name', '2016-01-01 16:47:56', 'mock_hdfs_loc', 'jars_test', 'hive_jdbc_url', 'ingestion') conn_mgr.ddl_types.get_create_hql.return_value = 'mock_create_hql' view_hql, impl_txt, views_info_txt = \ conn_mgr.create_externaltable('incremental') with open(BASE_DIR + '/expected/views_sqlserver_perf.hql', 'r') as file_h: expected_view_hql = file_h.read() with open(BASE_DIR + '/expected/views_invalidate_sqlserver_domain.txt', 'r') as file_h: expected_impl_txt = file_h.read() with open(BASE_DIR + '/expected/views_info_txt_domain.txt', 'r') as \ file_h: expected_views_info_txt = file_h.read() self.assertTrue(self.compare_xml(expected_view_hql, view_hql)) self.assertTrue(self.compare_xml(expected_impl_txt, impl_txt)) self.assertTrue(self.compare_xml( expected_views_info_txt, views_info_txt)) @patch.object(ConnectionManager, 'get_schema', autospec=True) @patch('lib.ingest.parquet_opt_ddl_time.ImpalaConnect', autospec=True) def test_create_externaltable_perf_wd(self, mock_impala_conn, m_get_schema): """test perf views without domain """ jdbcurl = ('jdbc:sqlserver://fake.sqlserver:1433;database=fake_database;encrypt=true;' 'trustServerCertificate=true') m_get_schema.return_value = MagicMock(spec=DDLTypes) mock_impala_conn.run_query.side_effect = [[['test0']], None, [['test0']], None, [['test0']], None, [['test0']], None] conn_mgr = ConnectionManager( 'fake_database', 'mock_table', 'dbo', 'mock_domain', jdbcurl, 'mock_connection_factories', 'mock_db_username',
tube scores = (D[action,q[te]] - D[action,q[ts]]) / (te - ts) label = [action for _ in range(len(ts))] total_score = np.ones(len(ts)) * D[p[-1],q[-1]] / len(p) return ts,te,scores,label,total_score def actionPathSmoother4oneVideo(video_paths,alpha,num_action): final_tubes = {} final_tubes['starts'] = {} final_tubes['ts'] = {} final_tubes['te'] = {} final_tubes['label'] = {} final_tubes['path_total_score'] = {} final_tubes['dpActionScore'] = {} final_tubes['dpPathScore'] = {} final_tubes['path_boxes'] = {} final_tubes['path_scores'] = {} action_count = 0 if len(video_paths) > 0: for a in range(1,num_action+1): action_paths = video_paths[a] num_act_paths = getPathCount(action_paths) for p in range(num_act_paths): M = action_paths[p]['allscores'].transpose(1,0) assert(len(M.shape) == 2) M += 20 # refine the path pred_path,time,D = dpEM_max(M,alpha) Ts, Te, Scores, Label, DpPathScore = extract_action(pred_path,time,D,a) # print("Num tubes for action",a,len(Ts)) for k in range(len(Ts)): final_tubes['starts'][action_count] = action_paths[p]['start'] final_tubes['ts'][action_count] = Ts[k] final_tubes['te'][action_count] = Te[k] final_tubes['dpActionScore'][action_count] = Scores[k] final_tubes['label'][action_count] = Label[k] final_tubes['dpPathScore'][action_count] = DpPathScore[k] final_tubes['path_total_score'][action_count] = torch.mean(action_paths[p]['scores']) final_tubes['path_boxes'][action_count] = action_paths[p]['boxes'] final_tubes['path_scores'][action_count] = action_paths[p]['scores'] action_count += 1 del video_paths[a] return final_tubes def actionPathSmoother(allPath,alpha,num_action): final_tubes = actionPathSmoother4oneVideo(allPath,alpha,num_action) return final_tubes def convert2eval(final_tubes,min_num_frames,topk): xmld = {} xmld['score'] = {} xmld['nr'] = {} xmld['class'] = {} xmld['framenr'] = {} xmld['boxes'] = {} action_score = final_tubes['dpActionScore'] path_score = final_tubes['path_scores'] ts = final_tubes['ts'] starts = final_tubes['starts'] te = final_tubes['te'] act_nr = 0 for a in range(len(ts)): act_ts = ts[a] act_te = te[a] act_path_scores = path_score[a] act_scores,_ = torch.sort(act_path_scores[act_ts:act_te+1],descending=True) topk_mean = torch.mean(act_scores[:min(topk,len(act_scores))]) bxs = final_tubes['path_boxes'][a][act_ts:act_te+1,:] label = final_tubes['label'][a] if topk_mean > 0 and (act_te-act_ts) > min_num_frames: xmld['score'][act_nr] = topk_mean xmld['nr'][act_nr] = act_nr xmld['class'][act_nr] = label xmld['framenr'][act_nr] = {'fnr':np.array(range(act_ts,act_te+1)) + starts[a]} xmld['boxes'][act_nr] = {'bxs':bxs} act_nr += 1 return xmld def sort_detection(dt_tubes): sorted_tubes = {} sorted_tubes['score'] = {} sorted_tubes['nr'] = {} sorted_tubes['class'] = {} sorted_tubes['framenr'] = {} sorted_tubes['boxes'] = {} num_detection = len(dt_tubes['class']) if num_detection > 0: scores = dt_tubes['score'] indexes = [k for k, _ in sorted(scores.items(), key=lambda item: -item[1])] for dt in range(num_detection): dtind = indexes[dt] sorted_tubes['framenr'][dt] = {'fnr':dt_tubes['framenr'][dtind]['fnr']} sorted_tubes['boxes'][dt] = {'bxs':dt_tubes['boxes'][dtind]['bxs']} sorted_tubes['class'][dt] = dt_tubes['class'][dtind] sorted_tubes['score'][dt] = dt_tubes['score'][dtind] sorted_tubes['nr'][dt] = dt return sorted_tubes def inters_union(bounds1,bounds2): box_a = torch.Tensor(bounds1) box_b = torch.Tensor(bounds2) max_xy = torch.min(box_a[2:],box_b[2:]) min_xy = torch.max(box_a[:2],box_b[:2]) inter = torch.clamp((max_xy - min_xy), min=0) inter = inter[0] * inter[1] area_a = ((box_a[2]-box_a[0])*(box_a[3]-box_a[1])) area_b = ((box_b[2]-box_b[0])*(box_b[3]-box_b[1])) union = area_a + area_b - inter return inter / union # [A,B] def compute_spatial_temporal_iou(gt_fnr,gt_bb,dt_fnr,dt_bb): tgb = gt_fnr[0] tge = gt_fnr[-1] tdb = dt_fnr[0] tde = dt_fnr[-1] T_i = max(0,min(tge,tde)-max(tgb,tdb)) if T_i > 0: T_i += 1 T_u = max(tge,tde) - min(tgb,tdb) + 1 T_iou = T_i/T_u int_fnr = range(max(tgb,tdb),min(tge,tde)+1) int_find_dt = [] for i in range(len(dt_fnr)): if dt_fnr[i] in int_fnr: int_find_dt.append(i) int_find_gt = [] for i in range(len(gt_fnr)): if gt_fnr[i] in int_fnr: int_find_gt.append(i) assert(len(int_find_gt) == len(int_find_dt)) iou = np.zeros(len(int_find_dt)) for i in range(len(int_find_dt)): gt_bound = gt_bb[int_find_gt[i],:] dt_bound = dt_bb[int_find_dt[i],:] iou[i] = inters_union(gt_bound,dt_bound) st_iou = T_iou*np.mean(iou) else: st_iou = 0 return st_iou def auc(fp,tp): mfp = np.concatenate(([0.], fp, [1.])) mtp = np.concatenate(([0.], tp, [0.])) for i in range(mtp.size - 1, 0, -1): mtp[i - 1] = np.maximum(mtp[i - 1], mtp[i]) i = np.where(mfp[1:] != mfp[:-1])[0] res = np.sum((mfp[i + 1] - mfp[i]) * mtp[i + 1]) return res def voc_ap(rec, prec, use_07_metric=False): """ ap = voc_ap(rec, prec, [use_07_metric]) Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11 point method (default:False). """ # print('voc_ap() - use_07_metric:=' + str(use_07_metric)) if use_07_metric: # 11 point metric ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11. else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap # count of detected tubes per class cc = [0 for _ in range(len(CLASSES))] total_num_gt_tubes = [0 for _ in range(len(CLASSES))] IoUTHs = [0.2] + [0.5 + 0.05*i for i in range(10)] allscore = {} averageIoU = {} for iouth in IoUTHs: allscore[iouth] = {} for a in range(len(CLASSES)): allscore[iouth][a] = np.zeros((10000,2)) averageIoU[iouth] = np.zeros(len(CLASSES)) allscore_05_portion = {} allscore_02_portion = {} cc_portion = {} for i in range(10): allscore_05_portion[i] = {} allscore_02_portion[i] = {} for a in range(len(CLASSES)): allscore_05_portion[i][a] = np.zeros((10000,2)) allscore_02_portion[i][a] = np.zeros((10000,2)) cc_portion[i] = [0 for _ in range(len(CLASSES))] preds = {} gts = {} for i in range(10): preds[i] = [] gts[i] = [] tubeGenTime = [] frameLevelTime = [] def get_PR_curve(annot, xmldata,checkpoint): numActions = len(CLASSES) maxscore = -10000 # annotName = annot[1][0] action_id = annot[2][0][0][2] - 1 gt_tubes = annot[2][0] dt_tubes = sort_detection(xmldata) xmldata = None num_detection = len(dt_tubes['class']) num_gt_tubes = len(gt_tubes) pred = -1 gt = action_id[0][0] dt_labels = dt_tubes['class'] covered_gt_tubes = np.zeros(num_gt_tubes) covered_gt_tubes_portion = np.zeros(num_gt_tubes) for dtind in range(num_detection): # frame number range dt_fnr = dt_tubes['framenr'][dtind]['fnr'] # bounding boxes dt_bb = dt_tubes['boxes'][dtind]['bxs'] # class label dt_label = dt_labels[dtind] - 1 # the tube having the max score decides # the label of the video if dt_tubes['score'][dtind] > maxscore: pred = dt_label maxscore = dt_tubes['score'][dtind] # for portion cc_portion[checkpoint][dt_label] += 1 ioumax = -10000 maxgtind = 0 for gtind in range(num_gt_tubes): action_id = gt_tubes[gtind][2] - 1#class # if this gt tube is not covered and has the same label as this detected tube if (not covered_gt_tubes_portion[gtind]) and dt_label == action_id: gt_fnr = range(gt_tubes[gtind][0][0][0] - gt_tubes[gtind][1][0][0] + 1) gt_bb = gt_tubes[gtind][3] iou = compute_spatial_temporal_iou(gt_fnr,gt_bb,dt_fnr,dt_bb) if iou > ioumax: # find the best possible gttube based on stiou ioumax = iou maxgtind = gtind if ioumax > 0.2: covered_gt_tubes_portion[gtind] = 1 # records the score,T/F of each dt tube at every step for every class allscore_02_portion[checkpoint][dt_label][cc_portion[checkpoint][dt_label],:] = [dt_tubes['score'][dtind],1] else: allscore_02_portion[checkpoint][dt_label][cc_portion[checkpoint][dt_label],:] = [dt_tubes['score'][dtind],0] if ioumax > 0.5: covered_gt_tubes_portion[gtind] = 1 # records the score,T/F of each dt tube at every step for every class allscore_05_portion[checkpoint][dt_label][cc_portion[checkpoint][dt_label],:] = [dt_tubes['score'][dtind],1] else: allscore_05_portion[checkpoint][dt_label][cc_portion[checkpoint][dt_label],:] = [dt_tubes['score'][dtind],0] # for portion if checkpoint == 9: # cc counts the number of detections per class cc[dt_label] += 1 assert(cc[dt_label]<10000) ioumax = -10000 maxgtind = 0 for gtind in range(num_gt_tubes): action_id = gt_tubes[gtind][2] - 1#class # if this gt tube is not covered and has the same label as this detected tube if (not covered_gt_tubes[gtind]) and dt_label == action_id: gt_fnr = range(gt_tubes[gtind][0][0][0] - gt_tubes[gtind][1][0][0] + 1) gt_bb = gt_tubes[gtind][3] iou = compute_spatial_temporal_iou(gt_fnr,gt_bb,dt_fnr,dt_bb) if iou > ioumax: # find the best possible gttube based on stiou ioumax = iou maxgtind = gtind for iouth in IoUTHs: if ioumax > iouth: covered_gt_tubes[gtind] = 1 # records the score,T/F of each dt tube at every step for every class allscore[iouth][dt_label][cc[dt_label],:] = [dt_tubes['score'][dtind],1] # max iou with rest gt tubes averageIoU[iouth][dt_label] += ioumax else: allscore[iouth][dt_label][cc[dt_label],:] = [dt_tubes['score'][dtind],0] preds[checkpoint].append(pred) gts[checkpoint].append(gt) return int(pred==gt) def evaluate_tubes(outfile): actions = CLASSES numActions = len(CLASSES) AP = np.zeros(numActions) AIoU = np.zeros(numActions) AUC = np.zeros(numActions) mAPs = [] for iouth in IoUTHs: for a in range(numActions): tmpscore = allscore[iouth][a][:cc[a],:].copy() scores = tmpscore[:,0] result = tmpscore[:,1] si = np.argsort(-scores) result = result[si] fp = np.cumsum(result == 0) tp = np.cumsum(result == 1) fp = fp.astype(np.float64) tp = tp.astype(np.float64) recall = tp/float(total_num_gt_tubes[a]+1) precision = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) AP[a] = voc_ap(recall,precision) mAP = np.mean(AP) mAPs.append(mAP) ptr_str = 'iouth=0.2->0.95:' + str(mAPs) + '\n' print(ptr_str) outfile.write(ptr_str) # add for 0.2,0.5 portion....todo mAPs = [] for i in range(10): for a in range(numActions): tmpscore = allscore_05_portion[i][a][:cc_portion[i][a],:].copy() scores = tmpscore[:,0] result = tmpscore[:,1] si = np.argsort(-scores) result = result[si] fp = np.cumsum(result == 0) tp = np.cumsum(result == 1) fp = fp.astype(np.float64) tp = tp.astype(np.float64) recall = tp/float(total_num_gt_tubes[a]+1) precision = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) AP[a] = voc_ap(recall,precision) mAP = np.mean(AP) mAPs.append(mAP) ptr_str = 'iouth=0.5,' + str(mAPs) + '\n' print(ptr_str) outfile.write(ptr_str) mAPs = [] for i in range(10): for a in range(numActions): tmpscore = allscore_02_portion[i][a][:cc_portion[i][a],:].copy() scores
# Every crownstone creates its ResultMap and no result is published in order to not influence the way that the testdata # is created for every crownstone. A confidence Map with the probabilities that correspond to each labelroom is created as well. from simulator.simulatorBases.CrownstoneCore import CrownstoneCore from simulator.simulatorBases.GuiCrownstoneCore import GuiCrownstoneCore import math import operator import string class SimulatorCrownstone(GuiCrownstoneCore): """ Class variables are created here. """ # myValue = False def __init__(self, id, x, y): super().__init__(id=id, x=x, y=y) # self.debugPrint = False self.flag, self.label, self.counter, self.param, self.value = 0, 0, 0, 0, 0 self.radiomap, self.predictions, self.testSet, self.probabilities, self.parameters = {}, {}, {}, {}, {} self.w, self.p, self.publish, self.resetTrainingData, self.timelimit = 0, 0, 0, 0, 0 self.Map, self.confidence_Map = {}, {} self.nodes = 20 # def print(self, data): # if self.debugPrint: # print(data) def resetState(self, resetTrainingData): # This is an important method to reset any state the Crownstone may have so the simulation can be restarted. # If resetTrainingData is False, you should clear all state data except that referring to the training sets. if resetTrainingData: self.flag, self.label, self.counter = 0, 0, 0 self.radiomap = {} self.w, self.p, self.publish = 0, 0, 0 self.param = 1 else: self.counter, self.param, self.value = 0, 0, 0 self.predictions, self.testSet, self.probabilities, self.parameters = {}, {}, {}, {} self.w, self.p = 0, 0 self.publish, self.resetTrainingData = 1, 1 self.timelimit = self.time self.flag = 2 self.nodes = 20 def tick(self, time): roomId = 'None' # make predictions after 0.5 sec # the result map of each crownstone should be created after the crownstones have received the info from their neighbors if (self.time > self.timelimit + 0.5 and self.resetTrainingData == 1): self.timelimit = self.timelimit + 500 if len(self.testSet) != 0 and self.param == 1: self.probabilities, self.predictions = self.Predictions_norm(self.testSet) if self.predictions[0] == 1: roomId = "Room 1" elif self.predictions[0] == 2: roomId = "Room 2" elif self.predictions[0] == 3: roomId = "Room 3" elif self.predictions[0] == 4: roomId = "Room 4" elif self.predictions[0] == 5: roomId = "Room 5" elif self.predictions[0] == 6: roomId = "Room 6" elif self.predictions[0] == 7: roomId = "Room 7" if 'x' in self.debugInformation: x = int(self.debugInformation['x']) y = int(self.debugInformation['y']) # construct the result map of every crownstone for key, values in self.Map.items(): if key == x: for ck in values.keys(): if ck == y: self.Map[key][ck] = roomId # construct the confidence map for every crownstone. store the probability with which the room was predicted. for key, values in self.confidence_Map.items(): if key == x: for ck in values.keys(): if ck == y: self.confidence_Map[key][ck] = self.probabilities[0] # accuracy = self.Accuracy(self.predictions) def receiveMessage(self, data, rssi): # print(self.time, "Crownstone", self.id, "received from crownstone", data["sender"], "with payload", data["payload"], " and rssi:", rssi) if data["payload"] == "StartTraining": self.label = self.label + 1 self.radiomap[self.label] = {} self.flag = 1 # When I receive "Start training" a flag informs the crownstones to start constructing their radio maps. if data["payload"] == "StopTraining": self.flag = 0 if data["payload"] == "StartLocalizing": # the parameters (mean & standard deviation) to be calculated only once. flag: self.param self.param = 1 self.flag = 2 # both the radio map construction and the testSet construction are held in both receiveMessage and newMeasurement functions # as the radio map of each crownstone contains information (RSSI values) received from other crownstones. Either from all the crownstones # in the mesh network (all crownstones have the same data - highest ttl - fully connected graph) or from only their neighbours (ttl=1 - not fully connected graph). if (self.flag == 1): # Construction of radiomap. if 'rssi' in data['payload']: if data['payload']['originalSender'] not in self.radiomap[self.label]: self.radiomap[self.label][data['payload']['originalSender']] = [] self.radiomap[self.label][data['payload']['originalSender']].append(data['payload']['rssi']) if (self.flag == 2): # The parameters (mean & standard deviation) of each crownstone for each room are calculated only once after the end of the training phase. if self.param == 1: self.parameters = self.crownParameters(self.radiomap) # Initialization of result map for every crownstone self.Map = {} self.confidence_Map = {} for self.x in range(85, 735, 10): self.Map[self.x] = {} self.confidence_Map[self.x] = {} for self.y in range(85, 855, 10): self.Map[self.x][self.y] = None self.confidence_Map[self.x][self.y] = None self.param = 0 if self.w == 0: self.counter = self.counter + 1 # self.testSet[self.counter]={} # for a complete testSet if a crownstone doesn't even scan the user, set RSSI to a really small value. # self.testSet[self.counter][self.id]=[-100] # Construction of testSet, the original sender of the packet is received and saved to the set. if 'rssi' in data['payload']: if self.counter not in self.testSet: self.testSet[self.counter] = {} if data['payload']['originalSender'] not in self.testSet[self.counter]: self.testSet[self.counter][data['payload']['originalSender']] = [] self.testSet[self.counter][data['payload']['originalSender']].append(data['payload']['rssi']) # check if the testSet is complete. The lenght of each row should be equal to the number of nodes in the mesh network. if len(self.testSet[self.counter]) == self.nodes: self.w = 0 else: self.w = 1 def newMeasurement(self, data, rssi): # print(self.time, self.id, "scans", data["address"], " with payload ", data["payload"], " and rssi:", rssi) if (self.flag == 1): self.sendMessage({"rssi": rssi, "originalSender": self.id}, 1) # Construction of radio map if self.id not in self.radiomap[self.label]: self.radiomap[self.label][self.id] = [] self.radiomap[self.label][self.id].append(rssi) if (self.flag == 2): # Construction of testSet. If the crownstone is able to scan the user the flag w is set to 1, otherwise it remains 0. # flag p is used to avoid retransmissions if self.p == 0: self.counter = self.counter + 1 self.w = 1 if self.counter not in self.testSet: self.testSet[self.counter] = {} if self.id not in self.testSet[self.counter]: self.testSet[self.counter][self.id] = [] self.testSet[self.counter][self.id].append(rssi) self.value = self.testSet[self.counter][self.id][0] self.sendMessage({"rssi": rssi, "originalSender": self.id}, 1) self.p = 1 if rssi != self.value: self.counter = self.counter + 1 self.w = 1 if self.counter not in self.testSet: self.testSet[self.counter] = {} if self.id not in self.testSet[self.counter]: self.testSet[self.counter][self.id] = [] self.testSet[self.counter][self.id].append(rssi) self.sendMessage({"rssi": rssi, "originalSender": self.id}, 1) def crownParameters(self, radiomap): parameters = {} for self.label, crowns in radiomap.items(): if self.label not in parameters: parameters[self.label] = {} sorted_crowns = sorted(crowns.items(), key=operator.itemgetter(0)) for crown, RSSI in sorted_crowns: if len(RSSI) != 1: if crown not in parameters[self.label]: parameters[self.label][crown] = [] parameters[self.label][crown] = self.Statistics(RSSI) return parameters def Statistics(self, RSSI): parameters = [self.MeanValue(RSSI), self.StandardDeviation(RSSI)] return parameters def MeanValue(self, rss): mean = sum(rss) / float(len(rss)) return mean def StandardDeviation(self, rss): average = self.MeanValue(rss) variance = sum([pow(RSSI - average, 2) for RSSI in rss]) / float(len(rss) - 1) standarddev = math.sqrt(variance) return standarddev def Predictions_norm(self, testSet): predictions = [] probabilities = [] for counter in testSet: best_probability, room_label = self.PredictRoom_norm(testSet[counter]) # if self.publish == 1: # if room_label == 1: # self.publishResult("Room 1") # elif room_label == 2: # self.publishResult("Room 2") # elif room_label == 3: # self.publishResult("Room 3") # elif room_label == 4: # self.publishResult("Room 4") # elif room_label == 5: # self.publishResult("Room 5") # elif room_label == 6: # self.publishResult("Room 6") # elif room_label == 7: # self.publishResult("Room 7") probabilities.append(best_probability) predictions.append(room_label) return probabilities, predictions def PredictRoom_norm(self, testSet): probabilities = self.RoomProbabilities_norm(testSet) room_predicted, best_probability = None, -1 for room_label, probability in probabilities.items(): if room_predicted is None or probability > best_probability: best_probability = probability room_predicted = room_label return best_probability, room_predicted def RoomProbabilities_norm(self, testSet): probabilities1 = {} norm_factor = {} norm_probabilities = {} for self.label, room_parameters in parameters.items(): probabilities1[self.label] = {} for crown in room_parameters.items(): if crown[0] not in probabilities1[self.label]: probabilities1[self.label][crown[0]] = [] probabilities1[self.label][crown[0]].append(1) for node, rssi in testSet.items(): if crown[0] == node: mean = crown[1][0] standardev = crown[1][1] exponent_numerator = math.pow(rssi[0] - mean, 2) exponent_denominator = 2 * math.pow(standardev, 2) exponent_result = math.exp((-exponent_numerator) / exponent_denominator) prob_density = (1 / (math.sqrt(2 * math.pi) * standardev)) * exponent_result # non-normalized probabilities # product of our prior distribution probabilities1[self.label][node][0] *= prob_density # normalization_factor one for each crownstone, sum of non-normalized probabilities for all rooms n = 1 for self.label, prob in probabilities1.items(): for node in prob.items(): if n <= len(prob): norm_factor[node[0]] = node[1][0] n = n + 1 else: norm_factor[node[0]] += node[1][0] for self.label, prob in probabilities1.items(): norm_probabilities[self.label] = 1 for node in prob.items(): norm_probabilities[self.label] *= (1 / norm_factor[node[0]]) * node[1][0] return norm_probabilities def Accuracy(self,
#!/usr/bin/env python # -*- coding: utf-8 -*- """ # CODE NAME HERE # CODE DESCRIPTION HERE Created on 2019-08-21 at 12:28 @author: cook """ from astropy.table import Table from astropy import constants as cc from astropy import units as uu import numpy as np import os from scipy.optimize import curve_fit import warnings from apero import core from apero import lang from apero.core import constants from apero.core import math as mp from apero.core.core import drs_log from apero.core.core import drs_file from apero.io import drs_data # ============================================================================= # Define variables # ============================================================================= __NAME__ = 'science.rv.general.py' __INSTRUMENT__ = 'None' # Get constants Constants = constants.load(__INSTRUMENT__) # Get version and author __version__ = Constants['DRS_VERSION'] __author__ = Constants['AUTHORS'] __date__ = Constants['DRS_DATE'] __release__ = Constants['DRS_RELEASE'] # get param dict ParamDict = constants.ParamDict DrsFitsFile = drs_file.DrsFitsFile # Get function string display_func = drs_log.display_func # Get Logging function WLOG = drs_log.wlog # Get the text types TextEntry = lang.drs_text.TextEntry TextDict = lang.drs_text.TextDict # alias pcheck pcheck = core.pcheck # Speed of light # noinspection PyUnresolvedReferences speed_of_light_ms = cc.c.to(uu.m / uu.s).value # noinspection PyUnresolvedReferences speed_of_light = cc.c.to(uu.km / uu.s).value # ============================================================================= # Define functions # ============================================================================= def measure_fp_peaks(params, props, limit, normpercent): """ Measure the positions of the FP peaks Returns the pixels positions and Nth order of each FP peak :param p: parameter dictionary, ParamDict containing constants Must contain at least: drift_peak_border_size: int, the border size (edges in x-direction) for the FP fitting algorithm drift_peak_fpbox_size: int, the box half-size (in pixels) to fit an individual FP peak to - a gaussian will be fit to +/- this size from the center of the FP peak drift_peak_peak_sig_lim: dictionary, the sigma above the median that a peak must have to be recognised as a valid peak (before fitting a gaussian) dictionary must have keys equal to the lamp types (hc, fp) drift_peak_inter_peak_spacing: int, the minimum spacing between peaks in order to be recognised as a valid peak (before fitting a gaussian) log_opt: string, log option, normally the program name :param loc: parameter dictionary, ParamDict containing data Must contain at least: speref: numpy array (2D), the reference spectrum wave: numpy array (2D), the wave solution image lamp: string, the lamp type (either 'hc' or 'fp') :return loc: parameter dictionary, the updated parameter dictionary Adds/updates the following: ordpeak: numpy array (1D), the order number for each valid FP peak xpeak: numpy array (1D), the central position each gaussain fit to valid FP peak ewpeak: numpy array (1D), the FWHM of each gaussain fit to valid FP peak vrpeak: numpy array (1D), the radial velocity drift for each valid FP peak llpeak: numpy array (1D), the delta wavelength for each valid FP peak amppeak: numpy array (1D), the amplitude for each valid FP peak """ func_name = __NAME__ + '.create_drift_file()' # get the reference data and the wave data speref = np.array(props['SPEREF']) wave = props['WAVE'] # storage for order of peaks allpeaksize = [] allordpeak = [] allxpeak = [] allewpeak = [] allvrpeak = [] allllpeak = [] allamppeak = [] alldcpeak = [] allshapepeak = [] # loop through the orders for order_num in range(speref.shape[0]): # storage for order of peaks ordpeak = [] xpeak = [] ewpeak = [] vrpeak = [] llpeak = [] amppeak = [] dcpeak = [] shapepeak = [] # storage of warnings warn_dict = dict() # set number of peaks rejected to zero nreject = 0 # set a counter for total number of peaks ipeak = 0 # get the pixels for this order tmp = np.array(speref[order_num, :]) # define indices index = np.arange(len(tmp)) # ------------------------------------------------------------------ # normalize the spectrum tmp = tmp / np.nanpercentile(tmp, normpercent) # ------------------------------------------------------------------ # find the peaks with warnings.catch_warnings(record=True) as w: peakmask = (tmp[1:-1] > tmp[2:]) & (tmp[1:-1] > tmp[:-2]) peakpos = np.where(peakmask)[0] # work out the FP width for this order size = int(np.nanmedian(peakpos[1:] - peakpos[:-1])) # ------------------------------------------------------------------ # mask for finding maximum peak mask = np.ones_like(tmp) # mask out the edges mask[:size + 1] = 0 mask[-(size + 1):] = 0 # ------------------------------------------------------------------ # loop for peaks that are above a value of limit while mp.nanmax(mask * tmp) > limit: # -------------------------------------------------------------- # find peak along the order maxpos = np.nanargmax(mask * tmp) maxtmp = tmp[maxpos] # -------------------------------------------------------------- # get the values around the max position index_peak = index[maxpos - size: maxpos + size] tmp_peak = tmp[maxpos - size: maxpos + size] # -------------------------------------------------------------- # mask out this peak for next iteration of while loop mask[maxpos - (size // 2):maxpos + (size // 2) + 1] = 0 # -------------------------------------------------------------- # return the initial guess and the best fit p0, gg, _, warns = fit_fp_peaks(index_peak, tmp_peak, size) # -------------------------------------------------------------- # only keep peaks within +/- 1 pixel of original peak # (gaussian fit is to find sub-pixel value) cond = np.abs(maxpos - gg[1]) < 1 if cond: # work out the radial velocity of the peak lambefore = wave[order_num, maxpos - 1] lamafter = wave[order_num, maxpos + 1] deltalam = lamafter - lambefore # get the radial velocity waveomax = wave[order_num, maxpos] radvel = speed_of_light_ms * deltalam / (2.0 * waveomax) # add to storage ordpeak.append(order_num) xpeak.append(gg[1]) ewpeak.append(gg[2]) vrpeak.append(radvel) llpeak.append(deltalam) amppeak.append(maxtmp) shapepeak.append(gg[3]) dcpeak.append(gg[4]) else: # add to rejected nreject += 1 # iterator ipeak += 1 # -------------------------------------------------------------- # deal with warnings if warns is not None: if warns in warn_dict: warn_dict[warns] += 1 else: warn_dict[warns] = 1 # -------------------------------------------------------------- # log how many FPs were found and how many rejected wargs = [order_num, ipeak, nreject] WLOG(params, '', TextEntry('40-018-00001', args=wargs)) # ------------------------------------------------------------------ # print warnings for key in list(warn_dict.keys()): wargs = [warn_dict[key], key] WLOG(params, 'warning', TextEntry('00-018-00001', args=wargs)) # ------------------------------------------------------------------ # add values to all storage (and sort by xpeak) indsort = np.argsort(xpeak) allordpeak.append(np.array(ordpeak)[indsort]) allxpeak.append(np.array(xpeak)[indsort]) allewpeak.append(np.array(ewpeak)[indsort]) allvrpeak.append(np.array(vrpeak)[indsort]) allllpeak.append(np.array(llpeak)[indsort]) allamppeak.append(np.array(amppeak)[indsort]) allshapepeak.append(np.array(shapepeak)[indsort]) alldcpeak.append(np.array(dcpeak)[indsort]) allpeaksize.append(size) # store values in loc props['ORDPEAK'] = np.concatenate(allordpeak).astype(int) props['XPEAK'] = np.concatenate(allxpeak) props['PEAK2PEAK'] = np.concatenate(allewpeak) props['VRPEAK'] = np.concatenate(allvrpeak) props['LLPEAK'] = np.concatenate(allllpeak) props['AMPPEAK'] = np.concatenate(allamppeak) props['DCPEAK'] = np.concatenate(alldcpeak) props['SHAPEPEAK'] = np.concatenate(allshapepeak) props['PEAKSIZE'] = np.array(allpeaksize) # set source keys = ['ORDPEAK', 'XPEAK', 'PEAK2PEAK', 'VRPEAK', 'LLPEAK', 'AMPPEAK', 'DCPEAK', 'SHAPEPEAK', 'PEAKSIZE'] props.set_sources(keys, func_name) # Log the total number of FP lines found wargs = [len(props['XPEAK'])] WLOG(params, 'info', TextEntry('40-018-00002', args=wargs)) # return the property parameter dictionary return props def fit_fp_peaks(x, y, size, return_model=False): # storage of warnings warns = None # get gauss function ea_airy = mp.ea_airy_function # set up initial guess pnames = ['amp', 'pos', 'period', 'shape', 'dc'] # [amp, position, period, exponent, zero point] p0 = [np.max(y) - np.min(y), np.median(x), size, 1.5, np.max([0, np.min(y)])] # set up the bounds lowerbounds = [0.5 * p0[0], p0[1] - 2, 0.7 * p0[2], 1.0, 0.0] upperbounds = [2.0 * p0[0], p0[1] + 2, 1.3 * p0[2], 10.0, 0.5 * p0[0]] bounds = [lowerbounds, upperbounds] # test bounds make sense for p_it in range(len(lowerbounds)): if lowerbounds[p_it] >= upperbounds[p_it]: if warns is None: warns = '' warns += ('\nBoundError: Lower bound {0} incorrect (lower={1} ' 'upper={2})'.format(pnames[p_it], lowerbounds[p_it], upperbounds[p_it])) if p0[p_it] < lowerbounds[p_it] or p0[p_it] > upperbounds[p_it]: if warns is None: warns = '' warns += ('\nBoundError: Inital guess for {0} out of bounds ' '(guess={1} lower={2} upper={3})' ''.format(pnames[p_it], p0[p_it], lowerbounds[p_it], upperbounds[p_it])) # deal with bad bounds if warns is not None: popt = [np.nan, np.nan, np.nan, np.nan, np.nan] pcov = None model = np.repeat([np.nan], len(x)) else: # try to fit etiennes airy function try: with warnings.catch_warnings(record=True) as _: popt, pcov = curve_fit(ea_airy, x, y, p0=p0, bounds=bounds) model = ea_airy(x, *popt) except ValueError as e: # log that ydata or xdata contains NaNs popt = [np.nan, np.nan, np.nan, np.nan, np.nan] pcov = None warns = '{0}: {1}'.format(type(e), e) model = np.repeat([np.nan], len(x)) except RuntimeError as e: popt = [np.nan, np.nan, np.nan, np.nan, np.nan] pcov = None warns = '{0}: {1}'.format(type(e), e) model = np.repeat([np.nan], len(x)) # deal with returning model if return_model: return p0, popt, pcov, warns, model else: # return the guess and the best fit return p0, popt, pcov, warns def remove_wide_peaks(params, props, cutwidth): """ Remove peaks that are too wide :param p: parameter dictionary, ParamDict containing constants :param loc: parameter dictionary, ParamDict containing data Must contain at least: ordpeak: numpy
TimeDistributed(Dense(4096, activation="relu", kernel_regularizer=l2_reg), name="frcnn_fc1")(output) output = TimeDistributed(Dense(4096, activation="relu", kernel_regularizer=l2_reg), name="frcnn_fc2")(output) frcnn_cls_predictions = TimeDistributed(Dense(cfg.NUM_CLASSES, activation="softmax", kernel_regularizer=l2_reg), name="frcnn_cls")(output) frcnn_reg_predictions = TimeDistributed(Dense(cfg.NUM_CLASSES * 4, activation="linear", kernel_regularizer=l2_reg), name="frcnn_reg")(output) input_gt_boxes = Input(shape=(None, 4), name="input_gt_boxes", dtype=tf.float32) input_gt_labels = Input(shape=(None,), name="input_gt_labels", dtype=tf.int32) rpn_cls_actuals = Input(shape=(None, None, cfg.ANCHOR_COUNT), name="input_rpn_cls_actuals", dtype=tf.float32) rpn_reg_actuals = Input(shape=(None, 4), name="input_rpn_reg_actuals", dtype=tf.float32) input_gt_masks = KL.Input(shape=(None, cfg.IMG_SIZE_HEIGHT, cfg.IMG_SIZE_WIDTH), name="input_gt_masks", dtype=tf.int32) input_gt_seg_mask_inds = KL.Input(shape=(None,), name="input_gt_seg_mask_inds", dtype=tf.int32) frcnn_reg_actuals, frcnn_cls_actuals, target_maks, rois_pos = ProposalTargetLayer(cfg, name="roi_deltas")( [roi_bboxes, input_gt_boxes, input_gt_labels, input_gt_masks, input_gt_seg_mask_inds]) # only for positive rois roi_align_mask = RoiAlign(cfg, name="roi_align_mask")([feature_extractor.output, rois_pos]) # rois_pos]) pool5_2_conv = KL.TimeDistributed(KL.Conv2D(512, (1, 1), activation="relu", padding="valid", kernel_initializer=KI.RandomNormal(stddev=0.01), bias_initializer="zeros", kernel_regularizer=l2_reg), name="mask_conv_1")(roi_align_mask) pool5_2_conv2 = KL.TimeDistributed(KL.Conv2D(512, (3, 3), activation="relu", padding="same", kernel_initializer=KI.RandomNormal(stddev=0.01), bias_initializer="zeros", kernel_regularizer=l2_reg), name="mask_conv_2")(pool5_2_conv) mask_deconv1 = KL.TimeDistributed(KL.Conv2DTranspose(256, (8, 8), padding="same", strides=(4, 4)), # , groups=256), # kernel_initializer=BilinearInitializer(filter_size=8, num_channels_in=512, num_channels_out=256)), name='mask_deconv_1')(pool5_2_conv2) pool5_2_conv3 = KL.TimeDistributed(KL.Conv2D(512, (3, 3), activation="relu", padding="same", kernel_initializer=KI.RandomNormal(stddev=0.01), bias_initializer="zeros", kernel_regularizer=l2_reg), name="mask_conv_3")(mask_deconv1) pool5_2_conv4 = KL.TimeDistributed(KL.Conv2D(512, (3, 3), activation="relu", padding="same", kernel_initializer=KI.RandomNormal(stddev=0.01), bias_initializer="zeros", kernel_regularizer=l2_reg), name="mask_conv_4")(pool5_2_conv3) mask_deconv2 = KL.TimeDistributed(KL.Conv2DTranspose(256, (8, 8), padding="same", strides=(4, 4)), # , groups=256), # kernel_initializer=BilinearInitializer(filter_size=8, num_channels_in=512, num_channels_out=256)), name='mask_deconv_2')(pool5_2_conv4) pool5_2_conv5 = KL.TimeDistributed(KL.Conv2D(512, (3, 3), activation="relu", padding="same", kernel_initializer=KI.RandomNormal(stddev=0.01), bias_initializer="zeros", kernel_regularizer=l2_reg), name="mask_conv_5")(mask_deconv2) pool5_2_conv6 = KL.TimeDistributed(KL.Conv2D(512, (3, 3), activation="relu", padding="same", kernel_initializer=KI.RandomNormal(stddev=0.01), bias_initializer="zeros", kernel_regularizer=l2_reg), name="mask_conv_6")(pool5_2_conv5) mask_deconv3 = KL.TimeDistributed(KL.Conv2DTranspose(256, (4, 4), padding="same", strides=(2, 2)), # , groups=256), # kernel_initializer=BilinearInitializer(filter_size=4, num_channels_in=512, num_channels_out=256)), name='mask_deconv_3')(pool5_2_conv6) mask_prob_output = KL.TimeDistributed( KL.Conv2D(cfg.NUM_AFFORDANCE_CLASSES, (1, 1), padding="valid", activation="softmax", kernel_initializer=KI.RandomNormal(stddev=0.01), bias_initializer="zeros", kernel_regularizer=l2_reg), name="mask_score")(mask_deconv3) frcnn_model = Model(inputs=[input_img, input_gt_boxes, input_gt_labels, rpn_reg_actuals, rpn_cls_actuals, input_gt_masks, input_gt_seg_mask_inds], outputs=[frcnn_reg_predictions, frcnn_cls_predictions, frcnn_reg_actuals, frcnn_cls_actuals, roi_bboxes, target_maks, rois_pos]) return frcnn_model # WITH RESIZING # class ProposalLayer(Layer): # """Generating bounding boxes from rpn predictions. # First calculating the boxes from predicted deltas and label probs. # Then applied non max suppression and selecting "train or test nms_topn" boxes. # inputs: # rpn_bbox_deltas = (batch_size, img_output_height, img_output_width, anchor_count * [delta_y, delta_x, delta_h, delta_w]) # img_output_height and img_output_width are calculated to the base model feature map # rpn_labels = (batch_size, img_output_height, img_output_width, anchor_count) # # outputs: # roi_bboxes = (batch_size, train/test_nms_topn, [y1, x1, y2, x2]) # """ # # def __init__(self, anchors, mode, cfg, **kwargs): # super(ProposalLayer, self).__init__(**kwargs) # self.cfg = cfg # self.mode = mode # self.anchors = tf.constant(anchors, dtype=tf.float32) # # def get_config(self): # config = super(ProposalLayer, self).get_config() # config.update({"cfg": self.cfg, "anchors": self.anchors, "mode": self.mode}) # return config # # def call(self, inputs): # rpn_bbox_deltas = inputs[0] # rpn_labels = inputs[1] # anchors = self.anchors # # pre_nms_topn = self.cfg.PRE_NMS_TOPN # post_nms_topn = self.cfg.TRAIN_NMS_TOPN if self.mode == "training" else self.cfg.TEST_NMS_TOPN # nms_iou_threshold = self.cfg.NMS_IOU_THRESHOLD # variances = self.cfg.VARIANCES # total_anchors = anchors.shape[0] # batch_size = tf.shape(rpn_bbox_deltas)[0] # rpn_bbox_deltas = tf.reshape(rpn_bbox_deltas, (batch_size, total_anchors, 4)) # rpn_labels = tf.reshape(rpn_labels, (batch_size, total_anchors)) # # rpn_bbox_deltas *= variances # rpn_bboxes = bbox_utils.get_bboxes_from_deltas(anchors, rpn_bbox_deltas) # # _, pre_indices = tf.nn.top_k(rpn_labels, pre_nms_topn) # # pre_roi_bboxes = tf.gather(rpn_bboxes, pre_indices, batch_dims=1) # pre_roi_labels = tf.gather(rpn_labels, pre_indices, batch_dims=1) # # pre_roi_bboxes = tf.reshape(pre_roi_bboxes, (batch_size, pre_nms_topn, 1, 4)) # pre_roi_labels = tf.reshape(pre_roi_labels, (batch_size, pre_nms_topn, 1)) # # roi_bboxes, _, _, _ = bbox_utils.non_max_suppression(pre_roi_bboxes, pre_roi_labels, # max_output_size_per_class=post_nms_topn, # max_total_size=post_nms_topn, # iou_threshold=nms_iou_threshold) # return tf.stop_gradient(roi_bboxes) # WITH RESIZING # class ProposalTargetLayer(Layer): # """Calculating faster rcnn actual bounding box deltas and labels. # This layer only running on the training phase. # inputs: # roi_bboxes = (batch_size, nms_topn, [y1, x1, y2, x2]) # gt_boxes = (batch_size, padded_gt_boxes_size, [y1, x1, y2, x2]) # gt_labels = (batch_size, padded_gt_boxes_size) # gt_masks = (batch_size, num_masks, img_height, img_width) # # outputs: # roi_bbox_deltas = (batch_size, train_nms_topn * total_labels, [delta_y, delta_x, delta_h, delta_w]) # roi_bbox_labels = (batch_size, train_nms_topn, total_labels) # """ # # def __init__(self, cfg, **kwargs): # super(ProposalTargetLayer, self).__init__(**kwargs) # self.cfg = cfg # # self.img_height = tf.cast(img_height, tf.float32) # # self.img_width = tf.cast(img_width, tf.float32) # # def get_config(self): # config = super(ProposalTargetLayer, self).get_config() # config.update({"cfg": self.cfg, "img_height": self.img_height, "img_width": self.img_width}) # return config # # def call(self, inputs): # roi_bboxes = inputs[0] # gt_boxes = inputs[1] # gt_labels = inputs[2] # if self.cfg.MASK_REG: # gt_masks = inputs[3] # gt_seg_mask_inds = inputs[4] # # total_labels = self.cfg.NUM_CLASSES # # total_pos_bboxes = int(self.cfg.RPN_BATCHSIZE * self.cfg.RPN_FG_FRACTION) # # total_neg_bboxes = self.cfg.RPN_BATCHSIZE - total_pos_bboxes # # TODO: try to increment number of positive rois # # Negative ROIs. Add enough to maintain positive:negative ratio. # r = 1.0 / self.cfg.ROI_POSITIVE_RATIO # total_pos_bboxes = int(self.cfg.TRAIN_ROIS_PER_IMAGE * self.cfg.ROI_POSITIVE_RATIO) # total_neg_bboxes = int(r * float(total_pos_bboxes)) - total_pos_bboxes # # variances = self.cfg.VARIANCES # # batch_size, total_bboxes = tf.shape(roi_bboxes)[0], tf.shape(roi_bboxes)[1] # # # Calculate iou values between each bboxes and ground truth boxes # iou_map, _ = bbox_utils.generate_iou_map(roi_bboxes, gt_boxes) # # Get max index value for each row # max_indices_each_gt_box = tf.argmax(iou_map, axis=2, output_type=tf.int32) # # IoU map has iou values for every gt boxes and we merge these values column wise # merged_iou_map = tf.reduce_max(iou_map, axis=2) # # # pos_mask = tf.greater(merged_iou_map, self.cfg.TRAIN_FG_THRES) # pos_mask = train_utils.randomly_select_xyz_mask(pos_mask, tf.constant([total_pos_bboxes], dtype=tf.int32)) # # neg_mask = tf.logical_and(tf.less(merged_iou_map, self.cfg.TRAIN_BG_THRESH_HI), tf.greater(merged_iou_map, self.cfg.TRAIN_BG_THRESH_LO)) # neg_mask = train_utils.randomly_select_xyz_mask(neg_mask, tf.constant([total_neg_bboxes], dtype=tf.int32)) # # # take corresponding gt boxes and gt labels to rois # gt_boxes_map = tf.gather(gt_boxes, max_indices_each_gt_box, batch_dims=1) # expanded_gt_boxes = tf.where(tf.expand_dims(pos_mask, axis=-1), gt_boxes_map, tf.zeros_like(gt_boxes_map)) # # gt_labels_map = tf.gather(gt_labels, max_indices_each_gt_box, batch_dims=1) # pos_gt_labels = tf.where(pos_mask, gt_labels_map, tf.constant(-1, dtype=tf.int32)) # neg_gt_labels = tf.cast(neg_mask, dtype=tf.int32) # expanded_gt_labels = tf.cast(pos_gt_labels + neg_gt_labels, dtype=tf.int32) # # (batch_size, num_rois, 4) # roi_bbox_deltas = bbox_utils.get_deltas_from_bboxes(roi_bboxes, expanded_gt_boxes) / variances # # # roi_bbox_labels = expanded_gt_labels # # # Transform to one hot representation (batch_size, num_rois, num_classes) # roi_bbox_labels = tf.one_hot(expanded_gt_labels, total_labels) # # scatter_indices = tf.tile(tf.expand_dims(roi_bbox_labels, -1), (1, 1, 1, 4)) # # roi_bbox_deltas = scatter_indices * tf.expand_dims(roi_bbox_deltas, -2) # # roi_bbox_deltas = tf.reshape(roi_bbox_deltas, (batch_size, total_bboxes * total_labels, 4)) # # if self.cfg.MASK_REG: # # Take only positive rois for mask training and corresponding roi_gt_boxes # pos_indices = tf.where(pos_mask) # positive_count = tf.shape(pos_indices)[0] # positive_rois = tf.gather_nd(roi_bboxes, pos_indices) # roi_gt_boxes = tf.gather_nd(gt_boxes_map, pos_indices) # # y1, x1, y2, x2 = tf.split(positive_rois, 4, axis=1) # y1t, x1t, y2t, x2t = tf.split(roi_gt_boxes, 4, axis=1) # # img_w = float(self.cfg.IMG_SIZE_WIDTH) # img_h = float(self.cfg.IMG_SIZE_HEIGHT) # # sanity check # x1 = tf.minimum(img_w - 1, tf.maximum(0.0, x1)) # y1 = tf.minimum(img_h - 1, tf.maximum(0.0, y1)) # x2 = tf.minimum(img_w - 1, tf.maximum(0.0, x2)) # y2 = tf.minimum(img_h - 1, tf.maximum(0.0, y2)) # x1t = tf.minimum(img_w - 1, tf.maximum(0.0, x1t)) # y1t = tf.minimum(img_h - 1, tf.maximum(0.0, y1t)) # x2t = tf.minimum(img_w - 1, tf.maximum(0.0, x2t)) # y2t = tf.minimum(img_h - 1, tf.maximum(0.0, y2t)) # # w = (x2 - x1) + 1 # h = (y2 - y1) + 1 # # # compute overlap between roi coordinate and gt_roi coordinate TODO: use overlap function? # x1o = tf.maximum(x1, x1t) # y1o = tf.maximum(y1, y1t) # x2o = tf.minimum(x2, x2t) # y2o = tf.minimum(y2, y2t) # # if positive_count != 0: # # Calculate labels in original mask -> gt_masks=(batch_size, num_masks, img_height, img_width) # original_affordance_labels = tf.unique(tf.reshape(gt_masks, [-1])) # original_affordance_labels = tf.sort(original_affordance_labels.y) # # # filter indices of gt boxes # indices_pos_gt_boxes = tf.boolean_mask(max_indices_each_gt_box, pos_mask) # # # mask associated wrt to true bbox (batch_size, positive_rois, mask_size, mask_size) # gt_mask = tf.gather(gt_masks, indices_pos_gt_boxes, axis=1) # # gt_mask = tf.cast(tf.expand_dims(gt_mask, axis=4), tf.float32) # y1o = tf.squeeze(y1o, axis=1) # x1o = tf.squeeze(x1o, axis=1) # y2o = tf.squeeze(y2o, axis=1) # x2o = tf.squeeze(x2o, axis=1) # # # create boxes to crop and indexes where each mask has its own box # boxes = tf.cast(tf.stack([y1o, x1o, y2o, x2o], axis=1), tf.float32) # box_index = tf.range(positive_count) # # # remove batch dim -> needed for crop and resize op # gt_mask = tf.squeeze(gt_mask, axis=0) # # # crop and resize the masks individually # positive_masks = self._crop_and_resize_masks(gt_mask, boxes, positive_rois, positive_count, original_affordance_labels) # # # Add batch dim # positive_masks = tf.expand_dims(positive_masks, axis=0) # positive_rois = tf.expand_dims(positive_rois, axis=0) # masks = positive_masks # tf.concat([positive_masks, negative_masks], axis=0) # else: # positive_rois = tf.expand_dims(positive_rois, axis=0) # masks = tf.constant(0, dtype=tf.int32, shape=[1, 0, self.cfg.TRAIN_MASK_SIZE, self.cfg.TRAIN_MASK_SIZE]) # # return tf.stop_gradient(roi_bbox_deltas), tf.stop_gradient(roi_bbox_labels), tf.stop_gradient(masks), \ # tf.stop_gradient(positive_rois) # # return tf.stop_gradient(roi_bbox_deltas), tf.stop_gradient(roi_bbox_labels) # # def _crop_and_resize_masks(self, masks, overlapping_boxes, rois, positive_count, original_aff_labels): # # overlapping_boxes = tf.cast(bbox_utils.denormalize_bboxes(overlapping_boxes, self.img_height, self.img_width), tf.int32) # # rois = tf.cast(bbox_utils.denormalize_bboxes(rois, self.img_height, self.img_width), tf.int32) # overlapping_boxes = tf.cast(bbox_utils.denormalize_bboxes(overlapping_boxes, self.cfg.IMG_SIZE_HEIGHT, self.cfg.IMG_SIZE_WIDTH), tf.int32) # rois = tf.cast(bbox_utils.denormalize_bboxes(rois, self.cfg.IMG_SIZE_HEIGHT, self.cfg.IMG_SIZE_WIDTH), tf.int32) # # # overlapping_boxes = tf.cast(overlapping_boxes, tf.int32) # # rois = tf.cast(rois, tf.int32) # # num_masks = tf.shape(masks)[0] # final_masks = tf.zeros((num_masks, self.cfg.TRAIN_MASK_SIZE, self.cfg.TRAIN_MASK_SIZE)) # for i in range(num_masks): # mask = masks[i] # # # get roi and overlap area coordinates # y1, x1, y2, x2 = tf.split(rois[i], 4, axis=0) # y1, x1, y2, x2 = tf.squeeze(y1), tf.squeeze(x1), tf.squeeze(y2), tf.squeeze(x2) # # y1o, x1o, y2o, x2o = tf.split(overlapping_boxes[i], 4, axis=0) # y1o, x1o, y2o, x2o = tf.squeeze(y1o), tf.squeeze(x1o), tf.squeeze(y2o), tf.squeeze(x2o) # # # take overlap area between gt_bbox and roi # overlapping_mask_area = mask[y1o:y2o, x1o:x2o] # # # calculate offsets with 0 above and in the left of the overlapping area # offset_height = y1o - y1 # offset_width = x1o - x1 # # # calculate roi height and width # target_height = y2 - y1 + 1 # target_width = x2 - x1 + 1 # # roi_mask = tf.image.pad_to_bounding_box(overlapping_mask_area, offset_height, offset_width, target_height, target_width) # # # # add overlapping area inside the roi and resize to mask size # # roi_mask[(y1o - y1):(y2o - y1), (x1o - x1):(x2o - x1)] = overlapping_mask_area # roi_mask = tf.image.resize(roi_mask, [self.cfg.TRAIN_MASK_SIZE, self.cfg.TRAIN_MASK_SIZE], method='bilinear') # # # Create a structure
* square_sum) ** beta) expect(expected, onp.nn.lrn(onp.array(x), size=nsize)) @pytest.mark.parametrize("type_a", [np.float32]) def test_lrn(type_a): alpha = 0.0002 beta = 0.5 bias = 2.0 nsize = 3 x = np.random.randn(5, 5, 5, 5).astype(type_a) square_sum = np.zeros((5, 5, 5, 5)).astype(type_a) for n, c, h, w in np.ndindex(x.shape): square_sum[n, c, h, w] = sum( x [n, max(0, c - int(math.floor((nsize - 1) / 2))): min(5, c + int(math.ceil((nsize - 1) / 2)) + 1), h, w] ** 2) expected = x / ((bias + (alpha / nsize) * square_sum) ** beta) expect( expected, onp.nn.lrn( onp.array(x), size=nsize, alpha=alpha, beta=beta, bias=bias)) @pytest.mark.parametrize("type_a", [np.float32]) def test_lstm(type_a): x = np.array([[[1., 2.]], [[3., 4.]], [[5., 6.]]]).astype(type_a) input_size = 2 hidden_size = 3 weight_scale = 0.1 number_of_gates = 4 W = weight_scale * np.ones((1, number_of_gates * hidden_size, input_size)).astype(type_a) R = weight_scale * np.ones((1, number_of_gates * hidden_size, hidden_size)).astype(type_a) expected_y, expected_yh = LSTM_Helper(X=x, W=W, R=R).step() y, yh, _ = onp.nn.lstm(onp.array(x), onp.array(W), onp.array(R), hidden_size=hidden_size) expect(expected_y.astype(type_a), y.numpy()) expect(expected_yh.astype(type_a), yh.numpy()) @pytest.mark.parametrize("type_a", [np.float32]) def test_lstm_initial_bias(type_a): x = np.array([[[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]]).astype(type_a) input_size = 3 hidden_size = 4 weight_scale = 0.1 custom_bias = 0.1 number_of_gates = 4 W = weight_scale * np.ones((1, number_of_gates * hidden_size, input_size)).astype(type_a) R = weight_scale * np.ones((1, number_of_gates * hidden_size, hidden_size)).astype(type_a) W_B = custom_bias * np.ones((1, number_of_gates * hidden_size)).astype(type_a) R_B = np.zeros((1, number_of_gates * hidden_size)).astype(type_a) B = np.concatenate((W_B, R_B), 1) expected_y, expected_yh = LSTM_Helper(X=x, W=W, R=R, B=B).step() y, yh, _ = onp.nn.lstm(onp.array(x), onp.array(W), onp.array(R), b=onp.array(B), hidden_size=hidden_size) expect(expected_y.astype(type_a), y.numpy()) expect(expected_yh.astype(type_a), yh.numpy()) @pytest.mark.parametrize("type_a", [np.float32]) @pytest.mark.parametrize("type_b", [np.int32]) def test_lstm_peepholes(type_a, type_b): x = np.array([[[1., 2., 3., 4.], [5., 6., 7., 8.]]]).astype(type_a) input_size = 4 hidden_size = 3 weight_scale = 0.1 number_of_gates = 4 number_of_peepholes = 3 W = weight_scale * np.ones((1, number_of_gates * hidden_size, input_size)).astype(type_a) R = weight_scale * np.ones((1, number_of_gates * hidden_size, hidden_size)).astype(type_a) B = np.zeros((1, 2 * number_of_gates * hidden_size)).astype(type_a) seq_lens = np.repeat(x.shape[0], x.shape[1]).astype(type_b) init_h = np.zeros((1, x.shape[1], hidden_size)).astype(type_a) init_c = np.zeros((1, x.shape[1], hidden_size)).astype(type_a) P = weight_scale * np.ones((1, number_of_peepholes * hidden_size)).astype(type_a) expected_y, expected_yh = LSTM_Helper( X=x, W=W, R=R, B=B, P=P, initial_c=init_c, initial_h=init_h).step() y, yh, _ = onp.nn.lstm(onp.array(x), onp.array(W), onp.array(R), b=onp.array(B), P=onp.array(P), sequence_lengths=onp.array(seq_lens), hidden_size=hidden_size) expect(expected_y.astype(np.float32), y.numpy()) expect(expected_yh.astype(np.float32), yh.numpy()) @pytest.mark.parametrize("type_a", [np.float32]) def test_leakyrelu(type_a): x = np.array([-1, 0, 1], dtype=type_a) expected = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * 0.1 result = onp.nn.leakyrelu(onp.array(x), alpha=0.1) expect(expected, result.numpy()) x = np.random.randn(3, 4, 5).astype(type_a) expected = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * 0.1 result = onp.nn.leakyrelu(onp.array(x), alpha=0.1) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [np.float32]) def test_leakyrelu_default(type_a): x = np.random.randn(3, 4, 5).astype(type_a) expected = np.clip(x, 0, np.inf) + np.clip(x, -np.inf, 0) * 0.01 result = onp.nn.leakyrelu(onp.array(x)) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", float_types) def test_logsoftmax(type_a): x = np.array([[-1, 0, 1]]).astype(type_a) expected = np.array([[-2.4076061, -1.407606, -0.407606]]).astype(type_a) result = onp.nn.logsoftmax(onp.array(x)) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", float_types) def test_logsoftmax_axis(type_a): def logsoftmax(x, axis=-1): x_max = np.max(x, axis=axis, keepdims=True) tmp = np.exp(x - x_max) s = np.sum(tmp, axis=axis, keepdims=True) return (x - x_max) - np.log(s) x = np.array([[0, 1, 2, 3], [10000, 10001, 10002, 10003]] ).astype(type_a) expected = logsoftmax(x) result = onp.nn.logsoftmax(onp.array(x)) expect(expected, result.numpy()) x = np.abs(np.random.randn(3, 4, 5).astype(type_a)) expected = logsoftmax(x, axis=0) result = onp.nn.logsoftmax(onp.array(x), axis=0) expect(expected, result.numpy()) expected = logsoftmax(x, axis=1) result = onp.nn.logsoftmax(onp.array(x), axis=1) expect(expected, result.numpy()) expected = logsoftmax(x, axis=2) result = onp.nn.logsoftmax(onp.array(x), axis=2) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types, np.int8, np.uint8]) def test_maxpool_1d_default(type_a): x = np.random.randn(1, 3, 32).astype(type_a) x_shape = np.shape(x) kernel_shape = [2] strides = [1] out_shape = get_pool_output_shape( 'VALID', x_shape[2:], kernel_shape, strides) padded = x expected = pool_reference( padded, x_shape, kernel_shape, strides, out_shape, [0], 'MAX').astype(type_a) result, _ = onp.nn.maxpool(onp.array(x), kernel_shape=kernel_shape) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types, np.int8, np.uint8]) def test_maxpool_2d_ceil(type_a): x = np.array([[[ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ]]]).astype(type_a) expected = np.array([[[ [11, 12], [15, 16]]]]).astype(type_a) result, _ = onp.nn.maxpool( onp.array(x), kernel_shape=(3, 3), strides=(2, 2), ceil_mode=True) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types, np.int8, np.uint8]) def test_maxpool_2d_default(type_a): x = np.random.randn(1, 3, 32, 32).astype(type_a) x_shape = np.shape(x) kernel_shape = (2, 2) strides = (1, 1) out_shape = get_pool_output_shape( 'VALID', x_shape[2:], kernel_shape, strides) padded = x expected = pool_reference(padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'MAX').astype(type_a) result, _ = onp.nn.maxpool(onp.array(x), kernel_shape=kernel_shape) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types, np.int8, np.uint8]) def test_maxpool_2d_dilations(type_a): x = np.array([[[ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16], ]]]).astype(type_a) expected = np.array([[[ [11, 12], [15, 16]]]]).astype(type_a) result, _ = onp.nn.maxpool( onp.array(x), kernel_shape=(2, 2), strides=(1, 1), dilations=(2, 2)) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types, np.int8, np.uint8]) def test_maxpool_2d_pads(type_a): x = np.random.randn(1, 3, 28, 28).astype(type_a) x_shape = np.shape(x) kernel_shape = (3, 3) strides = (1, 1) pad_bottom = pad_top = pad_right = pad_left = 2 pad_shape = [pad_top + pad_bottom, pad_left + pad_right] out_shape = get_pool_output_shape('VALID', np.add( x_shape[2:], pad_shape), kernel_shape, strides) padded = np.pad( x.astype(np.float64), ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant', constant_values=np.nan) expected = pool_reference(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'MAX').astype(type_a) result, _ = onp.nn.maxpool( onp.array(x), kernel_shape=kernel_shape, strides=strides, pads=(2, 2, 2, 2)) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types, np.int8, np.uint8]) def test_maxpool_2d_precomputed_pads(type_a): x = np.array([[[ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], ]]]).astype(type_a) expected = np.array([[[ [13, 14, 15, 15, 15], [18, 19, 20, 20, 20], [23, 24, 25, 25, 25], [23, 24, 25, 25, 25], [23, 24, 25, 25, 25]]]]).astype(type_a) result, _ = onp.nn.maxpool( onp.array(x), kernel_shape=(5, 5), pads=(2, 2, 2, 2)) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types, np.int8, np.uint8]) def test_maxpool_2d_precomputed_same_upper(type_a): x = np.array([[[ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], ]]]).astype(type_a) expected = np.array([[[[7, 9, 10], [17, 19, 20], [22, 24, 25]]]]).astype(type_a) result, _ = onp.nn.maxpool( onp.array(x), kernel_shape=(3, 3), strides=(2, 2), auto_pad='SAME_UPPER') expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types, np.int8, np.uint8]) def test_maxpool_2d_precomputed_strides(type_a): x = np.array([[[ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], ]]]).astype(type_a) expected = np.array([[[[7, 9], [17, 19]]]]).astype(type_a) result, _ = onp.nn.maxpool( onp.array(x), kernel_shape=(2, 2), strides=(2, 2)) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types, np.int8, np.uint8]) def test_maxpool_2d_same_lower(type_a): x = np.random.randn(1, 3, 32, 32).astype(type_a) x_shape = np.shape(x) kernel_shape = (2, 2) strides = (1, 1) out_shape = get_pool_output_shape( 'SAME_LOWER', x_shape[2:], kernel_shape, strides) pad_shape = get_pool_pad_shape( 'SAME_LOWER', x_shape[2:], kernel_shape, strides, out_shape) pad_bottom = pad_shape[0] // 2 pad_top = pad_shape[0] - pad_bottom pad_right = pad_shape[1] // 2 pad_left = pad_shape[1] - pad_right padded = np.pad( x.astype(np.float64), ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant', constant_values=np.nan) expected = pool_reference(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'MAX').astype(type_a) result, _ = onp.nn.maxpool( onp.array(x), kernel_shape=kernel_shape, auto_pad="SAME_LOWER") expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types, np.int8, np.uint8]) def test_maxpool_2d_same_upper(type_a): x = np.random.randn(1, 3, 32, 32).astype(type_a) x_shape = np.shape(x) kernel_shape = (2, 2) strides = (1, 1) out_shape = get_pool_output_shape( 'SAME_UPPER', x_shape[2:], kernel_shape, strides) pad_shape = get_pool_pad_shape( 'SAME_UPPER', x_shape[2:], kernel_shape, strides, out_shape) pad_top = pad_shape[0] // 2 pad_bottom = pad_shape[0] - pad_top pad_left = pad_shape[1] // 2 pad_right = pad_shape[1] - pad_left padded = np.pad( x.astype(np.float64), ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant', constant_values=np.nan) expected = pool_reference(padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'MAX').astype(type_a) result, _ = onp.nn.maxpool( onp.array(x), kernel_shape=kernel_shape, auto_pad="SAME_UPPER") expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types, np.int8, np.uint8]) def test_maxpool_2d_strides(type_a): x = np.random.randn(1, 3, 32, 32).astype(type_a) x_shape = np.shape(x) kernel_shape = (5, 5) strides = (3, 3) out_shape = get_pool_output_shape( 'VALID', x_shape[2:], kernel_shape, strides) padded = x expected = pool_reference( padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'MAX').astype(type_a) result, _ = onp.nn.maxpool( onp.array(x), kernel_shape=kernel_shape, strides=strides) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types, np.int8, np.uint8]) def test_maxpool_3d_default(type_a): x = np.random.randn(1, 3, 32, 32, 32).astype(type_a) x_shape = np.shape(x) kernel_shape = (2, 2, 2) strides = [1, 1, 1] out_shape = get_pool_output_shape( 'VALID', x_shape[2:], kernel_shape, strides) padded = x expected = pool_reference( padded, x_shape, kernel_shape, strides, out_shape, (0, 0, 0), 'MAX').astype(type_a) result, _ = onp.nn.maxpool( onp.array(x), kernel_shape=kernel_shape) expect(expected, result.numpy()) @pytest.mark.parametrize("type_a", [*float_types, np.int8, np.uint8]) def test_maxpool_with_argmax_2d_precomputed_pads(type_a): x = np.array([[[ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25], ]]]).astype(type_a) y_expected = np.array([[[ [13, 14, 15, 15, 15], [18, 19, 20, 20, 20], [23, 24, 25, 25, 25], [23, 24,
0x81E6 Animation231 = 0x81E7 Animation232 = 0x81E8 Animation233 = 0x81E9 Animation234 = 0x81EA Animation235 = 0x81EB Animation236 = 0x81EC Animation237 = 0x81ED Animation238 = 0x81EE Animation239 = 0x81EF Animation240 = 0x81F0 Animation241 = 0x81F1 Animation242 = 0x81F2 Animation243 = 0x81F3 Animation244 = 0x81F4 Animation245 = 0x81F5 Animation246 = 0x81F6 Animation247 = 0x81F7 Animation248 = 0x81F8 Animation249 = 0x81F9 Animation250 = 0x81FA Animation251 = 0x81FB Animation252 = 0x81FC Animation253 = 0x81FD Animation254 = 0x81FE Animation255 = 0x81FF # FancyLedA List FancyLedA0 = 0x8200 FancyLedA1 = 0x8201 FancyLedA2 = 0x8202 FancyLedA3 = 0x8203 FancyLedA4 = 0x8204 FancyLedA5 = 0x8205 FancyLedA6 = 0x8206 FancyLedA7 = 0x8207 FancyLedA8 = 0x8208 FancyLedA9 = 0x8209 FancyLedA10 = 0x820A FancyLedA11 = 0x820B FancyLedA12 = 0x820C FancyLedA13 = 0x820D FancyLedA14 = 0x820E FancyLedA15 = 0x820F FancyLedA16 = 0x8210 FancyLedA17 = 0x8211 FancyLedA18 = 0x8212 FancyLedA19 = 0x8213 FancyLedA20 = 0x8214 FancyLedA21 = 0x8215 FancyLedA22 = 0x8216 FancyLedA23 = 0x8217 FancyLedA24 = 0x8218 FancyLedA25 = 0x8219 FancyLedA26 = 0x821A FancyLedA27 = 0x821B FancyLedA28 = 0x821C FancyLedA29 = 0x821D FancyLedA30 = 0x821E FancyLedA31 = 0x821F FancyLedA32 = 0x8220 FancyLedA33 = 0x8221 FancyLedA34 = 0x8222 FancyLedA35 = 0x8223 FancyLedA36 = 0x8224 FancyLedA37 = 0x8225 FancyLedA38 = 0x8226 FancyLedA39 = 0x8227 FancyLedA40 = 0x8228 FancyLedA41 = 0x8229 FancyLedA42 = 0x822A FancyLedA43 = 0x822B FancyLedA44 = 0x822C FancyLedA45 = 0x822D FancyLedA46 = 0x822E FancyLedA47 = 0x822F FancyLedA48 = 0x8230 FancyLedA49 = 0x8231 FancyLedA50 = 0x8232 FancyLedA51 = 0x8233 FancyLedA52 = 0x8234 FancyLedA53 = 0x8235 FancyLedA54 = 0x8236 FancyLedA55 = 0x8237 FancyLedA56 = 0x8238 FancyLedA57 = 0x8239 FancyLedA58 = 0x823A FancyLedA59 = 0x823B FancyLedA60 = 0x823C FancyLedA61 = 0x823D FancyLedA62 = 0x823E FancyLedA63 = 0x823F FancyLedA64 = 0x8240 FancyLedA65 = 0x8241 FancyLedA66 = 0x8242 FancyLedA67 = 0x8243 FancyLedA68 = 0x8244 FancyLedA69 = 0x8245 FancyLedA70 = 0x8246 FancyLedA71 = 0x8247 FancyLedA72 = 0x8248 FancyLedA73 = 0x8249 FancyLedA74 = 0x824A FancyLedA75 = 0x824B FancyLedA76 = 0x824C FancyLedA77 = 0x824D FancyLedA78 = 0x824E FancyLedA79 = 0x824F FancyLedA80 = 0x8250 FancyLedA81 = 0x8251 FancyLedA82 = 0x8252 FancyLedA83 = 0x8253 FancyLedA84 = 0x8254 FancyLedA85 = 0x8255 FancyLedA86 = 0x8256 FancyLedA87 = 0x8257 FancyLedA88 = 0x8258 FancyLedA89 = 0x8259 FancyLedA90 = 0x825A FancyLedA91 = 0x825B FancyLedA92 = 0x825C FancyLedA93 = 0x825D FancyLedA94 = 0x825E FancyLedA95 = 0x825F FancyLedA96 = 0x8260 FancyLedA97 = 0x8261 FancyLedA98 = 0x8262 FancyLedA99 = 0x8263 FancyLedA100 = 0x8264 FancyLedA101 = 0x8265 FancyLedA102 = 0x8266 FancyLedA103 = 0x8267 FancyLedA104 = 0x8268 FancyLedA105 = 0x8269 FancyLedA106 = 0x826A FancyLedA107 = 0x826B FancyLedA108 = 0x826C FancyLedA109 = 0x826D FancyLedA110 = 0x826E FancyLedA111 = 0x826F FancyLedA112 = 0x8270 FancyLedA113 = 0x8271 FancyLedA114 = 0x8272 FancyLedA115 = 0x8273 FancyLedA116 = 0x8274 FancyLedA117 = 0x8275 FancyLedA118 = 0x8276 FancyLedA119 = 0x8277 FancyLedA120 = 0x8278 FancyLedA121 = 0x8279 FancyLedA122 = 0x827A FancyLedA123 = 0x827B FancyLedA124 = 0x827C FancyLedA125 = 0x827D FancyLedA126 = 0x827E FancyLedA127 = 0x827F FancyLedA128 = 0x8280 FancyLedA129 = 0x8281 FancyLedA130 = 0x8282 FancyLedA131 = 0x8283 FancyLedA132 = 0x8284 FancyLedA133 = 0x8285 FancyLedA134 = 0x8286 FancyLedA135 = 0x8287 FancyLedA136 = 0x8288 FancyLedA137 = 0x8289 FancyLedA138 = 0x828A FancyLedA139 = 0x828B FancyLedA140 = 0x828C FancyLedA141 = 0x828D FancyLedA142 = 0x828E FancyLedA143 = 0x828F FancyLedA144 = 0x8290 FancyLedA145 = 0x8291 FancyLedA146 = 0x8292 FancyLedA147 = 0x8293 FancyLedA148 = 0x8294 FancyLedA149 = 0x8295 FancyLedA150 = 0x8296 FancyLedA151 = 0x8297 FancyLedA152 = 0x8298 FancyLedA153 = 0x8299 FancyLedA154 = 0x829A FancyLedA155 = 0x829B FancyLedA156 = 0x829C FancyLedA157 = 0x829D FancyLedA158 = 0x829E FancyLedA159 = 0x829F FancyLedA160 = 0x82A0 FancyLedA161 = 0x82A1 FancyLedA162 = 0x82A2 FancyLedA163 = 0x82A3 FancyLedA164 = 0x82A4 FancyLedA165 = 0x82A5 FancyLedA166 = 0x82A6 FancyLedA167 = 0x82A7 FancyLedA168 = 0x82A8 FancyLedA169 = 0x82A9 FancyLedA170 = 0x82AA FancyLedA171 = 0x82AB FancyLedA172 = 0x82AC FancyLedA173 = 0x82AD FancyLedA174 = 0x82AE FancyLedA175 = 0x82AF FancyLedA176 = 0x82B0 FancyLedA177 = 0x82B1 FancyLedA178 = 0x82B2 FancyLedA179 = 0x82B3 FancyLedA180 = 0x82B4 FancyLedA181 = 0x82B5 FancyLedA182 = 0x82B6 FancyLedA183 = 0x82B7 FancyLedA184 = 0x82B8 FancyLedA185 = 0x82B9 FancyLedA186 = 0x82BA FancyLedA187 = 0x82BB FancyLedA188 = 0x82BC FancyLedA189 = 0x82BD FancyLedA190 = 0x82BE FancyLedA191 = 0x82BF FancyLedA192 = 0x82C0 FancyLedA193 = 0x82C1 FancyLedA194 = 0x82C2 FancyLedA195 = 0x82C3 FancyLedA196 = 0x82C4 FancyLedA197 = 0x82C5 FancyLedA198 = 0x82C6 FancyLedA199 = 0x82C7 FancyLedA200 = 0x82C8 FancyLedA201 = 0x82C9 FancyLedA202 = 0x82CA FancyLedA203 = 0x82CB FancyLedA204 = 0x82CC FancyLedA205 = 0x82CD FancyLedA206 = 0x82CE FancyLedA207 = 0x82CF FancyLedA208 = 0x82D0 FancyLedA209 = 0x82D1 FancyLedA210 = 0x82D2 FancyLedA211 = 0x82D3 FancyLedA212 = 0x82D4 FancyLedA213 = 0x82D5 FancyLedA214 = 0x82D6 FancyLedA215 = 0x82D7 FancyLedA216 = 0x82D8 FancyLedA217 = 0x82D9 FancyLedA218 = 0x82DA FancyLedA219 = 0x82DB FancyLedA220 = 0x82DC FancyLedA221 = 0x82DD FancyLedA222 = 0x82DE FancyLedA223 = 0x82DF FancyLedA224 = 0x82E0 FancyLedA225 = 0x82E1 FancyLedA226 = 0x82E2 FancyLedA227 = 0x82E3 FancyLedA228 = 0x82E4 FancyLedA229 = 0x82E5 FancyLedA230 = 0x82E6 FancyLedA231 = 0x82E7 FancyLedA232 = 0x82E8 FancyLedA233 = 0x82E9 FancyLedA234 = 0x82EA FancyLedA235 = 0x82EB FancyLedA236 = 0x82EC FancyLedA237 = 0x82ED FancyLedA238 = 0x82EE FancyLedA239 = 0x82EF FancyLedA240 = 0x82F0 FancyLedA241 = 0x82F1 FancyLedA242 = 0x82F2 FancyLedA243 = 0x82F3 FancyLedA244 = 0x82F4 FancyLedA245 = 0x82F5 FancyLedA246 = 0x82F6 FancyLedA247 = 0x82F7 FancyLedA248 = 0x82F8 FancyLedA249 = 0x82F9 FancyLedA250 = 0x82FA FancyLedA251 = 0x82FB FancyLedA252 = 0x82FC FancyLedA253 = 0x82FD FancyLedA254 = 0x82FE FancyLedA255 = 0x82FF # FancyLedB List FancyLedB0 = 0x8300 FancyLedB1 = 0x8301 FancyLedB2 = 0x8302 FancyLedB3 = 0x8303 FancyLedB4 = 0x8304 FancyLedB5 = 0x8305 FancyLedB6 = 0x8306 FancyLedB7 = 0x8307 FancyLedB8 = 0x8308 FancyLedB9 = 0x8309 FancyLedB10 = 0x830A FancyLedB11 = 0x830B FancyLedB12 = 0x830C FancyLedB13 = 0x830D FancyLedB14 = 0x830E FancyLedB15 = 0x830F FancyLedB16 = 0x8310 FancyLedB17 = 0x8311 FancyLedB18 = 0x8312 FancyLedB19 = 0x8313 FancyLedB20 = 0x8314 FancyLedB21 = 0x8315 FancyLedB22 = 0x8316 FancyLedB23 = 0x8317 FancyLedB24 = 0x8318 FancyLedB25 = 0x8319 FancyLedB26 = 0x831A FancyLedB27 = 0x831B FancyLedB28 = 0x831C FancyLedB29 = 0x831D FancyLedB30 = 0x831E FancyLedB31 = 0x831F FancyLedB32 = 0x8320 FancyLedB33 = 0x8321 FancyLedB34 = 0x8322 FancyLedB35 = 0x8323 FancyLedB36 = 0x8324 FancyLedB37 = 0x8325 FancyLedB38 = 0x8326 FancyLedB39 = 0x8327 FancyLedB40 = 0x8328 FancyLedB41 = 0x8329 FancyLedB42 = 0x832A FancyLedB43 = 0x832B FancyLedB44 = 0x832C FancyLedB45 = 0x832D FancyLedB46 = 0x832E FancyLedB47 = 0x832F FancyLedB48 = 0x8330 FancyLedB49 = 0x8331 FancyLedB50 = 0x8332 FancyLedB51 = 0x8333 FancyLedB52 = 0x8334 FancyLedB53 = 0x8335 FancyLedB54 = 0x8336 FancyLedB55 = 0x8337 FancyLedB56 = 0x8338 FancyLedB57 = 0x8339 FancyLedB58 = 0x833A FancyLedB59 = 0x833B FancyLedB60 = 0x833C FancyLedB61 = 0x833D FancyLedB62 = 0x833E FancyLedB63 = 0x833F FancyLedB64 = 0x8340 FancyLedB65 = 0x8341 FancyLedB66 = 0x8342 FancyLedB67 = 0x8343 FancyLedB68 = 0x8344 FancyLedB69 = 0x8345 FancyLedB70 = 0x8346 FancyLedB71 = 0x8347 FancyLedB72 = 0x8348 FancyLedB73 = 0x8349 FancyLedB74 = 0x834A FancyLedB75 = 0x834B FancyLedB76 = 0x834C FancyLedB77 = 0x834D FancyLedB78 = 0x834E FancyLedB79 = 0x834F FancyLedB80 = 0x8350 FancyLedB81 = 0x8351 FancyLedB82 = 0x8352 FancyLedB83 = 0x8353 FancyLedB84 = 0x8354 FancyLedB85 = 0x8355 FancyLedB86 = 0x8356 FancyLedB87 = 0x8357 FancyLedB88 = 0x8358 FancyLedB89 = 0x8359 FancyLedB90 = 0x835A FancyLedB91 = 0x835B FancyLedB92 = 0x835C FancyLedB93 = 0x835D FancyLedB94 = 0x835E FancyLedB95 = 0x835F FancyLedB96 = 0x8360 FancyLedB97 = 0x8361 FancyLedB98 = 0x8362 FancyLedB99 = 0x8363 FancyLedB100 = 0x8364 FancyLedB101 = 0x8365 FancyLedB102 = 0x8366 FancyLedB103 = 0x8367 FancyLedB104 = 0x8368 FancyLedB105 = 0x8369 FancyLedB106 = 0x836A FancyLedB107 = 0x836B FancyLedB108 = 0x836C FancyLedB109 = 0x836D FancyLedB110 = 0x836E FancyLedB111 = 0x836F FancyLedB112 = 0x8370 FancyLedB113 = 0x8371 FancyLedB114 = 0x8372 FancyLedB115 = 0x8373 FancyLedB116 = 0x8374 FancyLedB117 = 0x8375 FancyLedB118 = 0x8376 FancyLedB119 = 0x8377 FancyLedB120 = 0x8378 FancyLedB121 = 0x8379 FancyLedB122 = 0x837A FancyLedB123 = 0x837B FancyLedB124 = 0x837C FancyLedB125 = 0x837D FancyLedB126 = 0x837E FancyLedB127 = 0x837F FancyLedB128 = 0x8380 FancyLedB129 = 0x8381 FancyLedB130 = 0x8382 FancyLedB131 = 0x8383 FancyLedB132 = 0x8384 FancyLedB133 = 0x8385 FancyLedB134 = 0x8386 FancyLedB135 = 0x8387 FancyLedB136 = 0x8388 FancyLedB137 = 0x8389 FancyLedB138 = 0x838A FancyLedB139 = 0x838B FancyLedB140 = 0x838C FancyLedB141 = 0x838D FancyLedB142 = 0x838E FancyLedB143
#!/usr/bin/env python """ Copyright (c) 2015, <NAME> <<EMAIL>> Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """ import struct import sys import hashlib import collections import math GLOBAL_COLOR_TABLE_SIZE = "Global Color Table Size" COLOR_RESOLUTION = "Color Resolution" GLOBAL_COLOR_TABLE_PRESENT = "Global Color Table Present" GLOBAL_COLOR_TABLE_SORTED = "Global Color Table Sorted" EXTENSION_INTRODUCER = 0x21 IMAGE_BLOCK_LABEL = 0x2c GRAPHICAL_CONTROL_LABEL = 0xf9 BLOCK_TERMINATOR = 0x00 def parse_graphics_control_extension(content, offset): e = collections.OrderedDict() e["Type"] = "Graphics Control Extension" e["Offset"] = offset e["Size"] = struct.unpack("=B", content[2])[0] packed_fields = struct.unpack("=B", content[3])[0] e["Reserved Field"] = bits(7, 5, packed_fields) e["Disposal Method"] = bits(4, 2, packed_fields) e["User Input"] = bits(1, 1, packed_fields) == 1 e["Transparent Color"] = bits(0, 0, packed_fields) == 1 e["Delay Time"] = struct.unpack("=H", content[4:6])[0] e["Transparent Color Index"] = struct.unpack("=B", content[6])[0] e["Terminator"] = struct.unpack("=B", content[7])[0] if e["Terminator"] != 0: print bcolor.WARNING + "WARNING: Non null terminator of block" + bcolor.ENDC return e, content[8:], offset + 8 def parse_application_extension(content, offset): e = collections.OrderedDict() e["Type"] = "Application Extension" e["Offset"] = offset e["Size"] = struct.unpack("=B", content[2])[0] e["AppBlock"] = struct.unpack("{0}s".format(e["Size"]), content[3:3+e["Size"]])[0] content = content[e["Size"]+3:] offset += e["Size"] + 3 block_size = struct.unpack("=B", content[0])[0] app_data = "" while True: content = content[1:] offset += 1 app_data += content[:block_size] content = content[block_size:] offset += block_size block_size = struct.unpack("=B", content[0])[0] if block_size == 0x00: e["AppData"] = "\n" + hexprint(app_data) e["Entropy"] = entropy2(app_data) return e, content[1:], offset + 1 def parse_image_descriptor(content, offset): e = collections.OrderedDict() e["Type"] = "Image Descriptor" e["Offset"] = offset e["Image Left"] = struct.unpack("=H", content[1:3])[0] e["Image Top"] = struct.unpack("=H", content[3:5])[0] e["Image Width"] = struct.unpack("=H", content[5:7])[0] e["Image Heigth"] = struct.unpack("=H", content[7:9])[0] packed_field = struct.unpack("=B", content[9])[0] e["Local Color Table Flag"] = bits(7, 7, packed_field) == 1 e["Interlace Flag"] = bits(6, 6, packed_field) == 1 e["Sort Flag"] = bits(5, 5, packed_field) == 1 e["Reserved"] = bits(4, 3, packed_field) lctValue = bits(2, 0, packed_field) lctSize = 2**(lctValue + 1) e["Size of Local Color Table"] = lctSize content = content[10:] offset += 10 if e["Local Color Table Flag"]: ct, content, offset = get_color_table("Local", content, lctSize, offset) else: if lctValue > 0: print bcolor.WARNING + "WARNING: Local Color Table Size > 0 but LCT Present == False" + bcolor.ENDC e["Size of Local Color Table"] = bcolor.FAIL + str(lctSize) + bcolor.ENDC ct = None blocks, count, offset = get_image_blocks(content, offset) e["Image Blocks"] = LocalImage(blocks, ct) e["Entropy"] = e["Image Blocks"].entropy return e, content[count:], offset def get_image_blocks(content, offset): blocks = [] count = 0 lzw_min = struct.unpack("=B", content[count])[0] count += 1 while True: num_bytes = struct.unpack("=B", content[count])[0] count += 1 imagebytes = struct.unpack("={0}B".format(num_bytes), content[count:count+num_bytes]) blocks.append(ImageBlock(offset+count, lzw_min, imagebytes)) count += num_bytes if ord(content[count]) == 0x00: count += 1 break return blocks, count, offset + count def hexprint(mybuffer): lines = [] while True: line = mybuffer[:16] mybuffer = mybuffer[16:] if not line: break lines.append("{0:50}".format(" ".join("{0:02x}".format(ord(x)) for x in line)) + " " + printable(line)) return "\n".join(lines) def printable(mybuffer): ret = "" for bc in mybuffer: val = ord(bc) if val > 31 and val < 127: ret += chr(val) else: ret += "." return ret def parse_comment_extension(content, offset): e = collections.OrderedDict() e["Type"] = "Comment Extension" e["Offset"] = offset ascii_data = "" bytecount = struct.unpack("=B", content[2])[0] if bytecount == 0: return "", content[3:] content = content[3:] offset += 3 while True: ascii_data += content[:bytecount] content = content[bytecount:] offset += bytecount bytecount = struct.unpack("=B", content[0])[0] content = content[1:] offset += 1 if bytecount == 0: e["Comment"] = ascii_data e["Entropy"] = entropy2(ascii_data) print bcolor.WARNING + "INFO: File contains a comment" + bcolor.OKGREEN md5sum = hashlib.md5(ascii_data).hexdigest() fname = "{1}_{0}_comment.dat".format(sys.argv[1], md5sum) print "Writing comment to {0}".format(fname) + bcolor.ENDC open(fname, "wb").write(ascii_data) return e, content, offset def parse_plain_text_extension(content, offset): e = collections.OrderedDict() e["Type"] = "Plain Text Extension" e["Offset"] = offset ascii_data = "" bytecount = struct.unpack("=B", content[2])[0] if bytecount == 0: return "", content[3:] content = content[3:] offset += 3 while True: ascii_data += content[:bytecount] content = content[bytecount:] offset += bytecount bytecount = struct.unpack("=B", content[0])[0] content = content[1:] offset += 1 if bytecount == 0: e["Comment"] = ascii_data e["Entropy"] = entropy2(ascii_data) print bcolor.WARNING + "INFO: File contains plain text section" + bcolor.OKGREEN md5sum = hashlib.md5(ascii_data).hexdigest() fname = "{1}_{0}_plaintext.dat".format(sys.argv[1], md5sum) print "Writing plaintext to {0}".format(fname) + bcolor.ENDC open(fname, "wb").write(ascii_data) return e, content, offset extension = { 0xf9: parse_graphics_control_extension, 0x01: parse_plain_text_extension, 0xff: parse_application_extension, 0xfe: parse_comment_extension, } def get_signature(content, offset): sig = content[:3] if sig != "GIF": raise BadFileFormat("No GIF signature") return sig, content[3:], offset + 3 def get_version(content, offset): ver = content[:3] if ver not in ["87a", "89a"]: raise BadFileFormat("Incorrect version signature ({0})".format(ver)) return ver, content[3:], offset + 3 def get_logical_screen(content, offset): width = struct.unpack("=H", content[:2])[0] height = struct.unpack("=H", content[2:4])[0] return width, height, content[4:], offset + 4 def get_packed_fields(content, offset): """ <Packed Fields> = Global Color Table Flag 1 Bit Color Resolution 3 Bits Sort Flag 1 Bit Size of Global Color Table 3 Bits """ packed_fields = struct.unpack("=B", content[0])[0] fields = {} fields[GLOBAL_COLOR_TABLE_PRESENT] = (bits(7, 7, packed_fields) == 1) # Number of bits per primary color available # to the original image, minus 1. This value represents the size of # the entire palette from which the colors in the graphic were # selected, not the number of colors actually used in the graphic. # For example, if the value in this field is 3, then the palette of # the original image had 4 bits per primary color available to create # the image. fields[COLOR_RESOLUTION] = bits(6, 4, packed_fields) + 1 fields[GLOBAL_COLOR_TABLE_SORTED] = (bits(3, 3, packed_fields) == 1) # To determine that actual size of the color table, # raise 2 to [the value of the field fields[GLOBAL_COLOR_TABLE_SIZE] = 2**(bits(2, 0, packed_fields)+1) return fields, content[1:], offset + 1 def get_background_color_index(content, offset): return struct.unpack("=B", content[0])[0], content[1:], offset + 1 def get_pixel_asepct_ratio(content, offset): pixel_aspect_ratio = struct.unpack("=B", content[0])[0] # If the value of the field is not 0, this approximation of the aspect ratio # is computed based on the formula: # Aspect Ratio = (Pixel Aspect Ratio + 15) / 64 # The Pixel Aspect Ratio is defined to be the quotient of the pixel's # width over its height. if pixel_aspect_ratio != 0: pixel_aspect_ratio = (pixel_aspect_ratio + 15) / 64 return pixel_aspect_ratio, content[1:], offset + 1 def pp(h): for k, v in h.items(): if isinstance(v, dict): pp(v) else: maxout = 1025 * 5 if type(v) in [list, str] and len(v) > maxout: print "{0}: {1}...[trunkated output (total bytes: {2})]".format(k, v[:maxout], len(v)) else: print "{0}: {1}".format(k, v) def get_color_table(table_type, content, size, offset): tbl = [] for i in range(size): tbl.append(struct.unpack("=BBB", content[(i*3):(i*3)+3])) ct = ColorTable(table_type, tbl) return ct, content[(size*3):], offset + (size*3) class ColorTable(object): def __init__(self, table_type, table): self.type = table_type self.table = table def __str__(self): if len(self.table) > 3: snip = ", ...]" else: snip = "]" return "".join(["{0} Color Table: [".format(self.type), ", ".join([str(n) for n in self.table[:3]]), snip]) def is_extension(content): return ord(content[0]) == EXTENSION_INTRODUCER def is_image_descriptor(content): return ord(content[0]) == IMAGE_BLOCK_LABEL def parse_extension(content, offset): ext = {} type_value = ord(content[1]) fun = extension.get(type_value, None) if fun is None: ext["Type"] = "UNKNOWN ({0})".format(hex(type_value)) print bcolor.FAIL + "UNKNOWN EXTENSION!!" + bcolor.ENDC print hexprint(content[:512]) sys.exit(1) else: ext, content, offset = fun(content, offset) return ext, content, offset def bits(s, e, byte): """ Extract bits start, end, byte Ex. bits(4,2,27) == 0b110 (extracting bits 4, 3 and 2) """ byte = byte>>e return byte & [1, 3, 7, 15, 31, 63, 127, 255][s-e] def parse_gif_header(data, offset): signature, data, offset = get_signature(data, offset) version, data, offset = get_version(data, offset) w, h, data, offset = get_logical_screen(data, offset) fields, data, offset = get_packed_fields(data, offset) background_color_index, data, offset = get_background_color_index(data,
<filename>htc-api/api/htc_api.py #!flask/bin/python from flask import Flask, jsonify, request, abort, g, send_from_directory from flask_cors import CORS from flask.ext.autodoc import Autodoc from flask_cache import Cache import logging import re #need simplejson to deal with Postgres Decimal types import simplejson as json #NOTE: may need to run on Linux: "ln -s /usr/local/pgsql/lib/libpq.so.5 /usr/lib64/libpq.so.5" import psycopg2 as pg import psycopg2.pool as pgp import sys import time import postgis2geojson as p2g from psycopg2.extras import RealDictCursor app = Flask(__name__) # define the cache config, register the cache instance, and bind it to the app cache = Cache(app,config={'CACHE_TYPE': 'simple'}) CORS(app) auto = Autodoc(app) global pool global log #Postgres connection management def setup_pool(): global pool with open('htc_login.txt') as f: #each of these is expected to appear on a separate line host = f.readline().rstrip() port = f.readline().rstrip() db = f.readline().rstrip() user = f.readline().rstrip() pw = f.readline().rstrip() pool = pgp.ThreadedConnectionPool(20, 100, host=host, port=port, database=db, user=user, password=pw) #get current db connection if holding one, otherwise get a new one from the pool def get_db_con(): global pool max_attempts = 10 con = getattr(g, '_database', None) if con is None: #Need to get a connection, use a try loop to handle pool depletions a bit better #Otherwise psycopg2.pool throws exception and server returns 500 error to client for attempt in range(1, max_attempts): try: con = g._database = pool.getconn() if (attempt > 1): log.debug("connection newly acquired from pool, attempt=%s" % attempt) return con except: #On any errors, add exponentially increasing time delays. #This seems to handle at least 30X the pool size in requests without hard errors. e = sys.exc_info()[0] log.error("exception during connection attempt=%s: %s" % (attempt, e)) if (attempt == max_attempts): #give up! raise time.sleep(attempt**2) else: log.debug("connection reused from session variable.") con.autocommit = True return con #Automatically return db connections @app.teardown_appcontext def return_db_con(exception): global pool con = getattr(g, '_database', None) if con is not None: pool.putconn(con) #log.debug("connection returned to pool.") #format simple data for return as JSON def getData(conn, query, params=None): "Use this for non-geometry SELECTs, produces plain json based on DB field names" with conn.cursor(cursor_factory=RealDictCursor) as cur: if (params): cur.execute(query, params) else: cur.execute(query) return json.dumps(cur.fetchall(), indent=2) #removes CR LF characters from string, for safer logging def sanitize(s): return re.sub("[\r\n]+", " ", s) #Get IP of client making the call, TO BE USED FOR DEBUGGING PURPOSES ONLY! #Should handle running behind proxy, but could be subject to spoofing #Reference: http://esd.io/blog/flask-apps-heroku-real-ip-spoofing.html def get_ip(): if not request.headers.getlist("X-Forwarded-For"): ip = request.remote_addr else: ip = request.headers.getlist("X-Forwarded-For")[0] #be sure to remove any CRLF characters, to limit log entry spoofing return sanitize(ip) # #API calls # #Documentation Index @app.route('/htc/api/v1') @cache.cached(timeout=300) # cache this view for 5 minutes def documentation(): return auto.html(title='MA High Tech Counsel API Documentation') #All Counties # #Request geojson of all counties @app.route('/htc/api/v1/counties', methods=['GET']) @auto.doc() @cache.cached(timeout=300) # cache this view for 5 minutes def get_counties_all(): """Counties in GeoJSON""" log.debug("entering get_counties_all() IP=%s" % get_ip()) con = get_db_con() sql = "SELECT s.ct_fips, s.ct_name, s.sq_mi, s.pop, s.pop_male / s.pop as pct_male, s.pop_female / s.pop as pct_female, s.pop_sm, " \ "chr.hs_graduate as chr_hs_grad, chr.college as chr_college, chr.unemployed as chr_unemployed, chr.diabetes_rate as chr_diabetes, " \ "chr.adult_obesity as chr_adult_obesity, chr.adult_smoking as chr_adult_smoking, opioid.deaths as opioid_deaths, " \ "age.fact_pop_0_4 as pop_0_4,age.fact_pop_5_9 as pop_5_9,age.fact_pop_10_14 as pop_10_14,age.fact_pop_15_19 as pop_15_19, "\ "age.fact_pop_20_24 as pop_20_24,age.fact_pop_25_29 as pop_25_29,age.fact_pop_30_34 as pop_30_34,age.fact_pop_35_39 as pop_35_39, " \ "age.fact_pop_40_44 as pop_40_44,age.fact_pop_45_49 as pop_45_49,age.fact_pop_50_54 as pop_50_54,age.fact_pop_55_59 as pop_55_59, " \ "age.fact_pop_60_64 as pop_60_64,age.fact_pop_65_69 as pop_65_69,age.fact_pop_70_74 as pop_70_74,age.fact_pop_75_79 as pop_75_79, " \ "age.fact_pop_80_84 as pop_80_84,age.fact_pop_85_110 as pop_85_110, " \ "ST_AsGeoJSON(the_geom) AS geometry " \ "FROM synth_ma.county_stats s " \ "JOIN synth_ma.ma_opioid_county opioid ON opioid.countyfp = s.ct_fips AND opioid.year = '2015' " \ "JOIN tiger_cb14_500k.county g ON g.statefp = '25' AND g.countyfp = s.ct_fips " \ "JOIN synth_ma.ma_county_age age ON age.ct_fips = s.ct_fips " \ "JOIN county_health.chr ON chr.statefp = '25' AND chr.release_year = 2016 AND chr.countyfp = s.ct_fips" data = p2g.getData(con, sql) log.debug("leaving get_counties_all()") return data #Request geojson of all counties (synthetic data) @app.route('/htc/api/v1/synth/counties', methods=['GET']) @auto.doc() @cache.cached(timeout=300) # cache this view for 5 minutes def get_synth_counties_all(): """Counties in GeoJSON synthetic""" log.debug("entering get_synth_counties_all() IP=%s" % get_ip()) con = get_db_con() sql = "SELECT s.ct_fips, s.ct_name, s.sq_mi, s.pop, CASE WHEN s.pop > 0 THEN s.pop_male / s.pop ELSE 0 END AS pct_male, CASE WHEN s.pop > 0 THEN s.pop_female / s.pop ELSE 0 END AS pct_female, s.pop_sm, " \ "ST_AsGeoJSON(s.ct_poly) AS geometry, " \ "dd.rate as pct_diabetes, dhd.rate as pct_heart_disease, doa.rate as pct_opioid_addiction " \ "FROM synth_ma.synth_county_pop_stats s " \ "JOIN synth_ma.synth_county_disease_stats dd ON dd.ct_fips = s.ct_fips AND dd.disease_name = 'diabetes' " \ "JOIN synth_ma.synth_county_disease_stats dhd ON dhd.ct_fips = s.ct_fips AND dhd.disease_name = 'heart_disease' " \ "JOIN synth_ma.synth_county_disease_stats doa ON doa.ct_fips = s.ct_fips AND doa.disease_name = 'opioid_addiction' " data = p2g.getData(con, sql) log.debug("leaving get_synth_counties_all()") return data #Request list of all counties @app.route('/htc/api/v1/counties/list', methods=['GET']) @auto.doc() @cache.cached(timeout=300) # cache this view for 5 minutes def get_counties(): """Counties list in JSON""" log.debug("entering get_counties() IP=%s" % get_ip()) con = get_db_con() sql = "SELECT ct_name, ct_fips " \ "FROM synth_ma.county_stats" data = getData(con, sql) log.debug("leaving get_counties()") return data #Request list of all counties (synthetic) @app.route('/htc/api/v1/synth/counties/list', methods=['GET']) @auto.doc() @cache.cached(timeout=300) # cache this view for 5 minutes def get_synth_counties(): """Counties list in JSON synthetic""" log.debug("entering get_synth_counties() IP=%s" % get_ip()) con = get_db_con() sql = "SELECT ct_name, ct_fips " \ "FROM synth_ma.synth_county_pop_stats" data = getData(con, sql) log.debug("leaving get_synth_counties()") return data #Request list of disease names that we have statistics for (synthetic) @app.route('/htc/api/v1/synth/diseases/list', methods=['GET']) @auto.doc() @cache.cached(timeout=300) def get_synth_diseases(): """Disease list in JSON synthetic""" log.debug("entering get_synth_diseases() IP=%s" %get_ip()) con = get_db_con() sql = "SELECT DISTINCT disease_name FROM synth_ma.synth_county_disease_stats" data = getData(con, sql) log.debug("leaving get_synth_diseases()") return data #Request geojson of only the geometry of all counties @app.route('/htc/api/v1/counties/geoms', methods=['GET']) @auto.doc() @cache.cached(timeout=300) # cache this view for 5 minutes def get_counties_geom(): """Counties in GeoJSON, geometry only""" log.debug("entering get_counties_geom() IP=%s" % get_ip()) con = get_db_con() sql = "SELECT countyfp AS ct_fips, ST_AsGeoJSON(the_geom) AS geometry " \ "FROM tiger_cb14_500k.county WHERE statefp='25'" data = p2g.getData(con, sql) log.debug("leaving get_counties_geom()") return data #Request only the statistics of all counties @app.route('/htc/api/v1/counties/stats', methods=['GET']) @auto.doc() @cache.cached(timeout=300) # cache this view for 5 minutes def get_counties_stats(): """Counties in JSON, statistics only""" log.debug("entering get_counties_stats() IP=%s" % get_ip()) con = get_db_con() sql = "SELECT s.ct_fips, s.ct_name, s.sq_mi, s.pop, s.pop_male / s.pop as pct_male, s.pop_female / s.pop as pct_female, s.pop_sm, " \ "chr.hs_graduate / 100 as chr_hs_grad, chr.college / 100 as chr_college, chr.unemployed / 100 as chr_unemployed, chr.diabetes_rate / 100 as chr_diabetes, " \ "chr.adult_obesity / 100 as chr_adult_obesity, chr.adult_smoking / 100 as chr_adult_smoking, opioid.deaths as opioid_deaths, " \ "age.fact_pop_0_4 as pop_0_4,age.fact_pop_5_9 as pop_5_9,age.fact_pop_10_14 as pop_10_14,age.fact_pop_15_19 as pop_15_19, "\ "age.fact_pop_20_24 as pop_20_24,age.fact_pop_25_29 as pop_25_29,age.fact_pop_30_34 as pop_30_34,age.fact_pop_35_39 as pop_35_39, " \ "age.fact_pop_40_44 as pop_40_44,age.fact_pop_45_49 as pop_45_49,age.fact_pop_50_54 as pop_50_54,age.fact_pop_55_59 as pop_55_59, " \ "age.fact_pop_60_64 as pop_60_64,age.fact_pop_65_69 as pop_65_69,age.fact_pop_70_74 as pop_70_74,age.fact_pop_75_79 as pop_75_79, " \ "age.fact_pop_80_84 as pop_80_84,age.fact_pop_85_110 as pop_85_110 " \ "FROM synth_ma.county_stats s " \ "JOIN synth_ma.ma_opioid_county opioid ON opioid.countyfp = s.ct_fips AND opioid.year = '2015' " \ "JOIN synth_ma.ma_county_age age ON age.ct_fips = s.ct_fips " \ "JOIN county_health.chr ON chr.statefp = '25' AND chr.release_year = 2016 AND chr.countyfp = s.ct_fips" data = getData(con, sql) log.debug("leaving get_counties_stats()") return data #Request only the statistics of all counties (synthetic) @app.route('/htc/api/v1/synth/counties/stats', methods=['GET']) @auto.doc() @cache.cached(timeout=300) # cache this view for 5 minutes def get_synth_counties_stats(): """Counties in JSON, statistics only synthetic""" log.debug("entering get_synth_counties_stats() IP=%s" % get_ip()) con = get_db_con() sql = "SELECT s.ct_fips, s.ct_name, s.sq_mi, s.pop, CASE WHEN s.pop > 0 THEN s.pop_male / s.pop ELSE 0 END AS pct_male, CASE WHEN s.pop > 0 THEN s.pop_female / s.pop ELSE 0 END AS pct_female, s.pop_sm, " \ "dd.rate as pct_diabetes, dhd.rate as pct_heart_disease, doa.rate as pct_opioid_addiction " \ "FROM synth_ma.synth_county_pop_stats s " \ "JOIN synth_ma.synth_county_disease_stats dd ON dd.ct_fips = s.ct_fips AND dd.disease_name = 'diabetes' " \ "JOIN synth_ma.synth_county_disease_stats dhd ON dhd.ct_fips = s.ct_fips AND dhd.disease_name = 'heart_disease' " \ "JOIN synth_ma.synth_county_disease_stats doa ON doa.ct_fips = s.ct_fips AND doa.disease_name = 'opioid_addiction' " data = getData(con, sql) log.debug("leaving get_synth_counties_stats()") return data #Single County # #Request geojson of single county by name @app.route('/htc/api/v1/counties/name/<string:ct_name>', methods=['GET']) @auto.doc() @cache.memoize(timeout=300) # cache this view for 5 minutes def get_county_by_name(ct_name): """County in GeoJSON, by name""" log.debug("entering get_county_by_name() IP=%s" % get_ip()) con = get_db_con() sql = "SELECT s.ct_fips, s.ct_name, s.sq_mi, s.pop, s.pop_male / s.pop as pct_male, s.pop_female / s.pop as pct_female, s.pop_sm, " \ "chr.hs_graduate as chr_hs_grad, chr.college as chr_college, chr.unemployed as chr_unemployed, chr.diabetes_rate as chr_diabetes, " \ "chr.adult_obesity as chr_adult_obesity, chr.adult_smoking as chr_adult_smoking, opioid.deaths as opioid_deaths, " \ "age.fact_pop_0_4 as pop_0_4,age.fact_pop_5_9 as pop_5_9,age.fact_pop_10_14 as pop_10_14,age.fact_pop_15_19 as pop_15_19, "\ "age.fact_pop_20_24 as
""" return (source, target) in self._arcs def sources(self) -> Set[Node]: """ Get all nodes in the graph that have no parents. Return ------ List[node] Nodes in the graph that have no parents. Example ------- >>> from graphical_models import DAG >>> g = DAG(arcs={(1, 2), (1, 3), (2, 3)}) >>> g.sources() {1} """ return {node for node in self._nodes if len(self._parents[node]) == 0} def sinks(self) -> Set[Node]: """ Get all nodes in the graph that have no children. Return ------ List[node] Nodes in the graph that have no children. Example ------- >>> from graphical_models import DAG >>> g = DAG(arcs={(1, 2), (1, 3), (2, 3)}) >>> g.sinks() {3} """ return {node for node in self._nodes if len(self._children[node]) == 0} def reversible_arcs(self) -> Set[DirectedEdge]: """ Get all reversible (aka covered) arcs in the DAG. Return ------ Set[arc] Return all reversible (aka covered) arcs in the DAG. An arc i -> j is *covered* if the :math:`Pa(j) = Pa(i) \cup {i}`. Reversing a reversible arc results in a DAG in the same Markov equivalence class. Example ------- >>> from graphical_models import DAG >>> g = DAG(arcs={(1, 2), (1, 3), (2, 3)}) >>> g.reversible_arcs() {(1, 2), (2, 3)} """ reversible_arcs = set() for i, j in self._arcs: if self._parents[i] == (self._parents[j] - {i}): reversible_arcs.add((i, j)) return reversible_arcs def is_reversible(self, i: Node, j: Node) -> bool: """ Check if the arc ``i`` -> ``j`` is reversible (aka covered), i.e., if :math:`pa(i) = pa(j) \setminus \{i\}` Parameters ---------- i: source of the arc j: target of the arc Returns ------- True if the arc is reversible, otherwise False. Example ------- >>> from graphical_models import DAG >>> g = DAG(arcs={(1, 2), (1, 3), (2, 3)}) >>> g.is_reversible(1, 2) True >>> g.is_reversible(1, 3) False """ return self._parents[i] == self._parents[j] - {i} def arcs_in_vstructures(self) -> Set[Tuple]: """ Get all arcs in the graph that participate in a v-structure. Return ------ Set[arc] Return all arcs in the graph in a v-structure (aka an immorality). A v-structure is formed when i->j<-k but there is no arc between i and k. Arcs that participate in a v-structure are identifiable from observational data. Example ------- >>> from graphical_models import DAG >>> g = DAG(arcs={(1, 3), (2, 3)}) >>> g.arcs_in_vstructures() {(1, 3), (2, 3)) """ return {(i, j) for i, j in self._arcs if self._parents[j] - self._neighbors[i] - {i}} def vstructures(self) -> Set[Tuple]: """ Get all v-structures in the graph, i.e., triples of the form (i, k, j) such that ``i``->k<-``j`` and ``i`` is not adjacent to ``j``. Return ------ Set[Tuple] Return all triples in the graph in a v-structure (aka an immorality). A v-structure is formed when i->j<-k but there is no arc between i and k. Arcs that participate in a v-structure are identifiable from observational data. Example ------- >>> from graphical_models import DAG >>> g = DAG(arcs={(1, 3), (2, 3)}) >>> g.vstructures() {(1, 3, 2)} """ vstructs = set() for node in self._nodes: for p1, p2 in itr.combinations(self._parents[node], 2): if p1 not in self._parents[p2] and p2 not in self._parents[p1]: vstructs.add((p1, node, p2)) return vstructs def triples(self) -> Set[Tuple]: """ Return all triples of the form (``i``, ``j``, ``k``) such that ``i`` and ``k`` are both adjacent to ``j``. Returns ------- Set[Tuple] Triples in the graph. Examples -------- >>> from graphical_models import DAG >>> g = DAG(arcs={(1, 3), (2, 3), (1, 2)}) >>> g.triples() {frozenset({1, 3, 2})} """ t = set() for node in self._nodes: t |= {frozenset({n1, node, n2}) for n1, n2 in itr.combinations(self._neighbors[node], 2)} return t def upstream_most(self, s: Set[Node]) -> Set[Node]: """ Return the set of nodes which in ``s`` which have no ancestors in ``s``. Parameters ---------- s: Set of nodes Returns ------- The set of nodes in ``s`` with no ancestors in ``s``. """ return {node for node in s if not self.ancestors_of(node) & s} # === COMPARISON def shd(self, other) -> int: """ Compute the structural Hamming distance between this DAG and the DAG ``other``. Parameters ---------- other: the DAG to which the SHD will be computed. Return ------ int The structural Hamming distance between :math:`G_1` and :math:`G_2` is the minimum number of arc additions, deletions, and reversals required to transform :math:`G_1` into :math:`G_2` (and vice versa). Example ------- >>> from graphical_models import DAG >>> g1 = DAG(arcs={(1, 2), (2, 3)}) >>> g2 = DAG(arcs={(2, 1), (2, 3)}) >>> g1.shd(g2) 1 """ if isinstance(other, DAG): self_arcs_reversed = {(j, i) for i, j in self._arcs} other_arcs_reversed = {(j, i) for i, j in other._arcs} additions = other._arcs - self._arcs - self_arcs_reversed deletions = self._arcs - other._arcs - other_arcs_reversed reversals = self.arcs & other_arcs_reversed return len(additions) + len(deletions) + len(reversals) def shd_skeleton(self, other) -> int: """ Compute the structure Hamming distance between the skeleton of this DAG and the skeleton of the graph ``other``. Parameters ---------- other: the DAG to which the SHD of the skeleton will be computed. Return ------ int The structural Hamming distance between :math:`G_1` and :math:`G_2` is the minimum number of arc additions, deletions, and reversals required to transform :math:`G_1` into :math:`G_2` (and vice versa). Example ------- >>> from graphical_models import DAG >>> g1 = DAG(arcs={(1, 2), (2, 3)}) >>> g2 = DAG(arcs={(2, 1), (2, 3)}) >>> g1.shd_skeleton(g2) 0 >>> g1 = DAG(arcs={(1, 2)}) >>> g2 = DAG(arcs={(1, 2), (2, 3)}) >>> g1.shd_skeleton(g2) 1 """ return len(self.skeleton.symmetric_difference(other.skeleton)) def markov_equivalent(self, other, interventions=None) -> bool: """ Check if this DAG is (interventionally) Markov equivalent to the DAG ``other``. Parameters ---------- other: Another DAG. interventions: If not None, check whether the two DAGs are interventionally Markov equivalent under the interventions. Examples -------- >>> from graphical_models import DAG >>> d1 = DAG(arcs={(0, 1), (1, 2)}) >>> d2 = DAG(arcs={(2, 1), (1, 0)}) >>> d3 = DAG(arcs={(0, 1), (2, 1)}) >>> d4 = DAG(arcs={(1, 0), (1, 2)}) >>> d1.markov_equivalent(d2) True >>> d2.markov_equivalent(d1) True >>> d1.markov_equivalent(d3) False >>> d1.markov_equivalent(d2, [{2}]) False >>> d1.markov_equivalent(d4, [{2}]) True """ if interventions is None: return self.cpdag() == other.cpdag() else: return self.interventional_cpdag(interventions, self.cpdag()) == other.interventional_cpdag(interventions, other.cpdag()) def is_imap(self, other) -> bool: """ Check if this DAG is an IMAP of the DAG ``other``, i.e., all d-separation statements in this graph are also d-separation statements in ``other``. Parameters ---------- other: Another DAG. See Also -------- is_minimal_imap Returns ------- bool True if ``other`` is an I-MAP of this DAG, otherwise False. Examples -------- >>> from graphical_models import DAG >>> g = DAG(arcs={(1, 2), (3, 2)}) >>> other = DAG(arcs={(1, 2)}) >>> g.is_imap(other) True >>> other = DAG(arcs={(1, 2), (2, 3)}) >>> g.is_imap(other) False """ return all(other.dsep(node, nondesc, parents) for node, nondesc, parents in self.local_markov_statements()) def is_minimal_imap(self, other, certify=False, check_imap=True) -> Union[bool, Tuple[bool, Any]]: """ Check if this DAG is a minimal IMAP of `other`, i.e., it is an IMAP and no proper subgraph of this DAG is an IMAP of other. Deleting the arc i->j retains IMAPness when `i` is d-separated from `j` in `other` given the parents of `j` besides `i` in this DAG. Parameters ---------- other: Another DAG. certify: If True and this DAG is not an IMAP of other, return a certificate of non-minimality in the form of an edge i->j that can be deleted while retaining IMAPness. check_imap: If True, first check whether this DAG is an IMAP of other, if False, this DAG is assumed to be an IMAP of other. See Also -------- is_imap Returns ------- bool True if ``other`` is a minimal I-MAP of this DAG, otherwise False. Examples -------- >>> from graphical_models import DAG >>> g = DAG(arcs={(1, 2), (3, 2)}) >>> other = DAG(arcs={(1, 2)}) >>> g.is_minimal_imap(other) False """ if check_imap and not self.is_imap(other): if certify: return False, None else: return False certificate = next(((i, j) for i, j in self._arcs if other.dsep(i, j, self._parents[j] - {i})), None) if certify: return certificate is None, certificate else: return certificate
<reponame>event-driven-robotics/models<filename>nxsdk_modules_ncl/dnn/src/data_structures.py<gh_stars>10-100 # # Copyright © 2020 Intel Corporation. # # This software and the related documents are Intel copyrighted # materials, and your use of them is governed by the express # license under which they were provided to you (License). Unless # the License provides otherwise, you may not use, modify, copy, # publish, distribute, disclose or transmit this software or the # related documents without Intel's prior written permission. # # This software and the related documents are provided as is, with # no express or implied warranties, other than those that are # expressly stated in the License. """ Data structures for CNN partitioner. """ import os import pickle from concurrent.futures import ThreadPoolExecutor from enum import IntEnum import numpy as np class Layer: """Container for partitions in a layer and other high level information. :param int | str layerId: The layer id, as a label or digit. :param str layerType: The layer type, e.g. "Conv2D" or "Dense". Obtained by calling __class__.__name__ on a Keras layer. :param dict compartmentKwargs: Loihi compartment parameters, typical keys: ``vThMant``, ``biasExp``. :param dict connectionKwargs: Loihi connection parameters, typical keys: ``numWeightBits``, ``weightExponent``. :param np.ndarray coreIdMap: Integer tensor of same shape as layer. Each element indicates which core the neuron belongs to. :param np.ndarray multiplicityMap: Integer tensor of same shape as layer, except that the channel dimension is removed. Each element indicates to how many destination cores the neuron needs to send its spikes. :param Layer | None postLayer: The post-synaptic layer. Not applicable in output layer. """ def __init__(self, layerId, layerType, compartmentKwargs, connectionKwargs, coreIdMap, multiplicityMap, postLayer=None): assert isinstance(layerId, (int, np.integer, str)) assert isinstance(layerType, str) assert isinstance(compartmentKwargs, dict) assert isinstance(connectionKwargs, dict) assert isinstance(coreIdMap, np.ndarray) assert isinstance(multiplicityMap, np.ndarray) if postLayer is not None: assert isinstance(postLayer, Layer) self.id = layerId self.type = layerType self.compartmentKwargs = compartmentKwargs self.connectionKwargs = connectionKwargs self.coreIdMap = coreIdMap self.multiplicityMap = multiplicityMap self.postLayer = postLayer self.coreOccupancy = None self._srcIdMap = {} self._isMapped = False self._partitions = [] # Multiplier for complex layers multiplier = 2 if 'Complex' in layerType else 1 self._numCores = 1 if coreIdMap.size == 0 \ else multiplier * (np.max(coreIdMap) + 1) self._numSyn = 0 self._numSynEntries = 0 self._numSynMemWords = 0 self._numInputAxons = 0 self._numOutputAxons = 0 self._numOutputAxonCfgEntries = 0 self._inputAxonCost = 0 self._outputAxonCost = 0 self._synapseCost = 0 def genCxResourceMap(self): """Generate a compartment resource map. Maps from global layer-wide compartment id to its ``(chipId, coreId, cxId)`` address. :raises AssertionError: Layer must be mapped before cxResourceMap can be generated. :return: cxResourceMap :rtype: np.ndarray """ assert self._isMapped, \ "Layer must be mapped before cxResourceMap can be generated." # Initialize cxResourceMap numCx = 0 for p in self.partitions: numCx += p.compartmentGroup.numCompartments cxResourceMap = np.zeros((numCx, 3), int) # Populate cxResourceMap for p in self.partitions: # Get global layer-wide compartment ids cxGrp = p.compartmentGroup globalCxIds = cxGrp.relToAbsDestCxIdxMap cxResourceMap[globalCxIds, 0] = p.chipId cxResourceMap[globalCxIds, 1] = p.coreId cxResourceMap[globalCxIds, 2] = cxGrp.cxIds return cxResourceMap def genInputAxonResourceMap(self): """Generate a resource map for input axons. Maps from global layer-wide input axon id to its ``(chipId, coreId, axonId)`` address. :raises AssertionError: Layer must be mapped before resource map can be generated. :return: inputAxonResourceMap :rtype: np.ndarray """ assert self._isMapped, \ "Layer must be mapped before InputAxonResourceMap can be " \ "generated." # Initialize cxResourceMap numCx = 0 for p in self.partitions: numCx += p.compartmentGroup.numCompartments cxResourceMap = np.zeros((numCx, 3), int) # Populate cxResourceMap for p in self.partitions: # Get global layer-wide compartment ids cxGrp = p.compartmentGroup globalCxIds = cxGrp.relToAbsDestCxIdxMap axonIds = np.concatenate([axonGroup.srcNodeIds for axonGroup in p.inputAxonGroups]) cxResourceMap[globalCxIds, 0] = p.chipId cxResourceMap[globalCxIds, 1] = p.coreId cxResourceMap[globalCxIds, 2] = axonIds return cxResourceMap def addPartition(self, partition): """Add partition to layer, and update cost properties. :param Partition partition: Partition. """ self._partitions.append(partition) self._numSyn += partition.numSyn self._numSynEntries += partition.numSynEntries self._numSynMemWords += partition.numSynMemWords self._numInputAxons += partition.numInputAxons self._numOutputAxons += partition.numOutputAxons self._numOutputAxonCfgEntries += partition.numOutputAxonCfgEntries self._inputAxonCost += partition.inputAxonCost self._outputAxonCost += partition.outputAxonCost self._synapseCost += partition.synapseCost def updateSrcIdMap(self, key, value): """Update source id map. :param int key: Global source id. :param tuple[InputAxonGroup, int] value: A tuple containing the input axon group and the source id relative to that axon. """ if key not in self._srcIdMap.keys(): self._srcIdMap[key] = [] self._srcIdMap[key].append(value) @property def partitions(self): """List of layer partitions. :return: Layer partitions. :rtype: list[Partition] """ return self._partitions @property def srcIdMap(self): """Source id map. This is a helper container that is built by layer ``L`` and used to construct output axons in layer ``L-1``. :return: Source id map. Dictionary mapping from global source ids to a tuple containing the input axon group and the source id relative to that axon. :rtype: dict[int, tuple[InputAxonGroup, int]] """ return self._srcIdMap def clearTemp(self): """Clean up temporary data.""" self._srcIdMap = None @property def numCores(self): """Number of cores used by layer. :return: Number of cores used by layer. :rtype: int """ return self._numCores @property def numSyn(self): """Number of synapses in layer. :return: Number of synapses in layer. :rtype: int """ return self._numSyn @property def numSynEntries(self): """Number of synEntries in layer. :return: Number of synEntries in layer. :rtype: int """ return self._numSynEntries @property def numSynMemWords(self): """Number of synMemWords used by layer. :return: Number of synMemWords used by layer. :rtype: int """ return self._numSynMemWords @property def numInputAxons(self): """Number of input axons in layer. :return: Number of input axons in layer. :rtype: int """ return self._numInputAxons @property def numOutputAxons(self): """Number of output axons in layer. :return: Number of output axons in layer. :rtype: int """ return self._numOutputAxons @property def numOutputAxonCfgEntries(self): """Number of output axon config entries in layer. :return: Number of output axon config entries in layer. :rtype: int """ return self._numOutputAxonCfgEntries @property def inputAxonCost(self): """The total input axon cost of this layer. :return: Axon cost. :rtype: float """ return self._inputAxonCost @property def outputAxonCost(self): """The total output axon cost of this layer. :return: Axon cost. :rtype: float """ return self._outputAxonCost @property def synapseCost(self): """The total synapse cost of this layer. :return: Synapse cost. :rtype: float """ return self._synapseCost @property def coreCost(self): """The total core cost of this layer. :return: Core cost. :rtype: int """ return self._numCores @property def cost(self): """The total cost of partitioning this layer. :return: Partitioning cost of layer. :rtype: float """ return (self.inputAxonCost + self.outputAxonCost + self.synapseCost + self.coreCost) def setMapped(self): """Set flag that this layer is mapped.""" self._isMapped = True def asDict(self): """Return certain attributes of ``Layer`` as dict. :return: Selection of ``Layer`` attributes as dictionary. :rtype: dict """ return {'id': self.id, 'multiplicityMap': self.multiplicityMap, 'coreIdMap': self.coreIdMap, 'coreOccupancy': self.coreOccupancy} def serializeLayer(layer, path): """Save layer as pickle file. :param Layer layer: Layer to serialize. :param str path: Where to save output file. """ postLayer = layer.postLayer # PostLayer will be None if the last layers of the network are "virtual" # layers like Flatten or Reshape. We do not want to serialize those. if postLayer is None: return # Temporarily overwrite pointer to parent layer to avoid redundant storage. layer.postLayer = postLayer.id with open(os.path.join(path, layer.id + '.pickle'), 'wb') as f: pickle.dump(layer, f) layer.postLayer = postLayer def deserializeLayer(path, filename): """Load layer from pickle file. :param str path: Directory to saved file. :param str filename: Name of file. :return: Deserialized layer. :rtype: Layer """ with open(os.path.join(path, filename), 'rb') as f: return pickle.load(f) def saveMappableLayers(layers, path): """Store each partitioned and compiled layer as pickle file on disk. :param list[Layer] layers: List of Layer objects. :param str path: Where to save partition. """ path = os.path.join(path, 'compiled_partitions') if not os.path.exists(path): os.makedirs(path) # Save each individual layer as pickle file. with ThreadPoolExecutor() as executor: futures = [executor.submit(serializeLayer, layer, path) for layer in layers] for future in futures: future.result() def loadMappableLayers(path): """Load compiled partitions from disk. The partitions are stored in the subfolder ``<path>/compiled_partitions``. The method expects one pickle file for each layer, and skips over any non-pickle files in that folder. :raises FileNotFoundError if the directory does not exist or contains no pickle files. :param str path: Path to stored partition files. :return: List of compiled ``Layer`` objects. :rtype: list[Layer] """ path = os.path.join(path, 'compiled_partitions') if not os.path.exists(path): raise FileNotFoundError filenames = [f for f in os.listdir(path)
'Sales', 53000, 2009, 53000), ('Wilkinson', 'IT', 60000, 2011, 60000), ('Johnson', 'Marketing', 40000, 2012, 40000), ('Moore', 'IT', 34000, 2013, 50000), ('Adams', 'Accounting', 50000, 2013, 50000), ], lambda row: (row.name, row.department, row.salary, row.hire_date.year, row.max_salary_year)) def test_cume_dist(self): """ Compute the cumulative distribution for the employees based on the salary in increasing order. Equal to rank/total number of rows (12). """ qs = Employee.objects.annotate(cume_dist=Window( expression=CumeDist(), order_by=F('salary').asc(), )).order_by('salary', 'name') # Round result of cume_dist because Oracle uses greater precision. self.assertQuerysetEqual(qs, [ ('Moore', 'IT', 34000, 0.0833333333), ('Williams', 'Accounting', 37000, 0.1666666667), ('Smith', 'Marketing', 38000, 0.25), ('Johnson', 'Marketing', 40000, 0.3333333333), ('Jenson', 'Accounting', 45000, 0.5), ('Jones', 'Accounting', 45000, 0.5), ('Adams', 'Accounting', 50000, 0.5833333333), ('Brown', 'Sales', 53000, 0.6666666667), ('Smith', 'Sales', 55000, 0.75), ('Wilkinson', 'IT', 60000, 0.8333333333), ('Johnson', 'Management', 80000, 0.9166666667), ('Miller', 'Management', 100000, 1), ], lambda row: (row.name, row.department, row.salary, round(row.cume_dist, 10))) def test_nthvalue(self): qs = Employee.objects.annotate( nth_value=Window(expression=NthValue( expression='salary', nth=2), order_by=[F('hire_date').asc(), F('name').desc()], partition_by=F('department'), ) ).order_by('department', 'hire_date', 'name') self.assertQuerysetEqual(qs, [ ('Jones', 'Accounting', datetime.date(2005, 11, 1), 45000, None), ('Jenson', 'Accounting', datetime.date(2008, 4, 1), 45000, 45000), ('Williams', 'Accounting', datetime.date(2009, 6, 1), 37000, 45000), ('Adams', 'Accounting', datetime.date(2013, 7, 1), 50000, 45000), ('Wilkinson', 'IT', datetime.date(2011, 3, 1), 60000, None), ('Moore', 'IT', datetime.date(2013, 8, 1), 34000, 34000), ('Miller', 'Management', datetime.date(2005, 6, 1), 100000, None), ('Johnson', 'Management', datetime.date(2005, 7, 1), 80000, 80000), ('Smith', 'Marketing', datetime.date(2009, 10, 1), 38000, None), ('Johnson', 'Marketing', datetime.date(2012, 3, 1), 40000, 40000), ('Smith', 'Sales', datetime.date(2007, 6, 1), 55000, None), ('Brown', 'Sales', datetime.date(2009, 9, 1), 53000, 53000), ], lambda row: (row.name, row.department, row.hire_date, row.salary, row.nth_value)) def test_lead(self): """ Determine what the next person hired in the same department makes. Because the dataset is ambiguous, the name is also part of the ordering clause. No default is provided, so None/NULL should be returned. """ qs = Employee.objects.annotate(lead=Window( expression=Lead(expression='salary'), order_by=[F('hire_date').asc(), F('name').desc()], partition_by='department', )).order_by('department', F('hire_date').asc(), F('name').desc()) self.assertQuerysetEqual(qs, [ ('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 45000), ('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 37000), ('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), 50000), ('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), None), ('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), 34000), ('Moore', 34000, 'IT', datetime.date(2013, 8, 1), None), ('Miller', 100000, 'Management', datetime.date(2005, 6, 1), 80000), ('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), None), ('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), 40000), ('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), None), ('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), 53000), ('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), None), ], transform=lambda row: (row.name, row.salary, row.department, row.hire_date, row.lead)) def test_lead_offset(self): """ Determine what the person hired after someone makes. Due to ambiguity, the name is also included in the ordering. """ qs = Employee.objects.annotate(lead=Window( expression=Lead('salary', offset=2), partition_by='department', order_by=F('hire_date').asc(), )) self.assertQuerysetEqual(qs, [ ('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 37000), ('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 50000), ('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), None), ('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), None), ('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), None), ('Moore', 34000, 'IT', datetime.date(2013, 8, 1), None), ('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), None), ('Miller', 100000, 'Management', datetime.date(2005, 6, 1), None), ('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), None), ('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), None), ('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), None), ('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), None), ], transform=lambda row: (row.name, row.salary, row.department, row.hire_date, row.lead), ordered=False ) @skipUnlessDBFeature('supports_default_in_lead_lag') def test_lead_default(self): qs = Employee.objects.annotate(lead_default=Window( expression=Lead(expression='salary', offset=5, default=60000), partition_by=F('department'), order_by=F('department').asc(), )) self.assertEqual(list(qs.values_list('lead_default', flat=True).distinct()), [60000]) def test_ntile(self): """ Compute the group for each of the employees across the entire company, based on how high the salary is for them. There are twelve employees so it divides evenly into four groups. """ qs = Employee.objects.annotate(ntile=Window( expression=Ntile(num_buckets=4), order_by=F('salary').desc(), )).order_by('ntile', '-salary', 'name') self.assertQuerysetEqual(qs, [ ('Miller', 'Management', 100000, 1), ('Johnson', 'Management', 80000, 1), ('Wilkinson', 'IT', 60000, 1), ('Smith', 'Sales', 55000, 2), ('Brown', 'Sales', 53000, 2), ('Adams', 'Accounting', 50000, 2), ('Jenson', 'Accounting', 45000, 3), ('Jones', 'Accounting', 45000, 3), ('Johnson', 'Marketing', 40000, 3), ('Smith', 'Marketing', 38000, 4), ('Williams', 'Accounting', 37000, 4), ('Moore', 'IT', 34000, 4), ], lambda x: (x.name, x.department, x.salary, x.ntile)) def test_percent_rank(self): """ Calculate the percentage rank of the employees across the entire company based on salary and name (in case of ambiguity). """ qs = Employee.objects.annotate(percent_rank=Window( expression=PercentRank(), order_by=[F('salary').asc(), F('name').asc()], )).order_by('percent_rank') # Round to account for precision differences among databases. self.assertQuerysetEqual(qs, [ ('Moore', 'IT', 34000, 0.0), ('Williams', 'Accounting', 37000, 0.0909090909), ('Smith', 'Marketing', 38000, 0.1818181818), ('Johnson', 'Marketing', 40000, 0.2727272727), ('Jenson', 'Accounting', 45000, 0.3636363636), ('Jones', 'Accounting', 45000, 0.4545454545), ('Adams', 'Accounting', 50000, 0.5454545455), ('Brown', 'Sales', 53000, 0.6363636364), ('Smith', 'Sales', 55000, 0.7272727273), ('Wilkinson', 'IT', 60000, 0.8181818182), ('Johnson', 'Management', 80000, 0.9090909091), ('Miller', 'Management', 100000, 1.0), ], transform=lambda row: (row.name, row.department, row.salary, round(row.percent_rank, 10))) def test_nth_returns_null(self): """ Find the nth row of the data set. None is returned since there are fewer than 20 rows in the test data. """ qs = Employee.objects.annotate(nth_value=Window( expression=NthValue('salary', nth=20), order_by=F('salary').asc() )) self.assertEqual(list(qs.values_list('nth_value', flat=True).distinct()), [None]) def test_multiple_partitioning(self): """ Find the maximum salary for each department for people hired in the same year. """ qs = Employee.objects.annotate(max=Window( expression=Max('salary'), partition_by=[F('department'), ExtractYear(F('hire_date'))], )).order_by('department', 'hire_date', 'name') self.assertQuerysetEqual(qs, [ ('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 45000), ('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 45000), ('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), 37000), ('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), 50000), ('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), 60000), ('Moore', 34000, 'IT', datetime.date(2013, 8, 1), 34000), ('Miller', 100000, 'Management', datetime.date(2005, 6, 1), 100000), ('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), 100000), ('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), 38000), ('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), 40000), ('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), 55000), ('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), 53000), ], transform=lambda row: (row.name, row.salary, row.department, row.hire_date, row.max)) def test_multiple_ordering(self): """ Accumulate the salaries over the departments based on hire_date. If two people were hired on the same date in the same department, the ordering clause will render a different result for those people. """ qs = Employee.objects.annotate(sum=Window( expression=Sum('salary'), partition_by='department', order_by=[F('hire_date').asc(), F('name').asc()], )).order_by('department', 'sum') self.assertQuerysetEqual(qs, [ ('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 45000), ('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 90000), ('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), 127000), ('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), 177000), ('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), 60000), ('Moore', 34000, 'IT', datetime.date(2013, 8, 1), 94000), ('Miller', 100000, 'Management', datetime.date(2005, 6, 1), 100000), ('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), 180000), ('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), 38000), ('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), 78000), ('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), 55000), ('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), 108000), ], transform=lambda row: (row.name, row.salary, row.department, row.hire_date, row.sum)) @skipUnlessDBFeature('supports_frame_range_fixed_distance') def test_range_n_preceding_and_following(self): qs = Employee.objects.annotate(sum=Window( expression=Sum('salary'), order_by=F('salary').asc(), partition_by='department', frame=ValueRange(start=-2, end=2), )) self.assertIn('RANGE BETWEEN 2 PRECEDING AND 2 FOLLOWING', str(qs.query)) self.assertQuerysetEqual(qs, [ ('Williams', 37000, 'Accounting', datetime.date(2009, 6, 1), 37000), ('Jones', 45000, 'Accounting', datetime.date(2005, 11, 1), 90000), ('Jenson', 45000, 'Accounting', datetime.date(2008, 4, 1), 90000), ('Adams', 50000, 'Accounting', datetime.date(2013, 7, 1), 50000), ('Brown', 53000, 'Sales', datetime.date(2009, 9, 1), 53000), ('Smith', 55000, 'Sales', datetime.date(2007, 6, 1), 55000), ('Johnson', 40000, 'Marketing', datetime.date(2012, 3, 1), 40000), ('Smith', 38000, 'Marketing', datetime.date(2009, 10, 1), 38000), ('Wilkinson', 60000, 'IT', datetime.date(2011, 3, 1), 60000), ('Moore', 34000, 'IT', datetime.date(2013, 8, 1), 34000), ('Miller', 100000, 'Management', datetime.date(2005, 6, 1), 100000), ('Johnson', 80000, 'Management', datetime.date(2005, 7, 1), 80000), ], transform=lambda row: (row.name, row.salary, row.department, row.hire_date, row.sum), ordered=False) def test_range_unbound(self): """A query with RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.""" qs = Employee.objects.annotate(sum=Window( expression=Sum('salary'), partition_by='age', order_by=[F('age').asc()], frame=ValueRange(start=None, end=None), )).order_by('department', 'hire_date', 'name') self.assertIn('RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING', str(qs.query)) self.assertQuerysetEqual(qs, [ ('Jones', 'Accounting', 45000, datetime.date(2005, 11, 1), 165000), ('Jenson', 'Accounting', 45000, datetime.date(2008, 4, 1), 165000), ('Williams', 'Accounting', 37000, datetime.date(2009, 6, 1), 165000), ('Adams', 'Accounting', 50000, datetime.date(2013, 7, 1), 130000), ('Wilkinson', 'IT', 60000, datetime.date(2011, 3, 1), 194000), ('Moore', 'IT', 34000, datetime.date(2013, 8, 1), 194000), ('Miller', 'Management', 100000, datetime.date(2005, 6, 1), 194000), ('Johnson', 'Management', 80000, datetime.date(2005, 7, 1), 130000), ('Smith', 'Marketing', 38000, datetime.date(2009, 10, 1), 165000), ('Johnson', 'Marketing', 40000, datetime.date(2012, 3, 1), 148000), ('Smith', 'Sales', 55000, datetime.date(2007, 6, 1), 148000), ('Brown', 'Sales', 53000, datetime.date(2009, 9, 1), 148000) ], transform=lambda row: (row.name, row.department, row.salary, row.hire_date, row.sum)) @skipIf( connection.vendor == 'sqlite' and connection.Database.sqlite_version_info < (3, 27), 'Nondeterministic failure on SQLite < 3.27.' ) def test_subquery_row_range_rank(self): qs
jointsolutions]) and len(jointsolutions)>0: return [AST.SolverSolution(var.name,jointeval=jointsolutions,isHinge=self.isHinge(var.name))] solutions = [] if len(eqns) > 1: neweqns = [] listsymbols = [] symbolgen = cse_main.numbered_symbols('const') for e in eqns: enew, symbols = self.groupTerms(e.subs(varsym.subs),[varsym.cvar,varsym.svar,var], symbolgen) # remove coupled equations if any([(m[0]>0)+(m[1]>0)+(m[2]>0)>1 for m in Poly(enew,varsym.cvar,varsym.svar,var).monoms]): continue # ignore any equations with degree 3 or more if Poly(enew,varsym.svar).degree > maxdegree or Poly(enew,varsym.cvar).degree > maxdegree: log.debug('ignoring equation: ',enew) continue if Poly(enew,varsym.svar).coeff() == S.Zero or Poly(enew,varsym.cvar) == S.Zero or Poly(enew,varsym.var) == S.Zero: log.debug('equation %s is allowing trivial solution for variable %s, ignoring ',e,varsym.name) continue rank = self.codeComplexity(enew) for s in symbols: rank += self.codeComplexity(s[1]) neweqns.append((rank,enew)) listsymbols += symbols # since we're solving for two variables, we only want to use two equations, so # start trying all the equations starting from the least complicated ones to the most until a solution is found eqcombinations = [] for eqs in combinations(neweqns,2): eqcombinations.append((eqs[0][0]+eqs[1][0],[Eq(e[1],0) for e in eqs])) eqcombinations.sort(lambda x, y: x[0]-y[0]) hasgoodsolution = False for icomb,comb in enumerate(eqcombinations): # skip if too complex if len(solutions) > 0 and comb[0] > 200: break # try to solve for both sin and cos terms if not self.has_any_symbols(comb[1],varsym.svar) or not self.has_any_symbols(comb[1], varsym.cvar): continue try: s = solve(comb[1],[varsym.svar,varsym.cvar]) except PolynomialError, e: log.debug('solveSingleVariable: failed: %s',e) continue if s is not None: sollist = None if hasattr(s,'has_key'): if s.has_key(varsym.svar) and s.has_key(varsym.cvar): sollist = [(s[varsym.svar],s[varsym.cvar])] else: sollist = [] else: sollist = s solversolution = AST.SolverSolution(var.name,jointeval=[],isHinge=self.isHinge(var.name)) goodsolution = 0 for svarsol,cvarsol in sollist: # solutions cannot be trivial if (svarsol-cvarsol).subs(listsymbols).expand() == S.Zero: break if svarsol.subs(listsymbols).expand() == S.Zero and abs(cvarsol.subs(listsymbols).expand()) - S.One != S.Zero: break if cvarsol.subs(listsymbols).expand() == S.Zero and abs(svarsol.subs(listsymbols).expand()) - S.One != S.Zero: break # check the numerator and denominator if solutions are the same or for possible divide by zeros svarfrac=fraction(svarsol) svarfrac = [svarfrac[0].subs(listsymbols), svarfrac[1].subs(listsymbols)] cvarfrac=fraction(cvarsol) cvarfrac = [cvarfrac[0].subs(listsymbols), cvarfrac[1].subs(listsymbols)] if self.equal(svarfrac[0],cvarfrac[0]) and self.equal(svarfrac[1],cvarfrac[1]): break if not self.isValidSolution(svarfrac[0]) or not self.isValidSolution(svarfrac[1]) or not self.isValidSolution(cvarfrac[0]) or not self.isValidSolution(cvarfrac[1]): continue # check if there exists at least one test solution with non-zero denominators if subs is None: testeqs = [svarfrac[1].subs(othersubs),cvarfrac[1].subs(othersubs)] else: testeqs = [svarfrac[1].subs(subs).subs(othersubs),cvarfrac[1].subs(subs).subs(othersubs)] testsuccess = False for testconsistentvalue in self.testconsistentvalues: if all([testeq.subs(testconsistentvalue).evalf()!=S.Zero for testeq in testeqs]): testsuccess = True break if not testsuccess: continue scomplexity = self.codeComplexity(svarfrac[0])+self.codeComplexity(svarfrac[1]) ccomplexity = self.codeComplexity(cvarfrac[0])+self.codeComplexity(cvarfrac[1]) if scomplexity > 1200 or ccomplexity > 1200: log.debug('equation too complex for single variable solution (%d,%d).... (probably wrong?)',scomplexity,ccomplexity) break if scomplexity < 500: svarfrac[1] = simplify(svarfrac[1]) if self.chop(svarfrac[1])== 0: break if ccomplexity < 500: cvarfrac[1] = simplify(cvarfrac[1]) if self.chop(cvarfrac[1])== 0: break # sometimes the returned simplest solution makes really gross approximations svarfracsimp_denom = self.trigsimp(svarfrac[1],othersolvedvars) cvarfracsimp_denom = self.trigsimp(cvarfrac[1],othersolvedvars) # self.simplifyTransform could help in reducing denoms further... denomsequal = False if self.equal(svarfracsimp_denom,cvarfracsimp_denom): denomsequal = True elif self.equal(svarfracsimp_denom,-cvarfracsimp_denom): cvarfrac[0] = -cvarfrac[0] cvarfracsimp_denom = -cvarfracsimp_denom if self.equal(svarfracsimp_denom,cvarfracsimp_denom) and not svarfracsimp_denom.is_number: log.debug('%s solution: denominator is equal %s, doing a global substitution',var.name,svarfracsimp_denom) denom = self.gsymbolgen.next() solversolution.dictequations.append((denom,sign(svarfracsimp_denom))) svarsolsimp = self.trigsimp(svarfrac[0],othersolvedvars)*denom cvarsolsimp = self.trigsimp(cvarfrac[0],othersolvedvars)*denom solversolution.FeasibleIsZeros = False solversolution.presetcheckforzeros.append(svarfracsimp_denom) expandedsol = atan2(svarsolsimp,cvarsolsimp) else: svarfracsimp_num = self.trigsimp(svarfrac[0],othersolvedvars) cvarfracsimp_num = self.trigsimp(cvarfrac[0],othersolvedvars) svarsolsimp = svarfracsimp_num/svarfracsimp_denom cvarsolsimp = cvarfracsimp_num/cvarfracsimp_denom if svarsolsimp.is_number and cvarsolsimp.is_number: if abs(svarsolsimp**2+cvarsolsimp**2-S.One).evalf() > 1e-10: log.debug('%s solution: atan2(%s,%s), sin/cos not on circle so ignoring',var.name,svarsolsimp,cvarsolsimp) continue expandedsol = atan2check(svarsolsimp,cvarsolsimp) solversolution.FeasibleIsZeros = False log.debug('%s solution: atan2 check for joint',var.name) solversolution.jointeval.append(expandedsol) if unknownvars is not None: unsolvedsymbols = [] for unknownvar in unknownvars: if unknownvar != var: unsolvedsymbols += self.Variable(unknownvar).vars if len(unsolvedsymbols) > 0: solversolution.equationsused = [eq for eq in eqns if not eq.has_any_symbols(*unsolvedsymbols)] else: solversolution.equationsused = eqns if len(solversolution.equationsused) > 0: log.info('%s solution: equations used for atan2: %s',var.name, str(solversolution.equationsused)) if len(self.checkForDivideByZero(expandedsol)) == 0: goodsolution += 1 if len(solversolution.jointeval) == len(sollist) and len(sollist) > 0: solutions.append(solversolution) if goodsolution > 0: hasgoodsolution = True if len(sollist) == goodsolution and goodsolution == 1: break if len(solutions) >= maxsolutions: # probably more than enough already? break if len(solutions) > 0 or hasgoodsolution: # found a solution without any divides, necessary for pr2 head_torso lookat3d ik return solutions # solve one equation for ieq,eq in enumerate(eqns): symbolgen = cse_main.numbered_symbols('const') eqnew, symbols = self.groupTerms(eq.subs(varsym.subs), [varsym.cvar,varsym.svar,varsym.var], symbolgen) try: # ignore any equations with degree 3 or more ps = Poly(eqnew,varsym.svar) pc = Poly(eqnew,varsym.cvar) if ps.degree > maxdegree or pc.degree > maxdegree: log.debug('cannot solve equation with high degree: %s',str(eqnew)) continue if ps.coeff(0) == S.Zero and len(ps.monoms) > 0: log.debug('equation %s has trivial solution, ignoring...', ps) continue if pc.coeff(0) == S.Zero and len(pc.monoms) > 0: log.debug('equation %s has trivial solution, ignoring...', pc) continue except polys.polynomial.PolynomialError: # might not be a polynomial, so ignore continue equationsused = None if unknownvars is not None: unsolvedsymbols = [] for unknownvar in unknownvars: if unknownvar != var: unsolvedsymbols += self.Variable(unknownvar).vars if len(unsolvedsymbols) > 0: equationsused = [eq2 for ieq2,eq2 in enumerate(eqns) if ieq2!=ieq and not eq2.has_any_symbols(*unsolvedsymbols)] else: equationsused = eqns[:] equationsused.pop(ieq) numcvar = self.countVariables(eqnew,varsym.cvar) numsvar = self.countVariables(eqnew,varsym.svar) if numcvar == 1 and numsvar == 1: a = Wild('a',exclude=[varsym.svar,varsym.cvar]) b = Wild('b',exclude=[varsym.svar,varsym.cvar]) c = Wild('c',exclude=[varsym.svar,varsym.cvar]) m = eqnew.match(a*varsym.cvar+b*varsym.svar+c) if m is not None: symbols += [(varsym.svar,sin(var)),(varsym.cvar,cos(var))] asinsol = trigsimp(asin(-m[c]/abs(sqrt(m[a]*m[a]+m[b]*m[b]))).subs(symbols),deep=True) constsol = -atan2(m[a],m[b]).subs(symbols).evalf() jointsolutions = [constsol+asinsol,constsol+pi.evalf()-asinsol] if all([self.isValidSolution(s) and self.isValidSolution(s) for s in jointsolutions]): solutions.append(AST.SolverSolution(var.name,jointeval=jointsolutions,isHinge=self.isHinge(var.name))) solutions[-1].equationsused = equationsused continue if numcvar > 0: try: # substitute cos if self.countVariables(eqnew,varsym.svar) <= 1 or (self.countVariables(eqnew,varsym.cvar) <= 2 and self.countVariables(eqnew,varsym.svar) == 0): # anything more than 1 implies quartic equation tempsolutions = solve(eqnew.subs(varsym.svar,sqrt(1-varsym.cvar**2)),varsym.cvar) jointsolutions = [self.trigsimp(s.subs(symbols+varsym.subsinv),othersolvedvars) for s in tempsolutions] if all([self.isValidSolution(s) and self.isValidSolution(s) for s in jointsolutions]): solutions.append(AST.SolverSolution(var.name,jointevalcos=jointsolutions,isHinge=self.isHinge(var.name))) solutions[-1].equationsused = equationsused continue except self.CannotSolveError,e: log.debug(e) except NotImplementedError: pass if numsvar > 0: # substitute sin try: if self.countVariables(eqnew,varsym.svar) <= 1 or (self.countVariables(eqnew,varsym.svar) <= 2 and self.countVariables(eqnew,varsym.cvar) == 0): # anything more than 1 implies quartic equation tempsolutions = solve(eqnew.subs(varsym.cvar,sqrt(1-varsym.svar**2)),varsym.svar) jointsolutions = [self.trigsimp(s.subs(symbols+varsym.subsinv),othersolvedvars) for s in tempsolutions] if all([self.isValidSolution(s) and self.isValidSolution(s) for s in jointsolutions]): solutions.append(AST.SolverSolution(var.name,jointevalsin=jointsolutions,isHinge=self.isHinge(var.name))) solutions[-1].equationsused = equationsused continue except self.CannotSolveError,e: log.debug(e) except NotImplementedError: pass if numcvar == 0 and numsvar == 0: tempsolutions = solve(eqnew,var) jointsolutions = [self.trigsimp(s.subs(symbols),othersolvedvars) for s in tempsolutions] if all([self.isValidSolution(s) and s != S.Zero for s in jointsolutions]) and len(jointsolutions) > 0: solutions.append(AST.SolverSolution(var.name,jointeval=jointsolutions,isHinge=self.isHinge(var.name))) solutions[-1].equationsused = equationsused continue try: solution = self.solveHighDegreeEquationsHalfAngle([eqnew],varsym,symbols) solutions.append(solution.subs(symbols)) solutions[-1].equationsused = equationsused except self.CannotSolveError,e: log.debug(e) if len(solutions) > 0: return solutions return [self.solveHighDegreeEquationsHalfAngle(eqns,varsym)] def solvePairVariables(self,raweqns,var0,var1,othersolvedvars,maxcomplexity=50,unknownvars=None): # make sure both variables are hinges if not self.isHinge(var0.name) or not self.isHinge(var1.name): raise self.CannotSolveError('pairwise variables only supports hinge joints') varsym0 = self.Variable(var0) varsym1 = self.Variable(var1) cvar0,svar0 = varsym0.cvar, varsym0.svar cvar1,svar1 = varsym1.cvar, varsym1.svar varsubs=varsym0.subs+varsym1.subs varsubsinv = varsym0.subsinv+varsym1.subsinv unknownvars=[cvar0,svar0,cvar1,svar1] reducesubs = [(svar0**2,1-cvar0**2),(svar1**2,1-cvar1**2)] eqns = [eq.subs(varsubs).subs(reducesubs).expand() for eq in raweqns if eq.has_any_symbols(var0,var1)] if len(eqns) <= 1: raise self.CannotSolveError('not enough equations') # group equations with single variables symbolgen = cse_main.numbered_symbols('const') orgeqns = [] allsymbols = [] for eq in eqns: eqnew, symbols = self.groupTerms(eq, unknownvars, symbolgen) allsymbols += symbols orgeqns.append([self.codeComplexity(eq),Poly(eqnew,*unknownvars)]) orgeqns.sort(lambda x, y: x[0]-y[0]) neweqns = orgeqns[:] pairwisesubs = [(svar0*cvar1,Symbol('s0c1')),(svar0*svar1,Symbol('s0s1')),(cvar0*cvar1,Symbol('c0c1')),(cvar0*svar1,Symbol('c0s1')),(cvar0*svar0,Symbol('s0c0')),(cvar1*svar1,Symbol('c1s1'))] pairwiseinvsubs = [(f[1],f[0]) for f in pairwisesubs] pairwisevars = [f[1] for f in pairwisesubs] reduceeqns = [Poly(eq.as_basic().subs(pairwisesubs),*pairwisevars) for rank,eq in orgeqns if rank < 4*maxcomplexity] for i,eq in enumerate(reduceeqns): if eq.TC != S.Zero and not eq.TC.is_Symbol: n=symbolgen.next() allsymbols.append((n,eq.TC.subs(allsymbols))) reduceeqns[i] += n-eq.TC # try to at least subtract as much paired variables out eqcombs = [c for c in combinations(reduceeqns,2)] while len(eqcombs) > 0 and len(neweqns) < 20: eq0,eq1 = eqcombs.pop() for i in range(6): monom = [0,0,0,0,0,0] monom[i] = 1 if eq0.coeff(*monom) != 0 and eq1.coeff(*monom) != 0: tempeq = (eq0.as_basic()*eq1.coeff(*monom)-eq0.coeff(*monom)*eq1.as_basic()).subs(allsymbols+pairwiseinvsubs).expand() if self.codeComplexity(tempeq) > 200: continue eq = simplify(tempeq) if eq == S.Zero: continue peq = Poly(eq,*pairwisevars) if peq.degree > 0 and self.codeComplexity(eq) > maxcomplexity: # don't need such complex equations continue if not self.isExpressionUnique(eqns,eq) or not self.isExpressionUnique(eqns,-eq): continue if eq.has_any_symbols(*unknownvars): # be a little strict about new candidates eqns.append(eq) eqnew, symbols = self.groupTerms(eq, unknownvars, symbolgen) allsymbols += symbols neweqns.append([self.codeComplexity(eq),Poly(eqnew,*unknownvars)]) orgeqns = neweqns[:] # try to solve for all pairwise variables systemofequations = [] for i in range(len(reduceeqns)): if reduceeqns[i].has_any_symbols(pairwisevars[4],pairwisevars[5]):
this case is given by the column **Attrition** which contains categorical variables therefore requires numerical encoding. We numerically encode it by creating a dictionary with the mapping given as 1 : Yes and 0 : No # In[ ]: # Define a dictionary for the target mapping target_map = {'Yes':1, 'No':0} # Use the pandas apply method to numerically encode our attrition target variable target = attrition["Attrition"].apply(lambda x: target_map[x]) target.head(3) # However just by a quick inspection of the counts of the number of 'Yes' and 'No' in the target variable tells us that there is quite a large skew in target as shown # In[ ]: data = [go.Bar(x=attrition["Attrition"].value_counts().index.values,y= attrition["Attrition"].value_counts().values)] py.iplot(data, filename='basic-bar') # Therefore we have to keep in mind that there is quite a big imbalance in our target variable. Many statistical techniques have been put forth to treat imbalances in data (oversampling or undersampling). In this notebook, I will use an oversampling technique known as SMOTE to treat this imbalance. # # 3. Implementing Machine Learning Models # # Having performed some exploratory data analysis and simple feature engineering as well as having ensured that all categorical values are encoded, we are now ready to proceed onto building our models. # # As alluded to in the introduction of this notebook, we will aim to evaluate and contrast the performances of a handful of different learning models. # # **Splitting Data into Train and Test sets** # # But before we even start training a model, we will have to partition our dataset into a training set and a test set (unlike Kaggle competitions where the train and test data are already segregated for you). To split our data we will utilise sklearn's # In[ ]: # Import the train_test_split method from sklearn.cross_validation import train_test_split from sklearn.cross_validation import StratifiedShuffleSplit # Split data into train and test sets as well as for validation and testing train, test, target_train, target_val = train_test_split(attrition_final,target,train_size= 0.80,random_state=0); #train, test, target_train, target_val = StratifiedShuffleSplit(attrition_final, target, random_state=0); # **SMOTE to oversample due to the skewness in target** # # Since we have already noted the severe imbalance in the values within the target variable, let us implement the SMOTE method in the dealing with this skewed value via the imblearn Python package. # In[ ]: oversampler=SMOTE(random_state=0) smote_train, smote_target = oversampler.fit_sample(train,target_train) # ---- # ## A. Random Forest Classifier # # The Random Forest method, first introduced by Breiman in 2001 can be grouped under the category of ensemble models. Why ensemble? The building block of a Random Forest is the ubiquitous Decision Tree. The decision tree as a standalone model is often considered a "weak learner" as its predictive performance is relatively poor. However a Random Forest gathers a group (or ensemble) of decision trees and uses their combined predictive capabilities to obtain relatively strong predictive performance - "strong learner". # # This principle of using a collection of "weak learners" to come together to create a "strong learner" underpins the basis of ensemble methods which one regularly comes across in Machine learning. For a really good read that drives home the basics of the Random Forest, refer to this [CitizenNet blog][1] # # # [1]: http://blog.citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-metrics # **Initialising Random Forest parameters** # # We will utilise the Scikit-learn library to construct a Random Forest model. To do so, we have to first define our set of parameters that we will feed into our Random Forest classifier as follows # In[ ]: seed = 0 # We set our random seed to zero for reproducibility # Random Forest parameters rf_params = {'n_jobs': -1,'n_estimators': 1000,'max_features': 0.3,'max_depth': 4,'min_samples_leaf': 2,'max_features' : 'sqrt','random_state' : seed,'verbose': 0} # Having defined our parameters, we can initialise a Random Forest object by using scikit-learn's **RandomForestClassifier** and unpacking the parameters by adding the double asterisks symbols as follows # In[ ]: rf = RandomForestClassifier(**rf_params) # The next step after prepping our Random Forest model would be to start building a forest of trees using our training set and fitting it to our attrition target variable. We do so by simply using the **fit** call as follows # In[ ]: rf.fit(smote_train, smote_target) print("Fitting of Random Forest finished") # Having fitted our forest of trees with our parameters to the training set against our target variable, we now have a learning model **rf** which we can make predictions out of. To use our Random Forest in predicting against our test data, we can use sklearn's **.predict** method as follows # In[ ]: rf_predictions = rf.predict(test) print("Predictions finished") # Scoring the model # In[ ]: print("Accuracy score: {}".format(accuracy_score(target_val, rf_predictions))) print("="*80) print(classification_report(target_val, rf_predictions)) # **Accuracy of the model** # # As observed, our Random Forest returns an accuracy of approx 88% for its predictions and on first glance this might seem to be a pretty good performing model. However when we think about how skewed our target variable where the distribution of yes and no's are 84% and 26%, therefore our model is only predicting slightly better than random guessing. # # It would be more informative to balance out the precision and recall scores as show in the classification report outputs. Where it falls down to the business considerations over whether one should prioritise for a metric over the other - i.e. your Precision vs Recall. # ### Feature Ranking via the Random Forest # # The Random Forest classifier in Sklearn also contains a very convenient attribute **feature_importances_** which tells us which features within our dataset has been given most importance through the Random Forest algorithm. Shown below is an Interactive Plotly diagram of the various feature importances. # In[ ]: # Scatter plot trace = go.Scatter(y = rf.feature_importances_,x = attrition_final.columns.values,mode='markers',marker=dict(sizemode = 'diameter',sizeref = 1,size = 13,color = rf.feature_importances_,colorscale='Portland',showscale=True),text = attrition_final.columns.values) data = [trace] layout= go.Layout(autosize= True,title= 'Random Forest Feature Importance',hovermode= 'closest',xaxis= dict(ticklen= 5,showgrid=False,zeroline=False,showline=False),yaxis=dict(title= 'Feature Importance',showgrid=False,zeroline=False,ticklen= 5,gridwidth= 2),showlegend= False) fig = go.Figure(data=data, layout=layout) py.iplot(fig,filename='scatter2010') # ### Visualising Tree Diagram with Graphviz # # Let us now visualise how a single decision tree traverses the features in our data as the DecisionTreeClassifier object of sklearn comes with a very convenient **export_graphviz** method that exports the tree diagram into a .png format which you can view from the output of this kernel. # In[ ]: from sklearn import tree from IPython.display import Image as PImage from subprocess import check_call from PIL import Image, ImageDraw, ImageFont import re decision_tree = tree.DecisionTreeClassifier(max_depth = 4) decision_tree.fit(train, target_train) # Predicting results for test dataset y_pred = decision_tree.predict(test) # Export our trained model as a .dot file with open("tree1.dot", 'w') as f: f = tree.export_graphviz(decision_tree,out_file=f,max_depth = 4,impurity = False,feature_names = attrition_final.columns.values,class_names = ['No', 'Yes'],rounded = True,filled= True ) #Convert .dot to .png to allow display in web notebook check_call(['dot','-Tpng','tree1.dot','-o','tree1.png']) # Annotating chart with PIL img = Image.open("tree1.png") draw = ImageDraw.Draw(img) img.save('sample-out.png') PImage("sample-out.png", height=2000, width=1900) # ---- # # ## B. Gradient Boosted Classifier # # Gradient Boosting is also an ensemble technique much like the Random Forest where a combination of weak Tree learners are brought together to form a relatively stronger learner. The technique involves defining some sort of function (loss function) that you want minimised and an method/algorithm to minimise this. Therefore as the name suggests, the algorithm used to minimise the loss function is that of a gradient descent method which adds decision trees which "point" in the direction that reduces our loss function (downward gradient). # # To set up a Gradient Boosting classifier is easy enough in Sklearn and it involves only a handful of lines of code. Again we first set up our classifier's parameters # # **Initialising Gradient Boosting Parameters** # # In general there are a handful of key parameter when setting up tree-based or gradient boosted models. These are always going to be the number of estimators, the maximum depth with which you want your model to be trained to, and the minimum samples per leaf # In[ ]: # Gradient Boosting Parameters gb_params ={'n_estimators': 1500,'max_features': 0.9,'learning_rate' : 0.25,'max_depth': 4,'min_samples_leaf': 2,'subsample': 1,'max_features' : 'sqrt','random_state' : seed,'verbose': 0} # Having defined our parameters, we can now apply the usual fit and predict methods on our train and test sets respectively # In[ ]: gb = GradientBoostingClassifier(**gb_params) # Fit the model to our SMOTEd train and
exit() if adrs: s = [str(c.index), effect.name] else: s = [str(c.index), effect.id_] for x in metrics: if value <= x[1]: effect_dct[(effect, count)][x] += 1.0 s.append('1') else: s.append('0') if continuous: s.append(str(value)) else: s.append(str(int(value))) ss.append(s) break self.accuracies = effect_dct final_accs = self.results_analysed(ra_named, metrics, effect_type()) ss = sorted(ss, key=lambda xx: xx[0]) #ss = sorted(ss, key=lambda xx: int(xx[0])) top_pairwise = [0.0] * 10 for s in ss: if s[2] == '1': top_pairwise[0] += 1.0 if s[3] == '1': top_pairwise[1] += 1.0 if s[4] == '1': top_pairwise[2] += 1.0 if s[5] == '1': top_pairwise[3] += 1.0 if s[6] == '1': top_pairwise[4] += 1.0 if s[7] == '1': top_pairwise[5] += 1.0 if s[8] == '1': top_pairwise[6] += 1.0 if s[9] == '1': top_pairwise[7] += 1.0 if s[10] == '1': top_pairwise[8] += 1.0 if s[11] == '1': top_pairwise[9] += 1.0 sj = ','.join(s) sj += '\n' ra_out.write(sj) ra_out.close() cov = [0] * 10 for effect, c in list(self.accuracies.keys()): accs = self.accuracies[effect, c] for m_i in range(len(metrics)): v = accs[metrics[m_i]] if v > 0.0: cov[m_i] += 1 if continuous: headers = ['0.1%ile', '.25%ile', '0.5%ile', '1%ile', '5%ile', '10%ile', '20%ile', '33%ile', '50%ile', '100%ile'] else: headers = ['top10', 'top25', 'top50', 'top100', 'top{}'.format(len(self.compound_pairs)), 'top1%', 'top5%', 'top10%', 'top50%', 'top100%'] # Create average indication accuracy list in percent ia = [] for m in metrics: ia.append(final_accs[m] * 100.0) # Create average pairwise accuracy list in percent pa = [(x * 100.0 / len(ss)) for x in top_pairwise] # Indication coverage cov = map(int, cov) # Append 3 lists to df and write to file with open(summ, 'w') as sf: sf.write("\t" + '\t'.join(headers) + '\n') ast = "\t".join(map(str, [format(x, ".3f") for x in ia])) pst = "\t".join(map(str, [format(x, ".3f") for x in pa])) cst = "\t".join(map(str, cov)) + '\n' sf.write('aia\t{}\napa\t{}\nic\t{}\n'.format(ast, pst, cst)) # pretty print the average indication accuracies cut = 0 print("\taia") for m in metrics: print("{}\t{:.3f}".format(headers[cut], final_accs[m] * 100.0)) cut += 1 print('\n') def ml(self, method='rf', effect=None, benchmark=False, adrs=False, predict=[], threshold=0.5, negative='random', seed=42, out=''): """! Create an ML classifier for a specified indication to make drug-disease predictions or all inds for benchmarking @param method str: type of machine learning algorithm to use ('rf' or 'log') @param effect Indication or ADR: provide a specific Indication or ADR object to train a classifer @param benchmark bool: benchmark the ML pipeline by training a classifier with LOOCV for each Indication or ADR @param adrs bool: if the models are trained with ADRs instead of Indications @param predict list: provide a list of Compound objects to classify with the model (only used in combination with effect=Indication/ADR object) @param threshold float: decision threshold for positive vs negative classification @param negative str: choose random negative samples (default) or 'inverse' for most opposite signatures @param seed int: choose a seed for reproducibility @param out str: file name extension for the output of benchmark (note: must have benchmark=True) @return Returns None """ if method in ['1csvm', 'svm']: print('SVMs are currently unsupported by this version of cando.py. Please choose "log" or "rf" - quitting.') quit() if out: if not os.path.exists('./raw_results/'): os.system('mkdir raw_results') if not os.path.exists('./results_analysed_named/'): os.system('mkdir results_analysed_named') paired_negs = {} # gather approved compound signatures for training def split_cs(efct, cmpd=None): mtrx = [] for cm in efct.compounds: if cmpd: if cm.id_ == cmpd.id_: continue if self.indication_proteins: if len(efct.proteins) >= 3: eps = [] for ep in efct.proteins: ep_index = self.protein_id_to_index[ep.id_] eps.append(cm.sig[ep_index]) mtrx.append(eps) else: mtrx.append(cm.sig) return mtrx, [1] * len(mtrx) def choose_negatives(efct, neg_set=negative, s=None, hold_out=None, avoid=[], test=None): if neg_set == 'inverse': if not self.compute_distance and not self.read_dists: print('Please compute all compound-compound distances before using inverse_negatives().\n' 'Re-run with "compute_distance=True" or read in pre-computed distance file "read_dists="' 'in the CANDO object instantiation -- quitting.') quit() negatives = [] used = avoid def pick_first_last(cmpd, s): if neg_set == 'inverse': r = int(len(self.compounds) / 2) shuffled = [cx[0].id_ for cx in cmpd.similar][::-1][0:r] else: shuffled = [cx.id_ for cx in self.compounds] if s: random.seed(s) random.shuffle(shuffled) else: s = random.randint(0, len(self.compounds) - 1) random.seed(s) random.shuffle(shuffled) for si in range(len(shuffled)): n = shuffled[si] if n in used: continue inv = self.get_compound(n) if inv not in efct.compounds: if n not in used: paired_negs[cmpd] = inv return inv if test: inv = pick_first_last(c, s) return inv for ce in efct.compounds: if hold_out: if ce.id_ == hold_out.id_: continue inv = pick_first_last(ce, s) if self.indication_proteins: if len(efct.proteins) >= 3: eps = [] for ep in efct.proteins: ep_index = self.protein_id_to_index[ep.id_] eps.append(inv.sig[ep_index]) negatives.append(eps) else: negatives.append(inv.sig) used.append(inv.id_) return negatives, [0] * len(negatives), used def model(meth, samples, labels, params=None, seed=None): if meth == 'rf': m = RandomForestClassifier(n_estimators=100, random_state=seed) m.fit(samples, labels) return m elif meth == 'svm': m = svm.SVC(kernel='rbf', gamma='scale', degree=3, random_state=seed) m.fit(samples, labels) return m elif meth == '1csvm': keep = [] for i in range(len(samples)): if labels[i] == 1: keep.append(samples[i]) m = svm.OneClassSVM(kernel='poly', gamma='scale', degree=2) m.fit(keep) return m elif meth == 'log': m = LogisticRegression(penalty='l2', solver='newton-cg', random_state=seed) m.fit(samples, labels) return m else: print("Please enter valid machine learning method ('rf', '1csvm', 'log', or 'svm')") quit() if benchmark: if adrs: effects = sorted(self.adrs, key=lambda x: (len(x.compounds), x.id_))[::-1] else: effects = sorted(self.indications, key=lambda x: (len(x.compounds), x.id_))[::-1] if out: frr = open('./raw_results/raw_results_ml_{}'.format(out), 'w') frr.write('Compound,Effect,Prob,Neg,Neg_prob\n') fran = open('./results_analysed_named/results_analysed_named_ml_{}'.format(out), 'w') fsum = open('summary_ml-{}'.format(out), 'w') else: if len(effect.compounds) < 1: print('No compounds associated with {} ({}), quitting.'.format(effect.name, effect.id_)) quit() elif self.indication_proteins and len(effect.proteins) <= 2: print('Less than 3 proteins associated with {} ({}), quitting.'.format(effect.name, effect.id_)) effects = [effect] rf_scores = [] for e in effects: if len(e.compounds) < 2: continue if self.indication_proteins: if not len(e.proteins) >= 3: continue tp_fn = [0, 0] fp_tn = [0, 0] for c in e.compounds: pos = split_cs(e, cmpd=c) negs = choose_negatives(e, s=seed, hold_out=c, avoid=[]) already_used = negs[2] train_samples = np.array(pos[0] + negs[0]) train_labels = np.array(pos[1] + negs[1]) mdl = model(method, train_samples, train_labels, seed=seed) test_neg = choose_negatives(e, s=seed, avoid=already_used, test=c) if self.indication_proteins: eps_pos = [] eps_neg = [] for ep in e.proteins: ep_index = self.protein_id_to_index[ep.id_] eps_pos.append(c.sig[ep_index]) eps_neg.append(test_neg.sig[ep_index]) pred = mdl.predict_proba(np.array([eps_pos])) pred_neg = mdl.predict_proba(np.array([eps_neg])) else: pred = mdl.predict_proba(np.array([c.sig])) pred_neg = mdl.predict_proba(np.array([test_neg.sig])) pos_class = list(mdl.classes_).index(1) if pred[0][pos_class] > threshold: tp_fn[0] += 1 else: tp_fn[1] += 1 if pred_neg[0][pos_class] > threshold: fp_tn[0] += 1 else: fp_tn[1] += 1 if benchmark and out: frr.write('{},{},{},{},{}\n'.format(c.id_, e.id_, pred[0][pos_class], test_neg.id_, pred_neg[0][pos_class])) # predict whether query drugs are associated with this indication if predict: print('Indication: {}'.format(e.name)) print('Leave-one-out cross validation: TP={}, FP={}, FN={}, TN={}, Acc={:0.3f}'.format( tp_fn[0], fp_tn[0], tp_fn[1], fp_tn[1], 100 * ((tp_fn[0]+fp_tn[1]) / (float(len(e.compounds))*2)))) negs = choose_negatives(e, s=seed) pos = split_cs(e) train_samples = np.array(pos[0] + negs[0]) train_labels = np.array(pos[1] + negs[1]) mdl = model(method, train_samples, train_labels, seed=seed) print('\tCompound\tProb') for c in predict: inv = choose_negatives(effect, s=seed, test=c, avoid=negs[2]) if self.indication_proteins: eps_pos = [] eps_neg = [] for ep in e.proteins: ep_index = self.protein_id_to_index[ep.id_] eps_pos.append(c.sig[ep_index]) eps_neg.append(test_neg.sig[ep_index]) pred = mdl.predict_proba(np.array([eps_pos])) pred_neg = mdl.predict_proba(np.array([test_neg.sig])) else: pred = mdl.predict_proba(np.array([c.sig])) pred_inv = mdl.predict_proba(np.array([inv.sig])) pos_class = list(mdl.classes_).index(1) print('\t{}\t{:0.3f}'.format(c.name, pred[0][pos_class])) #print('\t{}\t{:0.3f}\t(random negative of {})'.format(inv.name, pred_inv[0][pos_class], c.name)) # append loocv results to combined list rf_scores.append((e, tp_fn, fp_tn)) sm = [0, 0, 0, 0] if benchmark: for rf_score in rf_scores: efct = rf_score[0] tfp = rf_score[1] ffp = rf_score[2] acc = (tfp[0] + ffp[1]) / (float(len(efct.compounds) * 2)) sm[0] += len(efct.compounds) sm[1] += acc sm[2] += (acc * len(efct.compounds)) if acc > 0.5: sm[3] += 1 if out: fran.write('{}\t{}\t{}\t{}\t{:0.3f}\t{}\n'.format(efct.id_, len(efct.compounds), tfp[0], tfp[1], 100 * acc, efct.name)) if out: fsum.write('aia\t{:0.3f}\n'.format(100 * (sm[1]/len(rf_scores)))) fsum.write('apa\t{:0.3f}\n'.format(100 * (sm[2] / sm[0]))) fsum.write('ic\t{}\n'.format(sm[3])) print('aia\t{:0.3f}'.format(100 * (sm[1]/len(rf_scores)))) print('apa\t{:0.3f}'.format(100 * (sm[2] / sm[0]))) print('ic\t{}'.format(sm[3])) return def raw_results_roc(self, rr_files, labels, save='roc-raw_results.pdf'): if len(labels) != len(rr_files): print('Please enter a label for each input raw results file ' '({} files, {} labels).'.format(len(rr_files), len(labels))) quit() n_per_d = {} dt = {} ds = {} metrics = {} truth = [] scores = [] for rr_file in rr_files: for l in open(rr_file, 'r').readlines()[1:]: ls = l.strip().split(',') pp = float(ls[2]) truth.append(1) scores.append(pp) np = float(ls[4]) truth.append(0) scores.append(np) if ls[1] not in n_per_d: n_per_d[ls[1]] = 1 else: n_per_d[ls[1]] += 1 pr
# Copyright (c) 2012 NTT DOCOMO, INC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import glob import os import re import time from ironic_lib import disk_utils from ironic_lib import metrics_utils from oslo_concurrency import processutils from oslo_log import log as logging from oslo_serialization import jsonutils from oslo_utils import excutils from oslo_utils import netutils from oslo_utils import strutils import six from ironic.common import exception from ironic.common.glance_service import service_utils from ironic.common.i18n import _ from ironic.common import image_service from ironic.common import keystone from ironic.common import states from ironic.common import utils from ironic.conductor import utils as manager_utils from ironic.conf import CONF from ironic.drivers.modules import agent_client from ironic.drivers.modules import image_cache from ironic.drivers import utils as driver_utils from ironic import objects # TODO(Faizan): Move this logic to common/utils.py and deprecate # rootwrap_config. # This is required to set the default value of ironic_lib option # only if rootwrap_config does not contain the default value. if CONF.rootwrap_config != '/etc/ironic/rootwrap.conf': root_helper = 'sudo ironic-rootwrap %s' % CONF.rootwrap_config CONF.set_default('root_helper', root_helper, 'ironic_lib') LOG = logging.getLogger(__name__) METRICS = metrics_utils.get_metrics_logger(__name__) SUPPORTED_CAPABILITIES = { 'boot_option': ('local', 'netboot'), 'boot_mode': ('bios', 'uefi'), 'secure_boot': ('true', 'false'), 'trusted_boot': ('true', 'false'), 'disk_label': ('msdos', 'gpt'), } DISK_LAYOUT_PARAMS = ('root_gb', 'swap_mb', 'ephemeral_gb') # All functions are called from deploy() directly or indirectly. # They are split for stub-out. _IRONIC_SESSION = None def _get_ironic_session(): global _IRONIC_SESSION if not _IRONIC_SESSION: auth = keystone.get_auth('service_catalog') _IRONIC_SESSION = keystone.get_session('service_catalog', auth=auth) return _IRONIC_SESSION def _wrap_ipv6(ip): if netutils.is_valid_ipv6(ip): return "[%s]" % ip return ip def get_ironic_api_url(): """Resolve Ironic API endpoint either from config of from Keystone catalog. """ ironic_api = CONF.conductor.api_url if not ironic_api: try: ironic_session = _get_ironic_session() ironic_api = keystone.get_service_url(ironic_session) except (exception.KeystoneFailure, exception.CatalogNotFound, exception.KeystoneUnauthorized) as e: raise exception.InvalidParameterValue(_( "Couldn't get the URL of the Ironic API service from the " "configuration file or keystone catalog. Keystone error: " "%s") % six.text_type(e)) # NOTE: we should strip '/' from the end because it might be used in # hardcoded ramdisk script ironic_api = ironic_api.rstrip('/') return ironic_api def discovery(portal_address, portal_port): """Do iSCSI discovery on portal.""" utils.execute('iscsiadm', '-m', 'discovery', '-t', 'st', '-p', '%s:%s' % (_wrap_ipv6(portal_address), portal_port), run_as_root=True, check_exit_code=[0], attempts=5, delay_on_retry=True) def login_iscsi(portal_address, portal_port, target_iqn): """Login to an iSCSI target.""" utils.execute('iscsiadm', '-m', 'node', '-p', '%s:%s' % (_wrap_ipv6(portal_address), portal_port), '-T', target_iqn, '--login', run_as_root=True, check_exit_code=[0], attempts=5, delay_on_retry=True) error_occurred = False try: # Ensure the login complete verify_iscsi_connection(target_iqn) # force iSCSI initiator to re-read luns force_iscsi_lun_update(target_iqn) # ensure file system sees the block device check_file_system_for_iscsi_device(portal_address, portal_port, target_iqn) except (exception.InstanceDeployFailure, processutils.ProcessExecutionError) as e: with excutils.save_and_reraise_exception(): error_occurred = True LOG.error("Failed to login to an iSCSI target due to %s", e) finally: if error_occurred: try: logout_iscsi(portal_address, portal_port, target_iqn) delete_iscsi(portal_address, portal_port, target_iqn) except processutils.ProcessExecutionError as e: LOG.warning("An error occurred when trying to cleanup " "failed ISCSI session error %s", e) def check_file_system_for_iscsi_device(portal_address, portal_port, target_iqn): """Ensure the file system sees the iSCSI block device.""" check_dir = "/dev/disk/by-path/ip-%s:%s-iscsi-%s-lun-1" % (portal_address, portal_port, target_iqn) total_checks = CONF.disk_utils.iscsi_verify_attempts for attempt in range(total_checks): if os.path.exists(check_dir): break time.sleep(1) if LOG.isEnabledFor(logging.DEBUG): existing_devs = ', '.join(glob.iglob('/dev/disk/by-path/*iscsi*')) LOG.debug("iSCSI connection not seen by file system. Rechecking. " "Attempt %(attempt)d out of %(total)d. Available iSCSI " "devices: %(devs)s.", {"attempt": attempt + 1, "total": total_checks, "devs": existing_devs}) else: msg = _("iSCSI connection was not seen by the file system after " "attempting to verify %d times.") % total_checks LOG.error(msg) raise exception.InstanceDeployFailure(msg) def verify_iscsi_connection(target_iqn): """Verify iscsi connection.""" LOG.debug("Checking for iSCSI target to become active.") for attempt in range(CONF.disk_utils.iscsi_verify_attempts): out, _err = utils.execute('iscsiadm', '-m', 'node', '-S', run_as_root=True, check_exit_code=[0]) if target_iqn in out: break time.sleep(1) LOG.debug("iSCSI connection not active. Rechecking. Attempt " "%(attempt)d out of %(total)d", {"attempt": attempt + 1, "total": CONF.disk_utils.iscsi_verify_attempts}) else: msg = _("iSCSI connection did not become active after attempting to " "verify %d times.") % CONF.disk_utils.iscsi_verify_attempts LOG.error(msg) raise exception.InstanceDeployFailure(msg) def force_iscsi_lun_update(target_iqn): """force iSCSI initiator to re-read luns.""" LOG.debug("Re-reading iSCSI luns.") utils.execute('iscsiadm', '-m', 'node', '-T', target_iqn, '-R', run_as_root=True, check_exit_code=[0]) def logout_iscsi(portal_address, portal_port, target_iqn): """Logout from an iSCSI target.""" utils.execute('iscsiadm', '-m', 'node', '-p', '%s:%s' % (_wrap_ipv6(portal_address), portal_port), '-T', target_iqn, '--logout', run_as_root=True, check_exit_code=[0], attempts=5, delay_on_retry=True) def delete_iscsi(portal_address, portal_port, target_iqn): """Delete the iSCSI target.""" # Retry delete until it succeeds (exit code 0) or until there is # no longer a target to delete (exit code 21). utils.execute('iscsiadm', '-m', 'node', '-p', '%s:%s' % (_wrap_ipv6(portal_address), portal_port), '-T', target_iqn, '-o', 'delete', run_as_root=True, check_exit_code=[0, 21], attempts=5, delay_on_retry=True) def _replace_lines_in_file(path, regex_pattern, replacement): with open(path) as f: lines = f.readlines() compiled_pattern = re.compile(regex_pattern) with open(path, 'w') as f: for line in lines: line = compiled_pattern.sub(replacement, line) f.write(line) def _replace_root_uuid(path, root_uuid): root = 'UUID=%s' % root_uuid pattern = r'(\(\(|\{\{) ROOT (\)\)|\}\})' _replace_lines_in_file(path, pattern, root) def _replace_boot_line(path, boot_mode, is_whole_disk_image, trusted_boot=False, iscsi_boot=False): if is_whole_disk_image: boot_disk_type = 'boot_whole_disk' elif trusted_boot: boot_disk_type = 'trusted_boot' elif iscsi_boot: boot_disk_type = 'boot_iscsi' else: boot_disk_type = 'boot_partition' if boot_mode == 'uefi' and not CONF.pxe.ipxe_enabled: pattern = '^((set )?default)=.*$' boot_line = '\\1=%s' % boot_disk_type else: pxe_cmd = 'goto' if CONF.pxe.ipxe_enabled else 'default' pattern = '^%s .*$' % pxe_cmd boot_line = '%s %s' % (pxe_cmd, boot_disk_type) _replace_lines_in_file(path, pattern, boot_line) def _replace_disk_identifier(path, disk_identifier): pattern = r'(\(\(|\{\{) DISK_IDENTIFIER (\)\)|\}\})' _replace_lines_in_file(path, pattern, disk_identifier) def switch_pxe_config(path, root_uuid_or_disk_id, boot_mode, is_whole_disk_image, trusted_boot=False, iscsi_boot=False): """Switch a pxe config from deployment mode to service mode. :param path: path to the pxe config file in tftpboot. :param root_uuid_or_disk_id: root uuid in case of partition image or disk_id in case of whole disk image. :param boot_mode: if boot mode is uefi or bios. :param is_whole_disk_image: if the image is a whole disk image or not. :param trusted_boot: if boot with trusted_boot or not. The usage of is_whole_disk_image and trusted_boot are mutually exclusive. You can have one or neither, but not both. :param iscsi_boot: if boot is from an iSCSI volume or not. """ if not is_whole_disk_image: _replace_root_uuid(path, root_uuid_or_disk_id) else: _replace_disk_identifier(path, root_uuid_or_disk_id) _replace_boot_line(path, boot_mode, is_whole_disk_image, trusted_boot, iscsi_boot) def get_dev(address, port, iqn, lun): """Returns a device path for given parameters.""" dev = ("/dev/disk/by-path/ip-%s:%s-iscsi-%s-lun-%s" % (address, port, iqn, lun)) return dev def deploy_partition_image( address, port, iqn, lun, image_path, root_mb, swap_mb, ephemeral_mb, ephemeral_format, node_uuid, preserve_ephemeral=False, configdrive=None, boot_option=None, boot_mode="bios", disk_label=None): """All-in-one function to deploy a partition image to a node. :param address: The iSCSI IP address. :param port: The iSCSI port number. :param iqn: The iSCSI qualified name. :param lun: The iSCSI logical unit number. :param image_path: Path for the instance's disk image. :param root_mb: Size of the root partition in megabytes. :param swap_mb: Size of the swap partition in megabytes. :param ephemeral_mb: Size of the ephemeral partition in megabytes. If 0, no ephemeral partition will be created. :param ephemeral_format: The type of file system to format the ephemeral partition. :param node_uuid: node's uuid. Used for logging. :param preserve_ephemeral: If True, no filesystem is written to the ephemeral block device, preserving whatever content it had (if the partition table has not changed). :param configdrive: Optional. Base64 encoded Gzipped configdrive content or configdrive HTTP URL. :param boot_option: Can be "local" or "netboot". "netboot" by default. :param boot_mode: Can be "bios" or "uefi". "bios" by default. :param disk_label: The disk label to be used when creating the partition table. Valid values are: "msdos", "gpt" or None; If None Ironic will figure it out according to the boot_mode parameter. :raises: InstanceDeployFailure if image virtual size is bigger than root partition size. :returns: a dictionary containing the following keys: 'root uuid': UUID of root partition 'efi system partition uuid': UUID of the uefi system partition (if boot mode is uefi). NOTE: If key exists but value is None, it means partition doesn't exist. """ boot_option = boot_option or get_default_boot_option() image_mb = disk_utils.get_image_mb(image_path) if image_mb > root_mb: msg = (_('Root partition is too small for requested image. Image ' 'virtual size: %(image_mb)d MB, Root size: %(root_mb)d MB') % {'image_mb': image_mb, 'root_mb': root_mb}) raise exception.InstanceDeployFailure(msg) with _iscsi_setup_and_handle_errors(address, port, iqn, lun) as dev: uuid_dict_returned = disk_utils.work_on_disk( dev, root_mb, swap_mb, ephemeral_mb, ephemeral_format, image_path, node_uuid,
import hashlib import os import subprocess import sys import tempfile import warnings from copy import deepcopy from datetime import datetime from logging import getLogger from time import time, sleep from typing import Optional, Mapping, Sequence, Any, Callable, Union from pathlib2 import Path from ..backend_api import Session from ..backend_interface.util import get_or_create_project, exact_match_regex from ..storage.util import hash_dict from ..task import Task from ..backend_api.services import tasks as tasks_service logger = getLogger('clearml.automation.job') class BaseJob(object): _job_hash_description = 'job_hash={}' _job_hash_property = 'pipeline_job_hash' _hashing_callback = None def __init__(self): # type: () -> () """ Base Job is an abstract CLearML Job """ self._is_cached_task = False self._worker = None self.task_parameter_override = None self.task = None self.task_started = False def get_metric(self, title, series): # type: (str, str) -> (float, float, float) """ Retrieve a specific scalar metric from the running Task. :param str title: Graph title (metric) :param str series: Series on the specific graph (variant) :return: A tuple of min value, max value, last value """ metrics, title, series, values = self.get_metric_req_params(title, series) res = self.task.send( tasks_service.GetAllRequest( id=[self.task.id], page=0, page_size=1, only_fields=['id', ] + metrics ) ) response = res.wait() return tuple(response.response_data['tasks'][0]['last_metrics'][title][series][v] for v in values) @staticmethod def get_metric_req_params(title, series): title = hashlib.md5(str(title).encode('utf-8')).hexdigest() series = hashlib.md5(str(series).encode('utf-8')).hexdigest() metric = 'last_metrics.{}.{}.'.format(title, series) values = ['min_value', 'max_value', 'value'] metrics = [metric + v for v in values] return metrics, title, series, values def launch(self, queue_name=None): # type: (str) -> bool """ Send Job for execution on the requested execution queue :param str queue_name: :return False if Task is not in "created" status (i.e. cannot be enqueued) or cannot be enqueued """ if self._is_cached_task: return False try: Task.enqueue(task=self.task, queue_name=queue_name) return True except Exception as ex: logger.warning('Error enqueuing Task {} to {}: {}'.format(self.task, queue_name, ex)) return False def abort(self): # type: () -> () """ Abort currently running job (can be called multiple times) """ if not self.task or self._is_cached_task: return try: self.task.stopped() except Exception as ex: logger.warning(ex) def elapsed(self): # type: () -> float """ Return the time in seconds since job started. Return -1 if job is still pending :return: Seconds from start. """ if not self.task_started and str(self.task.status) != Task.TaskStatusEnum.in_progress: return -1 self.task_started = True if not self.task.data.started: self.task.reload() if not self.task.data.started: return -1 return (datetime.now(tz=self.task.data.started.tzinfo) - self.task.data.started).total_seconds() def iterations(self): # type: () -> int """ Return the last iteration value of the current job. -1 if job has not started yet :return: Task last iteration. """ if not self.task_started and self.task.status != Task.TaskStatusEnum.in_progress: return -1 self.task_started = True return self.task.get_last_iteration() def task_id(self): # type: () -> str """ Return the Task id. :return: The Task ID. """ return self.task.id def status(self): # type: () -> str """ Return the Job Task current status, see Task.TaskStatusEnum :return: Task status Task.TaskStatusEnum in string. """ return self.task.status def wait(self, timeout=None, pool_period=30.): # type: (Optional[float], float) -> bool """ Wait until the task is fully executed (i.e., aborted/completed/failed) :param timeout: maximum time (minutes) to wait for Task to finish :param pool_period: check task status every pool_period seconds :return: True, if Task finished. """ tic = time() while timeout is None or time() - tic < timeout * 60.: if self.is_stopped(): return True sleep(pool_period) return self.is_stopped() def get_console_output(self, number_of_reports=1): # type: (int) -> Sequence[str] """ Return a list of console outputs reported by the Task. Returned console outputs are retrieved from the most updated console outputs. :param int number_of_reports: number of reports to return, default 1, the last (most updated) console output :return: List of strings each entry corresponds to one report. """ return self.task.get_reported_console_output(number_of_reports=number_of_reports) def worker(self): # type: () -> str """ Return the current worker id executing this Job. If job is pending, returns None :return: ID of the worker executing / executed the job, or None if job is still pending. """ if self.is_pending(): return self._worker if self._worker is None: # the last console outputs will update the worker self.get_console_output(number_of_reports=1) # if we still do not have it, store empty string if not self._worker: self._worker = '' return self._worker def is_running(self): # type: () -> bool """ Return True, if job is currently running (pending is considered False) :return: True, if the task is currently in progress. """ return self.task.status == Task.TaskStatusEnum.in_progress def is_stopped(self): # type: () -> bool """ Return True, if job finished executing (for any reason) :return: True the task is currently one of these states, stopped / completed / failed / published. """ return self.task.status in ( Task.TaskStatusEnum.stopped, Task.TaskStatusEnum.completed, Task.TaskStatusEnum.failed, Task.TaskStatusEnum.published) def is_failed(self): # type: () -> bool """ Return True, if job is has executed and failed :return: True the task is currently in failed state """ return self.task.status in (Task.TaskStatusEnum.failed, ) def is_completed(self): # type: () -> bool """ Return True, if job is has executed and completed successfully :return: True the task is currently in completed or published state """ return self.task.status in (Task.TaskStatusEnum.completed, Task.TaskStatusEnum.published) def is_aborted(self): # type: () -> bool """ Return True, if job is has executed and aborted :return: True the task is currently in aborted state """ return self.task.status in (Task.TaskStatusEnum.stopped, ) def is_pending(self): # type: () -> bool """ Return True, if job is waiting for execution :return: True the task is currently is currently queued. """ return self.task.status in (Task.TaskStatusEnum.queued, Task.TaskStatusEnum.created) def started(self): # type: () -> bool """ Return True, if job already started, or ended. False, if created/pending. :return: False, if the task is currently in draft mode or pending. """ if not self.task_started and self.task.status in ( Task.TaskStatusEnum.in_progress, Task.TaskStatusEnum.created): return False self.task_started = True return True def delete(self): # type: () -> bool """ Delete the current temporary job (before launching) Return False if the Job/Task could not deleted """ if not self.task or self._is_cached_task: return False if self.task.delete(): self.task = None return True return False def is_cached_task(self): # type: () -> bool """ :return: True if the internal Task is a cached one, False otherwise. """ return self._is_cached_task @classmethod def register_hashing_callback(cls, a_function): # type: (Callable[[dict], dict]) -> None """ Allow to customize the dict used for hashing the Task. Provided function will be called with a dict representing a Task, allowing to return a modified version of the representation dict. :param a_function: Function manipulating the representation dict of a function """ assert callable(a_function) cls._hashing_callback = a_function @classmethod def _create_task_hash(cls, task, section_overrides=None, params_override=None): # type: (Task, Optional[dict], Optional[dict]) -> Optional[str] """ Create Hash (str) representing the state of the Task :param task: A Task to hash :param section_overrides: optional dict (keys are Task's section names) with task overrides. :param params_override: Alternative to the entire Task's hyper parameters section (notice this should not be a nested dict but a flat key/value) :return: str hash of the Task configuration """ if not task: return None if section_overrides and section_overrides.get('script'): script = section_overrides['script'] if not isinstance(script, dict): script = script.to_dict() else: script = task.data.script.to_dict() if task.data.script else {} # if we have a repository, we must make sure we have a specific version_num to ensure consistency if script.get('repository') and not script.get('version_num') and not script.get('tag'): return None # we need to ignore `requirements` section because ir might be changing from run to run script.pop("requirements", None) hyper_params = task.get_parameters() if params_override is None else params_override configs = task.get_configuration_objects() # currently we do not add the docker image to the hash (only args and setup script), # because default docker image will cause the step to change docker = None if hasattr(task.data, 'container'): docker = dict(**(task.data.container or dict())) docker.pop('image', None) hash_func = 'md5' if Session.check_min_api_version('2.13') else 'crc32' # make sure that if we only have docker args/bash, # we use encode it, otherwise we revert to the original encoding (excluding docker altogether) repr_dict = dict(script=script, hyper_params=hyper_params, configs=configs, docker=docker) \ if docker else dict(script=script, hyper_params=hyper_params, configs=configs) # callback for modifying the representation dict if cls._hashing_callback: repr_dict = cls._hashing_callback(deepcopy(repr_dict)) return hash_dict(repr_dict, hash_func=hash_func) @classmethod def _get_cached_task(cls, task_hash): # type: (str) -> Optional[Task]
""" Mostly copied from wandb client code Modified "next_sample" code to do the following: -accepts a 'failure_cost' argument -if failure cost 'c' is nonzero, modifies expected improvement of each sample according to: e' = p e / (p (1-c) + c) where 'p' is probability of success and 'e' is unmodified expected improvement -returns expected improvements for whole sample Bayesian Search Check out https://arxiv.org/pdf/1206.2944.pdf for explanation of bayesian optimization We do bayesian optimization and handle the cases where some X values are integers as well as the case where X is very large. """ import numpy as np #from sklearn.gaussian_process import GaussianProcessRegressor #from sklearn.gaussian_process.kernels import Matern #import scipy.stats as stats import math #from wandb.util import get_module #from wandb.sweeps.base import Search #from wandb.sweeps.params import HyperParameter, HyperParameterSet #sklearn.gaussian = get_module('sklearn.gaussian_process') #sklearn.linear = get_module('sklearn.linear_model') #sklearn.svm = get_module('sklearn.svm') #sklearn.discriminant = get_module('sklearn.discriminant_analysis') #scipy.stats = get_module('scipy.stats') import sklearn.gaussian_process as gaussian import sklearn.linear_model as linear_model import sklearn.svm as svm import sklearn.discriminant_analysis as discriminant import scipy.stats def fit_normalized_gaussian_process(X, y, nu=1.5): """ We fit a gaussian process but first subtract the mean and divide by stddev. To undo at prediction tim, call y_pred = gp.predict(X) * y_stddev + y_mean """ gp = gaussian.GaussianProcessRegressor( kernel=gaussian.kernels.Matern(nu=nu), n_restarts_optimizer=2, alpha=0.0000001, random_state=2 ) if len(y) == 1: y = np.array(y) y_mean = y[0] y_stddev = 1 else: y_mean = np.mean(y) y_stddev = np.std(y) + 0.0001 y_norm = (y - y_mean) / y_stddev gp.fit(X, y_norm) return gp, y_mean, y_stddev def train_logistic_regression(X, y): lr = linear.LogisticRegression() lr.fit(X, y.astype(int)) return lambda X : lr.predict_proba(X)[...,1], 0, 1 def train_rbf_svm(X, y): svc = svm.SVC(probability=True) svc.fit(X, y.astype(int)) return lambda X : svc.predict_proba(X)[...,1], 0, 1 def train_qda(X,y): qda = discriminant.QuadraticDiscriminantAnalysis() qda.fit(X, y.astype(int)) return lambda X : qda.predict_proba(X)[...,1], 0, 1 def sigmoid(x): return np.exp(-np.logaddexp(0, -x)) def random_sample(X_bounds, num_test_samples): num_hyperparameters = len(X_bounds) test_X = np.empty((num_test_samples, num_hyperparameters)) for ii in range(num_test_samples): for jj in range(num_hyperparameters): if type(X_bounds[jj][0]) == int: assert (type(X_bounds[jj][1]) == int) test_X[ii, jj] = np.random.randint( X_bounds[jj][0], X_bounds[jj][1]) else: test_X[ii, jj] = np.random.uniform() * ( X_bounds[jj][1] - X_bounds[jj][0] ) + X_bounds[ jj ][ 0 ] return test_X def predict(X, y, test_X, nu=1.5): gp, norm_mean, norm_stddev = fit_normalized_gaussian_process(X, y, nu=nu) y_pred, y_std = gp.predict([test_X], return_std=True) y_std_norm = y_std * norm_stddev y_pred_norm = (y_pred * norm_stddev) + norm_mean return y_pred_norm[0], y_std_norm[0] def train_runtime_model(sample_X, runtimes, X_bounds, nu=1.5, model='gaussian'): if sample_X.shape[0] != runtimes.shape[0]: raise ValueError("Sample X and runtimes must be the same length") if model=='gaussian': return train_gaussian_process(sample_X, runtimes, X_bounds, nu=nu) elif model=='logistic' and runtimes.any() and not runtimes.all(): return train_logistic_regression(sample_X, runtimes) elif model=='rbf_svm' and runtimes.any() and not runtimes.all(): return train_rbf_svm(sample_X, runtimes) elif model=='qda' and runtimes.sum() > 1 and runtimes.sum() < len(runtimes) - 1: return train_qda(sample_X, runtimes) else: return None, 0, 1 #def train_failure_model(sample_X, failures, X_bounds): # if sample_X.shape[0] != failures.shape[0]: # raise ValueError("Sample X and runtimes must be the same length") # # return train_gaussian_process(sample_X, runtimes, X_bounds) def train_gaussian_process( sample_X, sample_y, X_bounds, current_X=None, nu=1.5, max_samples=100 ): """ Trains a Gaussian Process function from sample_X, sample_y data Handles the case where there are other training runs in flight (current_X) Arguments: sample_X - vector of already evaluated sets of hyperparameters sample_y - vector of already evaluated loss function values X_bounds - minimum and maximum values for every dimension of X current_X - hyperparameters currently being explored nu - input to the Matern function, higher numbers make it smoother 0.5, 1.5, 2.5 are good values see http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Matern.html Returns: gp - the gaussian process function y_mean - mean y_stddev - stddev To make a prediction with gp on real world data X, need to call: (gp.predict(X) * y_stddev) + y_mean """ if current_X is not None: current_X = np.array(current_X) if len(current_X.shape) != 2: raise ValueError("Current X must be a 2 dimensional array") # we can't let the current samples be bigger than max samples # because we need to use some real samples to build the curve if current_X.shape[0] > max_samples - 5: print( "current_X is bigger than max samples - 5 so dropping some currently running parameters" ) current_X = current_X[:(max_samples - 5), :] if len(sample_y.shape) != 1: raise ValueError("Sample y must be a 1 dimensional array") if sample_X.shape[0] != sample_y.shape[0]: raise ValueError( "Sample X and sample y must be the same size {} {}".format( sample_X.shape[0], sample_y.shape[0] ) ) if X_bounds is not None and sample_X.shape[1] != len(X_bounds): raise ValueError( "Bounds must be the same length as Sample X's second dimension" ) # gaussian process takes a long time to train, so if there's more than max_samples # we need to sample from it if sample_X.shape[0] > max_samples: sample_indices = np.random.randint(sample_X.shape[0], size=max_samples) X = sample_X[sample_indices] y = sample_y[sample_indices] else: X = sample_X y = sample_y gp, y_mean, y_stddev = fit_normalized_gaussian_process(X, y, nu=nu) if current_X is not None: # if we have some hyperparameters running, we pretend that they return # the prediction of the function we've fit X = np.append(X, current_X, axis=0) current_y_fantasy = (gp.predict(current_X) * y_stddev) + y_mean y = np.append(y, current_y_fantasy) gp, y_mean, y_stddev = fit_normalized_gaussian_process(X, y, nu=nu) return gp.predict, y_mean, y_stddev def filter_weird_values(sample_X, sample_y): is_row_finite = ~(np.isnan(sample_X).any(axis=1) | np.isnan(sample_y)) sample_X = sample_X[is_row_finite, :] sample_y = sample_y[is_row_finite] return sample_X, sample_y def next_sample( sample_X, sample_y, X_bounds=None, runtimes=None, failures=None, current_X=None, nu=1.5, max_samples_for_gp=100, improvement=0.01, num_points_to_try=1000, opt_func="expected_improvement", failure_cost=0, test_X=None, ): """ Calculates the best next sample to look at via bayesian optimization. Check out https://arxiv.org/pdf/1206.2944.pdf for explanation of bayesian optimization Arguments: sample_X - 2d array of already evaluated sets of hyperparameters sample_y - 1d array of already evaluated loss function values X_bounds - 2d array minimum and maximum values for every dimension of X runtimes - vector of length sample_y - should be the time taken to train each model in sample X failures - vector of length sample_y - should be True for models where training failed and False where training succeeded. This model will throw out NaNs and Infs so if you want it to avaoid failure values for X, use this failure vector. current_X - hyperparameters currently being explored nu - input to the Matern function, higher numbers make it smoother 0.5, 1.5, 2.5 are good values see http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Matern.html max_samples_for_gp - maximum samples to consider (since algo is O(n^3)) for performance, but also adds some randomness improvement - amount of improvement to optimize for -- higher means take more exploratory risks num_points_to_try - number of X values to try when looking for value with highest expected probability of improvement opt_func - one of {"expected_improvement", "prob_of_improvement"} - whether to optimize expected improvement of probability of improvement. Expected improvement is generally better - may want to remove probability of improvement at some point. (But I think prboability of improvement is a little easier to calculate) test_X - X values to test when looking for the best values to try Returns: suggested_X - X vector to try running next suggested_X_prob_of_improvement - probability of the X vector beating the current best suggested_X_predicted_y - predicted output of the X vector test_X - 2d array of length num_points_to_try by num features: tested X values y_pred - 1d array of length num_points_to_try: predicted values for test_X y_pred_std - 1d array of length num_points_to_try: predicted std deviation for test_X e_i - expected improvement prob_of_improve 1d array of lenth num_points_to_try: predicted porbability of improvement prob_of_failure 1d array of predicted probabilites of failure suggested_X_prob_of_failure expected_runtime 1d array of expected runtimes """ # Sanity check the data sample_X = np.array(sample_X) sample_y = np.array(sample_y) failures = np.array(failures) if test_X is not None: test_X = np.array(test_X) if len(sample_X.shape) != 2: raise ValueError("Sample X must be a 2 dimensional array") if len(sample_y.shape) != 1: raise ValueError("Sample y must be a 1 dimensional array") if sample_X.shape[0] != sample_y.shape[0]: raise ValueError("Sample X and y must be same length") if test_X is not None: # if test_X is set, usually this is for simulation/testing if X_bounds is not None: raise ValueError("Can't set test_X and X_bounds") else: # normal case where we randomly sample our test_X if X_bounds is None: raise ValueError("Must pass in test_X or X_bounds") filtered_X, filtered_y = filter_weird_values(sample_X, sample_y) # We train our runtime prediction model on *filtered_X* throwing out the sample points with # NaN values
else: return ['*Simple* %s' % item[1]] if allTypeDict.has_key(item[1]): if item[1] not in alreadyListed: alreadyListed.append(item[1]) strList.extend(self.recurseTypeList(allTypeDict, allTypeDict[item[1]], level+1, alreadyListed)) return strList class PartWriter: """Generates a string representation of a typecode representing a <message><part> """ def __init__(self): self.typecode = None self.tns = None self.name = None self.docCode = [] def __recurse_tdc(self, tp): """tp -- schema.TypeDescriptionComponent instance """ tp.type if isinstance(tp.type, TypeDescriptionComponent): tp.type tp = self.__recurse_tdc(tp.type) else: return tp.type def fromPart(self, part): """part -- wsdl.Part instance """ bti = BaseTypeInterpreter() if part.getType(): tp = part.getType() elif part.getElement(): tp = part.getElement() self.name = tp.getName() return else: raise WsdlGeneratorError, 'whoa! part typing problem!' self.typecode = [] self.tns = tp.getTargetNamespace() if not isinstance(tp, ZSI.wsdlInterface.ZSITypeAdapter): raise TypeError, 'not a type adapter' elif tp.isSimpleType(): if tp.getQName(): tpc = bti.get_typeclass(tp.getQName(), tp.getTargetNamespace()) self.docCode.append('%s' % part.getName()) self.docCode.append(bti.get_pythontype(tp.getQName(), tp.getTargetNamespace())) if not tpc: # fail over t = tp.getName() else: t = tpc self.typecode.append('%s(pname="%s",aname="_%s",optional=1)' \ %(t, part.getName(), part.getName())) elif tp.getName(): self.docCode.append(part.getName()) self.docCode.append(tp.getName()) self.typecode.append('%s(pname="%s",aname="_%s",optional=1)' \ %(tp.getName(), part.getName(), part.getName())) else: raise WsdlGeneratorError, 'shouldnt happen' elif tp.isComplexType(): self.docCode.append(part.getName()) self.docCode.append(tp.getName()) self.typecode.append('%s( name="%s", ns=ns )'\ %(tp.getName(), part.getName())) else: raise WsdlGeneratorError, 'shouldnt happen' return class SchemaDescription: """Generates classes for all global definitions and declarations in a schema instance. """ def __init__(self): self.nsh = NamespaceHash() self.typeDict = {} return def fromWsdl(self, schema, alternateWriter): """schema -- schema.Schema instance """ if not isinstance(schema, ZSISchemaAdapter): raise TypeError, 'type %s not a Schema' %(schema.__class__) self.header = '%s \n# %s \n#\n# %s \n%s\n' \ %('#'*30, 'targetNamespace', schema.getTargetNamespace(), '#'*30) self.header += '\n\n# imported as: %s' % \ self.nsh.getAlias(schema.getTargetNamespace()) self.header += '\nclass %s:' % \ self.nsh.getModuleName(schema.getTargetNamespace()) self.header += "\n%stargetNamespace = '%s'" % \ (ID1, schema.getTargetNamespace()) self.body = '' self.last = '' self.class_dict = {} self.class_list = [] self.generate(schema.getTypesDict(), alternateWriter) self.generate(schema.getElementsDict(), alternateWriter) self.getClassDefs(self.class_list, self.class_dict) self.body += '\n\n# define class alias for subsequent ns classes' self.body += '\n%s = %s' \ % ( self.nsh.getAlias(schema.getTargetNamespace()), self.nsh.getModuleName(schema.getTargetNamespace())) if self.last: self.body += self.last def generate(self, sdict, alternateWriter): if alternateWriter: exec( 'import %s' % alternateWriter[0] ) alternateWriter = '%s.%s()' % (alternateWriter[0], alternateWriter[1] ) for name, tp in sdict.items(): defaultWriter = 'self.__class__.TypeWriter()' if alternateWriter: exec( 'tw = %s' % alternateWriter ) else: exec( 'tw = %s' % defaultWriter ) ref = weakref.ref(self) tw.fromType(tp, ref) if tw.precede: if self.class_dict.has_key(tw.precede): self.class_dict[tw.precede].append(tw) else: self.class_dict[tw.precede] = [tw] else: self.class_list.append(tw.name) #self.extractCode(tw) self.body += tw.extractCode() self.typeDict.update(tw.typeDict) def getClassDefs(self, class_list, class_dict): check_list = [] for indx in range(len(class_list)): if class_dict.has_key(class_list[indx]): for tw in class_dict[class_list[indx]]: #self.extractCode(tw) self.body += tw.extractCode() check_list.append(tw.name) else: del class_dict[class_list[indx]] if check_list: self.getClassDefs(check_list, class_dict) else: for l in class_dict.values(): for tw in l: #self.extractCode(tw) self.body += tw.extractCode() def extractCode(self, tw): self.body += tw.prepend.getvalue() self.body += tw.classdef.getvalue() self.body += tw.classvar.getvalue() self.body += tw.initdef.getvalue() self.body += tw.initcode.getvalue() self.body += tw.basector.getvalue() self.body += tw.postpend.getvalue() def write(self, fd=sys.stdout): fd.write(self.header) fd.write(self.body) fd.write('\n'*4) class TypeWriter: """Generates a string representation of a typecode representing a schema declaration or definition. """ def __init__(self): self.bti = BaseTypeInterpreter() self.nsh = NamespaceHash() self.name = None self.precede = None self.prepend = StringWriter() self.classdef = StringWriter() self.classvar = StringWriter() self.initdef = StringWriter() self.initcode = StringWriter() self.basector = StringWriter() self.postpend = StringWriter() self.allOptional = False self.hasRepeatable = False self.typeList = [] self.typeDict = {} self.localDefs = [] return def extractCode(self): formattedType = '' formattedType += self.prepend.getvalue() formattedType += self.classdef.getvalue() formattedType += self.classvar.getvalue() formattedType += self.initdef.getvalue() formattedType += self.initcode.getvalue() formattedType += self.basector.getvalue() formattedType += self.postpend.getvalue() formattedType += self.extractSubtypes() return formattedType def extractSubtypes(self): subTypes = '' for t in self.localDefs: subTypes += t.extractCode() formatted = [] for l in string.split(subTypes, '\n'): if l: formatted.append('%s%s' % (ID1, l)) else: formatted.append(l) return '\n'.join(formatted) def fromType(self, myType, parentRef): """myType -- Type representation """ tp = myType if tp.isSimpleType(): self.name = tp.getName() + '_Def' self._fromSimpleType(tp) elif tp.isWildCard(): self._fromWildCard(tp) elif tp.isElement(): self.name = tp.getName() + '_Dec' self._fromElement(tp) elif tp.isComplexType(): self.name = tp.getName() + '_Def' self._fromComplexType(tp) elif tp.isAttribute(): self._fromAttribute(tp) else: raise WsdlGeneratorError, 'WARNING: NOT HANDLED %s' \ % (tp.__class__) alias = self.nsh.getAlias(tp.getTargetNamespace()) key = "%s.%s_Def" % (alias, tp.getName()) if self.typeList: self.typeList.sort() # add entry to type dictionary for later use in # docstring generation self.typeDict[key] = self.typeList return def _fromSimpleType(self, tp): tp = tp.getDefinition() if tp.getName(): tpc = tp.getTypeclass() self.initdef.set('\n%sdef __init__(self, name=None, ns=None, **kw):' % (ID2)) objName = '_' + tp.getName() if tpc: typeName = self.bti.get_pythontype(None, None, tpc) if not typeName: typeName = 'Any' self.precede = '%s' % (tpc) self.classdef.set('\n\n%sclass %s(%s):' \ % (ID1, tp.getName() + '_Def', tpc)) self.initcode.set('\n%saname = None' % ID3 ) self.initcode.write('\n%sif name:' % ID3) self.initcode.write('\n%skw["pname"] = name' \ % ID4) self.initcode.write('\n%skw["aname"] = "_%%s" %% name' \ % ID4) self.basector.set('\n%s%s.__init__(self, **kw)'\ % (ID3,tpc)) else: typeName = 'Any' # XXX: currently, unions will get shuffled thru here. self.classdef.set('\n\n%sclass %s(ZSI.TC.Any):' \ % (ID1, tp.getName() + '_Def')) self.initcode.write('\n%s# probably a union - dont trust it' % ID3) self.basector.set('\n%sZSI.TC.Any.__init__(self,pname=name,aname="_%%s" %% name , optional=1,repeatable=1, **kw)' % ID3) self.typeDoc('optional=1', objName, typeName) else: raise WsdlGeneratorError, 'shouldnt happen' def _fromWildCard(self, tp): # XXX: not particularly trustworthy either. pending further work. tp = tp.getDeclaration() self.classdef.set('\n\n%sclass %s(ZSI.TC.XML):' \ % (ID1, tp.getName())) self.initdef.set('\n%s__init__(self,pname):' % (ID2)) self.basector.set('\n%sZSI.TC.XML.__init__(self,pname,**kw)' % ID3) def _fromAttribute(self, tp): self.classdef.set('\n\n%sclass %s:' % (ID1, tp.getName())) self.classvar.set('\n%s# not yet implemented' % ID2) self.classvar.write('\n%s# attribute declaration' % ID2) self.classvar.write('\n%spass\n' % ID2) def _fromElement(self, tp): etp = tp.getType() if etp and etp.isDefinition(): if etp.isSimpleType(): self._elementSimpleType(tp, etp) elif etp.isComplexType(): self._elementComplexType(tp, etp) elif not etp: self.classdef.set('\n\n%sclass %s_Dec(Struct):' \ % (ID1, tp.getName())) self.initdef.set('\n%sdef __init__(self, name=None, ns=None, **kw):' % (ID2)) self.basector.set('\n%sStruct.__init__(self, self.__class__, [], pname="%s", aname="_%s", inline=1)' % (ID3,tp.getName(),tp.getName())) else: raise WsdlGeneratorError, 'Unknown type(%s) not handled ' \ % (etp.__class__) def _elementSimpleType(self, tp, etp): tpc = etp.getTypeclass() self.precede = '%s' % (tpc) self.classdef.set('\n\n%sclass %s(%s):' \ % (ID1, tp.getName() + '_Dec', tpc)) self.classvar.set('\n%sliteral = "%s"' % (ID2, tp.getName())) self.classvar.write('\n%sschema = "%s"' % \ (ID2,tp.getTargetNamespace())) self.initdef.set('\n\n%sdef __init__(self, name=None, ns=None, **kw):' \ % ID2) self.initcode.set('\n%sname = name or self.__class__.literal' \ % ID3) self.initcode.write('\n%sns = ns or self.__class__.schema' % ID3) self.basector.set('\n\n%s%s.__init__(self,pname=name, aname="_%%s" %% name, **kw)' % (ID3,tpc)) typeName = self.bti.get_pythontype(None, None, tpc) self.typeDoc('', '__param', typeName) def _elementComplexType(self, tp, etp): if etp.getName(): self.precede = '%s' %(etp.getName() + '_Def' ) if etp.getTargetNamespace() != tp.getTargetNamespace(): nsp = etp.getTargetNamespace() self.classdef.set('\n\n%sclass %s(%s.%s):' \ % (ID1, tp.getName() + '_Dec', self.nsh.getAlias(nsp), etp.getName() + '_Def')) else: self.classdef.set('\n\n%sclass %s(%s):' \ % (ID1, tp.getName() + '_Dec', etp.getName() + '_Def')) self.classvar.set('\n%sliteral = "%s"' % ( ID2, tp.getName())) self.classvar.write('\n%sschema = "%s"' \ % ( ID2,tp.getTargetNamespace())) self.initdef.set('\n\n%sdef __init__(self, name=None, ns=None, **kw):' %(ID2)) self.initcode.set('\n%sname = name or self.__class__.literal'\ % ID3 ) self.initcode.write('\n%sns = ns or self.__class__.schema'\ % ID3 ) nsp = etp.getTargetNamespace() typeName = '%s.%s_Def' % (self.nsh.getAlias(nsp), etp.getName()) self.basector.set('\n\n%s%s.__init__(self, name=name, ns=ns, **kw)' % (ID3, typeName)) self.postpend.set('\n%sself.typecode = %s(name=name, ns=ns, **kw)' % (ID3, typeName)) self.typeDoc('', '_' + tp.getName(), typeName) else: # at this point what we have is an global element declaration # containing a local complex type definition. # so, this is a little odd voodoo so that we can # use the code for processing complex types. self._fromComplexType(etp.expressLocalAsGlobal(tp)) # now we are discaring the _Dec(LOCAL_Def) subclassing # and expressing the declaration w/the local def as # a def. retweek the classdef and off we go... self.classdef.set('\n\n%sclass %s(ZSI.TCcompound.Struct):' \ %(ID1, tp.getName() + '_Dec')) self.classvar.set( re.sub('type', 'literal', self.classvar.getvalue())) self.initcode.set('\n%sname = name or self.__class__.literal\n%sns = ns or self.__class__.schema\n%s' % ( ID3, ID3, self.initcode.getvalue())) return def _fromComplexType(self, tp): if isinstance(tp, ZSI.wsdlInterface.ZSISchemaTypeAdapter ): # the "usual" tp = tp.getDefinition() else: # this is when an element has # a local complex type def pass typecodelist = '[' if tp.isComplexContent(): self._complexTypeComplexContent(tp) return if tp.isSimpleContent(): self._complexTypeSimpleContent(tp) return # ok, it's not derived content and therefore has a model group # write out the class def and class variables self.classdef.set('\n\n%sclass %s:' \ %(ID1, tp.getName() + '_Def')) if self._complexTypeHandleAttributes(tp): # not yet implemented pass self.classvar.set("\n%sschema = '%s'" % (ID2, tp.getTargetNamespace())) self.classvar.write("\n%stype = '%s'\n" % (ID2, tp.getName())) self.initdef.set('\n%sdef __init__(self, name=None, ns=None, **kw):' % (ID2)) typecodelist = '[' mg = tp.getModelGroup() if mg.isAll() or mg.isSequence(): typecodelist += self._complexTypeAllOrSequence(tp,
1 ) # 3 texts for the choice self.assertEqual( len(item._my_map['question']['choices'][region_name][0]['texts']), 3 ) self.assertEqual( item._my_map['question']['choices'][region_name][0]['id'], choice_identifier ) self.assertIn(self._str_txt(self._english()), item._my_map['question']['choices'][region_name][0]['texts']) self.assertIn(self._str_txt(self._hindi()), item._my_map['question']['choices'][region_name][0]['texts']) self.assertIn(self._str_txt(self._telugu()), item._my_map['question']['choices'][region_name][0]['texts']) self.assertEqual( item.get_question().get_choices(), { region_name: [{ 'id': choice_identifier, 'text': self._english_text, 'name': '' }] } ) form = self._bank.get_question_form_for_update(item.ident) form.remove_choice_language(self._english().language_type, choice_identifier, region_name) self._bank.update_question(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['question']['choices'][region_name][0]['texts']), 2 ) self.assertIn(self._str_txt(self._hindi()), item._my_map['question']['choices'][region_name][0]['texts']) self.assertIn(self._str_txt(self._telugu()), item._my_map['question']['choices'][region_name][0]['texts']) self.assertEqual( item.get_question().get_choices(), { region_name: [{ 'id': choice_identifier, 'text': self._hindi_text, 'name': '' }] } ) def test_can_replace_a_choice_text(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_question_form_for_create(item.ident, [QTI_QUESTION_RECORD, MULTI_LANGUAGE_INLINE_CHOICE_QUESTION_RECORD]) region_name = 'REGION_1' form.add_inline_region(region_name) choice_identifier = 'foobar' form.add_choice(self._english(), region_name, identifier=choice_identifier) form.add_choice(self._hindi(), region_name, identifier=choice_identifier) form.add_choice(self._telugu(), region_name, identifier=choice_identifier) question = self._bank.create_question(form) item = self._bank.get_item(item.ident) # 1 region self.assertEqual( len(list(item._my_map['question']['choices'].keys())), 1 ) # 1 choice in this region self.assertEqual( len(item._my_map['question']['choices'][region_name]), 1 ) # 3 texts for the choice self.assertEqual( len(item._my_map['question']['choices'][region_name][0]['texts']), 3 ) self.assertEqual( item._my_map['question']['choices'][region_name][0]['id'], choice_identifier ) self.assertIn(self._str_txt(self._english()), item._my_map['question']['choices'][region_name][0]['texts']) self.assertIn(self._str_txt(self._hindi()), item._my_map['question']['choices'][region_name][0]['texts']) self.assertIn(self._str_txt(self._telugu()), item._my_map['question']['choices'][region_name][0]['texts']) self.assertEqual( item.get_question().get_choices(), { region_name: [{ 'id': choice_identifier, 'text': self._english_text, 'name': '' }] } ) new_english_feedback = DisplayText(display_text_map={ 'text': 'foo', 'languageTypeId': '639-2%3AENG%40ISO', 'scriptTypeId': '15924%3ALATN%40ISO', 'formatTypeId': 'TextFormats%3APLAIN%40okapia.net' }) form = self._bank.get_question_form_for_update(item.ident) form.edit_choice(new_english_feedback, choice_identifier, region_name) self._bank.update_question(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['question']['choices'][region_name][0]['texts']), 3 ) self.assertIn(self._str_txt(self._hindi()), item._my_map['question']['choices'][region_name][0]['texts']) self.assertIn(self._str_txt(self._telugu()), item._my_map['question']['choices'][region_name][0]['texts']) self.assertIn(self._str_txt(new_english_feedback), item._my_map['question']['choices'][region_name][0]['texts']) self.assertEqual( item.get_question().get_choices(), { region_name: [{ 'id': choice_identifier, 'text': 'foo', 'name': '' }] } ) def test_setting_proxy_locale_gets_choice_text_in_specified_language(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_question_form_for_create(item.ident, [QTI_QUESTION_RECORD, MULTI_LANGUAGE_INLINE_CHOICE_QUESTION_RECORD]) region_name = 'REGION_1' form.add_inline_region(region_name) choice_identifier = 'foobar' form.add_choice(self._english(), region_name, identifier=choice_identifier) form.add_choice(self._hindi(), region_name, identifier=choice_identifier) form.add_choice(self._telugu(), region_name, identifier=choice_identifier) self._bank.create_question(form) hi_bank = self.get_bank_with_proxy_set_to_locale('HIN') hi_item = hi_bank.get_item(item.ident) self.assertEqual( hi_item.get_question().get_choices(), { region_name: [{ 'id': choice_identifier, 'text': self._hindi_text, 'name': '' }] } ) en_bank = self.get_bank_with_proxy_set_to_locale('ENG') en_item = en_bank.get_item(item.ident) self.assertEqual( en_item.get_question().get_choices(), { region_name: [{ 'id': choice_identifier, 'text': self._english_text, 'name': '' }] } ) te_bank = self.get_bank_with_proxy_set_to_locale('TEL') te_item = te_bank.get_item(item.ident) self.assertEqual( te_item.get_question().get_choices(), { region_name: [{ 'id': choice_identifier, 'text': self._telugu_text, 'name': '' }] } ) def test_english_default_choice_text_if_locale_code_not_available(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_question_form_for_create(item.ident, [QTI_QUESTION_RECORD, MULTI_LANGUAGE_INLINE_CHOICE_QUESTION_RECORD]) region_name = 'REGION_1' form.add_inline_region(region_name) choice_identifier = 'foobar' form.add_choice(self._english(), region_name, identifier=choice_identifier) form.add_choice(self._telugu(), region_name, identifier=choice_identifier) self._bank.create_question(form) hi_bank = self.get_bank_with_proxy_set_to_locale('HIN') hi_item = hi_bank.get_item(item.ident) self.assertEqual( hi_item.get_question().get_choices(), { region_name: [{ 'id': choice_identifier, 'text': self._english_text, 'name': '' }] } ) en_bank = self.get_bank_with_proxy_set_to_locale('ENG') en_item = en_bank.get_item(item.ident) self.assertEqual( en_item.get_question().get_choices(), { region_name: [{ 'id': choice_identifier, 'text': self._english_text, 'name': '' }] } ) te_bank = self.get_bank_with_proxy_set_to_locale('TEL') te_item = te_bank.get_item(item.ident) self.assertEqual( te_item.get_question().get_choices(), { region_name: [{ 'id': choice_identifier, 'text': self._telugu_text, 'name': '' }] } ) def test_first_available_choice_text_if_locale_code_and_english_not_available(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_question_form_for_create(item.ident, [QTI_QUESTION_RECORD, MULTI_LANGUAGE_INLINE_CHOICE_QUESTION_RECORD]) region_name = 'REGION_1' form.add_inline_region(region_name) choice_identifier = 'foobar' form.add_choice(self._telugu(), region_name, identifier=choice_identifier) self._bank.create_question(form) hi_bank = self.get_bank_with_proxy_set_to_locale('HIN') hi_item = hi_bank.get_item(item.ident) self.assertEqual( hi_item.get_question().get_choices(), { region_name: [{ 'id': choice_identifier, 'text': self._telugu_text, 'name': '' }] } ) en_bank = self.get_bank_with_proxy_set_to_locale('ENG') en_item = en_bank.get_item(item.ident) self.assertEqual( en_item.get_question().get_choices(), { region_name: [{ 'id': choice_identifier, 'text': self._telugu_text, 'name': '' }] } ) te_bank = self.get_bank_with_proxy_set_to_locale('TEL') te_item = te_bank.get_item(item.ident) self.assertEqual( te_item.get_question().get_choices(), { region_name: [{ 'id': choice_identifier, 'text': self._telugu_text, 'name': '' }] } ) def test_multi_language_plays_well_with_randomized_order(self): form = self._bank.get_item_form_for_create([RANDOMIZED_INLINE_CHOICE_ITEM_RECORD]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_question_form_for_create(item.ident, [QTI_QUESTION_RECORD, MULTI_LANGUAGE_INLINE_CHOICE_QUESTION_RECORD]) region_name = 'REGION_1' form.add_inline_region(region_name) form.add_choice(self._english(), region_name, identifier='1') form.add_choice(self._hindi(), region_name, identifier='1') form.add_choice(self._telugu(), region_name, identifier='1') form.add_choice(self._english(), region_name, identifier='2') form.add_choice(self._hindi(), region_name, identifier='2') form.add_choice(self._telugu(), region_name, identifier='2') form.add_choice(self._english(), region_name, identifier='3') form.add_choice(self._hindi(), region_name, identifier='3') form.add_choice(self._telugu(), region_name, identifier='3') self._bank.create_question(form) different_hindi_order = 0 hi_bank = self.get_bank_with_proxy_set_to_locale('HIN') hi_item = hi_bank.get_item(item.ident) for i in range(0, 10): choices = hi_item.get_question().get_choices() choice_order = [c['id'] for c in choices[region_name]] choice_texts = [c['text'] for c in choices[region_name]] if choice_order != ['1', '2', '3']: different_hindi_order += 1 self.assertEqual( choice_texts, [self._hindi_text, self._hindi_text, self._hindi_text] ) self.assertTrue(different_hindi_order > 0) different_english_order = 0 en_bank = self.get_bank_with_proxy_set_to_locale('ENG') en_item = en_bank.get_item(item.ident) for i in range(0, 10): choices = en_item.get_question().get_choices() choice_order = [c['id'] for c in choices[region_name]] choice_texts = [c['text'] for c in choices[region_name]] if choice_order != ['1', '2', '3']: different_english_order += 1 self.assertEqual( choice_texts, [self._english_text, self._english_text, self._english_text] ) self.assertTrue(different_english_order > 0) different_telugu_order = 0 te_bank = self.get_bank_with_proxy_set_to_locale('TEL') te_item = te_bank.get_item(item.ident) for i in range(0, 10): choices = te_item.get_question().get_choices() choice_order = [c['id'] for c in choices[region_name]] choice_texts = [c['text'] for c in choices[region_name]] if choice_order != ['1', '2', '3']: different_telugu_order += 1 self.assertEqual( choice_texts, [self._telugu_text, self._telugu_text, self._telugu_text] ) self.assertTrue(different_telugu_order > 0) class MultiLanguageAnswerFeedbackTests(MultiLanguageBaseTestCase): def setUp(self): super(MultiLanguageAnswerFeedbackTests, self).setUp() def tearDown(self): super(MultiLanguageAnswerFeedbackTests, self).tearDown() def test_can_set_multiple_answer_feedbacks(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_answer_form_for_create(item.ident, [MULTI_LANGUAGE_FEEDBACK_ANSWER_RECORD]) form.add_feedback(self._english()) form.add_feedback(self._hindi()) form.add_feedback(self._telugu()) self._bank.create_answer(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['answers'][0]['feedbacks']), 3 ) self.assertIn(self._str_txt(self._english()), item._my_map['answers'][0]['feedbacks']) self.assertIn(self._str_txt(self._hindi()), item._my_map['answers'][0]['feedbacks']) self.assertIn(self._str_txt(self._telugu()), item._my_map['answers'][0]['feedbacks']) self.assertEqual( item.get_answers().next().feedback.text, self._english_text ) def test_can_clear_answer_feedbacks(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_answer_form_for_create(item.ident, [MULTI_LANGUAGE_FEEDBACK_ANSWER_RECORD]) form.add_feedback(self._english()) form.add_feedback(self._hindi()) form.add_feedback(self._telugu()) answer = self._bank.create_answer(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['answers'][0]['feedbacks']), 3 ) self.assertIn(self._str_txt(self._english()), item._my_map['answers'][0]['feedbacks']) self.assertIn(self._str_txt(self._hindi()), item._my_map['answers'][0]['feedbacks']) self.assertIn(self._str_txt(self._telugu()), item._my_map['answers'][0]['feedbacks']) self.assertEqual( item.get_answers().next().feedback.text, self._english_text ) form = self._bank.get_answer_form_for_update(answer.ident) form.clear_feedbacks() self._bank.update_answer(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['answers'][0]['feedbacks']), 0 ) self.assertEqual( item.get_answers().next().feedback.text, '' ) def test_can_remove_an_answer_feedback_by_language(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_answer_form_for_create(item.ident, [MULTI_LANGUAGE_FEEDBACK_ANSWER_RECORD]) form.add_feedback(self._english()) form.add_feedback(self._hindi()) form.add_feedback(self._telugu()) answer = self._bank.create_answer(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['answers'][0]['feedbacks']), 3 ) self.assertIn(self._str_txt(self._english()), item._my_map['answers'][0]['feedbacks']) self.assertIn(self._str_txt(self._hindi()), item._my_map['answers'][0]['feedbacks']) self.assertIn(self._str_txt(self._telugu()), item._my_map['answers'][0]['feedbacks']) self.assertEqual( item.get_answers().next().feedback.text, self._english_text ) form = self._bank.get_answer_form_for_update(answer.ident) form.remove_feedback_language(self._english().language_type) self._bank.update_answer(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['answers'][0]['feedbacks']), 2 ) self.assertIn(self._str_txt(self._hindi()), item._my_map['answers'][0]['feedbacks']) self.assertIn(self._str_txt(self._telugu()), item._my_map['answers'][0]['feedbacks']) self.assertEqual( item.get_answers().next().feedback.text, self._hindi_text ) def test_can_replace_an_answer_feedback(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_answer_form_for_create(item.ident, [MULTI_LANGUAGE_FEEDBACK_ANSWER_RECORD]) form.add_feedback(self._english()) form.add_feedback(self._hindi()) form.add_feedback(self._telugu()) answer = self._bank.create_answer(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['answers'][0]['feedbacks']), 3 ) self.assertIn(self._str_txt(self._english()), item._my_map['answers'][0]['feedbacks']) self.assertIn(self._str_txt(self._hindi()), item._my_map['answers'][0]['feedbacks']) self.assertIn(self._str_txt(self._telugu()), item._my_map['answers'][0]['feedbacks']) self.assertEqual( item.get_answers().next().feedback.text, self._english_text ) new_english_feedback = DisplayText(display_text_map={ 'text': 'foo', 'languageTypeId': '639-2%3AENG%40ISO', 'scriptTypeId': '15924%3ALATN%40ISO', 'formatTypeId': 'TextFormats%3APLAIN%40okapia.net' }) form = self._bank.get_answer_form_for_update(answer.ident) form.edit_feedback(new_english_feedback) self._bank.update_answer(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['answers'][0]['feedbacks']), 3 ) self.assertIn(self._str_txt(self._hindi()), item._my_map['answers'][0]['feedbacks']) self.assertIn(self._str_txt(self._telugu()), item._my_map['answers'][0]['feedbacks']) self.assertIn(self._str_txt(new_english_feedback), item._my_map['answers'][0]['feedbacks']) self.assertEqual( item.get_answers().next().feedback.text, 'foo' ) def test_setting_proxy_locale_gets_answer_feedback_in_specified_language(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_answer_form_for_create(item.ident, [MULTI_LANGUAGE_FEEDBACK_ANSWER_RECORD]) form.add_feedback(self._english()) form.add_feedback(self._hindi()) form.add_feedback(self._telugu()) self._bank.create_answer(form) item = self._bank.get_item(item.ident) hi_bank = self.get_bank_with_proxy_set_to_locale('HIN') hi_item = hi_bank.get_item(item.ident) self.assertEqual( hi_item.get_answers().next().feedback.text, self._hindi_text ) en_bank = self.get_bank_with_proxy_set_to_locale('ENG') en_item = en_bank.get_item(item.ident) self.assertEqual( en_item.get_answers().next().feedback.text, self._english_text ) te_bank = self.get_bank_with_proxy_set_to_locale('TEL') te_item = te_bank.get_item(item.ident) self.assertEqual( te_item.get_answers().next().feedback.text, self._telugu_text ) def test_english_default_answer_feedback_if_locale_code_not_available(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_answer_form_for_create(item.ident, [MULTI_LANGUAGE_FEEDBACK_ANSWER_RECORD]) form.add_feedback(self._english()) form.add_feedback(self._telugu()) self._bank.create_answer(form) item = self._bank.get_item(item.ident) hi_bank = self.get_bank_with_proxy_set_to_locale('HIN') hi_item = hi_bank.get_item(item.ident) self.assertEqual( hi_item.get_answers().next().feedback.text, self._english_text ) en_bank = self.get_bank_with_proxy_set_to_locale('ENG') en_item = en_bank.get_item(item.ident) self.assertEqual( en_item.get_answers().next().feedback.text, self._english_text ) te_bank = self.get_bank_with_proxy_set_to_locale('TEL') te_item = te_bank.get_item(item.ident) self.assertEqual( te_item.get_answers().next().feedback.text, self._telugu_text ) def test_first_available_answer_feedback_if_locale_code_and_english_not_available(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_answer_form_for_create(item.ident, [MULTI_LANGUAGE_FEEDBACK_ANSWER_RECORD]) form.add_feedback(self._telugu()) self._bank.create_answer(form) item = self._bank.get_item(item.ident) hi_bank = self.get_bank_with_proxy_set_to_locale('HIN') hi_item = hi_bank.get_item(item.ident) self.assertEqual( hi_item.get_answers().next().feedback.text, self._telugu_text ) en_bank = self.get_bank_with_proxy_set_to_locale('ENG') en_item = en_bank.get_item(item.ident) self.assertEqual( en_item.get_answers().next().feedback.text, self._telugu_text ) te_bank = self.get_bank_with_proxy_set_to_locale('TEL') te_item = te_bank.get_item(item.ident) self.assertEqual( te_item.get_answers().next().feedback.text, self._telugu_text ) class MultiLanguageTextInteractionTests(MultiLanguageBaseTestCase): def setUp(self): super(MultiLanguageTextInteractionTests, self).setUp() def tearDown(self): super(MultiLanguageTextInteractionTests, self).tearDown() def test_can_set_multiple_question_texts(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_question_form_for_create(item.ident, [MULTI_LANGUAGE_TEXT_INTERACTION_RECORD]) form.add_text(self._english()) form.add_text(self._hindi()) form.add_text(self._telugu()) self._bank.create_question(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['question']['texts']), 3 ) self.assertIn(self._str_txt(self._english()), item._my_map['question']['texts']) self.assertIn(self._str_txt(self._hindi()), item._my_map['question']['texts']) self.assertIn(self._str_txt(self._telugu()), item._my_map['question']['texts']) self.assertEqual( item.get_question().get_text().text, self._english_text ) def test_can_clear_question_texts(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_question_form_for_create(item.ident, [MULTI_LANGUAGE_QUESTION_RECORD]) form.add_text(self._english()) form.add_text(self._hindi()) form.add_text(self._telugu()) question = self._bank.create_question(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['question']['texts']), 3 ) self.assertIn(self._str_txt(self._english()), item._my_map['question']['texts']) self.assertIn(self._str_txt(self._hindi()), item._my_map['question']['texts']) self.assertIn(self._str_txt(self._telugu()), item._my_map['question']['texts']) self.assertEqual( item.get_question().get_text().text, self._english_text ) form = self._bank.get_question_form_for_update(question.ident) form.clear_texts() self._bank.update_question(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['question']['texts']), 0 ) self.assertEqual( item.get_question().get_text().text, '' ) def test_can_remove_a_question_text_by_language(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_question_form_for_create(item.ident, [MULTI_LANGUAGE_QUESTION_RECORD]) form.add_text(self._english()) form.add_text(self._hindi()) form.add_text(self._telugu()) question = self._bank.create_question(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['question']['texts']), 3 ) self.assertIn(self._str_txt(self._english()), item._my_map['question']['texts']) self.assertIn(self._str_txt(self._hindi()), item._my_map['question']['texts']) self.assertIn(self._str_txt(self._telugu()), item._my_map['question']['texts']) form = self._bank.get_question_form_for_update(question.ident) form.remove_text_language(self._english().language_type) self._bank.update_question(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['question']['texts']), 2 ) self.assertIn(self._str_txt(self._hindi()), item._my_map['question']['texts']) self.assertIn(self._str_txt(self._telugu()), item._my_map['question']['texts']) self.assertEqual( item.get_question().get_text().text, self._hindi_text ) def test_can_replace_a_question_text(self): form = self._bank.get_item_form_for_create([]) form.display_name = 'testing for question text' item = self._bank.create_item(form) form = self._bank.get_question_form_for_create(item.ident, [MULTI_LANGUAGE_QUESTION_RECORD]) form.add_text(self._english()) form.add_text(self._hindi()) form.add_text(self._telugu()) question = self._bank.create_question(form) item = self._bank.get_item(item.ident) self.assertEqual( len(item._my_map['question']['texts']), 3 ) self.assertIn(self._str_txt(self._english()),
postCellId="../DA9/0/"/> </projection> <projection id="NC_PDA_DA9_Serotonin" postsynapticPopulation="DA9" presynapticPopulation="PDA" synapse=""> <connection id="0" preCellId="../PDA/0/" postCellId="../DA9/0/"/> </projection> <projection id="NC_PDA_DD6_Serotonin" postsynapticPopulation="DD6" presynapticPopulation="PDA" synapse=""> <connection id="0" preCellId="../PDA/0/" postCellId="../DD6/0/"/> </projection> <projection id="NC_PDA_PVNR_Serotonin" postsynapticPopulation="PVNR" presynapticPopulation="PDA" synapse=""> <connection id="0" preCellId="../PDA/0/" postCellId="../PVNR/0/"/> </projection> <projection id="NC_PDA_VD13_Serotonin" postsynapticPopulation="VD13" presynapticPopulation="PDA" synapse=""> <connection id="0" preCellId="../PDA/0/" postCellId="../VD13/0/"/> </projection> <projection id="NC_PDB_AS11_Generic_GJ" postsynapticPopulation="AS11" presynapticPopulation="PDB" synapse=""> <connection id="0" preCellId="../PDB/0/" postCellId="../AS11/0/"/> </projection> <projection id="NC_PDB_RID_Generic_GJ" postsynapticPopulation="RID" presynapticPopulation="PDB" synapse=""> <connection id="0" preCellId="../PDB/0/" postCellId="../RID/0/"/> </projection> <projection id="NC_PDB_VD13_FMRFamide" postsynapticPopulation="VD13" presynapticPopulation="PDB" synapse=""> <connection id="0" preCellId="../PDB/0/" postCellId="../VD13/0/"/> </projection> <projection id="NC_PDEL_AVKL_Dopamine" postsynapticPopulation="AVKL" presynapticPopulation="PDEL" synapse=""> <connection id="0" preCellId="../PDEL/0/" postCellId="../AVKL/0/"/> </projection> <projection id="NC_PDEL_DVA_Dopamine" postsynapticPopulation="DVA" presynapticPopulation="PDEL" synapse=""> <connection id="0" preCellId="../PDEL/0/" postCellId="../DVA/0/"/> </projection> <projection id="NC_PDEL_PDER_Dopamine" postsynapticPopulation="PDER" presynapticPopulation="PDEL" synapse=""> <connection id="0" preCellId="../PDEL/0/" postCellId="../PDER/0/"/> </projection> <projection id="NC_PDEL_PDER_Generic_GJ" postsynapticPopulation="PDER" presynapticPopulation="PDEL" synapse=""> <connection id="0" preCellId="../PDEL/0/" postCellId="../PDER/0/"/> </projection> <projection id="NC_PDEL_PVCR_Generic_GJ" postsynapticPopulation="PVCR" presynapticPopulation="PDEL" synapse=""> <connection id="0" preCellId="../PDEL/0/" postCellId="../PVCR/0/"/> </projection> <projection id="NC_PDEL_PVM_Generic_GJ" postsynapticPopulation="PVM" presynapticPopulation="PDEL" synapse=""> <connection id="0" preCellId="../PDEL/0/" postCellId="../PVM/0/"/> </projection> <projection id="NC_PDEL_PVM_Dopamine" postsynapticPopulation="PVM" presynapticPopulation="PDEL" synapse=""> <connection id="0" preCellId="../PDEL/0/" postCellId="../PVM/0/"/> </projection> <projection id="NC_PDEL_PVR_Dopamine" postsynapticPopulation="PVR" presynapticPopulation="PDEL" synapse=""> <connection id="0" preCellId="../PDEL/0/" postCellId="../PVR/0/"/> </projection> <projection id="NC_PDEL_VA9_Dopamine" postsynapticPopulation="VA9" presynapticPopulation="PDEL" synapse=""> <connection id="0" preCellId="../PDEL/0/" postCellId="../VA9/0/"/> </projection> <projection id="NC_PDEL_VD11_Dopamine" postsynapticPopulation="VD11" presynapticPopulation="PDEL" synapse=""> <connection id="0" preCellId="../PDEL/0/" postCellId="../VD11/0/"/> </projection> <projection id="NC_PDER_AVKL_Dopamine" postsynapticPopulation="AVKL" presynapticPopulation="PDER" synapse=""> <connection id="0" preCellId="../PDER/0/" postCellId="../AVKL/0/"/> </projection> <projection id="NC_PDER_DVA_Dopamine" postsynapticPopulation="DVA" presynapticPopulation="PDER" synapse=""> <connection id="0" preCellId="../PDER/0/" postCellId="../DVA/0/"/> </projection> <projection id="NC_PDER_PDEL_Generic_GJ" postsynapticPopulation="PDEL" presynapticPopulation="PDER" synapse=""> <connection id="0" preCellId="../PDER/0/" postCellId="../PDEL/0/"/> </projection> <projection id="NC_PDER_PVCL_Dopamine" postsynapticPopulation="PVCL" presynapticPopulation="PDER" synapse=""> <connection id="0" preCellId="../PDER/0/" postCellId="../PVCL/0/"/> </projection> <projection id="NC_PDER_PVCR_Dopamine" postsynapticPopulation="PVCR" presynapticPopulation="PDER" synapse=""> <connection id="0" preCellId="../PDER/0/" postCellId="../PVCR/0/"/> </projection> <projection id="NC_PDER_PVM_Generic_GJ" postsynapticPopulation="PVM" presynapticPopulation="PDER" synapse=""> <connection id="0" preCellId="../PDER/0/" postCellId="../PVM/0/"/> </projection> <projection id="NC_PDER_VA8_Generic_GJ" postsynapticPopulation="VA8" presynapticPopulation="PDER" synapse=""> <connection id="0" preCellId="../PDER/0/" postCellId="../VA8/0/"/> </projection> <projection id="NC_PDER_VD9_Generic_GJ" postsynapticPopulation="VD9" presynapticPopulation="PDER" synapse=""> <connection id="0" preCellId="../PDER/0/" postCellId="../VD9/0/"/> </projection> <projection id="NC_PHAL_AVDR_Glutamate" postsynapticPopulation="AVDR" presynapticPopulation="PHAL" synapse=""> <connection id="0" preCellId="../PHAL/0/" postCellId="../AVDR/0/"/> </projection> <projection id="NC_PHAL_AVFL_Glutamate" postsynapticPopulation="AVFL" presynapticPopulation="PHAL" synapse=""> <connection id="0" preCellId="../PHAL/0/" postCellId="../AVFL/0/"/> </projection> <projection id="NC_PHAL_AVG_Glutamate" postsynapticPopulation="AVG" presynapticPopulation="PHAL" synapse=""> <connection id="0" preCellId="../PHAL/0/" postCellId="../AVG/0/"/> </projection> <projection id="NC_PHAL_AVHL_Glutamate" postsynapticPopulation="AVHL" presynapticPopulation="PHAL" synapse=""> <connection id="0" preCellId="../PHAL/0/" postCellId="../AVHL/0/"/> </projection> <projection id="NC_PHAL_AVHR_Glutamate" postsynapticPopulation="AVHR" presynapticPopulation="PHAL" synapse=""> <connection id="0" preCellId="../PHAL/0/" postCellId="../AVHR/0/"/> </projection> <projection id="NC_PHAL_DVA_Glutamate" postsynapticPopulation="DVA" presynapticPopulation="PHAL" synapse=""> <connection id="0" preCellId="../PHAL/0/" postCellId="../DVA/0/"/> </projection> <projection id="NC_PHAL_PHAR_Generic_GJ" postsynapticPopulation="PHAR" presynapticPopulation="PHAL" synapse=""> <connection id="0" preCellId="../PHAL/0/" postCellId="../PHAR/0/"/> </projection> <projection id="NC_PHAL_PHAR_Glutamate" postsynapticPopulation="PHAR" presynapticPopulation="PHAL" synapse=""> <connection id="0" preCellId="../PHAL/0/" postCellId="../PHAR/0/"/> </projection> <projection id="NC_PHAL_PHBL_Glutamate" postsynapticPopulation="PHBL" presynapticPopulation="PHAL" synapse=""> <connection id="0" preCellId="../PHAL/0/" postCellId="../PHBL/0/"/> </projection> <projection id="NC_PHAL_PHBR_Glutamate" postsynapticPopulation="PHBR" presynapticPopulation="PHAL" synapse=""> <connection id="0" preCellId="../PHAL/0/" postCellId="../PHBR/0/"/> </projection> <projection id="NC_PHAL_PVQL_Glutamate" postsynapticPopulation="PVQL" presynapticPopulation="PHAL" synapse=""> <connection id="0" preCellId="../PHAL/0/" postCellId="../PVQL/0/"/> </projection> <projection id="NC_PHAR_AVG_Glutamate" postsynapticPopulation="AVG" presynapticPopulation="PHAR" synapse=""> <connection id="0" preCellId="../PHAR/0/" postCellId="../AVG/0/"/> </projection> <projection id="NC_PHAR_AVHR_Glutamate" postsynapticPopulation="AVHR" presynapticPopulation="PHAR" synapse=""> <connection id="0" preCellId="../PHAR/0/" postCellId="../AVHR/0/"/> </projection> <projection id="NC_PHAR_DA8_Glutamate" postsynapticPopulation="DA8" presynapticPopulation="PHAR" synapse=""> <connection id="0" preCellId="../PHAR/0/" postCellId="../DA8/0/"/> </projection> <projection id="NC_PHAR_DVA_Glutamate" postsynapticPopulation="DVA" presynapticPopulation="PHAR" synapse=""> <connection id="0" preCellId="../PHAR/0/" postCellId="../DVA/0/"/> </projection> <projection id="NC_PHAR_PHAL_Generic_GJ" postsynapticPopulation="PHAL" presynapticPopulation="PHAR" synapse=""> <connection id="0" preCellId="../PHAR/0/" postCellId="../PHAL/0/"/> </projection> <projection id="NC_PHAR_PHAL_Glutamate" postsynapticPopulation="PHAL" presynapticPopulation="PHAR" synapse=""> <connection id="0" preCellId="../PHAR/0/" postCellId="../PHAL/0/"/> </projection> <projection id="NC_PHAR_PHBL_Glutamate" postsynapticPopulation="PHBL" presynapticPopulation="PHAR" synapse=""> <connection id="0" preCellId="../PHAR/0/" postCellId="../PHBL/0/"/> </projection> <projection id="NC_PHAR_PHBR_Glutamate" postsynapticPopulation="PHBR" presynapticPopulation="PHAR" synapse=""> <connection id="0" preCellId="../PHAR/0/" postCellId="../PHBR/0/"/> </projection> <projection id="NC_PHAR_PVPL_Generic_GJ" postsynapticPopulation="PVPL" presynapticPopulation="PHAR" synapse=""> <connection id="0" preCellId="../PHAR/0/" postCellId="../PVPL/0/"/> </projection> <projection id="NC_PHAR_PVQL_Glutamate" postsynapticPopulation="PVQL" presynapticPopulation="PHAR" synapse=""> <connection id="0" preCellId="../PHAR/0/" postCellId="../PVQL/0/"/> </projection> <projection id="NC_PHBL_AVAL_Serotonin" postsynapticPopulation="AVAL" presynapticPopulation="PHBL" synapse=""> <connection id="0" preCellId="../PHBL/0/" postCellId="../AVAL/0/"/> </projection> <projection id="NC_PHBL_AVAR_Serotonin" postsynapticPopulation="AVAR" presynapticPopulation="PHBL" synapse=""> <connection id="0" preCellId="../PHBL/0/" postCellId="../AVAR/0/"/> </projection> <projection id="NC_PHBL_AVDL_Serotonin" postsynapticPopulation="AVDL" presynapticPopulation="PHBL" synapse=""> <connection id="0" preCellId="../PHBL/0/" postCellId="../AVDL/0/"/> </projection> <projection id="NC_PHBL_PHBR_Serotonin" postsynapticPopulation="PHBR" presynapticPopulation="PHBL" synapse=""> <connection id="0" preCellId="../PHBL/0/" postCellId="../PHBR/0/"/> </projection> <projection id="NC_PHBL_PHBR_Generic_GJ" postsynapticPopulation="PHBR" presynapticPopulation="PHBL" synapse=""> <connection id="0" preCellId="../PHBL/0/" postCellId="../PHBR/0/"/> </projection> <projection id="NC_PHBL_PVCL_Serotonin" postsynapticPopulation="PVCL" presynapticPopulation="PHBL" synapse=""> <connection id="0" preCellId="../PHBL/0/" postCellId="../PVCL/0/"/> </projection> <projection id="NC_PHBL_VA12_Serotonin" postsynapticPopulation="VA12" presynapticPopulation="PHBL" synapse=""> <connection id="0" preCellId="../PHBL/0/" postCellId="../VA12/0/"/> </projection> <projection id="NC_PHBR_AVAL_Serotonin" postsynapticPopulation="AVAL" presynapticPopulation="PHBR" synapse=""> <connection id="0" preCellId="../PHBR/0/" postCellId="../AVAL/0/"/> </projection> <projection id="NC_PHBR_AVAR_Serotonin" postsynapticPopulation="AVAR" presynapticPopulation="PHBR" synapse=""> <connection id="0" preCellId="../PHBR/0/" postCellId="../AVAR/0/"/> </projection> <projection id="NC_PHBR_AVDL_Serotonin" postsynapticPopulation="AVDL" presynapticPopulation="PHBR" synapse=""> <connection id="0" preCellId="../PHBR/0/" postCellId="../AVDL/0/"/> </projection> <projection id="NC_PHBR_AVDR_Serotonin" postsynapticPopulation="AVDR" presynapticPopulation="PHBR" synapse=""> <connection id="0" preCellId="../PHBR/0/" postCellId="../AVDR/0/"/> </projection> <projection id="NC_PHBR_AVFL_Serotonin" postsynapticPopulation="AVFL" presynapticPopulation="PHBR" synapse=""> <connection id="0" preCellId="../PHBR/0/" postCellId="../AVFL/0/"/> </projection> <projection id="NC_PHBR_AVHL_Generic_GJ" postsynapticPopulation="AVHL" presynapticPopulation="PHBR" synapse=""> <connection id="0" preCellId="../PHBR/0/" postCellId="../AVHL/0/"/> </projection> <projection id="NC_PHBR_DA8_Serotonin" postsynapticPopulation="DA8" presynapticPopulation="PHBR" synapse=""> <connection id="0" preCellId="../PHBR/0/" postCellId="../DA8/0/"/> </projection> <projection id="NC_PHBR_PHBL_Serotonin" postsynapticPopulation="PHBL" presynapticPopulation="PHBR" synapse=""> <connection id="0" preCellId="../PHBR/0/" postCellId="../PHBL/0/"/> </projection> <projection id="NC_PHBR_PHBL_Generic_GJ" postsynapticPopulation="PHBL" presynapticPopulation="PHBR" synapse=""> <connection id="0" preCellId="../PHBR/0/" postCellId="../PHBL/0/"/> </projection> <projection id="NC_PHBR_PVCL_Serotonin" postsynapticPopulation="PVCL" presynapticPopulation="PHBR" synapse=""> <connection id="0" preCellId="../PHBR/0/" postCellId="../PVCL/0/"/> </projection> <projection id="NC_PHBR_PVCR_Serotonin" postsynapticPopulation="PVCR" presynapticPopulation="PHBR" synapse=""> <connection id="0" preCellId="../PHBR/0/" postCellId="../PVCR/0/"/> </projection> <projection id="NC_PHBR_VA12_Serotonin" postsynapticPopulation="VA12" presynapticPopulation="PHBR" synapse=""> <connection id="0" preCellId="../PHBR/0/" postCellId="../VA12/0/"/> </projection> <projection id="NC_PHCL_AVAL_Glutamate" postsynapticPopulation="AVAL" presynapticPopulation="PHCL" synapse=""> <connection id="0" preCellId="../PHCL/0/" postCellId="../AVAL/0/"/> </projection> <projection id="NC_PHCL_DA9_Generic_GJ" postsynapticPopulation="DA9" presynapticPopulation="PHCL" synapse=""> <connection id="0" preCellId="../PHCL/0/" postCellId="../DA9/0/"/> </projection> <projection id="NC_PHCL_DA9_Glutamate" postsynapticPopulation="DA9" presynapticPopulation="PHCL" synapse=""> <connection id="0" preCellId="../PHCL/0/" postCellId="../DA9/0/"/> </projection> <projection id="NC_PHCL_DVA_Glutamate" postsynapticPopulation="DVA" presynapticPopulation="PHCL" synapse=""> <connection id="0" preCellId="../PHCL/0/" postCellId="../DVA/0/"/> </projection> <projection id="NC_PHCL_LUAL_Glutamate" postsynapticPopulation="LUAL" presynapticPopulation="PHCL" synapse=""> <connection id="0" preCellId="../PHCL/0/" postCellId="../LUAL/0/"/> </projection> <projection id="NC_PHCL_PHCR_Generic_GJ" postsynapticPopulation="PHCR" presynapticPopulation="PHCL" synapse=""> <connection id="0" preCellId="../PHCL/0/" postCellId="../PHCR/0/"/> </projection> <projection id="NC_PHCL_PLML_Generic_GJ" postsynapticPopulation="PLML" presynapticPopulation="PHCL" synapse=""> <connection id="0" preCellId="../PHCL/0/" postCellId="../PLML/0/"/> </projection> <projection id="NC_PHCL_PVCL_Glutamate" postsynapticPopulation="PVCL" presynapticPopulation="PHCL" synapse=""> <connection id="0" preCellId="../PHCL/0/" postCellId="../PVCL/0/"/> </projection> <projection id="NC_PHCL_VA12_Generic_GJ" postsynapticPopulation="VA12" presynapticPopulation="PHCL" synapse=""> <connection id="0" preCellId="../PHCL/0/" postCellId="../VA12/0/"/> </projection> <projection id="NC_PHCL_VA12_Glutamate" postsynapticPopulation="VA12" presynapticPopulation="PHCL" synapse=""> <connection id="0" preCellId="../PHCL/0/" postCellId="../VA12/0/"/> </projection> <projection id="NC_PHCR_AVHR_Glutamate" postsynapticPopulation="AVHR" presynapticPopulation="PHCR" synapse=""> <connection id="0" preCellId="../PHCR/0/" postCellId="../AVHR/0/"/> </projection> <projection id="NC_PHCR_DA9_Glutamate" postsynapticPopulation="DA9" presynapticPopulation="PHCR" synapse=""> <connection id="0" preCellId="../PHCR/0/" postCellId="../DA9/0/"/> </projection> <projection id="NC_PHCR_DVA_Glutamate" postsynapticPopulation="DVA" presynapticPopulation="PHCR" synapse=""> <connection id="0" preCellId="../PHCR/0/" postCellId="../DVA/0/"/> </projection> <projection id="NC_PHCR_LUAR_Glutamate" postsynapticPopulation="LUAR" presynapticPopulation="PHCR" synapse=""> <connection id="0" preCellId="../PHCR/0/" postCellId="../LUAR/0/"/> </projection> <projection id="NC_PHCR_PHCL_Generic_GJ" postsynapticPopulation="PHCL" presynapticPopulation="PHCR" synapse=""> <connection id="0" preCellId="../PHCR/0/" postCellId="../PHCL/0/"/> </projection> <projection id="NC_PHCR_PHCL_Glutamate" postsynapticPopulation="PHCL" presynapticPopulation="PHCR" synapse=""> <connection id="0" preCellId="../PHCR/0/" postCellId="../PHCL/0/"/> </projection> <projection id="NC_PHCR_PVCR_Generic_GJ" postsynapticPopulation="PVCR" presynapticPopulation="PHCR" synapse=""> <connection id="0" preCellId="../PHCR/0/" postCellId="../PVCR/0/"/> </projection> <projection id="NC_PHCR_PVCR_Glutamate" postsynapticPopulation="PVCR" presynapticPopulation="PHCR" synapse=""> <connection id="0" preCellId="../PHCR/0/" postCellId="../PVCR/0/"/> </projection> <projection id="NC_PHCR_VA12_Glutamate" postsynapticPopulation="VA12" presynapticPopulation="PHCR" synapse=""> <connection id="0" preCellId="../PHCR/0/" postCellId="../VA12/0/"/> </projection> <projection id="NC_PHCR_VA12_Generic_GJ" postsynapticPopulation="VA12" presynapticPopulation="PHCR" synapse=""> <connection id="0" preCellId="../PHCR/0/" postCellId="../VA12/0/"/> </projection> <projection id="NC_PLML_HSNL_Glutamate" postsynapticPopulation="HSNL" presynapticPopulation="PLML" synapse=""> <connection id="0" preCellId="../PLML/0/" postCellId="../HSNL/0/"/> </projection> <projection id="NC_PLML_LUAL_Generic_GJ" postsynapticPopulation="LUAL" presynapticPopulation="PLML" synapse=""> <connection id="0" preCellId="../PLML/0/" postCellId="../LUAL/0/"/> </projection> <projection id="NC_PLML_PHCL_Generic_GJ" postsynapticPopulation="PHCL" presynapticPopulation="PLML" synapse=""> <connection id="0" preCellId="../PLML/0/" postCellId="../PHCL/0/"/> </projection> <projection id="NC_PLML_PVCL_Generic_GJ" postsynapticPopulation="PVCL" presynapticPopulation="PLML" synapse=""> <connection id="0" preCellId="../PLML/0/" postCellId="../PVCL/0/"/> </projection> <projection id="NC_PLMR_AS6_Glutamate" postsynapticPopulation="AS6" presynapticPopulation="PLMR" synapse=""> <connection id="0" preCellId="../PLMR/0/" postCellId="../AS6/0/"/> </projection> <projection id="NC_PLMR_AVAL_Glutamate" postsynapticPopulation="AVAL" presynapticPopulation="PLMR" synapse=""> <connection id="0" preCellId="../PLMR/0/" postCellId="../AVAL/0/"/> </projection> <projection id="NC_PLMR_AVAR_Glutamate" postsynapticPopulation="AVAR" presynapticPopulation="PLMR" synapse=""> <connection id="0" preCellId="../PLMR/0/" postCellId="../AVAR/0/"/> </projection> <projection id="NC_PLMR_AVDL_Glutamate" postsynapticPopulation="AVDL" presynapticPopulation="PLMR" synapse=""> <connection id="0" preCellId="../PLMR/0/" postCellId="../AVDL/0/"/> </projection> <projection id="NC_PLMR_AVDR_Glutamate" postsynapticPopulation="AVDR" presynapticPopulation="PLMR" synapse=""> <connection id="0" preCellId="../PLMR/0/" postCellId="../AVDR/0/"/> </projection> <projection id="NC_PLMR_DVA_Glutamate" postsynapticPopulation="DVA" presynapticPopulation="PLMR" synapse=""> <connection id="0" preCellId="../PLMR/0/" postCellId="../DVA/0/"/> </projection> <projection id="NC_PLMR_HSNR_Glutamate" postsynapticPopulation="HSNR" presynapticPopulation="PLMR" synapse=""> <connection id="0" preCellId="../PLMR/0/" postCellId="../HSNR/0/"/> </projection> <projection id="NC_PLMR_LUAR_Generic_GJ" postsynapticPopulation="LUAR" presynapticPopulation="PLMR" synapse=""> <connection id="0" preCellId="../PLMR/0/" postCellId="../LUAR/0/"/> </projection> <projection id="NC_PLMR_PDEL_Glutamate" postsynapticPopulation="PDEL" presynapticPopulation="PLMR" synapse=""> <connection id="0" preCellId="../PLMR/0/" postCellId="../PDEL/0/"/> </projection> <projection id="NC_PLMR_PDER_Glutamate" postsynapticPopulation="PDER" presynapticPopulation="PLMR" synapse=""> <connection id="0" preCellId="../PLMR/0/" postCellId="../PDER/0/"/> </projection> <projection id="NC_PLMR_PVCL_Glutamate" postsynapticPopulation="PVCL" presynapticPopulation="PLMR" synapse=""> <connection id="0" preCellId="../PLMR/0/" postCellId="../PVCL/0/"/> </projection> <projection id="NC_PLMR_PVCR_Generic_GJ" postsynapticPopulation="PVCR" presynapticPopulation="PLMR" synapse=""> <connection id="0" preCellId="../PLMR/0/" postCellId="../PVCR/0/"/> </projection> <projection id="NC_PLMR_PVR_Generic_GJ" postsynapticPopulation="PVR" presynapticPopulation="PLMR" synapse=""> <connection id="0" preCellId="../PLMR/0/" postCellId="../PVR/0/"/> </projection> <projection id="NC_PLNL_SAADL_Acetylcholine" postsynapticPopulation="SAADL" presynapticPopulation="PLNL" synapse=""> <connection id="0" preCellId="../PLNL/0/" postCellId="../SAADL/0/"/> </projection> <projection id="NC_PLNL_SMBVL_Acetylcholine" postsynapticPopulation="SMBVL" presynapticPopulation="PLNL" synapse=""> <connection id="0" preCellId="../PLNL/0/" postCellId="../SMBVL/0/"/> </projection> <projection id="NC_PLNR_SAADR_Acetylcholine" postsynapticPopulation="SAADR" presynapticPopulation="PLNR" synapse=""> <connection id="0" preCellId="../PLNR/0/" postCellId="../SAADR/0/"/> </projection> <projection id="NC_PLNR_SMBVR_Acetylcholine" postsynapticPopulation="SMBVR" presynapticPopulation="PLNR" synapse=""> <connection id="0" preCellId="../PLNR/0/" postCellId="../SMBVR/0/"/> </projection> <projection id="NC_PQR_AVAL_Glutamate" postsynapticPopulation="AVAL" presynapticPopulation="PQR" synapse=""> <connection id="0" preCellId="../PQR/0/" postCellId="../AVAL/0/"/> </projection> <projection id="NC_PQR_AVAR_Glutamate" postsynapticPopulation="AVAR" presynapticPopulation="PQR" synapse=""> <connection id="0" preCellId="../PQR/0/" postCellId="../AVAR/0/"/> </projection> <projection id="NC_PQR_AVDL_Glutamate" postsynapticPopulation="AVDL" presynapticPopulation="PQR" synapse=""> <connection id="0" preCellId="../PQR/0/" postCellId="../AVDL/0/"/> </projection> <projection id="NC_PQR_AVDR_Glutamate" postsynapticPopulation="AVDR" presynapticPopulation="PQR" synapse=""> <connection id="0" preCellId="../PQR/0/" postCellId="../AVDR/0/"/> </projection> <projection id="NC_PQR_AVG_Glutamate" postsynapticPopulation="AVG" presynapticPopulation="PQR" synapse=""> <connection id="0" preCellId="../PQR/0/" postCellId="../AVG/0/"/> </projection> <projection id="NC_PQR_LUAR_Glutamate" postsynapticPopulation="LUAR" presynapticPopulation="PQR" synapse=""> <connection id="0" preCellId="../PQR/0/" postCellId="../LUAR/0/"/> </projection> <projection id="NC_PQR_PVNL_Glutamate" postsynapticPopulation="PVNL" presynapticPopulation="PQR" synapse=""> <connection id="0" preCellId="../PQR/0/" postCellId="../PVNL/0/"/> </projection> <projection id="NC_PQR_PVPL_Generic_GJ" postsynapticPopulation="PVPL" presynapticPopulation="PQR" synapse=""> <connection id="0" preCellId="../PQR/0/" postCellId="../PVPL/0/"/> </projection> <projection id="NC_PVCL_AS1_Glutamate" postsynapticPopulation="AS1" presynapticPopulation="PVCL" synapse=""> <connection id="0" preCellId="../PVCL/0/" postCellId="../AS1/0/"/> </projection> <projection id="NC_PVCL_AVAL_Glutamate" postsynapticPopulation="AVAL" presynapticPopulation="PVCL" synapse=""> <connection id="0" preCellId="../PVCL/0/" postCellId="../AVAL/0/"/> </projection> <projection id="NC_PVCL_AVAL_Generic_GJ" postsynapticPopulation="AVAL" presynapticPopulation="PVCL" synapse=""> <connection id="0" preCellId="../PVCL/0/" postCellId="../AVAL/0/"/> </projection> <projection id="NC_PVCL_AVAR_Glutamate" postsynapticPopulation="AVAR" presynapticPopulation="PVCL" synapse=""> <connection id="0" preCellId="../PVCL/0/" postCellId="../AVAR/0/"/> </projection> <projection id="NC_PVCL_AVBL_Glutamate" postsynapticPopulation="AVBL" presynapticPopulation="PVCL" synapse=""> <connection id="0" preCellId="../PVCL/0/" postCellId="../AVBL/0/"/> </projection> <projection id="NC_PVCL_AVBR_Glutamate" postsynapticPopulation="AVBR" presynapticPopulation="PVCL" synapse=""> <connection id="0" preCellId="../PVCL/0/" postCellId="../AVBR/0/"/> </projection> <projection id="NC_PVCL_AVDL_Glutamate" postsynapticPopulation="AVDL" presynapticPopulation="PVCL" synapse=""> <connection id="0" preCellId="../PVCL/0/" postCellId="../AVDL/0/"/> </projection> <projection id="NC_PVCL_AVDR_Glutamate" postsynapticPopulation="AVDR" presynapticPopulation="PVCL" synapse=""> <connection id="0" preCellId="../PVCL/0/" postCellId="../AVDR/0/"/> </projection> <projection id="NC_PVCL_AVEL_Glutamate" postsynapticPopulation="AVEL" presynapticPopulation="PVCL" synapse=""> <connection id="0" preCellId="../PVCL/0/" postCellId="../AVEL/0/"/> </projection> <projection id="NC_PVCL_AVER_Glutamate" postsynapticPopulation="AVER" presynapticPopulation="PVCL" synapse=""> <connection id="0" preCellId="../PVCL/0/" postCellId="../AVER/0/"/> </projection> <projection id="NC_PVCL_AVJL_Generic_GJ" postsynapticPopulation="AVJL" presynapticPopulation="PVCL" synapse=""> <connection id="0" preCellId="../PVCL/0/" postCellId="../AVJL/0/"/> </projection> <projection id="NC_PVCL_AVJL_Glutamate" postsynapticPopulation="AVJL" presynapticPopulation="PVCL" synapse=""> <connection id="0" preCellId="../PVCL/0/" postCellId="../AVJL/0/"/> </projection> <projection id="NC_PVCL_AVJR_Generic_GJ" postsynapticPopulation="AVJR" presynapticPopulation="PVCL" synapse=""> <connection id="0" preCellId="../PVCL/0/" postCellId="../AVJR/0/"/> </projection> <projection id="NC_PVCL_AVJR_Glutamate" postsynapticPopulation="AVJR" presynapticPopulation="PVCL" synapse=""> <connection id="0" preCellId="../PVCL/0/"
elif token == 'DISASM_INTEL': self.disasm_intel = rest elif token == 'DISASM_ATTSV': # AT&T System V self.disasm_att = rest elif token == 'UNAME': self.uname = rest if viclass(): msgb("UNAME", rest) elif token == 'IFORM': if filling_extra: if len(self.extra_iforms_input) == 0: die("Need to have a PATTERN line before " + "the IFORM line for " + self.iclass) self.extra_iforms_input[-1] = rest else: self.iform_input = rest else: setattr(self,token,rest.strip()) # die("Unhandled token in line: " + line) else: print("NEXT FEW LINES: ") for x in lines[0:20]: print("INPUT LINE: %s" % (x.strip())) die("Missing colon in line: " + line) if reached_closing_bracket: if found_operands == False: die("Did not find operands for " + self.iclass) for k in structured_input_dict.keys(): if structured_input_dict[k] == False: if structured_input_tags[k]: die("Required token missing: "+ k) if debug: msge("\tReturning...") return True return False def add_scalable_attribute(self, scalable_widths, agi): """Look for operations that have width codes that are scalable width codes (z,v,a,p,p2,s,spw8,spw,spw3,spw2, etc. (auto-derived) , and add an attribute SCALABLE""" scalable = False for op in self.operands: if op.oc2: s= op.oc2.upper() #msge("RRR Checking for %s in %s" % (s, str(scalable_widths))) if s in scalable_widths: scalable=True break if op.lookupfn_name: #msge("OPNAME: " + op.lookupfn_name) scalable = look_for_scalable_nt(agi, op.lookupfn_name) if scalable: break if scalable: s = "SCALABLE" self.add_attribute(s) def add_fixed_base_attribute(self): """Look for STACKPUSH/STACKPOP operands and then add an attribute that says fixed_base0 or fixed_base1 depending on which base reg has the SrSP operand.""" stack_memop_indx = -1 if vattr(): msgb("ATTRIBUTE-FOR-STACKOP: CHECKING", self.iclass) for op in self.operands: if op.is_ntluf(): if vattr(): msgb("ATTRIBUTE-NTLUF", "%s = %s" % (op.name,op.lookupfn_name)) if op.lookupfn_name == 'SrSP': if op.name == 'BASE0': stack_memop_indx = 0 elif op.name == 'BASE1': stack_memop_indx = 1 else: pass # skip other fields if stack_memop_indx != -1: if vattr(): msgb("ATTRIBUTE-FOR-STACKOP", "%s memop index %s" % (self.iclass, stack_memop_indx)) s = "FIXED_BASE%d" % stack_memop_indx self.add_attribute(s) self.add_stack_attribute(stack_memop_indx) def __str__(self): return self.dump_str() def dump_str(self, pad='', brief=False): s = [] s.append(pad) s.append(self.iclass) if self.uname: s.append(" uname=%s" % str(self.uname)) s.append(" inum=%s " % str(self.inum)) if field_check(self,'iform') and self.iform: s.append(" iform=%s " % str(self.iform)) if field_check(self,'iform_input') and self.iform_input: s.append(" iform_input=%s " % str(self.iform_input)) if field_check(self,'isa_set') and self.isa_set: s.append(" isa_set=%s " % str(self.isa_set)) s.append("pattern len=%d\n" % len(self.ipattern.bits)) s.append(" %s ipattern: %s\n" % (pad,self.ipattern.just_bits()) ) if brief: return ''.join(s) if self.prebindings: s.append('prebindings: \n\t' + '\n\t'.join( [str(x) for x in list(self.prebindings.values())]) + '\n') for op in self.operands: s.append(pad) s.append(" ") s.append(op.dump_str(pad)) s.append("\n") return ''.join(s) def look_for_scalable_nt(agi, nt_name): """Look for a nonterminal that is sensitive to EOSZ. It looks recursively at NTs in the patterns, but that does not occur in x86.""" try: gi = agi.generator_dict[nt_name] except: die("Generator not found for nt_name: %s" % (nt_name)) for rule in gi.parser_output.instructions: for b in rule.ipattern.bits: if b.token == 'EOSZ': return True elif b.is_nonterminal(): r_nt_name = b.nonterminal_name() if look_for_scalable_nt(agi, r_nt_name): # RECUR return True return False def mk_opnd(agi, s, default_vis='DEFAULT'): op = opnds.parse_one_operand(s, default_vis, agi.xtypes, agi.widths_dict) return op def add_flags_register_operand(agi,ii): """If the instruction has flags, then add a flag register operand.""" if field_check(ii,'flags_info') and \ ii.flags_info and ii.flags_info.x86_flags(): rw = ii.flags_info.rw_action() (memidx_dummy,regidx) = find_max_memidx_and_regidx(ii.operands) s = "REG%d=rFLAGS():%s:SUPP" % ( regidx, rw ) if vflag(): msgb("RFLAGS-APPEND", "%s <-- %s" % ( ii.iclass, s)) op = mk_opnd(agi,s) if op: ii.operands.append(op) def add_flags_register_operand_all(agi,parser): for ii in parser.instructions: add_flags_register_operand(agi,ii) def rewrite_stack_push(op,memidx,regidx): s = [] #s.append("REG%d=SrSP():rw:SUPP" % (regidx)) s.append("MEM%d:w:%s:SUPP" % (memidx, op.oc2)) s.append("BASE%d=SrSP():rw:SUPP" % (memidx)) if memidx == 0: s.append("SEG0=FINAL_SSEG0():r:SUPP") # note FINAL_SSEG0() else: s.append("SEG1=FINAL_SSEG1():r:SUPP") # note FINAL_SSEG1() *** return s def rewrite_stack_pop(op,memidx,regidx): s = [] #s.append("REG%d=SrSP():rw:SUPP" % (regidx)) s.append("MEM%d:r:%s:SUPP" % (memidx, op.oc2)) s.append("BASE%d=SrSP():rw:SUPP" % (memidx)) if memidx == 0: s.append("SEG0=FINAL_SSEG0():r:SUPP") # note FINAL_SSEG() else: s.append("SEG1=FINAL_SSEG1():r:SUPP") # note FINAL_SSEG1() *** return s def expand_stack_operand(op, memidx, regidx): """Replace the STACKPUSH and STACKPOP operands by a sequence of operands @type op: opnds.operand_info_t @param op: input operand that is a stack push or pop @type memidx: integer @param memidx: index of the memop we should use, either 0 or 1. @type regidx: integer @param regidx: index of the first register we should use for the rSP() operand @rtype: [ strings ] @return: additional text of operands (to be processed) for the stack pointer access, memop, base, & seg. """ if vstack(): msgb("EXPANDING STACK OP", "%s memidx %d regidx %d" % (op.bits, memidx, regidx)) if op.bits == 'XED_REG_STACKPUSH': out = rewrite_stack_push(op,memidx,regidx) elif op.bits == 'XED_REG_STACKPOP': out = rewrite_stack_pop(op,memidx,regidx) else: out = None if vstack(): msgb("STACKOPS", str(out)) return out def find_max_memidx_and_regidx(operands): "find the maximum memidx and regidx" memidx = 0 regidx = 0 verbose = False for op in operands: if verbose: msgb("OPNAME", op.name) if op.name == 'MEM0': memidx = 1 elif op.name == 'MEM1': memidx = 2 # this should cause an error if it is ever used rnm = reg_operand_name_pattern.match(op.name) if rnm: current_regidx = int(rnm.group('regno')) if verbose: msgb("COMPARE REGS", "current %d max %d" % ( current_regidx, regidx)) if current_regidx >= regidx: if verbose: msgb("BUMPING regidx") regidx = current_regidx+1 return (memidx, regidx) def parse_operand_spec(agi,operand_spec): """build a list classes holding operand info""" #print str(operand_spec) operands = [] reset_any = False for w in operand_spec: op = mk_opnd(agi,w) if op: if op.type == 'xed_reset': reset_any = True else: operands.append(op) ############################################################## # expand stack operands # found_stackop = None for op in operands: # msgb("BITS", str(op.bits)) if op.bits == 'XED_REG_STACKPUSH' or op.bits == 'XED_REG_STACKPOP': found_stackop = op break if found_stackop: (memidx, regidx) = find_max_memidx_and_regidx(operands) new_strings = expand_stack_operand(found_stackop, memidx, regidx) # make new operands based on these strings. if new_strings: for s in new_strings: new_op = mk_opnd(agi,s) if new_op: operands.append(new_op) # ############################################################## return (operands, reset_any) ################################################################## # Structured input / output of instructions ################################################################## def is_nonterminal_line(s): g = nonterminal_start_pattern.search(s) if g: # remove everything from the parens to the end of the line # including two colons t = parens_to_end_of_line.sub('', s) wrds = t.split() short_nt_name = wrds[-1] if len(wrds) == 1: type = None msge("NONTERMINAL: " + short_nt_name + " notype") else: type = wrds[0] msge("NONTERMINAL: " + short_nt_name + " type= " + type) return (short_nt_name, type) return (None,None) def remove_instructions(agi): for g in agi.generator_list: ii = g.parser_output.instructions[0] if field_check(ii,'iclass'): g.parser_output = remove_overridden_versions(g.parser_output) def remove_overridden_versions(parser): """Remove instructions that have newer versions using a dictionary of lists.""" d = {} for ii in parser.instructions: if ii.iclass in parser.deleted_instructions: continue # drop this record if ii.uname in parser.deleted_unames: msge("DROPPING UNAME %s" % (ii.uname)) continue # drop this record if ii.iclass in d: if ii.version == d[ii.iclass][0].version: d[ii.iclass].append(ii) elif ii.version > d[ii.iclass][0].version: # we have an updated version. drop the old stuff and start over del d[ii.iclass] d[ii.iclass] = [ii] else: pass # drop this record else: # add first element of this iclass d[ii.iclass] = [ii] iis = [] for ilist in list(d.values()): iis.extend(ilist) parser.instructions = iis return parser def read_input(agi, lines): """Read the input from a flat token-per-line file or a structured ISA input file""" msge("read_input " + str(global_inum)) # first line must be a nonterminal (nt_name, nt_type) = is_nonterminal_line(lines[0]) if not nt_name: die("Did not find a nonterminal: " + lines[0]) parser = None # see if we have encountered this nonterminal before try: gi = agi.generator_dict[nt_name] # we have a re-occurrence of an earlier nonterminal. We extend it now. msge("FOUND OLD PARSER FOR " + nt_name) parser = gi.parser_output except: # need to make a new generator & parser parser = parser_t() parser.nonterminal_line = lines[0].strip() parser.nonterminal_name = nt_name parser.nonterminal_type = nt_type gi = agi.make_generator(nt_name) gi.parser_output = parser agi.nonterminal_dict.record_nonterminal(nt_name, nt_type) msge("Nonterminal " + parser.nonterminal_line) msge("Nonterminal name " + parser.nonterminal_name) lines.pop(0) # The {...} defined "instruction" patterns must have the substring # "INSTRUCTIONS" in their name. if instructions_pattern.search(parser.nonterminal_name): nlines = read_structured_input(agi, agi.common.options, parser, lines, agi.common.state_bits) else: nlines = read_flat_input(agi, agi.common.options, parser, lines, agi.common.state_bits) return nlines def read_structured_input(agi, options, parser, lines, state_dict): msge("read_structured_input") while len(lines) != 0: if verb4(): msge("NEXTLINE " + lines[0]) first_line = no_comments(lines[0]) if first_line == '': lines.pop(0) continue first_line = slash_expand.expand_all_slashes(first_line) if udelete_pattern.search(first_line): m = udelete_full_pattern.search(first_line) uname = m.group('uname') msge("REGISTERING UDELETE
<filename>CodeGenX64/legalize.py<gh_stars>100-1000 import collections import dataclasses import sys from typing import List, Dict, Optional, Tuple from Base import canonicalize from Base import ir from Base import liveness from Base import lowering from Base import opcode_tab as o from Base import optimize from Base import reg_stats from Base import sanity from Base import serialize from CodeGenX64 import isel_tab from CodeGenX64 import regs def DumpBbl(bbl: ir.Bbl): print("\n".join(serialize.BblRenderToAsm(bbl))) def DumpFun(reason: str, fun: ir.Fun): print("#" * 60) print(f"# {reason}", fun.name) print("#" * 60) print("\n".join(serialize.FunRenderToAsm(fun))) _SUPPORTED_IN_ALL_WIDTHS = { o.ADD, o.SUB, o.XOR, o.AND, o.OR, } def IsOutOfBoundImmediate(opcode, op, pos) -> bool: if not isinstance(op, ir.Const): return False if opcode in {o.DIV, o.REM, o.MUL}: return True if pos == 2 and opcode in {o.ST, o.ST_STK, o.ST_MEM}: return True if op.kind in {o.DK.S8, o.DK.S16, o.DK.S32, o.DK.S64, o.DK.A64, o.DK.C64}: return op.value < -(1 << 31) or (1 << 31) <= op.value elif op.kind in {o.DK.U8, o.DK.U16, o.DK.U32, o.DK.U64}: return (1 << 31) <= op.value elif op.kind is {o.DK.F64, o.DK.F32}: return True else: assert False, f"unknown op: {op}" def _InsRewriteOutOfBoundsImmediates( ins: ir.Ins, fun: ir.Fun, unit: ir.Unit) -> Optional[List[ir.Ins]]: inss = [] if ins.opcode.kind in {o.OPC_KIND.ALU, o.OPC_KIND.COND_BRA, o.OPC_KIND.ALU1, o.OPC_KIND.ST}: for pos, op in enumerate(ins.operands): if IsOutOfBoundImmediate(ins.opcode, op, pos): if op.kind in {o.DK.F32, o.DK.F64}: inss += lowering.InsEliminateImmediateViaMem(ins, pos, fun, unit, o.DK.A64, o.DK.U32) else: inss.append(lowering.InsEliminateImmediateViaMov(ins, pos, fun)) inss.append(ins) return inss def _FunRewriteOutOfBoundsImmediates(fun: ir.Fun, unit: ir.Unit) -> int: return ir.FunGenericRewrite(fun, _InsRewriteOutOfBoundsImmediates, unit=unit) def _InsRewriteDivRem( ins: ir.Ins, fun: ir.Fun) -> Optional[List[ir.Ins]]: inss = [] opc = ins.opcode ops = ins.operands if opc is o.DIV and ops[0].kind.flavor != o.DK_FLAVOR_F: rax = fun.FindOrAddCpuReg(regs.CPU_REGS_MAP["rax"], ops[0].kind) rdx = fun.FindOrAddCpuReg(regs.CPU_REGS_MAP["rdx"], ops[0].kind) return [ir.Ins(o.MOV, [rax, ops[1]]), ir.Ins(o.DIV, [rdx, rax, ops[2]]), # note the notion of src/dst regs is murky here ir.Ins(o.MOV, [ops[0], rax])] elif opc is o.REM and ops[0].kind.flavor != o.DK_FLAVOR_F: rax = fun.FindOrAddCpuReg(regs.CPU_REGS_MAP["rax"], ops[0].kind) rdx = fun.FindOrAddCpuReg(regs.CPU_REGS_MAP["rdx"], ops[0].kind) return [ir.Ins(o.MOV, [rax, ops[1]]), ir.Ins(o.DIV, [rdx, rax, ops[2]]), # note the notion of src/dst regs is murky here ir.Ins(o.MOV, [ops[0], rdx])] else: return None def _FunRewriteDivRem(fun: ir.Fun) -> int: return ir.FunGenericRewrite(fun, _InsRewriteDivRem) def NeedsAABFromRewrite(ins: ir.Ins): opc = ins.opcode ops = ins.operands if opc.kind not in {o.OPC_KIND.ALU, o.OPC_KIND.LEA}: return False if opc in {o.DIV, o.REM} and ops[0].kind.flavor != o.DK_FLAVOR_F: return False if opc in {o.LEA_MEM, o.LEA_STK}: return False return True def _InsRewriteIntoAABForm( ins: ir.Ins, fun: ir.Fun) -> Optional[List[ir.Ins]]: ops = ins.operands if not NeedsAABFromRewrite(ins): return None if ops[0] == ops[1]: ops[0].flags |= ir.REG_FLAG.TWO_ADDRESS return None if ops[0] == ops[2] and o.OA.COMMUTATIVE in ins.opcode.attributes: ir.InsSwapOps(ins, 1, 2) ops[0].flags |= ir.REG_FLAG.TWO_ADDRESS return [ins] else: reg = fun.GetScratchReg(ins.operands[0].kind, "aab", False) reg.flags |= ir.REG_FLAG.TWO_ADDRESS return [ir.Ins(o.MOV, [reg, ops[1]]), ir.Ins(ins.opcode, [reg, reg, ops[2]]), ir.Ins(o.MOV, [ops[0], reg])] def _FunRewriteIntoAABForm(fun: ir.Fun, unit: ir.Unit) -> int: """Bring instructions into A A B form (dst == src1). See README.md""" return ir.FunGenericRewrite(fun, _InsRewriteIntoAABForm) def _InsMoveEliminationCpu(ins: ir.Ins, _fun: ir.Fun) -> Optional[List[ir.Ins]]: # TODO: handle conv if ins.opcode not in {o.MOV}: return None dst, src = ins.operands[0], ins.operands[1] if not isinstance(src, ir.Reg): return None assert dst.cpu_reg and src.cpu_reg if src.cpu_reg != dst.cpu_reg: return None return [] def _FunMoveEliminationCpu(fun: ir.Fun) -> int: return ir.FunGenericRewrite(fun, _InsMoveEliminationCpu) def PhaseOptimize(fun: ir.Fun, unit: ir.Unit, opt_stats: Dict[str, int], fout): optimize.FunCfgInit(fun, unit) optimize.FunOptBasic(fun, opt_stats, allow_conv_conversion=True) def PhaseLegalization(fun: ir.Fun, unit: ir.Unit, _opt_stats: Dict[str, int], fout): """ Does a lot of the heavily lifting so that the instruction selector can remain simple and table driven. * lift almost all regs to 32bit width * rewrite Ins that cannot be expanded * rewrite immediates that cannot be expanded except stack offsets which are dealt with in another pass TODO: missing is a function to change calling signature so that """ fun.cpu_live_in = regs.PushPopInterface.GetCpuRegsForInSignature(fun.input_types) fun.cpu_live_out = regs.PushPopInterface.GetCpuRegsForOutSignature(fun.output_types) if fun.kind is not o.FUN_KIND.NORMAL: return # Getting rid of the pusharg/poparg now relieves us form having to pay to attention to the # invariant that pushargs/popargs must be adjacent. lowering.FunPushargConversion(fun, regs.PushPopInterface) lowering.FunPopargConversion(fun, regs.PushPopInterface) # We did not bother with this addressing mode lowering.FunEliminateStkLoadStoreWithRegOffset(fun, base_kind=o.DK.A64, offset_kind=o.DK.S32) # TODO: switch this to a WithRegOffset flavor lowering.FunEliminateMemLoadStore(fun, base_kind=o.DK.A64, offset_kind=o.DK.S32) canonicalize.FunCanonicalize(fun) # TODO: add a cfg linearization pass to improve control flow optimize.FunCfgExit(fun, unit) # not this may affect immediates as it flips branches # Handle most overflowing immediates. # This excludes immediates related to stack offsets which have not been determined yet _FunRewriteOutOfBoundsImmediates(fun, unit) # Recompute Everything (TODO: make this more selective to reduce work) reg_stats.FunComputeRegStatsExceptLAC(fun) reg_stats.FunDropUnreferencedRegs(fun) liveness.FunComputeLivenessInfo(fun) reg_stats.FunComputeRegStatsLAC(fun) reg_stats.FunSeparateLocalRegUsage(fun) # DumpRegStats(fun, local_reg_stats) # mul/div/rem need special treatment _FunRewriteDivRem(fun) _FunRewriteIntoAABForm(fun, unit) # if fun.name == "fibonacci": DumpFun("end of legal", fun) # if fun.name == "write_s": exit(1) sanity.FunCheck(fun, None) # optimize.FunOptBasic(fun, opt_stats, allow_conv_conversion=False) KIND_AND_LAC = Tuple[o.DK, bool] def _FunGlobalRegStats(fun: ir.Fun, reg_kind_map: Dict[o.DK, o.DK]) -> Dict[KIND_AND_LAC, List[ir.Reg]]: out: Dict[KIND_AND_LAC, List[ir.Reg]] = collections.defaultdict(list) for reg in fun.regs: if not reg.HasCpuReg() and ir.REG_FLAG.GLOBAL in reg.flags: out[(reg_kind_map[reg.kind], ir.REG_FLAG.LAC in reg.flags)].append(reg) for v in out.values(): v.sort() return out def DumpRegStats(fun: ir.Fun, stats: Dict[reg_stats.REG_KIND_LAC, int], fout): local_lac = 0 local_not_lac = 0 for (kind, lac), count in stats.items(): if lac: local_lac += count else: local_not_lac += count allocated_lac = [] allocated_not_lac = [] global_lac = [] global_not_lac = [] for reg in fun.regs: if ir.REG_FLAG.GLOBAL not in reg.flags: continue if reg.HasCpuReg(): if ir.REG_FLAG.LAC in reg.flags: allocated_lac.append(reg) else: allocated_not_lac.append(reg) else: if ir.REG_FLAG.LAC in reg.flags: global_lac.append(reg) else: global_not_lac.append(reg) if fout: print(f"# REGSTATS {fun.name:20s} " f"all: {len(allocated_lac):2} {len(allocated_not_lac):2} " f"glo: {len(global_lac):2} {len(global_not_lac):2} " f"loc: {local_lac:2} {local_not_lac:2}", file=fout) @dataclasses.dataclass() class RegsNeeded: """estimate for how many regs are needed""" global_lac: int = 0 global_not_lac: int = 0 local_lac: int = 0 local_not_lac: int = 0 def __dir__(self): return f"RegNeeded: {self.global_lac} {self.global_not_lac} {self.local_lac} {self.local_not_lac}" def _spilling_needed(needed: RegsNeeded, num_global_lac: int, num_local_not_lac: int) -> bool: """ Note: this assumes the early condition of the pools with only two lists populated""" return (needed.global_lac + needed.local_lac > num_global_lac or needed.global_lac + needed.local_lac + needed.global_not_lac + needed.local_not_lac > num_global_lac + num_local_not_lac) def _maybe_move_excess(src, dst, n): if n < len(src): if dst is not None: dst += src[n:] del src[n:] def _popcount(x): return bin(x).count('1') def _FindMaskCoveringTheLowOrderSetBits(bits: int, count: int) -> int: if count == 0: return 0 mask = 1 n = 0 while n < count: if (mask & bits) != 0: n += 1 mask <<= 1 return mask - 1 def _GetRegPoolsForGlobals(needed: RegsNeeded, regs_lac: int, regs_not_lac: int, regs_preallocated: int) -> Tuple[int, int]: """ Allocate global registers Initially all allocatable regs are either in pools.global_lac and pools.local_not_lac We want to assign a subset of these to global_lac and global_not_lac We want the low numbers regs to stay in pools.local_not_lac as much as possible to avoid moves as this is where the parameters arrive and results get returned We also want to use as few callee saved registers as possible If we need to spill, earmark one more local_not_lac reg to handle the spilling TODO: this needs some more thinking - the worst case could require more regs """ num_regs_lac = _popcount(regs_lac) num_regs_not_lac = _popcount(regs_not_lac) spilling_needed = _spilling_needed(needed, num_regs_lac, num_regs_not_lac) global_lac = regs_lac local_lac = 0 # excess lac globals can be used for lac locals if num_regs_lac > needed.global_lac: mask = _FindMaskCoveringTheLowOrderSetBits(global_lac, needed.global_lac) local_lac = global_lac & ~mask global_lac = global_lac & mask # we can use local_not_lac as global_not lac but only if they are not pre-allocated # because the global allocator does not check for live range conflicts global_not_lac = 0 if num_regs_not_lac > needed.local_not_lac + spilling_needed: mask = _FindMaskCoveringTheLowOrderSetBits( regs_not_lac, needed.local_not_lac + spilling_needed) global_not_lac = regs_not_lac & ~(mask | regs_preallocated) if _popcount(local_lac) > needed.local_lac: mask = _FindMaskCoveringTheLowOrderSetBits(local_lac, needed.local_lac) global_not_lac |= local_lac & ~mask return global_lac, global_not_lac def PhaseGlobalRegAlloc(fun: ir.Fun, _opt_stats: Dict[str, int], fout): """ These phase introduces CpuReg for globals and situations where we have no choice which register to use, e.g. function parameters and results ("pre-allocated" regs). After this function has been run all globals will have a valid cpu_reg and we have to be careful to not introduce new globals subsequently. If not enough cpu_regs are available for all globals, some of them will be spilled. We err on the site of spilling more, the biggest danger is to over-allocate and then lack registers for intra-bbl register allocation. The whole global allocator is terrible and so
""" Copyright (c) 2017 Matterport, Inc. Copyright (C) 2019 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). """ import os import random import itertools import numpy as np from skimage.measure import find_contours import cv2 from models.model import detection_layer, unmold_detections from models.modules import * from utils import * def tileImages(image_list, padding_x=5, padding_y=5, background_color=0): """Tile images""" height = image_list[0][0].shape[0] width = image_list[0][0].shape[1] result_image = np.full((height * len(image_list) + padding_y * (len(image_list) + 1), width * len(image_list[0]) + padding_x * (len(image_list[0]) + 1), 3), fill_value=background_color, dtype=np.uint8) for index_y, images in enumerate(image_list): for index_x, image in enumerate(images): offset_x = index_x * width + (index_x + 1) * padding_x offset_y = index_y * height + (index_y + 1) * padding_y if image.ndim == 2: image = np.expand_dims(image, axis=-1).tile((1, 1, 3)) pass result_image[offset_y:offset_y + height, offset_x:offset_x + width] = image continue continue return result_image ############################################################ # Batch visualization ############################################################ def visualizeBatchDeMoN(options, input_dict, results, indexOffset=0, prefix='', concise=False): cornerColorMap = {'gt': np.array([255, 0, 0]), 'pred': np.array([0, 0, 255]), 'inp': np.array([0, 255, 0])} topdownSize = 256 for batchIndex in range(len(input_dict['image_1'])): pose = input_dict['pose'][batchIndex] for resultIndex, result in enumerate(results): if concise and resultIndex < len(results) - 1: continue depth_pred = invertDepth(result['depth'][batchIndex]).detach().cpu().numpy().squeeze() depth_gt = input_dict['depth'][batchIndex].squeeze() if depth_pred.shape[0] != depth_gt.shape[0]: depth_pred = cv2.resize(depth_pred, (depth_gt.shape[1], depth_gt.shape[0])) pass if options.scaleMode != 'variant': valid_mask = np.logical_and(depth_gt > 1e-4, depth_pred > 1e-4) depth_gt_values = depth_gt[valid_mask] depth_pred_values = depth_pred[valid_mask] scale = np.exp(np.mean(np.log(depth_gt_values) - np.log(depth_pred_values))) depth_pred *= scale pass cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_depth_pred_' + str(len(results) - 1 - resultIndex) + '.png', drawDepthImage(depth_pred)) if 'flow' in result: flow_pred = result['flow'][batchIndex, :2].detach().cpu().numpy().transpose((1, 2, 0)) cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_flow_pred_' + str(len(results) - 1 - resultIndex) + '.png', cv2.resize(drawFlowImage(flow_pred), (256, 192))) pass if 'rotation' in result and resultIndex >= len(results) - 2: pass continue if not concise: cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_depth_gt.png', drawDepthImage(input_dict['depth'][batchIndex])) cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_image_0.png', (input_dict['image_1'][batchIndex].transpose((1, 2, 0)) + 0.5) * 255) cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_image_1.png', (input_dict['image_2'][batchIndex].transpose((1, 2, 0)) + 0.5) * 255) flow_gt = input_dict['flow'][batchIndex, :2].transpose((1, 2, 0)) cv2.imwrite(options.test_dir + '/' + str(indexOffset + batchIndex) + '_flow_gt.png', cv2.resize(drawFlowImage(flow_gt), (256, 192))) pass continue return def visualizeBatchPair(options, config, inp_pair, detection_pair, indexOffset=0, prefix='', suffix='', write_ply=False, write_new_view=False): detection_images = [] for pair_index, (input_dict, detection_dict) in enumerate(zip(inp_pair, detection_pair)): image_dict = visualizeBatchDetection(options, config, input_dict, detection_dict, indexOffset=indexOffset, prefix=prefix, suffix='_' + str(pair_index), prediction_suffix=suffix, write_ply=write_ply, write_new_view=write_new_view) detection_images.append(image_dict['detection']) continue detection_image = tileImages([detection_images]) return def visualizeBatchRefinement(options, config, input_dict, results, indexOffset=0, prefix='', suffix='', concise=False): if not concise: image = (input_dict['image'].detach().cpu().numpy().transpose((0, 2, 3, 1))[0] + 0.5) * 255 cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image_0.png', image) image_2 = (input_dict['image_2'].detach().cpu().numpy().transpose((0, 2, 3, 1))[0] + 0.5) * 255 cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image_1.png', image_2) depth_gt = input_dict['depth'].detach().cpu().numpy().squeeze() cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_gt.png', drawDepthImage(depth_gt)) flow_gt = input_dict['flow'][0, :2].detach().cpu().numpy().transpose((1, 2, 0)) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_flow_gt.png', cv2.resize(drawFlowImage(flow_gt), (256, 192))) pass numbers = [] for resultIndex, result in enumerate(results): if 'mask' in result and (options.losses == '' or '0' in options.losses): masks = result['mask'].detach().cpu().numpy() masks = np.concatenate([np.maximum(1 - masks.sum(0, keepdims=True), 0), masks], axis=0).transpose((1, 2, 0)) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_segmentation_' + str(len(results) - 1 - resultIndex) + '.png', drawSegmentationImage(masks, blackIndex=0) * (masks.max(-1, keepdims=True) > 0.5).astype(np.uint8)) pass if concise: continue if 'depth' in result and (options.losses == '' or '3' in options.losses): depth_pred = invertDepth(result['depth']).detach().cpu().numpy().squeeze() if depth_pred.shape[0] != depth_gt.shape[0]: depth_pred = cv2.resize(depth_pred, (depth_gt.shape[1], depth_gt.shape[0])) pass if options.scaleMode != 'variant': valid_mask = np.logical_and(depth_gt > 1e-4, depth_pred > 1e-4) depth_gt_values = depth_gt[valid_mask] depth_pred_values = depth_pred[valid_mask] scale = np.exp(np.mean(np.log(depth_gt_values) - np.log(depth_pred_values))) depth_pred *= scale pass cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_pred_' + str(len(results) - 1 - resultIndex) + '.png', drawDepthImage(depth_pred)) pass if 'plane_depth' in result and (options.losses == '' or '3' in options.losses): depth_pred = invertDepth(result['plane_depth']).detach().cpu().numpy().squeeze() if depth_pred.shape[0] != depth_gt.shape[0]: depth_pred = cv2.resize(depth_pred, (depth_gt.shape[1], depth_gt.shape[0])) pass if options.scaleMode != 'variant': valid_mask = np.logical_and(depth_gt > 1e-4, depth_pred > 1e-4) depth_gt_values = depth_gt[valid_mask] depth_pred_values = depth_pred[valid_mask] scale = np.exp(np.mean(np.log(depth_gt_values) - np.log(depth_pred_values))) depth_pred *= scale pass cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_pred_plane_' + str(len(results) - 1 - resultIndex) + '.png', drawDepthImage(depth_pred)) pass if 'flow' in result and (options.losses == '' or '1' in options.losses): flow_pred = result['flow'][0, :2].detach().cpu().numpy().transpose((1, 2, 0)) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_flow_pred_' + str(len(results) - 1 - resultIndex) + '.png', cv2.resize(drawFlowImage(flow_pred), (256, 192))) pass if 'rotation' in result and resultIndex >= len(results) - 2: pass if 'plane' in result and resultIndex > 0: numbers.append(np.linalg.norm(result['plane'].detach().cpu().numpy() - results[0]['plane'].detach().cpu().numpy())) pass if 'warped_image' in result and resultIndex >= len(results) - 2: warped_image = ((result['warped_image'].detach().cpu().numpy().transpose((0, 2, 3, 1))[0] + 0.5) * 255).astype(np.uint8) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image_warped_' + str(len(results) - 1 - resultIndex) + '.png', warped_image) pass if 'plane_depth_one_hot' in result: depth_pred = invertDepth(result['plane_depth_one_hot']).detach().cpu().numpy().squeeze() if depth_pred.shape[0] != depth_gt.shape[0]: depth_pred = cv2.resize(depth_pred, (depth_gt.shape[1], depth_gt.shape[0])) pass cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_pred_plane_onehot_' + str(len(results) - 1 - resultIndex) + '.png', drawDepthImage(depth_pred)) pass continue if 'parameter' in options.suffix: print('plane diff', numbers) pass return def visualizeBatchDetection(options, config, input_dict, detection_dict, indexOffset=0, prefix='', suffix='', prediction_suffix='', write_ply=False, write_new_view=False): image_dict = {} images = input_dict['image'].detach().cpu().numpy().transpose((0, 2, 3, 1)) images = unmold_image(images, config) image = images[0] cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image' + suffix + '.png', image[80:560]) if 'warped_image' in input_dict: warped_images = input_dict['warped_image'].detach().cpu().numpy().transpose((0, 2, 3, 1)) warped_images = unmold_image(warped_images, config) warped_image = warped_images[0] cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_image' + suffix + '_warped.png', warped_image[80:560]) pass if 'warped_depth' in input_dict: warped_depth = input_dict['warped_depth'].detach().cpu().numpy() cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + '_warped.png', drawDepthImage(warped_depth[80:560])) pass if 'warped_mask' in input_dict: warped_mask = input_dict['warped_mask'].detach().cpu().numpy()[0] pass if 'depth' in input_dict: depths = input_dict['depth'].detach().cpu().numpy() depth_gt = depths[0] cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + '.png', drawDepthImage(depth_gt[80:560])) pass windows = (0, 0, images.shape[1], images.shape[2]) windows = (0, 0, images.shape[1], images.shape[2]) class_colors = ColorPalette(config.NUM_CLASSES).getColorMap().tolist() if 'mask' in input_dict: box_image = image.copy() boxes = input_dict['bbox'][0].detach().cpu().numpy() masks = input_dict['mask'][0].detach().cpu().numpy() if config.NUM_PARAMETER_CHANNELS > 0: depths = masks[:, :, :, 1] masks = masks[:, :, :, 0] pass segmentation_image = image * 0.0 for box, mask in zip(boxes, masks): box = np.round(box).astype(np.int32) mask = cv2.resize(mask, (box[3] - box[1], box[2] - box[0])) segmentation_image[box[0]:box[2], box[1]:box[3]] = np.minimum(segmentation_image[box[0]:box[2], box[1]:box[3]] + np.expand_dims(mask, axis=-1) * np.random.randint(255, size=(3, ), dtype=np.int32), 255) continue cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_segmentation' + suffix + '.png', segmentation_image.astype(np.uint8)[80:560]) if config.NUM_PARAMETER_CHANNELS > 0 and not config.OCCLUSION: depth_image = np.zeros((image.shape[0], image.shape[1])) for box, patch_depth in zip(boxes, depths): box = np.round(box).astype(np.int32) patch_depth = cv2.resize(patch_depth, (box[3] - box[1], box[2] - box[0]), cv2.INTER_NEAREST) depth_image[box[0]:box[2], box[1]:box[3]] = patch_depth continue cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth_patch' + suffix + '.png', drawDepthImage(depth_image[80:560])) pass pass if 'boundary' in detection_dict: boundary_pred = detection_dict['boundary'].detach().cpu().numpy()[0] boundary_gt = input_dict['boundary'].detach().cpu().numpy()[0] for name, boundary in [('gt', boundary_gt), ('pred', boundary_pred)]: boundary_image = image.copy() boundary_image[boundary[0] > 0.5] = np.array([255, 0, 0]) boundary_image[boundary[1] > 0.5] = np.array([0, 0, 255]) cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_boundary' + suffix + '_' + name + '.png', boundary_image) continue pass if 'depth' in detection_dict: depth_pred = detection_dict['depth'][0].detach().cpu().numpy() cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + prediction_suffix + '.png', drawDepthImage(depth_pred[80:560])) if options.debug: valid_mask = (depth_gt > 1e-4) * (input_dict['segmentation'].detach().cpu().numpy()[0] >= 0) * (detection_dict['mask'].detach().cpu().numpy().squeeze() > 0.5) pass pass if 'depth_np' in detection_dict: cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + prediction_suffix + '_np.png', drawDepthImage(detection_dict['depth_np'].squeeze().detach().cpu().numpy()[80:560])) pass if 'depth_ori' in detection_dict: cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_depth' + suffix + prediction_suffix + '_ori.png', drawDepthImage(detection_dict['depth_ori'].squeeze().detach().cpu().numpy()[80:560])) pass if 'detection' in detection_dict and len(detection_dict['detection']) > 0: detections = detection_dict['detection'].detach().cpu().numpy() detection_masks = detection_dict['masks'].detach().cpu().numpy().transpose((1, 2, 0)) if 'flag' in detection_dict: detection_flags = detection_dict['flag'] else: detection_flags = {} pass instance_image, normal_image, depth_image = draw_instances(config, image, depth_gt, detections[:, :4], detection_masks > 0.5, detections[:, 4].astype(np.int32), detections[:, 6:], detections[:, 5], draw_mask=True, transform_planes=False, detection_flags=detection_flags) image_dict['detection'] = instance_image cv2.imwrite(options.test_dir + '/' + str(indexOffset) + '_segmentation' + suffix + prediction_suffix + '.png', instance_image[80:560]) else: image_dict['detection'] = np.zeros(image.shape, dtype=image.dtype)
import os from copy import deepcopy from pathlib import Path import numpy as np import pytest from qualang_tools.bakery.bakery import baking from qualang_tools.bakery.randomized_benchmark_c1 import c1_table, c1_ops def gauss(amplitude, mu, sigma, length): t = np.linspace(-length / 2, length / 2, length) gauss_wave = amplitude * np.exp(-((t - mu) ** 2) / (2 * sigma ** 2)) return [float(x) for x in gauss_wave] def abs_path_to(rel_path: str) -> str: source_path = Path(__file__).resolve() source_dir = source_path.parent return os.path.join(source_dir, rel_path) @pytest.fixture def config(): def IQ_imbalance(g, phi): c = np.cos(phi) s = np.sin(phi) N = 1 / ((1 - g ** 2) * (2 * c ** 2 - 1)) return [ float(N * x) for x in [(1 - g) * c, (1 + g) * s, (1 - g) * s, (1 + g) * c] ] return { "version": 1, "controllers": { "con1": { "type": "opx1", "analog_outputs": { 1: {"offset": +0.0}, 2: {"offset": +0.0}, 3: {"offset": +0.0}, }, "digital_outputs": {1: {}, 2: {}}, } }, "elements": { "qe1": { "singleInput": {"port": ("con1", 1)}, "intermediate_frequency": 0, "operations": { "playOp": "constPulse", "a_pulse": "arb_pulse1", "playOp2": "constPulse2", }, "digitalInputs": { "digital_input1": { "port": ("con1", 1), "delay": 0, "buffer": 0, } }, }, "qe2": { "mixInputs": { "I": ("con1", 2), "Q": ("con1", 3), "lo_frequency": 0, "mixer": "mixer_qubit", }, "intermediate_frequency": 0, "operations": {"constOp": "constPulse_mix", "gaussOp": "gauss_pulse"}, }, }, "pulses": { "constPulse": { "operation": "control", "length": 1000, # in ns "waveforms": {"single": "const_wf"}, }, "constPulse2": { "operation": "control", "length": 1000, # in ns "waveforms": {"single": "const_wf"}, "digital_marker": "ON", }, "arb_pulse1": { "operation": "control", "length": 100, # in ns "waveforms": {"single": "arb_wf"}, }, "constPulse_mix": { "operation": "control", "length": 80, "waveforms": {"I": "const_wf", "Q": "zero_wf"}, }, "gauss_pulse": { "operation": "control", "length": 80, "waveforms": {"I": "gauss_wf", "Q": "zero_wf"}, }, }, "waveforms": { "zero_wf": {"type": "constant", "sample": 0.0}, "const_wf": {"type": "constant", "sample": 0.2}, "arb_wf": {"type": "arbitrary", "samples": [i / 200 for i in range(100)]}, "gauss_wf": {"type": "arbitrary", "samples": gauss(0.2, 0, 15, 80)}, }, "digital_waveforms": { "ON": {"samples": [(1, 0)]}, }, "mixers": { "mixer_qubit": [ { "intermediate_frequency": 0, "lo_frequency": 0, "correction": IQ_imbalance(0.0, 0.0), } ], }, } def test_c1_data(): c1_correct_table = np.load(abs_path_to("c1_table.npy")) c1_correct_ops = np.load(abs_path_to("c1_ops.npy"), allow_pickle=True) assert (c1_correct_table == c1_table).all() assert (c1_correct_ops == np.array(c1_ops, dtype=object)).all() def test_override_waveform(config): cfg = deepcopy(config) with baking(cfg, padding_method="right", override=True) as b_ref: b_ref.play("gaussOp", "qe2") ref_length = b_ref.get_op_length("qe2") with baking( cfg, padding_method="right", override=False, baking_index=b_ref.get_baking_index(), ) as b_new: samples = [[0.2] * 30, [0.0] * 30] b_new.add_op("customOp", "qe2", samples) b_new.play("customOp", "qe2") assert b_new.get_op_length("qe2") == ref_length def test_out_boolean(config): cfg = deepcopy(config) with baking(cfg) as b: assert not b.is_out() b.play("playOp", "qe1") assert b.get_current_length("qe1") == 1000 assert b.is_out() with baking(cfg) as b: assert b.get_current_length("qe1") == 0 assert not b.is_out() def test_delete_Op(config): cfg = deepcopy(config) with baking(cfg) as b: b.play("playOp", "qe1") b.play("gaussOp", "qe2") assert "baked_Op_0" in cfg["elements"]["qe1"]["operations"] assert "qe1_baked_pulse_0" in cfg["pulses"] assert "qe2_baked_pulse_0" in cfg["pulses"] b.delete_baked_op("qe1") assert "baked_Op_0" not in cfg["elements"]["qe1"]["operations"] assert "qe1_baked_pulse_0" not in cfg["pulses"] with b: b.play("playOp", "qe1") assert "baked_Op_0" in cfg["elements"]["qe1"]["operations"] b.delete_baked_op() assert "baked_Op_0" not in cfg["elements"]["qe1"]["operations"] assert "baked_Op_0" not in cfg["elements"]["qe2"]["operations"] with baking(cfg) as b: b.add_digital_waveform("dig_wf", [(1, 0)]) b.add_op("new_Op", "qe1", [0.3] * 100, "dig_wf") b.play("new_Op", "qe1") assert "qe1_baked_digital_wf_0" in cfg["digital_waveforms"] b.delete_baked_op() assert "qe1_baked_digital_wf_0" not in cfg["digital_waveforms"] def test_indices_behavior(config): cfg = deepcopy(config) with baking(cfg) as b1: b1.play("gaussOp", "qe2") assert all( [ cfg["waveforms"]["qe2_baked_wf_I_0"]["samples"][i] == gauss(0.2, 0, 15, 80)[i] for i in range(80) ] ) print(b1.get_op_name("qe2"), cfg["waveforms"]["qe2_baked_wf_I_0"]["samples"]) with b1: b1.play("gaussOp", "qe2", amp=2) print(b1.get_op_name("qe2"), cfg["waveforms"]["qe2_baked_wf_I_0"]["samples"]) assert all( [ cfg["waveforms"]["qe2_baked_wf_I_0"]["samples"][i] == gauss(0.4, 0, 15, 80)[i] for i in range(80) ] ) print(config["waveforms"].keys()) def test_play_at_negative_t(config): cfg = deepcopy(config) with baking(config=cfg, padding_method="symmetric_r") as b: const_Op = [0.3, 0.3, 0.3, 0.3, 0.3] const_Op2 = [0.2, 0.2, 0.2, 0.3, 0.3] b.add_op("Op1", "qe2", [const_Op, const_Op2]) # qe1 is a mixInputs element Op3 = [0.1, 0.1, 0.1, 0.1] Op4 = [0.1, 0.1, 0.1, 0.1] b.add_op("Op2", "qe2", [Op3, Op4]) b.play("Op1", "qe2") # The baked waveform is at this point I: [0.3, 0.3, 0.3, 0.3, 0.3] # Q: [0.2, 0.2, 0.2, 0.3, 0.3] b.play_at( "Op2", "qe2", t=-2 ) # t indicates the time index where these new samples should be added # The baked waveform is now I: [0.3, 0.3, 0.3, 0.4, 0.4, 0.1, 0.1] # Q: [0.2, 0.2, 0.2, 0.4, 0.4, 0.1, 0.1] print(b.get_waveforms_dict()) assert np.array_equal( np.round(np.array(b.get_waveforms_dict()["waveforms"]["qe2_baked_wf_I_0"]), 4), np.array([0, 0, 0, 0, 0.3, 0.3, 0.3, 0.4, 0.4, 0.1, 0.1, 0, 0, 0, 0, 0]), ) def test_negative_wait(config): cfg = deepcopy(config) with baking(config=cfg, padding_method="symmetric_r") as b: const_Op = [0.3, 0.3, 0.3, 0.3, 0.3] const_Op2 = [0.2, 0.2, 0.2, 0.3, 0.3] b.add_op("Op1", "qe2", [const_Op, const_Op2]) # qe1 is a mixInputs element Op3 = [0.1, 0.1, 0.1, 0.1] Op4 = [0.1, 0.1, 0.1, 0.1] b.add_op("Op2", "qe2", [Op3, Op4]) b.play("Op1", "qe2") # The baked waveform is at this point I: [0.3, 0.3, 0.3, 0.3, 0.3] # Q: [0.2, 0.2, 0.2, 0.3, 0.3] b.wait(-3, "qe2") b.play( "Op2", "qe2" ) # t indicates the time index where these new samples should be added # The baked waveform is now I: [0.3, 0.3, 0.3, 0.4, 0.4, 0.1, 0.1] # Q: [0.2, 0.2, 0.2, 0.4, 0.4, 0.1, 0.1] print(b.get_waveforms_dict()) assert np.array_equal( np.round(np.array(b.get_waveforms_dict()["waveforms"]["qe2_baked_wf_I_0"]), 4), np.array([0, 0, 0, 0, 0, 0.3, 0.3, 0.4, 0.4, 0.4, 0.1, 0, 0, 0, 0, 0]), ) def test_play_at_negative_t_too_large(config): cfg = deepcopy(config) with baking(config=cfg, padding_method="symmetric_r") as b: const_Op = [0.3, 0.3, 0.3, 0.3, 0.3] const_Op2 = [0.2, 0.2, 0.2, 0.3, 0.3] b.add_op("Op1", "qe2", [const_Op, const_Op2]) # qe1 is a mixInputs element Op3 = [0.1, 0.1, 0.1, 0.1] Op4 = [0.1, 0.1, 0.1, 0.1] b.add_op("Op2", "qe2", [Op3, Op4]) b.play("Op1", "qe2") # The baked waveform is at this point I: [0.3, 0.3, 0.3, 0.3, 0.3] # Q: [0.2, 0.2, 0.2, 0.3, 0.3] with pytest.raises( Exception, match="too large for current baked samples length", ): b.play_at( "Op2", "qe2", t=-6 ) # t indicates the time index where these new samples should be added # The baked waveform is now I: [0.3, 0.3, 0.3, 0.4, 0.4, 0.1, 0.1] # Q: [0.2, 0.2, 0.2, 0.4, 0.4, 0.1, 0.1] def test_negative_wait_too_large(config): cfg = deepcopy(config) with baking(config=cfg, padding_method="symmetric_r") as b: const_Op = [0.3, 0.3, 0.3, 0.3, 0.3] const_Op2 = [0.2, 0.2, 0.2, 0.3, 0.3] b.add_op("Op1", "qe2", [const_Op, const_Op2]) # qe1 is a mixInputs element Op3 = [0.1, 0.1, 0.1, 0.1] Op4 = [0.1, 0.1, 0.1, 0.1] b.add_op("Op2", "qe2", [Op3, Op4]) b.play("Op1", "qe2") # The baked waveform is at this point I: [0.3, 0.3, 0.3, 0.3, 0.3] # Q: [0.2, 0.2, 0.2, 0.3, 0.3] with pytest.raises( Exception, match="too large for current baked samples length", ): b.wait(-6, "qe2") b.play( "Op2", "qe2" ) # t indicates the time index where these new samples should be added # The baked waveform is now I: [0.3, 0.3, 0.3, 0.4, 0.4, 0.1, 0.1] # Q: [0.2, 0.2, 0.2, 0.4, 0.4, 0.1, 0.1] def test_align_command(config): cfg = deepcopy(config) with baking(cfg) as b: b.play("playOp", "qe1") b.play("gaussOp", "qe2") b.align() assert b.get_op_length("qe2") == b.get_op_length("qe1") with b: b.play("playOp", "qe1") b.play("gaussOp", "qe2") b.align("qe1", "qe2") assert b.get_op_length("qe2") == b.get_op_length("qe1") def test_add_digital_wf(config): cfg = deepcopy(config) with baking(cfg) as b: b.add_digital_waveform("dig_wf", [(1, 0)]) b.add_digital_waveform("dig_wf2", [(0, 25), (1, 13), (0, 12)]) b.add_op("Op2", "qe1", [0.2] * 80, digital_marker="dig_wf2") b.add_op("Op", "qe1", [0.1, 0.1, 0.1], digital_marker="dig_wf") b.play("Op", "qe1") b.play("Op2", "qe1") print(cfg["pulses"]["qe1_baked_pulse_0"]) print(cfg["waveforms"]["qe1_baked_wf_0"]) print(cfg["digital_waveforms"]) assert cfg["digital_waveforms"]["qe1_baked_digital_wf_0"]["samples"] == [ (1, 0), (0, 25), (1, 13), (0, 12), ] def test_constraint_length(config): cfg = deepcopy(config) with baking(cfg) as b: b.add_op("Op", "qe1", [0.2] * 1000) b.add_op("Op2", "qe2", [[0.2] * 700, [0.3] * 700]) b.play("Op", "qe1") b.play("Op2", "qe2") assert b.get_op_length() == 1000 with baking(cfg, baking_index=b.get_baking_index()) as b2: b2.add_op("Op", "qe1", [0.2] * 300) b2.add_op("Op2", "qe2", [[0.2] * 700, [0.3] * 700]) b2.play("Op", "qe1") b2.play("Op2", "qe2") assert b2.get_op_length() == 1000 assert b2.get_op_length("qe1") == 1000 == b2.get_op_length("qe2") def test_low_sampling_rate(config): cfg = deepcopy(config) for i, rate in enumerate([0.1e9, 0.2e9, 0.34e9, 0.4234e9, 0.5e9, 0.788e9]): with baking(config, sampling_rate=rate) as b: b.add_op("Op2", "qe2", [[0.2] * 700, [0.3] * 700]) b.play("Op2", "qe2") assert config["waveforms"][f"qe2_baked_wf_I_{i}"]["sampling_rate"] == int(rate) def test_high_sampling_rate(config): cfg = deepcopy(config) for i, rate in enumerate([3e9, 2.546453e9, 8.7654e9, 1.234e9, 2e9, 4e9]): with baking(config, sampling_rate=rate, padding_method="symmetric_r") as b: b.play("gaussOp", "qe2") print(b.get_current_length("qe2")) # Need for assertion def test_delete_samples_within_baking(config): cfg = deepcopy(config) with baking(cfg) as b: b.add_op("Op2", "qe2", [[0.2] *
<reponame>catubc/MOTION import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import cv2, os, sys, glob import scipy import sklearn import imageio import matplotlib.cm as cm import matplotlib import time from sklearn import decomposition, metrics, manifold, svm from tsne import bh_sne from matplotlib.path import Path from numpy import linalg as LA from scipy.signal import butter, filtfilt, cheby1 from scipy.spatial import distance #************************************************************************************************************************** #*************************************************CODE START*************************************************************** #************************************************************************************************************************** class MOTION(object): ''' Class to detect motion in behaviour video; self.crop() to select only part of video (speeds up analysis) self.dimreduce() to reduce dimensionality of video and increase SNR self.detect_motion() compute euclidean distance between frames and plots timecourse ''' def __init__(self,filename): print "...current session: ", filename self.filename = filename def crop(self): ''' Function crops the FOV for image registration (stable region) and area of interest Also converts .avi -> .npy format for both stacks + entire original movie. Currently only rGb channel saved; possibly might improve to average all ''' #**************** SELECT CROPPED AREA TO TRACK MOTION (smaller is faster) ********************** #Load and save to disk # frames, frame rate and sample frame for cropping if os.path.exists(os.path.split(self.filename)[0]+"/nframes.txt")==False: camera = cv2.VideoCapture(self.filename) self.frame_rate = camera.get(5) ctr=0 print "reading frames" while True: print (ctr) (grabbed, frame) = camera.read() if not grabbed: break ctr+=1 if ctr==100: image_original = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) np.save(os.path.split(self.filename)[0]+"/original_image.npy", image_original) self.n_frames=ctr np.savetxt(os.path.split(self.filename)[0]+"/nframes.txt",[self.n_frames]) np.savetxt(os.path.split(self.filename)[0]+"/frame_rate.txt",[self.frame_rate]) cv2.destroyAllWindows() camera.release() else: image_original = np.load(os.path.split(self.filename)[0]+"/original_image.npy") self.n_frames = np.loadtxt(os.path.split(self.filename)[0]+"/nframes.txt",dtype='int32') self.frame_rate = np.loadtxt(os.path.split(self.filename)[0]+"/frame_rate.txt",dtype='float32') self.frame_xwidth = len(image_original); self.frame_ywidth = len(image_original[0]) #Run cropping functions on sample frame self.crop_frame_box(image_original, motion_correct_flag=True) #DEFINE BOX AREAS FOR CROPPING; first define area for register self.crop_frame_box(image_original, motion_correct_flag=False) #DEFINE BOX AREAS FOR CROPPING; first define area for register #Convert original file and cropped to .npy crop_registry = np.load(self.filename[:-4]+'_registry_cropped.npz') self.x1_registry = crop_registry['x1']; self.x2_registry = crop_registry['x2'] self.y1_registry = crop_registry['y1']; self.y2_registry = crop_registry['y2'] crop_area = np.load(self.filename[:-4]+'_'+self.area+'_cropped.npz') self.x1 = crop_area['x1']; self.x2 = crop_area['x2'] self.y1 = crop_area['y1']; self.y2 = crop_area['y2'] if os.path.exists(self.filename[:-4]+'_'+self.area+'_cropped.npy')==False: print "... converting .avi -> .npy files (only Green channel) ..." if os.path.exists(self.filename[:-4]+'.npy')==False: original_frames = np.zeros((self.n_frames, self.frame_xwidth,self.frame_ywidth),dtype=np.uint8) cropped_frames = np.zeros((self.n_frames, self.x2-self.x1,self.y2-self.y1),dtype=np.uint8) registry_frames = np.zeros((self.n_frames, self.x2_registry-self.x1_registry,self.y2_registry-self.y1_registry),dtype=np.uint8) camera = cv2.VideoCapture(self.filename) ctr = 0 while True: if ctr%1000==0: print " loading frame: ", ctr if 'luis' in self.filename: if ctr>15000: print "...************ too many frames, exiting on 15000..." break (grabbed, frame) = camera.read() if not grabbed: break #Save copy of frame for .npy file if os.path.exists(self.filename[:-4]+'.npy')==False: original_frames[ctr]=frame[:,:,1] #Save green ch only #original_frames.append(np.uint8(np.mean(frame, axis=2))) #Save average of RGB chans #Crop FOV for analysis cropped_frames[ctr]=frame[:,:,1][self.x1:self.x2,self.y1:self.y2] #cropped_frames.append(np.uint8(np.mean(frame[self.x1:self.x2,self.y1:self.y2],axis=2))) #Crop FOV for registry registry_frames[ctr]=frame[:,:,1][self.x1_registry:self.x2_registry,self.y1_registry:self.y2_registry] #registry_frames.append(np.uint8(np.mean(frame[self.x1_registry:self.x2_registry,self.y1_registry:self.y2_registry],axis=2))) ctr+=1 #Save original movie in .npy format if os.path.exists(self.filename[:-4]+'.npy')==False: np.save(self.filename[:-4]+'.npy', original_frames) #This is the entire movie converted to .npy #Save cropped movie area and registry area np.save(self.filename[:-4]+'_'+self.area+'_cropped', cropped_frames) #just cropped movie np.save(self.filename[:-4]+'_registry_cropped', registry_frames) #just cropped movie def binarize_frames(self): ''' Reduce the size/dimensionality of the sample/frame by calling various functions This also binarizes the frames (i.e. all vals are 0/1 TODO: Check this step, investigate if preserving more information in the would be hefpful ''' #area_filename = self.filename[:-4]+"_"+self.area+"_"+self.mode+".npy" #area_filename = self.filename[:-4]+"_"+self.area+"_"+self.mode+".npy" area_filename = self.filename[:-4]+"_"+self.area+"_cropped_registered_"+self.mode+".npy" self.movie_filename = self.filename[:-4]+'.npy' if os.path.exists(area_filename)==False: frames = np.load(self.filename[:-4]+"_"+self.area+"_cropped_registered.npy") rLow=100; rHigh=255 reduced_frames = [] contour_frames = [] edge_frames = [] frame_count = 0 for frame in frames: if (frame_count%1000)==0: print " reducing frame: ", frame_count #Crop frame before processing #frame = frame[self.x1:self.x2,self.y1:self.y2] if self.mode=='all': reduced_frames.append(self.decimate(frame, frame_count, rLow, rHigh)) elif self.mode == 'contours': contour_frames.append(self.find_contours(frame, frame_count, rLow, rHigh)) elif self.mode=='edges': edge_frames.append(self.find_edges(frame, frame_count, rLow, rHigh)) frame_count += 1 cv2.waitKey(1) cv2.destroyAllWindows() cv2.waitKey(1) if self.mode=='all': np.save(area_filename, np.nan_to_num(reduced_frames)) self.decimated_frames = np.nan_to_num(reduced_frames) elif self.mode=='contours': np.save(area_filename, np.nan_to_num(contour_frames)) self.decimated_frames = np.nan_to_num(contour_frames) elif self.mode=='edges': np.save(area_filename, np.nan_to_num(edge_frames)) self.decimated_frames = np.nan_to_num(edge_frames) else: self.decimated_frames = np.load(area_filename,mmap_mode='c') def detect_movement(self): ''' Detect movement as euclidean distance between frames ''' print "... detecting movement ..." if os.path.exists(self.filename[:-4]+"_diff_array.npy")==False: self.compute_diff() #Plot data t = np.arange(len(self.diff_array))/(self.frame_rate) plt.plot(t, self.diff_array) #Plotting parameters plt.xlim(0,t[-1]) plt.yticks([]) font_size = 20 plt.xlabel("Time (sec)", fontsize = font_size) plt.ylabel("Movement index (a.u.)", fontsize = font_size) plt.tick_params(axis='both', which='both', labelsize=font_size) plt.title(self.filename, fontsize = font_size) plt.show(block=True) else: self.diff_array = np.load(self.filename[:-4]+"_diff_array.npy") def read_metadata(self, output): decimated_filename = self.filename[:-4]+"_"+self.area+"_cropped_registered_"+self.mode+".npy" n_frames = len(np.load(decimated_filename,mmap_mode='c')) names = np.loadtxt(self.filename[:-4]+"_"+self.area+"_"+str(self.methods[self.method])+"_clusternames.txt",dtype='str') print names indexes = np.load(self.filename[:-4]+"_"+self.area+"_"+str(self.methods[self.method])+"_clusterindexes.npy") #Licking idx = np.where(names=='lick')[0] if len(idx)!=0: output.lick_matrix[self.rt_ctr*output.scale:(self.rt_ctr+1)*output.scale,self.ses_ctr*output.scale:(self.ses_ctr+1)*output.scale]=len(indexes[idx][0])/float(n_frames) else: output.lick_matrix[self.rt_ctr*output.scale:(self.rt_ctr+1)*output.scale,self.ses_ctr*output.scale:(self.ses_ctr+1)*output.scale]=0 #Pawing idx = np.where(names=='paw')[0] if len(idx)!=0: output.paw_matrix[self.rt_ctr*output.scale:(self.rt_ctr+1)*output.scale,self.ses_ctr*output.scale:(self.ses_ctr+1)*output.scale]=len(indexes[idx][0])/float(n_frames) else: output.paw_matrix[self.rt_ctr*output.scale:(self.rt_ctr+1)*output.scale,self.ses_ctr*output.scale:(self.ses_ctr+1)*output.scale]=0 #Add scratching to pawing idx = np.where(names=='scratch')[0] if len(idx)!=0: output.scratch_matrix[self.rt_ctr*output.scale:(self.rt_ctr+1)*output.scale,self.ses_ctr*output.scale:(self.ses_ctr+1)*output.scale]=len(indexes[idx][0])/float(n_frames) else: output.scratch_matrix[self.rt_ctr*output.scale:(self.rt_ctr+1)*output.scale,self.ses_ctr*output.scale:(self.ses_ctr+1)*output.scale]=0 data = np.load(glob.glob(os.path.split(self.filename)[0]+'/*_metadata.npz')[0]) if data['drift']=='y': self.drift=1 elif data['drift']=='n': self.drift=0 else: print "...exception..."; quit() if data['spout_moved']=='y': self.spout_moved=1 elif data['spout_moved']=='n': self.spout_moved=0 else: print "...exception..."; quit() if data['hand_inview']=='y': self.hand_inview=1 elif data['hand_inview']=='n': self.hand_inview=0 else: print "...exception..."; quit() if data['camera_moved']=='y': self.camera_moved=1 elif data['camera_moved']=='n': self.camera_moved=0 else: print "...exception..."; quit() output.drift_matrix[self.rt_ctr*output.scale:(self.rt_ctr+1)*output.scale,self.ses_ctr*output.scale:(self.ses_ctr+1)*output.scale]=self.drift output.spout_matrix[self.rt_ctr*output.scale:(self.rt_ctr+1)*output.scale,self.ses_ctr*output.scale:(self.ses_ctr+1)*output.scale]=self.spout_moved self.other_exclusion=data['other_exclusion'] return output def load_frames(self, cluster_name): names = np.loadtxt(self.filename[:-4]+"_"+self.area+"_"+str(self.methods[self.method])+"_clusternames.txt",dtype='str') print names indexes = np.load(self.filename[:-4]+"_"+self.area+"_"+str(self.methods[self.method])+"_clusterindexes.npy") cluster_index = np.where(names ==cluster_name)[0] if len(cluster_index)==0: return None cluster_indexes = indexes[cluster_index][0] #List of indexes for selected behaviour #Load movie self.movie_filename = self.filename[:-4]+'.npy' enlarge = 100 #Make movie FOV larger than original cropping rectangle by 50pixels or so; otherwies difficult to see what's going on; movie_array = np.load(self.movie_filename, mmap_mode='c')[:, max(0,self.x1-enlarge):self.x2+enlarge, max(0,self.y1-enlarge):self.y2+enlarge] print movie_array.shape if len(cluster_index)==0: return movie_array[0]*0 #Randomly return one of these images; return movie_array[np.random.choice(cluster_indexes)] def save_metadata(self): print self.filename[:-4] metadata = [] drift = raw_input("Did camera drift ? (y/n) " ) spout_moved = raw_input("Was spout readjusted ? (y/n) " ) hand_inview = raw_input("Did hand enter the screen ? (y/n) " ) camera_moved = raw_input("Did camera move or otherwise jump ? (y/n) " ) other_exclusion = raw_input("Any thing else to note (y/n or type out) ") np.savez(self.filename[:-4]+"_metadata.npz", drift=drift, spout_moved=spout_moved, hand_inview=hand_inview, camera_moved=camera_moved, other_exclusion=other_exclusion) def annotate_frames(self): ''' Function to annotate frames in partially supervised fashion Calls mupltiple functions ''' #Subsample frames to further reduce dimensionality and speed up processing if True: self.subsample_frames() else: self.data_subsampled = self.decimated_frames #Scale the frame information by some coefficient of movement if False: self.scale_moving_frames() #Run dim reduction self.dimension_reduction() #Filter transformed distributions to remove camera drift (usually) if True: self.filter_PCA(self.data_dim_reduction, filtering=True, plotting=True) #Cluster data self.cluster_methods = ['KMeans', 'MeanShift', 'DBSCAN', 'manual'] self.cluster_method = 3 self.cluster_data() #Review clusters and re/cut them #self.review_clusters() self.export_clusters(recluster_flag=False) def resplit_cluster(self, cluster): ''' Recluster previously split clusters... ''' print "... resplitting cluster: ", cluster #THIS NEEDS TO BE SIMPLIFIED #Subsample frames to further reduce dimensionality and speed up processing if True: self.subsample_frames() else: self.data_subsampled = self.decimated_frames #Scale the frame information by some coefficient of movement if False: self.scale_moving_frames() #Run dim reduction self.dimension_reduction() #Filter transformed distributions to remove camera drift (usually) if True: self.filter_PCA(self.data_dim_reduction, filtering=True, plotting=False) self.load_clusters() #Load clustered info cluster_names = np.loadtxt(self.filename[:-4]+"_"+self.area+"_"+self.methods[self.method]+"_clusternames.txt", dtype='str') cluster_indexes = np.load(self.filename[:-4]+"_"+self.area+"_"+self.methods[self.method]+"_clusterindexes.npy") #Assign clusters to unique ids cumulative_indexes=[] unique_names = np.unique(self.cluster_names) print self.cluster_names print unique_names unique_indexes = [] for ctr1, unique_name in enumerate(unique_names): unique_indexes.append([]) for ctr, cluster_name in enumerate(self.cluster_names): if unique_name==cluster_name: unique_indexes[ctr1].extend(self.cluster_indexes[ctr]) cluster_id = np.where(unique_names==cluster)[0] print "... cluster_id: ", cluster_id self.unique_indexes = unique_indexes[cluster_id] #Cluster data self.cluster_methods = ['KMeans', 'MeanShift', 'DBSCAN', 'manual'] self.cluster_method = 3 self.cluster_data(indexes=unique_indexes[cluster_id]) #Send indexes for the selected cluster after collapsing over unique valus def resave_clusters(self,indexes): ''' Load original cluster labels and re-adjust based on resplit cluster ''' reclustered_id_indexes = np.int32(indexes) print "... reclustered id indexes: ", len(reclustered_id_indexes) #Load clustered info original_cluster_names = np.loadtxt(self.filename[:-4]+"_"+self.area+"_"+self.methods[self.method]+"_clusternames.txt", dtype='str') original_cluster_indexes = np.load(self.filename[:-4]+"_"+self.area+"_"+self.methods[self.method]+"_clusterindexes.npy") #Delete the cluster that was just resplit temp_index = np.where(original_cluster_names==self.recluster_id)[0] #print "... reclustered id : ", temp_index original_cluster_names = np.delete(original_cluster_names, temp_index,0) original_cluster_indexes = np.delete(original_cluster_indexes, temp_index,0) #Append new labels back in; first convert to lists, easier to work with due to variable length cluster_names_array = [] for k in range(len(original_cluster_names)): cluster_names_array.append(original_cluster_names[k]) #Add new labels back in from newly identified self.cluster_names for k in range(len(self.cluster_names)): cluster_names_array.append(self.cluster_names[k]) self.cluster_names = cluster_names_array #Do the same with cluster indexes cluster_indexes_array = [] for k in range(len(original_cluster_indexes)): cluster_indexes_array.append(original_cluster_indexes[k]) #Add new labels back in ******************* NOTE: Indexes will be relative to the previously clustered indexes not 0 for k in range(len(self.cluster_indexes)): print k, len(self.cluster_indexes[k]), len(reclustered_id_indexes) print self.cluster_indexes[k] cluster_indexes_array.append(reclustered_id_indexes[np.int32(self.cluster_indexes[k])]) self.cluster_indexes = cluster_indexes_array print ".... check that all frames have been saved..." print len(self.cluster_indexes) #print np.unique(np.array(self.cluster_indexes)) #*****Re-assign clusters to unique ids after adding the new split cluster labels back in cumulative_indexes=[] unique_names = np.unique(self.cluster_names) print "...reclustered data..." print self.cluster_names for k in range(len(self.cluster_indexes)): print len(self.cluster_indexes[k]) print "\n\n... unique data..." print unique_names unique_indexes = [] for ctr1, unique_name in enumerate(unique_names): unique_indexes.append([]) for ctr, cluster_name in enumerate(self.cluster_names): if unique_name==cluster_name: unique_indexes[ctr1].extend(self.cluster_indexes[ctr]) print len(unique_indexes[ctr1]) #cluster_id = np.where(unique_names==cluster)[0] #print "... cluster_id: ", cluster_id np.savetxt(self.filename[:-4]+"_"+self.area+"_"+self.methods[self.method]+"_clusternames_new.txt", unique_names,fmt='%s') np.save(self.filename[:-4]+"_"+self.area+"_"+self.methods[self.method]+"_clusterindexes_new.npy", unique_indexes) self.export_clusters(recluster_flag=True) def manual_label(self): filename_manuallabel = self.filename[:-4]+"_"+self.area+"_manuallabels.npz" if os.path.exists(filename_manuallabel)==False: plt.plot(self.diff_array) mean = np.mean(self.diff_array) top_cutoff = np.max(self.diff_array)*.55 bottom_cutoff = np.mean(self.diff_array)*.05 plt.plot([0,len(self.diff_array)],[top_cutoff,top_cutoff]) plt.plot([0,len(self.diff_array)],[bottom_cutoff,bottom_cutoff]) plt.show(block=True) print "... limitting annotation to 50 events max..." indexes = np.where(self.diff_array>top_cutoff)[0] indexes = indexes[np.random.randint(len(indexes),size=50)] print "... # frames: ", len(indexes) indexes2 = np.where(self.diff_array<bottom_cutoff)[0] indexes2 = indexes2[np.random.randint(len(indexes2),size=50)] print "... # frames: ", len(indexes2) indexes = np.hstack((indexes,indexes2)) print "... # total frames to annotate: ", len(indexes) enlarge=100 movie_array = np.load(self.movie_filename, mmap_mode='c')[:, max(0,self.x1-enlarge):self.x2+enlarge, max(0,self.y1-enlarge):self.y2+enlarge] #Select most active frames data_ = movie_array[indexes] border = 30 fontsize=15 classifier = np.array([0,0,0,0]) classifier_list = [] self.complete=False for k,frame in enumerate(data_): if self.complete==True: break #Exit by clicking outside the annotation box #Make nice box around each frame to use for annotation temp = np.zeros((frame.shape[0]+border,frame.shape[1]+border)) temp[:, :border/2]=100 temp[:, frame.shape[1]+border/2:]=150 temp[:border/2]=50 temp[frame.shape[0]+border/2:]=200 temp[border/2:frame.shape[0]+border/2,border/2:frame.shape[1]+border/2]=frame[:,:,1] #Make plots fig, ax = plt.subplots() ax.imshow(temp) self.cid = fig.canvas.mpl_connect('button_press_event', self.on_click_classify) plt.suptitle("frame: "+str(k)+" / "+str(len(data_)),fontsize=fontsize) plt.title("Lick: "+str(classifier[0]),fontsize=fontsize) plt.xlabel("Stationary: "+str(classifier[1]),fontsize=fontsize) plt.ylabel("Paw :"+str(classifier[2]),fontsize=fontsize) plt.show(block=True) y
+= 0.00000000021 * math.cos(2.63713620085 + 13656.10430865991 * self.t) X2 += 0.00000000020 * math.cos(4.83742385337 + 33326.8225506577 * self.t) X2 += 0.00000000018 * math.cos(1.65998530501 + 52156.38033973211 * self.t) X2 += 0.00000000023 * math.cos(4.13597342584 + 41962.7645544209 * self.t) X2 += 0.00000000018 * math.cos(6.07003180743 + 52389.3491960699 * self.t) X2 += 0.00000000017 * math.cos(3.47243675916 + 58946.76070187749 * self.t) X2 += 0.00000000016 * math.cos(1.64800690653 + 23754.95056618569 * self.t) X2 += 0.00000000019 * math.cos(2.36847359761 + 39609.8984006491 * self.t) X2 += 0.00000000017 * math.cos(0.25513432917 + 51536.15281431789 * self.t) X2 += 0.00000000018 * math.cos(0.34702974356 + 18849.4713674577 * self.t) X2 += 0.00000000015 * math.cos(0.95866304490 + 76674.88034692229 * self.t) X2 += 0.00000000015 * math.cos(1.75514605179 + 48733.47515566649 * self.t) X2 += 0.00000000015 * math.cos(4.34995902728 + 853.4401992355 * self.t) X2 += 0.00000000014 * math.cos(3.61473044000 + 82815.90673926489 * self.t) X2 += 0.00000000014 * math.cos(5.02500731242 + 52179.9314359899 * self.t) X2 += 0.00000000014 * math.cos(1.69891784853 + 15874.8614128467 * self.t) X2 += 0.00000000014 * math.cos(2.36729572184 + 66941.2891439017 * self.t) X2 += 0.00000000015 * math.cos(5.49473150242 + 16984.2399649401 * self.t) X2 += 0.00000000015 * math.cos(5.05704278229 + 38654.2986590405 * self.t) X2 += 0.00000000013 * math.cos(0.64687702919 + 53765.1229959157 * self.t) X2 += 0.00000000013 * math.cos(1.62167132693 + 208702.98131511007 * self.t) X2 += 0.00000000013 * math.cos(3.82178316362 + 50057.2862402535 * self.t) X2 += 0.00000000016 * math.cos(2.05228361219 + 51646.3591355373 * self.t) X2 += 0.00000000012 * math.cos(3.97912977913 + 28421.3433519297 * self.t) X2 += 0.00000000013 * math.cos(4.04493324307 + 155418.28411483529 * self.t) X2 += 0.00000000016 * math.cos(0.65996554595 + 55618.6250455973 * self.t) X2 += 0.00000000012 * math.cos(3.62569930460 + 5661.5758666357 * self.t) X2 += 0.00000000015 * math.cos(0.75515577986 + 52195.71986153169 * self.t) X2 += 0.00000000014 * math.cos(2.81046707561 + 26514.7451499337 * self.t) X2 += 0.00000000014 * math.cos(3.30095837282 + 110013.18843293248 * self.t) X2 += 0.00000000013 * math.cos(0.56442607871 + 213.0552779545 * self.t) X2 += 0.00000000014 * math.cos(2.10561918260 + 26728.0442453717 * self.t) X2 += 0.00000000013 * math.cos(3.66951257967 + 52172.1687652739 * self.t) X2 += 0.00000000011 * math.cos(5.46295418561 + 63498.71419893629 * self.t) X2 += 0.00000000011 * math.cos(0.61230507574 + 79219.55298381469 * self.t) X2 += 0.00000000010 * math.cos(4.66712610746 + 103292.47445359109 * self.t) X2 += 0.00000000011 * math.cos(5.20556952105 + 31748.99137324289 * self.t) X2 += 0.00000000014 * math.cos(3.33453776277 + 6283.3196674749 * self.t) X2 += 0.00000000010 * math.cos(0.83705988710 + 52290.48938931711 * self.t) X2 += 0.00000000012 * math.cos(2.60449391926 + 13521.50762410789 * self.t) X2 += 0.00000000009 * math.cos(3.03188275218 + 35192.0539531753 * self.t) X2 += 0.00000000009 * math.cos(1.24305000805 + 76045.1961380193 * self.t) X2 += 0.00000000011 * math.cos(5.89042281055 + 62389.33564684289 * self.t) X2 += 0.00000000010 * math.cos(4.16418363493 + 51749.45190975589 * self.t) X2 += 0.00000000009 * math.cos(4.66321261687 + 124778.42747620228 * self.t) X2 += 0.00000000009 * math.cos(0.22808750229 + 339142.98465794802 * self.t) X2 += 0.00000000009 * math.cos(4.75513146544 + 78244.28348130629 * self.t) X2 += 0.00000000009 * math.cos(2.64262688750 + 20426.32727493849 * self.t) X2 += 0.00000000011 * math.cos(2.92721365751 + 38520.1896094555 * self.t) X2 += 0.00000000010 * math.cos(3.30244477369 + 16983.75232997309 * self.t) X2 += 0.00000000009 * math.cos(1.16009282528 + 1109.6223695769 * self.t) X2 += 0.00000000009 * math.cos(4.65609022876 + 52061.61081194667 * self.t) X2 += 0.00000000009 * math.cos(2.15470374859 + 104881.54734887488 * self.t) X2 += 0.00000000008 * math.cos(1.58129311338 + 68050.66769599509 * self.t) X2 += 0.00000000008 * math.cos(4.01456932062 + 2333.44021035551 * self.t) X2 += 0.00000000008 * math.cos(0.50473636519 + 12431.79883291429 * self.t) X2 += 0.00000000008 * math.cos(4.71148146957 + 28206.9108194361 * self.t) X2 += 0.00000000008 * math.cos(0.22428318331 + 136101.09157450669 * self.t) X2 += 0.00000000008 * math.cos(5.13855904986 + 213.5429129215 * self.t) X2 += 0.00000000008 * math.cos(1.53446312549 + 24499.0740637739 * self.t) X2 += 0.00000000008 * math.cos(0.19632874417 + 103396.25664217169 * self.t) X2 += 0.00000000007 * math.cos(4.83084149979 + 52168.93655363109 * self.t) X2 += 0.00000000009 * math.cos(0.68229010552 + 21535.70582703189 * self.t) X2 += 0.00000000007 * math.cos(5.67305147777 + 53284.94101775829 * self.t) X2 += 0.00000000007 * math.cos(4.91493686906 + 105461.23493587368 * self.t) X2 += 0.00000000007 * math.cos(2.13257749573 + 69160.04624808849 * self.t) X2 += 0.00000000009 * math.cos(0.17767669866 + 7994.77225950771 * self.t) X2 += 0.00000000009 * math.cos(3.44284310428 + 73711.99974514729 * self.t) X2 += 0.00000000008 * math.cos(1.40334354171 + 59414.7256922319 * self.t) X2 += 0.00000000008 * math.cos(3.92015227538 + 52183.1636476327 * self.t) X2 += 0.00000000007 * math.cos(1.95913527567 + 64742.2018006147 * self.t) X2 += 0.00000000007 * math.cos(1.83770637593 + 78267.83457756409 * self.t) X2 += 0.00000000007 * math.cos(5.50637575808 + 26107.81671995749 * self.t) X2 += 0.00000000007 * math.cos(3.29290677599 + 26068.47719815791 * self.t) X2 += 0.00000000006 * math.cos(2.48089512320 + 25028.7650288685 * self.t) X2 += 0.00000000007 * math.cos(6.10010912620 + 51962.7510051939 * self.t) X2 += 0.00000000007 * math.cos(5.20852269117 + 18208.05780571871 * self.t) X2 += 0.00000000008 * math.cos(3.20036201627 + 44937.3745090319 * self.t) X2 += 0.00000000008 * math.cos(1.81720177562 + 51066.18391357149 * self.t) X2 += 0.00000000006 * math.cos(5.72654755255 + 105411.23831396949 * self.t) X2 += 0.00000000007 * math.cos(4.86085983191 + 65697.80154222329 * self.t) X2 += 0.00000000006 * math.cos(2.84309765149 + 88477.23878841709 * self.t) X2 += 0.00000000006 * math.cos(2.90025697766 + 78477.25233764409 * self.t) X2 += 0.00000000006 * math.cos(6.10721529063 + 52602.6482915079 * self.t) X2 += 0.00000000007 * math.cos(3.76564310534 + 78283.62300310588 * self.t) X2 += 0.00000000006 * math.cos(2.54939515992 + 19805.0711090663 * self.t) X2 += 0.00000000005 * math.cos(0.40790961084 + 108903.80988083909 * self.t) X2 += 0.00000000006 * math.cos(2.08187740275 + 129380.37759516528 * self.t) X2 += 0.00000000005 * math.cos(4.74517813371 + 74821.37829724069 * self.t) X2 += 0.00000000007 * math.cos(5.47163902652 + 45892.9742506405 * self.t) X2 += 0.00000000005 * math.cos(3.96385649366 + 1059.1381127057 * self.t) X2 += 0.00000000005 * math.cos(2.11024903764 + 26084.2656236997 * self.t) X2 += 0.00000000005 * math.cos(0.40769424239 + 26092.0282944157 * self.t) X2 += 0.00000000007 * math.cos(4.95181465375 + 71493.2426409605 * self.t) X2 += 0.00000000005 * math.cos(3.72498845601 + 81706.5281871715 * self.t) X2 += 0.00000000005 * math.cos(1.28192740378 + 51322.85371887989 * self.t) X2 += 0.00000000005 * math.cos(0.38902168011 + 33968.23611239669 * self.t) X2 += 0.00000000005 * math.cos(1.36259031496 + 78256.83969520529 * self.t) X2 += 0.00000000005 * math.cos(2.94315074391 + 26617.35028918529 * self.t) X2 += 0.00000000006 * math.cos(0.40666986327 + 78260.07190684808 * self.t) X2 += 0.00000000004 * math.cos(3.59234736829 + 25661.5487681817 * self.t) X2 += 0.00000000005 * math.cos(5.20687247513 + 94138.57083756929 * self.t) X2 += 0.00000000004 * math.cos(5.73436372945 + 22645.08437912529 * self.t) X2 += 0.00000000005 * math.cos(5.43911125012 + 93029.19228547589 * self.t) X2 += 0.00000000004 * math.cos(1.51966869369 + 22760.01130277751 * self.t) X2 += 0.00000000004 * math.cos(4.11367481672 + 29416.28261533789 * self.t) X2 += 0.00000000004 * math.cos(0.33419603419 + 76145.18938182769 * self.t) X2 += 0.00000000004 * math.cos(0.81789657863 + 181506.18725640948 * self.t) X2 += 0.00000000004 * math.cos(5.87548494754 + 13521.9952590749 * self.t) X2 += 0.00000000004 * math.cos(0.98530676575 + 99799.90288672148 * self.t) X2 += 0.00000000004 * math.cos(3.64991710996 + 79853.02613748988 * self.t) X2 += 0.00000000005 * math.cos(5.51168134551 + 44181.52165860769 * self.t) X2 += 0.00000000004 * math.cos(4.17969593700 + 4551.7096795753 * self.t) X2 += 0.00000000004 * math.cos(1.07013306418 + 32371.2228090491 * self.t) X2 += 0.00000000004 * math.cos(4.56317466224 + 32858.36992533629 * self.t) X2 += 0.00000000004 * math.cos(0.76064444657 + 54509.2464935039 * self.t) X2 += 0.00000000004 * math.cos(5.34376558738 + 155468.28073673949 * self.t) X2 += 0.00000000003 * math.cos(3.33102397097 + 162188.99471608088 * self.t) X2 += 0.00000000003 * math.cos(1.90784099869 + 24498.58642880689 * self.t) X2 += 0.00000000005 * math.cos(0.70628118340 + 78271.06678920689 * self.t) X2 += 0.00000000004 * math.cos(4.75154050928 + 234790.88445668427 * self.t) X2 += 0.00000000003 * math.cos(5.20128667447 + 77734.26227711148 * self.t) X2 += 0.00000000004 * math.cos(4.16379409199 + 7879.84533585549 * self.t) X2 += 0.00000000004 * math.cos(5.89383677298 + 64608.09275102969 * self.t) X2 += 0.00000000004 * math.cos(4.51512332677 + 51116.18053547569 * self.t) X2 += 0.00000000003 * math.cos(1.82486201671 + 28306.41642827749 * self.t) X2 += 0.00000000004 * math.cos(5.71282679191 + 39744.0074502341 * self.t) X2 += 0.00000000003 * math.cos(1.53805667122 + 104332.1866228805 * self.t) X2 += 0.00000000004 * math.cos(3.89140851351 + 80482.71034639288 * self.t) X2 += 0.00000000003 * math.cos(1.85783050998 + 37410.32342239509 * self.t) X2 += 0.00000000004 * math.cos(1.55416627058 + 24864.32911827909 * self.t) X2 += 0.00000000003 * math.cos(2.39011669525 + 103822.16541868569 * self.t) X2 += 0.00000000004 * math.cos(4.09022608915 + 27311.96479983631 * self.t) X2 += 0.00000000003 * math.cos(2.12318372488 + 120226.47397914348 * self.t) X2 += 0.00000000003 * math.cos(4.30318589016 + 102133.09927959349 * self.t) X2 += 0.00000000003 * math.cos(1.44971105205 + 150866.33061777649 * self.t) X2 += 0.00000000003 * math.cos(5.04167948013 + 90830.10494218889 * self.t) X2 += 0.00000000003 * math.cos(3.27662875658 + 77624.05595589208 * self.t) X2 += 0.00000000003 * math.cos(3.21324303917 + 129484.15978374588 * self.t) X2 += 0.00000000003 * math.cos(4.58517957507 + 125887.80602829569 * self.t) X2 += 0.00000000003 * math.cos(5.16830743449 + 130969.45049044909 * self.t) X2 += 0.00000000003 * math.cos(4.95343110449 + 58459.1259506233 * self.t) X2 += 0.00000000002
import os from pathlib import Path from io import BytesIO import time import re import hashlib import threading from functools import wraps import logging import mimetypes import urllib.request as request import http.cookiejar as http_cookiejar from http import HTTPStatus # import ssl # ssl._create_default_https_context = ssl._create_unverified_context # Disable context for gismap.by from PIL import Image from twms import projections from twms import config DEFAULT_HEADERS = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:84.0) Gecko/20100101 Firefox/84.0", "Connection": "Keep-Alive"} def prepare_opener(tries=4, delay=3, backoff=2, headers=dict()): """Build HTTP opener with custom headers (User-Agent) and cookie support. Retry HTTP request using an exponential backoff: * Retry only on network issues * Raise HTTPError immediatly, to handle it with complex code https://wiki.python.org/moin/PythonDecoratorLibrary#Retry http://www.katasonov.com/ru/2014/10/python-urllib2-decorators-and-exceptions-fun/ :param int tries: number of times to try (not retry) before giving up :param int delay: initial delay between retries in seconds :param int backoff: backoff multiplier e.g. value of 2 will double the delay each retry :param dict headers: Update opener headers (add new and spoof existing). :rtype: http.client.HTTPResponse """ cj = http_cookiejar.CookieJar() # if use_proxy: # proxy_info = { # 'user': 'login', # 'pass': '<PASSWORD>', # 'host': "proxyaddress", # 'port': 8080} # proxy_support = urllib.request.ProxyHandler({ # "http": "http://%(user)s:%(pass)s@%(host)s:%(port)d" % proxy_info}) # opener = urllib.request.build_opener( # urllib.request.HTTPCookieProcessor(cj), # # urllib2.HTTPHandler(debuglevel=1), # Debug output # proxy_support) opener = request.build_opener(request.HTTPCookieProcessor(cj)) hdrs = {**DEFAULT_HEADERS, **headers} opener.addheaders = list(hdrs.items()) @wraps(opener.open) def retry(*args, **kwargs): mtries, mdelay = tries, delay while mtries > 1: try: return opener.open(*args, **kwargs) except request.HTTPError as err: # Prevent catching HTTPError as subclass of URLError # logging.error(err) raise except request.URLError as err: logging.debug(f"{err}, retrying '{args[0]}' in {mdelay} seconds...") time.sleep(mdelay) mtries -= 1 mdelay *= backoff return opener.open(*args, **kwargs) return retry class TileFetcher(object): def __init__(self, layer): self.layer = layer self.opener = prepare_opener(headers=self.layer.get('headers', dict())) self.fetching_now = {} self.thread_responses = {} # Dicts are thread safe self.zhash_lock = {} def fetch(self, z, x, y): """Return None if no image can be served.""" zhash = repr((z, x, y, self.layer)) try: self.zhash_lock[zhash] += 1 except KeyError: self.zhash_lock[zhash] = 1 if zhash not in self.fetching_now: thread = threading.Thread( None, self.threadworker, None, (z, x, y, zhash)) thread.start() self.fetching_now[zhash] = thread if self.fetching_now[zhash].is_alive(): self.fetching_now[zhash].join() resp = self.thread_responses[zhash] self.zhash_lock[zhash] -= 1 if not self.zhash_lock[zhash]: del self.thread_responses[zhash] del self.fetching_now[zhash] del self.zhash_lock[zhash] return resp def threadworker(self, z, x, y, zhash): f_names = ('tms', 'wms', 'tms_google_sat') if self.layer['fetch'] not in f_names: raise ValueError("fetch must be " + ', '.join(f_names)) # Call fetcher by it's name self.thread_responses[zhash] = getattr(self, self.layer['fetch'])(z, x, y) def wms(self, z, x, y): """Use tms instead. Possible features to implement: * TNE based on histogram * Big tile request (e.g. 512x512) Leave possibility to request arbitrary (other than cache 'proj') projection from WMS by 'wms_proj' parameter, as server may be broken. """ tile_id = f"{self.layer['prefix']} z{z}/x{x}/y{y}" if 'max_zoom' in self.layer and z > self.layer['max_zoom']: logging.debug(f"{tile_id}: zoom limit") return None req_proj = self.layer.get("wms_proj", self.layer["proj"]) width = 256 # Using larger source size to rescale better in python height = 256 tile_bbox = "{},{},{},{}".format(*projections.from4326( projections.bbox_by_tile(z, x, y, req_proj), req_proj)) remote = self.layer['remote_url'].replace('{bbox}', tile_bbox) remote = remote.replace('{width}', str(width)) remote = remote.replace('{height}', str(height)) remote = remote.replace('{proj}', req_proj) # MOBAC cache path style tile_path = config.tiles_cache + self.layer["prefix"] + "/{:.0f}/{:.0f}/{:.0f}{}".format(z, x, y, self.layer['ext']) partial_path, ext = os.path.splitext(tile_path) # '.ext' with leading dot tne_path = partial_path + '.tne' os.makedirs(os.path.dirname(tile_path), exist_ok=True) if 'cache_ttl' in self.layer: for ex in (ext, '.dsc' + ext, '.ups' + ext, '.tne'): fp = partial_path + ex if os.path.exists(fp): if os.stat(fp).st_mtime < (time.time() - self.layer["cache_ttl"]): os.remove(fp) logging.info(f"wms: fetching z{z}/x{x}/y{y} {self.layer['name']} {remote}") im_bytes = self.opener(remote).read() if im_bytes: im = Image.open(BytesIO(im_bytes)) else: return None if width != 256 and height != 256: im = im.resize((256, 256), Image.ANTIALIAS) im = im.convert("RGBA") ic = Image.new("RGBA", (256, 256), self.layer.get("empty_color", config.default_background)) if im.histogram() == ic.histogram(): logging.debug(f"{tile_id}: TNE - empty histogram '{tne_path}'") Path(tne_path, exist_ok=True).touch() return None im.save(tile_path) return im def tms(self, z, x, y): """Fetch tile by coordinates, r/w cache. Function fetches image, checks it validity and detects actual image format (ignores server Content-Type). All tiles with Content-Type not matching default for this layer will be converted before saving to cache. TNE - tile not exist (got HTTP 404 or default tile for empty zones aka "dead tile") Cache is structured according to tile coordinates. Actual tile image projection specified in config file. MBTiles https://wiki.openstreetmap.org/wiki/MBTiles https://github.com/mapbox/mbtiles-spec https://docs.mapbox.com/help/glossary/mbtiles/ :rtype: :py:class:`~PIL.Image.Image`. Otherwise None, if no image can be served from cache or from remote. """ need_fetch = False tile_parsed = False tile_dead = False tile_id = f"{self.layer['prefix']} z{z}/x{x}/y{y}" target_mimetype = mimetypes.types_map[self.layer['ext']] remote = '' if 'max_zoom' in self.layer and z > self.layer['max_zoom']: logging.debug(f"{tile_id}: zoom limit") return None # MOBAC cache path style tile_path = config.tiles_cache + self.layer['prefix'] + "/{:.0f}/{:.0f}/{:.0f}{}".format(z, x, y, self.layer['ext']) partial_path, ext = os.path.splitext(tile_path) # '.ext' with leading dot tne_path = partial_path + '.tne' os.makedirs(os.path.dirname(tile_path), exist_ok=True) # Do not delete, only replace if tile exists! if os.path.exists(tne_path): tne_lifespan = time.time() - os.stat(tne_path).st_mtime if tne_lifespan > config.cache_tne_ttl: logging.info(f"{tile_id}: TTL tne reached {tne_path}") need_fetch = True else: logging.info(f"{tile_id}: tile cached as TNE {tne_path}") if 'cache_ttl' in self.layer: # for ex in (ext, '.dsc.' + ext, '.ups.' + ext, '.tne'): if os.path.exists(tile_path): tile_lifespan = time.time() - os.stat(tile_path).st_mtime # tile_lifespan_h = tile_lifespan / 60 / 60 # logging.debug(f"{tile_id}: lifespan {tile_lifespan_h:.0f} h {fp}") if tile_lifespan > self.layer["cache_ttl"]: logging.info(f"{tile_id}: TTL tile reached for {tile_path}") need_fetch = True if not os.path.exists(tile_path) and not os.path.exists(tne_path): need_fetch = True # Fetching image if need_fetch and 'remote_url' in self.layer: if 'transform_tile_number' in self.layer: trans_z, trans_x, trans_y = self.layer['transform_tile_number'](z, x, y) else: trans_z, trans_x, trans_y = z, x, y # Placeholder substitution # TMS remote = self.layer['remote_url'].replace('{z}', str(trans_z)) remote = remote.replace('{x}', str(trans_x)) remote = remote.replace('{y}', str(trans_y)) remote = remote.replace('{-y}', str(tile_slippy_to_tms(trans_z, trans_x, trans_y)[2])) remote = remote.replace('{q}', tile_to_quadkey(trans_z, trans_x, trans_y)) # Bing # WMS, no real difference with TMS except missing *.tne feature width = 256 height = 256 tile_bbox = "{},{},{},{}".format(*projections.from4326( projections.bbox_by_tile(z, x, y, self.layer['proj']), self.layer['proj'])) remote = remote.replace('{bbox}', tile_bbox) remote = remote.replace('{width}', str(width)) remote = remote.replace('{height}', str(height)) remote = remote.replace('{proj}', self.layer["proj"]) try: # Got response, need to verify content logging.info(f"{tile_id}: FETCHING {remote}") remote_resp = self.opener(remote) remote_bytes = remote_resp.read() if remote_bytes: try: im = Image.open(BytesIO(remote_bytes)) im.load() # Validate image tile_parsed = True except (OSError, AttributeError): # Catching invalid pictures logging.error(f"{tile_id}: failed to parse response as image {tne_path}") logging.debug(f"{tile_id}: invalid image {remote_resp.status}: {remote_resp.msg} - {remote_resp.reason} {remote_resp.url}\n{remote_resp.headers}") # try: # logging.debug(remote_bytes.decode('utf-8')) # except UnicodeDecodeError: # logging.debug(remote_bytes) # if logging.getLogger().getEffectiveLevel() == logging.DEBUG: # with open('err.htm', mode='wb') as f: # f.write(remote_bytes) else: logging.warning(f"{tile_id}: empty response") except request.HTTPError as err: # Heuristic: TNE or server is defending tiles # HTTP 403 must be inspected manually logging.error('\n'.join([str(k) for k in (err, err.headers, err.read().decode('utf-8'))])) if err.status == HTTPStatus.NOT_FOUND: logging.warning(f"{tile_id}: TNE - {err} '{tne_path}'") Path(tne_path, exist_ok=True).touch() except request.URLError as err: # Nothing we can do: no connection, cannot guess TNE or not logging.error(f"{tile_id} URLError '{err}'") # Save something in cache # Sometimes server returns file instead of empty HTTP response if 'dead_tile' in self.layer: # Compare bytestring with dead tile hash if len(remote_bytes) == self.layer['dead_tile']['size']: hasher = hashlib.md5() hasher.update(remote_bytes) if hasher.hexdigest() == self.layer['dead_tile']['md5']: # Tile is recognized as empty # An example http://ecn.t0.tiles.virtualearth.net/tiles/a120210103101222.jpeg?g=0 # SASPlanet writes empty files with '.tne' ext logging.warning(f"{tile_id}: TNE - dead tile '{tne_path}'") tile_dead = True Path(tne_path, exist_ok=True).touch() logging.debug(f"tile parsed {tile_parsed}, dead {tile_dead}") if tile_parsed and not tile_dead: # All well, save tile to cache logging.info(f"{tile_id}: saving {tile_path}") # Preserving original image if possible, as encoding is lossy # Storing all images into one format, just like SAS.Planet does if im.get_format_mimetype() != target_mimetype: logging.warning(f"{tile_id} unexpected image Content-Type {im.get_format_mimetype()}, converting to '{target_mimetype}'") image_bytes = im_convert(im, target_mimetype) else: image_bytes = remote_bytes with open(tile_path, 'wb') as f: f.write(image_bytes) if os.path.exists(tne_path): os.remove(tne_path) return im # If TTL is ok or fetching failed if os.path.exists(tile_path): try: im = Image.open(tile_path) im.load() logging.info(f"{tile_id}: cache tms {tile_path}") return im except OSError: logging.warning(f"{tile_id}: failed to parse image from cache '{tile_path}'") # os.remove(tile_path) # Cached tile is broken - remove it logging.warning(f"{tile_id}: unreachable tile {remote}") def tms_google_sat(self, z, x, y):
# The MIT License (MIT) # Copyright (c) 2018 - Universidad del Cauca, <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # OR OTHER DEALINGS IN THE SOFTWARE. import paperUtils import paperSave import globalVar import os import matplotlib.pyplot as plt import numpy as np import graphUtils import sys import re import time from PIL import Image class ScientoPyClass: def __init__(self, from_gui=False): # Parameters variables self.criterion = 'authorKeywords' self.graphType = 'bar_trends' self.length = 10 self.skipFirst = 0 self.topics = '' self.startYear = globalVar.DEFAULT_START_YEAR self.endYear = globalVar.DEFAULT_END_YEAR self.savePlot = '' self.noPlot = False self.agrForGraph = False self.wordCloudMask = '' self.windowWidth = 2 self.previousResults = False self.onlyFirst = False self.graphTitle = '' self.pYear = False self.plotWidth = globalVar.DEFAULT_PLOT_WIDTH self.plotHeight = globalVar.DEFAULT_PLOT_HEIGHT self.trend = False self.yLog = False self.filter = "" self.fromGui = from_gui # Working variables self.papersDict = [] self.resultsFileName = '' self.extResultsFileName = '' self.lastPreviousResults = '' self.preprocessBriefFileName = os.path.join(globalVar.DATA_OUT_FOLDER, globalVar.PREPROCESS_LOG_FILE) self.preprocessDatasetFile = os.path.join(globalVar.DATA_OUT_FOLDER, globalVar.OUTPUT_FILE_NAME) self.topicResults = [] self.yearArray = [] self.startYearIndex = 0 self.endYearIndex = 0 def closePlot(self): plt.close() def scientoPy(self, args=''): globalVar.cancelProcess = False globalVar.progressText = "Reading dataset" globalVar.progressPer = 0 # To let progress bar open if self.fromGui: time.sleep(0.01) if args == '': args = self print("\n\nScientoPy: %s" % (globalVar.SCIENTOPY_VERSION)) print("================\n") # Check python version if sys.version_info[0] < 3: print("ERROR, you are using Python 2, Python 3.X.X required") print("") exit() # Validate window Width if args.windowWidth < 1: print("ERROR: minimum windowWidth 1") exit() # Validate start and end years if args.startYear > args.endYear: print("ERROR: startYear > endYear") exit() # Create output folders if not exist if not os.path.exists(os.path.join(globalVar.GRAPHS_OUT_FOLDER)): os.makedirs(os.path.join(globalVar.GRAPHS_OUT_FOLDER)) if not os.path.exists(os.path.join(globalVar.RESULTS_FOLDER)): os.makedirs(os.path.join(globalVar.RESULTS_FOLDER)) # Select the input file if args.previousResults: INPUT_FILE = os.path.join(globalVar.RESULTS_FOLDER, globalVar.OUTPUT_FILE_NAME) else: INPUT_FILE = os.path.join(globalVar.DATA_OUT_FOLDER, globalVar.OUTPUT_FILE_NAME) # Start the output list empty papersDictOut = [] topicList = [] loadDataSet = False if len(self.papersDict) == 0 or args.previousResults: loadDataSet = True if args.previousResults == False and self.lastPreviousResults == True: loadDataSet = True # Open the dataset only if not loaded in papersDict if loadDataSet: self.papersDict = [] self.lastPreviousResults = args.previousResults # Open the storage database and add to sel.fpapersDict if not os.path.isfile(INPUT_FILE): print("ERROR: %s file not found" % INPUT_FILE) print("Make sure that you have run the preprocess step before run scientoPy") exit() ifile = open(INPUT_FILE, "r", encoding='utf-8') print("Reading file: %s" % (INPUT_FILE)) globalVar.progressPer = 10 paperUtils.openFileToDict(ifile, self.papersDict) ifile.close() if globalVar.cancelProcess: return # If reading previous results, remove possible duplicated from multiple topics if args.previousResults: self.papersDict= paperUtils.removeDuplicates(self.papersDict) print("Scopus papers: %s" % globalVar.papersScopus) print("WoS papers: %s" % globalVar.papersWoS) print("Omitted papers: %s" % globalVar.omitedPapers) print("Total papers: %s" % len(self.papersDict)) # Create a self.yearArray self.yearArray = range(args.startYear, args.endYear + 1) yearPapers = {} for i in range(args.startYear, args.endYear + 1): yearPapers[i] = 0 # Filter papers with invalid year self.papersDict = list(filter(lambda x: x["year"].isdigit(), self.papersDict)) # Filter the papers outside the year range papersDictInside = self.papersDict.copy() papersDictInside = list(filter(lambda x: int(x["year"]) >= args.startYear, papersDictInside)) papersDictInside = list(filter(lambda x: int(x["year"]) <= args.endYear, papersDictInside)) print("Total papers in range (%s - %s): %s" % (args.startYear, args.endYear, len(papersDictInside))) # If no papers in the range exit if (len(papersDictInside) == 0): print("ERROR: no papers found in the range.") del papersDictInside return # Find the number of total papers per year for paper in papersDictInside: if int(paper["year"]) in yearPapers.keys(): yearPapers[int(paper["year"])] += 1 # Get the filter options filterSubTopic = "" if args.filter: filterSubTopic = args.filter.strip() print("Filter Sub Topic: %s" % filterSubTopic) # Parse custom topics if args.topics: print("Custom topics entered:") # Divide the topics by ; topicsFirst = args.topics.split(";") for x in topicsFirst: topicList.append(x.split(",")) # Remove beginning and ending space from topics, and empty topics for topic in topicList: for idx, item in enumerate(topic): topic[idx] = item.strip() if not topic[idx]: topic.remove(topic[idx]) if not topic: topicList.remove(topic) # Remove for each sub topic, start and end spaces for item1 in topicList: for item2 in item1: item2 = item2.strip() for topic in topicList: print(topic) # Find the top topics else: print("Finding the top topics...") globalVar.progressPer = 30 globalVar.progressText = "Finding the top topics" topicDic = {} # For each paper, get the full topicDic for paper in papersDictInside: if globalVar.cancelProcess: return # For each item in paper criteria for item in paper[args.criterion].split(";"): # Strip paper item and upper case item = item.strip() item = item.upper() # If paper item empty continue if item == "": continue # If filter sub topic, omit items outside that do not match with the subtopic if filterSubTopic != "" and len(item.split(",")) >= 2: if (item.split(",")[1].strip().upper() != filterSubTopic.upper()): continue # If topic already in topicDic if item in topicDic: topicDic[item] += 1 # If topic is not in topicDic, create this in topicDic else: topicDic[item] = 1 # If onlyFirst, only keep the firt processesing if args.onlyFirst: break # If trending analysis, the top topic list to analyse is bigger if args.trend: topicListLength = globalVar.TOP_TREND_SIZE startList = 0 else: topicListLength = args.length startList = args.skipFirst # Get the top topics by the topDic count topTopcis = sorted(topicDic.items(), key=lambda x: -x[1])[startList:(startList + topicListLength)] # Put the topTopics in topic List for topic in topTopcis: topicList.append([topic[0]]) if len(topicList) == 0: print("\nFINISHED : There is not results with your inputs criteria or filter") del papersDictInside return # print("Topic list:") # print(topicList) # Create a dictonary in self.topicResults list per element in topicList self.topicResults = [] for topics in topicList: topicItem = {} topicItem["upperName"] = topics[0].upper() # If the topic name was given as an argument, use the first one given, else keep empty to use the first one found if args.topics: topicItem["name"] = topics[0] else: topicItem["name"] = "" topicItem["allTopics"] = topics topicItem["year"] = self.yearArray topicItem["PapersCount"] = [0] * len(self.yearArray) topicItem["PapersCountAccum"] = [0] * len(self.yearArray) topicItem["PapersCountRate"] = [0] * len(self.yearArray) topicItem["PapersTotal"] = 0 topicItem["AverageDocPerYear"] = 0 # ADY topicItem["PapersInLastYears"] = 0 topicItem["PerInLastYears"] = 0 # PDLY topicItem["CitedByCount"] = [0] * len(self.yearArray) topicItem["CitedByCountAccum"] = [0] * len(self.yearArray) topicItem["CitedByTotal"] = 0 topicItem["papers"] = [] topicItem["topicsFound"] = [] topicItem["hIndex"] = 0 topicItem["agr"] = 0 # Average growth rate self.topicResults.append(topicItem) # Find papers within the arguments, and fill the self.topicResults fields per year. print("Calculating papers statistics...") globalVar.progressText = "Calculating papers statistics" papersLen = len(papersDictInside) papersCounter = 0 # For each paper for paper in papersDictInside: papersCounter += 1 progressPer = int(float(papersCounter) / float(papersLen) * 100) globalVar.progressPer = progressPer if globalVar.cancelProcess: return # For each item in paper criteria for item in paper[args.criterion].split(";"): # Strip paper item and upper item = item.strip() itemUp = item.upper() # For each topic in topic results for topicItem in self.topicResults: # for each sub topic for subTopic in topicItem["allTopics"]: # Check if the sub topic match with the paper item if args.topics and "*" in subTopic.upper(): subTopicRegex = subTopic.upper().replace("*", ".*") p = re.compile(subTopicRegex) match = p.match(itemUp) else: match = subTopic.upper() == itemUp # If match, sum it to the topicItem if match: yearIndex = topicItem["year"].index(int(paper["year"])) topicItem["PapersCount"][yearIndex] += 1 topicItem["PapersTotal"] += 1 topicItem["CitedByCount"][yearIndex] += int(paper["citedBy"]) topicItem["CitedByTotal"] += int(paper["citedBy"]) # If no name in the topicItem, put the first one that was found if topicItem["name"]
#!/usr/bin/python3 ''' Summary ------- This application derives the parameter mirror_reflection_random_angle \ (mirror roughness, also called rnda here) \ for a given set of measured D80 of individual mirrors. The mean value of the measured D80 \ in cm is required and its sigma can be given optionally but will only be used for plotting. \ The individual mirror focal length can be taken into account if a mirror list which contains \ this information is used from the :ref:`Model Parameters DB` or if a new mirror list is given \ through the argument mirror_list. Random focal lengths can be used by turning on the argument \ use_random_focal length and a new value for it can be given through the argument random_flen. The algorithm works as follow: A starting value of rnda is first defined as the one taken \ from the :ref:`Model Parameters DB` \ (or alternativelly one may want to set it using the argument rnda).\ Secondly, ray tracing simulations are performed for single mirror configurations for each \ mirror given in the mirror_list. The mean simulated D80 for all the mirrors is compared with \ the mean measured D80. A new value of rnda is then defined based on the sign of \ the difference between measured and simulated D80 and a new set of simulations \ is performed. This process repeat until the sign of the difference changes, \ meaning that the two final values of rnda brackets the optimal. These \ two values are used to find the optimal one by a linear \ interpolation. Finally, simulations are performed by using the the interpolated value \ of rnda, which is defined as the desired optimal. A option no_tunning can be used if one only wants to simulate one value of rnda and compare \ the results with the measured ones. The results of the tunning are plotted. See examples of the D80 vs rnda plot, on the left, \ and the D80 distributions, on the right. .. _deriva_rnda_plot: .. image:: images/derive_mirror_rnda_North-MST-FlashCam-D.png :width: 49 % .. image:: images/derive_mirror_rnda_North-MST-FlashCam-D_D80-distributions.png :width: 49 % Command line arguments ---------------------- telescope (str, required) Telescope name (e.g. North-LST-1, South-SST-D, ...) model_version (str, optional) Model version (default=prod4) mean_d80 (float, required) Mean of measured D80 [cm] sig_d80 (float, optional) Std dev of measured D80 [cm] rnda (float, optional) Starting value of mirror_reflection_random_angle. If not given, the value from the \ default model will be used. d80_list (file, optional) File with single column list of measured D80 [cm]. It is used only for plotting the D80 \ distributions. If given, the measured distribution will be plotted on the top of the \ simulated one. mirror_list (file, optional) Mirror list file (in sim_telarray format) to replace the default one. It should be used \ if measured mirror focal lengths need to be taken into account. use_random_flen (activation mode, optional) Use random focal lengths, instead of the measured ones. The argument random_flen can be \ used to replace the default random_focal_length from the model. random_flen (float, optional) Value to replace the default random_focal_length. Only used if use_random_flen \ is activated. test (activation mode, optional) If activated, application will be faster by simulating only few mirrors. verbosity (str, optional) Log level to print (default=INFO). Example ------- MST - Prod5 (07.2020) Runtime about 3 min. .. code-block:: console python applications/derive_mirror_rnda.py --site North --telescope MST-FlashCam-D --mean_d80 1.4 --sig_d80 0.16 --mirror_list mirror_MST_focal_lengths.dat --d80_list mirror_MST_D80.dat --rnda 0.0075 Expected output: .. code-block:: console Measured D80: Mean = 1.400 cm, StdDev = 0.160 cm Simulated D80: Mean = 1.401 cm, StdDev = 0.200 cm mirror_random_reflection_angle Previous value = 0.007500 New value = 0.006378 .. todo:: * Change default model to default (after this feature is implemented in db_handler) * Fix the setStyle. For some reason, sphinx cannot built docs with it on. ''' import logging import matplotlib.pyplot as plt import argparse import numpy as np import astropy.units as u import simtools.config as cfg import simtools.util.general as gen import simtools.io_handler as io from simtools.ray_tracing import RayTracing from simtools.model.telescope_model import TelescopeModel # from simtools.visualize import setStyle # setStyle() def plotMeasuredDistribution(file, **kwargs): data = np.loadtxt(file) ax = plt.gca() ax.hist(data, **kwargs) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '-s', '--site', help='North or South', type=str, required=True ) parser.add_argument( '-t', '--telescope', help='Telescope model name (e.g. LST-1, SST-D, ...)', type=str, required=True ) parser.add_argument( '-m', '--model_version', help='Model version (default=prod4)', type=str, default='prod4' ) parser.add_argument( '--mean_d80', help='Mean of measured D80 [cm]', type=float, required=True ) parser.add_argument( '--sig_d80', help='Std dev of measured D80 [cm]', type=float, required=False ) parser.add_argument( '--d80_list', help=( 'File with single column list of measured D80 [cm]. If given, the measured ' 'distribution will be plotted on the top of the simulated one.' ), type=str, required=False ) parser.add_argument( '--rnda', help='Starting value of mirror_reflection_random_angle', type=float, default=0. ) parser.add_argument( '--no_tunning', help='Turn off the tunning - A single case will be simulated and plotted.', action='store_true' ) parser.add_argument( '--mirror_list', help=( 'Mirror list file to replace the default one. It should be used if measured mirror' ' focal lengths need to be accounted' ), type=str, required=False ) parser.add_argument( '--use_random_flen', help=( 'Use random focal lengths. The argument random_flen can be used to replace the default' ' random_focal_length parameter.' ), action='store_true' ) parser.add_argument( '--random_flen', help='Value to replace the default random_focal_length.', type=float, required=False ) parser.add_argument( '--test', help='Test option will be faster by simulating only 10 mirrors.', action='store_true' ) parser.add_argument( '-v', '--verbosity', dest='logLevel', action='store', default='info', help='Log level to print (default is INFO).' ) args = parser.parse_args() label = 'derive_mirror_rnda' logger = logging.getLogger() logger.setLevel(gen.getLogLevelFromUser(args.logLevel)) # Output directory to save files related directly to this app outputDir = io.getApplicationOutputDirectory(cfg.get('outputLocation'), label) tel = TelescopeModel( site=args.site, telescopeModelName=args.telescope, modelVersion=args.model_version, label=label ) if args.mirror_list is not None: mirrorListFile = cfg.findFile(name=args.mirror_list) tel.changeParameter('mirror_list', args.mirror_list) tel.addParameterFile('mirror_list', mirrorListFile) if args.random_flen is not None: tel.changeParameter('random_focal_length', str(args.random_flen)) def run(rnda, plot=False): ''' Runs the simulations for one given value of rnda ''' tel.changeParameter('mirror_reflection_random_angle', str(rnda)) ray = RayTracing.fromKwargs( telescopeModel=tel, singleMirrorMode=True, mirrorNumbers=list(range(1, 10)) if args.test else 'all', useRandomFocalLength=args.use_random_flen ) ray.simulate(test=False, force=True) # force has to be True, always ray.analyze(force=True) # Plotting D80 histograms if plot: plt.figure(figsize=(8, 6), tight_layout=True) ax = plt.gca() ax.set_xlabel(r'D$_{80}$ [cm]') bins = np.linspace(0.8, 3.5, 27) ray.plotHistogram( 'd80_cm', color='r', linestyle='-', alpha=0.5, facecolor='r', edgecolor='r', bins=bins, label='simulated' ) # Only plot measured D80 if the data is given if args.d80_list is not None: d80ListFile = cfg.findFile(args.d80_list) plotMeasuredDistribution( d80ListFile, color='b', linestyle='-', facecolor='None', edgecolor='b', bins=bins, label='measured' ) ax.legend(frameon=False) plotFileName = label + '_' + tel.name + '_' + 'D80-distributions' plotFile = outputDir.joinpath(plotFileName) plt.savefig(str(plotFile) + '.pdf', format='pdf', bbox_inches='tight') plt.savefig(str(plotFile) + '.png', format='png', bbox_inches='tight') return ray.getMean('d80_cm').to(u.cm).value, ray.getStdDev('d80_cm').to(u.cm).value # First - rnda from previous model if args.rnda != 0: rndaStart = args.rnda else: rndaStart = tel.getParameter('mirror_reflection_random_angle') if isinstance(rndaStart, str): rndaStart = rndaStart.split() rndaStart = float(rndaStart[0]) if not args.no_tunning: resultsRnda = list() resultsMean = list() resultsSig = list() def collectResults(rnda, mean, sig): resultsRnda.append(rnda) resultsMean.append(mean) resultsSig.append(sig) stop = False meanD80, sigD80 = run(rndaStart) rnda = rndaStart signDelta = np.sign(meanD80 - args.mean_d80) collectResults(rnda, meanD80, sigD80) while not stop: newRnda = rnda - (0.1 * rndaStart * signDelta) meanD80, sigD80 = run(newRnda) newSignDelta = np.sign(meanD80 - args.mean_d80) stop = (newSignDelta != signDelta) signDelta = newSignDelta rnda = newRnda collectResults(rnda, meanD80, sigD80) # Linear interpolation using two last rnda values resultsRnda, resultsMean, resultsSig = gen.sortArrays(resultsRnda, resultsMean, resultsSig) rndaOpt = np.interp(x=args.mean_d80, xp=resultsMean, fp=resultsRnda) else: rndaOpt = rndaStart # Running the final simulation for rndaOpt meanD80, sigD80 = run(rndaOpt, plot=True) # Printing results to stdout print('\nMeasured D80:') if args.sig_d80 is not None: print('Mean = {:.3f} cm, StdDev = {:.3f} cm'.format(args.mean_d80, args.sig_d80)) else: print('Mean = {:.3f} cm'.format(args.mean_d80)) print('\nSimulated D80:') print('Mean = {:.3f} cm, StdDev = {:.3f} cm'.format(meanD80, sigD80)) print('\nmirror_random_reflection_angle') print('Previous value = {:.6f}'.format(rndaStart)) print('New value = {:.6f}\n'.format(rndaOpt)) # Plotting D80 vs rnda plt.figure(figsize=(8, 6), tight_layout=True) ax = plt.gca() ax.set_xlabel(r'mirror$\_$random$\_$reflection$\_$angle') ax.set_ylabel(r'$D_{80}$ [cm]') if not args.no_tunning: ax.errorbar( resultsRnda, resultsMean, yerr=resultsSig, color='k', marker='o', linestyle='none' ) ax.errorbar( [rndaOpt], [meanD80], yerr=[sigD80], color='r', marker='o', linestyle='none', label='rnda = {:.6f} (D80 = {:.3f} +/- {:.3f} cm)'.format(rndaOpt, meanD80, sigD80) ) xlim = ax.get_xlim() ax.plot(xlim, [args.mean_d80, args.mean_d80],
<gh_stars>0 import os from pathlib import Path import json as stable_json # use in case then orjson failed import orjson as json # faster import numpy as np import pandas as pd from tqdm import tqdm_notebook as tqdm import yaml from yaml import Loader as Loader import re from sklearn.metrics import ( accuracy_score, auc, roc_auc_score, precision_recall_curve, average_precision_score, f1_score, precision_score, recall_score ) from ue4nlp.ue_scores import * import logging log = logging.getLogger() default_methods = { "bald": bald, "sampled_max_prob": sampled_max_prob, "variance": probability_variance, } def unpad_preds(probs, sampled_probs, preds, labels): true_sampled_probs = [ [p.tolist() for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(sampled_probs.transpose(1, 2, 3, 0), labels[:, :]) ] true_probs = [ [p.tolist() for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(probs, labels[:, :]) ] true_predictions = [ [p for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(preds, labels[:, :]) ] true_labels = [ [l for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(preds, labels[:, :]) ] return true_sampled_probs, true_probs, true_predictions, true_labels def get_score_ratio_seq(sorted_indexes, answers, true_answers, ratio): last_index = int(len(sorted_indexes) * ratio) sel_indexes = sorted_indexes[:last_index] unsel_indexes = sorted_indexes[last_index:] sel_answers = [] for ind in sel_indexes: sel_answers.append(true_answers[ind]) for ind in unsel_indexes: sel_answers.append(answers[ind]) sel_true_answers = [] for ind in sel_indexes: sel_true_answers.append(true_answers[ind]) for ind in unsel_indexes: sel_true_answers.append(true_answers[ind]) score = sum([1.0 * (l == p) for l, p in zip(sel_answers, sel_true_answers)]) / len( sel_answers ) return score def get_score_ratio(sorted_indexes, answers, true_answers, ratio, metric=accuracy_score, drop=False): last_index = int(len(sorted_indexes) * ratio) sel_indexes = sorted_indexes[:last_index] unsel_indexes = sorted_indexes[last_index:] if drop: sel_answers = answers[unsel_indexes].tolist() sel_true_answers = true_answers[unsel_indexes].tolist() else: sel_answers = ( true_answers[sel_indexes].tolist() + answers[unsel_indexes].tolist() ) sel_true_answers = ( true_answers[sel_indexes].tolist() + true_answers[unsel_indexes].tolist() ) score = metric(sel_true_answers, sel_answers) return score def is_ue_score(name): return ("mahalanobis" in name or "nuq" in name or "mixup" in name or "ddu" in name or "disc" in name) def calc_rejection_curve_aucs( probabilities, labels, sampled_probabilities, model_answers, methods ): ratio_list = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] predictions = np.argmax(probabilities, axis=-1) errors = (labels != predictions).astype("uint8") model_ues = 1 - np.max(probabilities, axis=1) sorted_indexes_model = np.argsort(-model_ues) results = {} model_scores = [ get_score_ratio(sorted_indexes_model, model_answers, labels, ratio) for ratio in ratio_list ] results["max_prob"] = auc(ratio_list, model_scores) for name, method_function in methods.items(): ue_scores = method_function(sampled_probabilities) ensemble_answers = np.asarray(sampled_probabilities).mean(1).argmax(-1) sorted_indexes_ensemble = np.argsort(-ue_scores) if is_ue_score(name): # because for this case we have ue scores in sampled_probabilities ensemble_answers = predictions ens_scores = [ get_score_ratio(sorted_indexes_ensemble, ensemble_answers, labels, ratio) for ratio in ratio_list ] results[name] = auc(ratio_list, ens_scores) return results def calc_rejection_curve_auc_seq(probs, labels, sampled_probs, model_answers, methods, avg_type='sum'): sampled_probs, probs, predictions, labels = unpad_preds( probs, sampled_probs, np.argmax(probs, axis=-1), labels ) if methods is None: methods = default_methods ratio_list = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] errors = [1.0 * (l != p) for l, p in zip(labels, predictions)] n_examples = len(errors) ue_scores_max = np.zeros(n_examples) for i in range(n_examples): sent = probs[i] true_probs_max = np.asarray([np.max(proba) for proba in sent]) ue_scores_max[i] = np.mean(1 - true_probs_max) sorted_indexes_model = np.argsort(-ue_scores_max) results = {} model_scores = [ get_score_ratio_seq(sorted_indexes_model, predictions, labels, ratio) for ratio in ratio_list ] results["max_prob"] = auc(ratio_list, model_scores) for name, method_function in methods.items(): ensemble_answers = [ np.asarray(p).mean(-1).argmax(-1).tolist() for p in sampled_probs ] if is_ue_score(name): # because for this case we have ue scores in sampled_probabilities avg_type = 'max' ensemble_answers = predictions ue_scores = seq_ue(sampled_probs, method_function, avg_type=avg_type) sorted_indexes_ensemble = np.argsort(-ue_scores) ens_scores = [ get_score_ratio_seq( sorted_indexes_ensemble, ensemble_answers, labels, ratio ) for ratio in ratio_list ] results[name] = auc(ratio_list, ens_scores) return results def calc_roc_aucs_seq(labels, probs, sampled_probs, methods=None, avg_type='sum'): sampled_probs, probs, predictions, labels = unpad_preds( probs, sampled_probs, np.argmax(probs, axis=-1), labels ) if methods is None: methods = default_methods errors = [1.0 * (l != p) for l, p in zip(labels, predictions)] results = {} for name, method_function in methods.items(): if is_ue_score(name): avg_type = 'max' ue_scores = seq_ue(sampled_probs, method_function, avg_type=avg_type) results[name] = roc_auc_score(errors, ue_scores) n_examples = len(errors) ue_scores_max = np.zeros(n_examples) for i in range(n_examples): sent = probs[i] true_probs_max = np.asarray([np.max(proba) for proba in sent]) ue_scores_max[i] = np.mean(1 - true_probs_max) results["max_prob"] = roc_auc_score(errors, ue_scores_max) return results def calc_roc_aucs( probabilities, labels, sampled_probabilities, methods, oos=False, top3=False ): predictions = np.argmax(probabilities, axis=-1) if oos: if len(np.unique(labels)) > 40: #CLINC use class №42 as OOD errors = (labels == 42).astype("uint8") else: #SNIPS and ROSTD case errors = (labels == np.max(labels)).astype("uint8") elif top3: top3 = np.argsort(probabilities, axis=-1)[:, -3:] errors = np.array( [(l not in top3[i]) * 1 for i, l in enumerate(labels)] ).astype("uint8") else: #misclassification case errors = (labels != predictions).astype("uint8") results = {} for name, method_function in methods.items(): ue_scores = method_function(sampled_probabilities) results[name] = roc_auc_score(errors, ue_scores) max_prob = 1.0 - np.max(probabilities, axis=-1) results["max_prob"] = roc_auc_score(errors, max_prob) return results def rcc_auc(conf, risk, return_points=False): # risk-coverage curve's area under curve n = len(conf) cr_pair = list(zip(conf, risk)) cr_pair.sort(key=lambda x: x[0], reverse=True) cumulative_risk = [cr_pair[0][1]] for i in range(1, n): cumulative_risk.append(cr_pair[i][1] + cumulative_risk[-1]) points_x = [] points_y = [] auc = 0 for k in range(n): auc += cumulative_risk[k] / (1 + k) points_x.append((1 + k) / n) # coverage points_y.append(cumulative_risk[k] / (1 + k)) # current avg. risk if return_points: return auc, points_x, points_y else: return auc def calc_rcc_aucs(probabilities, labels, sampled_probabilities, methods): predictions = np.argmax(probabilities, axis=-1) risk_binary = (predictions != labels).astype(int) conf = np.max(probabilities, axis=1) results = {} for name, method_function in methods.items(): ue_scores = method_function(sampled_probabilities) results[name] = rcc_auc(-ue_scores, risk_binary) results["max_prob"] = rcc_auc(conf, risk_binary) return results def rpp(conf, risk): # reverse pair proportion # for now only works when risk is binary n = len(conf) cr_pair = list(zip(conf, risk)) cr_pair.sort(key=lambda x: x[0], reverse=False) pos_count, rp_count = 0, 0 for i in range(n): if cr_pair[i][1] == 0: # risk==0 pos_count += 1 else: rp_count += pos_count return rp_count / (n ** 2) def calc_rpp(probabilities, labels, sampled_probabilities, methods): predictions = np.argmax(probabilities, axis=-1) risk_binary = (predictions != labels).astype(int) conf = np.max(probabilities, axis=1) results = {} for name, method_function in methods.items(): ue_scores = method_function(sampled_probabilities) results[name] = rpp(-ue_scores, risk_binary) results["max_prob"] = rpp(conf, risk_binary) return results def calc_pr_aucs( answers, probabilities, eval_labels, sampled_probabilities, methods, oos ): if not oos: labels = (eval_labels != answers).astype("uint8") elif len(np.unique(eval_labels)) > 40: labels = (eval_labels == 42).astype("uint8") else: labels = (eval_labels == np.max(eval_labels)).astype("uint8") results = {} for name, method_function in methods.items(): ue_scores = method_function(sampled_probabilities) results[name] = average_precision_score(labels, ue_scores) max_prob = 1.0 - np.max(probabilities, axis=-1) results["max_prob"] = average_precision_score(labels, max_prob) return results def calc_precision( answers, probabilities, eval_labels, sampled_probabilities, methods, oos ): if not oos: labels = (eval_labels != answers).astype("uint8") elif len(np.unique(eval_labels)) > 40: labels = (eval_labels == 42).astype("uint8") else: labels = (eval_labels == np.max(eval_labels)).astype("uint8") results = {} for name, method_function in methods.items(): ue_scores = method_function(sampled_probabilities) precision, recall, thresholds = precision_recall_curve(labels, ue_scores) f1_score = 2*precision*recall/(precision+recall+1e-7) results[name] = precision[np.argmax(f1_score)] max_prob = 1.0 - np.max(probabilities, axis=-1) precision, recall, thresholds = precision_recall_curve(labels, ue_scores) f1_score = 2*precision*recall/(precision+recall+1e-7) results["max_prob"] = precision[np.argmax(f1_score)] return results def calc_recall( answers, probabilities, eval_labels, sampled_probabilities, methods, oos ): if not oos: labels = (eval_labels != answers).astype("uint8") elif len(np.unique(eval_labels)) > 40: labels = (eval_labels == 42).astype("uint8") else: labels = (eval_labels == np.max(eval_labels)).astype("uint8") results = {} for name, method_function in methods.items(): ue_scores = method_function(sampled_probabilities) precision, recall, thresholds = precision_recall_curve(labels, ue_scores) f1_score = 2*precision*recall/(precision+recall+1e-7) results[name] = recall[np.argmax(f1_score)] max_prob = 1.0 - np.max(probabilities, axis=-1) precision, recall, thresholds = precision_recall_curve(labels, ue_scores) f1_score = 2*precision*recall/(precision+recall+1e-7) results["max_prob"] = recall[np.argmax(f1_score)] return results def calc_f1_score( answers, probabilities, eval_labels, sampled_probabilities, methods, oos ): if not oos: labels = (eval_labels != answers).astype("uint8") elif len(np.unique(eval_labels)) > 40: labels = (eval_labels == 42).astype("uint8") else: labels = (eval_labels == np.max(eval_labels)).astype("uint8") results = {} for name, method_function in methods.items(): ue_scores = method_function(sampled_probabilities) precision, recall, thresholds = precision_recall_curve(labels, ue_scores) precision, recall = np.array(precision), np.array(recall) f1_score = 2*precision*recall/(precision+recall+1e-7) results[name] = np.max(f1_score) max_prob = 1.0 - np.max(probabilities, axis=-1) precision, recall, thresholds = precision_recall_curve(labels, max_prob) precision, recall = np.array(precision), np.array(recall) f1_score = 2*precision*recall/(precision+recall+1e-7) results["max_prob"] = np.max(f1_score) return results def calc_rcc_aucs_seq( probabilities, labels, sampled_probabilities, predictions, methods, avg_type='sum' ): risk_binary = [1.0 * (l != p) for l, p in zip(labels, predictions)] results = {} # all this methods are experimental, for now look only on results['rcc_auc'] for name, method_function in methods.items(): if is_ue_score(name): avg_type = 'max' ue_scores = seq_ue(sampled_probabilities,
import logging, json from threading import Thread from django.conf import settings from docker import Client from docker.errors import APIError from backend.models import Image from backend.utils import (fetch_digest_from_response, get_optimal_docker_host, remove_file_from_disk) from backend.schedule import DockerSchedulerFactory logger = logging.getLogger('hummer') class ImageBuilder(object): """ ImageBuilder is to build image. One way is to use image file directly, the other way is to use Dockerfile to build image. is_image: 0|1|2, 0 represents build file, 1 represents image file, 2 represents container snapshot. """ build_file = None is_image = 0 dockerfile = None image = None user = None def __init__(self, build_file, is_image, dockerfile, image_id, old_image_name, old_image_version): self.build_file = build_file self.is_image = is_image self.dockerfile = dockerfile self.image = Image.objects.get(id=image_id) self.user = self.image.user self.old_image_name = old_image_name self.old_image_version = old_image_version def create_image(self): """ Create image by two ways. """ target = None if self.is_image != 0: target = self._create_image_by_imagefile else: target = self._create_image_by_dockerfile creating_thread = Thread(target=target) creating_thread.start() def _create_image_by_imagefile(self): """ Create image by imagefile. """ logger.debug("creating an image by imagefile.") docker_host = get_optimal_docker_host() if not docker_host: logger.error("there is no available active docker host.") self._update_image_status(status="failed") return None # TODO: create image on docker host base_url = self._get_docker_host_base_url(docker_host) image_name = self._get_image_name() if self.is_image == 1: token = self._load_image_on_docker_host(base_url, self.build_file, image_name, self.image.version) elif self.is_image == 2: token = self._import_snapshot_on_docker_host(base_url, self.build_file, image_name, self.image.version) if not token: logger.error("Import image on docker host failed") self._update_image_status(status="failed") return None logger.info('Image %s:%s has been imported, with token %s', image_name, self.image.version, token) digest = self._push_image_to_registry(base_url, image_name, self.image.version, token) if not digest: logger.error("Push image from docker host to registry failed") self._update_image_status(status="failed") return None logger.info('Image %s:%s has been pushed to registry, with digest %s', image_name, self.image.version, digest) self._update_image_status(status="active", digest=digest, token=token) remove_file_from_disk(self.build_file) def _create_image_by_dockerfile(self): """ Create image by dockerfile, this maybe take a long time. """ logger.debug("creating an image by dockerfile.") docker_host = get_optimal_docker_host() if not docker_host: logger.error("there is no available active docker host.") self._update_image_status(status="failed") return None base_url = self._get_docker_host_base_url(docker_host) image_name = self._get_image_name() logger.debug('%s %s' % (base_url, image_name)) token = self._build_image_on_docker_host( base_url=base_url, build_file=self.build_file, dockerfile=self.dockerfile, image_name=image_name, image_version=self.image.version) if not token: logger.error("Build image on docker host failed") self._update_image_status(status="failed") return None logger.info('Image %s:%s has been builded, with token %s', image_name, self.image.version, token) digest = self._push_image_to_registry(base_url, image_name, self.image.version, token) if not digest: logger.error("Push image from docker host to registry failed") self._update_image_status(status="failed") return None logger.info('Image %s:%s has been pushed to registry, with digest %s', image_name, self.image.version, digest) self._update_image_status(status="active", digest=digest, token=token) remove_file_from_disk(self.build_file) def _update_image_status(self, status, digest=None, token=None): """ Update image metadata after building the image. """ self.image.status = status if digest: self.image.digest = digest if token: self.image.token = token self.image.save() def _get_build_docker_host(self): """ Returns the optimal docker host to build image. """ scheduler = DockerSchedulerFactory.get_scheduler() docker_host = scheduler.get_optimal_docker_host() logger.debug("select the optimal docher host %s" % docker_host) return docker_host def _get_docker_host_base_url(self, host): """ Returns the base url of docker host. """ return 'tcp://%s:%s' % (host, str(settings.DOCKER_PORT)) def _get_image_name(self): """ Returns the complete name of the build image. """ return '{}/{}/{}-{}'.format(settings.IMAGE_REGISTRY, self.user.username, self.image.project.name, self.image.name) def _load_image_on_docker_host(self, base_url, build_file, image_name, image_version='latest'): """ Import container snapshot on the selected docker host. 'base_url': the url of docker host. 'build_file': the name of the build file in absolute path. 'image_name': the name of the image, containing registry address, user name and image name. 'image_version': the version of the image. Returns: 'token': the image token """ self._delete_image_on_docker_host(base_url, self.old_image_name, self.old_image_version) self._delete_image_on_docker_host(base_url, image_name, image_version) client = Client(base_url=base_url) try: with open(build_file, 'rb') as fileobj: client.load_image(fileobj) except Exception: logger.error('load image file on docker host %s failed.' % base_url) return None return self._tag_image_with_new_name(base_url, self.old_image_name, self.old_image_version, image_name, image_version) def _import_snapshot_on_docker_host(self, base_url, build_file, image_name, image_version='latest'): """ Import container snapshot on the selected docker host. 'base_url': the url of docker host. 'build_file': the name of the build file in absolute path. 'image_name': the name of the image, containing registry address, user name and image name. 'image_version': the version of the image. Returns: 'token': the image token """ self._delete_image_on_docker_host(base_url, image_name, image_version) client = Client(base_url=base_url) try: res_json = client.import_image_from_file(build_file, image_name, image_version) res = json.loads(res_json) except Exception: logger.error('import snapshot on docker host %s failed.' % base_url) return None return res.get('status', None) def _delete_image_on_docker_host(self, base_url, image_name, image_version): """ Delete image from docker host if exists image called image_name:image_version. """ image_complete_name = '%s:%s' %(image_name, image_version) client = Client(base_url=base_url) try: client.remove_image(image=image_complete_name, force=True) except Exception: logger.info('There is no image called %s on docker host %s' % (image_complete_name, base_url)) return None logger.info('Image %s on docker host %s has been deleted.' % (image_complete_name, base_url)) def _push_image_to_registry(self, base_url, image_name, image_version, image_token): """ Push image from docker host to private registry. Returns the sha256 digest of the image. """ image_complete_name = '%s:%s' %(image_name, image_version) if not self._is_image_on_docker_host(base_url, image_token): logger.error('There is no image called %s on docker host %s' % (image_complete_name, base_url)) return None client = Client(base_url=base_url) try: response = [res for res in client.push(image_complete_name, stream=True)] except Exception: logger.error('Communicate with %s failed.' % base_url) return None try: digest = fetch_digest_from_response(response[-1]) except Exception: logger.error('Parse the digest response error.') return None return digest def _is_image_on_docker_host(self, base_url, image_token): """ Check the image whether or not on docker host. """ client = Client(base_url=base_url) try: response = client.images(quiet=True) except Exception: logger.error("Connected %s failed." % base_url) return False if image_token not in response: return False return True def _tag_image_with_new_name(self, base_url, old_image_name, old_image_version, image_name, image_version): """ Docker tag old_image_name:old_image_version image_name:image_version. """ client = Client(base_url=base_url) old_image = "{}:{}".format(old_image_name, old_image_version) try: response = client.tag(image=old_image, repository=image_name, tag=image_version) except Exception as e: logger.debug(e) response = False if not response: logger.info("Tag image {} to {}:{} failed.".format(old_image, image_name, image_version)) return None image_token = self._get_image_token_on_docker_host(base_url, image_name, image_version) self._delete_image_on_docker_host(base_url, old_image_name, old_image_version) return image_token def _get_image_token_on_docker_host(self, base_url, image_name, image_version): """ Given the image name and version, return the token of the image on the docker host. """ image_complete_name = '%s:%s' %(image_name, image_version) logger.debug(image_complete_name) client = Client(base_url=base_url) try: images = client.images() except Exception as e: logger.debug(e) logger.debug("Communicate with docker host {} failed.".format( base_url)) return None tokens = [image['Id'] for image in images if image_complete_name in image['RepoTags']] if not tokens: logger.info("The docker host {} has no image {}:{}".format(base_url, image_name, image_version)) return None return tokens[0] def _build_image_on_docker_host(self, base_url, build_file, dockerfile, image_name, image_version): """ Build image on the selected docker host by Dockerfile. 'base_url': the url of docker host. 'build_file': the name of the build file in absolute path. 'dockerfile': Dockerfile path in build_file. 'image_name': the name of the image, containing registry address, user name and image name. 'image_version': the version of the image. Returns: 'token': the image token """ self._delete_image_on_docker_host(base_url, image_name, image_version) client = Client(base_url=base_url) fileobj = open(build_file, 'rb') image_complete_name = '%s:%s' % (image_name, image_version) try: response = [line for line in client.build( fileobj=fileobj, custom_context=True, dockerfile=dockerfile, rm=True, tag=image_complete_name)] except APIError as error: logger.debug(error) logger.error('Cannot locate specified Dockerfile: %s.' % (self.dockerfile)) fileobj.close() return None except Exception as error: logger.debug(error) logger.error('Build image %s failed.' % image_complete_name) fileobj.close() return None fileobj.close() return self._get_image_token(base_url, image_complete_name) def _get_image_token(self, base_url, image_complete_name): """ """ client = Client(base_url=base_url) try: token = client.inspect_image(image_complete_name).get('Id', None) except Exception: logger.error('Can\'t get the token of image %s on docker host %s' % (image_complete_name, base_url)) return None return token class ImageDestroyer(object): """ ImageDestroyer is to destroy image instance by multiple threading. """ image = None def __init__(self, image): self.image = image def destroy_image_instance(self): deleting_thread = Thread(target=self._destroy_image_instance) deleting_thread.start() def _destroy_image_instance(self): self._update_image_status(status='deleting') # TODO: delete the image instance self._delete_image_instance_on_all_hosts() self._delete_image_metadata() def _update_image_status(self, status): self.image.status = status self.image.save() def _delete_image_metadata(self): self.image.delete() def _delete_image_instance_on_all_hosts(self): """ Delete image instance on all hosts. """ image_name = self._get_image_name() image_version = self.image.version scheduler = DockerSchedulerFactory.get_scheduler() hosts = scheduler.get_docker_hosts() for host in hosts: base_url = self._get_docker_host_base_url(host) self._delete_image_on_docker_host(base_url, image_name, image_version) def _get_image_name(self): """ Returns the complete name of the image. """ return '{}/{}/{}-{}'.format(settings.IMAGE_REGISTRY, self.image.user.username, self.image.project.name, self.image.name) def _delete_image_on_docker_host(self, base_url, image_name, image_version): """ Delete image from docker host if exists image called image_name:image_version. """ image_complete_name = '%s:%s' %(image_name, image_version) client = Client(base_url=base_url) try: client.remove_image(image=image_complete_name, force=True) except Exception: logger.info('There is no image called %s on docker host %s' % (image_complete_name, base_url)) return None logger.info('Image %s on docker host %s has been deleted.' % (image_complete_name, base_url)) def _get_docker_host_base_url(self, host): """ Returns
of 1/10 of QRS amplitude noise_amp = qrs_amp / 10 # Get R-R intervals of consecutive beats, if any. rr_intervals = np.diff(qrs_inds) rr_intervals = rr_intervals[rr_intervals < self.rr_max] if rr_intervals.any(): rr_recent = np.mean(rr_intervals) else: rr_recent = self.rr_init # If an early QRS was detected, set last_qrs_ind so that it can be # picked up. last_qrs_ind = min(0, qrs_inds[0] - self.rr_min - 1) self._set_init_params(qrs_amp_recent=qrs_amp, noise_amp_recent=noise_amp, rr_recent=rr_recent, last_qrs_ind=last_qrs_ind) self.learned_init_params = True # Failed to find enough calibration beats. Use default values. else: if self.verbose: print('Failed to find %d beats during learning.' % n_calib_beats) self._set_default_init_params() def _set_init_params(self, qrs_amp_recent, noise_amp_recent, rr_recent, last_qrs_ind): """ Set initial online parameters. Parameters ---------- qrs_amp_recent : int, float The mean of the signal QRS amplitudes. noise_amp_recent : int, float The mean of the signal noise amplitudes. rr_recent : int The mean of the signal R-R interval values. last_qrs_ind : int The index of the signal's early QRS detected. Returns ------- N/A """ self.qrs_amp_recent = qrs_amp_recent self.noise_amp_recent = noise_amp_recent # What happens if qrs_thr is calculated to be less than the explicit # min threshold? Should print warning? self.qrs_thr = max(0.25*self.qrs_amp_recent + 0.75*self.noise_amp_recent, self.qrs_thr_min * self.transform_gain) self.rr_recent = rr_recent self.last_qrs_ind = last_qrs_ind # No QRS detected initially self.last_qrs_peak_num = None def _set_default_init_params(self): """ Set initial running parameters using default values. The steady state equation is: `qrs_thr = 0.25*qrs_amp + 0.75*noise_amp` Estimate that QRS amp is 10x noise amp, giving: `qrs_thr = 0.325 * qrs_amp or 13/40 * qrs_amp` Parameters ---------- N/A Returns ------- N/A """ if self.verbose: print('Initializing using default parameters') # Multiply the specified ECG thresholds by the filter and MWI gain # factors qrs_thr_init = self.qrs_thr_init * self.transform_gain qrs_thr_min = self.qrs_thr_min * self.transform_gain qrs_amp = 27/40 * qrs_thr_init noise_amp = qrs_amp / 10 rr_recent = self.rr_init last_qrs_ind = 0 self._set_init_params(qrs_amp_recent=qrs_amp, noise_amp_recent=noise_amp, rr_recent=rr_recent, last_qrs_ind=last_qrs_ind) self.learned_init_params = False def _is_qrs(self, peak_num, backsearch=False): """ Check whether a peak is a QRS complex. It is classified as QRS if it: - Comes after the refractory period. - Passes QRS threshold. - Is not a T-wave (check it if the peak is close to the previous QRS). Parameters ---------- peak_num : int The peak number of the MWI signal to be inspected. backsearch: bool, optional Whether the peak is being inspected during backsearch. Returns ------- bool Whether the peak is QRS (True) or not (False). """ i = self.peak_inds_i[peak_num] if backsearch: qrs_thr = self.qrs_thr / 2 else: qrs_thr = self.qrs_thr if (i-self.last_qrs_ind > self.ref_period and self.sig_i[i] > qrs_thr): if i-self.last_qrs_ind < self.t_inspect_period: if self._is_twave(peak_num): return False return True return False def _update_qrs(self, peak_num, backsearch=False): """ Update live QRS parameters. Adjust the recent R-R intervals and QRS amplitudes, and the QRS threshold. Parameters ---------- peak_num : int The peak number of the MWI signal where the QRS is detected. backsearch: bool, optional Whether the QRS was found via backsearch. Returns ------- N/A """ i = self.peak_inds_i[peak_num] # Update recent R-R interval if the beat is consecutive (do this # before updating self.last_qrs_ind) rr_new = i - self.last_qrs_ind if rr_new < self.rr_max: self.rr_recent = 0.875*self.rr_recent + 0.125*rr_new self.qrs_inds.append(i) self.last_qrs_ind = i # Peak number corresponding to last QRS self.last_qrs_peak_num = self.peak_num # QRS recent amplitude is adjusted twice as quickly if the peak # was found via backsearch if backsearch: self.backsearch_qrs_inds.append(i) self.qrs_amp_recent = (0.75*self.qrs_amp_recent + 0.25*self.sig_i[i]) else: self.qrs_amp_recent = (0.875*self.qrs_amp_recent + 0.125*self.sig_i[i]) self.qrs_thr = max((0.25*self.qrs_amp_recent + 0.75*self.noise_amp_recent), self.qrs_thr_min) return def _is_twave(self, peak_num): """ Check whether a segment is a T-wave. Compare the maximum gradient of the filtered signal segment with that of the previous QRS segment. Parameters ---------- peak_num : int The peak number of the MWI signal where the QRS is detected. Returns ------- bool Whether a segment is a T-wave (True) or not (False). """ i = self.peak_inds_i[peak_num] # Due to initialization parameters, last_qrs_ind may be negative. # No way to check in this instance. if self.last_qrs_ind - self.qrs_radius < 0: return False # Get half the QRS width of the signal to the left. # Should this be squared? sig_segment = normalize((self.sig_f[i - self.qrs_radius:i] ).reshape(-1, 1), axis=0) last_qrs_segment = self.sig_f[self.last_qrs_ind - self.qrs_radius: self.last_qrs_ind] segment_slope = np.diff(sig_segment) last_qrs_slope = np.diff(last_qrs_segment) # Should we be using absolute values? if max(segment_slope) < 0.5*max(abs(last_qrs_slope)): return True else: return False def _update_noise(self, peak_num): """ Update live noise parameters. Parameters ---------- peak_num : int The peak number. Returns ------- N/A """ i = self.peak_inds_i[peak_num] self.noise_amp_recent = (0.875*self.noise_amp_recent + 0.125*self.sig_i[i]) return def _require_backsearch(self): """ Determine whether a backsearch should be performed on prior peaks. Parameters ---------- N/A Returns ------- bool Whether to require backsearch (True) or not (False). """ if self.peak_num == self.n_peaks_i-1: # If we just return false, we may miss a chance to backsearch. # Update this? return False next_peak_ind = self.peak_inds_i[self.peak_num + 1] if next_peak_ind-self.last_qrs_ind > self.rr_recent*1.66: return True else: return False def _backsearch(self): """ Inspect previous peaks from the last detected QRS peak (if any), using a lower threshold. Parameters ---------- N/A Returns ------- N/A """ if self.last_qrs_peak_num is not None: for peak_num in range(self.last_qrs_peak_num + 1, self.peak_num + 1): if self._is_qrs(peak_num=peak_num, backsearch=True): self._update_qrs(peak_num=peak_num, backsearch=True) # No need to update noise parameters if it was classified as # noise. It would have already been updated. def _run_detection(self): """ Run the QRS detection after all signals and parameters have been configured and set. Parameters ---------- N/A Returns ------- N/A """ if self.verbose: print('Running QRS detection...') # Detected QRS indices self.qrs_inds = [] # QRS indices found via backsearch self.backsearch_qrs_inds = [] # Iterate through MWI signal peak indices for self.peak_num in range(self.n_peaks_i): if self._is_qrs(self.peak_num): self._update_qrs(self.peak_num) else: self._update_noise(self.peak_num) # Before continuing to the next peak, do backsearch if # necessary if self._require_backsearch(): self._backsearch() # Detected indices are relative to starting sample if self.qrs_inds: self.qrs_inds = np.array(self.qrs_inds) + self.sampfrom else: self.qrs_inds = np.array(self.qrs_inds) if self.verbose: print('QRS detection complete.') def detect(self, sampfrom=0, sampto='end', learn=True, verbose=True): """ Detect QRS locations between two samples. Parameters ---------- sampfrom : int, optional The starting sample number to run the detection on. sampto : int, optional The final sample number to run the detection on. Set as 'end' to run on the entire signal. learn : bool, optional Whether to apply learning on the signal before running the main detection. If learning fails or is not conducted, the default configuration parameters will be used to initialize these variables. See the `XQRS._learn_init_params` docstring for details. verbose : bool, optional Whether to display the stages and outcomes of the detection process. Returns ------- N/A """ if sampfrom < 0: raise ValueError("'sampfrom' cannot be negative") self.sampfrom = sampfrom if sampto == 'end': sampto = self.sig_len elif sampto > self.sig_len: raise ValueError("'sampto' cannot exceed the signal length") self.sampto = sampto self.verbose = verbose # Don't attempt to run on a flat signal if np.max(self.sig) == np.min(self.sig): self.qrs_inds = np.empty(0) if self.verbose: print('Flat signal. Detection skipped.') return # Get/set signal configuration fields from Conf object self._set_conf() # Bandpass filter the signal self._bandpass() # Compute moving wave integration of filtered signal self._mwi() # Initialize the running parameters if learn: self._learn_init_params() else: self._set_default_init_params() # Run the detection self._run_detection() def xqrs_detect(sig, fs, sampfrom=0, sampto='end', conf=None, learn=True, verbose=True): """ Run the 'xqrs' QRS detection algorithm on a signal. See the docstring of the XQRS class for algorithm details. Parameters ---------- sig : ndarray The input ECG signal to apply the QRS detection on. fs : int, float The sampling frequency of the input signal. sampfrom : int, optional The starting sample number to run the detection on. sampto : str The final sample number to run the detection on. Set as 'end' to run on the entire signal. conf : XQRS.Conf object, optional The configuration object specifying signal configuration parameters. See the docstring of the XQRS.Conf class. learn : bool, optional Whether to apply learning on the signal before running the main
r""" Spheres smoothly embedded in Euclidean Space Let `E^{n+1}` be a Euclidean space of dimension `n+1` and `c \in E^{n+1}`. An `n`-sphere with radius `r` and centered at `c`, usually denoted by `\mathbb{S}^n_r(c)`, smoothly embedded in the Euclidean space `E^{n+1}` is an `n`-dimensional smooth manifold together with a smooth embedding .. MATH:: \iota \colon \mathbb{S}^n_r \to E^{n+1} whose image consists of all points having the same Euclidean distance to the fixed point `c`. If we choose Cartesian coordinates `(x_1, \ldots, x_{n+1})` on `E^{n+1}` with `x(c)=0` then the above translates to .. MATH:: \iota(\mathbb{S}^n_r(c)) = \left\{ p \in E^{n+1} : \lVert x(p) \rVert = r \right\}. This corresponds to the standard `n`-sphere of radius `r` centered at `c`. AUTHORS: - <NAME> (2020): initial version REFERENCES: - \<NAME>: *Geometry I&II* [Ber1987]_, [Ber1987a]_ - \<NAME>: *Introduction to Smooth Manifolds* [Lee2013]_ EXAMPLES: We start by defining a 2-sphere of unspecified radius `r`:: sage: r = var('r') sage: S2_r = manifolds.Sphere(2, radius=r); S2_r 2-sphere S^2_r of radius r smoothly embedded in the Euclidean space E^3 The embedding `\iota` is constructed from scratch and can be returned by the following command:: sage: i = S2_r.embedding(); i Differentiable map iota from the 2-sphere S^2_r of radius r smoothly embedded in the Euclidean space E^3 to the Euclidean space E^3 sage: i.display() iota: S^2_r --> E^3 on A: (theta, phi) |--> (x, y, z) = (r*cos(phi)*sin(theta), r*sin(phi)*sin(theta), r*cos(theta)) As a submanifold of a Riemannian manifold, namely the Euclidean space, the 2-sphere admits an induced metric:: sage: h = S2_r.induced_metric() sage: h.display() gamma = r^2 dtheta*dtheta + r^2*sin(theta)^2 dphi*dphi The induced metric is also known as the *first fundamental form* (see :meth:`~sage.manifolds.differentiable.pseudo_riemannian_submanifold.PseudoRiemannianSubmanifold.first_fundamental_form`):: sage: h is S2_r.first_fundamental_form() True The *second fundamental form* encodes the extrinsic curvature of the 2-sphere as hypersurface of Euclidean space (see :meth:`~sage.manifolds.differentiable.pseudo_riemannian_submanifold.PseudoRiemannianSubmanifold.second_fundamental_form`):: sage: K = S2_r.second_fundamental_form(); K Field of symmetric bilinear forms K on the 2-sphere S^2_r of radius r smoothly embedded in the Euclidean space E^3 sage: K.display() K = r dtheta*dtheta + r*sin(theta)^2 dphi*dphi One quantity that can be derived from the second fundamental form is the Gaussian curvature:: sage: K = S2_r.gauss_curvature() sage: K.display() S^2_r --> R on A: (theta, phi) |--> r^(-2) As we have seen, spherical coordinates are initialized by default. To initialize stereographic coordinates retrospectively, we can use the following command:: sage: S2_r.stereographic_coordinates() Chart (S^2_r-{NP}, (y1, y2)) To get all charts corresponding to stereographic coordinates, we can use the :meth:`~sage.manifolds.differentiable.examples.sphere.Sphere.coordinate_charts`:: sage: stereoN, stereoS = S2_r.coordinate_charts('stereographic') sage: stereoN, stereoS (Chart (S^2_r-{NP}, (y1, y2)), Chart (S^2_r-{SP}, (yp1, yp2))) .. SEEALSO:: See :meth:`~sage.manifolds.differentiable.examples.sphere.Sphere.stereographic_coordinates` and :meth:`~sage.manifolds.differentiable.examples.sphere.Sphere.spherical_coordinates` for details. .. NOTE:: Notice that the derived quantities such as the embedding as well as the first and second fundamental forms must be computed from scratch again when new coordinates have been initialized. That makes the usage of previously declared objects obsolete. Consider now a 1-sphere with barycenter `(1,0)` in Cartesian coordinates:: sage: E2 = EuclideanSpace(2) sage: c = E2.point((1,0), name='c') sage: S1c.<chi> = E2.sphere(center=c); S1c 1-sphere S^1(c) of radius 1 smoothly embedded in the Euclidean plane E^2 centered at the Point c sage: S1c.spherical_coordinates() Chart (A, (chi,)) Get stereographic coordinates:: sage: stereoN, stereoS = S1c.coordinate_charts('stereographic') sage: stereoN, stereoS (Chart (S^1(c)-{NP}, (y1,)), Chart (S^1(c)-{SP}, (yp1,))) The embedding takes now the following form in all coordinates:: sage: S1c.embedding().display() iota: S^1(c) --> E^2 on A: chi |--> (x, y) = (cos(chi) + 1, sin(chi)) on S^1(c)-{NP}: y1 |--> (x, y) = (2*y1/(y1^2 + 1) + 1, (y1^2 - 1)/(y1^2 + 1)) on S^1(c)-{SP}: yp1 |--> (x, y) = (2*yp1/(yp1^2 + 1) + 1, -(yp1^2 - 1)/(yp1^2 + 1)) Since the sphere is a hypersurface, we can get a normal vector field by using ``normal``:: sage: n = S1c.normal(); n Vector field n along the 1-sphere S^1(c) of radius 1 smoothly embedded in the Euclidean plane E^2 centered at the Point c with values on the Euclidean plane E^2 sage: n.display() n = -cos(chi) e_x - sin(chi) e_y Notice that this is just *one* normal field with arbitrary direction, in this particular case `n` points inwards whereas `-n` points outwards. However, the vector field `n` is indeed non-vanishing and hence the sphere admits an orientation (as all spheres do):: sage: orient = S1c.orientation(); orient [Coordinate frame (S^1(c)-{SP}, (d/dyp1)), Vector frame (S^1(c)-{NP}, (f_1))] sage: f = orient[1] sage: f[1].display() f_1 = -d/dy1 Notice that the orientation is chosen is such a way that `(\iota_*(f_1), -n)` is oriented in the ambient Euclidean space, i.e. the last entry is the normal vector field pointing outwards. Henceforth, the manifold admits a volume form:: sage: h = S1c.induced_metric() sage: h.display() gamma = dchi*dchi sage: eps = h.volume_form() sage: eps.display() eps_gamma = -dchi """ from sage.manifolds.differentiable.pseudo_riemannian_submanifold import \ PseudoRiemannianSubmanifold from sage.categories.metric_spaces import MetricSpaces from sage.categories.manifolds import Manifolds from sage.categories.topological_spaces import TopologicalSpaces from sage.rings.real_mpfr import RR from sage.manifolds.differentiable.examples.euclidean import EuclideanSpace class Sphere(PseudoRiemannianSubmanifold): r""" Sphere smoothly embedded in Euclidean Space. An `n`-sphere of radius `r`smoothly embedded in a Euclidean space `E^{n+1}` is a smooth `n`-dimensional manifold smoothly embedded into `E^{n+1}`, such that the embedding constitutes a standard `n`-sphere of radius `r` in that Euclidean space (possibly shifted by a point). - ``n`` -- positive integer representing dimension of the sphere - ``radius`` -- (default: ``1``) positive number that states the radius of the sphere - ``name`` -- (default: ``None``) string; name (symbol) given to the sphere; if ``None``, the name will be set according to the input (see convention above) - ``ambient_space`` -- (default: ``None``) Euclidean space in which the sphere should be embedded; if ``None``, a new instance of Euclidean space is created - ``center`` -- (default: ``None``) the barycenter of the sphere as point of the ambient Euclidean space; if ``None`` the barycenter is set to the origin of the ambient space's standard Cartesian coordinates - ``latex_name`` -- (default: ``None``) string; LaTeX symbol to denote the space; if ``None``, it will be set according to the input (see convention above) - ``coordinates`` -- (default: ``'spherical'``) string describing the type of coordinates to be initialized at the sphere's creation; allowed values are - ``'spherical'`` spherical coordinates (see :meth:`~sage.manifolds.differentiable.examples.sphere.Sphere.spherical_coordinates`)) - ``'stereographic'`` stereographic coordinates given by the stereographic projection (see :meth:`~sage.manifolds.differentiable.examples.sphere.Sphere.stereographic_coordinates`) - ``names`` -- (default: ``None``) must be a tuple containing the coordinate symbols (this guarantees the shortcut operator ``<,>`` to function); if ``None``, the usual conventions are used (see examples below for details) - ``unique_tag`` -- (default: ``None``) tag used to force the construction of a new object when all the other arguments have been used previously (without ``unique_tag``, the :class:`~sage.structure.unique_representation.UniqueRepresentation` behavior inherited from :class:`~sage.manifolds.differentiable.pseudo_riemannian.PseudoRiemannianManifold` would return the previously constructed object corresponding to these arguments) EXAMPLES: A 2-sphere embedded in Euclidean space:: sage: S2 = manifolds.Sphere(2); S2 2-sphere S^2 of radius 1 smoothly embedded in the Euclidean space E^3 sage: latex(S2) \mathbb{S}^{2} The ambient Euclidean space is constructed incidentally:: sage: S2.ambient() Euclidean space E^3 Another call creates another sphere and hence another Euclidean space:: sage: S2 is manifolds.Sphere(2) False sage: S2.ambient() is manifolds.Sphere(2).ambient() False By default, the barycenter is set to the coordinate origin of the standard Cartesian coordinates in the ambient Euclidean space:: sage: c = S2.center(); c Point on the Euclidean space E^3 sage: c.coord() (0, 0, 0) Each `n`-sphere is a compact manifold and a complete metric space:: sage: S2.category() Join of Category of compact topological spaces and Category of smooth manifolds over Real Field with 53 bits of precision and Category of connected manifolds over Real Field with 53 bits of precision and Category of complete metric spaces If not stated otherwise, each `n`-sphere is automatically endowed with spherical coordinates:: sage: S2.atlas() [Chart (A, (theta, phi))] sage: S2.default_chart() Chart (A, (theta, phi)) sage: spher = S2.spherical_coordinates() sage: spher is S2.default_chart() True Notice that the spherical coordinates do not cover the whole sphere. To cover the entire sphere with charts, use stereographic coordinates instead:: sage: stereoN, stereoS = S2.coordinate_charts('stereographic') sage: stereoN, stereoS (Chart (S^2-{NP}, (y1, y2)), Chart (S^2-{SP}, (yp1, yp2))) sage: list(S2.open_covers()) [Set {S^2} of open subsets of the 2-sphere S^2 of radius 1 smoothly embedded in the Euclidean space E^3, Set {S^2-{NP}, S^2-{SP}} of open subsets of the 2-sphere S^2 of
# -*- coding: utf-8 -*- """Utility functions for manipulating data """ # Author: <NAME> <<EMAIL>> # Author: <NAME> <<EMAIL>> # License: BSD 2 clause from __future__ import division from __future__ import print_function from warnings import warn import numpy as np from sklearn.datasets import make_blobs from sklearn.metrics import roc_auc_score from sklearn.model_selection import train_test_split from sklearn.utils import check_X_y from sklearn.utils import check_consistent_length from sklearn.utils import check_random_state from sklearn.utils import column_or_1d from .utility import check_parameter from .utility import precision_n_scores MAX_INT = np.iinfo(np.int32).max def _generate_data(n_inliers, n_outliers, n_features, coef, offset, random_state): """Internal function to generate data samples. Parameters ---------- n_inliers : int The number of inliers. n_outliers : int The number of outliers. n_features : int The number of features (dimensions). coef : float in range [0,1)+0.001 The coefficient of data generation. offset : int Adjust the value range of Gaussian and Uniform. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : numpy array of shape (n_train, n_features) Data. y : numpy array of shape (n_train,) Ground truth. """ inliers = coef * random_state.randn(n_inliers, n_features) + offset outliers = random_state.uniform(low=-1 * offset, high=offset, size=(n_outliers, n_features)) X = np.r_[inliers, outliers] y = np.r_[np.zeros((n_inliers,)), np.ones((n_outliers,))] return X, y def get_outliers_inliers(X, y): """Internal method to separate inliers from outliers. Parameters ---------- X : numpy array of shape (n_samples, n_features) The input samples y : list or array of shape (n_samples,) The ground truth of input samples. Returns ------- X_outliers : numpy array of shape (n_samples, n_features) Outliers. X_inliers : numpy array of shape (n_samples, n_features) Inliers. """ X_outliers = X[np.where(y == 1)] X_inliers = X[np.where(y == 0)] return X_outliers, X_inliers def generate_data(n_train=1000, n_test=500, n_features=2, contamination=0.1, train_only=False, offset=10, behaviour='old', random_state=None): """Utility function to generate synthesized data. Normal data is generated by a multivariate Gaussian distribution and outliers are generated by a uniform distribution. Parameters ---------- n_train : int, (default=1000) The number of training points to generate. n_test : int, (default=500) The number of test points to generate. n_features : int, optional (default=2) The number of features (dimensions). contamination : float in (0., 0.5), optional (default=0.1) The amount of contamination of the data set, i.e. the proportion of outliers in the data set. Used when fitting to define the threshold on the decision function. train_only : bool, optional (default=False) If true, generate train data only. offset : int, optional (default=10) Adjust the value range of Gaussian and Uniform. behaviour : str, default='old' Behaviour of the returned datasets which can be either 'old' or 'new'. Passing ``behaviour='new'`` returns "X_train, y_train, X_test, y_test", while passing ``behaviour='old'`` returns "X_train, X_test, y_train, y_test". .. versionadded:: 0.7.0 ``behaviour`` is added in 0.7.0 for back-compatibility purpose. .. deprecated:: 0.7.0 ``behaviour='old'`` is deprecated in 0.20 and will not be possible in 0.7.2. .. deprecated:: 0.7.2. ``behaviour`` parameter will be deprecated in 0.7.2 and removed in 0.7.4. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X_train : numpy array of shape (n_train, n_features) Training data. y_train : numpy array of shape (n_train,) Training ground truth. X_test : numpy array of shape (n_test, n_features) Test data. y_test : numpy array of shape (n_test,) Test ground truth. """ # initialize a random state and seeds for the instance random_state = check_random_state(random_state) offset_ = random_state.randint(low=offset) coef_ = random_state.random_sample() + 0.001 # in case of underflow n_outliers_train = int(n_train * contamination) n_inliers_train = int(n_train - n_outliers_train) X_train, y_train = _generate_data(n_inliers_train, n_outliers_train, n_features, coef_, offset_, random_state) if train_only: return X_train, y_train n_outliers_test = int(n_test * contamination) n_inliers_test = int(n_test - n_outliers_test) X_test, y_test = _generate_data(n_inliers_test, n_outliers_test, n_features, coef_, offset_, random_state) if behaviour == 'old': warn('behaviour="old" is deprecated and will be removed ' 'in version 0.7.2. Please use behaviour="new", which ' 'makes the returned datasets in the order of ' 'X_train, X_test, y_train, y_test.', FutureWarning) return X_train, y_train, X_test, y_test else: return X_train, X_test, y_train, y_test def generate_contextual_data(n_train=1000, n_test=500, n_features=2, n_contexts=2, contamination=0.1, train_only=False, offset=10, random_state=None): assert n_train % n_contexts == 0, f"Cannot create {n_train} points with {n_contexts} contexts." assert n_test % n_contexts == 0, f"Cannot create {n_test} points with {n_contexts} contexts." # initialize a random state and seeds for the instance random_state = check_random_state(random_state) coefs_ = random_state.random_sample(n_contexts) + 0.001 # in case of underflow offsets_ = random_state.choice(np.arange(offset), n_contexts, replace=False) n_outliers_train = int(n_train * contamination / n_contexts) n_inliers_train = int((n_train / n_contexts) - n_outliers_train) n_outliers_test = int(n_test * contamination / n_contexts) n_inliers_test = int((n_test / n_contexts) - n_outliers_test) X_train, y_train, c_train, X_test, y_test, c_test = [[], [], [], [], [], []] for i in range(n_contexts): Xtrain, ytrain = _generate_data(n_inliers_train, n_outliers_train, n_features, coefs_[i], offsets_[i], random_state) Xtest, ytest = _generate_data(n_inliers_test, n_outliers_test, n_features, coefs_[i], offsets_[i], random_state) X_train.append(np.c_[np.full(n_inliers_train + n_outliers_train, i), Xtrain]) y_train.append(ytrain) X_test.append(np.c_[np.full(n_inliers_test + n_outliers_test, i), Xtest]) y_test.append(ytest) X_train = np.concatenate(X_train) y_train = np.concatenate(y_train) X_test = np.concatenate(X_test) y_test = np.concatenate(y_test) if train_only: return X_train, y_train return X_train, X_test, y_train, y_test def get_color_codes(y): """Internal function to generate color codes for inliers and outliers. Inliers (0): blue; Outlier (1): red. Parameters ---------- y : list or numpy array of shape (n_samples,) The ground truth. Binary (0: inliers, 1: outliers). Returns ------- c : numpy array of shape (n_samples,) Color codes. """ y = column_or_1d(y) # inliers are assigned blue c = np.full([len(y)], 'b', dtype=str) outliers_ind = np.where(y == 1) # outlier are assigned red c[outliers_ind] = 'r' return c def check_consistent_shape(X_train, y_train, X_test, y_test, y_train_pred, y_test_pred): """Internal shape to check input data shapes are consistent. Parameters ---------- X_train : numpy array of shape (n_samples, n_features) The training samples. y_train : list or array of shape (n_samples,) The ground truth of training samples. X_test : numpy array of shape (n_samples, n_features) The test samples. y_test : list or array of shape (n_samples,) The ground truth of test samples. y_train_pred : numpy array of shape (n_samples, n_features) The predicted binary labels of the training samples. y_test_pred : numpy array of shape (n_samples, n_features) The predicted binary labels of the test samples. Returns ------- X_train : numpy array of shape (n_samples, n_features) The training samples. y_train : list or array of shape (n_samples,) The ground truth of training samples. X_test : numpy array of shape (n_samples, n_features) The test samples. y_test : list or array of shape (n_samples,) The ground truth of test samples. y_train_pred : numpy array of shape (n_samples, n_features) The predicted binary labels of the training samples. y_test_pred : numpy array of shape (n_samples, n_features) The predicted binary labels of the test samples. """ # check input data shapes are consistent X_train, y_train = check_X_y(X_train, y_train) X_test, y_test = check_X_y(X_test, y_test) y_test_pred = column_or_1d(y_test_pred) y_train_pred = column_or_1d(y_train_pred) check_consistent_length(y_train, y_train_pred) check_consistent_length(y_test, y_test_pred) if X_train.shape[1] != X_test.shape[1]: raise ValueError("X_train {0} and X_test {1} have different number " "of features.".format(X_train.shape, X_test.shape)) return X_train, y_train, X_test, y_test, y_train_pred, y_test_pred def evaluate_print(clf_name, y, y_pred): """Utility function for evaluating and printing the results for examples. Default metrics include ROC and Precision @ n Parameters ---------- clf_name : str The name of the detector. y : list or numpy array of shape (n_samples,) The ground truth. Binary (0: inliers, 1: outliers). y_pred : list or numpy array of shape (n_samples,) The raw outlier scores as returned by a fitted model. """ y = column_or_1d(y) y_pred = column_or_1d(y_pred) check_consistent_length(y, y_pred) print('{clf_name} ROC:{roc}, precision @ rank n:{prn}'.format( clf_name=clf_name, roc=np.round(roc_auc_score(y, y_pred), decimals=4), prn=np.round(precision_n_scores(y, y_pred), decimals=4))) def generate_data_clusters(n_train=1000, n_test=500, n_clusters=2, n_features=2, contamination=0.1, size='same', density='same', dist=0.25, random_state=None, return_in_clusters=False): """Utility function to generate synthesized data in clusters. Generated data can involve the low density pattern problem and global outliers which are considered as difficult tasks for outliers detection algorithms. Parameters ---------- n_train : int, (default=1000)
""" Process results This script process results for the final report of SCOOP """ # ============================================================================== # Imports # ============================================================================== import pandas as pd from matplotlib import pyplot as plt from matplotlib import rc rc("font", **{"family": "serif", "serif": ["Times"]}) rc("text", usetex=True) from glob import glob import re # ============================================================================== # Constants # ============================================================================== ddir_lst = ["data/eu4dpfmix_mpr0.csv", "data/eu4dpfmix.csv"] # ============================================================================== # Functions # ============================================================================== def column_generator(data_frame): """ Create supplementary columns """ str_splt = data_frame["Cycle"].split("-") veh_id = int(str_splt[0]) mpr = float(str_splt[2].split("_")[0]) flow = float(str_splt[3].split("_")[0]) distance = int(str_splt[4].split(".dri")[0]) return pd.Series([veh_id, mpr, flow, distance]) def create_columns(data_frame, function): """ Apply function to dataframe """ fields = ["veh_id", "mpr", "flow", "distance"] data_frame[fields] = data_frame.apply(function, axis=1) return data_frame def refer_to_mpr(data_frame, field, new_field): """ Refer to MPR 0 % """ # Create reference data_frame reference = data_frame[data_frame["mpr"].eq(0)] reference = pd.concat([reference] * 5).reset_index() reference = reference.drop("index", axis=1) # Compute difference diff_df = reference[field] - data_frame[field] # diff_df = diff_df.reset_index() data_frame[new_field] = (diff_df.divide(reference[field])) * 100 # Round for results data_frame = data_frame.round(3) return data_frame def plot_var( data_frame, x_var="flow", y_var="CO_TP", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label="CO2 %", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, x_size=5, y_size=7.5, transpose=False, ): """ Plot variables """ pivoter = data_frame[pivot].unique() N = len(pivoter) if transpose: n, m = 1, N else: m, n = 1, N fig, axes = plt.subplots(m, n, figsize=(x_size * N, y_size), sharey=True) for pvt, ax in zip(pivoter, axes): flt = data_frame[pivot].eq(pvt) df = data_frame[flt] df.pivot_table( index=x_var, columns=label_var, values=y_var, aggfunc="mean" ).plot(kind="bar", ax=ax, grid=True) ax.set_xlabel(x_label, fontdict=fnt_size) ax.set_ylabel(y_label, fontdict=fnt_size) ax.set_title(t_label + str(pvt), fontdict=fnt_size) ax.legend(legends) return fig, axes def plot_co2perc(data_frame): """ Create Dataframe CO2 % Data vs flow """ figco2, axco2 = plot_var( data_frame=data_frame, x_var="flow", y_var="CO2 %", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label=r"Change in CO$_2$ [\%]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figco2, axco2 def plot_co2(data_frame): """ Create Dataframe CO2 consumption vs flow """ figco2, axco2 = plot_var( data_frame=data_frame, x_var="flow", y_var="CO2_TP", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label="CO$_2$ [g/km]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) for ax in axco2: ax.set(ylim=(120, 160)) return figco2, axco2 def plot_ttt(data_frame): """ Plot absolute Total Travel Time vs flow """ figtt, axtt = plot_var( data_frame=data_frame, x_var="flow", y_var="totalTT", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label="Total Travel Time [s]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_tttprc(data_frame): """ Plot Change Total Travel Time % vs flow """ figtt, axtt = plot_var( data_frame=data_frame, x_var="flow", y_var="totTT %", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label=r"Change in Total TT [\%]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_tttd(data_frame): """ Plot Absolute Total Travel Time vs distance """ figtt, axtt = plot_var( data_frame=data_frame, x_var="distance", y_var="totalTT", label_var="mpr", pivot="flow", x_label="Distance [m]", y_label="Total Travel Time [s]", t_label="Flow [veh/h]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_tttdprc(data_frame): """ Plot Change Total Travel Time % vs distance """ figtt, axtt = plot_var( data_frame=data_frame, x_var="distance", y_var="totTT %", label_var="mpr", pivot="flow", x_label="Distance [m]", y_label=r"Change in Total TT [\%]", t_label="Flow [veh/h]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_mtt(data_frame): """ Plot absolute Avg Travel Time vs flow """ figtt, axtt = plot_var( data_frame=data_frame, x_var="flow", y_var="meanTT", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label="Avg. Travel Time [s]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_mttperc(data_frame): """ Plot Change Avg Travel Time % vs flow """ figtt, axtt = plot_var( data_frame=data_frame, x_var="flow", y_var="avgTT %", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label=r"Change in Avg. TT [\%]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_mttd(data_frame): """ Plot Absolute Total Travel Time vs distance """ figtt, axtt = plot_var( data_frame=data_frame, x_var="distance", y_var="meanTT", label_var="mpr", pivot="flow", x_label="Distance [m]", y_label="Average Travel Time [s]", t_label="Flow [veh/h]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_mttdprc(data_frame): """ Plot Change Total Travel Time % vs distance """ figtt, axtt = plot_var( data_frame=data_frame, x_var="distance", y_var="avgTT %", label_var="mpr", pivot="flow", x_label="Distance [m]", y_label=r"Change in Avg. TT [\%]", t_label="Flow [veh/h]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_ttc(data_frame): """ Plot time to Colission vs flow """ figtt, axtt = plot_var( data_frame=data_frame, x_var="flow", y_var="timetC", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label="Time To Collision [s]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_ttcprc(data_frame): """ Plot Change Total Travel Time % vs flow """ figtt, axtt = plot_var( data_frame=data_frame, x_var="flow", y_var="timeTC %", label_var="mpr", pivot="distance", x_label="Flow [veh/m]", y_label=r"Change in Time to Collision [\%]", t_label="Distance [m]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_ttcd(data_frame): """ Plot Absolute Total Travel Time vs distance """ figtt, axtt = plot_var( data_frame=data_frame, x_var="distance", y_var="timetC", label_var="mpr", pivot="flow", x_label="Distance [m]", y_label="Time To Collision [s]", t_label="Flow [veh/h]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_ttcdprc(data_frame): """ Plot Change Total Travel Time % vs distance """ figtt, axtt = plot_var( data_frame=data_frame, x_var="distance", y_var="timeTC %", label_var="mpr", pivot="flow", x_label="Distance [m]", y_label=r"Change in Time to Collision [\%]", t_label="Flow [veh/h]: ", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, ) return figtt, axtt def plot_hwy(data_frame): """ Plot spacing vs time """ fighwy, axhwy = plot_var( data_frame=data_frame, x_var="time", y_var="hwy", label_var="mpr", pivot="flow", x_label=" Time [hh:mm]", y_label="Headway space [m]", t_label="Flow [veh/h]", legends=[r"0 \%", r"10 \%", r"20 \%", r"30 \%", r"40 \%"], fnt_size={"fontsize": 16}, x_size=7.5, transpose=True, ) return fighwy, axhwy # ============================================================================== # Processing # ============================================================================== # CO2 # ============================================================================== # Import csv files dflst = [pd.read_csv(file) for file in ddir_lst] fltstr = "PC_EU4_D_DPFMix_HBEFA41.gen" dflst = [df[df["Input File"].eq(fltstr)] for df in dflst] # Combine data + column selection sel_cols = ["Input File", "Cycle", "CO2_TP"] co2_df = pd.concat([x.filter(items=sel_cols) for x in dflst]) co2_df = co2_df.reset_index() # Create supplementary columns co2_df = create_columns(co2_df, column_generator) co2_df = co2_df.filter(items=["CO2_TP", "veh_id", "mpr", "flow", "distance"]) # Replace values co2_df["mpr"] = co2_df["mpr"] * 100 # Flow co2_df["flow"] = co2_df["flow"] * 2880 # Refer data to MPR 0% co2prc_df = refer_to_mpr(co2_df, "CO2_TP", "CO2 %") # Plot CO 2 % vs Flow figco2, axco2 = plot_co2(co2prc_df) plt.savefig("data/img/summary/CO2vsFlow.png") figco2prc, axco2prc = plot_co2perc(co2prc_df) plt.savefig("data/img/summary/CO2%vsFlow.png") # plt.show() # Travel Time # ============================================================================== # Import csv files tt_df = pd.read_csv( "data/Indicators.csv", names=["mpr", "flow", "distance", "meanTT", "stdTT", "totalTT", "timetC"], ) # Replace values tt_df = tt_df.drop_duplicates() tt_df["flow"] = tt_df["flow"] * 3600 # Refer to data MPR 0% avgtt_df = refer_to_mpr(tt_df, "meanTT", "avgTT %") tottt_df = refer_to_mpr(tt_df, "totalTT", "totTT %") timtc_df = refer_to_mpr(tt_df, "timetC", "timeTC %") # Average Travel Time # ============================================================================== # Plot Avg TT vs Flow figmtt, axmtt = plot_mtt(avgtt_df) plt.savefig("data/img/summary/avgTTvsFlow.png") # Plot Avg TT % Change vs Flow figmttprc, axmttprc = plot_mttperc(avgtt_df) plt.savefig("data/img/summary/avgTT%vsFlow.png") # Plot Avg TT vs distance figmttd, axmttd = plot_mttd(avgtt_df) plt.savefig("data/img/summary/avgTTvsDistance.png") # Plot Avg TT % Change vs distance figmttdprc, axmttdprc = plot_mttdprc(avgtt_df) plt.savefig("data/img/summary/avgTT%vsDistance.png") # Total Travel Time # ============================================================================== # Plot total TT vs Flow figttt, axttt = plot_ttt(tottt_df) plt.savefig("data/img/summary/totalTTvsFlow.png") # Plot total TT % Change vs Flow figtttprc, axtttprc = plot_tttprc(tottt_df) plt.savefig("data/img/summary/totalTT%vsFlow.png") # Plot total TT vs distance figtttd, axtttd = plot_tttd(tottt_df) plt.savefig("data/img/summary/totalTTvsDistance.png") # Plot total TT % Change vs distance figtttdprc, axtttdprc = plot_tttdprc(tottt_df) plt.savefig("data/img/summary/totalTT%vsDistance.png") # Time to Collision # ============================================================================== # Plot total TT vs Flow figttc, axttc = plot_ttc(timtc_df) plt.savefig("data/img/summary/timeTCvsFlow.png") # Plot total TT % Change vs Flow figttcprc, axttcprc = plot_ttcprc(timtc_df) plt.savefig("data/img/summary/timeTC%vsFlow.png") # Plot total TT vs distance figttcd, axttcd = plot_ttcd(timtc_df) plt.savefig("data/img/summary/timeTCvsDistance.png") # Plot total TT % Change vs distance figttcdprc, axttcdprc = plot_ttcdprc(timtc_df) plt.savefig("data/img/summary/timeTC%vsDistance.png") # Headway space # ============================================================================== files = glob("data/csv/spacing_*.csv") df_list = [] # Pattern to recover x-0.1 pattern = re.compile(r"[a-z]*-\d*[.]?\d*") for file in files: tmp = pd.read_csv(file, names=["time", "hwy"]) lst_raw = pattern.findall(file.split(".csv")[0]) dct_prop = { prop.split("-")[0]: float(prop.split("-")[1]) for prop in lst_raw } tmp["mpr"] = dct_prop["mpr"] tmp["flow"] = dct_prop["q"] tmp["distance"] = dct_prop["d"] df_list.append(tmp) # Combine everything df_hwy = pd.concat(df_list) df_hwy_d = [] plt_hwyd = [] # Plot and save for each distance # Headway vs for dst in df_hwy.distance.unique(): df2plot = df_hwy[df_hwy.distance.eq(dst) & df_hwy.flow.eq(1)] df_hwy_d.append(df2plot) # Manual Pivoting for easyness # Case 1 case_a = df_hwy_d[0] df_a = case_a.pivot_table(index="time",columns="mpr",values="hwy",aggfunc="mean").reset_index() fig, ax = plt.subplots(figsize = (10,7.5)) df_a.plot(ax=ax, grid = True) ax.set_xlabel("Time [s]",fontdict={"fontsize": 16}) ax.set_ylabel("Avg. Headway Space [m]",fontdict={"fontsize":
<reponame>yamizi/taskaugment ### THis file is moved to eval.py, not use this anymore import models.drn as drn from models.DRNSeg import DRNSeg from models.FCN32s import FCN32s import data_transforms as transforms import json import math import os from os.path import exists, join, split import threading import time, datetime import numpy as np import shutil import sys from PIL import Image import torch from torch import nn import torch.backends.cudnn as cudnn import torch.optim as optim from torchvision import datasets from torch.autograd import Variable import logging from learning.dataloader import SegList, SegListMS, get_info,get_loader from learning.utils_learn import * from learning.attack import PGD_masked_attack_mtask_city, PGD_drnseg_masked_attack_city import data_transforms as transforms FORMAT = "[%(asctime)-15s %(filename)s:%(lineno)d %(funcName)s] %(message)s" logging.basicConfig(format=FORMAT) logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) def test_seg(args): batch_size = args.batch_size num_workers = args.workers phase = args.phase for k, v in args.__dict__.items(): print(k, ':', v) # model specific model_arch = args.arch task_set_present = hasattr(args, 'task_set') # if (model_arch.startswith('drn')): # if task_set_present: # from models.DRNSegDepth import DRNSegDepth # print("LENGTH OF TASK SET IN CONFIG>1 => LOADING DRNSEGDEPTH model for multitask, to load DRNSEG, remove the task_set from config args.") # single_model = DRNSegDepth(args.arch, # classes=19, # pretrained_model=None, # pretrained=False, # tasks=args.task_set) # else: # single_model = DRNSeg(args.arch, args.classes, pretrained_model=None, # pretrained=False) # elif (model_arch.startswith('fcn32')): # # define the architecture for FCN. # single_model = FCN32s(args.classes) # else: single_model = DRNSeg(args.arch, args.classes, pretrained_model=None, pretrained=False) # Replace with some other model print("Architecture unidentifiable, please choose between : fcn32s, dnn_") if args.pretrained: print('args.pretrained', args.pretrained) single_model.load_state_dict(torch.load(args.pretrained)) model = torch.nn.DataParallel(single_model) if torch.cuda.is_available(): model.cuda() data_dir = args.data_dir # info = json.load(open(join(data_dir, 'info.json'), 'r')) # normalize = transforms.Normalize(mean=info['mean'], std=info['std']) # scales = [0.5, 0.75, 1.25, 1.5, 1.75] # if args.ms: # dataset = SegListMS(data_dir, phase, transforms.Compose([ # transforms.ToTensor(), # normalize, # ]), scales, list_dir=args.list_dir) # else: # # dataset = SegList(data_dir, phase, transforms.Compose([ # transforms.ToTensor(), # normalize, # ]), list_dir=args.list_dir, out_name=True) # test_loader = torch.utils.data.DataLoader( # dataset, # batch_size=batch_size, shuffle=False, num_workers=num_workers, # pin_memory=False # ) test_loader = get_loader(args, phase,out_name=True) info = get_info(args.dataset) cudnn.benchmark = True # Backup files before resuming/starting training backup_output_dir = args.backup_output_dir os.makedirs(backup_output_dir, exist_ok=True) if os.path.exists(backup_output_dir): timestamp = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d_%H:%M:%S') experiment_backup_folder = "test_" + args.arch + "_" + args.dataset + "_" + timestamp experiment_backup_folder = os.path.join(backup_output_dir, experiment_backup_folder) os.makedirs(experiment_backup_folder) print(experiment_backup_folder) fh = logging.FileHandler(experiment_backup_folder + '/log.txt') fh.setLevel(logging.DEBUG) logger.addHandler(fh) # optionally resume from a checkpoint start_epoch = 0 if args.resume: if os.path.isfile(args.resume): logger.info("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) start_epoch = checkpoint['epoch'] best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) logger.info("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) else: logger.info("=> no checkpoint found at '{}'".format(args.resume)) # Make sure the name of the dataset and model are included in the output file. out_dir = 'output/{}_{:03d}_{}'.format(args.arch, start_epoch, phase) if len(args.test_suffix) > 0: out_dir += '_' + args.test_suffix if args.ms: out_dir += '_ms' if args.adv_test: from learning.validate import validate_adv_test mAP = validate_adv_test(test_loader, model, args.classes, save_vis=True, has_gt=True, output_dir=out_dir, downsize_scale=args.downsize_scale, args=args, info=info) elif args.ms: mAP = test_ms(test_loader, model, args.classes, save_vis=True, has_gt=phase != 'test' or args.with_gt, output_dir=out_dir, scales=scales) else: if args.test_acc_output_dim: test_drnseg_masked_attack(test_loader, model, args.classes, save_vis=True, has_gt=phase != 'test' or args.with_gt, output_dir=out_dir, downsize_scale=args.downsize_scale, args=args) # test_masked_accuracy_outdim(test_loader, model, args.classes, save_vis=True, # has_gt=phase != 'test' or args.with_gt, output_dir=out_dir, # downsize_scale=args.downsize_scale, # args=args) else: mAP = test_grad_diffoutdim(test_loader, model, args.classes, save_vis=True, has_gt=phase != 'test' or args.with_gt, output_dir=out_dir, downsize_scale=args.downsize_scale, args=args) logger.info('mAP: %f', mAP) def test_ms(eval_data_loader, model, num_classes, scales, output_dir='pred', has_gt=True, save_vis=False): model.eval() batch_time = AverageMeter() data_time = AverageMeter() end = time.time() hist = np.zeros((num_classes, num_classes)) num_scales = len(scales) for iter, input_data in enumerate(eval_data_loader): data_time.update(time.time() - end) if has_gt: name = input_data[2] label = input_data[1] else: name = input_data[1] h, w = input_data[0].size()[2:4] images = [input_data[0]] images.extend(input_data[-num_scales:]) # pdb.set_trace() outputs = [] for image in images: image_var = Variable(image, requires_grad=False, volatile=True) final = model(image_var)[0] outputs.append(final.data) final = sum([resize_4d_tensor(out, w, h) for out in outputs]) # _, pred = torch.max(torch.from_numpy(final), 1) # pred = pred.cpu().numpy() pred = final.argmax(axis=1) batch_time.update(time.time() - end) if save_vis: save_output_images(pred, name, output_dir) save_colorful_images(pred, name, output_dir + '_color', CITYSCAPE_PALETTE) if has_gt: label = label.numpy() hist += fast_hist(pred.flatten(), label.flatten(), num_classes) logger.info('===> mAP {mAP:.3f}'.format( mAP=round(np.nanmean(per_class_iu(hist)) * 100, 2))) end = time.time() logger.info('Eval: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' .format(iter, len(eval_data_loader), batch_time=batch_time, data_time=data_time)) if has_gt: #val ious = per_class_iu(hist) * 100 logger.info(' '.join('{:.03f}'.format(i) for i in ious)) return round(np.nanmean(ious), 2) def test_grad_diffoutdim(eval_data_loader, model, num_classes, output_dir='pred', has_gt=True, save_vis=False, downsize_scale=1, args=None): """ Evaluates the effect of increasing output dimension on the norm of the gradient. Monte Carlo sampling will be used and the result would be averaged. First choose the number of pixels to calculate the loss for (output dimension) --> select_num. For each select_num, we do the following MC_times(as Monte Carlo sampling): Calculate the loss for select_num pixels chosen, backpropagate and get the input gradient. Average all these. :param eval_data_loader: :param model: :param num_classes: :param output_dir: :param has_gt: :param save_vis: :param downsize_scale: :param args: :return: """ model.eval() batch_time = AverageMeter() data_time = AverageMeter() end = time.time() hist = np.zeros((num_classes, num_classes)) # exit(0) if torch.cuda.is_available(): GPU_flag = True else: GPU_flag = False # Number of points to be selected for masking - analogous to number of output dimensions. Only these many pixels will be considered to calculate the loss. select_num_list = [1] + [i * 4 for i in range(1, 100)] + [400 + i*200 for i in range(100)] result_list = [] for select_num in select_num_list: print("********") print("selecting {} of output".format(select_num)) import random grad_sample_avg_sum = 0 if select_num < 400: MCtimes = 20 else: MCtimes = 5 MCtimes = 1 # Monte Carlo Sampling - MCTimes is the number of times that we sample for inner_i in range(MCtimes): grad_sum = 0 cnt = 0 print("MC time {}".format(inner_i)) for iter, (image, label, name) in enumerate(eval_data_loader): # break if 50 images (batches) done if cnt > 1 and args.debug: break elif cnt > 200: break data_time.update(time.time() - end) if torch.cuda.is_available(): image_var = Variable(image.cuda(), requires_grad=True) else: image_var = Variable(image, requires_grad=True) # print("__shape of image var__", image_var.shape) # [1,3,1024,2048] final = model(image_var)[0] # print("__shape of final__", final.shape) # [1, 19, 1024,2048] _, pred = torch.max(final, 1) # print("__shape of pred__", pred.shape) # [1,1024,2048] # for this image, sample select_num number of pixels temp = [i for i in range(image_var.size(2) * image_var.size(3))] selected = random.sample(temp, select_num) # Build mask for image - mask = np.zeros((image_var.size(2) * image_var.size(3)), dtype=np.uint8) for iii in range(select_num): mask[selected[iii]] = 1 mask = mask.reshape(1, 1, image_var.size(2), image_var.size(3)) mask = torch.from_numpy(mask) mask = mask.float() mask_target = mask.long() # print('label', label) label = label.long() if GPU_flag: # image.cuda() # image_var.cuda() # BUG: too late mask = mask.cuda() mask_target = mask_target.cuda() label = label.cuda() target, mask = Variable(label), Variable(mask) loss = cross_entropy2d(final * mask, target * mask_target, size_average=False) loss.backward() data_grad = image_var.grad np_data_grad = data_grad.cpu().numpy() # print(np_data_grad.shape) L2_grad_norm = np.linalg.norm(np_data_grad) / select_num # the 1/M \sum_M \partial{Loss_i}/\partial{input} grad_sum += L2_grad_norm # increment the batch # counter cnt += 1 pred = pred.cpu().data.numpy() batch_time.update(time.time() - end) end = time.time() grad_avg = grad_sum / cnt # Represents the gradient average for batch. cnt is the number of samples in a batch. grad_sample_avg_sum += grad_avg # For each sampling this is the sum of avg gradients in that sample. grad_sample_avg_sum /= MCtimes result_list.append(grad_sample_avg_sum) print(select_num, 'middle result', result_list) np.save('{}_{}_graph_more.npy'.format(args.dataset, args.arch), result_list) print('Final', result_list) np.save('{}_{}_graph_more.npy'.format(args.dataset, args.arch), result_list) # not sure if has to be moved if has_gt: # val ious = per_class_iu(hist) * 100 logger.info(' '.join('{:.03f}'.format(i) for i in ious)) return round(np.nanmean(ious), 2) def test_drnseg_masked_attack(eval_data_loader, model, num_classes, output_dir='pred', has_gt=True, save_vis=False, downsize_scale=1, args=None): """ Evaluates the effect of increasing output dimension on the norm of the gradient. Monte Carlo sampling will be used and the result would be averaged. First choose the number of pixels to calculate the loss for (output dimension) --> select_num. For each select_num, we do the following MC_times(as Monte Carlo sampling): Calculate the loss for select_num pixels chosen, backpropagate and get the input gradient. Average all these. :param eval_data_loader: :param model: :param num_classes: :param output_dir: :param has_gt: :param save_vis: :param downsize_scale: :param args: :return: """ model.eval() batch_time = AverageMeter() data_time = AverageMeter() end = time.time() # hist = np.zeros((num_classes, num_classes)) # exit(0) if torch.cuda.is_available(): GPU_flag = True else: GPU_flag = False # Number of
AKISetSectionUserDefinedCost2(*args): return _AAPI.AKISetSectionUserDefinedCost2(*args) AKISetSectionUserDefinedCost2 = _AAPI.AKISetSectionUserDefinedCost2 def AKISetSectionUserDefinedCost3(*args): return _AAPI.AKISetSectionUserDefinedCost3(*args) AKISetSectionUserDefinedCost3 = _AAPI.AKISetSectionUserDefinedCost3 def AKIGetSectionCapacity(*args): return _AAPI.AKIGetSectionCapacity(*args) AKIGetSectionCapacity = _AAPI.AKIGetSectionCapacity def AKIGetSectionUserDefinedCost(*args): return _AAPI.AKIGetSectionUserDefinedCost(*args) AKIGetSectionUserDefinedCost = _AAPI.AKIGetSectionUserDefinedCost def AKIGetSectionUserDefinedCost2(*args): return _AAPI.AKIGetSectionUserDefinedCost2(*args) AKIGetSectionUserDefinedCost2 = _AAPI.AKIGetSectionUserDefinedCost2 def AKIGetSectionUserDefinedCost3(*args): return _AAPI.AKIGetSectionUserDefinedCost3(*args) AKIGetSectionUserDefinedCost3 = _AAPI.AKIGetSectionUserDefinedCost3 def AKIInfNetNbJunctions(): return _AAPI.AKIInfNetNbJunctions() AKIInfNetNbJunctions = _AAPI.AKIInfNetNbJunctions def AKIInfNetGetJunctionId(*args): return _AAPI.AKIInfNetGetJunctionId(*args) AKIInfNetGetJunctionId = _AAPI.AKIInfNetGetJunctionId def AKIInfNetNbCentroids(): return _AAPI.AKIInfNetNbCentroids() AKIInfNetNbCentroids = _AAPI.AKIInfNetNbCentroids def AKIInfNetGetCentroidId(*args): return _AAPI.AKIInfNetGetCentroidId(*args) AKIInfNetGetCentroidId = _AAPI.AKIInfNetGetCentroidId def AKIInfNetGetCentroidInf(*args): return _AAPI.AKIInfNetGetCentroidInf(*args) AKIInfNetGetCentroidInf = _AAPI.AKIInfNetGetCentroidInf def AKIInfNetGetIdObjectofOriginCentroidConnector(*args): return _AAPI.AKIInfNetGetIdObjectofOriginCentroidConnector(*args) AKIInfNetGetIdObjectofOriginCentroidConnector = _AAPI.AKIInfNetGetIdObjectofOriginCentroidConnector def AKIInfNetGetIdObjectofDestinationCentroidConnector(*args): return _AAPI.AKIInfNetGetIdObjectofDestinationCentroidConnector(*args) AKIInfNetGetIdObjectofDestinationCentroidConnector = _AAPI.AKIInfNetGetIdObjectofDestinationCentroidConnector def AKIInfNetGetIdObjectANGofOriginCentroidConnector(*args): return _AAPI.AKIInfNetGetIdObjectANGofOriginCentroidConnector(*args) AKIInfNetGetIdObjectANGofOriginCentroidConnector = _AAPI.AKIInfNetGetIdObjectANGofOriginCentroidConnector def AKIInfNetGetIdObjectANGofDestinationCentroidConnector(*args): return _AAPI.AKIInfNetGetIdObjectANGofDestinationCentroidConnector(*args) AKIInfNetGetIdObjectANGofDestinationCentroidConnector = _AAPI.AKIInfNetGetIdObjectANGofDestinationCentroidConnector def AKIInfNetGetShortestPathNbSections(*args): return _AAPI.AKIInfNetGetShortestPathNbSections(*args) AKIInfNetGetShortestPathNbSections = _AAPI.AKIInfNetGetShortestPathNbSections def AKIInfNetGetShortestPath(*args): return _AAPI.AKIInfNetGetShortestPath(*args) AKIInfNetGetShortestPath = _AAPI.AKIInfNetGetShortestPath def AKIInfNetGetNetworkPathA(): return _AAPI.AKIInfNetGetNetworkPathA() AKIInfNetGetNetworkPathA = _AAPI.AKIInfNetGetNetworkPathA def AKIInfNetGetNetworkNameA(): return _AAPI.AKIInfNetGetNetworkNameA() AKIInfNetGetNetworkNameA = _AAPI.AKIInfNetGetNetworkNameA def AKIInfNetGetTrafficDemandNameA(): return _AAPI.AKIInfNetGetTrafficDemandNameA() AKIInfNetGetTrafficDemandNameA = _AAPI.AKIInfNetGetTrafficDemandNameA def AKIInfNetGetTrafficDemandType(): return _AAPI.AKIInfNetGetTrafficDemandType() AKIInfNetGetTrafficDemandType = _AAPI.AKIInfNetGetTrafficDemandType class StructAkiEstadSystem(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, StructAkiEstadSystem, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, StructAkiEstadSystem, name) __repr__ = _swig_repr __swig_setmethods__["report"] = _AAPI.StructAkiEstadSystem_report_set __swig_getmethods__["report"] = _AAPI.StructAkiEstadSystem_report_get if _newclass:report = _swig_property(_AAPI.StructAkiEstadSystem_report_get, _AAPI.StructAkiEstadSystem_report_set) __swig_setmethods__["Flow"] = _AAPI.StructAkiEstadSystem_Flow_set __swig_getmethods__["Flow"] = _AAPI.StructAkiEstadSystem_Flow_get if _newclass:Flow = _swig_property(_AAPI.StructAkiEstadSystem_Flow_get, _AAPI.StructAkiEstadSystem_Flow_set) __swig_setmethods__["TTa"] = _AAPI.StructAkiEstadSystem_TTa_set __swig_getmethods__["TTa"] = _AAPI.StructAkiEstadSystem_TTa_get if _newclass:TTa = _swig_property(_AAPI.StructAkiEstadSystem_TTa_get, _AAPI.StructAkiEstadSystem_TTa_set) __swig_setmethods__["TTd"] = _AAPI.StructAkiEstadSystem_TTd_set __swig_getmethods__["TTd"] = _AAPI.StructAkiEstadSystem_TTd_get if _newclass:TTd = _swig_property(_AAPI.StructAkiEstadSystem_TTd_get, _AAPI.StructAkiEstadSystem_TTd_set) __swig_setmethods__["DTa"] = _AAPI.StructAkiEstadSystem_DTa_set __swig_getmethods__["DTa"] = _AAPI.StructAkiEstadSystem_DTa_get if _newclass:DTa = _swig_property(_AAPI.StructAkiEstadSystem_DTa_get, _AAPI.StructAkiEstadSystem_DTa_set) __swig_setmethods__["DTd"] = _AAPI.StructAkiEstadSystem_DTd_set __swig_getmethods__["DTd"] = _AAPI.StructAkiEstadSystem_DTd_get if _newclass:DTd = _swig_property(_AAPI.StructAkiEstadSystem_DTd_get, _AAPI.StructAkiEstadSystem_DTd_set) __swig_setmethods__["Sa"] = _AAPI.StructAkiEstadSystem_Sa_set __swig_getmethods__["Sa"] = _AAPI.StructAkiEstadSystem_Sa_get if _newclass:Sa = _swig_property(_AAPI.StructAkiEstadSystem_Sa_get, _AAPI.StructAkiEstadSystem_Sa_set) __swig_setmethods__["Sd"] = _AAPI.StructAkiEstadSystem_Sd_set __swig_getmethods__["Sd"] = _AAPI.StructAkiEstadSystem_Sd_get if _newclass:Sd = _swig_property(_AAPI.StructAkiEstadSystem_Sd_get, _AAPI.StructAkiEstadSystem_Sd_set) __swig_setmethods__["SHa"] = _AAPI.StructAkiEstadSystem_SHa_set __swig_getmethods__["SHa"] = _AAPI.StructAkiEstadSystem_SHa_get if _newclass:SHa = _swig_property(_AAPI.StructAkiEstadSystem_SHa_get, _AAPI.StructAkiEstadSystem_SHa_set) __swig_setmethods__["SHd"] = _AAPI.StructAkiEstadSystem_SHd_set __swig_getmethods__["SHd"] = _AAPI.StructAkiEstadSystem_SHd_get if _newclass:SHd = _swig_property(_AAPI.StructAkiEstadSystem_SHd_get, _AAPI.StructAkiEstadSystem_SHd_set) __swig_setmethods__["Density"] = _AAPI.StructAkiEstadSystem_Density_set __swig_getmethods__["Density"] = _AAPI.StructAkiEstadSystem_Density_get if _newclass:Density = _swig_property(_AAPI.StructAkiEstadSystem_Density_get, _AAPI.StructAkiEstadSystem_Density_set) __swig_setmethods__["STa"] = _AAPI.StructAkiEstadSystem_STa_set __swig_getmethods__["STa"] = _AAPI.StructAkiEstadSystem_STa_get if _newclass:STa = _swig_property(_AAPI.StructAkiEstadSystem_STa_get, _AAPI.StructAkiEstadSystem_STa_set) __swig_setmethods__["STd"] = _AAPI.StructAkiEstadSystem_STd_set __swig_getmethods__["STd"] = _AAPI.StructAkiEstadSystem_STd_get if _newclass:STd = _swig_property(_AAPI.StructAkiEstadSystem_STd_get, _AAPI.StructAkiEstadSystem_STd_set) __swig_setmethods__["NumStops"] = _AAPI.StructAkiEstadSystem_NumStops_set __swig_getmethods__["NumStops"] = _AAPI.StructAkiEstadSystem_NumStops_get if _newclass:NumStops = _swig_property(_AAPI.StructAkiEstadSystem_NumStops_get, _AAPI.StructAkiEstadSystem_NumStops_set) __swig_setmethods__["LongQueueAvg"] = _AAPI.StructAkiEstadSystem_LongQueueAvg_set __swig_getmethods__["LongQueueAvg"] = _AAPI.StructAkiEstadSystem_LongQueueAvg_get if _newclass:LongQueueAvg = _swig_property(_AAPI.StructAkiEstadSystem_LongQueueAvg_get, _AAPI.StructAkiEstadSystem_LongQueueAvg_set) __swig_setmethods__["LongQueueMax"] = _AAPI.StructAkiEstadSystem_LongQueueMax_set __swig_getmethods__["LongQueueMax"] = _AAPI.StructAkiEstadSystem_LongQueueMax_get if _newclass:LongQueueMax = _swig_property(_AAPI.StructAkiEstadSystem_LongQueueMax_get, _AAPI.StructAkiEstadSystem_LongQueueMax_set) __swig_setmethods__["TotalTravel"] = _AAPI.StructAkiEstadSystem_TotalTravel_set __swig_getmethods__["TotalTravel"] = _AAPI.StructAkiEstadSystem_TotalTravel_get if _newclass:TotalTravel = _swig_property(_AAPI.StructAkiEstadSystem_TotalTravel_get, _AAPI.StructAkiEstadSystem_TotalTravel_set) __swig_setmethods__["TotalTravelTime"] = _AAPI.StructAkiEstadSystem_TotalTravelTime_set __swig_getmethods__["TotalTravelTime"] = _AAPI.StructAkiEstadSystem_TotalTravelTime_get if _newclass:TotalTravelTime = _swig_property(_AAPI.StructAkiEstadSystem_TotalTravelTime_get, _AAPI.StructAkiEstadSystem_TotalTravelTime_set) __swig_setmethods__["virtualQueueAvg"] = _AAPI.StructAkiEstadSystem_virtualQueueAvg_set __swig_getmethods__["virtualQueueAvg"] = _AAPI.StructAkiEstadSystem_virtualQueueAvg_get if _newclass:virtualQueueAvg = _swig_property(_AAPI.StructAkiEstadSystem_virtualQueueAvg_get, _AAPI.StructAkiEstadSystem_virtualQueueAvg_set) __swig_setmethods__["virtualQueueMax"] = _AAPI.StructAkiEstadSystem_virtualQueueMax_set __swig_getmethods__["virtualQueueMax"] = _AAPI.StructAkiEstadSystem_virtualQueueMax_get if _newclass:virtualQueueMax = _swig_property(_AAPI.StructAkiEstadSystem_virtualQueueMax_get, _AAPI.StructAkiEstadSystem_virtualQueueMax_set) __swig_setmethods__["count"] = _AAPI.StructAkiEstadSystem_count_set __swig_getmethods__["count"] = _AAPI.StructAkiEstadSystem_count_get if _newclass:count = _swig_property(_AAPI.StructAkiEstadSystem_count_get, _AAPI.StructAkiEstadSystem_count_set) __swig_setmethods__["inputFlow"] = _AAPI.StructAkiEstadSystem_inputFlow_set __swig_getmethods__["inputFlow"] = _AAPI.StructAkiEstadSystem_inputFlow_get if _newclass:inputFlow = _swig_property(_AAPI.StructAkiEstadSystem_inputFlow_get, _AAPI.StructAkiEstadSystem_inputFlow_set) __swig_setmethods__["inputCount"] = _AAPI.StructAkiEstadSystem_inputCount_set __swig_getmethods__["inputCount"] = _AAPI.StructAkiEstadSystem_inputCount_get if _newclass:inputCount = _swig_property(_AAPI.StructAkiEstadSystem_inputCount_get, _AAPI.StructAkiEstadSystem_inputCount_set) __swig_setmethods__["vehsWaiting"] = _AAPI.StructAkiEstadSystem_vehsWaiting_set __swig_getmethods__["vehsWaiting"] = _AAPI.StructAkiEstadSystem_vehsWaiting_get if _newclass:vehsWaiting = _swig_property(_AAPI.StructAkiEstadSystem_vehsWaiting_get, _AAPI.StructAkiEstadSystem_vehsWaiting_set) __swig_setmethods__["vehIn"] = _AAPI.StructAkiEstadSystem_vehIn_set __swig_getmethods__["vehIn"] = _AAPI.StructAkiEstadSystem_vehIn_get if _newclass:vehIn = _swig_property(_AAPI.StructAkiEstadSystem_vehIn_get, _AAPI.StructAkiEstadSystem_vehIn_set) __swig_setmethods__["vehsLostIn"] = _AAPI.StructAkiEstadSystem_vehsLostIn_set __swig_getmethods__["vehsLostIn"] = _AAPI.StructAkiEstadSystem_vehsLostIn_get if _newclass:vehsLostIn = _swig_property(_AAPI.StructAkiEstadSystem_vehsLostIn_get, _AAPI.StructAkiEstadSystem_vehsLostIn_set) __swig_setmethods__["vehsLostOut"] = _AAPI.StructAkiEstadSystem_vehsLostOut_set __swig_getmethods__["vehsLostOut"] = _AAPI.StructAkiEstadSystem_vehsLostOut_get if _newclass:vehsLostOut = _swig_property(_AAPI.StructAkiEstadSystem_vehsLostOut_get, _AAPI.StructAkiEstadSystem_vehsLostOut_set) __swig_setmethods__["missedTurns"] = _AAPI.StructAkiEstadSystem_missedTurns_set __swig_getmethods__["missedTurns"] = _AAPI.StructAkiEstadSystem_missedTurns_get if _newclass:missedTurns = _swig_property(_AAPI.StructAkiEstadSystem_missedTurns_get, _AAPI.StructAkiEstadSystem_missedTurns_set) __swig_setmethods__["laneChanges"] = _AAPI.StructAkiEstadSystem_laneChanges_set __swig_getmethods__["laneChanges"] = _AAPI.StructAkiEstadSystem_laneChanges_get if _newclass:laneChanges = _swig_property(_AAPI.StructAkiEstadSystem_laneChanges_get, _AAPI.StructAkiEstadSystem_laneChanges_set) __swig_setmethods__["totalLaneChanges"] = _AAPI.StructAkiEstadSystem_totalLaneChanges_set __swig_getmethods__["totalLaneChanges"] = _AAPI.StructAkiEstadSystem_totalLaneChanges_get if _newclass:totalLaneChanges = _swig_property(_AAPI.StructAkiEstadSystem_totalLaneChanges_get, _AAPI.StructAkiEstadSystem_totalLaneChanges_set) def __init__(self): this = _AAPI.new_StructAkiEstadSystem() try: self.this.append(this) except: self.this = this __swig_destroy__ = _AAPI.delete_StructAkiEstadSystem __del__ = lambda self : None; StructAkiEstadSystem_swigregister = _AAPI.StructAkiEstadSystem_swigregister StructAkiEstadSystem_swigregister(StructAkiEstadSystem) class StructAkiEstadSection(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, StructAkiEstadSection, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, StructAkiEstadSection, name) __repr__ = _swig_repr __swig_setmethods__["report"] = _AAPI.StructAkiEstadSection_report_set __swig_getmethods__["report"] = _AAPI.StructAkiEstadSection_report_get if _newclass:report = _swig_property(_AAPI.StructAkiEstadSection_report_get, _AAPI.StructAkiEstadSection_report_set) __swig_setmethods__["Id"] = _AAPI.StructAkiEstadSection_Id_set __swig_getmethods__["Id"] = _AAPI.StructAkiEstadSection_Id_get if _newclass:Id = _swig_property(_AAPI.StructAkiEstadSection_Id_get, _AAPI.StructAkiEstadSection_Id_set) __swig_setmethods__["Flow"] = _AAPI.StructAkiEstadSection_Flow_set __swig_getmethods__["Flow"] = _AAPI.StructAkiEstadSection_Flow_get if _newclass:Flow = _swig_property(_AAPI.StructAkiEstadSection_Flow_get, _AAPI.StructAkiEstadSection_Flow_set) __swig_setmethods__["TTa"] = _AAPI.StructAkiEstadSection_TTa_set __swig_getmethods__["TTa"] = _AAPI.StructAkiEstadSection_TTa_get if _newclass:TTa = _swig_property(_AAPI.StructAkiEstadSection_TTa_get, _AAPI.StructAkiEstadSection_TTa_set) __swig_setmethods__["TTd"] = _AAPI.StructAkiEstadSection_TTd_set __swig_getmethods__["TTd"] = _AAPI.StructAkiEstadSection_TTd_get if _newclass:TTd = _swig_property(_AAPI.StructAkiEstadSection_TTd_get, _AAPI.StructAkiEstadSection_TTd_set) __swig_setmethods__["DTa"] = _AAPI.StructAkiEstadSection_DTa_set __swig_getmethods__["DTa"] = _AAPI.StructAkiEstadSection_DTa_get if _newclass:DTa = _swig_property(_AAPI.StructAkiEstadSection_DTa_get, _AAPI.StructAkiEstadSection_DTa_set) __swig_setmethods__["DTd"] = _AAPI.StructAkiEstadSection_DTd_set __swig_getmethods__["DTd"] = _AAPI.StructAkiEstadSection_DTd_get if _newclass:DTd = _swig_property(_AAPI.StructAkiEstadSection_DTd_get, _AAPI.StructAkiEstadSection_DTd_set) __swig_setmethods__["Sa"] = _AAPI.StructAkiEstadSection_Sa_set __swig_getmethods__["Sa"] = _AAPI.StructAkiEstadSection_Sa_get if _newclass:Sa = _swig_property(_AAPI.StructAkiEstadSection_Sa_get, _AAPI.StructAkiEstadSection_Sa_set) __swig_setmethods__["Sd"] = _AAPI.StructAkiEstadSection_Sd_set __swig_getmethods__["Sd"] = _AAPI.StructAkiEstadSection_Sd_get if _newclass:Sd = _swig_property(_AAPI.StructAkiEstadSection_Sd_get, _AAPI.StructAkiEstadSection_Sd_set) __swig_setmethods__["SHa"] = _AAPI.StructAkiEstadSection_SHa_set __swig_getmethods__["SHa"] = _AAPI.StructAkiEstadSection_SHa_get if _newclass:SHa = _swig_property(_AAPI.StructAkiEstadSection_SHa_get, _AAPI.StructAkiEstadSection_SHa_set) __swig_setmethods__["SHd"] = _AAPI.StructAkiEstadSection_SHd_set __swig_getmethods__["SHd"] = _AAPI.StructAkiEstadSection_SHd_get if _newclass:SHd = _swig_property(_AAPI.StructAkiEstadSection_SHd_get, _AAPI.StructAkiEstadSection_SHd_set) __swig_setmethods__["Density"] = _AAPI.StructAkiEstadSection_Density_set __swig_getmethods__["Density"] = _AAPI.StructAkiEstadSection_Density_get if _newclass:Density = _swig_property(_AAPI.StructAkiEstadSection_Density_get, _AAPI.StructAkiEstadSection_Density_set) __swig_setmethods__["STa"] = _AAPI.StructAkiEstadSection_STa_set __swig_getmethods__["STa"] = _AAPI.StructAkiEstadSection_STa_get if _newclass:STa = _swig_property(_AAPI.StructAkiEstadSection_STa_get, _AAPI.StructAkiEstadSection_STa_set) __swig_setmethods__["STd"] = _AAPI.StructAkiEstadSection_STd_set __swig_getmethods__["STd"] = _AAPI.StructAkiEstadSection_STd_get if _newclass:STd = _swig_property(_AAPI.StructAkiEstadSection_STd_get, _AAPI.StructAkiEstadSection_STd_set) __swig_setmethods__["NumStops"] = _AAPI.StructAkiEstadSection_NumStops_set __swig_getmethods__["NumStops"] = _AAPI.StructAkiEstadSection_NumStops_get if _newclass:NumStops = _swig_property(_AAPI.StructAkiEstadSection_NumStops_get, _AAPI.StructAkiEstadSection_NumStops_set) __swig_setmethods__["LongQueueAvg"] = _AAPI.StructAkiEstadSection_LongQueueAvg_set __swig_getmethods__["LongQueueAvg"] = _AAPI.StructAkiEstadSection_LongQueueAvg_get if _newclass:LongQueueAvg = _swig_property(_AAPI.StructAkiEstadSection_LongQueueAvg_get, _AAPI.StructAkiEstadSection_LongQueueAvg_set) __swig_setmethods__["LongQueueMax"] = _AAPI.StructAkiEstadSection_LongQueueMax_set __swig_getmethods__["LongQueueMax"] = _AAPI.StructAkiEstadSection_LongQueueMax_get if _newclass:LongQueueMax = _swig_property(_AAPI.StructAkiEstadSection_LongQueueMax_get, _AAPI.StructAkiEstadSection_LongQueueMax_set) __swig_setmethods__["TotalTravel"] = _AAPI.StructAkiEstadSection_TotalTravel_set __swig_getmethods__["TotalTravel"] = _AAPI.StructAkiEstadSection_TotalTravel_get if _newclass:TotalTravel = _swig_property(_AAPI.StructAkiEstadSection_TotalTravel_get, _AAPI.StructAkiEstadSection_TotalTravel_set) __swig_setmethods__["TotalTravelTime"] = _AAPI.StructAkiEstadSection_TotalTravelTime_set __swig_getmethods__["TotalTravelTime"] = _AAPI.StructAkiEstadSection_TotalTravelTime_get if _newclass:TotalTravelTime = _swig_property(_AAPI.StructAkiEstadSection_TotalTravelTime_get, _AAPI.StructAkiEstadSection_TotalTravelTime_set) __swig_setmethods__["virtualQueueAvg"] = _AAPI.StructAkiEstadSection_virtualQueueAvg_set __swig_getmethods__["virtualQueueAvg"] = _AAPI.StructAkiEstadSection_virtualQueueAvg_get if _newclass:virtualQueueAvg = _swig_property(_AAPI.StructAkiEstadSection_virtualQueueAvg_get, _AAPI.StructAkiEstadSection_virtualQueueAvg_set) __swig_setmethods__["virtualQueueMax"] = _AAPI.StructAkiEstadSection_virtualQueueMax_set __swig_getmethods__["virtualQueueMax"] = _AAPI.StructAkiEstadSection_virtualQueueMax_get if _newclass:virtualQueueMax = _swig_property(_AAPI.StructAkiEstadSection_virtualQueueMax_get, _AAPI.StructAkiEstadSection_virtualQueueMax_set) __swig_setmethods__["count"] = _AAPI.StructAkiEstadSection_count_set __swig_getmethods__["count"] = _AAPI.StructAkiEstadSection_count_get if _newclass:count = _swig_property(_AAPI.StructAkiEstadSection_count_get, _AAPI.StructAkiEstadSection_count_set) __swig_setmethods__["inputFlow"] = _AAPI.StructAkiEstadSection_inputFlow_set __swig_getmethods__["inputFlow"] = _AAPI.StructAkiEstadSection_inputFlow_get if _newclass:inputFlow = _swig_property(_AAPI.StructAkiEstadSection_inputFlow_get, _AAPI.StructAkiEstadSection_inputFlow_set) __swig_setmethods__["inputCount"] = _AAPI.StructAkiEstadSection_inputCount_set __swig_getmethods__["inputCount"] = _AAPI.StructAkiEstadSection_inputCount_get if _newclass:inputCount = _swig_property(_AAPI.StructAkiEstadSection_inputCount_get, _AAPI.StructAkiEstadSection_inputCount_set) __swig_setmethods__["flowCapacity"] = _AAPI.StructAkiEstadSection_flowCapacity_set __swig_getmethods__["flowCapacity"] = _AAPI.StructAkiEstadSection_flowCapacity_get if _newclass:flowCapacity = _swig_property(_AAPI.StructAkiEstadSection_flowCapacity_get, _AAPI.StructAkiEstadSection_flowCapacity_set) __swig_setmethods__["laneChanges"] = _AAPI.StructAkiEstadSection_laneChanges_set __swig_getmethods__["laneChanges"] = _AAPI.StructAkiEstadSection_laneChanges_get if _newclass:laneChanges = _swig_property(_AAPI.StructAkiEstadSection_laneChanges_get, _AAPI.StructAkiEstadSection_laneChanges_set) __swig_setmethods__["totalLaneChanges"] = _AAPI.StructAkiEstadSection_totalLaneChanges_set __swig_getmethods__["totalLaneChanges"] = _AAPI.StructAkiEstadSection_totalLaneChanges_get if _newclass:totalLaneChanges = _swig_property(_AAPI.StructAkiEstadSection_totalLaneChanges_get, _AAPI.StructAkiEstadSection_totalLaneChanges_set) def __init__(self): this = _AAPI.new_StructAkiEstadSection() try: self.this.append(this) except: self.this = this __swig_destroy__ = _AAPI.delete_StructAkiEstadSection __del__ = lambda self : None; StructAkiEstadSection_swigregister = _AAPI.StructAkiEstadSection_swigregister StructAkiEstadSection_swigregister(StructAkiEstadSection) class StructAkiEstadSectionLane(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, StructAkiEstadSectionLane, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, StructAkiEstadSectionLane, name) __repr__ = _swig_repr __swig_setmethods__["report"] = _AAPI.StructAkiEstadSectionLane_report_set __swig_getmethods__["report"] = _AAPI.StructAkiEstadSectionLane_report_get if _newclass:report = _swig_property(_AAPI.StructAkiEstadSectionLane_report_get, _AAPI.StructAkiEstadSectionLane_report_set) __swig_setmethods__["IdSection"] = _AAPI.StructAkiEstadSectionLane_IdSection_set __swig_getmethods__["IdSection"] = _AAPI.StructAkiEstadSectionLane_IdSection_get if _newclass:IdSection = _swig_property(_AAPI.StructAkiEstadSectionLane_IdSection_get, _AAPI.StructAkiEstadSectionLane_IdSection_set) __swig_setmethods__["Flow"] = _AAPI.StructAkiEstadSectionLane_Flow_set __swig_getmethods__["Flow"] = _AAPI.StructAkiEstadSectionLane_Flow_get if _newclass:Flow = _swig_property(_AAPI.StructAkiEstadSectionLane_Flow_get, _AAPI.StructAkiEstadSectionLane_Flow_set) __swig_setmethods__["TTa"] = _AAPI.StructAkiEstadSectionLane_TTa_set __swig_getmethods__["TTa"] = _AAPI.StructAkiEstadSectionLane_TTa_get if _newclass:TTa = _swig_property(_AAPI.StructAkiEstadSectionLane_TTa_get, _AAPI.StructAkiEstadSectionLane_TTa_set) __swig_setmethods__["TTd"] = _AAPI.StructAkiEstadSectionLane_TTd_set __swig_getmethods__["TTd"] = _AAPI.StructAkiEstadSectionLane_TTd_get if _newclass:TTd = _swig_property(_AAPI.StructAkiEstadSectionLane_TTd_get, _AAPI.StructAkiEstadSectionLane_TTd_set) __swig_setmethods__["DTa"] = _AAPI.StructAkiEstadSectionLane_DTa_set __swig_getmethods__["DTa"] = _AAPI.StructAkiEstadSectionLane_DTa_get if _newclass:DTa = _swig_property(_AAPI.StructAkiEstadSectionLane_DTa_get, _AAPI.StructAkiEstadSectionLane_DTa_set) __swig_setmethods__["DTd"] = _AAPI.StructAkiEstadSectionLane_DTd_set __swig_getmethods__["DTd"] = _AAPI.StructAkiEstadSectionLane_DTd_get if _newclass:DTd = _swig_property(_AAPI.StructAkiEstadSectionLane_DTd_get, _AAPI.StructAkiEstadSectionLane_DTd_set) __swig_setmethods__["Sa"] = _AAPI.StructAkiEstadSectionLane_Sa_set __swig_getmethods__["Sa"] = _AAPI.StructAkiEstadSectionLane_Sa_get if _newclass:Sa = _swig_property(_AAPI.StructAkiEstadSectionLane_Sa_get, _AAPI.StructAkiEstadSectionLane_Sa_set) __swig_setmethods__["Sd"] = _AAPI.StructAkiEstadSectionLane_Sd_set __swig_getmethods__["Sd"] = _AAPI.StructAkiEstadSectionLane_Sd_get if _newclass:Sd = _swig_property(_AAPI.StructAkiEstadSectionLane_Sd_get, _AAPI.StructAkiEstadSectionLane_Sd_set) __swig_setmethods__["SHa"] = _AAPI.StructAkiEstadSectionLane_SHa_set __swig_getmethods__["SHa"] = _AAPI.StructAkiEstadSectionLane_SHa_get if _newclass:SHa = _swig_property(_AAPI.StructAkiEstadSectionLane_SHa_get, _AAPI.StructAkiEstadSectionLane_SHa_set) __swig_setmethods__["SHd"] = _AAPI.StructAkiEstadSectionLane_SHd_set __swig_getmethods__["SHd"] = _AAPI.StructAkiEstadSectionLane_SHd_get if _newclass:SHd = _swig_property(_AAPI.StructAkiEstadSectionLane_SHd_get, _AAPI.StructAkiEstadSectionLane_SHd_set) __swig_setmethods__["Density"] = _AAPI.StructAkiEstadSectionLane_Density_set __swig_getmethods__["Density"] = _AAPI.StructAkiEstadSectionLane_Density_get if _newclass:Density = _swig_property(_AAPI.StructAkiEstadSectionLane_Density_get, _AAPI.StructAkiEstadSectionLane_Density_set) __swig_setmethods__["LongQueueAvg"] = _AAPI.StructAkiEstadSectionLane_LongQueueAvg_set __swig_getmethods__["LongQueueAvg"] = _AAPI.StructAkiEstadSectionLane_LongQueueAvg_get if _newclass:LongQueueAvg = _swig_property(_AAPI.StructAkiEstadSectionLane_LongQueueAvg_get, _AAPI.StructAkiEstadSectionLane_LongQueueAvg_set) __swig_setmethods__["LongQueueMax"] = _AAPI.StructAkiEstadSectionLane_LongQueueMax_set __swig_getmethods__["LongQueueMax"] = _AAPI.StructAkiEstadSectionLane_LongQueueMax_get if _newclass:LongQueueMax = _swig_property(_AAPI.StructAkiEstadSectionLane_LongQueueMax_get, _AAPI.StructAkiEstadSectionLane_LongQueueMax_set) def __init__(self): this = _AAPI.new_StructAkiEstadSectionLane() try: self.this.append(this) except: self.this = this __swig_destroy__ = _AAPI.delete_StructAkiEstadSectionLane __del__ = lambda self : None; StructAkiEstadSectionLane_swigregister = _AAPI.StructAkiEstadSectionLane_swigregister StructAkiEstadSectionLane_swigregister(StructAkiEstadSectionLane) class StructAkiEstadTurning(_object): __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, StructAkiEstadTurning, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, StructAkiEstadTurning, name) __repr__ = _swig_repr __swig_setmethods__["report"] = _AAPI.StructAkiEstadTurning_report_set __swig_getmethods__["report"] = _AAPI.StructAkiEstadTurning_report_get if _newclass:report = _swig_property(_AAPI.StructAkiEstadTurning_report_get, _AAPI.StructAkiEstadTurning_report_set) __swig_setmethods__["IdSectionFrom"] = _AAPI.StructAkiEstadTurning_IdSectionFrom_set __swig_getmethods__["IdSectionFrom"] = _AAPI.StructAkiEstadTurning_IdSectionFrom_get if _newclass:IdSectionFrom = _swig_property(_AAPI.StructAkiEstadTurning_IdSectionFrom_get, _AAPI.StructAkiEstadTurning_IdSectionFrom_set) __swig_setmethods__["IdSectionTo"] = _AAPI.StructAkiEstadTurning_IdSectionTo_set __swig_getmethods__["IdSectionTo"] = _AAPI.StructAkiEstadTurning_IdSectionTo_get if _newclass:IdSectionTo = _swig_property(_AAPI.StructAkiEstadTurning_IdSectionTo_get, _AAPI.StructAkiEstadTurning_IdSectionTo_set) __swig_setmethods__["Flow"] = _AAPI.StructAkiEstadTurning_Flow_set __swig_getmethods__["Flow"] = _AAPI.StructAkiEstadTurning_Flow_get if _newclass:Flow = _swig_property(_AAPI.StructAkiEstadTurning_Flow_get, _AAPI.StructAkiEstadTurning_Flow_set) __swig_setmethods__["TTa"] = _AAPI.StructAkiEstadTurning_TTa_set __swig_getmethods__["TTa"] = _AAPI.StructAkiEstadTurning_TTa_get if _newclass:TTa = _swig_property(_AAPI.StructAkiEstadTurning_TTa_get, _AAPI.StructAkiEstadTurning_TTa_set) __swig_setmethods__["TTd"] = _AAPI.StructAkiEstadTurning_TTd_set __swig_getmethods__["TTd"] = _AAPI.StructAkiEstadTurning_TTd_get if _newclass:TTd = _swig_property(_AAPI.StructAkiEstadTurning_TTd_get, _AAPI.StructAkiEstadTurning_TTd_set) __swig_setmethods__["DTa"] = _AAPI.StructAkiEstadTurning_DTa_set __swig_getmethods__["DTa"] = _AAPI.StructAkiEstadTurning_DTa_get if _newclass:DTa = _swig_property(_AAPI.StructAkiEstadTurning_DTa_get, _AAPI.StructAkiEstadTurning_DTa_set) __swig_setmethods__["DTd"] = _AAPI.StructAkiEstadTurning_DTd_set __swig_getmethods__["DTd"] = _AAPI.StructAkiEstadTurning_DTd_get if _newclass:DTd = _swig_property(_AAPI.StructAkiEstadTurning_DTd_get, _AAPI.StructAkiEstadTurning_DTd_set) __swig_setmethods__["Sa"] = _AAPI.StructAkiEstadTurning_Sa_set __swig_getmethods__["Sa"] = _AAPI.StructAkiEstadTurning_Sa_get if _newclass:Sa = _swig_property(_AAPI.StructAkiEstadTurning_Sa_get, _AAPI.StructAkiEstadTurning_Sa_set) __swig_setmethods__["Sd"] = _AAPI.StructAkiEstadTurning_Sd_set __swig_getmethods__["Sd"] = _AAPI.StructAkiEstadTurning_Sd_get if _newclass:Sd = _swig_property(_AAPI.StructAkiEstadTurning_Sd_get, _AAPI.StructAkiEstadTurning_Sd_set) __swig_setmethods__["SHa"] = _AAPI.StructAkiEstadTurning_SHa_set __swig_getmethods__["SHa"] = _AAPI.StructAkiEstadTurning_SHa_get if _newclass:SHa = _swig_property(_AAPI.StructAkiEstadTurning_SHa_get, _AAPI.StructAkiEstadTurning_SHa_set) __swig_setmethods__["SHd"] = _AAPI.StructAkiEstadTurning_SHd_set __swig_getmethods__["SHd"] = _AAPI.StructAkiEstadTurning_SHd_get if _newclass:SHd = _swig_property(_AAPI.StructAkiEstadTurning_SHd_get, _AAPI.StructAkiEstadTurning_SHd_set) __swig_setmethods__["STa"] = _AAPI.StructAkiEstadTurning_STa_set __swig_getmethods__["STa"] = _AAPI.StructAkiEstadTurning_STa_get if _newclass:STa = _swig_property(_AAPI.StructAkiEstadTurning_STa_get, _AAPI.StructAkiEstadTurning_STa_set) __swig_setmethods__["STd"] = _AAPI.StructAkiEstadTurning_STd_set __swig_getmethods__["STd"] = _AAPI.StructAkiEstadTurning_STd_get if _newclass:STd = _swig_property(_AAPI.StructAkiEstadTurning_STd_get, _AAPI.StructAkiEstadTurning_STd_set) __swig_setmethods__["NumStops"] = _AAPI.StructAkiEstadTurning_NumStops_set __swig_getmethods__["NumStops"] = _AAPI.StructAkiEstadTurning_NumStops_get if _newclass:NumStops = _swig_property(_AAPI.StructAkiEstadTurning_NumStops_get, _AAPI.StructAkiEstadTurning_NumStops_set) __swig_setmethods__["LongQueueAvg"] = _AAPI.StructAkiEstadTurning_LongQueueAvg_set __swig_getmethods__["LongQueueAvg"] = _AAPI.StructAkiEstadTurning_LongQueueAvg_get if _newclass:LongQueueAvg = _swig_property(_AAPI.StructAkiEstadTurning_LongQueueAvg_get, _AAPI.StructAkiEstadTurning_LongQueueAvg_set) __swig_setmethods__["LongQueueMax"] = _AAPI.StructAkiEstadTurning_LongQueueMax_set __swig_getmethods__["LongQueueMax"] = _AAPI.StructAkiEstadTurning_LongQueueMax_get if _newclass:LongQueueMax = _swig_property(_AAPI.StructAkiEstadTurning_LongQueueMax_get, _AAPI.StructAkiEstadTurning_LongQueueMax_set) __swig_setmethods__["TotalTravel"] = _AAPI.StructAkiEstadTurning_TotalTravel_set __swig_getmethods__["TotalTravel"] = _AAPI.StructAkiEstadTurning_TotalTravel_get if _newclass:TotalTravel = _swig_property(_AAPI.StructAkiEstadTurning_TotalTravel_get, _AAPI.StructAkiEstadTurning_TotalTravel_set) __swig_setmethods__["TotalTravelTime"] = _AAPI.StructAkiEstadTurning_TotalTravelTime_set __swig_getmethods__["TotalTravelTime"] = _AAPI.StructAkiEstadTurning_TotalTravelTime_get if _newclass:TotalTravelTime = _swig_property(_AAPI.StructAkiEstadTurning_TotalTravelTime_get, _AAPI.StructAkiEstadTurning_TotalTravelTime_set) __swig_setmethods__["laneChanges"] = _AAPI.StructAkiEstadTurning_laneChanges_set __swig_getmethods__["laneChanges"]
<gh_stars>0 """ Comparison with a gtlike model """ import os, glob import pickle import numpy as np import pylab as plt import matplotlib.gridspec as gridspec import matplotlib.ticker as ticker import pandas as pd from skymaps import SkyDir #from uw.utilities import makepivot from uw.like import Models from . import (sourcecomparison, sourceinfo,fermi_catalog,) from . analysis_base import html_table, FloatFormat from .. import tools def add_galactic(tt, add=True): from skymaps import SkyDir sd = map (SkyDir, tt.ra, tt.dec) glon = np.array(map(lambda x: x.l(), sd)) glon[glon>180]-=360 glat = map(lambda x: x.b(), sd) tt['glat'] =glat tt['glon']=glon class FL8YComparison(sourceinfo.SourceInfo): """Comparison with 4FGL This analysis uses the %(cat)s catalog file %(fhl_file)s. <p>This is using the %(skymodel)s model, with the same 8-year data set, with Source class events. There are some differences: <ul> <li>The zenith cut is 100 degrees, for all energies, while %(cat)s varies from 90 to 110. <li>It restricts theta<66.4 degrees, since the IRF is not reliable above this: about 3%% loss <li>It uses Front/Back event types, with Front only for E<316 MeV. This loses some localization resolution, but avoids the PSF3 effective area problem. <li>The diffuse models are not modified for each ROI. </li> </ul> """ def setup(self, pattern=None, **kwargs): super(FL8YComparison, self).setup(**kwargs) self.cat='4FGL' self.plotfolder='{}_comparison'.format(self.cat) # make copy dataframe with compressed names df=self.df self.old_index = self.df.index cindex = [n.replace(' ','') for n in self.df.index] self.df.index = cindex # add info on E>10 GeV systematic = self.config['localization_systematics'] f95, quad = 2.45*systematic[0], systematic[1]/60. self.df['r95'] = (f95**2*(self.df.a * self.df.b) + quad**2)** 0.5 # get the catalog "gll" entries as a DataFrame and set corresponding values if pattern is None: pattern=self.config['gllcat'] if not pattern.startswith('/'): pattern = '$FERMI/catalog/'+pattern filename = sorted(glob.glob(os.path.expandvars(pattern)))[-1] fcat = fermi_catalog.GLL_PSC2(filename) self.fhl_file = fcat.filename.split('/')[-1] self.gdf = gdf= fcat.df gdf['uw_ts'] = self.df.ts gdf['uw_r95'] = self.df.r95 gdf['uw_pindex']= self.df.pindex gdf['uw_eflux100']=self.df.eflux100 # add boolean for in FL8Y self.df['fl8y'] = [n in gdf.index for n in cindex] # for sources not already tagged via the pointlike name being the same as the gtlike nickname # look for nearest 4FGL source: add name, its distance to DataFrame ok = df.fl8y==True added = np.logical_not(ok) df.loc[df.index[ok],'otherid']= df[ok].name df.loc[df.index[ok], 'distance']=0 # look for nearest 4FGL source in rejected list: add name, distance to DataFrame print ('Searching 4FGL for nearest source to the {} not found in it...'.format(sum(added)),) close = tools.find_close(df[added], self.gdf) df.loc[df.index[~ok],'otherid'] = close.otherid df.loc[df.index[~ok], 'distance'] = close.distance df['b4fgl'] = df.distance<0.015 df['otherts'] = [self.gdf.loc[s.otherid.replace(' ','')].ts for name,s in df.iterrows() ] df['other_extended'] = [self.gdf.loc[s.otherid.replace(' ','')].extended for name,s in df.iterrows() ] printprintprint ('done.') a = set(cindex) b = set(self.gdf.index); lost = np.array(list(set(b.difference(a)))) if len(lost)>10: print ('{} {} sources not here:,{}...'.format(len(lost), self.cat, lost[:10])) self.lost=lost # save for further analysis def add_info(self): df = self.df ok = df.fl8y==True added = np.logical_not(ok) df['otherid']='' df['distance']=np.nan df.otherid[ok] = df[ok].name df.distance[ok] = 0 from uw.like2 import tools # look for nearest 4FGL source in rejected list: add name, distance to DataFrame close = tools.find_close(df[added], self.gdf) df.otherid[new] = close.otherid df.distance[new] = close.distance df['otherts'] = [self.gdf.loc[s.otherid.replace(' ','')].ts for name,s in df.iterrows() ] df['other_extended'] = [self.gdf.loc[s.otherid.replace(' ','')].extended for name,s in df.iterrows() ] df['b4fgl'] = df.distance<0.015 def seed_selection(self, patterns = '605 504'.split(), close_tol=0.20, nearest_ts_limit=2e3, nocut=False): """Seed selection Output from code that selects seeds by source name prefix, finds those not in 4FGL, and removes those that should be eliminated by the 4FGL selection criteria. <pre>%(logstream)s</pre> <p>Table with seeds not too close, or nearest source that were rejected. %(rejected_4fgl)s """ self.startlog() df=self.df gdf = self.gdf print ('Selecting seeds by first characters in source name'\ '\n pattern seeds TS>25 kept' ) def get_seeds(df, pattern): seeded = np.array([name.startswith(pattern) for name in df.index]) sdf = df[seeded].copy() print (' {:8} {:6d} {:6d} {:6d} '.format( pattern, sum(seeded), sum(sdf.ts>25), sum(sdf.fl8y))) sdf['key'] = [name[3] for name in sdf.index] return sdf sdf = get_seeds(df, patterns[0]) for pattern in patterns[1:]: sdf = sdf.append(get_seeds(df, pattern)) print ('Created DF with {} seeds, {} in 4FGL'.format(len(sdf), sum(sdf.b4fgl))) self.seed_df = sdf print ('\nSelect a subset of seeds for comparison with 4FGL by removing those that are: ') too_close = np.array([close_tol<d<0.5 for d in sdf.distance],bool); print ('\t{:4d} too close to a 4FGL source by {} deg'.format( sum(too_close), close_tol, )) not_close = np.array([d>0.5 for d in sdf.distance],bool) too_soft = sdf.pindex>3 print ('\t{:4d} too soft, index>3'.format(sum(too_soft))) #strong_or_extended = (sdf.otherts>nearest_ts_limit) | sdf.other_extended strong = (sdf.otherts>nearest_ts_limit) print ('\t{:4d} nearest is strong (TS>{})'.format(sum(strong), nearest_ts_limit)) extended =sdf.other_extended print ('\t{:4d} nearest is extended '.format(sum(extended))) #print ('\t{:4d} nearest is strong (TS>{}) or extended'.format(sum(strong_or_extended), nearest_ts_limit,)) ignore = strong | extended | too_close | too_soft print ('\t{:4d} Any of the above'.format(sum(ignore))) if nocut: print ('Not using these cuts, for now') self.seed_subset = sdf else: self.seed_subset= sdf[~ignore]; self.logstream=self.stoplog() # make a table of those that perhaps should have been in 4FGL t=self.seed_subset.query('ts>100 & ~b4fgl')['ts distance otherid otherts '.split()].sort_values( by='ts', ascending=False) self.rejected_4fgl =html_table(t, name=self.plotfolder+'/seed_subset', heading='<h4>{} not in 4FGL, but should be w/ TS>100 </h4>'.format(len(t)), href=True, float_format=FloatFormat(2)) def seed_plots(self, tsmax=100, title='seed spectral parameters', cols=2,): """Seed properties, plot used in the 4FGL paper Distributions of the photon index (at pivot energy) and curvature for the seeded sources. The upper row shows the three power-law sources, and the lower the two curved sets. """ sdf = self.seed_df groups = sdf.groupby('key'); fig, axx = plt.subplots(2,cols, figsize=(3*(1+cols),8)) hatch_type=dict(H='//', F=r'\\', S='||', P='//', N=r'\\') for name, group in groups: hkw = dict(histtype='step', lw=2, hatch=hatch_type[name]) label = dict(H='Hard',F='Intermediate',S='Soft', P='Peaked', N='Pulsar-like')[name] print (label, len(group)) curved = dict(H=0, F=0, S=0, P=1, N=1)[name] pi = np.array(group.pindex, float) ts = np.array(group.ts, float).clip(0,tsmax) axi = axx[curved,0] # photon index axi.hist(pi, np.linspace(1, 3.5, 16), label=label, **hkw) if curved==0: x = dict(H=1.7, F=2.2, S=2.7)[name] axi.axvline(x, ls='--', lw=2, color=dict(H='orange', F='blue', S='green')[name]) axi.set(xlabel='Photon index') axi.legend(prop=dict(size=10), loc='upper left'); axc = axx[curved, 1] curvature = np.asarray(group.curvature,float) axc.hist(curvature, np.linspace(0,1,21), label=label, **hkw) axc.set(xlabel='curvature') axc.legend(prop=dict(size=10)); fig.tight_layout() fig.subplots_adjust(top=0.92) if title is not None: fig.suptitle(title, fontsize=24) return fig def acceptance_plots(self, title='gtlike seed acceptance', query=None): """Seed acceptance, plots in 4FGL paper Distributions of $TS$ and energy flux (0.1 to 100 GeV), as measured by $pointlike$, for sources added to the $pointlike$ model, filtered by rejection criteria, and the subset of same that was accepted by gtlike. %(seed_subset_label)s """ sdf = self.seed_df subset = self.seed_subset self.seed_subset_label='' if query is not None: print ('applying query("{}")'.format(query) ) subset = subset.query(query) self.seed_subset_label='<h4> selection: {}'.format(query) fig, axx = plt.subplots(1,2, figsize=(10,4))# gridspec_kw=dict(left=0.1, wspace=0.25)) ax=axx[0] hkw= dict(bins= np.logspace(1,3, 21), histtype='step', lw=2, log=True) ts= subset.ts.astype(float).clip(0,1e3) ax.hist(ts, color='orange', label='seeds', **hkw); ax.hist(ts[subset.b4fgl], label='in 4FGL', color='green', **hkw); ax.set(ylim=(0.8,None), xlabel='TS', xscale='log',); #ax.grid(alpha=0.4); ax.xaxis.set_major_formatter(ticker.FuncFormatter( lambda val,pos: { 1.0:'1', 10.0:'10', 100.:'100', 1e3:'1000'}.get(val,''))) ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda val,pos: { 1.0:'1', 10.0:'10', 100.:'100'}.get(val,''))) for x in (25,34): ax.axvline(x, ls='--', color='grey') ax.legend() ax=axx[1] hkw= dict(bins= np.logspace(-0.4,2.0, 25), histtype='step', lw=2, log=True) eflux = subset.eflux100.astype( float)*1e12 ax.hist(eflux, label='seeds', color='orange', **hkw) #ax.hist(eflux[ts>25], label='TS>25', color='grey', **hkw) ax.hist(eflux[subset.b4fgl],label='in 4FGL', color='green', **hkw) ax.set(xscale='log', xlabel=r'$\mathsf{Energy\ Flux\ [10^{-12}\ erg/cm^2/s}]$', ylim=(0.9,None), xlim=(None, 40.)) ax.legend() ax.xaxis.set_major_formatter(ticker.FuncFormatter( lambda val,pos: { 1.0:'1', 10.0:'10', 100.:'100'}.get(val,''))) ax.yaxis.set_major_formatter(ticker.FuncFormatter( lambda val,pos: { 1.0:'1', 10.0:'10', 100.:'100'}.get(val,''))) fig.tight_layout() if title != '': fig.subplots_adjust(top=0.90) fig.suptitle(title, fontsize=18); return fig def source_info_plots(self, tt, tscut=100): sd = map (SkyDir, tt.ra, tt.dec) glon = np.array(map(lambda x: x.l(), sd)) glon[glon>180]-=360 glat = map(lambda x: x.b(), sd) singlat = np.sin(np.radians(glat)) hights = tt.ts>tscut fig, axx = plt.subplots(1,2, figsize=(12,6)) plt.subplots_adjust(wspace=0.25) ax = axx[0] ts=np.array(tt.ts, float) hkw=dict(bins=np.logspace(np.log10(20),3,41), log=True, lw=2) ax.hist(ts[~pd.isnull(ts)].clip(10,1e3),histtype='step', **hkw); ax.hist(ts[~pd.isnull(ts) & hights].clip(10,1e3), color='red', label='TS>{}: {}\nmax:{:.0f}'.format(tscut, sum(hights), tt.ts.max()),histtype='stepfilled', **hkw); ax.legend() ax.set(xscale='log', xlabel='TS', ylim=(0.9, None)); ax.axvline(25, color='green', ls='--') ax = axx[1] self.basic_skyplot(ax, glon,singlat, 'blue', s=10, title='Locations') self.basic_skyplot(ax, glon[hights],singlat[hights],'red', s=30, title='Locations') return fig def filter_for_4fgl(self, df=None, close_tol=0.15): df = (self.df if df is None else df).copy() print ('Filtering {} sources with 4FGL accepance critera'.format(len(df))) add_galactic(df) # look for nearest 4FGL source in rejected list: add name, distance to DataFrame close = tools.find_close(df, self.gdf) df.loc[:,'otherid'] = close.otherid df.loc[:,'distance'] = close.distance df.loc[:,'otherts'] = [self.gdf.loc[s.otherid].ts for name,s in df.iterrows() ] df.loc[:,'other_extended'] = [self.gdf.loc[s.otherid].extended for name,s in df.iterrows() ] # create subset that are # * not just a rename, # * more than 0.5 deg away # * closest does not have
response = self.client.get(self.facet_url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) department_facets = response.data["fields"]["department"] department_projects_after_filtering = 0 for value in department_facets: if department == value["text"]: department_projects_after_filtering = value["count"] self.assertEqual(department_projects_after_filtering, 1) def test_search_by_province(self): province = "Eastern Cape" data = {"q": province} response = self.client.get(self.url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) num_of_projects = response.data["count"] self.assertEqual(num_of_projects, 2) def test_facet_search_by_province(self): province = "Eastern Cape" department = "Department 1" response = self.client.get(self.facet_url) department_facets = response.data["fields"]["department"] department_projects_before_filtering = 0 for value in department_facets: if department == value["text"]: department_projects_before_filtering = value["count"] self.assertEqual(department_projects_before_filtering, 2) data = {"q": province} response = self.client.get(self.facet_url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) department_facets = response.data["fields"]["department"] department_projects_after_filtering = 0 for value in department_facets: if department == value["text"]: department_projects_after_filtering = value["count"] self.assertEqual(department_projects_after_filtering, 1) class InfraProjectAPIStatusTestCase(APITestCase): def setUp(self): InfraProjectIndex().clear() self.file = open(EMPTY_FILE_PATH, "rb") self.url = reverse("infrastructure-project-api-list") self.facet_url = reverse("infrastructure-project-api-facets") fin_year = FinancialYear.objects.create(slug="2030-31") self.sphere = Sphere.objects.create(financial_year=fin_year, name="Provincial") self.quarter = Quarter.objects.create(number=1) self.date = date(year=2050, month=1, day=1) self.irm_snapshot = IRMSnapshot.objects.create( sphere=self.sphere, quarter=self.quarter, date_taken=self.date, file=File(self.file), ) self.project_1 = InfraProject.objects.create(IRM_project_id=1) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project_1, province="Eastern Cape", status="Construction", estimated_completion_date=self.date, ) self.project_2 = InfraProject.objects.create(IRM_project_id=2) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project_2, province="Free State", status="Construction", estimated_completion_date=self.date, ) self.project_3 = InfraProject.objects.create(IRM_project_id=3) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project_3, province="Eastern Cape", status="Completed", estimated_completion_date=self.date, ) InfraProjectIndex().reindex() def tearDown(self): InfraProjectIndex().clear() self.file.close() def test_filter_by_status(self): status_ = "Construction" data = {"status": status_} response = self.client.get(self.url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) number_of_projects = response.data["count"] self.assertEqual(number_of_projects, 2) def test_facet_filter_by_status(self): status_ = "Construction" province = "Eastern Cape" response = self.client.get(self.facet_url) province_facets = response.data["fields"]["province"] province_projects_before_filtering = 0 for value in province_facets: if province == value["text"]: province_projects_before_filtering = value["count"] self.assertEqual(province_projects_before_filtering, 2) data = {"selected_facets": "status_exact:{0}".format(status_)} response = self.client.get(self.facet_url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) province_facets = response.data["fields"]["province"] province_projects_after_filtering = 0 for value in province_facets: if province == value["text"]: province_projects_after_filtering = value["count"] self.assertEqual(province_projects_after_filtering, 1) class InfraProjectAPIFundingSourceTestCase(APITestCase): def setUp(self): InfraProjectIndex().clear() self.file = open(EMPTY_FILE_PATH, "rb") self.url = reverse("infrastructure-project-api-list") self.facet_url = reverse("infrastructure-project-api-facets") fin_year = FinancialYear.objects.create(slug="2030-31") self.sphere = Sphere.objects.create(financial_year=fin_year, name="Provincial") self.quarter = Quarter.objects.create(number=1) self.date = date(year=2050, month=1, day=1) self.irm_snapshot = IRMSnapshot.objects.create( sphere=self.sphere, quarter=self.quarter, date_taken=self.date, file=File(self.file), ) self.project_1 = InfraProject.objects.create(IRM_project_id=1) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project_1, province="Eastern Cape", primary_funding_source="Community Library Service Grant", estimated_completion_date=self.date, ) self.project_2 = InfraProject.objects.create(IRM_project_id=2) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project_2, province="Free State", primary_funding_source="Community Library Service Grant", estimated_completion_date=self.date, ) self.project_3 = InfraProject.objects.create(IRM_project_id=3) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project_3, province="Eastern Cape", primary_funding_source="Equitable Share", estimated_completion_date=self.date, ) InfraProjectIndex().reindex() def tearDown(self): InfraProjectIndex().clear() self.file.close() def test_filter_by_funding_source(self): source = "Community Library Service Grant" data = {"primary_funding_source": source} response = self.client.get(self.url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) number_of_projects = response.data["count"] self.assertEqual(number_of_projects, 2) def test_facet_filter_by_funding_source(self): source = "Community Library Service Grant" province = "Eastern Cape" response = self.client.get(self.facet_url) province_facets = response.data["fields"]["province"] province_projects_before_filtering = 0 for value in province_facets: if province == value["text"]: province_projects_before_filtering = value["count"] self.assertEqual(province_projects_before_filtering, 2) data = {"selected_facets": "primary_funding_source_exact:{0}".format(source)} response = self.client.get(self.facet_url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) province_facets = response.data["fields"]["province"] province_projects_after_filtering = 0 for value in province_facets: if province == value["text"]: province_projects_after_filtering = value["count"] self.assertEqual(province_projects_after_filtering, 1) class InfraProjectAPIProjectNameTestCase(APITestCase): def setUp(self): InfraProjectIndex().clear() self.file = open(EMPTY_FILE_PATH, "rb") self.url = reverse("infrastructure-project-api-list") self.facet_url = reverse("infrastructure-project-api-facets") fin_year = FinancialYear.objects.create(slug="2030-31") self.sphere = Sphere.objects.create(financial_year=fin_year, name="Provincial") self.quarter = Quarter.objects.create(number=1) self.date = date(year=2050, month=1, day=1) self.irm_snapshot = IRMSnapshot.objects.create( sphere=self.sphere, quarter=self.quarter, date_taken=self.date, file=File(self.file), ) self.project_1 = InfraProject.objects.create(IRM_project_id=1) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project_1, name="Project 1", province="Eastern Cape", estimated_completion_date=self.date, ) self.project_2 = InfraProject.objects.create(IRM_project_id=2) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project_2, name="Project 2", province="Eastern Cape", estimated_completion_date=self.date, ) InfraProjectIndex().reindex() def tearDown(self): InfraProjectIndex().clear() self.file.close() def test_search_by_project_name(self): name = "Project 1" data = {"q": name} response = self.client.get(self.url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) results = response.data["results"] self.assertEqual(len(results), 1) self.assertEqual(results[0]["name"], name) def test_facet_search_by_project_name(self): name = "Project 1" province = "Eastern Cape" response = self.client.get(self.facet_url) province_facets = response.data["fields"]["province"] province_projects_before_filtering = 0 for value in province_facets: if province == value["text"]: province_projects_before_filtering = value["count"] self.assertEqual(province_projects_before_filtering, 2) data = {"q": name} response = self.client.get(self.facet_url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) province_facets = response.data["fields"]["province"] province_projects_after_filtering = 0 for value in province_facets: if province == value["text"]: province_projects_after_filtering = value["count"] self.assertEqual(province_projects_after_filtering, 1) class InfraProjectAPIMunicipalityTestCase(APITestCase): def setUp(self): InfraProjectIndex().clear() self.file = open(EMPTY_FILE_PATH, "rb") self.url = reverse("infrastructure-project-api-list") self.facet_url = reverse("infrastructure-project-api-facets") fin_year = FinancialYear.objects.create(slug="2030-31") self.sphere = Sphere.objects.create(financial_year=fin_year, name="Provincial") self.quarter = Quarter.objects.create(number=1) self.date = date(year=2050, month=1, day=1) self.irm_snapshot = IRMSnapshot.objects.create( sphere=self.sphere, quarter=self.quarter, date_taken=self.date, file=File(self.file), ) self.project_1 = InfraProject.objects.create(IRM_project_id=1) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project_1, name="Project 1", province="Eastern Cape", local_municipality="Local 1", estimated_completion_date=self.date, ) self.project_2 = InfraProject.objects.create(IRM_project_id=2) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project_2, name="Project 2", province="Eastern Cape", local_municipality="Local 2", estimated_completion_date=self.date, ) InfraProjectIndex().reindex() def tearDown(self): InfraProjectIndex().clear() self.file.close() def test_search_by_municipality(self): name = "Project 1" municipality = "Local 1" data = {"q": municipality} response = self.client.get(self.url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) results = response.data["results"] self.assertEqual(len(results), 1) self.assertEqual(results[0]["name"], name) def test_facet_search_by_municipality(self): province = "Eastern Cape" municipality = "Local 1" response = self.client.get(self.facet_url) province_facets = response.data["fields"]["province"] province_projects_before_filtering = 0 for value in province_facets: if province == value["text"]: province_projects_before_filtering = value["count"] self.assertEqual(province_projects_before_filtering, 2) data = {"q": municipality} response = self.client.get(self.facet_url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) province_facets = response.data["fields"]["province"] province_projects_after_filtering = 0 for value in province_facets: if province == value["text"]: province_projects_after_filtering = value["count"] self.assertEqual(province_projects_after_filtering, 1) class InfraProjectAPIContractorTestCase(APITestCase): def setUp(self): InfraProjectIndex().clear() self.file = open(EMPTY_FILE_PATH, "rb") self.url = reverse("infrastructure-project-api-list") self.facet_url = reverse("infrastructure-project-api-facets") fin_year = FinancialYear.objects.create(slug="2030-31") self.sphere = Sphere.objects.create(financial_year=fin_year, name="Provincial") self.quarter = Quarter.objects.create(number=1) self.date = date(year=2050, month=1, day=1) self.irm_snapshot = IRMSnapshot.objects.create( sphere=self.sphere, quarter=self.quarter, date_taken=self.date, file=File(self.file), ) self.project_1 = InfraProject.objects.create(IRM_project_id=1) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project_1, name="Project 1", main_contractor="Contractor 1", province="Eastern Cape", estimated_completion_date=self.date, ) self.project_2 = InfraProject.objects.create(IRM_project_id=2) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project_2, name="Project 2", main_contractor="Contractor 2", province="Eastern Cape", estimated_completion_date=self.date, ) InfraProjectIndex().reindex() def tearDown(self): InfraProjectIndex().clear() self.file.close() def test_search_by_contractor(self): name = "Project 1" contractor = "Contractor 1" data = {"q": contractor} response = self.client.get(self.url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) results = response.data["results"] self.assertEqual(len(results), 1) self.assertEqual(results[0]["name"], name) def test_facet_search_by_contractor(self): contractor = "Contractor 1" province = "Eastern Cape" response = self.client.get(self.facet_url) province_facets = response.data["fields"]["province"] province_projects_before_filtering = 0 for value in province_facets: if province == value["text"]: province_projects_before_filtering = value["count"] self.assertEqual(province_projects_before_filtering, 2) data = {"q": contractor} response = self.client.get(self.facet_url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) province_facets = response.data["fields"]["province"] province_projects_after_filtering = 0 for value in province_facets: if province == value["text"]: province_projects_after_filtering = value["count"] self.assertEqual(province_projects_after_filtering, 1) class InfraProjectAPISearchMultipleFieldsTestCase(APITestCase): def setUp(self): InfraProjectIndex().clear() self.file = open(EMPTY_FILE_PATH, "rb") self.url = reverse("infrastructure-project-api-list") self.facet_url = reverse("infrastructure-project-api-facets") fin_year = FinancialYear.objects.create(slug="2030-31") self.sphere = Sphere.objects.create(financial_year=fin_year, name="Provincial") self.quarter = Quarter.objects.create(number=1) self.date = date(year=2050, month=1, day=1) self.irm_snapshot = IRMSnapshot.objects.create( sphere=self.sphere, quarter=self.quarter, date_taken=self.date, file=File(self.file), ) self.project_1 = InfraProject.objects.create(IRM_project_id=1) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project_1, name="Something School", province="Eastern Cape", estimated_completion_date=date(year=2020, month=6, day=1), ) self.project_2 = InfraProject.objects.create(IRM_project_id=2) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project_2, name="Project 2", province="Eastern Cape", estimated_completion_date=date(year=2020, month=6, day=1), ) InfraProjectIndex().reindex() def tearDown(self): InfraProjectIndex().clear() self.file.close() def test_search_multiple_fields(self): data = {"q": "Eastern Cape School"} response = self.client.get(self.url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) results = response.data["results"] self.assertEqual(len(results), 1) self.assertEqual(results[0]["province"], "Eastern Cape") self.assertEqual(results[0]["name"], "Something School") def test_facet_search_multiple_fields(self): data = {"q": "Eastern Cape School"} response = self.client.get(self.facet_url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) results = response.data["objects"]["results"] self.assertEqual(len(results), 1) self.assertEqual(results[0]["province"], "Eastern Cape") self.assertEqual(results[0]["name"], "Something School") class InfraProjectAPIURLPathTestCase(APITestCase): def setUp(self): InfraProjectIndex().clear() self.file = open(EMPTY_FILE_PATH, "rb") fin_year = FinancialYear.objects.create(slug="2030-31", published=True) self.sphere = Sphere.objects.create(financial_year=fin_year, name="Provincial") self.quarter = Quarter.objects.create(number=1) self.date = date(year=2050, month=1, day=1) self.irm_snapshot = IRMSnapshot.objects.create( sphere=self.sphere, quarter=self.quarter, date_taken=self.date, file=File(self.file), ) self.url = reverse("infrastructure-project-api-list") self.facet_url = reverse("infrastructure-project-api-facets") self.project = InfraProject.objects.create(IRM_project_id=1) InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot, project=self.project, name="Project 1", estimated_completion_date=date(year=2020, month=1, day=1), province="Fake prov", department="Fake dept", ) InfraProjectIndex().reindex() def tearDown(self): InfraProjectIndex().clear() self.file.close() def test_url_path(self): name = "Project 1" data = {"name": name} response = self.client.get(self.url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) result = response.data["results"][0] url_path = result["url_path"] response = self.client.get(url_path) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertContains(response, name) def test_facet_url_path(self): name = "Project 1" data = {"q": name} response = self.client.get(self.facet_url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) result = response.data["objects"]["results"][0] url_path = result["url_path"] response = self.client.get(url_path) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertContains(response, name) class InfraProjectSnapshotTestCase(APITestCase): def setUp(self): InfraProjectIndex().clear() self.file_1 = open(EMPTY_FILE_PATH, "rb") self.file_2 = open(EMPTY_FILE_PATH, "rb") self.project = InfraProject.objects.create(IRM_project_id=1) fin_year = FinancialYear.objects.create(slug="2030-31", published=True) self.sphere = Sphere.objects.create(financial_year=fin_year, name="Provincial") self.quarter_1 = Quarter.objects.create(number=1) self.quarter_2 = Quarter.objects.create(number=2) self.date_1 = date(year=2050, month=1, day=1) self.irm_snapshot_1 = IRMSnapshot.objects.create( sphere=self.sphere, quarter=self.quarter_1, date_taken=self.date_1, file=File(self.file_1), ) self.project_snapshot_1 = InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot_1, project=self.project, local_municipality="MUNI A", estimated_completion_date=date(year=2020, month=1, day=1), department="Fake Dept", province="Fake Prov", ) self.irm_snapshot_2 = IRMSnapshot.objects.create( sphere=self.sphere, quarter=self.quarter_2, date_taken=self.date_1, file=File(self.file_2), ) self.project_snapshot_2 = InfraProjectSnapshot.objects.create( irm_snapshot=self.irm_snapshot_2, project=self.project, local_municipality="MUNI B", estimated_completion_date=date(year=2020, month=1, day=1), department="Fake Dept", province="Fake Prov", ) def tearDown(self): self.file_1.close() self.file_2.close() def test_latest_status_in_the_content(self): response = self.client.get(self.project.get_absolute_url()) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertContains(response, "MUNI B") self.assertNotContains(response, "MUNI A") def test_latest_in_the_same_year(self): latest = self.project.project_snapshots.latest() self.assertEqual(self.project_snapshot_2, latest) class InfraProjectSnapshotDifferentYearsTestCase(APITestCase): def setUp(self): InfraProjectIndex().clear() self.file_1 = open(EMPTY_FILE_PATH, "rb") self.file_2 = open(EMPTY_FILE_PATH, "rb") self.project = InfraProject.objects.create(IRM_project_id=1) fin_year_1 = FinancialYear.objects.create(slug="2030-31") fin_year_2 = FinancialYear.objects.create(slug="2031-32") self.sphere_1 = Sphere.objects.create( financial_year=fin_year_1, name="Provincial" ) self.sphere_2 = Sphere.objects.create( financial_year=fin_year_2, name="Provincial" ) self.quarter_1 = Quarter.objects.create(number=1) self.date_1 = date(year=2050, month=1, day=1) self.date_2 =
#!/usr/bin/env python # # Copyright 2018 VMware, Inc. # SPDX-License-Identifier: BSD-2-Clause OR GPL-3.0-only # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, # BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from ansible.module_utils.policy_communicator import PolicyCommunicator from ansible.module_utils.policy_communicator import DuplicateRequestError from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_native import sys if sys.version_info[0] < 3: raise Exception("Must be using Python 3") from abc import ABC, abstractmethod import time import json import inspect # Add all the base resources that can be configured in the # Policy API here. Required to infer base resource params. BASE_RESOURCES = {"NSXTSegment", "NSXTTier0", "NSXTTier1", "NSXTSecurityPolicy", "NSXTPolicyGroup", "NSXTIpBlock", "NSXTIpPool", "NSXTBFDConfig", "NSXTGatewayPolicy"} class NSXTBaseRealizableResource(ABC): INCORRECT_ARGUMENT_NAME_VALUE = "error_invalid_parameter" def realize(self, supports_check_mode=True, successful_resource_exec_logs=[], baseline_arg_names=[], resource_params=None): # must call this method to realize the creation, update, or deletion of # resource self.resource_class = self.__class__ if not hasattr(self, "_arg_spec"): # Base resource self._make_ansible_arg_spec( supports_check_mode=supports_check_mode) if not hasattr(self, 'module'): self.module = AnsibleModule( argument_spec=self._arg_spec, supports_check_mode=supports_check_mode) self.set_baseline_args(baseline_arg_names) # Infer manager credentials mgr_hostname = self.module.params['hostname'] mgr_username = self.module.params['username'] mgr_password = self.module.params['password'] nsx_cert_path = self.module.params['nsx_cert_path'] nsx_key_path = self.module.params['nsx_key_path'] request_headers = self.module.params['request_headers'] ca_path = self.module.params['ca_path'] validate_certs = self.module.params['validate_certs'] # Each manager has an associated PolicyCommunicator self.policy_communicator = PolicyCommunicator.get_instance( mgr_hostname, mgr_username, mgr_password, nsx_cert_path, nsx_key_path, request_headers, ca_path, validate_certs) if resource_params is None: resource_params = self.module.params self.resource_params = resource_params self._state = self.get_attribute('state', resource_params) if not (hasattr(self, 'id') and self.id): if self.get_resource_name() in BASE_RESOURCES: self.id = self._get_id_using_attr_name( None, resource_params, self.get_resource_base_url(self.baseline_args), self.get_spec_identifier()) else: self.id = self._get_id_using_attr_name( None, resource_params, self.get_resource_base_url(self._parent_info), self.get_spec_identifier()) if self.id is None: return # Extract the resource params from module self.nsx_resource_params = self._extract_nsx_resource_params( resource_params) # parent_info is passed to subresources of a resource automatically if not hasattr(self, "_parent_info"): self._parent_info = {} self.update_parent_info(self._parent_info) try: # get existing resource schema _, self.existing_resource = self._send_request_to_API( "/" + self.id, ignore_error=False, accepted_error_codes=set([404])) # As Policy API's PATCH requires all attributes to be filled, # we fill the missing resource params (the params not specified) # by user using the existing params self._fill_missing_resource_params( self.existing_resource, self.nsx_resource_params) except Exception as err: # the resource does not exist currently on the manager self.existing_resource = None self._achieve_state(resource_params, successful_resource_exec_logs) @classmethod def get_spec_identifier(cls): # Can be overriden in the subclass to provide different # unique_arg_identifier. It is used to infer which args belong to which # subresource. # By default, class name is used for subresources. return cls.get_resource_name() def get_state(self): return self._state def get_parent_info(self): return self._parent_info @staticmethod @abstractmethod def get_resource_base_url(parent_info): # Must be overridden by the subclass raise NotImplementedError @staticmethod @abstractmethod def get_resource_spec(): # Must be overridden by the subclass raise NotImplementedError @classmethod def get_resource_name(cls): return cls.__name__ def create_or_update_subresource_first(self): # return True if subresource should be created/updated before parent # resource return self.resource_params.get( "create_or_update_subresource_first", False) def delete_subresource_first(self): # return True if subresource should be deleted before parent resource return self.resource_params.get("delete_subresource_first", True) def achieve_subresource_state_if_del_parent(self): # return True if this resource is to be realized with its own specified # state irrespective of the state of its parent resource. return self.resource_params.get( "achieve_subresource_state_if_del_parent", False) def do_wait_till_create(self): # By default, we do not wait for the parent resource to be created or # updated before its subresource is to be realized. return self.resource_params.get("do_wait_till_create", False) @staticmethod def get_resource_update_priority(): # this priority can be used to create/delete subresources # at the same level in a particular order. # by default, it returns 1 so the resources are created/updated/ # deleted in a fixed but random order. # should be overloaded in subclass to specify its priority. # for creation or update, we iterate in descending order. # for deletion, we iterate in ascending order. return 1 def set_arg_spec(self, arg_spec): self._arg_spec = arg_spec def set_ansible_module(self, ansible_module): self.module = ansible_module def set_parent_info(self, parent_info): self._parent_info = parent_info def achieve_subresource_state( self, resource_params, successful_resource_exec_logs): """ Achieve the state of each sub-resource. """ for sub_resource_class in self._get_sub_resources_class_of( self.resource_class): if sub_resource_class.allows_multiple_resource_spec(): children_resource_spec = (resource_params.get( sub_resource_class.get_spec_identifier()) or []) else: children_resource_spec = ([resource_params.get( sub_resource_class.get_spec_identifier())] or []) # Update the parent pointer my_parent = self._parent_info.get('_parent', '') self._update_parent_info() for resource_param_spec in children_resource_spec: if resource_param_spec is not None: sub_resource = sub_resource_class() sub_resource.set_arg_spec(self._arg_spec) sub_resource.set_ansible_module(self.module) sub_resource.set_parent_info(self._parent_info) sub_resource.realize( successful_resource_exec_logs=( successful_resource_exec_logs), resource_params=resource_param_spec) # Restore the parent pointer self._parent_info['_parent'] = my_parent def update_resource_params(self, nsx_resource_params): # Can be used to updates the params of resource before making # the API call. # Should be overridden in the subclass if needed pass def check_for_update(self, existing_params, resource_params): """ resource_params: dict existing_params: dict Compares the existing_params with resource_params and returns True if they are different. At a base level, it traverses the params and matches one-to-one. If the value to be matched is a - dict, it traverses that also. - list, it merely compares the order. Can be overriden in the subclass for specific custom checking. Returns true if the params differ """ if not existing_params: return False for k, v in resource_params.items(): if k not in existing_params: return True elif type(v).__name__ == 'dict': if self.check_for_update(existing_params[k], v): return True elif v != existing_params[k]: def compare_lists(list1, list2): # Returns True if list1 and list2 differ try: # If the lists can be converted into sets, do so and # compare lists as sets. set1 = set(list1) set2 = set(list2) return set1 != set2 except Exception: return True if type(v).__name__ == 'list': if compare_lists(v, existing_params[k]): return True continue return True return False def update_parent_info(self, parent_info): # Override this and fill in self._parent_info if that is to be passed # to the sub-resource # By default, parent's id is passed parent_info[self.get_spec_identifier() + "_id"] = self.id def get_attribute(self, attribute, resource_params): """ attribute: String resource_params: Parameters of the resource """ if (attribute == "state" and self.get_resource_name() not in BASE_RESOURCES): # if parent has absent state, subresources should have absent # state if . So, irrespective of what user specifies, if parent # is to be deleted, the child resources will be deleted. # override achieve_subresource_state_if_del_parent # in resource class to change this behavior if (self._parent_info["_parent"].get_state() == "absent" and not self.achieve_subresource_state_if_del_parent()): return "absent" return resource_params.get( attribute, self.INCORRECT_ARGUMENT_NAME_VALUE) def set_baseline_args(self, baseline_arg_names): # Can be overriden in subclass self.baseline_args = {} for baseline_arg_name in baseline_arg_names: self.baseline_args[baseline_arg_name] = self.module.params[ baseline_arg_name] def do_resource_params_have_attr_with_id_or_display_name(self, attr): if (attr + "_id" in self.nsx_resource_params or attr + "_display_name" in self.nsx_resource_params): return True return False def get_id_using_attr_name_else_fail(self, attr_name, params, resource_base_url, resource_type, ignore_not_found_error=True): resource_id = self._get_id_using_attr_name( attr_name, params, resource_base_url, resource_type, ignore_not_found_error) if resource_id is not None: return resource_id # Incorrect usage of Ansible Module self.module.fail_json(msg="Please specify either {} id or display_name" " for the resource {}".format( attr_name, str(resource_type))) def exit_with_failure(self, msg, **kwargs): self.module.fail_json(msg=msg, **kwargs) def skip_delete(self): """ Override in subclass if this resource is skipped to be deleted. Note that the children of this resource will still be deleted unless they override this method as well. """ return False @classmethod def is_required_in_spec(cls): """ Override in subclass if this resource is optional to be specified in the ansible playbook. """ return False @classmethod def allows_multiple_resource_spec(cls): """ Override in the resource class definition with False if only one resource can be associated with the parent. By default, we accept multiple """ return True def _get_id_using_attr_name(self, attr_name, params, resource_base_url, resource_type, ignore_not_found_error=True): # Pass attr_name '' or None to infer base resource's ID id_identifier = 'id' display_name_identifier = 'display_name' if attr_name: id_identifier = attr_name + "_id" display_name_identifier = attr_name + "_display_name" if id_identifier in params and params[id_identifier]: return params.pop(id_identifier) if (display_name_identifier in params and params[display_name_identifier]): resource_display_name = params.pop(display_name_identifier) # Use display_name as ID if ID is not specified. return
<reponame>WeilerWebServices/PostgreSQL<filename>pgAdmin/browser/server_groups/servers/pgagent/schedules/__init__.py ########################################################################## # # pgAdmin 4 - PostgreSQL Tools # # Copyright (C) 2013 - 2020, The pgAdmin Development Team # This software is released under the PostgreSQL Licence # ########################################################################## """Implements pgAgent Job Schedule Node""" import json from functools import wraps from flask import render_template, request, jsonify from flask_babelex import gettext from pgadmin.browser.collection import CollectionNodeModule from pgadmin.browser.utils import PGChildNodeView from pgadmin.utils.ajax import make_json_response, gone, \ make_response as ajax_response, internal_server_error from pgadmin.utils.driver import get_driver from pgadmin.browser.server_groups.servers.pgagent.utils \ import format_schedule_data from config import PG_DEFAULT_DRIVER class JobScheduleModule(CollectionNodeModule): """ class JobScheduleModule(CollectionNodeModule) A module class for JobSchedule node derived from CollectionNodeModule. Methods: ------- * get_nodes(gid, sid, jid) - Method is used to generate the browser collection node. * node_inode() - Method is overridden from its base class to make the node as leaf node. """ NODE_TYPE = 'pga_schedule' COLLECTION_LABEL = gettext("Schedules") def get_nodes(self, gid, sid, jid): """ Method is used to generate the browser collection node Args: gid: Server Group ID sid: Server ID jid: Database Id """ yield self.generate_browser_collection_node(jid) @property def node_inode(self): """ Override this property to make the node a leaf node. Returns: False as this is the leaf node """ return False @property def script_load(self): """ Load the module script for schedule, when any of the pga_job nodes are initialized. Returns: node type of the server module. """ return 'pga_job' @property def csssnippets(self): """ Returns a snippet of css to include in the page """ snippets = [ render_template( "pga_schedule/css/pga_schedule.css", node_type=self.node_type ) ] for submodule in self.submodules: snippets.extend(submodule.csssnippets) return snippets @property def module_use_template_javascript(self): """ Returns whether Jinja2 template is used for generating the javascript module. """ return False blueprint = JobScheduleModule(__name__) class JobScheduleView(PGChildNodeView): """ class JobScheduleView(PGChildNodeView) A view class for JobSchedule node derived from PGChildNodeView. This class is responsible for all the stuff related to view like updating schedule node, showing properties, showing sql in sql pane. Methods: ------- * __init__(**kwargs) - Method is used to initialize the JobScheduleView and it's base view. * check_precondition() - This function will behave as a decorator which will checks database connection before running view, it will also attaches manager,conn & template_path properties to self * list() - This function is used to list all the schedule nodes within that collection. * nodes() - This function will used to create all the child node within that collection. Here it will create all the schedule node. * properties(gid, sid, jid, jscid) - This function will show the properties of the selected schedule node * update(gid, sid, jid, jscid) - This function will update the data for the selected schedule node * msql(gid, sid, jid, jscid) - This function is used to return modified SQL for the selected schedule node * sql(gid, sid, jid, jscid) - Dummy response for sql panel * delete(gid, sid, jid, jscid) - Drops job schedule """ node_type = blueprint.node_type parent_ids = [ {'type': 'int', 'id': 'gid'}, {'type': 'int', 'id': 'sid'}, {'type': 'int', 'id': 'jid'} ] ids = [ {'type': 'int', 'id': 'jscid'} ] operations = dict({ 'obj': [ {'get': 'properties', 'put': 'update', 'delete': 'delete'}, {'get': 'list', 'post': 'create', 'delete': 'delete'} ], 'nodes': [{'get': 'nodes'}, {'get': 'nodes'}], 'msql': [{'get': 'msql'}, {'get': 'msql'}], 'sql': [{'get': 'sql'}] }) def _init_(self, **kwargs): """ Method is used to initialize the JobScheduleView and its base view. Initialize all the variables create/used dynamically like conn, template_path. Args: **kwargs: """ self.conn = None self.template_path = None self.manager = None super(JobScheduleView, self).__init__(**kwargs) def check_precondition(f): """ This function will behave as a decorator which will check the database connection before running the view. It also attaches manager, conn & template_path properties to self """ @wraps(f) def wrap(*args, **kwargs): # Here args[0] will hold self & kwargs will hold gid,sid,jid self = args[0] self.driver = get_driver(PG_DEFAULT_DRIVER) self.manager = self.driver.connection_manager(kwargs['sid']) self.conn = self.manager.connection() self.template_path = 'pga_schedule/sql/pre3.4' return f(*args, **kwargs) return wrap @check_precondition def list(self, gid, sid, jid): """ This function is used to list all the language nodes within that collection. Args: gid: Server Group ID sid: Server ID jid: Job ID """ sql = render_template( "/".join([self.template_path, 'properties.sql']), jid=jid ) status, res = self.conn.execute_dict(sql) if not status: return internal_server_error(errormsg=res) return ajax_response( response=res['rows'], status=200 ) @check_precondition def nodes(self, gid, sid, jid, jscid=None): """ This function is used to create all the child nodes within the collection. Here it will create all the language nodes. Args: gid: Server Group ID sid: Server ID jid: Job ID """ res = [] sql = render_template( "/".join([self.template_path, 'nodes.sql']), jscid=jscid, jid=jid ) status, result = self.conn.execute_2darray(sql) if not status: return internal_server_error(errormsg=result) if jscid is not None: if len(result['rows']) == 0: return gone( errormsg=gettext("Could not find the specified job step.") ) row = result['rows'][0] return make_json_response( data=self.blueprint.generate_browser_node( row['jscid'], row['jscjobid'], row['jscname'], icon="icon-pga_schedule" if row['jscenabled'] else "icon-pga_schedule-disabled", enabled=row['jscenabled'] ) ) for row in result['rows']: res.append( self.blueprint.generate_browser_node( row['jscid'], row['jscjobid'], row['jscname'], icon="icon-pga_schedule" if row['jscenabled'] else "icon-pga_schedule-disabled", enabled=row['jscenabled'] ) ) return make_json_response( data=res, status=200 ) @check_precondition def properties(self, gid, sid, jid, jscid): """ This function will show the properties of the selected language node. Args: gid: Server Group ID sid: Server ID jid: Job ID jscid: JobSchedule ID """ sql = render_template( "/".join([self.template_path, 'properties.sql']), jscid=jscid, jid=jid ) status, res = self.conn.execute_dict(sql) if not status: return internal_server_error(errormsg=res) if len(res['rows']) == 0: return gone( errormsg=gettext("Could not find the specified job step.") ) return ajax_response( response=res['rows'][0], status=200 ) @check_precondition def create(self, gid, sid, jid): """ This function will update the data for the selected schedule node. Args: gid: Server Group ID sid: Server ID jid: Job ID """ data = {} if request.args: for k, v in request.args.items(): try: data[k] = json.loads( v.decode('utf-8') if hasattr(v, 'decode') else v ) except ValueError: data[k] = v else: data = json.loads(request.data.decode()) # convert python list literal to postgres array literal. format_schedule_data(data) sql = render_template( "/".join([self.template_path, 'create.sql']), jid=jid, data=data, fetch_id=True ) status, res = self.conn.execute_void('BEGIN') if not status: return internal_server_error(errormsg=res) status, res = self.conn.execute_scalar(sql) if not status: if self.conn.connected(): self.conn.execute_void('END') return internal_server_error(errormsg=res) self.conn.execute_void('END') sql = render_template( "/".join([self.template_path, 'properties.sql']), jscid=res, jid=jid ) status, res = self.conn.execute_2darray(sql) if not status: return internal_server_error(errormsg=res) if len(res['rows']) == 0: return gone( errormsg=gettext("Job schedule creation failed.") ) row = res['rows'][0] return jsonify( node=self.blueprint.generate_browser_node( row['jscid'], row['jscjobid'], row['jscname'], icon="icon-pga_schedule" if row['jscenabled'] else "icon-pga_schedule-disabled", enabled=row['jscenabled'] ) ) @check_precondition def update(self, gid, sid, jid, jscid): """ This function will update the data for the selected schedule node. Args: gid: Server Group ID sid: Server ID jid: Job ID jscid: JobSchedule ID """ data = {} if request.args: for k, v in request.args.items(): try: data[k] = json.loads( v.decode('utf-8') if hasattr(v, 'decode') else v ) except ValueError: data[k] = v else: data = json.loads(request.data.decode()) # convert python list literal to postgres array literal. format_schedule_data(data) sql = render_template( "/".join([self.template_path, 'update.sql']), jid=jid, jscid=jscid, data=data ) status, res = self.conn.execute_void(sql) if not status: return internal_server_error(errormsg=res) sql = render_template( "/".join([self.template_path, 'properties.sql']), jscid=jscid, jid=jid ) status, res = self.conn.execute_2darray(sql) if not status: return internal_server_error(errormsg=res) row = res['rows'][0] if len(res['rows']) == 0: return gone( errormsg=gettext("Job schedule update failed.") ) return jsonify( node=self.blueprint.generate_browser_node( jscid, jid, row['jscname'], icon="icon-pga_schedule" if row['jscenabled'] else "icon-pga_schedule-disabled", enabled=row['jscenabled'] ) ) @check_precondition def delete(self, gid, sid, jid, jscid=None): """Delete the Job Schedule.""" if jscid is None: data = request.form if request.form else json.loads( request.data, encoding='utf-8' ) else: data = {'ids': [jscid]} for jscid in data['ids']: status, res = self.conn.execute_void( render_template( "/".join([self.template_path, 'delete.sql']), jid=jid, jscid=jscid, conn=self.conn ) ) if not status: return internal_server_error(errormsg=res) return make_json_response(success=1) @check_precondition def msql(self, gid, sid, jid, jscid=None): """ This function is used to return modified SQL for the selected Schedule node. Args: gid: Server Group ID sid: Server ID jid: Job ID jscid: Job Schedule ID (optional) """ data = {} sql = '' for k, v in request.args.items(): try: data[k] = json.loads( v.decode('utf-8') if hasattr(v, 'decode') else v ) except ValueError: data[k] = v if jscid is None: sql = render_template( "/".join([self.template_path, 'create.sql']), jid=jid, data=data, fetch_id=False ) else: sql = render_template( "/".join([self.template_path, 'update.sql']), jid=jid, jscid=jscid, data=data ) return make_json_response( data=sql, status=200 ) @check_precondition def sql(self, gid,
the type of object this is. Should always . # noqa: E501 :param category_id: The category_id of this BlogPost. # noqa: E501 :type: int """ if self.local_vars_configuration.client_side_validation and category_id is None: # noqa: E501 raise ValueError("Invalid value for `category_id`, must not be `None`") # noqa: E501 self._category_id = category_id @property def state(self): """Gets the state of this BlogPost. # noqa: E501 An ENUM descibing the current state of this Blog Post. # noqa: E501 :return: The state of this BlogPost. # noqa: E501 :rtype: str """ return self._state @state.setter def state(self, state): """Sets the state of this BlogPost. An ENUM descibing the current state of this Blog Post. # noqa: E501 :param state: The state of this BlogPost. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and state is None: # noqa: E501 raise ValueError("Invalid value for `state`, must not be `None`") # noqa: E501 if self.local_vars_configuration.client_side_validation and state is not None and len(state) > 25: raise ValueError("Invalid value for `state`, length must be less than or equal to `25`") # noqa: E501 self._state = state @property def template_path(self): """Gets the template_path of this BlogPost. # noqa: E501 :return: The template_path of this BlogPost. # noqa: E501 :rtype: str """ return self._template_path @template_path.setter def template_path(self, template_path): """Sets the template_path of this BlogPost. :param template_path: The template_path of this BlogPost. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and template_path is None: # noqa: E501 raise ValueError("Invalid value for `template_path`, must not be `None`") # noqa: E501 self._template_path = template_path @property def name(self): """Gets the name of this BlogPost. # noqa: E501 The internal name of the blog post. # noqa: E501 :return: The name of this BlogPost. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this BlogPost. The internal name of the blog post. # noqa: E501 :param name: The name of this BlogPost. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and name is None: # noqa: E501 raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def mab_experiment_id(self): """Gets the mab_experiment_id of this BlogPost. # noqa: E501 :return: The mab_experiment_id of this BlogPost. # noqa: E501 :rtype: str """ return self._mab_experiment_id @mab_experiment_id.setter def mab_experiment_id(self, mab_experiment_id): """Sets the mab_experiment_id of this BlogPost. :param mab_experiment_id: The mab_experiment_id of this BlogPost. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and mab_experiment_id is None: # noqa: E501 raise ValueError("Invalid value for `mab_experiment_id`, must not be `None`") # noqa: E501 self._mab_experiment_id = mab_experiment_id @property def archived(self): """Gets the archived of this BlogPost. # noqa: E501 If True, the post will not show up in your dashboard, although the post could still be live. # noqa: E501 :return: The archived of this BlogPost. # noqa: E501 :rtype: bool """ return self._archived @archived.setter def archived(self, archived): """Sets the archived of this BlogPost. If True, the post will not show up in your dashboard, although the post could still be live. # noqa: E501 :param archived: The archived of this BlogPost. # noqa: E501 :type: bool """ if self.local_vars_configuration.client_side_validation and archived is None: # noqa: E501 raise ValueError("Invalid value for `archived`, must not be `None`") # noqa: E501 self._archived = archived @property def author_name(self): """Gets the author_name of this BlogPost. # noqa: E501 The name of the user that updated this blog post. # noqa: E501 :return: The author_name of this BlogPost. # noqa: E501 :rtype: str """ return self._author_name @author_name.setter def author_name(self, author_name): """Sets the author_name of this BlogPost. The name of the user that updated this blog post. # noqa: E501 :param author_name: The author_name of this BlogPost. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and author_name is None: # noqa: E501 raise ValueError("Invalid value for `author_name`, must not be `None`") # noqa: E501 self._author_name = author_name @property def ab_test_id(self): """Gets the ab_test_id of this BlogPost. # noqa: E501 :return: The ab_test_id of this BlogPost. # noqa: E501 :rtype: str """ return self._ab_test_id @ab_test_id.setter def ab_test_id(self, ab_test_id): """Sets the ab_test_id of this BlogPost. :param ab_test_id: The ab_test_id of this BlogPost. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and ab_test_id is None: # noqa: E501 raise ValueError("Invalid value for `ab_test_id`, must not be `None`") # noqa: E501 self._ab_test_id = ab_test_id @property def created_by_id(self): """Gets the created_by_id of this BlogPost. # noqa: E501 The ID of the user that created this blog post. # noqa: E501 :return: The created_by_id of this BlogPost. # noqa: E501 :rtype: str """ return self._created_by_id @created_by_id.setter def created_by_id(self, created_by_id): """Sets the created_by_id of this BlogPost. The ID of the user that created this blog post. # noqa: E501 :param created_by_id: The created_by_id of this BlogPost. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and created_by_id is None: # noqa: E501 raise ValueError("Invalid value for `created_by_id`, must not be `None`") # noqa: E501 self._created_by_id = created_by_id @property def updated_by_id(self): """Gets the updated_by_id of this BlogPost. # noqa: E501 The ID of the user that updated this blog post. # noqa: E501 :return: The updated_by_id of this BlogPost. # noqa: E501 :rtype: str """ return self._updated_by_id @updated_by_id.setter def updated_by_id(self, updated_by_id): """Sets the updated_by_id of this BlogPost. The ID of the user that updated this blog post. # noqa: E501 :param updated_by_id: The updated_by_id of this BlogPost. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and updated_by_id is None: # noqa: E501 raise ValueError("Invalid value for `updated_by_id`, must not be `None`") # noqa: E501 self._updated_by_id = updated_by_id @property def domain(self): """Gets the domain of this BlogPost. # noqa: E501 The domain this Blog Post will resolve to. If null, the Blog Post will default to the domain of the ParentBlog. # noqa: E501 :return: The domain of this BlogPost. # noqa: E501 :rtype: str """ return self._domain @domain.setter def domain(self, domain): """Sets the domain of this BlogPost. The domain this Blog Post will resolve to. If null, the Blog Post will default to the domain of the ParentBlog. # noqa: E501 :param domain: The domain of this BlogPost. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and domain is None: # noqa: E501 raise ValueError("Invalid value for `domain`, must not be `None`") # noqa: E501 self._domain = domain @property def subcategory(self): """Gets the subcategory of this BlogPost. # noqa: E501 :return: The subcategory of this BlogPost. # noqa: E501 :rtype: str """ return self._subcategory @subcategory.setter def subcategory(self, subcategory): """Sets the subcategory of this BlogPost. :param subcategory: The subcategory of this BlogPost. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and subcategory is None: # noqa: E501 raise ValueError("Invalid value for `subcategory`, must not be `None`") # noqa: E501 self._subcategory = subcategory @property def ab_status(self): """Gets the ab_status of this BlogPost. # noqa: E501 :return: The ab_status of this BlogPost. # noqa: E501 :rtype: str """ return self._ab_status @ab_status.setter def ab_status(self, ab_status): """Sets the ab_status of this BlogPost. :param ab_status: The ab_status of this BlogPost. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and ab_status is None: # noqa: E501 raise ValueError("Invalid value for `ab_status`, must not be `None`") # noqa: E501 allowed_values = ["master", "variant", "loser_variant", "mab_master", "mab_variant", "automated_master", "automated_variant", "automated_loser_variant"] # noqa: E501 if self.local_vars_configuration.client_side_validation and ab_status not in allowed_values: # noqa: E501 raise ValueError("Invalid value for `ab_status` ({0}), must be one of {1}".format(ab_status, allowed_values)) # noqa: E501 self._ab_status = ab_status @property def folder_id(self): """Gets the folder_id of this BlogPost. # noqa: E501 :return: The folder_id of this BlogPost. # noqa: E501 :rtype: str """ return self._folder_id @folder_id.setter def folder_id(self, folder_id): """Sets the folder_id of this BlogPost. :param folder_id: The folder_id of this BlogPost. # noqa: E501 :type: str """ if self.local_vars_configuration.client_side_validation and folder_id is None: # noqa: E501 raise ValueError("Invalid value for `folder_id`, must not be `None`") # noqa: E501 self._folder_id = folder_id @property def
from dataclasses import dataclass from typing import List import numpy as np import scipy.spatial import matplotlib.pyplot as plt from spherical_geometry.polygon import SingleSphericalPolygon from .celeri_util import sph2cart def angle_between_vectors(v1, v2, v3): """ Compute the angle between the vector (v2, v3) and (v1, v2) The angle is constrained to lie in [-np.pi, np.pi] No turn will result in an angle of 0. A left turn will produce a positive angle. A right turn will produce a negative angle. The function is designed for units in (longitude degrees, latitude degrees) and will handle the meridian. If you have units in another coordinate system, this function will cause problems. """ # *Meridian handling* # The furthest longitudinal distance between any two points is 180 degrees, # so if the distance is greater than that, then we subtract 360 degrees. # Note that this solution should work well regardless of whether the longitude # coordinate range is [0,360) or [-180,180) A1x = v3[0] - v2[0] if A1x > 180: A1x -= 360 if A1x < -180: A1x += 360 A2x = v2[0] - v1[0] if A2x > 180: A2x -= 360 if A2x < -180: A2x += 360 A1 = np.arctan2(v3[1] - v2[1], A1x) A2 = np.arctan2(v2[1] - v1[1], A2x) angle = A1 - A2 if angle < -np.pi: angle += 2 * np.pi elif angle > np.pi: angle -= 2 * np.pi return angle @dataclass() class BoundingBox: """ A bounding box on a sphere can be defined by the minimum and maximum latitude and longitude. *Inverse longitude*: In the case where the box crosses the meridian, we specify the inverse region of longitude. As an example, suppose the box spans from 355 deg longitude to 5 degrees longitude, we instead store the [5,355] range of longitude and when we do queries to identify if a point is inside the bounding box we exclude rather than include values between min_lon and max_lon. """ min_lon: float max_lon: float inverse_lon: bool min_lat: float max_lat: float @classmethod def from_polygon(cls, vertices): lon_interval, inverse = find_longitude_interval(vertices[:, 0]) return BoundingBox( min_lon=lon_interval[0], max_lon=lon_interval[1], inverse_lon=inverse, min_lat=np.min(vertices[:, 1]), max_lat=np.max(vertices[:, 1]), ) def contains(self, lon, lat): in_lat = (self.min_lat <= lat) & (lat <= self.max_lat) if not self.inverse_lon: # If the polygon spans more than 180 degrees, don't trust the # bounding box. The possible failure mode here is that a # circumpolar block can exclude points that are south of its # southernmost edge. if self.max_lon - self.min_lon > 180: return np.ones_like(lon, dtype=bool) in_lon = (self.min_lon <= lon) & (lon <= self.max_lon) else: # Same as above, but for an inverse min/max lon range, having # max-min longitude < 180 is equivalent to having the true extent of # the block greater than 180 degrees. if self.max_lon - self.min_lon < 180: return np.ones_like(lon, dtype=bool) in_lon = (self.min_lon >= lon) | (lon >= self.max_lon) return in_lat & in_lon def find_longitude_interval(lon): """ Given a list of polygon longitude values, we want to identify the maximum and minimum longitude for that polygon. On its face, that seems like a simple (min, max), but the meridian means that the problem is not quite that simple. First, we need to split all the intervals across the meridian. Then, we combine the resulting intervals. After combining the intervals, there should be either one or two intervals. - If there is one interval, that polygon does not cross the meridian and we return the actual (min, max) longitude. - If there are two intervals, the polygon crosses the meridian and there is a (X, 360) interval and a (0, Y) interval. As a result, we instead return the inverse longitude interval of (Y, X) and specify the inverse = True return value. """ # Step 1) Split intervals. intervals = [] for i in range(lon.shape[0] - 1): s1 = lon[i] s2 = lon[i + 1] # If the longitudes are separated by more than 180 degrees, then # this is a meridian crossing segment where s1 is <180 and s2 is # >180 degrees. So use (s1, 0) and (360, s2). if s2 - s1 > 180: intervals.append((0, s1)) intervals.append((s2, 360)) # Similiarly, separated by -180 degrees suggests that s1 is >180 # and s2 is <180. So use (s1,360), (0,s2) elif s2 - s1 < -180: intervals.append((s1, 360)) intervals.append((0, s2)) else: intervals.append((s1, s2)) intervals = np.array([(s1, s2) if s1 < s2 else (s2, s1) for s1, s2 in intervals]) # Step 2) Combine intervals # Fun classic intro algorithms problem: how to combine intervals in O(n log(n))? # Sort them by the first value, and then combine adjacent intervals. sorted_intervals = intervals[intervals[:, 0].argsort()] combined_intervals = [] cur_interval = sorted_intervals[0] for next_interval in sorted_intervals[1:]: if next_interval[0] > cur_interval[1]: combined_intervals.append(cur_interval) cur_interval = next_interval else: cur_interval[1] = max(cur_interval[1], next_interval[1]) combined_intervals.append(cur_interval) # Step 3) Determine if we want the specified interval or the inverse of the # meridian-split interval. if len(combined_intervals) == 1: final_interval = combined_intervals[0] inverse = False elif len(combined_intervals) == 2: if combined_intervals[0][0] == 0: final_interval = [combined_intervals[0][1], combined_intervals[1][0]] else: final_interval = [combined_intervals[1][0], combined_intervals[0][1]] inverse = True else: raise Exception( "More than two longitude intervals identified in " "find_longitude_intervals. This is an unexpected and " "surprising error that suggests a malformed polygon." ) return final_interval, inverse @dataclass() class Polygon: # The half edges on the boundary, in rightwards order. edge_idxs: np.ndarray # The vertex indices on the boundary, in rightwards order. vertex_idxs: np.ndarray # The actual vertices vertices: np.ndarray # The actual vertices in unit sphere x,y,z coordinates vertices_xyz: np.ndarray = None # an arbitrary point that is interior to the polygon interior_xyz: np.ndarray = None # A bounding box defining the minimum and maximum lon/lat used for # a fast shortcircuiting of the in-polygon test. bounds: BoundingBox = None # The spherical_geometry has some useful tools so we store a reference to # a spherical_geometry.polygon.SingleSphericalPolygon in case we need # those methods. _sg_polygon: SingleSphericalPolygon = None # Angle in steradians. A full sphere is 4*pi, half sphere is 2*pi. area_steradians: float = None def __init__(self, edge_idxs, vertex_idxs, vs): self.edge_idxs = edge_idxs self.vertex_idxs = vertex_idxs self.vertices = vs x, y, z = sph2cart(vs[:, 0], vs[:, 1], 1.0) xyz = np.hstack((x[:, None], y[:, None], z[:, None])) for i in range(vs.shape[0] - 1): dx = vs[i + 1, 0] - vs[i, 0] # Make sure we skip any meridian crossing edges. if -180 < dx < 180: midpt = (vs[i + 1, :] + vs[i, :]) / 2 edge_vector = vs[i + 1, :] - vs[i, :] edge_right_normal = np.array([edge_vector[1], -edge_vector[0]]) # Offset only a small amount into the interior to avoid stepping # back across a different edge into the exterior. interior_pt = midpt + edge_right_normal * 0.01 # Stop after we've found an acceptable interior point. break x, y, z = sph2cart(interior_pt[0], interior_pt[1], 1.0) self.vertices = vs self.vertices_xyz = xyz self.interior_xyz = np.array([x, y, z]) self.bounds = BoundingBox.from_polygon(self.vertices) self._sg_polygon = SingleSphericalPolygon(self.vertices_xyz, self.interior_xyz) self.area_steradians = self._sg_polygon.area() def contains_point(self, lon, lat): """ Returns whether each point specified by (lon, lat) is within the spherical polygon defined by polygon_idx. The intermediate calculation uses a great circle intersection test. An explanation of this calculation is copied from. The source code is modified from the same source. The primary modification is to vectorize over a list of points rather than a single test point. https://github.com/spacetelescope/spherical_geometry/blob/e00f4ef619eb2871b305eded2a537a95c858b001/spherical_geometry/great_circle_arc.py#L91 A, B : (*x*, *y*, *z*) Nx3 arrays of triples Endpoints of the first great circle arcs. C, D : (*x*, *y*, *z*) Nx3 arrays of triples Endpoints of the second great circle arcs. Notes ----- The basic intersection is computed using linear algebra as follows [1]_: .. math:: T = \\lVert(A × B) × (C × D)\rVert To determine the correct sign (i.e. hemisphere) of the intersection, the following four values are computed: .. math:: s_1 = ((A × B) × A) \\cdot
Hub operations. It contains a list of operations and a URL link to get the next set of results. Variables are only populated by the server, and will be ignored when sending a request. :ivar value: List of IoT Hub operations supported by the Microsoft.Devices resource provider. :vartype value: list[~azure.mgmt.iothub.v2019_11_04.models.Operation] :ivar next_link: URL to get the next set of operation list results if there are any. :vartype next_link: str """ _validation = { 'value': {'readonly': True}, 'next_link': {'readonly': True}, } _attribute_map = { 'value': {'key': 'value', 'type': '[Operation]'}, 'next_link': {'key': 'nextLink', 'type': 'str'}, } def __init__( self, **kwargs ): super(OperationListResult, self).__init__(**kwargs) self.value = None self.next_link = None class RegistryStatistics(msrest.serialization.Model): """Identity registry statistics. Variables are only populated by the server, and will be ignored when sending a request. :ivar total_device_count: The total count of devices in the identity registry. :vartype total_device_count: long :ivar enabled_device_count: The count of enabled devices in the identity registry. :vartype enabled_device_count: long :ivar disabled_device_count: The count of disabled devices in the identity registry. :vartype disabled_device_count: long """ _validation = { 'total_device_count': {'readonly': True}, 'enabled_device_count': {'readonly': True}, 'disabled_device_count': {'readonly': True}, } _attribute_map = { 'total_device_count': {'key': 'totalDeviceCount', 'type': 'long'}, 'enabled_device_count': {'key': 'enabledDeviceCount', 'type': 'long'}, 'disabled_device_count': {'key': 'disabledDeviceCount', 'type': 'long'}, } def __init__( self, **kwargs ): super(RegistryStatistics, self).__init__(**kwargs) self.total_device_count = None self.enabled_device_count = None self.disabled_device_count = None class RouteCompilationError(msrest.serialization.Model): """Compilation error when evaluating route. :param message: Route error message. :type message: str :param severity: Severity of the route error. Possible values include: "error", "warning". :type severity: str or ~azure.mgmt.iothub.v2019_11_04.models.RouteErrorSeverity :param location: Location where the route error happened. :type location: ~azure.mgmt.iothub.v2019_11_04.models.RouteErrorRange """ _attribute_map = { 'message': {'key': 'message', 'type': 'str'}, 'severity': {'key': 'severity', 'type': 'str'}, 'location': {'key': 'location', 'type': 'RouteErrorRange'}, } def __init__( self, **kwargs ): super(RouteCompilationError, self).__init__(**kwargs) self.message = kwargs.get('message', None) self.severity = kwargs.get('severity', None) self.location = kwargs.get('location', None) class RouteErrorPosition(msrest.serialization.Model): """Position where the route error happened. :param line: Line where the route error happened. :type line: int :param column: Column where the route error happened. :type column: int """ _attribute_map = { 'line': {'key': 'line', 'type': 'int'}, 'column': {'key': 'column', 'type': 'int'}, } def __init__( self, **kwargs ): super(RouteErrorPosition, self).__init__(**kwargs) self.line = kwargs.get('line', None) self.column = kwargs.get('column', None) class RouteErrorRange(msrest.serialization.Model): """Range of route errors. :param start: Start where the route error happened. :type start: ~azure.mgmt.iothub.v2019_11_04.models.RouteErrorPosition :param end: End where the route error happened. :type end: ~azure.mgmt.iothub.v2019_11_04.models.RouteErrorPosition """ _attribute_map = { 'start': {'key': 'start', 'type': 'RouteErrorPosition'}, 'end': {'key': 'end', 'type': 'RouteErrorPosition'}, } def __init__( self, **kwargs ): super(RouteErrorRange, self).__init__(**kwargs) self.start = kwargs.get('start', None) self.end = kwargs.get('end', None) class RouteProperties(msrest.serialization.Model): """The properties of a routing rule that your IoT hub uses to route messages to endpoints. All required parameters must be populated in order to send to Azure. :param name: Required. The name of the route. The name can only include alphanumeric characters, periods, underscores, hyphens, has a maximum length of 64 characters, and must be unique. :type name: str :param source: Required. The source that the routing rule is to be applied to, such as DeviceMessages. Possible values include: "Invalid", "DeviceMessages", "TwinChangeEvents", "DeviceLifecycleEvents", "DeviceJobLifecycleEvents". :type source: str or ~azure.mgmt.iothub.v2019_11_04.models.RoutingSource :param condition: The condition that is evaluated to apply the routing rule. If no condition is provided, it evaluates to true by default. For grammar, see: https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-query-language. :type condition: str :param endpoint_names: Required. The list of endpoints to which messages that satisfy the condition are routed. Currently only one endpoint is allowed. :type endpoint_names: list[str] :param is_enabled: Required. Used to specify whether a route is enabled. :type is_enabled: bool """ _validation = { 'name': {'required': True, 'pattern': r'^[A-Za-z0-9-._]{1,64}$'}, 'source': {'required': True}, 'endpoint_names': {'required': True, 'max_items': 1, 'min_items': 1}, 'is_enabled': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'source': {'key': 'source', 'type': 'str'}, 'condition': {'key': 'condition', 'type': 'str'}, 'endpoint_names': {'key': 'endpointNames', 'type': '[str]'}, 'is_enabled': {'key': 'isEnabled', 'type': 'bool'}, } def __init__( self, **kwargs ): super(RouteProperties, self).__init__(**kwargs) self.name = kwargs['name'] self.source = kwargs['source'] self.condition = kwargs.get('condition', None) self.endpoint_names = kwargs['endpoint_names'] self.is_enabled = kwargs['is_enabled'] class RoutingEndpoints(msrest.serialization.Model): """The properties related to the custom endpoints to which your IoT hub routes messages based on the routing rules. A maximum of 10 custom endpoints are allowed across all endpoint types for paid hubs and only 1 custom endpoint is allowed across all endpoint types for free hubs. :param service_bus_queues: The list of Service Bus queue endpoints that IoT hub routes the messages to, based on the routing rules. :type service_bus_queues: list[~azure.mgmt.iothub.v2019_11_04.models.RoutingServiceBusQueueEndpointProperties] :param service_bus_topics: The list of Service Bus topic endpoints that the IoT hub routes the messages to, based on the routing rules. :type service_bus_topics: list[~azure.mgmt.iothub.v2019_11_04.models.RoutingServiceBusTopicEndpointProperties] :param event_hubs: The list of Event Hubs endpoints that IoT hub routes messages to, based on the routing rules. This list does not include the built-in Event Hubs endpoint. :type event_hubs: list[~azure.mgmt.iothub.v2019_11_04.models.RoutingEventHubProperties] :param storage_containers: The list of storage container endpoints that IoT hub routes messages to, based on the routing rules. :type storage_containers: list[~azure.mgmt.iothub.v2019_11_04.models.RoutingStorageContainerProperties] """ _attribute_map = { 'service_bus_queues': {'key': 'serviceBusQueues', 'type': '[RoutingServiceBusQueueEndpointProperties]'}, 'service_bus_topics': {'key': 'serviceBusTopics', 'type': '[RoutingServiceBusTopicEndpointProperties]'}, 'event_hubs': {'key': 'eventHubs', 'type': '[RoutingEventHubProperties]'}, 'storage_containers': {'key': 'storageContainers', 'type': '[RoutingStorageContainerProperties]'}, } def __init__( self, **kwargs ): super(RoutingEndpoints, self).__init__(**kwargs) self.service_bus_queues = kwargs.get('service_bus_queues', None) self.service_bus_topics = kwargs.get('service_bus_topics', None) self.event_hubs = kwargs.get('event_hubs', None) self.storage_containers = kwargs.get('storage_containers', None) class RoutingEventHubProperties(msrest.serialization.Model): """The properties related to an event hub endpoint. All required parameters must be populated in order to send to Azure. :param connection_string: Required. The connection string of the event hub endpoint. :type connection_string: str :param name: Required. The name that identifies this endpoint. The name can only include alphanumeric characters, periods, underscores, hyphens and has a maximum length of 64 characters. The following names are reserved: events, fileNotifications, $default. Endpoint names must be unique across endpoint types. :type name: str :param subscription_id: The subscription identifier of the event hub endpoint. :type subscription_id: str :param resource_group: The name of the resource group of the event hub endpoint. :type resource_group: str """ _validation = { 'connection_string': {'required': True}, 'name': {'required': True, 'pattern': r'^[A-Za-z0-9-._]{1,64}$'}, } _attribute_map = { 'connection_string': {'key': 'connectionString', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'subscription_id': {'key': 'subscriptionId', 'type': 'str'}, 'resource_group': {'key': 'resourceGroup', 'type': 'str'}, } def __init__( self, **kwargs ): super(RoutingEventHubProperties, self).__init__(**kwargs) self.connection_string = kwargs['connection_string'] self.name = kwargs['name'] self.subscription_id = kwargs.get('subscription_id', None) self.resource_group = kwargs.get('resource_group', None) class RoutingMessage(msrest.serialization.Model): """Routing message. :param body: Body of routing message. :type body: str :param app_properties: App properties. :type app_properties: dict[str, str] :param system_properties: System properties. :type system_properties: dict[str, str] """ _attribute_map = { 'body': {'key': 'body', 'type': 'str'}, 'app_properties': {'key': 'appProperties', 'type': '{str}'}, 'system_properties': {'key': 'systemProperties', 'type': '{str}'}, } def __init__( self, **kwargs ): super(RoutingMessage, self).__init__(**kwargs) self.body = kwargs.get('body', None) self.app_properties = kwargs.get('app_properties', None) self.system_properties = kwargs.get('system_properties', None) class RoutingProperties(msrest.serialization.Model): """The routing related properties of the IoT hub. See: https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-messaging. :param endpoints: The properties related to the custom endpoints to which your IoT hub routes messages based on the routing rules. A maximum of 10 custom endpoints are allowed across all endpoint types for paid hubs and only 1 custom endpoint is allowed across all endpoint types for free hubs. :type endpoints: ~azure.mgmt.iothub.v2019_11_04.models.RoutingEndpoints :param routes: The list of user-provided routing rules that the IoT hub uses to route messages to built-in and custom endpoints. A maximum of 100 routing rules are allowed for paid hubs and a maximum of 5 routing rules are allowed for free hubs. :type routes: list[~azure.mgmt.iothub.v2019_11_04.models.RouteProperties] :param fallback_route: The properties of the route that is used as a fall-back route when none of the conditions specified in the 'routes' section are met. This is an optional parameter. When this property is not set, the messages which do not meet any of the conditions specified in the 'routes' section get routed to the built-in eventhub endpoint. :type fallback_route: ~azure.mgmt.iothub.v2019_11_04.models.FallbackRouteProperties :param enrichments: The list of user-provided enrichments that the IoT hub applies to messages to be delivered to built-in and custom endpoints. See:
% ",".join(memeber_set)) class DescribeHttpStatusInfoListResponse(AbstractModel): """DescribeHttpStatusInfoList返回参数结构体 """ def __init__(self): r""" :param DataInfoList: 播放状态码列表。 :type DataInfoList: list of HttpStatusData :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.DataInfoList = None self.RequestId = None def _deserialize(self, params): if params.get("DataInfoList") is not None: self.DataInfoList = [] for item in params.get("DataInfoList"): obj = HttpStatusData() obj._deserialize(item) self.DataInfoList.append(obj) self.RequestId = params.get("RequestId") class DescribeLiveCallbackRulesRequest(AbstractModel): """DescribeLiveCallbackRules请求参数结构体 """ class DescribeLiveCallbackRulesResponse(AbstractModel): """DescribeLiveCallbackRules返回参数结构体 """ def __init__(self): r""" :param Rules: 规则信息列表。 :type Rules: list of CallBackRuleInfo :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.Rules = None self.RequestId = None def _deserialize(self, params): if params.get("Rules") is not None: self.Rules = [] for item in params.get("Rules"): obj = CallBackRuleInfo() obj._deserialize(item) self.Rules.append(obj) self.RequestId = params.get("RequestId") class DescribeLiveCallbackTemplateRequest(AbstractModel): """DescribeLiveCallbackTemplate请求参数结构体 """ def __init__(self): r""" :param TemplateId: 模板 ID。 1. 在创建回调模板接口 [CreateLiveCallbackTemplate](/document/product/267/32637) 调用的返回值中获取模板 ID。 2. 可以从接口 [DescribeLiveCallbackTemplates](/document/product/267/32632) 查询已经创建的过的模板列表。 :type TemplateId: int """ self.TemplateId = None def _deserialize(self, params): self.TemplateId = params.get("TemplateId") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeLiveCallbackTemplateResponse(AbstractModel): """DescribeLiveCallbackTemplate返回参数结构体 """ def __init__(self): r""" :param Template: 回调模板信息。 :type Template: :class:`tencentcloud.live.v20180801.models.CallBackTemplateInfo` :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.Template = None self.RequestId = None def _deserialize(self, params): if params.get("Template") is not None: self.Template = CallBackTemplateInfo() self.Template._deserialize(params.get("Template")) self.RequestId = params.get("RequestId") class DescribeLiveCallbackTemplatesRequest(AbstractModel): """DescribeLiveCallbackTemplates请求参数结构体 """ class DescribeLiveCallbackTemplatesResponse(AbstractModel): """DescribeLiveCallbackTemplates返回参数结构体 """ def __init__(self): r""" :param Templates: 模板信息列表。 :type Templates: list of CallBackTemplateInfo :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.Templates = None self.RequestId = None def _deserialize(self, params): if params.get("Templates") is not None: self.Templates = [] for item in params.get("Templates"): obj = CallBackTemplateInfo() obj._deserialize(item) self.Templates.append(obj) self.RequestId = params.get("RequestId") class DescribeLiveCertRequest(AbstractModel): """DescribeLiveCert请求参数结构体 """ def __init__(self): r""" :param CertId: DescribeLiveCerts接口获取到的证书Id。 :type CertId: int """ self.CertId = None def _deserialize(self, params): self.CertId = params.get("CertId") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeLiveCertResponse(AbstractModel): """DescribeLiveCert返回参数结构体 """ def __init__(self): r""" :param CertInfo: 证书信息。 :type CertInfo: :class:`tencentcloud.live.v20180801.models.CertInfo` :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.CertInfo = None self.RequestId = None def _deserialize(self, params): if params.get("CertInfo") is not None: self.CertInfo = CertInfo() self.CertInfo._deserialize(params.get("CertInfo")) self.RequestId = params.get("RequestId") class DescribeLiveCertsRequest(AbstractModel): """DescribeLiveCerts请求参数结构体 """ class DescribeLiveCertsResponse(AbstractModel): """DescribeLiveCerts返回参数结构体 """ def __init__(self): r""" :param CertInfoSet: 证书信息列表。 :type CertInfoSet: list of CertInfo :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.CertInfoSet = None self.RequestId = None def _deserialize(self, params): if params.get("CertInfoSet") is not None: self.CertInfoSet = [] for item in params.get("CertInfoSet"): obj = CertInfo() obj._deserialize(item) self.CertInfoSet.append(obj) self.RequestId = params.get("RequestId") class DescribeLiveDelayInfoListRequest(AbstractModel): """DescribeLiveDelayInfoList请求参数结构体 """ class DescribeLiveDelayInfoListResponse(AbstractModel): """DescribeLiveDelayInfoList返回参数结构体 """ def __init__(self): r""" :param DelayInfoList: 延播信息列表。 :type DelayInfoList: list of DelayInfo :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.DelayInfoList = None self.RequestId = None def _deserialize(self, params): if params.get("DelayInfoList") is not None: self.DelayInfoList = [] for item in params.get("DelayInfoList"): obj = DelayInfo() obj._deserialize(item) self.DelayInfoList.append(obj) self.RequestId = params.get("RequestId") class DescribeLiveDomainCertRequest(AbstractModel): """DescribeLiveDomainCert请求参数结构体 """ def __init__(self): r""" :param DomainName: 播放域名。 :type DomainName: str """ self.DomainName = None def _deserialize(self, params): self.DomainName = params.get("DomainName") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeLiveDomainCertResponse(AbstractModel): """DescribeLiveDomainCert返回参数结构体 """ def __init__(self): r""" :param DomainCertInfo: 证书信息。 :type DomainCertInfo: :class:`tencentcloud.live.v20180801.models.DomainCertInfo` :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.DomainCertInfo = None self.RequestId = None def _deserialize(self, params): if params.get("DomainCertInfo") is not None: self.DomainCertInfo = DomainCertInfo() self.DomainCertInfo._deserialize(params.get("DomainCertInfo")) self.RequestId = params.get("RequestId") class DescribeLiveDomainPlayInfoListRequest(AbstractModel): """DescribeLiveDomainPlayInfoList请求参数结构体 """ def __init__(self): r""" :param PlayDomains: 播放域名列表。 :type PlayDomains: list of str """ self.PlayDomains = None def _deserialize(self, params): self.PlayDomains = params.get("PlayDomains") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeLiveDomainPlayInfoListResponse(AbstractModel): """DescribeLiveDomainPlayInfoList返回参数结构体 """ def __init__(self): r""" :param Time: 数据时间,格式为yyyy-mm-dd HH:MM:SS。 :type Time: str :param TotalBandwidth: 实时总带宽。 :type TotalBandwidth: float :param TotalFlux: 实时总流量。 :type TotalFlux: float :param TotalRequest: 总请求数。 :type TotalRequest: int :param TotalOnline: 实时总连接数。 :type TotalOnline: int :param DomainInfoList: 分域名的数据情况。 :type DomainInfoList: list of DomainInfoList :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.Time = None self.TotalBandwidth = None self.TotalFlux = None self.TotalRequest = None self.TotalOnline = None self.DomainInfoList = None self.RequestId = None def _deserialize(self, params): self.Time = params.get("Time") self.TotalBandwidth = params.get("TotalBandwidth") self.TotalFlux = params.get("TotalFlux") self.TotalRequest = params.get("TotalRequest") self.TotalOnline = params.get("TotalOnline") if params.get("DomainInfoList") is not None: self.DomainInfoList = [] for item in params.get("DomainInfoList"): obj = DomainInfoList() obj._deserialize(item) self.DomainInfoList.append(obj) self.RequestId = params.get("RequestId") class DescribeLiveDomainRefererRequest(AbstractModel): """DescribeLiveDomainReferer请求参数结构体 """ def __init__(self): r""" :param DomainName: 播放域名。 :type DomainName: str """ self.DomainName = None def _deserialize(self, params): self.DomainName = params.get("DomainName") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeLiveDomainRefererResponse(AbstractModel): """DescribeLiveDomainReferer返回参数结构体 """ def __init__(self): r""" :param RefererAuthConfig: 域名 Referer 黑白名单配置。 :type RefererAuthConfig: :class:`tencentcloud.live.v20180801.models.RefererAuthConfig` :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RefererAuthConfig = None self.RequestId = None def _deserialize(self, params): if params.get("RefererAuthConfig") is not None: self.RefererAuthConfig = RefererAuthConfig() self.RefererAuthConfig._deserialize(params.get("RefererAuthConfig")) self.RequestId = params.get("RequestId") class DescribeLiveDomainRequest(AbstractModel): """DescribeLiveDomain请求参数结构体 """ def __init__(self): r""" :param DomainName: 域名。 :type DomainName: str """ self.DomainName = None def _deserialize(self, params): self.DomainName = params.get("DomainName") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeLiveDomainResponse(AbstractModel): """DescribeLiveDomain返回参数结构体 """ def __init__(self): r""" :param DomainInfo: 域名信息。 注意:此字段可能返回 null,表示取不到有效值。 :type DomainInfo: :class:`tencentcloud.live.v20180801.models.DomainInfo` :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.DomainInfo = None self.RequestId = None def _deserialize(self, params): if params.get("DomainInfo") is not None: self.DomainInfo = DomainInfo() self.DomainInfo._deserialize(params.get("DomainInfo")) self.RequestId = params.get("RequestId") class DescribeLiveDomainsRequest(AbstractModel): """DescribeLiveDomains请求参数结构体 """ def __init__(self): r""" :param DomainStatus: 域名状态过滤。0-停用,1-启用。 :type DomainStatus: int :param DomainType: 域名类型过滤。0-推流,1-播放。 :type DomainType: int :param PageSize: 分页大小,范围:10~100。默认10。 :type PageSize: int :param PageNum: 取第几页,范围:1~100000。默认1。 :type PageNum: int :param IsDelayLive: 0 普通直播 1慢直播 默认0。 :type IsDelayLive: int :param DomainPrefix: 域名前缀。 :type DomainPrefix: str """ self.DomainStatus = None self.DomainType = None self.PageSize = None self.PageNum = None self.IsDelayLive = None self.DomainPrefix = None def _deserialize(self, params): self.DomainStatus = params.get("DomainStatus") self.DomainType = params.get("DomainType") self.PageSize = params.get("PageSize") self.PageNum = params.get("PageNum") self.IsDelayLive = params.get("IsDelayLive") self.DomainPrefix = params.get("DomainPrefix") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeLiveDomainsResponse(AbstractModel): """DescribeLiveDomains返回参数结构体 """ def __init__(self): r""" :param AllCount: 总记录数。 :type AllCount: int :param DomainList: 域名详细信息列表。 :type DomainList: list of DomainInfo :param CreateLimitCount: 可继续添加域名数量。 注意:此字段可能返回 null,表示取不到有效值。 :type CreateLimitCount: int :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.AllCount = None self.DomainList = None self.CreateLimitCount = None self.RequestId = None def _deserialize(self, params): self.AllCount = params.get("AllCount") if params.get("DomainList") is not None: self.DomainList = [] for item in params.get("DomainList"): obj = DomainInfo() obj._deserialize(item) self.DomainList.append(obj) self.CreateLimitCount = params.get("CreateLimitCount") self.RequestId = params.get("RequestId") class DescribeLiveForbidStreamListRequest(AbstractModel): """DescribeLiveForbidStreamList请求参数结构体 """ def __init__(self): r""" :param PageNum: 取得第几页,默认1。 :type PageNum: int :param PageSize: 每页大小,最大100。 取值:1~100之前的任意整数。 默认值:10。 :type PageSize: int :param StreamName: 搜索的推流 id 名称。 :type StreamName: str """ self.PageNum = None self.PageSize = None self.StreamName = None def _deserialize(self, params): self.PageNum = params.get("PageNum") self.PageSize = params.get("PageSize") self.StreamName = params.get("StreamName") memeber_set = set(params.keys()) for name, value in vars(self).items(): if name in memeber_set: memeber_set.remove(name) if len(memeber_set) > 0: warnings.warn("%s fileds are useless." % ",".join(memeber_set)) class DescribeLiveForbidStreamListResponse(AbstractModel): """DescribeLiveForbidStreamList返回参数结构体 """ def __init__(self): r""" :param TotalNum: 符合条件的总个数。 :type TotalNum: int :param TotalPage: 总页数。 :type TotalPage: int :param PageNum: 分页的页码。 :type PageNum: int :param PageSize: 每页显示的条数。 :type PageSize: int :param ForbidStreamList: 禁推流列表。 :type ForbidStreamList: list of ForbidStreamInfo :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalNum = None self.TotalPage = None self.PageNum = None self.PageSize = None self.ForbidStreamList = None self.RequestId = None def _deserialize(self, params): self.TotalNum = params.get("TotalNum") self.TotalPage = params.get("TotalPage") self.PageNum = params.get("PageNum") self.PageSize = params.get("PageSize") if params.get("ForbidStreamList") is not None: self.ForbidStreamList = [] for item in params.get("ForbidStreamList"): obj = ForbidStreamInfo() obj._deserialize(item) self.ForbidStreamList.append(obj) self.RequestId = params.get("RequestId") class DescribeLivePackageInfoRequest(AbstractModel): """DescribeLivePackageInfo请求参数结构体 """ def __init__(self): r""" :param PackageType: 包类型,可选值: 0:流量包; 1:转码包。 2: 连麦包。 :type PackageType: int :param OrderBy: 排序规则: 1. BuyTimeDesc: 最新购买的排在最前面 2. BuyTimeAsc: 最老购买的排在最前面 3. ExpireTimeDesc: 最后过期的排在最前面 4. ExpireTimeAsc:最先过期的排在最前面 注意: 1. PackageType 为 2(连麦包) 的时候,不支持 3、4 排序 :type OrderBy: str :param PageNum:
class driver session, it may return interchangeability warnings generated by the IVI class driver as well as interchangeability warnings generated by the IVI specific driver. The IVI class driver determines the relative order in which the IVI class driver warnings are returned in relation to the IVI specific driver warnings. The function returns an empty string in the InterchangeWarning parameter if no interchangeability warnings remain for the session. Refer to the Interchange Check attribute for more information on interchangeability checking. """) add_method(self, 'driver_operation.invalidate_all_attributes', self._driver_operation_invalidate_all_attributes, """ This function invalidates the cached values of all attributes for the session. """) add_method(self, 'driver_operation.reset_interchange_check', self._driver_operation_reset_interchange_check, """ This function resets the interchangeability checking algorithms of the IVI specific driver so that specific driver functions that execute prior to calling this function have no effect on whether future calls to the specific driver generate interchangeability warnings. When developing a complex test system that consists of multiple test modules, it is generally a good idea to design the test modules so that they can run in any order. To do so requires ensuring that each test module completely configures the state of each instrument it uses. If a particular test module does not completely configure the state of an instrument, the state of the instrument depends on the configuration from a previously executed test module. If the test modules execute in a different order, the behavior of the instrument and therefore the entire test module is likely to change. This change in behavior is generally instrument specific and represents an interchangeability problem. Users can use this function to test for such cases. By calling this function at the beginning of a test module, users can determine whether the test module has dependencies on the operation of previously executed test modules. Any interchangeability warnings that occur after the user calls this function indicate that the section of the test program that executes after this function and prior to the generation of the warning does not completely configure the instrument and that the user is likely to experience different behavior if the user changes the execution order of the test modules or if the user changes instruments. Note: This function does not clear interchangeability warnings from the list of interchangeability warnings. To guarantee that the Get Next Interchange Warning function returns interchangeability warnings that occur only after the program calls function, the user must clear the list of interchangeability warnings by calling the Clear Interchange Warnings function. Refer to the Interchange Check attribute for more information on interchangeability checking. """) def _get_driver_operation_cache(self): return self._driver_operation_cache def _set_driver_operation_cache(self, value): self._driver_operation_cache = bool(value) def _get_driver_operation_driver_setup(self): return self._driver_operation_driver_setup def _get_driver_operation_interchange_check(self): return self._driver_operation_interchange_check def _set_driver_operation_interchange_check(self, value): self._driver_operation_interchange_check = bool(value) def _get_driver_operation_logical_name(self): return self._driver_operation_logical_name def _get_driver_operation_query_instrument_status(self): return self._driver_operation_query_instrument_status def _set_driver_operation_query_instrument_status(self, value): self._driver_operation_query_instrument_status = bool(value) def _get_driver_operation_range_check(self): return self._driver_operation_range_check def _set_driver_operation_range_check(self, value): self._driver_operation_range_check = bool(value) def _get_driver_operation_record_coercions(self): return self._driver_operation_record_coercions def _set_driver_operation_record_coercions(self, value): self._driver_operation_record_coercions = bool(value) def _get_driver_operation_io_resource_descriptor(self): return self._driver_operation_io_resource_descriptor def _get_driver_operation_simulate(self): return self._driver_operation_simulate def _set_driver_operation_simulate(self, value): value = bool(value) if self._driver_operation_simulate and not value: raise SimulationStateException() self._driver_operation_simulate = value def _driver_operation_clear_interchange_warnings(self): self._driver_operation_interchange_warnings = list() def _driver_operation_get_next_coercion_record(self): if len(self._driver_operation_coercion_records) > 0: return self._driver_operation_coercion_records.pop() return "" def _driver_operation_get_next_interchange_warning(self): if len(self._driver_operation_interchange_warnings) > 0: return self._driver_operation_interchange_warnings.pop() return "" def _driver_operation_invalidate_all_attributes(self): pass def _driver_operation_reset_interchange_check(self): pass class DriverIdentity(object): "Inherent IVI methods for identification" def __init__(self, *args, **kwargs): super(DriverIdentity, self).__init__(*args, **kwargs) self._identity_description = "Base IVI Driver" self._identity_identifier = "" self._identity_revision = "" self._identity_vendor = "" self._identity_instrument_manufacturer = "" self._identity_instrument_model = "" self._identity_instrument_firmware_revision = "" self._identity_specification_major_version = 0 self._identity_specification_minor_version = 0 self._identity_supported_instrument_models = list() self.__dict__.setdefault('_identity_group_capabilities', list()) add_property(self, 'identity.description', self._get_identity_description, None, None, """ Returns a brief description of the IVI software component. The string that this attribute returns has no maximum size. """) add_property(self, 'identity.identifier', self._get_identity_identifier, None, None, """ Returns the case-sensitive unique identifier of the IVI software component. The string that this attribute returns contains a maximum of 32 characters including the NULL character. """) add_property(self, 'identity.revision', self._get_identity_revision, None, None, """ Returns version information about the IVI software component. Refer to Section 3.1.2.2, Additional Compliance Rules for Revision String Attributes, for additional rules regarding this attribute. The string that this attribute returns has no maximum size. """) add_property(self, 'identity.vendor', self._get_identity_vendor, None, None, """ Returns the name of the vendor that supplies the IVI software component. The string that this attribute returns has no maximum size. """) add_property(self, 'identity.instrument_manufacturer', self._get_identity_instrument_manufacturer, None, None, """ Returns the name of the manufacturer of the instrument. The IVI specific driver returns the value it queries from the instrument as the value of this attribute or a string indicating that it cannot query the instrument identity. In some cases, it is not possible for the specific driver to query the firmware revision of the instrument. This can occur when the Simulate attribute is set to True or if the instrument is not capable of returning the firmware revision. For these cases, the specific driver returns defined strings for this attribute. If the Simulate attribute is set to True, the specific driver returns "Not available while simulating" as the value of this attribute. If the instrument is not capable of returning the firmware version and the Simulate attribute is set to False, the specific driver returns "Cannot query from instrument" as the value of this attribute. The string that this attribute returns does not have a predefined maximum length. """) add_property(self, 'identity.instrument_model', self._get_identity_instrument_model, None, None, """ Returns the model number or name of the physical instrument. The IVI specific driver returns the value it queries from the instrument or a string indicating that it cannot query the instrument identity. In some cases, it is not possible for the specific driver to query the firmware revision of the instrument. This can occur when the Simulate attribute is set to True or if the instrument is not capable of returning the firmware revision. For these cases, the specific driver returns defined strings for this attribute. If the Simulate attribute is set to True, the specific driver returns "Not available while simulating" as the value of this attribute. If the instrument is not capable of returning the firmware version and the Simulate attribute is set to False, the specific driver returns "Cannot query from instrument" as the value of this attribute. The string that this attribute returns does not have a predefined maximum length. """) add_property(self, 'identity.instrument_firmware_revision', self._get_identity_instrument_firmware_revision, None, None, """ Returns an instrument specific string that contains the firmware revision information of the physical instrument. The IVI specific driver returns the value it queries from the instrument as the value of this attribute or a string indicating that it cannot query the instrument identity. In some cases, it is not possible for the specific driver to query the firmware revision of the instrument. This can occur when the Simulate attribute is set to True or if the instrument is not capable of returning the firmware revision. For these cases, the specific driver returns defined strings for this attribute. If the Simulate attribute is set to True, the specific driver returns "Not available while simulating" as the value of this attribute. If the instrument is not capable of returning the firmware version and the Simulate attribute is set to False, the specific driver returns "Cannot query from instrument" as the value of this attribute. The string that this attribute returns does not have a predefined maximum length. """) add_property(self, 'identity.specification_major_version', self._get_identity_specification_major_version, None, None, """ Returns the major version number of the class specification in accordance with which the IVI software component was developed. The
on the client system. """ if self.tf is None: logging.debug('Unable to execute "tf help": skipping TFS') return None workfold = self._run_tf(['workfold', os.getcwd()]) m = re.search('^Collection: (.*)$', workfold, re.MULTILINE) if m: return unquote(m.group(1)) logging.debug('Could not find the collection from "tf workfold"') return None def get_repository_info(self): """Return repository information for the current working tree. Returns: rbtools.clients.RepositoryInfo: The repository info structure. """ path = self.get_local_path() if path: # Now that we know it's TFS, make sure we have GNU diff installed, # and error out if we don't. check_gnu_diff() return RepositoryInfo(path=path, local_path=path) return None def parse_revision_spec(self, revisions): """Parse the given revision spec. Args: revisions (list of unicode): A list of revisions as specified by the user. Items in the list do not necessarily represent a single revision, since the user can use the TFS-native syntax of ``r1~r2``. Versions passed in can be any versionspec, such as a changeset number, ``L``-prefixed label name, ``W`` (latest workspace version), or ``T`` (latest upstream version). Returns: dict: A dictionary with the following keys: ``base`` (:py:class:`unicode`): A revision to use as the base of the resulting diff. ``tip`` (:py:class:`unicode`): A revision to use as the tip of the resulting diff. ``parent_base`` (:py:class:`unicode`, optional): The revision to use as the base of a parent diff. These will be used to generate the diffs to upload to Review Board (or print). The diff for review will include the changes in (base, tip], and the parent diff (if necessary) will include (parent, base]. If a single revision is passed in, this will return the parent of that revision for "base" and the passed-in revision for "tip". If zero revisions are passed in, this will return revisions relevant for the "current change" (changes in the work folder which have not yet been checked in). Raises: rbtools.clients.errors.TooManyRevisionsError: Too many revisions were specified. rbtools.clients.errors.InvalidRevisionSpecError: The given revision spec could not be parsed. """ n_revisions = len(revisions) if n_revisions == 1 and '~' in revisions[0]: revisions = revisions[0].split('~') n_revisions = len(revisions) if n_revisions == 0: # Most recent checked-out revision -- working copy return { 'base': self._convert_symbolic_revision('W'), 'tip': self.REVISION_WORKING_COPY, } elif n_revisions == 1: # Either a numeric revision (n-1:n) or a changelist revision = self._convert_symbolic_revision(revisions[0]) return { 'base': revision - 1, 'tip': revision, } elif n_revisions == 2: # Diff between two numeric revisions return { 'base': self._convert_symbolic_revision(revisions[0]), 'tip': self._convert_symbolic_revision(revisions[1]), } else: raise TooManyRevisionsError return { 'base': None, 'tip': None, } def _convert_symbolic_revision(self, revision, path=None): """Convert a symbolic revision into a numeric changeset. Args: revision (unicode): The TFS versionspec to convert. path (unicode, optional): The itemspec that the revision applies to. Returns: int: The changeset number corresponding to the versionspec. """ args = ['history', '-stopafter:1', '-recursive', '-format:xml'] # 'tf history -version:W'` doesn't seem to work (even though it's # supposed to). Luckily, W is the default when -version isn't passed, # so just elide it. if revision != 'W': args.append('-version:%s' % revision) args.append(path or os.getcwd()) # We pass results_unicode=False because that uses the filesystem # encoding to decode the output, but the XML results we get should # always be UTF-8, and are well-formed with the encoding specified. We # can therefore let ElementTree determine how to decode it. data = self._run_tf(args, results_unicode=False) try: root = ET.fromstring(data) item = root.find('./changeset') if item is not None: return int(item.attrib['id']) else: raise Exception('No changesets found') except Exception as e: logging.debug('Failed to parse output from "tf history": %s\n%s', e, data, exc_info=True) raise InvalidRevisionSpecError( '"%s" does not appear to be a valid versionspec' % revision) def diff(self, revisions, include_files, exclude_patterns): """Return the generated diff. Args: revisions (dict): A dictionary containing ``base`` and ``tip`` keys. include_files (list): A list of file paths to include in the diff. exclude_patterns (list): A list of file paths to exclude from the diff. Returns: dict: A dictionary containing the following keys: ``diff`` (:py:class:`bytes`): The contents of the diff to upload. ``base_commit_id` (:py:class:`unicode`, optional): The ID of the commit that the change is based on, if available. This is necessary for some hosting services that don't provide individual file access. """ base = str(revisions['base']) tip = str(revisions['tip']) if tip == self.REVISION_WORKING_COPY: return self._diff_working_copy(base, include_files, exclude_patterns) else: raise SCMError('Posting committed changes is not yet supported ' 'for TFS when using the Team Explorer Everywhere ' 'wrapper.') def _diff_working_copy(self, base, include_files, exclude_patterns): """Return a diff of the working copy. Args: base (unicode): The base revision to diff against. include_files (list): A list of file paths to include in the diff. exclude_patterns (list): A list of file paths to exclude from the diff. Returns: dict: A dictionary containing ``diff``, ``parent_diff``, and ``base_commit_id`` keys. In the case of TFS, the parent diff key will always be ``None``. """ # We pass results_unicode=False because that uses the filesystem # encoding, but the XML results we get should always be UTF-8, and are # well-formed with the encoding specified. We can therefore let # ElementTree determine how to decode it. status = self._run_tf(['status', '-format:xml'], results_unicode=False) root = ET.fromstring(status) diff = [] for pending_change in root.findall('./pending-changes/pending-change'): action = pending_change.attrib['change-type'].split(', ') new_filename = pending_change.attrib['server-item'].encode('utf-8') local_filename = pending_change.attrib['local-item'] old_version = pending_change.attrib['version'].encode('utf-8') file_type = pending_change.attrib.get('file-type') new_version = b'(pending)' old_data = b'' new_data = b'' copied = 'branch' in action if (not file_type or (not os.path.isfile(local_filename) and 'delete' not in action)): continue if (exclude_patterns and filename_match_any_patterns(local_filename, exclude_patterns, base_dir=None)): continue if 'rename' in action: old_filename = \ pending_change.attrib['source-item'].encode('utf-8') else: old_filename = new_filename if copied: old_filename = \ pending_change.attrib['source-item'].encode('utf-8') old_version = ( '%d' % self._convert_symbolic_revision( 'W', old_filename.decode('utf-8'))) if 'add' in action: old_filename = b'/dev/null' if file_type != 'binary': with open(local_filename) as f: new_data = f.read() old_data = b'' elif 'delete' in action: old_data = self._run_tf( ['print', '-version:%s' % old_version.decode('utf-8'), old_filename.decode('utf-8')], results_unicode=False) new_data = b'' new_version = b'(deleted)' elif 'edit' in action: old_data = self._run_tf( ['print', '-version:%s' % old_version.decode('utf-8'), old_filename.decode('utf-8')], results_unicode=False) with open(local_filename) as f: new_data = f.read() old_label = b'%s\t%s' % (old_filename, old_version) new_label = b'%s\t%s' % (new_filename, new_version) if copied: diff.append(b'Copied from: %s\n' % old_filename) if file_type == 'binary': if 'add' in action: old_filename = new_filename diff.append(b'--- %s\n' % old_label) diff.append(b'+++ %s\n' % new_label) diff.append(b'Binary files %s and %s differ\n' % (old_filename, new_filename)) elif old_filename != new_filename and old_data == new_data: # Renamed file with no changes diff.append(b'--- %s\n' % old_label) diff.append(b'+++ %s\n' % new_label) else: old_tmp = tempfile.NamedTemporaryFile(delete=False) old_tmp.write(old_data) old_tmp.close() new_tmp = tempfile.NamedTemporaryFile(delete=False) new_tmp.write(new_data) new_tmp.close() unified_diff = execute( ['diff', '-u', '--label', old_label.decode('utf-8'), '--label', new_label.decode('utf-8'), old_tmp.name, new_tmp.name], extra_ignore_errors=(1,), log_output_on_error=False, results_unicode=False) diff.append(unified_diff) os.unlink(old_tmp.name) os.unlink(new_tmp.name) if len(root.findall('./candidate-pending-changes/pending-change')) > 0: logging.warning('There are added or deleted files which have not ' 'been added to TFS. These will not be included ' 'in your review request.') return { 'diff': b''.join(diff), 'parent_diff': None, 'base_commit_id': base, } def _run_tf(self, args, **kwargs): """Run the "tf" command. Args: args (list): A list of arguments to pass to rb-tfs. **kwargs (dict): Additional keyword arguments for the :py:meth:`execute` call. Returns: unicode: The output of the command. """ cmdline = [self.tf, '-noprompt'] if getattr(self.options, 'tfs_login', None): cmdline.append('-login:%s' % self.options.tfs_login) cmdline += args # Use / style arguments when running on windows. if sys.platform.startswith('win'): for i, arg in enumerate(cmdline): if arg.startswith('-'): cmdline[i] = '/' + arg[1:] return execute(cmdline, ignore_errors=True, **kwargs) class TFHelperWrapper(object): """Implementation wrapper using our own helper.""" def __init__(self, helper_path, config=None, options=None): """Initialize the wrapper. Args: helper_path (unicode): The path to the helper binary. config (dict, optional): The loaded configuration. options (argparse.Namespace, optional): The command line options. """ self.helper_path = helper_path self.config = config self.options = options def get_local_path(self): """Return the local path to the working tree. Returns: unicode: The filesystem path of the repository on the client system. """ rc, path, errors = self._run_helper(['get-collection'], ignore_errors=True) if rc == 0: return path.strip() return None def get_repository_info(self): """Return repository information for the current working tree. Returns: rbtools.clients.RepositoryInfo: The repository info structure. """ path = self.get_local_path() if path: return RepositoryInfo(path=path, local_path=path) return
separated values.""" return "\t".join(self.getHeaders()) def __str__(self): """return string representation of data.""" if self._mode == "int": format_vals = "%i" format_median = "%.1f" else: format_vals = self._format format_median = self._format return "\t".join(("%i" % self.counts, format_vals % self.min, format_vals % self.max, self._format % self.mean, format_median % self.median, self._format % self.samplestd, format_vals % self.sum, format_vals % self.q1, format_vals % self.q3, )) def doFDRPython(pvalues, vlambda=None, pi0_method="smoother", fdr_level=None, robust=False, smooth_df=3, smooth_log_pi0=False, pi0=None, plot=False): """modeled after code taken from http://genomics.princeton.edu/storeylab/qvalue/linux.html. I did not like the error handling so I translated most to python. Compute FDR after method by <NAME> al. (2002). """ if min(pvalues) < 0 or max(pvalues) > 1: raise ValueError("p-values out of range") # set to default of qvalue method if vlambda is None: vlambda = numpy.arange(0, 0.95, 0.05) m = len(pvalues) pvalues = numpy.array(pvalues, dtype=numpy.float) if pi0 is None: if type(vlambda) == float: vlambda = (vlambda,) if len(vlambda) > 1 and len(vlambda) < 4: raise ValueError( "if length of vlambda greater than 1, you need at least 4 values.") if len(vlambda) > 1 and (min(vlambda) < 0 or max(vlambda) >= 1): raise ValueError("vlambda must be within [0, 1).") # estimate pi0 if len(vlambda) == 1: vlambda = vlambda[0] if vlambda < 0 or vlambda >= 1: raise ValueError("vlambda must be within [0, 1).") pi0 = numpy.mean([x >= vlambda for x in pvalues]) / (1.0 - vlambda) pi0 = min(pi0, 1.0) else: pi0 = numpy.zeros(len(vlambda), numpy.float) for i in range(len(vlambda)): pi0[i] = numpy.mean([x >= vlambda[i] for x in pvalues]) / (1.0 - vlambda[i]) if pi0_method == "smoother": if smooth_log_pi0: pi0 = math.log(pi0) tck = scipy.interpolate.splrep(vlambda, pi0, k=smooth_df, s=10000) if plot: import matplotlib.pyplot as plt plt.figure() plt.plot(vlambda, pi0) x2 = numpy.arange(0, 1, 0.001) y2 = scipy.interpolate.splev(x2, tck) plt.plot(x2, y2) plt.show() pi0 = scipy.interpolate.splev(max(vlambda), tck) if smooth_log_pi0: pi0 = math.exp(pi0) elif pi0_method == "bootstrap": minpi0 = min(pi0) mse = numpy.zeros(len(vlambda), numpy.float) pi0_boot = numpy.zeros(len(vlambda), numpy.float) for i in range(100): # sample pvalues idx_boot = numpy.random.random_integers(0, m - 1, m) pvalues_boot = pvalues[idx_boot] for x in range(len(vlambda)): # compute number of pvalues larger than lambda[x] pi0_boot[x] = numpy.mean( pvalues_boot > vlambda[x]) / (1.0 - vlambda[x]) mse += (pi0_boot - minpi0) ** 2 pi0 = min(pi0[mse == min(mse)]) else: raise ValueError( "'pi0_method' must be one of 'smoother' or 'bootstrap'.") pi0 = min(pi0, 1.0) if pi0 <= 0: raise ValueError( "The estimated pi0 <= 0. Check that you have valid p-values " "or use another vlambda method.") if fdr_level is not None and (fdr_level <= 0 or fdr_level > 1): raise ValueError("'fdr_level' must be within (0, 1].") # compute qvalues idx = numpy.argsort(pvalues) # monotonically decreasing bins, so that bins[i-1] > x >= bins[i] bins = numpy.unique(pvalues)[::-1] # v[i] = number of observations less than or equal to pvalue[i] # could this be done more elegantly? val2bin = len(bins) - numpy.digitize(pvalues, bins) v = numpy.zeros(m, dtype=numpy.int) lastbin = None for x in range(m - 1, -1, -1): bin = val2bin[idx[x]] if bin != lastbin: c = x v[idx[x]] = c + 1 lastbin = bin qvalues = pvalues * pi0 * m / v if robust: qvalues /= (1.0 - (1.0 - pvalues) ** m) # bound qvalues by 1 and make them monotonic qvalues[idx[m - 1]] = min(qvalues[idx[m - 1]], 1.0) for i in range(m - 2, -1, -1): qvalues[idx[i]] = min(min(qvalues[idx[i]], qvalues[idx[i + 1]]), 1.0) result = FDRResult() result.mQValues = qvalues if fdr_level is not None: result.mPassed = [x <= fdr_level for x in result.mQValues] else: result.mPassed = [False for x in result.mQValues] result.mPValues = pvalues result.mPi0 = pi0 result.mLambda = vlambda result.xvalues = qvalues return result class CorrelationTest: '''coefficient is r, not r squared''' def __init__(self, s_result=None, method=None): self.mPValue = None self.mMethod = None if s_result: self.mCoefficient = s_result[0] self.mPValue = s_result[1] self.mNObservations = 0 self.mAlternative = "two-sided" else: self.mCoefficient = 0 self.mPValue = 1 self.mSignificance = "na" self.mNObservations = 0 self.mAlternative = "na" self.mMethod = "na" if method: self.mMethod = method if self.mPValue is not None: self.mSignificance = getSignificance(self.mPValue) def __str__(self): return "\t".join(( "%6.4f" % self.mCoefficient, "%e" % self.mPValue, self.mSignificance, "%i" % self.mNObservations, self.mMethod, self.mAlternative)) @classmethod def getHeaders(cls): return ("coeff", "pvalue", "significance", "observations", "method", "alternative") def filterMasked(xvals, yvals, missing=("na", "Nan", None, ""), dtype=numpy.float): """convert xvals and yvals to numpy array skipping pairs with one or more missing values.""" xmask = [i in missing for i in xvals] ymask = [i in missing for i in yvals] return (numpy.array([xvals[i] for i in range(len(xvals)) if not xmask[i]], dtype=dtype), numpy.array([yvals[i] for i in range(len(yvals)) if not ymask[i]], dtype=dtype)) def doCorrelationTest(xvals, yvals): """compute correlation between x and y. Raises a value-error if there are not enough observations. """ if len(xvals) <= 1 or len(yvals) <= 1: raise ValueError("can not compute correlation with no data") if len(xvals) != len(yvals): raise ValueError("data vectors have unequal length") x, y = filterMasked(xvals, yvals) result = CorrelationTest(s_result=scipy.stats.pearsonr(x, y), method="pearson") result.mNObservations = len(x) return result def getPooledVariance(data): """return pooled variance from a list of tuples (sample_size, variance).""" t, var = 0, 0 for n, s in data: t += n var += (n - 1) * s assert t > len(data), "sample size smaller than samples combined" return var / float(t - len(data)) def computeROC(values): '''return a roc curve for *values*. Values is a sorted list of (value, bool) pairs. Deprecated - use getPerformance instead returns a list of (FPR,TPR) tuples. ''' roc = [] npositives = len([x for x in values if x[1]]) if npositives == 0: raise ValueError("no positives among values") ntotal = len(values) last_value, last_fpr = None, None tp, fp = 0, 0 tn, fn = ntotal - npositives, npositives for value, is_positive in values: if is_positive: tp += 1 fn -= 1 else: fp += 1 tn -= 1 if last_value != value: try: tpr = float(tp) / (tp + fn) except ZeroDivisionError: tpr = 0 try: fpr = float(fp) / (fp + tn) except ZeroDivisionError: fpr = 0 if last_fpr != fpr: roc.append((fpr, tpr)) last_fpr = fpr last_values = value return roc class TTest: def __init__(self): pass class WelchTTest: def __init__(self): pass PairedTTest = collections.namedtuple("PairedTTest", "statistic pvalue") def doPairedTTest(vals1, vals2): '''perform paired t-test. vals1 and vals2 need to contain the same number of elements. ''' return PairedTTest._make(scipy.stats.ttest_rel(vals1, vals2)) def doWelchsTTest(n1, mean1, std1, n2, mean2, std2, alpha=0.05): '''Welch''s approximate t-test for the difference of two means of heteroscedasctic populations. This functions does a two-tailed test. see PMID: 12016052 :Parameters: n1 : int number of variates in sample 1 n2 : int number of variates in sample 2 mean1 : float mean of sample 1 mean2 : float mean of sample 2 std1 : float standard deviation of sample 1 std2 : float standard deviation of sample 2 returns a WelchTTest ''' if std1 == 0 and std2 == 0: raise ValueError('standard deviations are 0.') # convert standard deviation to sample variance svar1 = std1 ** 2 * n1 / float(n1 - 1) svar2 = std2 ** 2 * n2 / float(n2 - 1) # compute df and test statistic df = ((svar1 / n1 + svar2 / n2) ** 2) / \ (((svar1 / n1) ** 2) / (n1 - 1) + ((svar2 / n2) ** 2) / (n2 - 1)) denom = numpy.sqrt(svar1 / n1 + svar2 / n2) z = abs(mean1 - mean2) / denom # do the test pvalue = 2 * scipy.stats.t.sf(z, df) result = WelchTTest() result.mPValue = pvalue result.mDegreesFreedom = df result.mZ = z result.mMean1 = mean1 result.mMean2 = mean2 result.mSampleVariance1 = svar1 result.mSampleVariance2 = svar2 result.mDifference = mean1 - mean2 result.mZLower = scipy.stats.t.ppf(alpha, df) result.mZUpper = scipy.stats.t.ppf(1.0 - alpha, df) result.mDifferenceLower = result.mZLower * denom result.mDifferenceUpper = result.mZUpper * denom return result def getAreaUnderCurve(xvalues, yvalues): '''compute area under curve from a set of discrete x,y coordinates using trapezoids. This is only as accurate as the density of points. ''' assert len(xvalues) == len(yvalues) last_x, last_y = xvalues[0], yvalues[0]
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import types so that we can reference ListType in sphinx param declarations. # We can't just use list, because sphinx gets confused by # openstack.resource.Resource.list and openstack.resource2.Resource.list import time import threading import types # noqa from openstack.cloud import exc from openstack.cloud import _normalize from openstack.cloud import _utils from openstack import exceptions from openstack import proxy class NetworkCloudMixin(_normalize.Normalizer): def __init__(self): self._ports = None self._ports_time = 0 self._ports_lock = threading.Lock() @_utils.cache_on_arguments() def _neutron_extensions(self): extensions = set() resp = self.network.get('/extensions') data = proxy._json_response( resp, error_message="Error fetching extension list for neutron") for extension in self._get_and_munchify('extensions', data): extensions.add(extension['alias']) return extensions def _has_neutron_extension(self, extension_alias): return extension_alias in self._neutron_extensions() def search_networks(self, name_or_id=None, filters=None): """Search networks :param name_or_id: Name or ID of the desired network. :param filters: a dict containing additional filters to use. e.g. {'router:external': True} :returns: a list of ``munch.Munch`` containing the network description. :raises: ``OpenStackCloudException`` if something goes wrong during the OpenStack API call. """ networks = self.list_networks( filters if isinstance(filters, dict) else None) return _utils._filter_list(networks, name_or_id, filters) def search_routers(self, name_or_id=None, filters=None): """Search routers :param name_or_id: Name or ID of the desired router. :param filters: a dict containing additional filters to use. e.g. {'admin_state_up': True} :returns: a list of ``munch.Munch`` containing the router description. :raises: ``OpenStackCloudException`` if something goes wrong during the OpenStack API call. """ routers = self.list_routers( filters if isinstance(filters, dict) else None) return _utils._filter_list(routers, name_or_id, filters) def search_subnets(self, name_or_id=None, filters=None): """Search subnets :param name_or_id: Name or ID of the desired subnet. :param filters: a dict containing additional filters to use. e.g. {'enable_dhcp': True} :returns: a list of ``munch.Munch`` containing the subnet description. :raises: ``OpenStackCloudException`` if something goes wrong during the OpenStack API call. """ subnets = self.list_subnets( filters if isinstance(filters, dict) else None) return _utils._filter_list(subnets, name_or_id, filters) def search_ports(self, name_or_id=None, filters=None): """Search ports :param name_or_id: Name or ID of the desired port. :param filters: a dict containing additional filters to use. e.g. {'device_id': '2711c67a-b4a7-43dd-ace7-6187b791c3f0'} :returns: a list of ``munch.Munch`` containing the port description. :raises: ``OpenStackCloudException`` if something goes wrong during the OpenStack API call. """ # If port caching is enabled, do not push the filter down to # neutron; get all the ports (potentially from the cache) and # filter locally. if self._PORT_AGE or isinstance(filters, str): pushdown_filters = None else: pushdown_filters = filters ports = self.list_ports(pushdown_filters) return _utils._filter_list(ports, name_or_id, filters) def list_networks(self, filters=None): """List all available networks. :param filters: (optional) dict of filter conditions to push down :returns: A list of ``munch.Munch`` containing network info. """ # If the cloud is running nova-network, just return an empty list. if not self.has_service('network'): return [] # Translate None from search interface to empty {} for kwargs below if not filters: filters = {} data = self.network.get("/networks", params=filters) return self._get_and_munchify('networks', data) def list_routers(self, filters=None): """List all available routers. :param filters: (optional) dict of filter conditions to push down :returns: A list of router ``munch.Munch``. """ # If the cloud is running nova-network, just return an empty list. if not self.has_service('network'): return [] # Translate None from search interface to empty {} for kwargs below if not filters: filters = {} resp = self.network.get("/routers", params=filters) data = proxy._json_response( resp, error_message="Error fetching router list") return self._get_and_munchify('routers', data) def list_subnets(self, filters=None): """List all available subnets. :param filters: (optional) dict of filter conditions to push down :returns: A list of subnet ``munch.Munch``. """ # If the cloud is running nova-network, just return an empty list. if not self.has_service('network'): return [] # Translate None from search interface to empty {} for kwargs below if not filters: filters = {} data = self.network.get("/subnets", params=filters) return self._get_and_munchify('subnets', data) def list_ports(self, filters=None): """List all available ports. :param filters: (optional) dict of filter conditions to push down :returns: A list of port ``munch.Munch``. """ # If pushdown filters are specified and we do not have batched caching # enabled, bypass local caching and push down the filters. if filters and self._PORT_AGE == 0: return self._list_ports(filters) if (time.time() - self._ports_time) >= self._PORT_AGE: # Since we're using cached data anyway, we don't need to # have more than one thread actually submit the list # ports task. Let the first one submit it while holding # a lock, and the non-blocking acquire method will cause # subsequent threads to just skip this and use the old # data until it succeeds. # Initially when we never got data, block to retrieve some data. first_run = self._ports is None if self._ports_lock.acquire(first_run): try: if not (first_run and self._ports is not None): self._ports = self._list_ports({}) self._ports_time = time.time() finally: self._ports_lock.release() # Wrap the return with filter_list so that if filters were passed # but we were batching/caching and thus always fetching the whole # list from the cloud, we still return a filtered list. return _utils._filter_list(self._ports, None, filters or {}) def _list_ports(self, filters): # If the cloud is running nova-network, just return an empty list. if not self.has_service('network'): return [] resp = self.network.get("/ports", params=filters) data = proxy._json_response( resp, error_message="Error fetching port list") return self._get_and_munchify('ports', data) def get_qos_policy(self, name_or_id, filters=None): """Get a QoS policy by name or ID. :param name_or_id: Name or ID of the policy. :param filters: A dictionary of meta data to use for further filtering. Elements of this dictionary may, themselves, be dictionaries. Example:: { 'last_name': 'Smith', 'other': { 'gender': 'Female' } } OR A string containing a jmespath expression for further filtering. Example:: "[?last_name==`Smith`] | [?other.gender]==`Female`]" :returns: A policy ``munch.Munch`` or None if no matching network is found. """ return _utils._get_entity( self, 'qos_policie', name_or_id, filters) def search_qos_policies(self, name_or_id=None, filters=None): """Search QoS policies :param name_or_id: Name or ID of the desired policy. :param filters: a dict containing additional filters to use. e.g. {'shared': True} :returns: a list of ``munch.Munch`` containing the network description. :raises: ``OpenStackCloudException`` if something goes wrong during the OpenStack API call. """ policies = self.list_qos_policies(filters) return _utils._filter_list(policies, name_or_id, filters) def list_qos_rule_types(self, filters=None): """List all available QoS rule types. :param filters: (optional) dict of filter conditions to push down :returns: A list of rule types ``munch.Munch``. """ if not self._has_neutron_extension('qos'): raise exc.OpenStackCloudUnavailableExtension( 'QoS extension is not available on target cloud') # Translate None from search interface to empty {} for kwargs below if not filters: filters = {} resp = self.network.get("/qos/rule-types", params=filters) data = proxy._json_response( resp, error_message="Error fetching QoS rule types list") return self._get_and_munchify('rule_types', data) def get_qos_rule_type_details(self, rule_type, filters=None): """Get a QoS rule type details by rule type name. :param string rule_type: Name of the QoS rule type. :returns: A rule type details ``munch.Munch`` or None if no matching rule type is found. """ if not self._has_neutron_extension('qos'): raise exc.OpenStackCloudUnavailableExtension( 'QoS extension is not available on target cloud') if not self._has_neutron_extension('qos-rule-type-details'): raise exc.OpenStackCloudUnavailableExtension( 'qos-rule-type-details extension is not available ' 'on target cloud') resp = self.network.get( "/qos/rule-types/{rule_type}".format(rule_type=rule_type)) data = proxy._json_response( resp, error_message="Error fetching QoS details of {rule_type} " "rule type".format(rule_type=rule_type)) return self._get_and_munchify('rule_type', data) def list_qos_policies(self, filters=None): """List all available QoS policies. :param filters: (optional) dict of filter conditions to push down :returns: A list of policies ``munch.Munch``. """ if not self._has_neutron_extension('qos'): raise exc.OpenStackCloudUnavailableExtension( 'QoS extension is not available on target cloud') # Translate None from search interface to empty {} for kwargs below if not filters: filters = {} resp = self.network.get("/qos/policies", params=filters) data = proxy._json_response( resp, error_message="Error fetching QoS policies list") return self._get_and_munchify('policies', data) def get_network(self, name_or_id, filters=None): """Get a network by name or ID. :param name_or_id: Name or ID of the network. :param filters: A dictionary
<gh_stars>1-10 # File for plotting utilities import numpy as np import matplotlib import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import os from utils.sim import * from utils.data import * # Included functions with descriptions: # plot_flight_time: Plots flight time vs rollout # plot_trained_points: plots flight time vs log trained points # plot_sensor_quality: plots std dev of sensor measurements vs flight chronologically # plot_waterfall: Plots model predictions and best action for a traj # plot_traj_model: plots model predictions from beginning of a trajectory # plot_battery_thrust: plots thrust vs battery for a trajectory # plot_euler_preds: plots the one step predictions for the dynamics model on euler angles # plot_rollout_compare: Plots euler angles over time for first 4 rollouts # plot_flight_segment: plots a segment of a flight at given location def plot_flight_time(csv_dir): ''' tool to take in a directory of flight summaries and plot the flight time vs rollouts the file structure should be as follows: flights/ ..freq1 ..rand ..roll1 ..roll2 ..freq2 ..rand ..roll1 ..roll2 .... ''' print_flag = False if print_flag: print('~~~~~~~~~~~~') # gather dirs (each will be one line on the plot) dirs = [dI for dI in os.listdir( csv_dir) if os.path.isdir(os.path.join(csv_dir, dI))] # print(dirs) # font = {'size': 23} font = {'size': 12} matplotlib.rc('font', **font) matplotlib.rc('lines', linewidth=3) matplotlib.rc('text', usetex=True) fig = plt.figure() with sns.axes_style("whitegrid"): plt.rcParams["font.family"] = "Times New Roman" plt.rcParams["axes.edgecolor"] = "0.15" plt.rcParams["axes.linewidth"] = 1.5 plt.subplots_adjust( top = .96, bottom = 0.15,left=.09, right=1-.03)#, wspace=.25, hspace=.3) ax1 = plt.subplot(111) colors = ['#208080', '#F83030', '#808000'] markers = ['*', '.', 'x'] i = 0 for dir, c in zip(reversed(sorted(dirs)), colors): if print_flag: print('---' + dir + '---') # Load each frequency fo rollouts individually label = dir files = os.listdir(csv_dir+dir) # create list for dataframes data = [] df_main = pd.DataFrame(columns=[ "Flight Idx", "Flight Time (ms)", "Mean Objective", "RMS Pitch Roll", "roll"]) means = [] stds = [] labels = [] for f in sorted(files): if f != '.DS_Store': if print_flag: print("-> Rollout: " + f[-10:-3]) with open(csv_dir+dir+'/'+f, "rb") as csvfile: # laod data roll = f[-f[::-1].find('_'):-f[::-1].find('.')-1] df = pd.read_csv(csvfile, sep=",") df['roll'] = roll df_main = df_main.append(df) mean_sub = df["Flight Time (ms)"].mean() std_sub = df["Flight Time (ms)"].std() means.append(mean_sub) stds.append(std_sub) if roll == 'rand': roll = '00' else: roll = roll[-2:] labels.append(roll) # mean = np.mean(new_data[:,1]) # std = np.std(new_data[:,1]) if print_flag: new_data = np.loadtxt( csvfile, delimiter=",", skiprows=1) print(" Mean flight length is: ", np.mean(new_data[:, 1])) print(" Std flight length is: ", np.std(new_data[:, 1])) means = np.array(means) stds = np.array(stds) x = np.arange(0, len(labels)) ax1.plot(x, means/1000, label=label, color=c, marker=markers[i], markersize='14') ax1.set_xlim([0,len(labels)-1]) ax1.axhline(np.max(means)/1000, linestyle=':', label=str("Max" + dir), alpha=.8, color=c) ax1.set_ylabel("Flight Time (s)") ax1.set_xlabel("Rollout (10 Flights Per)") ax1.grid(b=True, which='major', color='k', linestyle='-', linewidth=0, alpha=.5) ax1.grid(b=True, which='minor', color='r', linestyle='--', linewidth=0) # ax1.set_title("Flight Time vs Rollout") ax1.set_ylim([0, 2.500]) ax1.set_xticks(x) ax1.set_xticklabels(labels, rotation=75, fontsize=12) ax1.legend() # , edgecolor='#CC4F1B', facecolor='#FF9848') plt.fill_between(x, (means-stds)/1000, (means+stds) / 1000, alpha=0.3, color=c) i += 1 ############### fig.set_size_inches(7, 3.5) # plt.savefig('psoter', edgecolor='black', dpi=100, transparent=True) plt.savefig('destination_path.pdf', format='pdf', dpi=300) # plt.show() print('\n') def plot_trained_points(csv_dir): """ tool to take in a directory of flight summaries and plot the flight points vs rollouts the file structure should be as follows: flights/ ..freq1 ..rand ..roll1 ..roll2 ..freq2 ..rand ..roll1 ..roll2 .... """ print_flag = False if print_flag: print('~~~~~~~~~~~~') # gather dirs (each will be one line on the plot) dirs = [dI for dI in os.listdir( csv_dir) if os.path.isdir(os.path.join(csv_dir, dI))] # print(dirs) font = {'size': 22} matplotlib.rc('font', **font) matplotlib.rc('lines', linewidth=2.5) with sns.axes_style("whitegrid"): plt.rcParams["axes.edgecolor"] = "0.15" plt.rcParams["axes.linewidth"] = 1.5 ax1 = plt.subplot(111) plt.subplots_adjust(wspace=.15, left=.1, right=1-.07) # , hspace=.15) colors = ['#208080', '#F83030', '#808000'] markers = ['*', 'x', '.'] for i, (dir, c) in enumerate(zip(reversed(sorted(dirs)), colors)): if print_flag: print('---' + dir + '---') # Load each frequency fo rollouts individually label = dir + " Rollouts" files = os.listdir(csv_dir+dir) # create list for dataframes data = [] df_main = pd.DataFrame(columns=["Flight Idx", "Flight Time (ms)", "Trained Points", "Mean Objective", "RMS Pitch Roll", "roll"]) means = [] stds = [] labels = [] cum_points = 0 for f in sorted(files): print(f) if print_flag: print("-> Rollout: " + f[-10:-3]) with open(csv_dir+dir+'/'+f, "rb") as csvfile: # laod data roll = f[-f[::-1].find('_'):-f[::-1].find('.')-1] df = pd.read_csv(csvfile, sep=",") df['roll'] = roll df_main = df_main.append(df) mean_sub = df["Flight Time (ms)"].mean() std_sub = df["Flight Time (ms)"].std() data_points = np.sum(df["Trained Points"]) means.append(mean_sub) stds.append(std_sub) labels.append(data_points) # mean = np.mean(new_data[:,1]) # std = np.std(new_data[:,1]) if print_flag: new_data = np.loadtxt(csvfile, delimiter=",", skiprows=1) print(" Mean flight length is: ", np.mean(new_data[:, 1])) print(" Std flight length is: ", np.std(new_data[:, 1])) means = np.array(means) stds = np.array(stds) labels = np.array(labels) labels = np.cumsum(labels) print(labels) x = np.arange(0, len(labels)) ax1.scatter(labels, means/1000, label=label, marker=markers[i], color=c, linewidth='16') # ax1.axhline(np.max(means),linestyle='--', label=str("Max" + dir),alpha=.5, color=c) ax1.set_xscale("log", nonposx='clip') ax1.set_xlim([50, 20000]) ax1.set_ylabel("Flight Time (s)") ax1.set_xlabel("Trained Datapoints") ax1.grid(b=True, which='major', color='k', linestyle='-', linewidth=1.2, alpha=.75) ax1.grid(b=True, which='minor', color='b', linestyle='--', linewidth=1.2, alpha=.5) # ax1.set_title("Flight Time vs Datapoints") # Customize the major grid # ax1.grid(which='major', linestyle='-', linewidth='0.5', color='red') # Customize the minor grid # plt.grid(True, which='majorminor', linestyle=':', linewidth='0.75', color='black') # ax1.set_ylim([0,5000]) # ax1.set_xticks(x) # ax1.set_xticklabels(labels, rotation = 75, fontsize = 14) ax1.legend() ############### plt.show() print('\n') def plot_sensor_quality(dir): """ Goes through subfolders of a given directory to see if there is any noticable changes in how the data is logged that may indicated why some flights are so much better Takes the mean and variance of the state data through each takeoff. Will return a matrix of dimesnions (n, dx), so - n number of rollouts - dx is the dimension of the state """ print('------------') print('RUNNING TEST OF LOGGEST STATE DATA NOISE') dirs = os.listdir("_logged_data_autonomous/"+dir) # init arrays for the means of each rollout for large scale analysis means = np.zeros([len(dirs), 9]) noises = np.zeros([len(dirs), 9]) # init array for a long list of all flights total_list = np.zeros([len(dirs)*10, 9]) # dim = 1 l1 = [] l2 = [] l3 = [] l7 = [] l8 = [] l9 = [] flight_times = [] for d in sorted(dirs)[:-1]: if d != '.DS_Store': print('~~~ dir:', d, ' ~~~') files = os.listdir("_logged_data_autonomous/"+dir+'/'+d+'/') i = 0 for f in sorted(files): if len(f) > 5 and f[-4:] == '.csv': # print("File num: ", i) new_data = np.loadtxt( "_logged_data_autonomous/"+dir+'/'+d+'/'+f, delimiter=",") Objv = new_data[:, 14] move_idx = np.argmax(Objv != -1) Time = new_data[:, 13] flight_len = Time[-1]-Time[move_idx-5] flight_times.append(flight_len) # GRABS DATA DURING AND BEFORE TAKEOFF state_data = new_data[:move_idx-5, :9] means = np.mean(state_data, axis=0) noise = np.std(state_data, axis=0) # print("Means: ", means) # print("Noises: ", noise) l1.append(noise[0]) l2.append(noise[1]) l3.append(noise[2]) l7.append(noise[6]) l8.append(noise[7]) l9.append(noise[8]) i += 1 # not using enumarate becase DS_Store plotting_keys = np.loadtxt( "_logged_data_autonomous/"+dir+'/'+"data.csv", delimiter='\t') print(np.shape(plotting_keys)) print(np.shape(l1)) font = {'size': 18} matplotlib.rc('font', **font) matplotlib.rc('lines', linewidth=2.5) with sns.axes_style("whitegrid"): plt.rcParams["axes.edgecolor"] = "0.15" plt.rcParams["axes.linewidth"] = 1.5 ax1 = plt.subplot(111) plt.subplots_adjust(wspace=.15, left=.1, right=1-.07) # , hspace=.15) for i, row in enumerate(plotting_keys): # drift fails if row[0] == 1: lab1 = plt.axvline(i, linestyle='--', color='r', alpha=.3, label='Drift Failures') # sensor fails elif row[1] == 1: lab2 = plt.axvline(i, linestyle='--', color='b', alpha=.3, label='Sensor Failures') # replace parts elif row[2] == 1: lab3 = plt.axvline(i, linestyle='--', color='k', alpha=.3, label='Replace Parts') # Lines for frequency cutoffs lab50 = plt.axvline(160, linestyle=':', color='k', alpha=.8, label='50Hz Begins') lab75 = plt.axvline(290, linestyle='-.', color='k', alpha=.8, label='75Hz Begins') # ax1.set_title("Noise on certain variables across flights") ax1.set_xlabel("Chronological Flight") ax1.set_ylabel("Std. Dev. Data (deg/s^2) - Noise") p1 = plt.plot(l1, label='angularx') p2 = plt.plot(l2, label='angulary') p3 = plt.plot(l3, label='angularz') ax1.set_ylim([0, 6]) # p4 = plt.plot(l7, label='linearx') # p5 = plt.plot(l8, label='lineary') # p6 = plt.plot(l9, label='linearz') lns = p1+p2+p3+[lab1]+[lab2]+[lab3]+[lab50]+[lab75] labs = [l.get_label() for l in lns] ax1.legend(lns, labs, fancybox=True, framealpha=1, shadow=True, borderpad=1, ncol=3) # ax2 = ax1.twinx() # ax2.plot(flight_times, linestyle='-', color = 'k', label='Flight Time') # ax2.set_ylabel("Flight Time (ms)") plt.show() def plot_voltage_context(model, df, action = [37000,37000, 30000, 45000], act_range = 25000, normalize = False, ground_truth = False, model_nobat = []): ''' Takes in a dynamics model and plots the distributions of points in the dataset and plots various lines verses different voltage levels ''' ################ Figure out what to do with
<gh_stars>0 # -*- coding: utf-8 -*- from pysignfe.corr_unicode import * from pysignfe.xml_sped import * from pysignfe.nfe.manual_401 import ESQUEMA_ATUAL from pysignfe.nfe.manual_300 import nfe_110 import os from lxml.etree import tounicode from pysignfe.nfe.webservices_3 import ESTADO_SVC_CONTINGENCIA from pysignfe.nfe.webservices_flags import UF_CODIGO from pysignfe import __version__ DIRNAME = os.path.dirname(__file__) class Deduc(XMLNFe): def __init__(self): super(Deduc, self).__init__() self.xDed = TagCaracter(nome=u'xDed', codigo=u'ZC11', tamanho=[1, 60] , raiz=u'//deduc') self.vDed = TagDecimal(nome=u'vDed' , codigo=u'ZC12', tamanho=[1, 15, 1], decimais=[1, 2, 2], raiz=u'//deduc') def get_xml(self): if not (self.xDed.valor or self.vDed.valor): return u'' xml = XMLNFe.get_xml(self) xml += u'<deduc>' xml += self.xDed.xml xml += self.vDed.xml xml += u'</deduc>' return xml def set_xml(self, arquivo): if self._le_xml(arquivo): self.xDed.xml = arquivo self.vDed.xml = arquivo xml = property(get_xml, set_xml) class ForDia(XMLNFe): def __init__(self): super(ForDia, self).__init__() self.dia = TagInteiro(nome=u'dia' , codigo=u'ZC05', tamanho=[1, 2, 1] , raiz=u'//forDia') self.qtde = TagDecimal(nome=u'qtde', codigo=u'ZC06', tamanho=[1, 11, 1], decimais=[1, 10, 10], raiz=u'//forDia') def get_xml(self): if not (self.dia.valor or self.qtde.valor): return u'' xml = XMLNFe.get_xml(self) xml += u'<forDia>' xml += self.dia.xml xml += self.qtde.xml xml += u'</forDia>' return xml def set_xml(self, arquivo): if self._le_xml(arquivo): self.dia.xml = arquivo self.qtde.xml = arquivo xml = property(get_xml, set_xml) class Cana(XMLNFe): def __init__(self): super(Cana, self).__init__() self.safra = TagCaracter(nome=u'safra' , codigo=u'ZC02', tamanho=[4, 9] , raiz=u'//NFe/infNFe/cana') self.ref = TagCaracter(nome=u'ref' , codigo=u'ZC03', tamanho=[7, 7] , raiz=u'//NFe/infNFe/cana') self.forDia = [] self.qTotMes = TagDecimal(nome=u'qTotMes', codigo=u'ZC07', tamanho=[1, 11, 1], decimais=[1, 10, 10], raiz=u'//NFe/infNFe/cana') self.qTotAnt = TagDecimal(nome=u'qTotAnt', codigo=u'ZC08', tamanho=[1, 11, 1], decimais=[1, 10, 10], raiz=u'//NFe/infNFe/cana') self.qTotGer = TagDecimal(nome=u'qTotGer', codigo=u'ZC09', tamanho=[1, 11, 1], decimais=[1, 10, 10], raiz=u'//NFe/infNFe/cana') self.deduc = [] self.vFor = TagDecimal(nome=u'vFor' , codigo=u'ZC13', tamanho=[1, 15, 1], decimais=[1, 2, 2], raiz=u'//NFe/infNFe/cana') self.vTotDed = TagDecimal(nome=u'vTotDed', codigo=u'ZC14', tamanho=[1, 15, 1], decimais=[1, 2, 2], raiz=u'//NFe/infNFe/cana') self.vLiqFor = TagDecimal(nome=u'vLiqFor', codigo=u'ZC15', tamanho=[1, 15, 1], decimais=[1, 2, 2], raiz=u'//NFe/infNFe/cana') def get_xml(self): if not (self.safra.valor): return u'' xml = XMLNFe.get_xml(self) xml += u'<cana>' xml += self.safra.xml xml += self.ref.xml for fd in self.forDia: xml += fd.xml xml += self.qTotMes.xml xml += self.qTotAnt.xml xml += self.qTotGer.xml for d in self.deduc: xml += d.xml xml += self.vFor.xml xml += self.vTotDed.xml xml += self.vLiqFor.xml xml += u'</cana>' return xml def set_xml(self, arquivo): if self._le_xml(arquivo): self.safra.xml = arquivo self.ref.xml = arquivo self.forDia = self.le_grupo(u'//NFe/infNFe/cana/forDia', ForDia) self.qTotMes.xml = arquivo self.qTotAnt.xml = arquivo self.qTotGer.xml = arquivo self.deduc = self.le_grupo(u'//NFe/infNFe/cana/deduc', Deduc) self.vFor.xml = arquivo self.vTotDed.xml = arquivo self.vLiqFor.xml = arquivo xml = property(get_xml, set_xml) class ISSQN(nfe_110.ISSQN): def __init__(self): super(ISSQN, self).__init__() self.cSitTrib = TagCaracter(nome=u'cSitTrib', codigo=u'U07', tamanho=[1, 1], raiz=u'//det/imposto/ISSQN') def get_xml(self): if not (self.cSitTrib.valor): return u'' xml = XMLNFe.get_xml(self) xml += u'<ISSQN>' xml += self.vBC.xml xml += self.vAliq.xml xml += self.vISSQN.xml xml += self.cMunFG.xml xml += self.cListServ.xml xml += self.cSitTrib.xml xml += u'</ISSQN>' return xml def set_xml(self, arquivo): if self._le_xml(arquivo): self.vBC.xml = arquivo self.vAliq.xml = arquivo self.vISSQN.xml = arquivo self.cMunFG.xml = arquivo self.cListServ.xml = arquivo self.cSitTrib.xml = arquivo xml = property(get_xml, set_xml) class COFINSST(nfe_110.COFINSST): def __init__(self): super(COFINSST, self).__init__() class TagCSTCOFINS(nfe_110.TagCSTCOFINS): def __init__(self, *args, **kwargs): super(TagCSTCOFINS, self).__init__(*args, **kwargs) class COFINS(nfe_110.COFINS): def __init__(self): super(COFINS, self).__init__() class PISST(nfe_110.PISST): def __init__(self): super(PISST, self).__init__() class TagCSTPIS(nfe_110.TagCSTPIS): def __init__(self, *args, **kwargs): super(TagCSTPIS, self).__init__(*args, **kwargs) class PIS(nfe_110.PIS): def __init__(self): super(PIS, self).__init__() class II(nfe_110.II): def __init__(self): super(II, self).__init__() class TagCSTIPI(nfe_110.TagCSTIPI): def __init__(self, *args, **kwargs): super(TagCSTIPI, self).__init__(*args, **kwargs) class IPI(nfe_110.IPI): def __init__(self): super(IPI, self).__init__() class TagCSOSN(TagCaracter): def __init__(self, *args, **kwargs): super(TagCSOSN, self).__init__(*args, **kwargs) self.nome = u'CSOSN' self.codigo = u'N12a' self.tamanho = [3, 3] self.raiz = u'' self.grupo_icms = None def set_valor(self, novo_valor): super(TagCSOSN, self).set_valor(novo_valor) if not self.grupo_icms: return None # # Definimos todas as tags como não obrigatórias # # self.grupo_icms.modBC.obrigatorio = False # self.grupo_icms.vBC.obrigatorio = False # self.grupo_icms.pRedBC.obrigatorio = False # self.grupo_icms.pICMS.obrigatorio = False # self.grupo_icms.vICMS.obrigatorio = False # self.grupo_icms.modBCST.obrigatorio = False # self.grupo_icms.pMVAST.obrigatorio = False # self.grupo_icms.pRedBCST.obrigatorio = False # self.grupo_icms.vBCST.obrigatorio = False # self.grupo_icms.pICMSST.obrigatorio = False # self.grupo_icms.vICMSST.obrigatorio = False # self.grupo_icms.vBCSTRet.obrigatorio = False # self.grupo_icms.vICMSSTRet.obrigatorio = False # self.grupo_icms.pCredSN.obrigatorio = False # self.grupo_icms.vCredICMSSN.obrigatorio = False # # # # # Por segurança, zeramos os valores das tags do # # grupo ICMS ao redefinirmos o código da situação # # tributária # # # self.grupo_icms.modBC.valor = 3 # self.grupo_icms.vBC.valor = u'0.00' # self.grupo_icms.pRedBC.valor = u'0.00' # self.grupo_icms.pICMS.valor = u'0.00' # self.grupo_icms.vICMS.valor = u'0.00' # self.grupo_icms.modBCST.valor = 4 # self.grupo_icms.pMVAST.valor = u'0.00' # self.grupo_icms.pRedBCST.valor = u'0.00' # self.grupo_icms.vBCST.valor = u'0.00' # self.grupo_icms.pICMSST.valor = u'0.00' # self.grupo_icms.vICMSST.valor = u'0.00' # self.grupo_icms.vBCSTRet.valor = u'0.00' # self.grupo_icms.vICMSSTRet.valor = u'0.00' # self.grupo_icms.pCredSN.valor = u'0.00' # self.grupo_icms.vCredICMSSN.valor = u'0.00' # # Para cada código de situação tributária, # redefinimos a raiz e a obrigatoriedade das # tags do grupo de ICMS # # Definimos também o valor da tag CST do ICMS # tradicional para mapear os novos valores # na impressão do DANFE # # Mapeamento de acordo com a Nota Técnica 2009.004 # # # Usamos a propriedade privada, para evitar # o processamento do set_valor da classe TagCSTICMS # if self.valor == u'101': self.grupo_icms.nome_tag = u'ICMSSN101' self.grupo_icms.raiz_tag = u'//det/imposto/ICMS/ICMSSN101' self.grupo_icms.pCredSN.obrigatorio = True self.grupo_icms.vCredICMSSN.obrigatorio = True self.grupo_icms.CST._valor_string = self.valor elif self.valor in (u'102', u'103', u'300', u'400'): self.grupo_icms.nome_tag = u'ICMSSN102' self.grupo_icms.raiz_tag = u'//det/imposto/ICMS/ICMSSN102' self.grupo_icms.CST._valor_string = self.valor elif self.valor == u'201': self.grupo_icms.nome_tag = u'ICMSSN201' self.grupo_icms.raiz_tag = u'//det/imposto/ICMS/ICMSSN201' self.grupo_icms.modBCST.obrigatorio = True self.grupo_icms.vBCST.obrigatorio = True self.grupo_icms.pICMSST.obrigatorio = True self.grupo_icms.vICMSST.obrigatorio = True self.grupo_icms.pCredSN.obrigatorio = True self.grupo_icms.vCredICMSSN.obrigatorio = True self.grupo_icms.CST._valor_string = self.valor elif self.valor in (u'202', u'203'): self.grupo_icms.nome_tag = u'ICMSSN202' self.grupo_icms.raiz_tag = u'//det/imposto/ICMS/ICMSSN202' self.grupo_icms.modBCST.obrigatorio = True self.grupo_icms.vBCST.obrigatorio = True self.grupo_icms.pICMSST.obrigatorio = True self.grupo_icms.vICMSST.obrigatorio = True self.grupo_icms.CST._valor_string = self.valor elif self.valor == u'500': self.grupo_icms.nome_tag = u'ICMSSN500' self.grupo_icms.raiz_tag = u'//det/imposto/ICMS/ICMSSN500' self.grupo_icms.vBCSTRet.obrigatorio = True self.grupo_icms.vICMSSTRet.obrigatorio = True self.grupo_icms.CST._valor_string = self.valor elif self.valor == u'900': self.grupo_icms.nome_tag = u'ICMSSN900' self.grupo_icms.raiz_tag = u'//det/imposto/ICMS/ICMSSN900' self.grupo_icms.modBC.obrigatorio = True self.grupo_icms.vBC.obrigatorio = True self.grupo_icms.pICMS.obrigatorio = True self.grupo_icms.vICMS.obrigatorio = True self.grupo_icms.modBCST.obrigatorio = True self.grupo_icms.vBCST.obrigatorio = True self.grupo_icms.pICMSST.obrigatorio = True self.grupo_icms.vICMSST.obrigatorio = True self.grupo_icms.pCredSN.obrigatorio = True self.grupo_icms.vCredICMSSN.obrigatorio = True self.grupo_icms.CST._valor_string = self.valor # # Redefine a raiz para todas as tags do grupo ICMS # self.grupo_icms.orig.raiz = self.grupo_icms.raiz_tag self.grupo_icms.CSOSN.raiz = self.grupo_icms.raiz_tag self.grupo_icms.modBC.raiz = self.grupo_icms.raiz_tag self.grupo_icms.vBC.raiz = self.grupo_icms.raiz_tag self.grupo_icms.pRedBC.raiz = self.grupo_icms.raiz_tag self.grupo_icms.pICMS.raiz = self.grupo_icms.raiz_tag self.grupo_icms.vICMS.raiz = self.grupo_icms.raiz_tag self.grupo_icms.modBCST.raiz = self.grupo_icms.raiz_tag self.grupo_icms.pMVAST.raiz = self.grupo_icms.raiz_tag self.grupo_icms.pRedBCST.raiz = self.grupo_icms.raiz_tag self.grupo_icms.vBCST.raiz = self.grupo_icms.raiz_tag self.grupo_icms.pICMSST.raiz = self.grupo_icms.raiz_tag self.grupo_icms.vICMSST.raiz = self.grupo_icms.raiz_tag self.grupo_icms.vBCSTRet.raiz = self.grupo_icms.raiz_tag self.grupo_icms.vICMSSTRet.raiz = self.grupo_icms.raiz_tag self.grupo_icms.pCredSN.raiz = self.grupo_icms.raiz_tag self.grupo_icms.vCredICMSSN.raiz = self.grupo_icms.raiz_tag def get_valor(self): return self._valor_string valor = property(get_valor, set_valor) class TagCSTICMS(nfe_110.TagCSTICMS): def __init__(self, *args, **kwargs): super(TagCSTICMS, self).__init__(*args, **kwargs) self.nome = u'CST' self.codigo = u'N12' self.tamanho = [2, 2] self.raiz = u'' self.grupo_icms = None def set_valor(self, novo_valor): super(TagCSTICMS, self).set_valor(novo_valor) if not self.grupo_icms: return None # # Definimos todas as tags como não obrigatórias # self.grupo_icms.modBC.obrigatorio = False self.grupo_icms.vBC.obrigatorio = False self.grupo_icms.pRedBC.obrigatorio = False self.grupo_icms.pICMS.obrigatorio = False self.grupo_icms.vICMS.obrigatorio = False self.grupo_icms.modBCST.obrigatorio = False self.grupo_icms.pMVAST.obrigatorio = False self.grupo_icms.pRedBCST.obrigatorio = False self.grupo_icms.vBCST.obrigatorio = False self.grupo_icms.pICMSST.obrigatorio = False self.grupo_icms.vICMSST.obrigatorio = False self.grupo_icms.motDesICMS.obrigatorio = False self.grupo_icms.vBCSTRet.obrigatorio = False self.grupo_icms.vICMSSTRet.obrigatorio = False self.grupo_icms.vBCSTDest.obrigatorio = False self.grupo_icms.vICMSSTDest.obrigatorio = False self.grupo_icms.UFST.obrigatorio = False self.grupo_icms.pBCOp.obrigatorio = False # # Por segurança, zeramos os valores das tags do # grupo ICMS ao redefinirmos o código da situação # tributária # self.grupo_icms.modBC.valor = 3 self.grupo_icms.vBC.valor = u'0.00' self.grupo_icms.pRedBC.valor = u'0.00' self.grupo_icms.pICMS.valor = u'0.00' self.grupo_icms.vICMS.valor = u'0.00' self.grupo_icms.modBCST.valor = 4 self.grupo_icms.pMVAST.valor = u'0.00' self.grupo_icms.pRedBCST.valor = u'0.00' self.grupo_icms.vBCST.valor = u'0.00' self.grupo_icms.pICMSST.valor = u'0.00' self.grupo_icms.vICMSST.valor = u'0.00' self.grupo_icms.motDesICMS.valor = 0 self.grupo_icms.vBCSTRet.valor = u'0.00' self.grupo_icms.vICMSSTRet.valor = u'0.00' self.grupo_icms.vBCSTDest.valor = u'0.00' self.grupo_icms.vICMSSTDest.valor = u'0.00' self.grupo_icms.UFST.valor = u'' self.grupo_icms.pBCOp.valor = u'0.00' # # Para cada código de situação tributária, # redefinimos a raiz e a obrigatoriedade das # tags do grupo de ICMS # if self.valor == u'00': self.grupo_icms.nome_tag = u'ICMS00' self.grupo_icms.raiz_tag = u'//det/imposto/ICMS/ICMS00' self.grupo_icms.modBC.obrigatorio = True self.grupo_icms.vBC.obrigatorio = True self.grupo_icms.pICMS.obrigatorio = True self.grupo_icms.vICMS.obrigatorio = True elif self.valor == u'10': self.grupo_icms.modBC.obrigatorio = True self.grupo_icms.vBC.obrigatorio = True self.grupo_icms.pICMS.obrigatorio = True self.grupo_icms.vICMS.obrigatorio = True self.grupo_icms.modBCST.obrigatorio = True self.grupo_icms.vBCST.obrigatorio = True self.grupo_icms.pICMSST.obrigatorio = True self.grupo_icms.vICMSST.obrigatorio = True if not self.grupo_icms.partilha: self.grupo_icms.nome_tag = u'ICMS10' self.grupo_icms.raiz_tag = u'//det/imposto/ICMS/ICMS10' else: self.grupo_icms.nome_tag = u'ICMSPart' self.grupo_icms.raiz_tag = u'//det/imposto/ICMS/ICMSPart' self.grupo_icms.pBCOp.obrigatorio = True self.grupo_icms.UFST.obrigatorio = True elif self.valor == u'20': self.grupo_icms.nome_tag = u'ICMS20' self.grupo_icms.raiz_tag = u'//det/imposto/ICMS/ICMS20' self.grupo_icms.modBC.obrigatorio = True self.grupo_icms.vBC.obrigatorio = True self.grupo_icms.pRedBC.obrigatorio = True self.grupo_icms.pICMS.obrigatorio = True self.grupo_icms.vICMS.obrigatorio = True elif self.valor == u'30': self.grupo_icms.nome_tag = u'ICMS30' self.grupo_icms.raiz_tag
<filename>nuitka/codegen/CodeGeneration.py # Copyright 2021, <NAME>, mailto:<EMAIL> # # Part of "Nuitka", an optimizing Python compiler that is compatible and # integrates with CPython, but also works on its own. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ The code generation. No language specifics at all are supposed to be present here. Instead it is using primitives from the given generator to build code sequences (list of strings). As such this is the place that knows how to take a condition and two code branches and make a code block out of it. But it doesn't contain any target language syntax. """ from nuitka.build.DataComposerInterface import deriveModuleConstantsBlobName from . import Contexts from .AsyncgenCodes import ( generateMakeAsyncgenObjectCode, getAsyncgenObjectCode, getAsyncgenObjectDeclCode, ) from .AttributeCodes import ( generateAssignmentAttributeCode, generateAttributeCheckCode, generateAttributeLookupCode, generateAttributeLookupSpecialCode, generateBuiltinGetattrCode, generateBuiltinHasattrCode, generateBuiltinSetattrCode, generateDelAttributeCode, ) from .BranchCodes import generateBranchCode from .BuiltinCodes import ( generateBuiltinAbsCode, generateBuiltinAnonymousRefCode, generateBuiltinBinCode, generateBuiltinBoolCode, generateBuiltinBytearray1Code, generateBuiltinBytearray3Code, generateBuiltinClassmethodCode, generateBuiltinComplex1Code, generateBuiltinComplex2Code, generateBuiltinFloatCode, generateBuiltinHexCode, generateBuiltinOctCode, generateBuiltinOpenCode, generateBuiltinRange1Code, generateBuiltinRange2Code, generateBuiltinRange3Code, generateBuiltinRefCode, generateBuiltinStaticmethodCode, generateBuiltinSum1Code, generateBuiltinSum2Code, generateBuiltinType1Code, generateBuiltinType3Code, generateBuiltinXrange1Code, generateBuiltinXrange2Code, generateBuiltinXrange3Code, ) from .CallCodes import generateCallCode, getCallsCode, getCallsDecls from .ClassCodes import generateBuiltinSuperCode, generateSelectMetaclassCode from .CodeHelpers import setExpressionDispatchDict, setStatementDispatchDict from .ComparisonCodes import ( generateBuiltinIsinstanceCode, generateBuiltinIssubclassCode, generateComparisonExpressionCode, ) from .ConditionalCodes import ( generateConditionalAndOrCode, generateConditionalCode, ) from .ConstantCodes import ( generateConstantEllipsisReferenceCode, generateConstantFalseReferenceCode, generateConstantNoneReferenceCode, generateConstantReferenceCode, generateConstantTrueReferenceCode, getConstantsDefinitionCode, ) from .CoroutineCodes import ( generateAsyncIterCode, generateAsyncNextCode, generateAsyncWaitCode, generateMakeCoroutineObjectCode, getCoroutineObjectCode, getCoroutineObjectDeclCode, ) from .DictCodes import ( generateBuiltinDictCode, generateDictionaryCreationCode, generateDictOperationGetCode, generateDictOperationInCode, generateDictOperationRemoveCode, generateDictOperationSetCode, generateDictOperationSetCodeKeyValue, generateDictOperationUpdateCode, ) from .EvalCodes import ( generateBuiltinCompileCode, generateEvalCode, generateExecCode, generateExecfileCode, generateLocalsDictSyncCode, ) from .ExceptionCodes import ( generateBuiltinMakeExceptionCode, generateExceptionCaughtTracebackCode, generateExceptionCaughtTypeCode, generateExceptionCaughtValueCode, generateExceptionPublishCode, generateExceptionRefCode, ) from .ExpressionCodes import ( generateExpressionOnlyCode, generateSideEffectsCode, ) from .FrameCodes import ( generateFramePreserveExceptionCode, generateFrameRestoreExceptionCode, ) from .FunctionCodes import ( generateFunctionCallCode, generateFunctionCreationCode, generateFunctionErrorStrCode, generateFunctionOutlineCode, getExportScopeCode, getFunctionCode, getFunctionDirectDecl, ) from .GeneratorCodes import ( generateMakeGeneratorObjectCode, getGeneratorObjectCode, getGeneratorObjectDeclCode, ) from .GlobalsLocalsCodes import ( generateBuiltinDir1Code, generateBuiltinGlobalsCode, generateBuiltinLocalsCode, generateBuiltinLocalsRefCode, generateBuiltinVarsCode, ) from .IdCodes import generateBuiltinHashCode, generateBuiltinIdCode from .ImportCodes import ( generateBuiltinImportCode, generateImportModuleHardCode, generateImportModuleNameHardCode, generateImportNameCode, generateImportStarCode, ) from .IntegerCodes import ( generateBuiltinInt1Code, generateBuiltinInt2Code, generateBuiltinLong1Code, generateBuiltinLong2Code, ) from .IteratorCodes import ( generateBuiltinAllCode, generateBuiltinAnyCode, generateBuiltinIter1Code, generateBuiltinIter2Code, generateBuiltinIterForUnpackCode, generateBuiltinLenCode, generateBuiltinNext1Code, generateBuiltinNext2Code, generateSpecialUnpackCode, generateUnpackCheckCode, ) from .ListCodes import ( generateBuiltinListCode, generateListCreationCode, generateListOperationAppendCode, generateListOperationExtendCode, generateListOperationPopCode, ) from .LocalsDictCodes import ( generateLocalsDictDelCode, generateLocalsDictSetCode, generateLocalsDictVariableCheckCode, generateLocalsDictVariableRefCode, generateLocalsDictVariableRefOrFallbackCode, generateReleaseLocalsDictCode, generateSetLocalsDictCode, ) from .LoopCodes import ( generateLoopBreakCode, generateLoopCode, generateLoopContinueCode, ) from .ModuleCodes import ( generateModuleAttributeCode, generateModuleAttributeFileCode, generateNuitkaLoaderCreationCode, getModuleCode, ) from .OperationCodes import ( generateOperationBinaryCode, generateOperationNotCode, generateOperationUnaryCode, ) from .PrintCodes import generatePrintNewlineCode, generatePrintValueCode from .RaisingCodes import ( generateRaiseCode, generateRaiseExpressionCode, generateReraiseCode, ) from .ReturnCodes import ( generateGeneratorReturnNoneCode, generateGeneratorReturnValueCode, generateReturnCode, generateReturnConstantCode, generateReturnedValueCode, ) from .SetCodes import ( generateBuiltinFrozensetCode, generateBuiltinSetCode, generateSetCreationCode, generateSetLiteralCreationCode, generateSetOperationAddCode, generateSetOperationUpdateCode, ) from .SliceCodes import ( generateAssignmentSliceCode, generateBuiltinSlice1Code, generateBuiltinSlice2Code, generateBuiltinSlice3Code, generateDelSliceCode, generateSliceLookupCode, ) from .StringCodes import ( generateBuiltinAsciiCode, generateBuiltinBytes1Code, generateBuiltinBytes3Code, generateBuiltinChrCode, generateBuiltinFormatCode, generateBuiltinOrdCode, generateBuiltinStrCode, generateBuiltinUnicodeCode, generateStringContenationCode, ) from .SubscriptCodes import ( generateAssignmentSubscriptCode, generateDelSubscriptCode, generateSubscriptLookupCode, ) from .TryCodes import generateTryCode from .TupleCodes import generateBuiltinTupleCode, generateTupleCreationCode from .VariableCodes import ( generateAssignmentVariableCode, generateDelVariableCode, generateVariableReferenceCode, generateVariableReleaseCode, ) from .YieldCodes import ( generateYieldCode, generateYieldFromCode, generateYieldFromWaitableCode, ) _generated_functions = {} def generateFunctionBodyCode(function_body, context): # TODO: Generate both codes, and base direct/etc. decisions on context. # pylint: disable=too-many-branches function_identifier = function_body.getCodeName() if function_identifier in _generated_functions: return _generated_functions[function_identifier] if function_body.isExpressionGeneratorObjectBody(): function_context = Contexts.PythonGeneratorObjectContext( parent=context, function=function_body ) elif function_body.isExpressionClassBody(): function_context = Contexts.PythonFunctionDirectContext( parent=context, function=function_body ) elif function_body.isExpressionCoroutineObjectBody(): function_context = Contexts.PythonCoroutineObjectContext( parent=context, function=function_body ) elif function_body.isExpressionAsyncgenObjectBody(): function_context = Contexts.PythonAsyncgenObjectContext( parent=context, function=function_body ) elif function_body.needsCreation(): function_context = Contexts.PythonFunctionCreatedContext( parent=context, function=function_body ) else: function_context = Contexts.PythonFunctionDirectContext( parent=context, function=function_body ) needs_exception_exit = function_body.mayRaiseException(BaseException) if function_body.isExpressionGeneratorObjectBody(): function_code = getGeneratorObjectCode( context=function_context, function_identifier=function_identifier, closure_variables=function_body.getClosureVariables(), user_variables=function_body.getUserLocalVariables(), outline_variables=function_body.getOutlineLocalVariables(), temp_variables=function_body.getTempVariables(), needs_exception_exit=needs_exception_exit, needs_generator_return=function_body.needsGeneratorReturnExit(), ) function_decl = getGeneratorObjectDeclCode( function_identifier=function_identifier, closure_variables=function_body.getClosureVariables(), ) elif function_body.isExpressionCoroutineObjectBody(): function_code = getCoroutineObjectCode( context=function_context, function_identifier=function_identifier, closure_variables=function_body.getClosureVariables(), user_variables=function_body.getUserLocalVariables(), outline_variables=function_body.getOutlineLocalVariables(), temp_variables=function_body.getTempVariables(), needs_exception_exit=needs_exception_exit, needs_generator_return=function_body.needsGeneratorReturnExit(), ) function_decl = getCoroutineObjectDeclCode( function_identifier=function_body.getCodeName(), closure_variables=function_body.getClosureVariables(), ) elif function_body.isExpressionAsyncgenObjectBody(): function_code = getAsyncgenObjectCode( context=function_context, function_identifier=function_identifier, closure_variables=function_body.getClosureVariables(), user_variables=function_body.getUserLocalVariables(), outline_variables=function_body.getOutlineLocalVariables(), temp_variables=function_body.getTempVariables(), needs_exception_exit=needs_exception_exit, needs_generator_return=function_body.needsGeneratorReturnExit(), ) function_decl = getAsyncgenObjectDeclCode( function_identifier=function_body.getCodeName(), closure_variables=function_body.getClosureVariables(), ) elif function_body.isExpressionClassBody(): function_code = getFunctionCode( context=function_context, function_identifier=function_identifier, parameters=None, closure_variables=function_body.getClosureVariables(), user_variables=function_body.getUserLocalVariables() + function_body.getOutlineLocalVariables(), temp_variables=function_body.getTempVariables(), function_doc=function_body.getDoc(), needs_exception_exit=needs_exception_exit, file_scope=getExportScopeCode(cross_module=False), ) function_decl = getFunctionDirectDecl( function_identifier=function_identifier, closure_variables=function_body.getClosureVariables(), file_scope=getExportScopeCode(cross_module=False), context=function_context, ) else: function_code = getFunctionCode( context=function_context, function_identifier=function_identifier, parameters=function_body.getParameters(), closure_variables=function_body.getClosureVariables(), user_variables=function_body.getUserLocalVariables() + function_body.getOutlineLocalVariables(), temp_variables=function_body.getTempVariables(), function_doc=function_body.getDoc(), needs_exception_exit=needs_exception_exit, file_scope=getExportScopeCode( cross_module=function_body.isCrossModuleUsed() ), ) if function_body.needsDirectCall(): function_decl = getFunctionDirectDecl( function_identifier=function_identifier, closure_variables=function_body.getClosureVariables(), file_scope=getExportScopeCode( cross_module=function_body.isCrossModuleUsed() ), context=function_context, ) else: function_decl = None return function_code, function_decl def generateModuleCode(module, data_filename): # As this not only creates all modules, but also functions, it deals # also with its functions. assert module.isCompiledPythonModule(), module context = Contexts.PythonModuleContext( module=module, data_filename=data_filename, ) context.setExceptionEscape("module_exception_exit") function_decl_codes = [] function_body_codes = [] for function_body in module.getUsedFunctions(): # Constant function returners get no code. ( is_constant_returning, _constant_return_value, ) = function_body.getConstantReturnValue() if is_constant_returning: continue function_code, function_decl = generateFunctionBodyCode( function_body=function_body, context=context ) function_body_codes.append(function_code) if function_decl is not None: function_decl_codes.append(function_decl) # These are for functions used from other modules. Due to cyclic # dependencies, we cannot rely on those to be already created. for function_body in module.getCrossUsedFunctions(): assert function_body.isCrossModuleUsed() function_decl = getFunctionDirectDecl( function_identifier=function_body.getCodeName(), closure_variables=function_body.getClosureVariables(), file_scope=getExportScopeCode( cross_module=function_body.isCrossModuleUsed() ), context=Contexts.PythonFunctionDirectContext( parent=context, function=function_body ), ) function_decl_codes.append(function_decl) return getModuleCode( module=module, function_decl_codes=function_decl_codes, function_body_codes=function_body_codes, module_const_blob_name=deriveModuleConstantsBlobName(data_filename), context=context, ) def generateHelpersCode(): calls_decl_code = getCallsDecls() calls_body_code = getCallsCode() constants_header_code, constants_body_code = getConstantsDefinitionCode() return ( calls_decl_code, calls_body_code, constants_header_code, constants_body_code, ) setExpressionDispatchDict( { "EXPRESSION_ATTRIBUTE_CHECK": generateAttributeCheckCode, "EXPRESSION_ATTRIBUTE_LOOKUP": generateAttributeLookupCode, "EXPRESSION_ATTRIBUTE_LOOKUP_SPECIAL": generateAttributeLookupSpecialCode, "EXPRESSION_BUILTIN_SLICE3": generateBuiltinSlice3Code, "EXPRESSION_BUILTIN_SLICE2": generateBuiltinSlice2Code, "EXPRESSION_BUILTIN_SLICE1": generateBuiltinSlice1Code, "EXPRESSION_BUILTIN_HASH": generateBuiltinHashCode, "EXPRESSION_BUILTIN_ID": generateBuiltinIdCode, "EXPRESSION_BUILTIN_COMPILE": generateBuiltinCompileCode, "EXPRESSION_BUILTIN_EXECFILE": generateExecfileCode, "EXPRESSION_BUILTIN_EVAL": generateEvalCode, "EXPRESSION_BUILTIN_EXEC": generateEvalCode, "EXPRESSION_BUILTIN_ITER_FOR_UNPACK": generateBuiltinIterForUnpackCode, "EXPRESSION_BUILTIN_ITER1": generateBuiltinIter1Code, "EXPRESSION_BUILTIN_ITER2": generateBuiltinIter2Code, "EXPRESSION_BUILTIN_NEXT1": generateBuiltinNext1Code, "EXPRESSION_BUILTIN_NEXT2": generateBuiltinNext2Code, "EXPRESSION_BUILTIN_SUM1": generateBuiltinSum1Code, "EXPRESSION_BUILTIN_SUM2": generateBuiltinSum2Code, "EXPRESSION_BUILTIN_TYPE1": generateBuiltinType1Code, "EXPRESSION_BUILTIN_TYPE3": generateBuiltinType3Code, "EXPRESSION_BUILTIN_IMPORT": generateBuiltinImportCode, "EXPRESSION_BUILTIN_BOOL": generateBuiltinBoolCode, "EXPRESSION_BUILTIN_BYTEARRAY1": generateBuiltinBytearray1Code, "EXPRESSION_BUILTIN_BYTEARRAY3": generateBuiltinBytearray3Code, "EXPRESSION_BUILTIN_INT1": generateBuiltinInt1Code, "EXPRESSION_BUILTIN_INT2": generateBuiltinInt2Code, "EXPRESSION_BUILTIN_LONG1": generateBuiltinLong1Code, "EXPRESSION_BUILTIN_LONG2": generateBuiltinLong2Code, "EXPRESSION_BUILTIN_FLOAT": generateBuiltinFloatCode, "EXPRESSION_BUILTIN_COMPLEX1": generateBuiltinComplex1Code, "EXPRESSION_BUILTIN_COMPLEX2": generateBuiltinComplex2Code, "EXPRESSION_BUILTIN_LEN": generateBuiltinLenCode, "EXPRESSION_BUILTIN_STR_P2": generateBuiltinStrCode, "EXPRESSION_BUILTIN_STR_P3": generateBuiltinStrCode, "EXPRESSION_BUILTIN_BYTES1": generateBuiltinBytes1Code, "EXPRESSION_BUILTIN_BYTES3": generateBuiltinBytes3Code, "EXPRESSION_BUILTIN_UNICODE_P2": generateBuiltinUnicodeCode, "EXPRESSION_BUILTIN_CHR": generateBuiltinChrCode, "EXPRESSION_BUILTIN_ORD": generateBuiltinOrdCode, "EXPRESSION_BUILTIN_BIN": generateBuiltinBinCode, "EXPRESSION_BUILTIN_OCT": generateBuiltinOctCode, "EXPRESSION_BUILTIN_HEX": generateBuiltinHexCode, "EXPRESSION_BUILTIN_TUPLE": generateBuiltinTupleCode, "EXPRESSION_BUILTIN_LIST": generateBuiltinListCode, "EXPRESSION_BUILTIN_SET": generateBuiltinSetCode, "EXPRESSION_BUILTIN_ANY": generateBuiltinAnyCode, "EXPRESSION_BUILTIN_FROZENSET": generateBuiltinFrozensetCode, "EXPRESSION_BUILTIN_ALL": generateBuiltinAllCode, "EXPRESSION_BUILTIN_DICT": generateBuiltinDictCode, "EXPRESSION_BUILTIN_LOCALS_COPY": generateBuiltinLocalsCode, "EXPRESSION_BUILTIN_LOCALS_UPDATED": generateBuiltinLocalsCode, "EXPRESSION_BUILTIN_LOCALS_REF": generateBuiltinLocalsRefCode, "EXPRESSION_BUILTIN_GLOBALS": generateBuiltinGlobalsCode, "EXPRESSION_BUILTIN_SUPER0": generateBuiltinSuperCode, "EXPRESSION_BUILTIN_SUPER2": generateBuiltinSuperCode, "EXPRESSION_BUILTIN_ISINSTANCE": generateBuiltinIsinstanceCode, "EXPRESSION_BUILTIN_ISSUBCLASS": generateBuiltinIssubclassCode, "EXPRESSION_BUILTIN_DIR1": generateBuiltinDir1Code, "EXPRESSION_BUILTIN_VARS": generateBuiltinVarsCode, "EXPRESSION_BUILTIN_HASATTR": generateBuiltinHasattrCode, "EXPRESSION_BUILTIN_GETATTR": generateBuiltinGetattrCode, "EXPRESSION_BUILTIN_SETATTR": generateBuiltinSetattrCode, "EXPRESSION_BUILTIN_OPEN": generateBuiltinOpenCode, "EXPRESSION_BUILTIN_STATICMETHOD": generateBuiltinStaticmethodCode, "EXPRESSION_BUILTIN_CLASSMETHOD": generateBuiltinClassmethodCode, "EXPRESSION_BUILTIN_RANGE1": generateBuiltinRange1Code, "EXPRESSION_BUILTIN_RANGE2": generateBuiltinRange2Code, "EXPRESSION_BUILTIN_RANGE3": generateBuiltinRange3Code, "EXPRESSION_BUILTIN_XRANGE1": generateBuiltinXrange1Code, "EXPRESSION_BUILTIN_XRANGE2": generateBuiltinXrange2Code, "EXPRESSION_BUILTIN_XRANGE3": generateBuiltinXrange3Code, "EXPRESSION_BUILTIN_MAKE_EXCEPTION": generateBuiltinMakeExceptionCode, "EXPRESSION_BUILTIN_MAKE_EXCEPTION_IMPORT_ERROR": generateBuiltinMakeExceptionCode, "EXPRESSION_BUILTIN_REF": generateBuiltinRefCode, "EXPRESSION_BUILTIN_WITH_CONTEXT_REF": generateBuiltinRefCode, "EXPRESSION_BUILTIN_EXCEPTION_REF": generateExceptionRefCode, "EXPRESSION_BUILTIN_ANONYMOUS_REF": generateBuiltinAnonymousRefCode, "EXPRESSION_CAUGHT_EXCEPTION_TYPE_REF": generateExceptionCaughtTypeCode, "EXPRESSION_CAUGHT_EXCEPTION_VALUE_REF": generateExceptionCaughtValueCode, "EXPRESSION_CAUGHT_EXCEPTION_TRACEBACK_REF": generateExceptionCaughtTracebackCode, "EXPRESSION_CALL_EMPTY": generateCallCode, "EXPRESSION_CALL_KEYWORDS_ONLY": generateCallCode, "EXPRESSION_CALL_NO_KEYWORDS": generateCallCode, "EXPRESSION_CALL": generateCallCode, "EXPRESSION_CONSTANT_NONE_REF": generateConstantNoneReferenceCode, "EXPRESSION_CONSTANT_TRUE_REF": generateConstantTrueReferenceCode, "EXPRESSION_CONSTANT_FALSE_REF": generateConstantFalseReferenceCode, "EXPRESSION_CONSTANT_STR_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_STR_EMPTY_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_UNICODE_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_UNICODE_EMPTY_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_BYTES_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_BYTES_EMPTY_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_INT_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_LONG_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_FLOAT_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_COMPLEX_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_ELLIPSIS_REF": generateConstantEllipsisReferenceCode, "EXPRESSION_CONSTANT_DICT_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_DICT_EMPTY_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_TUPLE_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_TUPLE_EMPTY_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_TUPLE_MUTABLE_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_LIST_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_LIST_EMPTY_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_SET_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_SET_EMPTY_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_FROZENSET_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_FROZENSET_EMPTY_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_SLICE_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_XRANGE_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_TYPE_REF": generateConstantReferenceCode, "EXPRESSION_CONSTANT_BYTEARRAY_REF": generateConstantReferenceCode, "EXPRESSION_CONDITIONAL": generateConditionalCode, "EXPRESSION_CONDITIONAL_OR": generateConditionalAndOrCode, "EXPRESSION_CONDITIONAL_AND": generateConditionalAndOrCode, "EXPRESSION_COMPARISON": generateComparisonExpressionCode, "EXPRESSION_COMPARISON_IS": generateComparisonExpressionCode, "EXPRESSION_COMPARISON_IS_NOT": generateComparisonExpressionCode, "EXPRESSION_COMPARISON_IN": generateComparisonExpressionCode, "EXPRESSION_COMPARISON_NOT_IN": generateComparisonExpressionCode, "EXPRESSION_COMPARISON_EXCEPTION_MATCH": generateComparisonExpressionCode, "EXPRESSION_COMPARISON_EXCEPTION_MISMATCH": generateComparisonExpressionCode, "EXPRESSION_COMPARISON_LT": generateComparisonExpressionCode, "EXPRESSION_COMPARISON_LTE": generateComparisonExpressionCode, "EXPRESSION_COMPARISON_GT": generateComparisonExpressionCode, "EXPRESSION_COMPARISON_GTE": generateComparisonExpressionCode, "EXPRESSION_COMPARISON_EQ": generateComparisonExpressionCode, "EXPRESSION_COMPARISON_NEQ": generateComparisonExpressionCode, "EXPRESSION_DICT_OPERATION_GET": generateDictOperationGetCode, "EXPRESSION_DICT_OPERATION_IN": generateDictOperationInCode, "EXPRESSION_DICT_OPERATION_NOT_IN": generateDictOperationInCode, "EXPRESSION_FUNCTION_CREATION": generateFunctionCreationCode, "EXPRESSION_FUNCTION_CALL": generateFunctionCallCode, "EXPRESSION_FUNCTION_ERROR_STR": generateFunctionErrorStrCode, "EXPRESSION_IMPORT_MODULE_HARD": generateImportModuleHardCode, "EXPRESSION_IMPORT_MODULE_NAME_HARD": generateImportModuleNameHardCode, "EXPRESSION_IMPORT_NAME": generateImportNameCode, "EXPRESSION_LIST_OPERATION_EXTEND": generateListOperationExtendCode, "EXPRESSION_LIST_OPERATION_EXTEND_FOR_UNPACK": generateListOperationExtendCode, "EXPRESSION_LIST_OPERATION_POP": generateListOperationPopCode, "EXPRESSION_MODULE_ATTRIBUTE_FILE_REF": generateModuleAttributeFileCode, "EXPRESSION_MODULE_ATTRIBUTE_NAME_REF": generateModuleAttributeCode, "EXPRESSION_MODULE_ATTRIBUTE_PACKAGE_REF": generateModuleAttributeCode, "EXPRESSION_MODULE_ATTRIBUTE_LOADER_REF": generateModuleAttributeCode, "EXPRESSION_MODULE_ATTRIBUTE_SPEC_REF": generateModuleAttributeCode, "EXPRESSION_MAKE_GENERATOR_OBJECT": generateMakeGeneratorObjectCode, "EXPRESSION_MAKE_COROUTINE_OBJECT": generateMakeCoroutineObjectCode, "EXPRESSION_MAKE_ASYNCGEN_OBJECT": generateMakeAsyncgenObjectCode, "EXPRESSION_MAKE_SET": generateSetCreationCode, "EXPRESSION_MAKE_SET_LITERAL": generateSetLiteralCreationCode, "EXPRESSION_MAKE_TUPLE": generateTupleCreationCode, "EXPRESSION_MAKE_LIST": generateListCreationCode, "EXPRESSION_MAKE_DICT": generateDictionaryCreationCode, "EXPRESSION_OPERATION_BINARY_ADD": generateOperationBinaryCode, "EXPRESSION_OPERATION_BINARY_SUB": generateOperationBinaryCode, "EXPRESSION_OPERATION_BINARY_MULT": generateOperationBinaryCode, "EXPRESSION_OPERATION_BINARY_FLOOR_DIV": generateOperationBinaryCode, "EXPRESSION_OPERATION_BINARY_OLD_DIV": generateOperationBinaryCode, "EXPRESSION_OPERATION_BINARY_TRUE_DIV": generateOperationBinaryCode, "EXPRESSION_OPERATION_BINARY_DIVMOD": generateOperationBinaryCode, "EXPRESSION_OPERATION_BINARY_MOD": generateOperationBinaryCode, "EXPRESSION_OPERATION_BINARY_POW": generateOperationBinaryCode, "EXPRESSION_OPERATION_BINARY_LSHIFT": generateOperationBinaryCode, "EXPRESSION_OPERATION_BINARY_RSHIFT": generateOperationBinaryCode, "EXPRESSION_OPERATION_BINARY_BIT_OR": generateOperationBinaryCode, "EXPRESSION_OPERATION_BINARY_BIT_AND": generateOperationBinaryCode, "EXPRESSION_OPERATION_BINARY_BIT_XOR": generateOperationBinaryCode, "EXPRESSION_OPERATION_BINARY_MAT_MULT": generateOperationBinaryCode, "EXPRESSION_OPERATION_INPLACE_ADD": generateOperationBinaryCode, "EXPRESSION_OPERATION_INPLACE_SUB": generateOperationBinaryCode, "EXPRESSION_OPERATION_INPLACE_MULT": generateOperationBinaryCode, "EXPRESSION_OPERATION_INPLACE_FLOOR_DIV": generateOperationBinaryCode, "EXPRESSION_OPERATION_INPLACE_OLD_DIV": generateOperationBinaryCode, "EXPRESSION_OPERATION_INPLACE_TRUE_DIV": generateOperationBinaryCode, "EXPRESSION_OPERATION_INPLACE_MOD": generateOperationBinaryCode, "EXPRESSION_OPERATION_INPLACE_POW": generateOperationBinaryCode, "EXPRESSION_OPERATION_INPLACE_LSHIFT": generateOperationBinaryCode, "EXPRESSION_OPERATION_INPLACE_RSHIFT": generateOperationBinaryCode, "EXPRESSION_OPERATION_INPLACE_BIT_OR": generateOperationBinaryCode, "EXPRESSION_OPERATION_INPLACE_BIT_AND": generateOperationBinaryCode, "EXPRESSION_OPERATION_INPLACE_BIT_XOR": generateOperationBinaryCode, "EXPRESSION_OPERATION_INPLACE_MAT_MULT": generateOperationBinaryCode, "EXPRESSION_OPERATION_UNARY_REPR": generateOperationUnaryCode, "EXPRESSION_OPERATION_UNARY_SUB": generateOperationUnaryCode, "EXPRESSION_OPERATION_UNARY_ADD": generateOperationUnaryCode, "EXPRESSION_OPERATION_UNARY_INVERT": generateOperationUnaryCode, "EXPRESSION_OPERATION_UNARY_ABS": generateBuiltinAbsCode, "EXPRESSION_OPERATION_NOT": generateOperationNotCode, "EXPRESSION_OUTLINE_BODY": generateFunctionOutlineCode, "EXPRESSION_OUTLINE_FUNCTION": generateFunctionOutlineCode, # TODO: Rename to make more clear it is an outline "EXPRESSION_CLASS_BODY": generateFunctionOutlineCode, "EXPRESSION_SUBSCRIPT_LOOKUP": generateSubscriptLookupCode, "EXPRESSION_SLICE_LOOKUP": generateSliceLookupCode, "EXPRESSION_SET_OPERATION_UPDATE": generateSetOperationUpdateCode, "EXPRESSION_SIDE_EFFECTS": generateSideEffectsCode, "EXPRESSION_SPECIAL_UNPACK": generateSpecialUnpackCode, "EXPRESSION_TEMP_VARIABLE_REF": generateVariableReferenceCode, "EXPRESSION_VARIABLE_REF": generateVariableReferenceCode, "EXPRESSION_VARIABLE_OR_BUILTIN_REF": generateVariableReferenceCode, "EXPRESSION_YIELD": generateYieldCode, "EXPRESSION_YIELD_FROM": generateYieldFromCode, "EXPRESSION_YIELD_FROM_WAITABLE": generateYieldFromWaitableCode, "EXPRESSION_ASYNC_WAIT": generateAsyncWaitCode, "EXPRESSION_ASYNC_WAIT_ENTER": generateAsyncWaitCode, "EXPRESSION_ASYNC_WAIT_EXIT": generateAsyncWaitCode, "EXPRESSION_ASYNC_ITER": generateAsyncIterCode, "EXPRESSION_ASYNC_NEXT": generateAsyncNextCode, "EXPRESSION_SELECT_METACLASS": generateSelectMetaclassCode, "EXPRESSION_STRING_CONCATENATION": generateStringContenationCode, "EXPRESSION_BUILTIN_FORMAT": generateBuiltinFormatCode, "EXPRESSION_BUILTIN_ASCII": generateBuiltinAsciiCode, "EXPRESSION_LOCALS_VARIABLE_CHECK": generateLocalsDictVariableCheckCode, "EXPRESSION_LOCALS_VARIABLE_REF_OR_FALLBACK": generateLocalsDictVariableRefOrFallbackCode, "EXPRESSION_LOCALS_VARIABLE_REF": generateLocalsDictVariableRefCode, "EXPRESSION_RAISE_EXCEPTION": generateRaiseExpressionCode, "EXPRESSION_NUITKA_LOADER_CREATION": generateNuitkaLoaderCreationCode, } ) setStatementDispatchDict( { "STATEMENT_ASSIGNMENT_VARIABLE": generateAssignmentVariableCode, "STATEMENT_ASSIGNMENT_ATTRIBUTE": generateAssignmentAttributeCode, "STATEMENT_ASSIGNMENT_SUBSCRIPT": generateAssignmentSubscriptCode, "STATEMENT_ASSIGNMENT_SLICE": generateAssignmentSliceCode, "STATEMENT_DEL_VARIABLE": generateDelVariableCode, "STATEMENT_DEL_ATTRIBUTE": generateDelAttributeCode, "STATEMENT_DEL_SUBSCRIPT": generateDelSubscriptCode, "STATEMENT_DEL_SLICE": generateDelSliceCode, "STATEMENT_DICT_OPERATION_REMOVE": generateDictOperationRemoveCode, "STATEMENT_DICT_OPERATION_UPDATE": generateDictOperationUpdateCode, "STATEMENT_RELEASE_VARIABLE": generateVariableReleaseCode, "STATEMENT_EXPRESSION_ONLY": generateExpressionOnlyCode, "STATEMENT_RETURN": generateReturnCode, "STATEMENT_RETURN_TRUE": generateReturnConstantCode, "STATEMENT_RETURN_FALSE": generateReturnConstantCode, "STATEMENT_RETURN_NONE":
(unless the underlying feature importances are categorical, in which a list of DataFrames will be returned.) If mean=True, then a pandas Series (or in the case of underlying categorical feature importances, list of) will be returned, with the mean value from each fold and all features with a value of 0 excluded. Note: To get the mean values without zero's excluded, just call .mean() on the result of this method with mean=False. ''' fis = self._get_base_fis_list() base = fis_to_df(fis) # Proc. abs arg if abs: if isinstance(base, list): base = [b.abs() for b in base] else: base = base.abs() # If not mean, return as is if not mean: return base # Categorical mean case if isinstance(base, list): return [mean_no_zeros(b) for b in base] # Base mean case return mean_no_zeros(base) def get_inverse_fis(self, fis=None): '''Try to inverse transform stored feature importances (either beta weights or automatically calculated feature importances) to their original space. .. warning:: If there are any underlying non-recoverable transformations in the pipeline, this method will fail! For example, if a PCA was applied, then a reverse transformation cannot be computed. This method can be especially helpful when using :class:`Loader`. Returns ------- inverse_fis : list of pandas Series | The inverse feature importances will be returned as a list, where each index of the list refers to a fold of the cross-validation, and each element of the list is either a pandas Series or a list of pandas Series (in the case of a categorical problem type where separate feature importances were calculated for each class). | If a :class:`Loader` was used, the returned Series may contain multi-dimensional arrays instead of scalar values, representing feature importances as transformed back into the original loaded space / shape. ''' # As list of series or list of list of series if fis is None: fis = self._get_base_fis_list() # If passed in df format, convert first # Drop any NaN also ~ # @ TODO handle categorical case ... elif isinstance(fis, pd.DataFrame): fis = [fis.loc[i].dropna() for i in range(len(fis))] # Otherwise, assumes passed inv_trans_fis = [] for i, fi in enumerate(fis): # The estimator for this fold estimator = self.estimators[i] # Non-categorical case if isinstance(fi, pd.Series): inv_trans_fis.append( estimator.inverse_transform_fis(fi)) # Categorical case else: cat_inv_fis =\ [estimator.inverse_transform_fis(f) for f in fi] inv_trans_fis.append(cat_inv_fis) return inv_trans_fis def _get_val_fold_Xy(self, estimator, X_df, y_df, fold, just_model=True, nested_model=True): # Get the X and y df's - assume self.val_subjects stores # only subjects with non nan target variables X_val_df = X_df.loc[self.val_subjects[fold]] y_val_df = y_df.loc[self.val_subjects[fold]] # Base as array, and all feat names X_trans, feat_names = np.array(X_val_df), list(X_val_df) # Transform the X df, casts to array if just_model. if just_model: # Calculate corresponding feat names # with or without nested_model feat_names =\ estimator.transform_feat_names(feat_names, encoders=self.encoders_, nested_model=nested_model) # Also calculate X_trans, with and without nested model X_trans = estimator.transform(X_trans, transform_index=X_val_df.index, nested_model=nested_model) # If nested model, then we need to make sure to # grab the nested final estimator if nested_model: estimator = estimator._nested_final_estimator # Otherwise use the one deep final estimator else: estimator = estimator._final_estimator return estimator, X_trans, np.array(y_val_df), feat_names @doc(dataset=_base_docs['dataset']) def permutation_importance(self, dataset=None, n_repeats=10, scorer='default', just_model=True, nested_model=True, return_as='dfs', n_jobs=1, random_state='default'): '''This function computes the permutation feature importances from the base scikit-learn function :func:`sklearn.inspection.permutation_importance` Parameters ----------- {dataset} | If left as default=None, then will try to use a shallow copy of the dataset passed to the original evaluate call (assuming evaluate was run with store_data_ref=True). :: default = None n_repeats : int, optional The number of times to randomly permute each feature. :: default = 10 scorer : sklearn-style scoring, optional Scorer to use. It can be a single sklearn style str, or a callable. If left as 'default' will use the first scorer defined when evaluating the underlying estimator. :: default = 'default' just_model : bool, optional When set to true, the permutation feature importances will be computed using the final set of transformed features as passed when fitting the base model. This is reccomended behavior because it means that the features do not need to be re-transformed through the full pipeline to evaluate each feature. If set to False, will permute the features in the original feature space (which may be useful in some context). :: default = True nested_model : bool, optional In the case that `just_model` is set to True, there exists in some cases the further option to use an even more transformed set of features. For example, in the case where in the main pipeline the final estimator is another pipeline, there could be more static transformations applied in this second pipeline. If `nested_model` is set to True, then it will attempt to apply these further nested transformations in the same way as with just_model, feeding in eventually an even further transformed set of features and even more specific final estimator when calculating the permutation feature importances. By default, this value is True, so the calculated feature importances here will correspond to the saved `self.feat_names` in this object. :: default = True return_as : ['dfs', 'raw'], optional This parameter controls if calculated permutation feature importances should be returned as a DataFrame with column names as the corresponding feature names, or if it should be returned as a list with the raw output from each fold, e.g., sklearn Batch's with parameters 'importances_mean', 'importances_std' and 'importances'. If return as DataFrame is requested, then 'importances_mean' and 'importances_std' will be returned, but not the raw 'importances'. :: default = 'dfs' n_jobs : int, optional The number of jobs to use for this function. Note that if the underlying estimator supports multiple jobs during inference (predicting), and the original problem_spec was set with multiple n_jobs then that original behavior will still hold, and you may wish to keep this parameter as 1. On the otherhand, if the base estimator does not use multiple jobs, passing a higher value here could greatly speed up computation. :: default = 1 random_state : int, 'default' or None, optional Pseudo-random number generator to control the permutations of each feature. If left as 'default' then use the random state defined during the initial evaluation of the model. Otherwise, you may pass an int for a different fixed random state or None for explicitly no random state. :: default = 'default' ''' # @TODO in case of just_model = False, won't pass along # transform_index correctly to scorer. from sklearn.inspection import permutation_importance # Check dataset dataset = self._dataset_check(dataset) # Check estimators self._estimators_check() # If default scorer, take the first one if scorer == 'default': first = list(self.ps.scorer)[0] scorer = self.ps.scorer[first] self._print('Using scorer:', first, level=1) # If default random_state use the one saved in # original problem spec. if random_state == 'default': random_state = self.ps.random_state # Get X and y from saved problem spec X, y = dataset.get_Xy(self.ps) # For each estimator all_fis, all_feat_names = [], [] for fold, estimator in enumerate(self.estimators): # Get correct estimator, X_val, y_val and feat_names estimator, X_val, y_val, feat_names =\ self._get_val_fold_Xy(estimator, X_df=X, y_df=y, fold=fold, just_model=just_model, nested_model=nested_model) all_feat_names.append(feat_names) # Run the sklearn feature importances. fis = permutation_importance(estimator, X_val, y_val, scoring=scorer, n_repeats=n_repeats, n_jobs=n_jobs, random_state=random_state) # Add to all fis all_fis.append(fis) # If raw, return as raw if return_as == 'raw': return all_fis # Otherwise, use return df mean_series, std_series = [], [] for fis, feat_names in zip(all_fis, all_feat_names): mean_series.append( fi_to_series(fis['importances_mean'], feat_names)) std_series.append( fi_to_series(fis['importances_std'], feat_names)) # Return as sklearn bunch of DataFrames return Bunch(importances_mean=fis_to_df(mean_series), importances_std=fis_to_df(std_series)) @doc(dataset=_base_docs['dataset']) def get_X_transform_df(self, dataset=None, fold=0, subjects='tr', nested_model=True, trans_y=False): '''This method is used as a helper for getting the transformed input data for one of the saved models run during evaluate. Parameters ----------- {dataset} | If left as default=None, then will try to use a shallow copy of the dataset passed to the original evaluate call (assuming evaluate was run with
import itertools import numpy as np from PartSegCore.segmentation.border_smoothing import IterativeVoteSmoothing, OpeningSmoothing, VoteSmoothing from PartSegCore.segmentation.watershed import NeighType class TestVoteSmoothing: def test_cube_sides(self): data = np.zeros((50, 50, 50), dtype=np.uint8) data[2:-2, 2:-2, 2:-2] = 1 res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 1}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 3}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 4}) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 5}) res2 = np.copy(data) for pos in itertools.permutations([2, 2, -3, -3, slice(2, -2)], 3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 6}) res2 = np.zeros(data.shape, dtype=data.dtype) res2[3:-3, 3:-3, 3:-3] = 1 assert np.all(res2 == res) def test_cube_edges(self): data = np.zeros((50, 50, 50), dtype=np.uint8) data[2:-2, 2:-2, 2:-2] = 1 res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 1}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 6}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 7}) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 9}) assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 10}) res2 = np.copy(data) for pos in itertools.permutations([2, 2, -3, -3, slice(2, -2)], 3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 13}) assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 14}) res2 = np.zeros(data.shape, dtype=data.dtype) res2[3:-3, 3:-3, 3:-3] = 1 assert np.all(res2 == res) def test_cube_vertex(self): data = np.zeros((50, 50, 50), dtype=np.uint8) data[2:-2, 2:-2, 2:-2] = 1 res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 1}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 7}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 8}) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 11}) assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 12}) res2 = np.copy(data) for pos in itertools.permutations([2, 2, -3, -3, slice(2, -2)], 3): res2[pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 17}) assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 18}) res2 = np.zeros(data.shape, dtype=data.dtype) res2[3:-3, 3:-3, 3:-3] = 1 assert np.all(res2 == res) def test_square_sides(self): data = np.zeros((1, 50, 50), dtype=np.uint8) data[:, 2:-2, 2:-2] = 1 res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 1}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 2}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 3}) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=2): res2[(0,) + pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.sides, "support_level": 4}) res2 = np.zeros(data.shape, dtype=data.dtype) res2[:, 3:-3, 3:-3] = 1 assert np.all(res == res2) def test_square_edges(self): data = np.zeros((1, 50, 50), dtype=np.uint8) data[:, 2:-2, 2:-2] = 1 res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 1}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 3}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 4}) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=2): res2[(0,) + pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 5}) assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": 6}) res2 = np.zeros(data.shape, dtype=data.dtype) res2[:, 3:-3, 3:-3] = 1 assert np.all(res == res2) def test_square_vertex(self): data = np.zeros((1, 50, 50), dtype=np.uint8) data[:, 2:-2, 2:-2] = 1 res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 1}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 3}) assert np.all(res == data) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 4}) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=2): res2[(0,) + pos] = 0 assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 5}) assert np.all(res2 == res) res = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.vertex, "support_level": 6}) res2 = np.zeros(data.shape, dtype=data.dtype) res2[:, 3:-3, 3:-3] = 1 assert np.all(res == res2) def calc_cord(pos, sign, shift): return tuple(np.array(pos) + np.array(sign) * np.array(shift)) def generate_neighbour_sides(dist, ndim): return filter(lambda x: np.sum(x) <= dist, itertools.product(range(dist + 1), repeat=ndim)) def generate_neighbour_edge(dist, ndim): def sub_filter(arr): arr = np.sort(arr) val = 0 mul = 1 for el in reversed(arr): val += el * mul mul *= 2 return val <= dist return filter(sub_filter, itertools.product(range(dist + 1), repeat=ndim)) class TestIterativeVoteSmoothing: def test_cube_sides_base(self): data = np.zeros((50, 50, 50), dtype=np.uint8) data[2:-2, 2:-2, 2:-2] = 1 res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.sides, "support_level": 1, "max_steps": 1} ) assert np.all(res == data) res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.sides, "support_level": 3, "max_steps": 1} ) assert np.all(res == data) res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.sides, "support_level": 4, "max_steps": 1} ) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=3): res2[pos] = 0 assert np.all(res2 == res) res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.sides, "support_level": 5, "max_steps": 1} ) res2 = np.copy(data) for pos in itertools.permutations([2, 2, -3, -3, slice(2, -2)], 3): res2[pos] = 0 assert np.all(res2 == res) res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.sides, "support_level": 6, "max_steps": 1} ) res2 = np.zeros(data.shape, dtype=data.dtype) res2[3:-3, 3:-3, 3:-3] = 1 assert np.all(res2 == res) def test_cube_sides_iter(self): data = np.zeros((50, 50, 50), dtype=np.uint8) data[2:-2, 2:-2, 2:-2] = 1 for i in range(2, 8): res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.sides, "support_level": 4, "max_steps": i} ) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=3): sign = np.sign(pos) for shift in generate_neighbour_sides(i - 1, 3): res2[calc_cord(pos, sign, shift)] = 0 assert np.all(res2 == res), f"Fail on step {i}" for i in range(2, 8): res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.sides, "support_level": 5, "max_steps": i} ) res2 = np.copy(data) for pos in itertools.permutations([2, 2, -3, -3, slice(2, -2)], 3): res2[pos] = 0 for ind in [0, 1, 2]: for pos in itertools.product([2, -3], repeat=2): sign = np.sign(pos) for shift in generate_neighbour_sides(i - 1, 2): pos2 = list(calc_cord(pos, sign, shift)) pos2.insert(ind, slice(2, -2)) res2[tuple(pos2)] = 0 assert np.all(res2 == res), f"Fail on step {i}" for i in range(2, 8): res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.sides, "support_level": 6, "max_steps": i} ) res2 = np.zeros(data.shape, dtype=data.dtype) shift = 2 + i p = slice(shift, -shift) res2[p, p, p] = 1 assert np.all(res2 == res), f"Fail on step {i}" def test_cube_edges_base(self): data = np.zeros((50, 50, 50), dtype=np.uint8) data[2:-2, 2:-2, 2:-2] = 1 res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.edges, "support_level": 1, "max_steps": 1} ) assert np.all(res == data) res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.edges, "support_level": 6, "max_steps": 1} ) assert np.all(res == data) res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.edges, "support_level": 7, "max_steps": 1} ) res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=3): res2[pos] = 0 assert np.all(res2 == res) res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.edges, "support_level": 9, "max_steps": 1} ) assert np.all(res2 == res) res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.edges, "support_level": 10, "max_steps": 1} ) res2 = np.copy(data) for pos in itertools.permutations([2, 2, -3, -3, slice(2, -2)], 3): res2[pos] = 0 assert np.all(res2 == res) res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.edges, "support_level": 13, "max_steps": 1} ) assert np.all(res2 == res) res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.edges, "support_level": 14, "max_steps": 1} ) res2 = np.zeros(data.shape, dtype=data.dtype) res2[3:-3, 3:-3, 3:-3] = 1 assert np.all(res2 == res) def test_cube_edge_iter(self): # This test can fail if IterativeVoting do not work correctly. data = np.zeros((50, 50, 50), dtype=np.uint8) data[2:-2, 2:-2, 2:-2] = 1 res2 = np.copy(data) for pos in itertools.product([2, -3], repeat=3): res2[pos] = 0 for i in range(2, 4): res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.edges, "support_level": 7, "max_steps": i} ) assert np.all(res2 == res), f"Fail on step {i}" for support_level in [8, 9, 10, 11, 12]: res2 = VoteSmoothing.smooth(data, {"neighbourhood_type": NeighType.edges, "support_level": support_level}) for i in range(2, 8): res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.edges, "support_level": support_level, "max_steps": i} ) res2 = VoteSmoothing.smooth( res2, {"neighbourhood_type": NeighType.edges, "support_level": support_level} ) assert np.all(res2 == res), f"Fail on step {i} for support level {support_level}" def test_cube_vertex_base(self): data = np.zeros((50, 50, 50), dtype=np.uint8) data[2:-2, 2:-2, 2:-2] = 1 res = IterativeVoteSmoothing.smooth( data, {"neighbourhood_type": NeighType.vertex, "support_level":
"emigrate", "knighthood", "kathie", "desai", "migrated", "dominus", "octavian", "matsuda", "namesake", "weepy", "shiner", "grifter", "basking", "opa", "adolfo", "sagittarius", "'look", "smurfs", "censored", "wares", "memorizing", "seabed", "weasels", "councilwoman", "nationalism", "hsu", "technodrome", "one-of-a-kind", "handball", "mayumi", "pacifier", "magnificence", "atheists", "zbz", "paine", "embankment", "upgrades", "outed", "siphon", "shoals", "one-legged", "three-time", "kilometre", "neutrality", "rhade", "radishes", "bas", "coined", "sequins", "baudelaire", "impersonator", "concoction", "hi-tech", "incessant", "whirling", "chevrolet", "menstrual", "nesbitt", "ven", "light-headed", "ogling", "trig", "mauricio", "kaylee", "tylenol", "hectares", "money-", "spiro", "lynched", "glorify", "pl", "soraya", "triumphed", "masking", "prolific", "see.", "mutts", "magoo", "lectured", "thirteenth", "protege", "lobbyist", "directs", "impressing", "plantagenet", "jakes", "furies", "flatmate", "taki", "wind-up", "meta", "recuperate", "crossover", "lyrical", "self-serving", "shunt", "forsythe", "youll", "jesuit", "arrgh", "concord", "silvana", "yeogu", "durand", "i`ve", "tivo", "shopped", "blacklisted", "unsatisfied", "infantile", "niang", "decadence", "motherless", "unbridled", "momoko", "backlash", "leftist", "myspace", "acronym", "clots", "lorries", "barometer", "raucous", "mournful", "you-know-what", "redheaded", "swerved", "peeked", "lundy", "i.c.u.", "ovulating", "obelix", "energon", "ferg", "dermatologist", "murtaugh", "daniele", "band-aids", "mahdi", "antwon", "naga", "kaze", "duvall", "stilts", "'d-", "assimilate", "grieved", "fermented", "siddhu", "occupant", "ala", "derivatives", "spectacularly", "narrate", "reenactment", "gwi", "palma", "goren", "wh-where", "krakow", "quiero", "machiavelli", "laney", "chitti", "pistons", "bumming", "rawlins", "swordsmanship", "pennant", "dillinger", "marooned", "storehouse", "crouching", "pernell", "storybook", "hickok", "mailer", "dl", "sandstone", "gault", "mouch", "emanating", "godard", "sidewalks", "breadth", "baywatch", "synergy", "60th", "labelled", "coexist", "rasta", "ashleigh", "coldness", "crais", "orthopedic", "close-ups", "quimby", "workhouse", "ak-47", "panics", "brainwash", "perplexed", "hustled", "untill", "muldoon", "anni", "dinesh", "tish", "tosses", "specializing", "tiller", "newfoundland", "medellin", "causeway", "midlands", "vouched", "extraordinaire", "natsumi", "scarab", "illumination", "barns", "argo", "chunghae", "oddball", "larsson", "emo", "reprehensible", "pips", "'ok", "convoys", "gunderson", "mutter", "dijon", "muthu", "diocese", "bartenders", "licensing", "restful", "workup", "getcha", "scotsman", "sycamore", "reappeared", "malay", "jami", "poppers", "beat-up", "backhand", "lawnmower", "cleric", "kickoff", "bethesda", "numerical", "cordy", "watermelons", "carnivorous", "guadalcanal", "governmental", "endures", "wellness", "boeing", "sher", "tamer", "certification", "reminiscing", "omo", "sul", "sunder", "shire", "bludgeoned", "futility", "halliday", "alli", "keita", "cla", "impervious", "one-horse", "yukawa", "weiner", "paltry", "jemma", "skeet", "unreachable", "analytical", "fruitless", "corsage", "bangin", "rife", "masquerading", "kt", "bullfighter", "graced", "bookshelf", "toxicity", "taxation", "subsidies", "barron", "camcorder", "two-day", "tamra", "kneecap", "perforated", "wrinkly", "armenians", "ten-hut", "gaudy", "lesion", "nibbling", "macao", "nss", "perfecting", "amicable", "veera", "claustrophobia", "'keefe", "just--just", "periodically", "pop-pop", "pennington", "prado", "dark-haired", "zuko", "carats", "notoriety", "fungi", "nev", "landau", "nzt", "aggravating", "doused", "course.", "toothbrushes", "immersion", "afis", "skeletal", "beatty", "bhagat", "scents", "mitya", "endowment", "bookworm", "vertically", "pelant", "heh-heh-heh", "prioritize", "luciana", "loman", "bancroft", "intermediary", "myeong", "firestorm", "centerpiece", "proprietary", "jayden", "hindrance", "biologists", "obscenity", "mothra", "dake", "retires", "meridian", "oboe", "blurt", "tallahassee", "inflammatory", "coochie", "treatable", "hubbub", "fractions", "entail", "narrowing", "tetsuo", "lida", "festering", "wetter", "stumbles", "battleground", "pantomime", "voracious", "fleshy", "hamada", "traverse", "repose", "stimulates", "madhuri", "decontamination", "clapton", "peering", "foust", "fscx140", "first-year", "remiss", "omi", "nauseating", "underfoot", "discredited", "two-and-a-half", "acquisitions", "magnanimous", "fscy140", "slovak", "ishikawa", "tenement", "karine", "derive", "reiner", "schoolgirls", "hilltop", "soared", "palle", "cotillion", "poplar", "radford", "depressive", "underlined", "bib", "stroked", "separatist", "mothefrucker", "lynx", "nudes", "tectonic", "danforth", "crixus", "empirical", "eunuchs", "oregano", "inhospitable", "ryoko", "discerning", "kidder", "chantelle", "gobbling", "kodai", "acoustics", "pecs", "schuyler", "sunflowers", "galvin", "tomi", "ziegfeld", "toyou", "dilly", "sellin", "pittman", "incas", "lasagne", "prototypes", "elective", "vulgarity", "drinkers", "moos", "dress-up", "mortician", "youve", "dirtiest", "voluptuous", "aprons", "sibley", "gillis", "tortoises", "leighton", "masochist", "trilogy", "evergreen", "transcribed", "porta", "proletarian", "pygmy", "endora", "bogs", "shaka", "shetty", "fixin", "walmart", "deities", "hovel", "lazlo", "niklaus", "forester", "bracken", "dickson", "yuma", "indefinite", "matrimonial", "fullness", "abbi", "frey", "airwaves", "bhabhi", "cruises", "damper", "damnedest", "bushy", "shizuko", "remix", "romney", "look-see", "emission", "revolutionize", "plummet", "mojito", "rickie", "exemption", "listen.", "subways", "leticia", "carruthers", "poser", "moomin", "impasse", "angling", "gibby", "kronor", "s.o.s.", "mousetrap", "cassini", "echelon", "inconspicuous", "skepticism", "smoldering", "birgitte", "undisputed", "c-can", "strikers", "penchant", "long-haired", "dependence", "livery", "clucks", "adela", "roark", "blackstone", "huffing", "infront", "iive", "'right", "viciously", "browne", "schnitzel", "hms", "racine", "scribble", "nobodies", "morrissey", "'these", "pheebs", "odile", "spic", "offed", "eiko", "atkinson", "battlestar", "fatherhood", "silks", "trembled", "rudd", "balding", "trifles", "blinky", "pres", "worshiped", "fabrice", "isak", "knuckleheads", "catty", "burgled", "giddap", "yearned", "faii", "mulcahy", "reprimanded", "saintly", "hedgehogs", "alters", "natsu", "pei", "breeland", "ack", "able-bodied", "truer", "chesapeake", "traitorous", "ayn", "industrious", "agnew", "cottages", "goings", "shari", "renegotiate", "epicenter", "cantaloupe", "dapper", "sais", "upton", "doctor-patient", "sant", "perseus", "overtaken", "nother", "millionth", "one-year", "compile", "well-done", "touche", "dosed", "lightbulb", "mourners", "pick-me-up", "desktop", "krissi", "carcasses", "togetherness", "listenin", "kink", "disobedient", "packaged", "selby", "gables", "enterprising", "leaped", "sang-woo", "gentlemanly", "wry", "hippopotamus", "discrepancies", "hashimoto", "rowland", "kawasaki", "margarine", "parameter", "mahmut", "router", "convinces", "applesauce", "ills", "agra", "confidentially", "rydell", "nunnery", "regaining", "aground", "pah", "mcdeere", "sommers", "abducting", "insulated", "unwritten", "respectability", "rooming", "mirrored", "fishin", "suman", "quay", "recoil", "'hi", "brash", "dweeb", "iearn", "peih-gee", "palpable", "shanty", "gatekeeper", "recreated", "insemination", "mojave", "schoolhouse", "figurines", "fucking-", "elongated", "lifestyles", "boos", "adoration", "quoi", "virginie", "strictest", "oiled", "mics", "huh-uh", "continual", "teacup", "fertilized", "hertz", "manet", "matte", "scrapped", "spaulding", "inventors", "mendel", "baiting", "mobilization", "jeannette", "beady", "screamer", "faker", "weighted", "la-la-la-la", "adjective", "thirty-eight", "stupor", "intensified", "sleaze", "'up", "randal", "stimulant", "nis", "cl", "grigory", "mitigating", "tosca", "pillage", "financier", "headquarter", "over-", "naidu", "talons", "reruns", "whither", "babysitters", "saori", "maison", "noting", "pio", "geared", "af", "sunup", "cheshire", "parr", "pulley", "pled", "fringes", "grasshoppers", "stupider", "unending", "morpheus", "hondo", "comprised", "cohesive", "sigrid", "belgians", "jilly", "juli", "infer", "trifling", "nursemaid", "mens", "magenta", "justly", "stuttgart", "diya", "roadie", "disabilities", "armoury", "ogami", "lyme", "yeow", "norwood", "onlookers", "sizeable", "martel", "taxing", "arseholes", "foxxy", "somersault", "clings", "backups", "mocks", "snitched", "clamped", "michi", "scamming", "tucking", "sumptuous", "doodles", "unlicensed", "grandest", "high-rise", "flagg", "jerseys", "steers", "autobot", "councils", "sebastien", "volley", "advocating", "bestest", "varma", "infiltrating", "grounding", "reclaimed", "macedonia", "ajar", "ramone", "drawbridge", "brahmin", "lucca", "writhing", "momento", "pisces", "refueling", "nonviolent", "ua", "shil", "dum-dum", "manoeuvres", "queuing", "jovi", "saratoga", "hieroglyphics", "magi", "tentative", "ml", "reprisals", "sethu", "dividends", "nietzschean", "scammed", "taub", "graeme", "he-man", "quinlan", "cilla", "mi-ho", "subliminal", "disapproval", "grug", "oahu", "fenwick", "manju", "ebb", "sidebar", "eclair", "purdy", "iffy", "manifested", "promotes", "reminiscent", "unveiled", "choral", "hernando", "pattering", "grendel", "gallivanting", "bosh", "matchbox", "probate", "zipped", "low-down", "dissected", "gae", "mammoths", "today-", "magnify", "marlboro", "scaled", "gallbladder", "madea", "asami", "waring", "vapour", "floorboard", "dismantling", "tippi", "bak", "zords", "fuckhead", "snide", "squabbling", "rescues", "cropped", "roams", "het", "boosting", "sikh", "yadda", "roadkill", "modesto", "kant", "restlessness", "conti", "khurana", "telecom", "ellingham", "tierney", "noreen", "mohini", "flaherty", "conch", "inescapable", "on-screen", "rc", "steeped", "hilde", "diluted", "orangutan", "single-handed", "progeny", "busybody", "clawing", "dreyfuss", "vacancies", "conquerors", "tra", "beheading", "annapolis", "cogs", "chatterbox", "grossman", "annually", "farewells", "heart-to-heart", "jarrett", "glossy", "tama", "traumas", "lieut", "jeweller", "braden", "hennessey", "medley", "slugged", "paraphernalia", "departmental", "squealed", "jabba", "counterparts", "snapshots", "kneecaps", "belligerent", "fissure", "puppeteer", "costanza", "orestes", "rosanna", "allotment", "'aime", "sincerest", "transcends", "gagarin", "djinn", "cancun", "fuselage", "wembley", "abuser", "capers", "propel", "good-night", "murderface", "shortstop", "mathew", "mima", "showman", "popper", "kumbaya", "transgressions", "buyin", "pensioners", "brimming", "soya", "spot-on", "windowsill", "methamphetamine", "unquote", "marky", "noun", "rouen", "gerber", "baguette", "patter", "mediate", "patties", "kita", "eugenio", "ponderosa", "hows", "bedridden", "imperialist", "behest", "ourself", "originate", "squalor", "canaries", "arraigned", "nighty-night", "endangerment", "pay-per-view", "messaging", "god-", "tethered", "j-just", "thrifty", "vash", "adnan", "buongiorno", "third-rate", "hyperdrive", "backwoods", "catered", "formulate", "lovell", "young-hee", "croaks", "uncooperative", "crazy-ass", "craved", "thankless", "antennae", "carabinieri", "snazzy", "refrigeration", "inert", "gamekeeper", "textures", "argentinean", "skirmish", "specialties", "deep-fried", "lópez", "ela", "billion-dollar", "holiest", "ganesha", "manservant", "verdun", "cheech", "mariel", "intermediate", "parkman", "nips", "palpitations", "jacinto", "spans", "emanuel", "vivaldi", "polarity", "fine-looking", "smokescreen", "smudged", "adriano", "collaborated", "skimmed", "first-born", "unrecognizable", "overzealous", "rea", "ariane", "freer", "mannequins", "mclane", "nk", "kraken", "shekels", "gauls", "biotech", "sterilized", "pressurized", "second-degree", "scattering", "ziegler", "assange", "naz", "jeopardized", "consoling", "appointing", "wiper", "harping", "carmelo", "cinemas", "midland", "petticoat", "broyles", "flippin", "harrowing", "tearful", "clavin", "truest", "kwun", "cleft", "wray", "malware", "kanzaki", "riverdale", "bream", "justifiable", "fretting", "frowning", "potomac", "sten", "barked", "pre-med", "cancels", "homeowners", "fiendish", "shinobu", "notwithstanding", "redskins", "voyeur", "havers", "chronos", "abilene", "auctions", "mincemeat", "out-of-town", "prosthetics", "second-class", "hershey", "procured", "loathed", "decrepit", "bly", "fast-food", "eventful", "shimada", "skinheads", "petya", "oomph", "19th-century", "polluting", "hochstetter", "multiplication", "incentives", "remarked", "phlox", "thirty-seven", "horned", "'lf", "pontius", "matchmaking", "soma", "basements", "barmy", "stockpile", "weavers", "one.", "meme", "50-year-old", "hazelnut", "mailroom", "saturation", "ley", "sinkhole", "greenwood", "inertia", "impossibly", "westward", "pff", "philistine", "gnaw", "mother-daughter", "crepes", "paki", "geriatric", "honorably", "lope", "toasts", "hypertension", "puritan", "entropy", "palo", "mili", "baring", "come-", "imprinted", "sylar", "petter", "winks", "conditional", "marriott", "foreseeable", "evens", "vandalized", "garters", "flatulence", "samira", "rusk", "best-looking", "designation", "raus", "shamans", "garnett", "gunners", "captivating", "impresses", "extravagance", "vve", "chutes", "sphincter", "oshin", "two-headed", "leprechauns", "eben", "gsr", "pastoral", "beaufort", "proverbs", "bade", "shoebox", "responsibly", "sigurd", "rekha", "heston", "deducted", "oncoming", "trafalgar", "persists", "initiatives", "paşa", "listings", "wameru", "yοur", "proficient", "klondike", "kenna", "boog", "sty", "gallantry", "dutton", "assailants", "noboru", "duels", "forfeited", "absolved", "advantageous", "amps", "biochemical", "contraception", "lago", "winkle", "crayfish", "hotties", "obsessions", "accumulation", "gwendolyn", "converter", "deuces", "percentages", "assimilated", "swingers", "ivanov", "cobain", "institutional", "changeling", "vertebra", "hoofbeats", "sd", "machu", "his-", "romulus", "malayalam", "peacemaker", "plaintiffs", "universally", "corman", "instructing", "alissa", "ladylike", "loveable", "humps", "rien", "ea", "turnbull", "raza", "forster", "pentagram", "familial", "salutes", "separatists", "'till", "transistor", "mirai", "therapies", "sensibly", "spandex", "sinker", "all-stars", "incur", "decomposed", "informally", "trollop", "metz",
<filename>netforce_service/netforce_service/models/job.py # Copyright (c) 2012-2015 Netforce Co. Ltd. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # OR OTHER DEALINGS IN THE SOFTWARE. from netforce.model import Model, fields, get_model from netforce.access import get_active_user, set_active_user from datetime import * from dateutil.relativedelta import relativedelta import time from netforce.database import get_connection from netforce.access import get_active_company, check_permission_other from netforce.utils import get_data_path class Job(Model): _name = "job" _string = "Service Order" _name_field = "number" _audit_log = True _multi_company = True _fields = { "project_id": fields.Many2One("project", "Project", search=True), "contact_id": fields.Many2One("contact", "Customer", required=True, search=True), "template_id": fields.Many2One("job.template", "Template"), "service_type_id": fields.Many2One("service.type", "Service Type", search=True), "product_id": fields.Many2One("product", "Product"), # XXX: deprecated "name": fields.Char("Order Name", search=True), "number": fields.Char("Order Number", required=True, search=True), "description": fields.Text("Description"), "due_date": fields.Date("Due Date", search=True), "close_date": fields.Date("Close Date", search=True), "priority": fields.Selection([["low", "Low"], ["medium", "Medium"], ["high", "High"]], "Priority", search=True), "state": fields.Selection([["planned", "Planned"], ["allocated", "Allocated"], ["in_progress", "In Progress"], ["done", "Completed"], ["canceled", "Canceled"]], "Status", required=True), "overdue": fields.Boolean("Overdue", function="get_overdue", function_search="search_overdue"), "comments": fields.One2Many("message", "related_id", "Comments"), "documents": fields.One2Many("document", "related_id", "Documents"), "tasks": fields.One2Many("task", "job_id", "Tasks"), "days_late": fields.Integer("Days Late", function="get_days_late"), "user_id": fields.Many2One("base.user", "Assigned To"), # XXX: deprecated "resource_id": fields.Many2One("service.resource", "Assigned Resource", search=True), # XXX: deprecated "skill_level_id": fields.Many2One("skill.level", "Required Skill Level", search=True), "request_by_id": fields.Many2One("base.user", "Requested By", search=True), "user_board_id": fields.Boolean("User", store=False, function_search="search_user_board_id"), "sharing": fields.One2Many("share.record", "related_id", "Sharing"), "invoice_no": fields.Char("Invoice No."), # XXX: not used any more... "shared_board": fields.Boolean("Shared", store=False, function_search="search_shared_board"), "quotation_id": fields.Many2One("sale.quot", "Quotation"), "cancel_reason": fields.Text("Cancel Reason"), "cancel_periodic": fields.Boolean("Cancel Periodic"), "next_job_id": fields.Many2One("job", "Next Order"), "emails": fields.One2Many("email.message", "related_id", "Emails"), "company_id": fields.Many2One("company", "Company"), "invoices": fields.One2Many("account.invoice", "related_id", "Invoices"), "bill_amount": fields.Decimal("Billable Amount"), "invoice_id": fields.Many2One("account.invoice", "Invoice"), "is_duplicate": fields.Boolean("Duplicate"), "work_time": fields.One2Many("work.time", "job_id", "Work Time"), "pickings": fields.One2Many("stock.picking", "related_id", "Pickings"), "stock_moves": fields.One2Many("stock.move", "related_id", "Stock Movements"), "parts": fields.One2Many("job.part", "job_id", "Parts"), "other_costs": fields.One2Many("job.cost", "job_id", "Other Costs"), "items": fields.One2Many("job.item", "job_id", "Service Items"), "allocs": fields.One2Many("service.resource.alloc", "job_id", "Resource Allocations"), "time_start": fields.DateTime("Planned Start Time"), "time_stop": fields.DateTime("Planned Stop Time"), "location_id": fields.Many2One("stock.location", "Job Location"), "related_id": fields.Reference([["sale.order", "Sales Order"], ["rental.order","Rental Order"], ["issue", "Issue"]], "Related To"), "lines": fields.One2Many("job.line", "job_id", "Worksheet"), "complaints": fields.Text("Complaints"), "cause": fields.Text("Cause"), "correction": fields.Text("Correction"), "amount_total": fields.Decimal("Total Selling", function="get_total", function_multi=True), "amount_contract": fields.Decimal("Included In Contract", function="get_total", function_multi=True), "amount_job": fields.Decimal("Not Included In Contract", function="get_total", function_multi=True), "overdue": fields.Boolean("Overdue", function="get_overdue", function_search="search_overdue"), "date_open": fields.DateTime("Actual Start"), "date_close": fields.DateTime("Actual Stop"), "labor_cost": fields.Decimal("Labor Cost", function="get_cost", function_multi=True), "part_cost": fields.Decimal("Parts Cost", function="get_cost", function_multi=True), "other_cost": fields.Decimal("Other Cost", function="get_cost", function_multi=True), "total_cost": fields.Decimal("Total Cost", function="get_cost", function_multi=True), "labor_sell": fields.Decimal("Labor Selling", function="get_sell", function_multi=True), "part_sell": fields.Decimal("Parts Selling", function="get_sell", function_multi=True), "other_sell": fields.Decimal("Other Selling", function="get_sell", function_multi=True), "done_approved_by_id": fields.Many2One("base.user", "Approved By", readonly=True), "multi_visit_code_id": fields.Many2One("reason.code", "Multi Visit Reason Code", condition=[["type", "=", "service_multi_visit"]]), "late_response_code_id": fields.Many2One("reason.code", "Late Response Reason Code", condition=[["type", "=", "service_late_response"]]), "year": fields.Char("Year", sql_function=["year", "due_date"]), "quarter": fields.Char("Quarter", sql_function=["quarter", "due_date"]), "month": fields.Char("Month", sql_function=["month", "due_date"]), "week": fields.Char("Week", sql_function=["week", "due_date"]), "activities": fields.One2Many("activity","related_id","Activities"), "track_id": fields.Many2One("account.track.categ","Tracking Code"), "track_entries": fields.One2Many("account.track.entry",None,"Tracking Entries",function="get_track_entries",function_write="write_track_entries"), "track_balance": fields.Decimal("Tracking Balance",function="_get_related",function_context={"path":"track_id.balance"}), } _order = "number" _sql_constraints = [ ("number_uniq", "unique (number)", "The job number must be unique!"), ] def _get_number(self, context={}): while 1: num = get_model("sequence").get_number(type="job") if not num: return None user_id = get_active_user() set_active_user(1) res = self.search([["number", "=", num]]) set_active_user(user_id) if not res: return num get_model("sequence").increment(type="job") def name_get(self, ids, context={}): vals = [] for obj in self.browse(ids): name = obj.number if obj.name: name += " - " + obj.name vals.append((obj.id, name)) return vals _defaults = { "state": "planned", "number": _get_number, "request_by_id": lambda *a: get_active_user(), #"company_id": lambda *a: get_active_company(), # XXX: don't use this yet "date_open": lambda *a: time.strftime("%Y-%m-%d"), } def write(self, ids, vals, **kw): if vals.get("state") == "done": vals["date_close"] = time.strftime("%Y-%m-%d") for obj in self.browse(ids): if not obj.done_approved_by_id: raise Exception("Service order has to be approved first") super().write(ids, vals, **kw) def get_total(self, ids, context={}): vals = {} for obj in self.browse(ids): amt_total = 0 amt_contract = 0 amt_job = 0 for line in obj.lines: amt_total += line.amount if line.payment_type == "contract": amt_contract += line.amount elif line.payment_type == "job": amt_job += line.amount vals[obj.id] = { "amount_total": amt_total, "amount_contract": amt_contract, "amount_job": amt_job, } return vals def onchange_template(self, context={}): data = context["data"] template_id = data["template_id"] tmpl = get_model("job.template").browse(template_id) data["service_type_id"] = tmpl.service_type_id.id data["description"] = tmpl.description data["skill_level_id"] = tmpl.skill_level_id.id data["lines"] = [] for line in tmpl.lines: line_vals = { "type": line.type, "product_id": line.product_id.id, "description": line.description, "qty": line.qty, "uom_id": line.uom_id.id, "unit_price": line.unit_price, } data["lines"].append(line_vals) return data def get_overdue(self, ids, context={}): vals = {} for obj in self.browse(ids): if obj.due_date: vals[obj.id] = obj.due_date < time.strftime( "%Y-%m-%d") and obj.state in ("planned", "allocated", "in_progress") else: vals[obj.id] = False return vals def search_overdue(self, clause, context={}): return [["due_date", "<", time.strftime("%Y-%m-%d")], ["state", "in", ["planned", "allocated", "in_progress"]]] def copy_to_pick_out(self, ids, context={}): obj = self.browse(ids)[0] vals = { "type": "out", "contact_id": obj.contact_id.id, "related_id": "job,%d" % obj.id, "lines": [], } res = get_model("stock.location").search([["type", "=", "customer"]]) if not res: raise Exception("Customer location not found") cust_loc_id = res[0] res = get_model("stock.location").search([["type", "=", "internal"]]) if not res: raise Exception("Warehouse location not found") wh_loc_id = res[0] for line in obj.lines: prod = line.product_id if prod.type not in ("stock", "consumable"): continue line_vals = { "product_id": prod.id, "qty": line.qty, "uom_id": line.uom_id.id, "location_from_id": prod.location_id.id or wh_loc_id, "location_to_id": obj.location_id.id or cust_loc_id, } vals["lines"].append(("create", line_vals)) if not vals["lines"]: raise Exception("Nothing to issue") new_id = get_model("stock.picking").create(vals, context={"pick_type": "out"}) pick = get_model("stock.picking").browse(new_id) return { "flash": "Goods issue %s copied from service order %s" % (pick.number, obj.number), "next": { "name": "pick_out", "mode": "form", "active_id": new_id, } } def copy_to_invoice(self, ids, context={}): obj = self.browse(ids)[0] inv_vals = { "type": "out", "inv_type": "invoice", "ref": obj.number, "related_id": "job,%s" % obj.id, "contact_id": obj.contact_id.id, "lines": [], } for line in obj.lines: if line.payment_type != "job": continue prod = line.product_id line_vals = { "product_id": prod.id, "description": line.description, "qty": line.qty, "uom_id": line.uom_id.id, "unit_price": line.unit_price, "account_id": prod.sale_account_id.id if prod else None, "tax_id": prod.sale_tax_id.id if prod else None, "amount": line.amount, } inv_vals["lines"].append(("create", line_vals)) if not inv_vals["lines"]: raise Exception("Nothing to invoice") inv_id = get_model("account.invoice").create(inv_vals, {"type": "out", "inv_type": "invoice"}) inv = get_model("account.invoice").browse(inv_id) return { "next": { "name": "view_invoice", "active_id": inv_id, }, "flash": "Invoice %s created from job %s" % (inv.number, obj.number), } def onchange_product(self, context={}): data = context["data"] path = context["path"] line = get_data_path(data, path, parent=True) prod_id = line["product_id"] prod = get_model("product").browse(prod_id) line["uom_id"] = prod.uom_id.id line["unit_price"] = prod.sale_price line["description"] = prod.description return data def onchange_due_date(self, context={}): print("onchange_due_date") data = context["data"] data['time_start'] = data['due_date'] return data def onchange_close_date(self, context={}): print("onchange_close_date") data = context["data"] crr_date = time.strftime("%Y-%m-%d") close_date = data['close_date'] due_date = data['due_date'] if crr_date >= close_date: data['state'] = 'done' elif crr_date >= due_date and crr_date <= close_date: data['state'] = 'in_progress' return data def get_cost(self, ids, context={}): vals = {} for obj in self.browse(ids): labor_cost = 0 for time in obj.work_time: labor_cost += time.amount or 0 other_cost = 0 for line in obj.lines: if line.type != "other": continue prod = line.product_id other_cost += prod.cost_price or 0 job_loc_id = obj.location_id.id if not job_loc_id: res = get_model("stock.location").search([["type", "=", "customer"]]) if res: job_loc_id = res[0] part_cost = 0 for pick in obj.pickings: for move in pick.lines: amt = move.qty * (move.unit_price or 0) if move.location_to_id.id == job_loc_id and move.location_from_id.id != job_loc_id: part_cost += amt elif move.location_from_id.id == job_loc_id and move.location_to_id.id != job_loc_id: part_cost -= amt vals[obj.id] = { "labor_cost": labor_cost, "part_cost": part_cost, "other_cost": other_cost, "total_cost": labor_cost + part_cost + other_cost, } return vals def get_sell(self, ids, context={}): vals = {} for obj in self.browse(ids): labor_sell = 0 other_sell = 0 part_sell = 0 for
for k, v in mapping.iteritems())) @staticmethod def gds_encode(instring): if sys.version_info.major == 2: if ExternalEncoding: encoding = ExternalEncoding else: encoding = 'utf-8' return instring.encode(encoding) else: return instring @staticmethod def convert_unicode(instring): if isinstance(instring, str): result = quote_xml(instring) elif sys.version_info.major == 2 and isinstance(instring, unicode): result = quote_xml(instring).encode('utf8') else: result = GeneratedsSuper.gds_encode(str(instring)) return result def __eq__(self, other): if type(self) != type(other): return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self.__eq__(other) def getSubclassFromModule_(module, class_): '''Get the subclass of a class from a specific module.''' name = class_.__name__ + 'Sub' if hasattr(module, name): return getattr(module, name) else: return None # # If you have installed IPython you can uncomment and use the following. # IPython is available from http://ipython.scipy.org/. # ## from IPython.Shell import IPShellEmbed ## args = '' ## ipshell = IPShellEmbed(args, ## banner = 'Dropping into IPython', ## exit_msg = 'Leaving Interpreter, back to program.') # Then use the following line where and when you want to drop into the # IPython shell: # ipshell('<some message> -- Entering ipshell.\nHit Ctrl-D to exit') # # Globals # ExternalEncoding = 'utf-8' Tag_pattern_ = re_.compile(r'({.*})?(.*)') String_cleanup_pat_ = re_.compile(r"[\n\r\s]+") Namespace_extract_pat_ = re_.compile(r'{(.*)}(.*)') CDATA_pattern_ = re_.compile(r"<!\[CDATA\[.*?\]\]>", re_.DOTALL) # Change this to redirect the generated superclass module to use a # specific subclass module. CurrentSubclassModule_ = None # # Support/utility functions. # def showIndent(outfile, level, pretty_print=True): if pretty_print: for idx in range(level): outfile.write(' ') def quote_xml(inStr): "Escape markup chars, but do not modify CDATA sections." if not inStr: return '' s1 = (isinstance(inStr, BaseStrType_) and inStr or '%s' % inStr) s2 = '' pos = 0 matchobjects = CDATA_pattern_.finditer(s1) for mo in matchobjects: s3 = s1[pos:mo.start()] s2 += quote_xml_aux(s3) s2 += s1[mo.start():mo.end()] pos = mo.end() s3 = s1[pos:] s2 += quote_xml_aux(s3) return s2 def quote_xml_aux(inStr): s1 = inStr.replace('&', '&amp;') s1 = s1.replace('<', '&lt;') s1 = s1.replace('>', '&gt;') return s1 def quote_attrib(inStr): s1 = (isinstance(inStr, BaseStrType_) and inStr or '%s' % inStr) s1 = s1.replace('&', '&amp;') s1 = s1.replace('<', '&lt;') s1 = s1.replace('>', '&gt;') if '"' in s1: if "'" in s1: s1 = '"%s"' % s1.replace('"', "&quot;") else: s1 = "'%s'" % s1 else: s1 = '"%s"' % s1 return s1 def quote_python(inStr): s1 = inStr if s1.find("'") == -1: if s1.find('\n') == -1: return "'%s'" % s1 else: return "'''%s'''" % s1 else: if s1.find('"') != -1: s1 = s1.replace('"', '\\"') if s1.find('\n') == -1: return '"%s"' % s1 else: return '"""%s"""' % s1 def get_all_text_(node): if node.text is not None: text = node.text else: text = '' for child in node: if child.tail is not None: text += child.tail return text def find_attr_value_(attr_name, node): attrs = node.attrib attr_parts = attr_name.split(':') value = None if len(attr_parts) == 1: value = attrs.get(attr_name) elif len(attr_parts) == 2: prefix, name = attr_parts namespace = node.nsmap.get(prefix) if namespace is not None: value = attrs.get('{%s}%s' % (namespace, name, )) return value class GDSParseError(Exception): pass def raise_parse_error(node, msg): msg = '%s (element %s/line %d)' % (msg, node.tag, node.sourceline, ) raise GDSParseError(msg) class MixedContainer: # Constants for category: CategoryNone = 0 CategoryText = 1 CategorySimple = 2 CategoryComplex = 3 # Constants for content_type: TypeNone = 0 TypeText = 1 TypeString = 2 TypeInteger = 3 TypeFloat = 4 TypeDecimal = 5 TypeDouble = 6 TypeBoolean = 7 TypeBase64 = 8 def __init__(self, category, content_type, name, value): self.category = category self.content_type = content_type self.name = name self.value = value def getCategory(self): return self.category def getContenttype(self, content_type): return self.content_type def getValue(self): return self.value def getName(self): return self.name def export(self, outfile, level, name, namespace, pretty_print=True): if self.category == MixedContainer.CategoryText: # Prevent exporting empty content as empty lines. if self.value.strip(): outfile.write(self.value) elif self.category == MixedContainer.CategorySimple: self.exportSimple(outfile, level, name) else: # category == MixedContainer.CategoryComplex self.value.export( outfile, level, namespace, name, pretty_print=pretty_print) def exportSimple(self, outfile, level, name): if self.content_type == MixedContainer.TypeString: outfile.write('<%s>%s</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeInteger or \ self.content_type == MixedContainer.TypeBoolean: outfile.write('<%s>%d</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeFloat or \ self.content_type == MixedContainer.TypeDecimal: outfile.write('<%s>%f</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeDouble: outfile.write('<%s>%g</%s>' % ( self.name, self.value, self.name)) elif self.content_type == MixedContainer.TypeBase64: outfile.write('<%s>%s</%s>' % ( self.name, base64.b64encode(self.value), self.name)) def to_etree(self, element): if self.category == MixedContainer.CategoryText: # Prevent exporting empty content as empty lines. if self.value.strip(): if len(element) > 0: if element[-1].tail is None: element[-1].tail = self.value else: element[-1].tail += self.value else: if element.text is None: element.text = self.value else: element.text += self.value elif self.category == MixedContainer.CategorySimple: subelement = etree_.SubElement( element, '%s' % self.name) subelement.text = self.to_etree_simple() else: # category == MixedContainer.CategoryComplex self.value.to_etree(element) def to_etree_simple(self): if self.content_type == MixedContainer.TypeString: text = self.value elif (self.content_type == MixedContainer.TypeInteger or self.content_type == MixedContainer.TypeBoolean): text = '%d' % self.value elif (self.content_type == MixedContainer.TypeFloat or self.content_type == MixedContainer.TypeDecimal): text = '%f' % self.value elif self.content_type == MixedContainer.TypeDouble: text = '%g' % self.value elif self.content_type == MixedContainer.TypeBase64: text = '%s' % base64.b64encode(self.value) return text def exportLiteral(self, outfile, level, name): if self.category == MixedContainer.CategoryText: showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s", "%s"),\n' % ( self.category, self.content_type, self.name, self.value)) elif self.category == MixedContainer.CategorySimple: showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s", "%s"),\n' % ( self.category, self.content_type, self.name, self.value)) else: # category == MixedContainer.CategoryComplex showIndent(outfile, level) outfile.write( 'model_.MixedContainer(%d, %d, "%s",\n' % ( self.category, self.content_type, self.name,)) self.value.exportLiteral(outfile, level + 1) showIndent(outfile, level) outfile.write(')\n') class MemberSpec_(object): def __init__(self, name='', data_type='', container=0, optional=0, child_attrs=None, choice=None): self.name = name self.data_type = data_type self.container = container self.child_attrs = child_attrs self.choice = choice self.optional = optional def set_name(self, name): self.name = name def get_name(self): return self.name def set_data_type(self, data_type): self.data_type = data_type def get_data_type_chain(self): return self.data_type def get_data_type(self): if isinstance(self.data_type, list): if len(self.data_type) > 0: return self.data_type[-1] else: return 'xs:string' else: return self.data_type def set_container(self, container): self.container = container def get_container(self): return self.container def set_child_attrs(self, child_attrs): self.child_attrs = child_attrs def get_child_attrs(self): return self.child_attrs def set_choice(self, choice): self.choice = choice def get_choice(self): return self.choice def set_optional(self, optional): self.optional = optional def get_optional(self): return self.optional def _cast(typ, value): if typ is None or value is None: return value return typ(value) # # Data representation classes. # class AlertIntervalType(object): NONE='NONE' INTERVAL__5='INTERVAL_5' INTERVAL__15='INTERVAL_15' INTERVAL__30='INTERVAL_30' INTERVAL__60='INTERVAL_60' INTERVAL__300='INTERVAL_300' INTERVAL__900='INTERVAL_900' INTERVAL__3600='INTERVAL_3600' class AlertType(object): BEEP='BEEP' SILENT='SILENT' RING__5='RING_5' RING__15='RING_15' RING__30='RING_30' RING__60='RING_60' class FormButton(object): POSITIVE='positive' NEGATIVE='negative' class KeyboardType(object): DEFAULT='DEFAULT' AUTO_CAPITALIZED='AUTO_CAPITALIZED' EMAIL='EMAIL' URL='URL' PHONE='PHONE' NUMBER='NUMBER' DECIMAL='DECIMAL' PASSWORD='PASSWORD' NUMBER_PASSWORD='<PASSWORD>' class MemberStatus(object): SUBMITTED='SUBMITTED' INITIATED='INITIATED' RUNNING='RUNNING' FINISHED='FINISHED' class ProgrammingLanguage(object): JYTHON='JYTHON' JRUBY='JRUBY' class Attachment(GeneratedsSuper): subclass = None superclass = None def __init__(self, name=None, url=None, contentType=None, size=None): self.original_tagname_ = None self.name = _cast(None, name) self.url = _cast(None, url) self.contentType = _cast(None, contentType) self.size = _cast(int, size) def factory(*args_, **kwargs_): if CurrentSubclassModule_ is not None: subclass = getSubclassFromModule_( CurrentSubclassModule_, Attachment) if subclass is not None: return subclass(*args_, **kwargs_) if Attachment.subclass: return Attachment.subclass(*args_, **kwargs_) else: return Attachment(*args_, **kwargs_) factory = staticmethod(factory) def get_name(self): return self.name def set_name(self, name): self.name = name def get_url(self): return self.url def set_url(self, url): self.url = url def get_contentType(self): return self.contentType def set_contentType(self, contentType): self.contentType = contentType def get_size(self): return self.size def set_size(self, size): self.size = size def hasContent_(self): if ( ): return True else: return False def export(self, outfile, level, namespaceprefix_='', name_='Attachment', namespacedef_='', pretty_print=True): imported_ns_def_ = GenerateDSNamespaceDefs_.get('Attachment') if imported_ns_def_ is not None: namespacedef_ = imported_ns_def_ if pretty_print: eol_ = '\n' else: eol_ = '' if self.original_tagname_ is not None: name_ = self.original_tagname_ showIndent(outfile, level, pretty_print) outfile.write('<%s%s%s' % (namespaceprefix_, name_, namespacedef_ and ' ' + namespacedef_ or '', )) already_processed = set() self.exportAttributes(outfile, level, already_processed, namespaceprefix_, name_='Attachment') if self.hasContent_(): outfile.write('>%s' % (eol_, )) self.exportChildren(outfile, level + 1, namespaceprefix_='', name_='Attachment', pretty_print=pretty_print) outfile.write('</%s%s>%s' % (namespaceprefix_, name_, eol_)) else: outfile.write('/>%s' % (eol_, )) def exportAttributes(self, outfile, level, already_processed, namespaceprefix_='', name_='Attachment'): if self.name is not None and 'name' not in already_processed: already_processed.add('name') outfile.write(' name=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.name), input_name='name')), )) if self.url is not None and 'url' not in already_processed: already_processed.add('url') outfile.write(' url=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.url), input_name='url')), )) if self.contentType is not None and 'contentType' not in already_processed: already_processed.add('contentType') outfile.write(' contentType=%s' % (self.gds_encode(self.gds_format_string(quote_attrib(self.contentType), input_name='contentType')), )) if self.size is not None and 'size' not in already_processed: already_processed.add('size') outfile.write(' size="%s"' % self.gds_format_integer(self.size, input_name='size')) def exportChildren(self, outfile, level, namespaceprefix_='', name_='Attachment', fromsubclass_=False, pretty_print=True): pass def build(self, node): already_processed = set() self.buildAttributes(node, node.attrib, already_processed) for child in node: nodeName_ = Tag_pattern_.match(child.tag).groups()[-1] self.buildChildren(child,